WO2020066028A1 - Motor drive device and air conditioner - Google Patents

Motor drive device and air conditioner Download PDF

Info

Publication number
WO2020066028A1
WO2020066028A1 PCT/JP2018/036605 JP2018036605W WO2020066028A1 WO 2020066028 A1 WO2020066028 A1 WO 2020066028A1 JP 2018036605 W JP2018036605 W JP 2018036605W WO 2020066028 A1 WO2020066028 A1 WO 2020066028A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
connection
connection state
motor
booster circuit
Prior art date
Application number
PCT/JP2018/036605
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 下麥
有澤 浩一
智 一木
啓介 植村
憲嗣 岩崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/036605 priority Critical patent/WO2020066028A1/en
Priority to JP2020547892A priority patent/JP7312189B2/en
Publication of WO2020066028A1 publication Critical patent/WO2020066028A1/en
Priority to JP2022099642A priority patent/JP7337232B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a motor driving device for driving a motor, and an air conditioner including the motor driving device.
  • Patent Literature 1 listed below discloses a technique for increasing the efficiency of an air conditioner, in which the connection of a stator winding (hereinafter simply referred to as “winding”) of a motor is switched between a star connection and a delta connection.
  • winding a stator winding
  • a configuration of a motor driving device is disclosed.
  • a technique is proposed in which a star connection is used in a low-speed rotation region and a delta connection is used in a high-speed rotation region to expand a high-speed rotation region and increase efficiency in a low-speed rotation region.
  • the star connection and the delta connection are used at the same bus voltage, the number of windings of the winding is determined based on the motor applied voltage in the delta connection according to the requirement of the rotation speed in the high-speed rotation region. For this reason, there is room for improvement in the efficiency in the low-speed rotation region using the star connection.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a motor drive device capable of further improving efficiency in a low-speed rotation range.
  • a motor driving device includes at least one switching element, and converts an AC voltage output from an AC power supply into a DC voltage by opening and closing the switching element.
  • a booster circuit for converting and boosting is provided.
  • the motor driving device includes a capacitor for smoothing a DC voltage output from the booster circuit, and an inverter circuit for converting power stored in the capacitor into AC power and supplying the AC power to the motor.
  • the motor has a plurality of windings, the windings are open at both ends, and by changing the connection destination at both ends, the winding connection state can be changed between the first connection state and the second connection state.
  • the motor applied voltage in the first connection state is higher than the motor applied voltage in the second connection state under the same motor rotation speed.
  • the output voltage of the booster circuit increases when the booster circuit is not operated.
  • FIG. 1 is a circuit diagram showing a configuration of a motor drive device according to a first embodiment.
  • FIG. 1 is a circuit diagram showing a detailed configuration of the inverter circuit shown in FIG.
  • FIG. 2 is a circuit diagram showing a configuration of the inverter circuit shown in FIG. 1 which is different from FIG.
  • FIG. 11 is a diagram for describing another example of the first and second connection states according to the first embodiment.
  • FIG. 7 is a diagram for describing an operation mode of the motor drive device according to the first embodiment.
  • FIG. 4 is a diagram showing one current path in the passive synchronous rectification mode in the booster circuit of the first embodiment.
  • the figure which shows the current-loss characteristic in the general switching element typically FIG. 5 shows one of current paths in the simple switching mode in the booster circuit of the first embodiment.
  • FIG. 7 is a diagram for explaining the relationship between the connection state and the efficiency in the connection switching motor according to the first embodiment.
  • FIG. 7 is a diagram for describing initial matters when configuring the connection switching motor according to the first embodiment.
  • FIG. 7 is a diagram for describing output voltage control in the booster circuit according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration that implements the function of the control unit according to the first embodiment.
  • FIG. 4 is a block diagram showing another example of a hardware configuration that embodies the function of the control unit according to the first embodiment.
  • connection simply referred to as “connection”.
  • FIG. 1 is a circuit diagram showing a configuration of the motor drive device 100 according to the first embodiment.
  • FIG. 2 is a circuit diagram showing a detailed configuration of the inverter circuit shown in FIG.
  • the motor drive device 100 converts AC power supplied from a single-phase AC power supply 1 into DC power, as shown in FIG.
  • the motor driving device 100 converts the converted DC power into AC power again, and supplies the converted AC power to the motor 500 as a load to drive the motor 500.
  • An example of the motor 500 is a motor built in a blower, a compressor, or an air conditioner.
  • the motor driving device 100 includes a booster circuit 3, a capacitor 4, a control unit 10, an inverter circuit 18 including a current detector 18S, a connection switching unit 60, and a voltage serving as a first voltage detector. It includes a detector 5 and a voltage detector 7 as a second voltage detector.
  • the booster circuit 3 is a boost converter that converts an AC voltage output from the AC power supply 1 into a DC voltage and boosts the DC voltage by opening and closing a switching element described later. When converting the AC voltage into the DC voltage, the booster circuit 3 controls the voltage value of the converted DC voltage, that is, boosts the voltage value. Note that the AC voltage output from the AC power supply 1 is referred to as “power supply voltage” and is represented by “Vs”.
  • the booster circuit 3 includes the reactor 2, a first leg 31, and a second leg 32.
  • the first leg 31 and the second leg 32 are connected in parallel.
  • a first upper arm element 311 and a first lower arm element 312 are connected in series.
  • a second upper arm element 321 and a second lower arm element 322 are connected in series.
  • One end of reactor 2 is connected to AC power supply 1.
  • the other end of the reactor 2 is connected to a connection point 3 a between the first upper arm element 311 and the first lower arm element 312 in the first leg 31.
  • a connection point 3 b between the second upper arm element 321 and the second lower arm element 322 is connected to the other end of the AC power supply 1.
  • the connection points 3a and 3b constitute an AC terminal.
  • the first upper arm element 311 includes a switching element Q1 and a diode D1 connected in anti-parallel to the switching element Q1.
  • First lower arm element 312 includes a switching element Q2 and a diode D2 connected in anti-parallel to switching element Q2.
  • Second upper arm element 321 includes switching element Q3 and diode D3 connected in antiparallel to switching element Q3.
  • Second lower arm element 322 includes a switching element Q4 and a diode D4 connected in anti-parallel to switching element Q4.
  • each of the switching elements Q1, Q2, Q3, and Q4 is exemplified by a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor: MOSFET), but is not limited to a MOSFET.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • a MOSFET is a switching element capable of flowing current bidirectionally between a drain and a source. Any switching element can be used as long as current can flow bidirectionally between the first terminal corresponding to the drain and the second terminal corresponding to the source.
  • antiparallel means that the first terminal corresponding to the drain of the MOSFET is connected to the cathode of the diode, and the second terminal corresponding to the source of the MOSFET is connected to the anode of the diode.
  • a parasitic diode included in the MOSFET itself may be used as the diode. Parasitic diodes are also called body diodes.
  • At least one of the switching elements Q1, Q2, Q3, and Q4 is not limited to a MOSFET formed of a silicon-based material, and is formed of a wide band gap semiconductor such as silicon carbide, gallium nitride, gallium oxide, or diamond. MOSFET may be used.
  • wide band gap semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a wide band gap semiconductor for at least one of the switching elements Q1, Q2, Q3, and Q4, the withstand voltage and the allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element is reduced in size.
  • switching elements Q1, Q2, Q3, and Q4 may use diodes instead of the switching elements. That is, at least one of the switching elements Q1, Q2, Q3, and Q4 may be a switching element. Even with such an alternative configuration, a boosting operation described later can be performed.
  • connection points 3c and 3d constitute DC terminals.
  • the side where the connection points 3c and 3d are located is referred to as "DC side".
  • Capacitor 4 is connected to DC buses 12a and 12b, and smoothes the output voltage of booster circuit 3.
  • the voltage generated at the DC buses 12a and 12b is called “bus voltage” and is represented by "Vdc”.
  • An AC current flowing between the AC power supply 1 and the booster circuit 3 may be referred to as a “first current”.
  • the voltage detector 5 detects the power supply voltage Vs and outputs a detected value of the power supply voltage Vs to the control unit 10.
  • the voltage detector 7 detects the bus voltage Vdc and outputs a detected value of the bus voltage Vdc to the control unit 10.
  • the inverter circuit 18 includes a leg 18A in which an upper arm element 18UP and a lower arm element 18UN are connected in series, and a leg 18B in which an upper arm element 18VP and a lower arm element 18VN are connected in series. And a leg 18C in which the upper arm element 18WP and the lower arm element 18WN are connected in series.
  • the legs 18A, 18B and 18C are connected in parallel with each other.
  • a shunt resistor 18DS is inserted into the DC bus 12b.
  • the shunt resistor 18DS is a component of the current detector 18S shown in FIG. Note that the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN may be referred to as “second switching elements”.
  • FIG. 2 illustrates a case where the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN are insulated gate bipolar transistors (Insulated Gate Bipolar Transistor: IGBT), but the present invention is not limited to this.
  • IGBT Insulated Gate Bipolar Transistor
  • a MOSFET may be used instead of the IGBT.
  • the upper arm element 18UP includes a transistor 18a and a diode 18b connected in anti-parallel to the transistor 18a.
  • the other upper arm elements 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN have the same configuration.
  • Anti-parallel means that the anode side of the diode is connected to the first terminal corresponding to the emitter of the IGBT and the cathode side of the diode is connected to the second terminal corresponding to the collector of the IGBT, as in the case of the booster circuit 3. means.
  • the shunt resistor 18DS detects a current flowing between the capacitor 4 and the inverter circuit 18. The detected value of the current flowing through the shunt resistor 18DS is sent to the control unit 10.
  • FIG. 2 shows a configuration including three legs in which the upper arm element and the lower arm element are connected in series, but is not limited to this configuration.
  • the number of legs may be four or more.
  • the transistors 18a of the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN are MOSFETs
  • at least one of the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN A wide band gap semiconductor such as silicon carbide, gallium nitride, gallium oxide or diamond. If a MOSFET formed of a wide band gap semiconductor is used, the effects of withstand voltage and heat resistance can be enjoyed.
  • connection point 26a between the upper arm element 18UP and the lower arm element 18UN is connected to a first phase (for example, U phase) of the motor 500 (not shown in FIG. 2), and a connection point between the upper arm element 18VP and the lower arm element 18VN.
  • 26b is connected to a second phase (for example, V phase) of the motor 500, and a connection point 26c between the upper arm element 18WP and the lower arm element 18WN is connected to a third phase (for example, W phase) of the motor 500.
  • the connection points 26a, 26b, 26c form an AC terminal.
  • FIG. 3 is a circuit diagram showing a configuration of the inverter circuit shown in FIG. 1 different from that of FIG.
  • a lower arm shunt resistor 18US connected in series with the lower arm element 18UN is provided between the lower arm element 18UN and the DC bus 12b.
  • the leg 18A includes the upper arm element 18UP, the lower arm element 18UN, and the lower arm shunt resistor 18US that are connected to each other in series.
  • a lower arm shunt resistor 18VS connected in series to the lower arm element 18VN is provided between the lower arm element 18VN and the DC bus 12b.
  • the leg 18B includes the upper arm element 18VP, the lower arm element 18VN, and the lower arm shunt resistor 18VS that are connected to each other in series.
  • a lower arm shunt resistor 18WS connected in series with the lower arm element 18WN is provided between the lower arm element 18WN and the DC bus 12b.
  • the leg 18CB is configured by the upper arm element 18WP, the lower arm element 18WN, and the lower arm shunt resistor 18WS that are connected to each other in series.
  • the lower arm shunt resistor 18US detects a current flowing in the lower arm of the U phase.
  • the lower arm shunt resistor 18VS detects a current flowing through the V-phase lower arm.
  • the lower arm shunt resistor 18WS detects a current flowing through the W-phase lower arm. The detected value of the current flowing through the lower arm shunt resistors 18US, 18VS, 18WS is sent to the control unit 10.
  • FIG. 2 shows a circuit configuration of a so-called one-shunt current detection system.
  • the circuit of FIG. 2 is preferably used mainly for a motor for driving a compressor.
  • FIG. 3 shows a circuit configuration of a so-called three-shunt current detection system.
  • the circuit of FIG. 3 is preferably used mainly for a fan driving motor.
  • motor rotation speed the rotation speed of the motor 500 is appropriately referred to as “motor rotation speed”.
  • voltage applied to the motor 500 by the inverter circuit 18 is referred to as “motor applied voltage” or simply “applied voltage”.
  • the motor 500 includes a U-phase winding 502U, a V-phase winding 502V, and a W-phase winding 502W.
  • the U-phase winding 502U, the V-phase winding 502V, and the W-phase winding 502W are three windings provided in the motor 500.
  • the connection switching unit 60 switches the connection state of the three windings included in the motor 500 between a first connection state and a second connection state.
  • the second connection state is a state in which the motor applied voltage is lower than in the first connection state under the same motor rotation speed condition. Therefore, the motor applied voltage in the first connection state is higher than the motor applied voltage in the second connection state under the same motor rotation speed condition.
  • the first connection state is a state of connection in a star connection
  • the second connection state is a state of connection in a delta connection.
  • the connection switching unit 60 has a function of switching the connection state of the windings of the motor between the star connection and the delta connection by changing the connection destinations at both ends of each open winding.
  • the connection switching unit 60 includes a U-phase switch 62U, a V-phase switch 62V, and a W-phase switch 62W.
  • the U-phase switch 62U is a switching unit that switches the connection destination of the U-phase winding 502U.
  • the V-phase switch 62V is a switching unit that switches the connection destination of the V-phase winding 502V.
  • the W-phase switch 62W is a switching unit that switches the connection destination of the W-phase winding 502W.
  • the contacts of the U-phase switch 62U, the V-phase switch 62V, and the W-phase switch 62W are individually switched by switching signals CS1 to CS3 from the control unit 10.
  • each phase switch is in a state of connecting each phase winding of the motor 500 to a star connection. That is, the default contact is a state where each phase winding of the motor 500 is connected to the star connection.
  • each phase switch is described as a c-contact switch, but is not limited to these examples.
  • Each phase switch may be any switch that can be opened and closed in both directions.
  • each phase switch may be configured by combining an a contact switch or a b contact switch.
  • each phase switch may be a semiconductor switch.
  • Each phase switch preferably has a small conduction loss at the time of ON, and a mechanical switch such as a relay or a contactor can be used. Further, a switching element formed of a wide band gap semiconductor may be used instead of the mechanical switch. By using a switching element formed of a wide band gap semiconductor, it is possible to obtain the effects of low on-resistance, low loss, and low element heat generation.
  • FIG. 1 illustrates a case where the first connection state is a star connection and the second connection state is a delta connection, but the present invention is not limited to this.
  • the two connection states shown in FIG. 4 may be switched.
  • FIG. 4 is a diagram provided for describing another example of the first and second connection states according to the first embodiment.
  • FIG. 4 schematically shows a connection state of the motor 500 shown in FIG. 1 which is different from FIG.
  • the upper part of FIG. 4 shows an example of series connection in which windings of each phase in a star connection are connected in series.
  • the lower part of FIG. 4 shows an example of a parallel connection in which the respective phase windings in the star connection are connected in parallel.
  • the impedance of the U-phase winding 33U1 in the series connection is larger than the impedance of the U-phase winding 33U2 in the parallel connection.
  • the impedance of the V-phase winding 33V1 in the serial connection is larger than the impedance of the V-phase winding 33V2 in the parallel connection
  • the impedance of the W-phase winding 33W1 in the serial connection is larger than that of the W-phase winding 33W2 in the parallel connection. Larger than impedance. Therefore, if the phase current is the same, the induced voltage induced in each phase winding is greater in the series connection than in the parallel connection. Therefore, the series connection shown in the upper part of FIG.
  • the parallel connection shown in the lower part of FIG. 4 is a connection state in which the motor applied voltage is lower than the serial connection, and corresponds to the above-described second connection state.
  • connection switching unit 60 shown in FIG. 1 components corresponding to the connection switching unit 60 shown in FIG. 1 are not shown, but the first connection state can be obtained by appropriately combining a contact switch, b contact switch, or c contact switch. And the second connection state.
  • control unit 10 generates control signals S311 to S322 for controlling each switching element in the booster circuit 3 based on the detection values of the voltage detector 5 and the voltage detector 7.
  • the control signal S311 is a control signal for controlling the switching element Q1
  • the control signal S322 is a control signal for controlling the switching element Q4.
  • Switching elements Q2 and Q3 are also controlled by a control signal from control unit 10.
  • the control signals S311 to S322 generated by the control unit 10 are input to a gate drive circuit (not shown) in the booster circuit 3.
  • control unit 10 generates control signals S1 to S6 for controlling each switching element in the inverter circuit 18 based on each detection value of the voltage detector 5, the voltage detector 7, and the current detector 18S. .
  • the control signal S1 is a control signal for controlling the upper arm element 18UP
  • the control signal S6 is a control signal for controlling the lower arm element 18WN.
  • the other upper arm elements 18VP, WP and the other lower arm elements 18UN, VN are also controlled by control signals from the control unit 10.
  • the control signals S1 to S6 generated by the control unit 10 are input to a gate drive circuit (not shown) in the inverter circuit 18.
  • FIG. 5 is a diagram provided for describing an operation mode of motor drive device 100 according to the first embodiment.
  • FIG. 5 shows three operation modes: a passive synchronous rectification mode, a simple switching mode, and a pulse width modulation (Pulse Width Modulation: PWM) control mode.
  • FIG. 6 is a diagram illustrating one of the current paths in the passive synchronous rectification mode in the booster circuit 3 of the first embodiment.
  • FIG. 7 is a diagram schematically showing current-loss characteristics of a general switching element.
  • FIG. 8 is a diagram illustrating one of the current paths in the simple switching mode in the booster circuit 3 of the first embodiment.
  • FIG. 5 shows the power supply voltage and the power supply current in the passive synchronous rectification mode.
  • This operation mode is a mode in which synchronous rectification is performed without boosting.
  • Non-boosting means that the power supply short-circuit operation is not performed.
  • the power supply short-circuit operation will be described later.
  • Synchronous rectification is a control method in which a switching element connected in anti-parallel to a diode is turned on in accordance with the timing at which a current flows through the diode.
  • FIG. 6 shows a charging path for the capacitor 4 when the power supply voltage is positive and synchronous rectification is performed. As shown in FIG. 6, it is assumed that the polarity of the power supply voltage is positive when the upper terminal of the AC power supply 1 has a positive potential. When the upper terminal of the AC power supply 1 has a negative potential, the polarity of the power supply voltage is assumed to be negative.
  • the switching elements Q1 and Q4 are controlled to be ON according to the conduction timing of the diodes D1 and D4. Therefore, in the period T2, current flows in the order of the AC power supply 1, the reactor 2, the switching element Q1, the capacitor 4, the switching element Q4, and the AC power supply 1.
  • FIG. 7 shows the loss characteristic of the diode and the loss characteristic when the switching element is turned on. As shown in FIG. 7, in a region A where the current is smaller than the current value I0, the loss of the diode is larger than the loss of the switching element.
  • This operation mode is an operation mode in which the booster circuit 3 performs a boost operation by performing one or several short-circuit operations of the power supply during a half cycle of the power supply voltage.
  • one power supply short-circuit operation is performed during a half cycle of the power supply voltage.
  • FIG. 8 shows a short-circuit path of the AC power supply 1 via the reactor 2 when the power supply voltage is positive and synchronous rectification is performed.
  • the switching elements Q1 and Q3 are turned on in the period T4. By doing so, current flows in the order of AC power supply 1, reactor 2, switching element Q1, switching element Q3, AC power supply 1, and electric energy is accumulated in reactor 2.
  • the operation is in the passive synchronous rectification mode shown in the upper part of FIG.
  • the sum of the voltage of the AC power supply 1 and the voltage generated in the reactor 2 is applied to the booster circuit 3. Therefore, the diodes D1 and D4 of the booster circuit 3 conduct. Then, the switching elements Q1 and Q4 are turned on in accordance with the conduction timing of the diodes D1 and D4, and the power supply current flows.
  • the switching elements Q1 and Q3 are turned on, but the switching elements Q2 and Q4 may be turned on instead. In this case, current flows in the order of the AC power supply 1, the reactor 2, the switching element Q2, the switching element Q4, and the AC power supply 1.
  • the passive synchronous rectification operation is performed after one or several power supply short-circuit operations.
  • the switching elements Q1 and Q3 may be turned on, or the switching elements Q2 and Q4 may be turned on.
  • the lower part of FIG. 5 shows the power supply voltage and the power supply current in the PWM control mode.
  • a power supply short-circuit operation for storing electric energy in the reactor 2 and a charging operation for charging the capacitor 4 using the electric energy stored in the reactor 2 are alternately repeated.
  • Switching between the power short-circuit operation and the charging operation is performed at a high frequency of several kHz to several tens kHz.
  • the power supply current is controlled to a sinusoidal current.
  • the boosting operation time is longer than in the simple switching mode shown in the middle part, and a boosted voltage higher than that in the simple switching mode can be obtained.
  • boost control in the motor drive device 100 will be described with reference to FIG. 1 and FIGS. 9 to 11.
  • a motor having a structure capable of connection switching such as the motor 500 shown in FIG. 1, is referred to as a “connection switching motor”, and the operation efficiency of the motor 500 is simply referred to as “efficiency”.
  • the “efficiency” is the ratio of the mechanical output of the motor 500 to the input power to the motor 500.
  • the star connection is referred to as “Y connection” and the delta connection is referred to as “ ⁇ connection”.
  • FIG. 9 is a diagram for explaining the relationship between the connection state and the efficiency in the connection switching motor according to the first embodiment.
  • FIG. 10 is a diagram provided to explain matters to be considered when configuring the connection switching motor according to the first embodiment.
  • FIG. 11 is a diagram provided for explanation of output voltage control in booster circuit 3 of the first embodiment.
  • FIG. 9 shows the relationship between the number of rotations of the motor 500 and the efficiency of the motor 500 when the connection state is the star connection and the delta connection.
  • the horizontal axis shows the rotation speed of the motor 500
  • the vertical axis shows the efficiency of the motor 500.
  • the efficiency of the motor 500 when the connection state is the star connection is better in the low speed region where the rotation speed is small, that is, in the light load region, than in the delta connection, but in the high speed region where the rotation speed is large. That is, it decreases in the high load region or the overload region.
  • the efficiency of the motor 500 when the connection state is the delta connection is inferior to the star connection in the low speed region where the rotation speed is low, but is improved in the high speed region where the rotation speed is high.
  • the star connection is more efficient than the delta connection in the low speed region, and the delta connection is more efficient than the star connection in the high speed region. Therefore, the switching point shown in FIG. 9 exists, and if the connection state is switched at this switching point, efficient operation can be performed. Note that the switching speed at the switching point may be referred to as a “first speed”.
  • One of the applications of the motor drive device 100 is an air conditioner.
  • One of the indexes related to energy saving in an air conditioner is an annual performance factor (APF).
  • APF annual performance factor
  • the efficiency at an intermediate load of the air conditioner greatly contributes to the APF. Note that the above-described low-speed region or light-load region may be considered to be substantially synonymous with the intermediate load referred to in APF.
  • FIG. 10 shows the relationship between the number of rotations of the motor 500 and the induced voltages of the two windings.
  • the horizontal axis indicates the number of rotations of the motor 500, and the vertical axis indicates various voltages.
  • the induced voltage of the winding of the number A of turns is shown by a thick solid line in the winding of the number of turns A and the winding of the number of turns B, and the induced voltage of the winding of the number of turns B is large. Indicated by broken lines.
  • the relationship between the number of turns A and the number of turns B is such that the number of turns B> the number of turns A, and the induced voltage of the winding of the number of turns B is higher than the induced voltage of the winding of the number of turns A.
  • the motor current can be reduced, so that the efficiency can be improved. Therefore, it can be understood that increasing the number of windings of the winding is effective for improving efficiency at an intermediate load.
  • the rectified voltage is the output voltage of the booster circuit 3 when the booster circuit 3 is not operated to boost the voltage, that is, when the booster circuit 3 is operated in the passive synchronous rectification mode.
  • the winding with the number of turns A does not become insufficient in voltage even at the rated rotation speed, but the winding with the number of turns B becomes insufficient in voltage at the rotation speed less than the rated rotation speed. It is shown. Therefore, to use the number of turns B, it is necessary to output a boosted voltage by the boosting circuit 3.
  • FIG. 11 shows an induced voltage when the connection state of the motor 500 is a star connection and an induced voltage when the connection state of the motor 500 is a delta connection.
  • the horizontal axis indicates the number of rotations of the motor 500, and the vertical axis indicates various voltages.
  • the connection state of the motor 500 in consideration of the efficiency characteristics shown in FIG. 9, is a star connection in a low-speed region and a delta connection in a high-speed region.
  • FIG. 11 it is assumed that the star connection and the delta connection are switched at the first rotational speed shown in FIG.
  • the induced voltage between terminals in the star connection is ⁇ 3 times the induced voltage between terminals in the delta connection. Accordingly, changing the connection state from the delta connection to the star connection is equivalent to increasing the number of windings by ⁇ 3 times. Also, if it is assumed that the number of turns is changed between star connection and delta connection without changing the number of windings and only the winding connection state is changed, the gradient of the induced voltage with respect to the rotation speed in the star connection is the gradient of the induced voltage with respect to the rotation speed in the delta connection. ⁇ 3 times the slope.
  • the levels of the rectified voltage and the two boosted voltages that is, the first voltage and the second voltage are indicated by broken lines.
  • the rectified voltage is the output voltage of the booster circuit 3 when the booster circuit 3 is not operated.
  • the rectified voltage is an output voltage of the booster circuit 3 that does not involve the switching operation of the switching element of the booster circuit 3.
  • boost mode in which the boosting circuit 3 performs a boosting operation and outputs a first voltage.
  • boost mode is defined as “first boost mode”.
  • second boost mode a boost mode in which the boosting circuit 3 performs a boosting operation and outputs a second voltage.
  • boost mode is defined as “second boost mode”.
  • the boost circuit 3 In the first boost mode, the boost circuit 3 operates in the simple switching mode described above, and generates the first voltage as shown in FIG.
  • the first voltage is an output voltage of the booster circuit 3 that is boosted by the switching operation of the switching element of the booster circuit 3.
  • the boost circuit 3 operates in the above-described PWM control mode, and generates the second voltage as shown in FIG.
  • the second voltage is an output voltage of the booster circuit 3 that is boosted by the switching operation of the switching element of the booster circuit 3 and is higher than the first voltage.
  • the generation of the second voltage may be performed in the first boost mode, that is, the simple switching mode.
  • the required bus voltage is indicated by a bold dashed line.
  • the required bus voltage indicates a level at which the voltage does not become insufficient when the connection state of the motor 500 is switched according to an increase in the rotation speed.
  • the rotation speed increases and the induced voltage needs to be boosted to the first voltage in the second rotation speed at which the induced voltage reaches the rectified voltage and in the rotation speed section in which the rotation speed of the motor 500 is the first rotation speed.
  • the second rotation speed is a lower rotation speed than the first rotation speed.
  • the voltage is raised to the first voltage at a preset rotation speed before reaching the second rotation speed in consideration of a margin.
  • the voltage in the rotation speed section between the third rotation speed at which the induced voltage reaches the rectified voltage and the fourth rotation speed at which the induced voltage reaches the first voltage, the voltage must be raised to the first voltage. is there.
  • the third speed and the fourth speed are higher than the first speed and lower than the rated speed.
  • the fourth rotation speed is a rotation speed higher than the third rotation speed.
  • the voltage is increased to the first voltage at a preset rotation speed before reaching the second rotation speed in consideration of a margin.
  • the voltage in the rotation speed section between the fourth rotation speed at which the induced voltage reaches the first voltage and the rated rotation speed at which the induced voltage reaches the second voltage, the voltage must be raised to the second voltage. is there. In the actual operation control, it is needless to say that the voltage is raised to the second voltage at a preset rotation speed before reaching the fourth rotation speed in consideration of a margin.
  • the motor driving device 100 operates at the first rotation speed which is the switching speed at which the connection state of the winding of the motor 500 is switched between the star connection and the delta connection.
  • the output voltage of the booster circuit 3 is configured to be able to be boosted to a first voltage higher than the output voltage of the booster circuit 3 when the booster circuit 3 is not operated. With this configuration, it is possible to further improve the efficiency in the low-speed rotation range using the star connection.
  • the conventional booster circuit has a large loss at the time of boosting, and there is a restriction in increasing the number of turns. In particular, boosting in a star connection, in which loss at an intermediate load becomes a problem, was forgotten.
  • the loss caused by the conventional diode rectification can be improved.
  • the loss due to the boost operation can be compensated for by the loss improvement due to the synchronous rectification during the boost operation.
  • the star connection where the loss at the intermediate load becomes a problem, it is possible to improve the efficiency in the low-speed rotation region using the star connection by using the synchronous rectification together.
  • this makes it possible to improve the efficiency without impairing the effect of increasing the number of windings by the connection switching motor.
  • FIG. 12 is a block diagram illustrating an example of a hardware configuration that implements the function of the control unit 10 according to the first embodiment.
  • FIG. 13 is a block diagram illustrating another example of a hardware configuration that implements the function of the control unit 10 according to the first embodiment.
  • a processor 300 for performing an operation
  • a memory 302 for storing a program read by the processor 300
  • an interface 304 for inputting and outputting signals.
  • the processor 300 may be an arithmetic unit such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (registered trademark) (Electrically EPROM). Examples include a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD (Digital @ Versatile @ Disc).
  • the memory 302 stores a program for executing all or a part of the functions of the control unit 10.
  • the processor 300 transmits and receives necessary information via the interface 304, and controls the booster circuit 3 and the inverter circuit 18 by executing the program stored in the memory 302 by the processor 300.
  • the processor 300 and the memory 302 shown in FIG. 12 may be replaced with a processing circuit 305 as shown in FIG.
  • the processing circuit 305 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • FIG. FIG. 14 is a diagram illustrating a configuration example of an air conditioner 200 according to Embodiment 2.
  • the air conditioner 200 according to Embodiment 2 includes the motor drive device 100 described in Embodiment 1.
  • the compressor 251 including the motor 500 according to Embodiment 1; the four-way valve 259; the outdoor heat exchanger 252; the expansion valve 261;
  • a separate type air conditioner is equipped with a refrigeration cycle attached. Note that components having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment.
  • a compression mechanism 250 for compressing the refrigerant and a motor 500 for operating the compression mechanism 250 are provided inside the compressor 251.
  • a refrigeration cycle for cooling and heating is configured by circulating a refrigerant between the compressor 251 and the outdoor heat exchanger 252 and between the compressor 251 and the indoor heat exchanger 257.
  • the configuration shown in FIG. 14 is applicable not only to an air conditioner but also to a refrigeration cycle apparatus having a refrigeration cycle such as a refrigerator or a freezer.
  • FIG. 15 is a time chart illustrating an example of an operation method of the air conditioner 200 according to Embodiment 2. It is assumed that the connection state of the windings of the motor 500 is star connection, which is the default connection state, as a premise of the description of FIG. In FIG. 15, a bold solid line indicates the number of rotations, and a bold broken line indicates a bus voltage.
  • the motor 500 is accelerated between the time t2 and the time t5.
  • the first boosting is performed at time t3, and the bus voltage is changed to the first voltage. Further, after the bus voltage is changed to the first voltage, further shortage of the bus voltage is predicted. Therefore, at time t4, the second boosting is performed, and the bus voltage is changed to the second voltage.
  • the first boosting is performed in the first boosting mode, and the second boosting is performed in the second boosting mode.
  • control unit 10 of motor drive device 100 determines whether or not the absolute value of the temperature difference between the target temperature and room temperature is less than the threshold. If the temperature difference is less than the threshold value, the operation shifts to a deceleration operation for restarting. Note that in the example of FIG. 15, the operation shifts to the deceleration operation at time t6.
  • the boosting operation stops and the bus voltage becomes the rectified voltage in order to increase the efficiency.
  • the winding is stopped, and the connection state of the winding is switched from delta connection to star connection.
  • the motor 500 accelerates between time t9 and time t11.
  • the boost is performed, and the bus voltage is changed to the first voltage.
  • the load reaches the intermediate load, and during the period from time t11 to time t12, control at a constant rotational speed is performed.
  • the operation of the intermediate load is performed between the time t11 and the time t12, and the boosting to the second voltage is not necessary.
  • a stop command is input from a remote controller (not shown), and the operation shifts to a deceleration operation.
  • the boosting operation is stopped and the bus voltage becomes a rectified voltage in order to increase efficiency.
  • the operation stops at time t14, and the energization ends at time t15.
  • the information on the room temperature required for the determination between the time t5 and the time t6 can be grasped by a function normally included in the air conditioner 200.
  • the absolute value of the temperature difference between the target temperature and room temperature is compared with the threshold value, but the present invention is not limited to this.
  • the absolute value of the temperature difference is an example of a determination index, and another determination index may be used.
  • Whether or not the value is smaller than the threshold is an example of a condition determined by the determination index, and another condition may be used.
  • this condition is referred to as a “first condition”. That is, it is sufficient to determine whether the determination index satisfies the first condition from the time t5 to the time t6.
  • connection state of the winding is switched from the star connection to the delta connection at the first startup. However, if the determination index satisfies the first condition, the connection state of the winding is changed to the star connection. It is not necessary to switch from the connection to the delta connection, and it is only necessary to start with the delta connection.
  • FIG. 15 is an embodiment in which the connection state of the winding is not switched in both the period from the start to the stop and the period from the restart to the stop.
  • the connection state of the line may be switched.
  • the sudden change in the load is assumed to be a case where the temperature difference suddenly changes due to opening and closing of a door and a window, and cooking in a kitchen.
  • the threshold value of the temperature difference has hysteresis so that the connection state is not frequently switched.
  • the air conditioner 200 according to Embodiment 2 is started by switching the winding connection state to the delta connection, and the determination index is changed to the first index. Is satisfied, the motor driving device 100 is stopped and then the winding connection state is switched to the star connection and restarted. As a result, operation utilizing the characteristics of the star connection and the delta connection can be performed, and the efficiency of the air conditioner 200 can be increased as compared with a case where a connection switching motor is not used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

A motor drive device (100) is equipped with: a booster circuit (3) for boosting AC voltage that is output from an AC power supply (1); a capacitor (4) for smoothing DC voltage that is output from the booster circuit (3); an inverter circuit (18) for converting power accumulated in the capacitor (4) to AC power and supplying the AC power to a motor; and a connection switching unit (60) for switching, by means of a switching signal, the connection state of the motor (500) windings between a star connection and a delta connection. At a first rotational speed that is the rotational speed at a switching point where switching of the connection state of the windings between the star connection and the delta connection is performed, it is possible to boost the output voltage of the booster circuit (3) to a first voltage that is higher than the output voltage of the booster circuit (3) when the booster circuit (3) is not caused to perform boost operation.

Description

モータ駆動装置及び空気調和機Motor drive device and air conditioner
 本発明は、モータを駆動するモータ駆動装置、及び当該モータ駆動装置を備えた空気調和機に関する。 The present invention relates to a motor driving device for driving a motor, and an air conditioner including the motor driving device.
 下記特許文献1には、空気調和機における高効率化の技術として、モータの固定子巻線(以下、単に「巻線」と呼ぶ)の結線をスター結線とデルタ結線との間で相互に切り替えるモータ駆動装置の構成が開示されている。この特許文献1では、低速回転域ではスター結線とし、高速回転域ではデルタ結線とすることで、高速回転域の拡大と、低速回転域での高効率化とを図る技術が提案されている。 Patent Literature 1 listed below discloses a technique for increasing the efficiency of an air conditioner, in which the connection of a stator winding (hereinafter simply referred to as “winding”) of a motor is switched between a star connection and a delta connection. A configuration of a motor driving device is disclosed. In this patent document, a technique is proposed in which a star connection is used in a low-speed rotation region and a delta connection is used in a high-speed rotation region to expand a high-speed rotation region and increase efficiency in a low-speed rotation region.
特許第4619826号公報Japanese Patent No. 4619826
 しかしながら、スター結線及びデルタ結線を同一母線電圧で使用する場合、高速回転域における回転数の要求に合わせ、巻線の巻数は、デルタ結線でのモータ印加電圧に基づいて決定される。このため、スター結線を使用する低速回転域での効率に改善の余地がある。 However, when the star connection and the delta connection are used at the same bus voltage, the number of windings of the winding is determined based on the motor applied voltage in the delta connection according to the requirement of the rotation speed in the high-speed rotation region. For this reason, there is room for improvement in the efficiency in the low-speed rotation region using the star connection.
 本発明は、上記に鑑みてなされたものであって、低速回転域での効率の更なる改善を図ることができるモータ駆動装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a motor drive device capable of further improving efficiency in a low-speed rotation range.
 上述した課題を解決し、目的を達成するために、本発明に係るモータ駆動装置は、少なくとも1つのスイッチング素子を有し、スイッチング素子の開閉動作によって交流電源から出力される交流電圧を直流電圧に変換及び昇圧する昇圧回路を備える。また、モータ駆動装置は、昇圧回路から出力される直流電圧を平滑するコンデンサ、及びコンデンサに蓄積された電力を交流電力に変換してモータに供給するインバータ回路を備える。モータは複数の巻線を有し、巻線は両端が開放され、両端の接続先を変更することで、巻線の結線状態を第1の結線状態と第2の結線状態との間で相互に切り替え可能である。第1の結線状態におけるモータ印加電圧は、モータ回転数が同一の条件において、第2の結線状態におけるモータ印加電圧よりも高い。巻線の結線状態を第1の結線状態と第2の結線状態とで切り替える切替点の回転数である第1回転数において、昇圧回路の出力電圧は、昇圧回路を昇圧動作させないときの昇圧回路の出力電圧である整流電圧よりも高い第1電圧に昇圧可能である。 In order to solve the above-described problem and achieve the object, a motor driving device according to the present invention includes at least one switching element, and converts an AC voltage output from an AC power supply into a DC voltage by opening and closing the switching element. A booster circuit for converting and boosting is provided. Further, the motor driving device includes a capacitor for smoothing a DC voltage output from the booster circuit, and an inverter circuit for converting power stored in the capacitor into AC power and supplying the AC power to the motor. The motor has a plurality of windings, the windings are open at both ends, and by changing the connection destination at both ends, the winding connection state can be changed between the first connection state and the second connection state. Can be switched to The motor applied voltage in the first connection state is higher than the motor applied voltage in the second connection state under the same motor rotation speed. At the first rotation speed, which is the rotation speed at the switching point at which the connection state of the winding is switched between the first connection state and the second connection state, the output voltage of the booster circuit increases when the booster circuit is not operated. Can be boosted to a first voltage higher than the rectified voltage which is the output voltage of the rectifier.
 本発明に係るモータ駆動装置によれば、低速回転域での効率の更なる改善を図ることができるという効果を奏する。 According to the motor drive device of the present invention, there is an effect that the efficiency in the low-speed rotation range can be further improved.
実施の形態1に係るモータ駆動装置の構成を示す回路図1 is a circuit diagram showing a configuration of a motor drive device according to a first embodiment. 図1に示すインバータ回路の詳細な構成を示す回路図FIG. 1 is a circuit diagram showing a detailed configuration of the inverter circuit shown in FIG. 図1に示すインバータ回路の図2とは異なる構成を示す回路図FIG. 2 is a circuit diagram showing a configuration of the inverter circuit shown in FIG. 1 which is different from FIG. 実施の形態1における第1及び第2の結線状態の他の例の説明に供する図FIG. 11 is a diagram for describing another example of the first and second connection states according to the first embodiment. 実施の形態1におけるモータ駆動装置の動作モードの説明に供する図FIG. 7 is a diagram for describing an operation mode of the motor drive device according to the first embodiment. 実施の形態1の昇圧回路におけるパッシブ同期整流モード時の電流経路の1つを示す図FIG. 4 is a diagram showing one current path in the passive synchronous rectification mode in the booster circuit of the first embodiment. 一般的なスイッチング素子における電流-損失特性を模式的に示す図The figure which shows the current-loss characteristic in the general switching element typically 実施の形態1の昇圧回路における簡易スイッチングモード時の電流経路の1つを示す図FIG. 5 shows one of current paths in the simple switching mode in the booster circuit of the first embodiment. 実施の形態1の結線切替モータにおける結線状態と効率との関係の説明に供する図FIG. 7 is a diagram for explaining the relationship between the connection state and the efficiency in the connection switching motor according to the first embodiment. 実施の形態1の結線切替モータを構成する際の着意事項の説明に供する図FIG. 7 is a diagram for describing initial matters when configuring the connection switching motor according to the first embodiment. 実施の形態1の昇圧回路における出力電圧制御の説明に供する図FIG. 7 is a diagram for describing output voltage control in the booster circuit according to the first embodiment. 実施の形態1における制御部の機能を具現するハードウェア構成の一例を示すブロック図FIG. 2 is a block diagram illustrating an example of a hardware configuration that implements the function of the control unit according to the first embodiment. 実施の形態1における制御部の機能を具現するハードウェア構成の他の例を示すブロック図FIG. 4 is a block diagram showing another example of a hardware configuration that embodies the function of the control unit according to the first embodiment. 実施の形態2に係る空気調和機の構成例を示す図The figure which shows the example of a structure of the air conditioner which concerns on Embodiment 2. 実施の形態2に係る空気調和機の運転方法の一例を示すタイムチャートTime chart showing an example of the operation method of the air conditioner according to Embodiment 2.
 以下に添付図面を参照し、本発明の実施の形態に係るモータ駆動装置及び空気調和機について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。また、以下では、電気的な接続を単に「接続」と称して説明する。 Hereinafter, a motor drive device and an air conditioner according to an embodiment of the present invention will be described with reference to the accompanying drawings. The present invention is not limited by the embodiments described below. In the description below, the electrical connection is simply referred to as “connection”.
実施の形態1.
 図1は、実施の形態1に係るモータ駆動装置100の構成を示す回路図である。図2は、図1に示すインバータ回路の詳細な構成を示す回路図である。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing a configuration of the motor drive device 100 according to the first embodiment. FIG. 2 is a circuit diagram showing a detailed configuration of the inverter circuit shown in FIG.
 実施の形態1に係るモータ駆動装置100は、図1に示すように、単相の交流電源1から供給される交流電力を直流電力に変換する。また、モータ駆動装置100は、変換した直流電力を再度交流電力に変換し、変換した交流電力を負荷であるモータ500に供給してモータ500を駆動する。モータ500の例は、送風機、圧縮機又は空気調和機に内蔵されるモータである。 The motor drive device 100 according to the first embodiment converts AC power supplied from a single-phase AC power supply 1 into DC power, as shown in FIG. In addition, the motor driving device 100 converts the converted DC power into AC power again, and supplies the converted AC power to the motor 500 as a load to drive the motor 500. An example of the motor 500 is a motor built in a blower, a compressor, or an air conditioner.
 図1において、モータ駆動装置100は、昇圧回路3と、コンデンサ4と、制御部10と、電流検出器18Sを備えるインバータ回路18と、結線切替部60と、第1の電圧検出器である電圧検出器5と、第2の電圧検出器である電圧検出器7と、を備える。 In FIG. 1, the motor driving device 100 includes a booster circuit 3, a capacitor 4, a control unit 10, an inverter circuit 18 including a current detector 18S, a connection switching unit 60, and a voltage serving as a first voltage detector. It includes a detector 5 and a voltage detector 7 as a second voltage detector.
 昇圧回路3は、後述するスイッチング素子の開閉動作によって交流電源1から出力される交流電圧を直流電圧に変換及び昇圧する昇圧コンバータである。昇圧回路3は、交流電圧を直流電圧に変換する際に、変換した直流電圧の電圧値を制御、即ち昇圧する。なお、交流電源1から出力される交流電圧を「電源電圧」と呼び、「Vs」で表す。 The booster circuit 3 is a boost converter that converts an AC voltage output from the AC power supply 1 into a DC voltage and boosts the DC voltage by opening and closing a switching element described later. When converting the AC voltage into the DC voltage, the booster circuit 3 controls the voltage value of the converted DC voltage, that is, boosts the voltage value. Note that the AC voltage output from the AC power supply 1 is referred to as “power supply voltage” and is represented by “Vs”.
 昇圧回路3は、リアクトル2と、第1のレグ31と、第2のレグ32とを備える。第1のレグ31と第2のレグ32とは、並列に接続されている。第1のレグ31では、第1の上アーム素子311と第1の下アーム素子312とが直列に接続されている。第2のレグ32では、第2の上アーム素子321と第2の下アーム素子322とが直列に接続されている。リアクトル2の一端は、交流電源1に接続される。リアクトル2の他端は、第1のレグ31における第1の上アーム素子311と第1の下アーム素子312との接続点3aに接続されている。第2の上アーム素子321と第2の下アーム素子322との接続点3bは、交流電源1の他端に接続されている。昇圧回路3において、接続点3a,3bは、交流端子を構成する。 (4) The booster circuit 3 includes the reactor 2, a first leg 31, and a second leg 32. The first leg 31 and the second leg 32 are connected in parallel. In the first leg 31, a first upper arm element 311 and a first lower arm element 312 are connected in series. In the second leg 32, a second upper arm element 321 and a second lower arm element 322 are connected in series. One end of reactor 2 is connected to AC power supply 1. The other end of the reactor 2 is connected to a connection point 3 a between the first upper arm element 311 and the first lower arm element 312 in the first leg 31. A connection point 3 b between the second upper arm element 321 and the second lower arm element 322 is connected to the other end of the AC power supply 1. In the booster circuit 3, the connection points 3a and 3b constitute an AC terminal.
 第1の上アーム素子311は、スイッチング素子Q1と、スイッチング素子Q1に逆並列に接続されるダイオードD1とを含む。第1の下アーム素子312は、スイッチング素子Q2と、スイッチング素子Q2に逆並列に接続されるダイオードD2とを含む。第2の上アーム素子321は、スイッチング素子Q3と、スイッチング素子Q3に逆並列に接続されるダイオードD3とを含む。第2の下アーム素子322は、スイッチング素子Q4と、スイッチング素子Q4に逆並列に接続されるダイオードD4とを含む。 The first upper arm element 311 includes a switching element Q1 and a diode D1 connected in anti-parallel to the switching element Q1. First lower arm element 312 includes a switching element Q2 and a diode D2 connected in anti-parallel to switching element Q2. Second upper arm element 321 includes switching element Q3 and diode D3 connected in antiparallel to switching element Q3. Second lower arm element 322 includes a switching element Q4 and a diode D4 connected in anti-parallel to switching element Q4.
 図1では、スイッチング素子Q1,Q2,Q3,Q4のそれぞれに金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)を例示しているが、MOSFETに限定されない。MOSFETは、ドレインとソースとの間で双方向に電流を流すことができるスイッチング素子である。ドレインに相当する第1端子とソースに相当する第2端子との間で双方向に電流を流すことができるスイッチング素子であれば、どのようなスイッチング素子でもよい。 In FIG. 1, each of the switching elements Q1, Q2, Q3, and Q4 is exemplified by a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor: MOSFET), but is not limited to a MOSFET. A MOSFET is a switching element capable of flowing current bidirectionally between a drain and a source. Any switching element can be used as long as current can flow bidirectionally between the first terminal corresponding to the drain and the second terminal corresponding to the source.
 また、逆並列とは、MOSFETのドレインに相当する第1端子とダイオードのカソードとが接続され、MOSFETのソースに相当する第2端子とダイオードのアノードとが接続されることを意味する。なお、ダイオードは、MOSFET自身が内部に有する寄生ダイオードを用いてもよい。寄生ダイオードは、ボディダイオードとも呼ばれる。 {In addition, antiparallel means that the first terminal corresponding to the drain of the MOSFET is connected to the cathode of the diode, and the second terminal corresponding to the source of the MOSFET is connected to the anode of the diode. Note that a parasitic diode included in the MOSFET itself may be used as the diode. Parasitic diodes are also called body diodes.
 また、スイッチング素子Q1,Q2,Q3,Q4のうちの少なくとも1つは、シリコン系材料により形成されたMOSFETに限定されず、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドといったワイドバンドギャップ半導体により形成されたMOSFETでもよい。 At least one of the switching elements Q1, Q2, Q3, and Q4 is not limited to a MOSFET formed of a silicon-based material, and is formed of a wide band gap semiconductor such as silicon carbide, gallium nitride, gallium oxide, or diamond. MOSFET may be used.
 一般的にワイドバンドギャップ半導体は、シリコン半導体に比べて耐電圧及び耐熱性が高い。そのため、スイッチング素子Q1,Q2,Q3,Q4のうちの少なくとも1つにワイドバンドギャップ半導体を用いることにより、スイッチング素子の耐電圧性及び許容電流密度が高くなり、スイッチング素子を組み込んだ半導体モジュールを小型化できる。 ワ イ ド Generally, wide band gap semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a wide band gap semiconductor for at least one of the switching elements Q1, Q2, Q3, and Q4, the withstand voltage and the allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element is reduced in size. Can be
 なお、スイッチング素子Q1,Q2,Q3,Q4のうちの3つは、スイッチング素子に代えてダイオードを用いてもよい。即ち、スイッチング素子Q1,Q2,Q3,Q4のうちの少なくとも1つがスイッチング素子であればよい。このような代替構成でも後述する昇圧動作が可能となる。 Note that three of the switching elements Q1, Q2, Q3, and Q4 may use diodes instead of the switching elements. That is, at least one of the switching elements Q1, Q2, Q3, and Q4 may be a switching element. Even with such an alternative configuration, a boosting operation described later can be performed.
 コンデンサ4の一端は、高電位側の直流母線12aに接続されている。直流母線12aは、第1のレグ31における第1の上アーム素子311と、第2のレグ32における第2の上アーム素子321との接続点3cから引き出されている。コンデンサ4の他端は、低電位側の直流母線12bに接続されている。直流母線12bは、第1のレグ31における第1の下アーム素子312と、第2のレグ32における第2の下アーム素子322との接続点3dから引き出されている。昇圧回路3において、接続点3c,3dは、直流端子を構成する。また、昇圧回路3において、接続点3c,3dがある側を「直流側」と呼ぶ。 一端 One end of the capacitor 4 is connected to the DC bus 12a on the high potential side. The DC bus 12a is drawn out from a connection point 3c between the first upper arm element 311 on the first leg 31 and the second upper arm element 321 on the second leg 32. The other end of the capacitor 4 is connected to the low potential side DC bus 12b. The DC bus 12 b is drawn out from a connection point 3 d between a first lower arm element 312 on the first leg 31 and a second lower arm element 322 on the second leg 32. In the booster circuit 3, the connection points 3c and 3d constitute DC terminals. In the booster circuit 3, the side where the connection points 3c and 3d are located is referred to as "DC side".
 昇圧回路3の出力電圧は、コンデンサ4の両端に印加される。コンデンサ4は、直流母線12a,12bに接続されており、昇圧回路3の出力電圧を平滑する。なお、直流母線12a,12bに生じる電圧を「母線電圧」と呼び、「Vdc」で表す。また、交流電源1と昇圧回路3との間に流れる交流電流を「第1電流」と呼ぶ場合がある。 (4) The output voltage of the booster circuit 3 is applied to both ends of the capacitor 4. Capacitor 4 is connected to DC buses 12a and 12b, and smoothes the output voltage of booster circuit 3. The voltage generated at the DC buses 12a and 12b is called "bus voltage" and is represented by "Vdc". An AC current flowing between the AC power supply 1 and the booster circuit 3 may be referred to as a “first current”.
 電圧検出器5は、電源電圧Vsを検出し、電源電圧Vsの検出値を制御部10に出力する。 (4) The voltage detector 5 detects the power supply voltage Vs and outputs a detected value of the power supply voltage Vs to the control unit 10.
 電圧検出器7は、母線電圧Vdcを検出し、母線電圧Vdcの検出値を制御部10に出力する。 The voltage detector 7 detects the bus voltage Vdc and outputs a detected value of the bus voltage Vdc to the control unit 10.
 次に、図2を用いて、インバータ回路18の回路構成を説明する。インバータ回路18は、図2に示すように、上アーム素子18UPと下アーム素子18UNとが直列に接続されたレグ18Aと、上アーム素子18VPと下アーム素子18VNとが直列に接続されたレグ18Bと、上アーム素子18WPと下アーム素子18WNとが直列に接続されたレグ18Cと、を備える。レグ18A、レグ18B及びレグ18Cは、互いに並列に接続されている。直流母線12bには、シャント抵抗18DSが挿入されている。シャント抵抗18DSは、図1に示した電流検出器18Sの構成要素である。なお、上アーム素子18UP,18VP,18WP及び下アーム素子18UN,18VN,18WNのそれぞれを「第2のスイッチング素子」と呼ぶ場合がある。 Next, the circuit configuration of the inverter circuit 18 will be described with reference to FIG. As shown in FIG. 2, the inverter circuit 18 includes a leg 18A in which an upper arm element 18UP and a lower arm element 18UN are connected in series, and a leg 18B in which an upper arm element 18VP and a lower arm element 18VN are connected in series. And a leg 18C in which the upper arm element 18WP and the lower arm element 18WN are connected in series. The legs 18A, 18B and 18C are connected in parallel with each other. A shunt resistor 18DS is inserted into the DC bus 12b. The shunt resistor 18DS is a component of the current detector 18S shown in FIG. Note that the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN may be referred to as “second switching elements”.
 図2では、上アーム素子18UP,18VP,18WP及び下アーム素子18UN,18VN,18WNが絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)である場合を例示しているが、これに限定されない。IGBTに代えて、MOSFETを用いてもよい。 FIG. 2 illustrates a case where the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN are insulated gate bipolar transistors (Insulated Gate Bipolar Transistor: IGBT), but the present invention is not limited to this. A MOSFET may be used instead of the IGBT.
 上アーム素子18UPは、トランジスタ18aと、トランジスタ18aに逆並列に接続されるダイオード18bとを含む。他の上アーム素子18VP,18WP、及び下アーム素子18UN,18VN,18WNについても同様の構成である。逆並列とは、昇圧回路3の場合と同様に、IGBTのエミッタに相当する第1端子にダイオードのアノード側が接続され、IGBTのコレクタに相当する第2端子にダイオードのカソード側が接続されることを意味する。 The upper arm element 18UP includes a transistor 18a and a diode 18b connected in anti-parallel to the transistor 18a. The other upper arm elements 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN have the same configuration. Anti-parallel means that the anode side of the diode is connected to the first terminal corresponding to the emitter of the IGBT and the cathode side of the diode is connected to the second terminal corresponding to the collector of the IGBT, as in the case of the booster circuit 3. means.
 シャント抵抗18DSは、コンデンサ4とインバータ回路18との間に流れる電流を検出する。シャント抵抗18DSに流れる電流の検出値は、制御部10に送られる。 The shunt resistor 18DS detects a current flowing between the capacitor 4 and the inverter circuit 18. The detected value of the current flowing through the shunt resistor 18DS is sent to the control unit 10.
 なお、図2は、上アーム素子と下アーム素子とが直列に接続されるレグを3つ備える構成であるが、この構成に限定されない。レグの数は4つ以上でもよい。 FIG. 2 shows a configuration including three legs in which the upper arm element and the lower arm element are connected in series, but is not limited to this configuration. The number of legs may be four or more.
 上アーム素子18UP,18VP,18WP及び下アーム素子18UN,18VN,18WNのトランジスタ18aがMOSFETである場合、上アーム素子18UP,18VP,18WP及び下アーム素子18UN,18VN,18WNのうちの少なくとも1つは、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドといったワイドバンドギャップ半導体により形成されていてもよい。ワイドバンドギャップ半導体により形成されたMOSFETを用いれば、耐電圧性及び耐熱性の効果を享受することができる。 When the transistors 18a of the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN are MOSFETs, at least one of the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN , A wide band gap semiconductor such as silicon carbide, gallium nitride, gallium oxide or diamond. If a MOSFET formed of a wide band gap semiconductor is used, the effects of withstand voltage and heat resistance can be enjoyed.
 上アーム素子18UPと下アーム素子18UNとの接続点26aは、図2では図示しないモータ500の第1の相(例えばU相)に接続され、上アーム素子18VPと下アーム素子18VNとの接続点26bはモータ500の第2の相(例えばV相)に接続され、上アーム素子18WPと下アーム素子18WNとの接続点26cはモータ500の第3の相(例えばW相)に接続される。インバータ回路18において、接続点26a,26b,26cは、交流端子を構成する。 A connection point 26a between the upper arm element 18UP and the lower arm element 18UN is connected to a first phase (for example, U phase) of the motor 500 (not shown in FIG. 2), and a connection point between the upper arm element 18VP and the lower arm element 18VN. 26b is connected to a second phase (for example, V phase) of the motor 500, and a connection point 26c between the upper arm element 18WP and the lower arm element 18WN is connected to a third phase (for example, W phase) of the motor 500. In the inverter circuit 18, the connection points 26a, 26b, 26c form an AC terminal.
 また、図2に示すインバータ回路18に代えて、図3に示すインバータ回路18Xを用いてもよい。図3は、図1に示すインバータ回路の図2とは異なる構成を示す回路図である。 (4) Instead of the inverter circuit 18 shown in FIG. 2, an inverter circuit 18X shown in FIG. 3 may be used. FIG. 3 is a circuit diagram showing a configuration of the inverter circuit shown in FIG. 1 different from that of FIG.
 図3に示すインバータ回路18Xでは、下アーム素子18UNと直流母線12bとの間において、下アーム素子18UNに直列に接続される下アームシャント抵抗18USが設けられている。これにより、レグ18Aは、互いに直列に接続された上アーム素子18UP、下アーム素子18UN及び下アームシャント抵抗18USによって構成される。 In the inverter circuit 18X shown in FIG. 3, a lower arm shunt resistor 18US connected in series with the lower arm element 18UN is provided between the lower arm element 18UN and the DC bus 12b. Thus, the leg 18A includes the upper arm element 18UP, the lower arm element 18UN, and the lower arm shunt resistor 18US that are connected to each other in series.
 他のレグも同様である。具体的に、下アーム素子18VNと直流母線12bとの間において、下アーム素子18VNに直列に接続される下アームシャント抵抗18VSが設けられている。これにより、レグ18Bは、互いに直列に接続された上アーム素子18VP、下アーム素子18VN及び下アームシャント抵抗18VSによって構成される。また、下アーム素子18WNと直流母線12bとの間において、下アーム素子18WNに直列に接続される下アームシャント抵抗18WSが設けられている。これにより、レグ18CBは、互いに直列に接続された上アーム素子18WP、下アーム素子18WN及び下アームシャント抵抗18WSによって構成される。 も The same applies to other legs. Specifically, a lower arm shunt resistor 18VS connected in series to the lower arm element 18VN is provided between the lower arm element 18VN and the DC bus 12b. Thus, the leg 18B includes the upper arm element 18VP, the lower arm element 18VN, and the lower arm shunt resistor 18VS that are connected to each other in series. A lower arm shunt resistor 18WS connected in series with the lower arm element 18WN is provided between the lower arm element 18WN and the DC bus 12b. Thus, the leg 18CB is configured by the upper arm element 18WP, the lower arm element 18WN, and the lower arm shunt resistor 18WS that are connected to each other in series.
 下アームシャント抵抗18USは、U相の下アームに流れる電流を検出する。下アームシャント抵抗18VSは、V相の下アームに流れる電流を検出する。下アームシャント抵抗18WSは、W相の下アームに流れる電流を検出する。下アームシャント抵抗18US,18VS,18WSに流れる電流の検出値は、制御部10に送られる。 The lower arm shunt resistor 18US detects a current flowing in the lower arm of the U phase. The lower arm shunt resistor 18VS detects a current flowing through the V-phase lower arm. The lower arm shunt resistor 18WS detects a current flowing through the W-phase lower arm. The detected value of the current flowing through the lower arm shunt resistors 18US, 18VS, 18WS is sent to the control unit 10.
 図2は、いわゆる1シャント電流検出方式の回路構成である。図2の回路は、主に圧縮機駆動用のモータに好適に用いられる。また、図3は、いわゆる3シャント電流検出方式の回路構成である。図3の回路は、主にファン駆動用のモータに好適に用いられる。 FIG. 2 shows a circuit configuration of a so-called one-shunt current detection system. The circuit of FIG. 2 is preferably used mainly for a motor for driving a compressor. FIG. 3 shows a circuit configuration of a so-called three-shunt current detection system. The circuit of FIG. 3 is preferably used mainly for a fan driving motor.
 次に、実施の形態1におけるモータ500について説明する。なお、モータ500の回転数を、適宜「モータ回転数」と呼ぶ。また、インバータ回路18がモータ500へ印加する電圧を、適宜「モータ印加電圧」もしくは、単に「印加電圧」と呼ぶ。 Next, the motor 500 according to the first embodiment will be described. Note that the rotation speed of the motor 500 is appropriately referred to as “motor rotation speed”. The voltage applied to the motor 500 by the inverter circuit 18 is referred to as “motor applied voltage” or simply “applied voltage”.
 図1において、モータ500は、U相巻線502Uと、V相巻線502Vと、W相巻線502Wとを備える。U相巻線502U、V相巻線502V及びW相巻線502Wは、モータ500が備える3つの巻線である。 In FIG. 1, the motor 500 includes a U-phase winding 502U, a V-phase winding 502V, and a W-phase winding 502W. The U-phase winding 502U, the V-phase winding 502V, and the W-phase winding 502W are three windings provided in the motor 500.
 U相巻線502Uの両端は、開放されている。V相巻線502V及びW相巻線502Wも同様である。結線切替部60は、モータ500が備える3つの巻線の結線状態を、第1の結線状態と第2の結線状態との間で相互に切り替える。第2の結線状態は、モータ回転数が同一の条件において、第1の結線状態よりもモータ印加電圧が低くなる状態である。従って、モータ回転数が同一の条件において、第1の結線状態におけるモータ印加電圧は、第2の結線状態におけるモータ印加電圧よりも高くなる。図1のモータ500の場合、第1の結線状態はスター結線に結線された状態であり、第2の結線状態はデルタ結線に結線された状態である。 両 端 Both ends of the U-phase winding 502U are open. The same applies to the V-phase winding 502V and the W-phase winding 502W. The connection switching unit 60 switches the connection state of the three windings included in the motor 500 between a first connection state and a second connection state. The second connection state is a state in which the motor applied voltage is lower than in the first connection state under the same motor rotation speed condition. Therefore, the motor applied voltage in the first connection state is higher than the motor applied voltage in the second connection state under the same motor rotation speed condition. In the case of the motor 500 of FIG. 1, the first connection state is a state of connection in a star connection, and the second connection state is a state of connection in a delta connection.
 結線切替部60は、開放されている各巻線の両端の接続先を変更することで、モータの巻線の結線状態を、スター結線とデルタ結線との間で切り替える機能を有する。この機能の実現のため、結線切替部60は、U相スイッチ62Uと、V相スイッチ62Vと、W相スイッチ62Wとを備える。U相スイッチ62Uは、U相巻線502Uの接続先を切り替える切替部である。V相スイッチ62Vは、V相巻線502Vの接続先を切り替える切替部である。W相スイッチ62Wは、W相巻線502Wの接続先を切り替える切替部である。 The connection switching unit 60 has a function of switching the connection state of the windings of the motor between the star connection and the delta connection by changing the connection destinations at both ends of each open winding. To realize this function, the connection switching unit 60 includes a U-phase switch 62U, a V-phase switch 62V, and a W-phase switch 62W. The U-phase switch 62U is a switching unit that switches the connection destination of the U-phase winding 502U. The V-phase switch 62V is a switching unit that switches the connection destination of the V-phase winding 502V. The W-phase switch 62W is a switching unit that switches the connection destination of the W-phase winding 502W.
 U相スイッチ62U、V相スイッチ62V及びW相スイッチ62Wは、制御部10からの切替信号CS1~CS3によって接点が個別に切り替えられる。 The contacts of the U-phase switch 62U, the V-phase switch 62V, and the W-phase switch 62W are individually switched by switching signals CS1 to CS3 from the control unit 10.
 各相スイッチの現在の接点は、モータ500の各相巻線をスター結線に接続する状態になっている。即ち、デフォルトの接点は、モータ500の各相巻線をスター結線に接続する状態である。 (4) The current contact point of each phase switch is in a state of connecting each phase winding of the motor 500 to a star connection. That is, the default contact is a state where each phase winding of the motor 500 is connected to the star connection.
 なお、図1では、各相スイッチは、c接点スイッチとして記載しているが、これら例に限定されない。各相スイッチは、それぞれが双方向に開閉することのできるスイッチであればよい。例えば、各相スイッチは、a接点スイッチ又はb接点スイッチが組み合わされて構成されていてもよい。また、各相スイッチは、半導体スイッチであってもよい。 In FIG. 1, each phase switch is described as a c-contact switch, but is not limited to these examples. Each phase switch may be any switch that can be opened and closed in both directions. For example, each phase switch may be configured by combining an a contact switch or a b contact switch. Further, each phase switch may be a semiconductor switch.
 各相スイッチは、オン時の導通損失が小さいものが好適であり、リレー又はコンタクタといった機械スイッチを用いることができる。また、機械スイッチに代えて、ワイドバンドギャップ半導体により形成されたスイッチング素子を使用してもよい。ワイドバンドギャップ半導体により形成されたスイッチング素子とすることで、オン抵抗が小さく、低損失で素子発熱が小さいという効果を享受することができる。 Each phase switch preferably has a small conduction loss at the time of ON, and a mechanical switch such as a relay or a contactor can be used. Further, a switching element formed of a wide band gap semiconductor may be used instead of the mechanical switch. By using a switching element formed of a wide band gap semiconductor, it is possible to obtain the effects of low on-resistance, low loss, and low element heat generation.
 なお、図1では、第1の結線状態がスター結線であり、第2の結線状態がデルタ結線である場合を例示したが、これに限定されない。例えば、図4に示す2つの結線状態を切り替えてもよい。図4は、実施の形態1における第1及び第2の結線状態の他の例の説明に供する図である。 Note that FIG. 1 illustrates a case where the first connection state is a star connection and the second connection state is a delta connection, but the present invention is not limited to this. For example, the two connection states shown in FIG. 4 may be switched. FIG. 4 is a diagram provided for describing another example of the first and second connection states according to the first embodiment.
 図4には、図1に示すモータ500の図1とは異なる結線状態が模式的に示されている。図4の上段部には、スター結線における各相の巻線を直列に接続した直列結線の例が示されている。また、図4の下段部には、スター結線における各相巻線を並列に接続した並列結線の例が示されている。 FIG. 4 schematically shows a connection state of the motor 500 shown in FIG. 1 which is different from FIG. The upper part of FIG. 4 shows an example of series connection in which windings of each phase in a star connection are connected in series. The lower part of FIG. 4 shows an example of a parallel connection in which the respective phase windings in the star connection are connected in parallel.
 直列結線におけるU相巻線33U1のインピーダンスは、並列結線におけるU相巻線33U2のインピーダンスよりも大きい。同様に、直列結線におけるV相巻線33V1のインピーダンスは、並列結線におけるV相巻線33V2のインピーダンスよりも大きく、直列結線におけるW相巻線33W1のインピーダンスは、並列結線におけるW相巻線33W2のインピーダンスよりも大きい。このため、同じ相電流であれば、各相巻線に誘起される誘起電圧は、並列結線よりも直列結線の方が大きい。従って、図4の上段部に示される直列結線は、モータ印加電圧が並列結線に比べて高くなる結線状態であり、上述した第1の結線状態に対応する。逆に、図4の下段部に示される並列結線は、モータ印加電圧が直列結線に比べて低くなる結線状態であり、上述した第2の結線状態に対応する。 (4) The impedance of the U-phase winding 33U1 in the series connection is larger than the impedance of the U-phase winding 33U2 in the parallel connection. Similarly, the impedance of the V-phase winding 33V1 in the serial connection is larger than the impedance of the V-phase winding 33V2 in the parallel connection, and the impedance of the W-phase winding 33W1 in the serial connection is larger than that of the W-phase winding 33W2 in the parallel connection. Larger than impedance. Therefore, if the phase current is the same, the induced voltage induced in each phase winding is greater in the series connection than in the parallel connection. Therefore, the series connection shown in the upper part of FIG. 4 is a connection state in which the motor applied voltage is higher than the parallel connection, and corresponds to the first connection state described above. Conversely, the parallel connection shown in the lower part of FIG. 4 is a connection state in which the motor applied voltage is lower than the serial connection, and corresponds to the above-described second connection state.
 なお、図4では、図1に示す結線切替部60に相当する構成部の図示は省略しているが、a接点スイッチ、b接点スイッチ又はc接点スイッチを適宜組み合わせることにより、第1の結線状態と第2の結線状態とを切り替えることができる。 In FIG. 4, components corresponding to the connection switching unit 60 shown in FIG. 1 are not shown, but the first connection state can be obtained by appropriately combining a contact switch, b contact switch, or c contact switch. And the second connection state.
 図1に戻り、制御部10は、電圧検出器5及び電圧検出器7の検出値に基づいて、昇圧回路3内の各スイッチング素子を制御するための制御信号S311~S322を生成する。制御信号S311は、スイッチング素子Q1を制御するための制御信号であり、制御信号S322は、スイッチング素子Q4を制御するための制御信号である。スイッチング素子Q2,Q3も制御部10からの制御信号によって制御される。制御部10によって生成された制御信号S311~S322は、昇圧回路3内の図示しないゲート駆動回路に入力される。 Returning to FIG. 1, the control unit 10 generates control signals S311 to S322 for controlling each switching element in the booster circuit 3 based on the detection values of the voltage detector 5 and the voltage detector 7. The control signal S311 is a control signal for controlling the switching element Q1, and the control signal S322 is a control signal for controlling the switching element Q4. Switching elements Q2 and Q3 are also controlled by a control signal from control unit 10. The control signals S311 to S322 generated by the control unit 10 are input to a gate drive circuit (not shown) in the booster circuit 3.
 また、制御部10は、電圧検出器5、電圧検出器7及び電流検出器18Sの各検出値に基づいて、インバータ回路18内の各スイッチング素子を制御するための制御信号S1~S6を生成する。制御信号S1は、上アーム素子18UPを制御するための制御信号であり、制御信号S6は、下アーム素子18WNを制御するための制御信号である。他の上アーム素子18VP,WP及び他の下アーム素子18UN,VNも制御部10からの制御信号によって制御される。制御部10によって生成された制御信号S1~S6は、インバータ回路18内の図示しないゲート駆動回路に入力される。 Further, the control unit 10 generates control signals S1 to S6 for controlling each switching element in the inverter circuit 18 based on each detection value of the voltage detector 5, the voltage detector 7, and the current detector 18S. . The control signal S1 is a control signal for controlling the upper arm element 18UP, and the control signal S6 is a control signal for controlling the lower arm element 18WN. The other upper arm elements 18VP, WP and the other lower arm elements 18UN, VN are also controlled by control signals from the control unit 10. The control signals S1 to S6 generated by the control unit 10 are input to a gate drive circuit (not shown) in the inverter circuit 18.
 次に、実施の形態1に係るモータ駆動装置100における要部の回路動作について、図1から図8の図面を適宜参照して説明する。 Next, the circuit operation of the main part of the motor drive device 100 according to the first embodiment will be described with reference to the drawings of FIGS.
 図5は、実施の形態1におけるモータ駆動装置100の動作モードの説明に供する図である。図5には、パッシブ同期整流モード、簡易スイッチングモード及びパルス幅変調(Pulse Width Modulation:PWM)制御モードという3つの動作モードが示されている。図6は、実施の形態1の昇圧回路3におけるパッシブ同期整流モード時の電流経路の1つを示す図である。図7は、一般的なスイッチング素子における電流-損失特性を模式的に示す図である。図8は、実施の形態1の昇圧回路3における簡易スイッチングモード時の電流経路の1つを示す図である。 FIG. 5 is a diagram provided for describing an operation mode of motor drive device 100 according to the first embodiment. FIG. 5 shows three operation modes: a passive synchronous rectification mode, a simple switching mode, and a pulse width modulation (Pulse Width Modulation: PWM) control mode. FIG. 6 is a diagram illustrating one of the current paths in the passive synchronous rectification mode in the booster circuit 3 of the first embodiment. FIG. 7 is a diagram schematically showing current-loss characteristics of a general switching element. FIG. 8 is a diagram illustrating one of the current paths in the simple switching mode in the booster circuit 3 of the first embodiment.
 図5の上段部には、パッシブ同期整流モード時の電源電圧及び電源電流が示されている。この動作モードは、非昇圧で同期整流を行うモードである。非昇圧とは、電源短絡動作を行わないことを意味する。なお、電源短絡動作については、後述する。また、同期整流とは、電流がダイオードに流れるタイミングに合わせ、ダイオードに逆並列に接続されるスイッチング素子をON動作させる制御手法である。 電源 The upper part of FIG. 5 shows the power supply voltage and the power supply current in the passive synchronous rectification mode. This operation mode is a mode in which synchronous rectification is performed without boosting. Non-boosting means that the power supply short-circuit operation is not performed. The power supply short-circuit operation will be described later. Synchronous rectification is a control method in which a switching element connected in anti-parallel to a diode is turned on in accordance with the timing at which a current flows through the diode.
 図6には、電源電圧が正極性であり、且つ、同期整流を行うときのコンデンサ4に対する充電経路が示されている。図6に示すように、交流電源1における上側の端子がプラス電位のときを電源電圧の極性が正であるとする。また、交流電源1における上側の端子がマイナス電位のときを電源電圧の極性が負であるとする。 FIG. 6 shows a charging path for the capacitor 4 when the power supply voltage is positive and synchronous rectification is performed. As shown in FIG. 6, it is assumed that the polarity of the power supply voltage is positive when the upper terminal of the AC power supply 1 has a positive potential. When the upper terminal of the AC power supply 1 has a negative potential, the polarity of the power supply voltage is assumed to be negative.
 図6において、交流電源1から供給される電流によってコンデンサ4が充電される場合、スイッチング素子Q1,Q4をON動作させない場合、交流電源1、リアクトル2、ダイオードD1、コンデンサ4、ダイオードD4、交流電源1の順で電流が流れる。ダイオードは、電流が流れる方向、即ち順方向に電圧降下分の電圧が印加されないと導通しない。このため、図5の上段部に示すように、電源電圧が正の半周期T1の期間において、半周期T1よりも短い期間T2で電流が流れる。パッシブ同期整流モードでは、期間T2において、ダイオードD1,D4の導通タイミングに合わせてスイッチング素子Q1,Q4がONに制御される。従って、期間T2では、交流電源1、リアクトル2、スイッチング素子Q1、コンデンサ4、スイッチング素子Q4、交流電源1の順で電流が流れる。 In FIG. 6, when the capacitor 4 is charged by the current supplied from the AC power supply 1, when the switching elements Q1 and Q4 are not turned on, the AC power supply 1, the reactor 2, the diode D1, the capacitor 4, the diode D4, and the AC power supply Current flows in the order of 1. The diode does not conduct unless a voltage corresponding to a voltage drop is applied in the direction in which current flows, that is, in the forward direction. Therefore, as shown in the upper part of FIG. 5, in the period of the positive half cycle T1 in which the power supply voltage is positive, the current flows in the period T2 shorter than the half cycle T1. In the passive synchronous rectification mode, in the period T2, the switching elements Q1 and Q4 are controlled to be ON according to the conduction timing of the diodes D1 and D4. Therefore, in the period T2, current flows in the order of the AC power supply 1, the reactor 2, the switching element Q1, the capacitor 4, the switching element Q4, and the AC power supply 1.
 電源電圧が負の半周期も同様な動作が行われる。但し、電源電圧が負の半周期における期間T3では、ダイオードD2,D3の導通タイミングに合わせてスイッチング素子Q2,Q3がONに制御される。 同 様 Similar operation is performed in the negative half cycle of the power supply voltage. However, in the period T3 in the negative half cycle of the power supply voltage, the switching elements Q2 and Q3 are controlled to be ON according to the conduction timing of the diodes D2 and D3.
 図7には、ダイオードの損失特性と、スイッチング素子のオン時の損失特性とが示されている。図7に示すように、電流値I0よりも電流が小さい領域Aでは、スイッチング素子の損失よりも、ダイオードの損失の方が大きい。この特性を利用し、電流がダイオードに流れるタイミングに合わせ、ダイオードに逆並列に接続されるスイッチング素子をON動作させる同期整流を利用すれば、モータ駆動装置100を高効率に動作させることができる。 FIG. 7 shows the loss characteristic of the diode and the loss characteristic when the switching element is turned on. As shown in FIG. 7, in a region A where the current is smaller than the current value I0, the loss of the diode is larger than the loss of the switching element. By utilizing this characteristic and using synchronous rectification for turning on a switching element connected in anti-parallel to the diode in accordance with the timing at which current flows through the diode, the motor drive device 100 can be operated with high efficiency.
 また、図5の中段部には、簡易スイッチングモード時の電源電圧及び電源電流が示されている。この動作モードは、電源電圧の半周期の期間において、1又は数回の電源短絡動作を行って昇圧回路3を昇圧動作させる動作モードである。なお、図5の中段部の例では、電源電圧の半周期の期間に1回の電源短絡動作が行われている。 (5) In the middle part of FIG. 5, the power supply voltage and the power supply current in the simple switching mode are shown. This operation mode is an operation mode in which the booster circuit 3 performs a boost operation by performing one or several short-circuit operations of the power supply during a half cycle of the power supply voltage. In the example of the middle part of FIG. 5, one power supply short-circuit operation is performed during a half cycle of the power supply voltage.
 図8には、電源電圧が正極性であり、且つ、同期整流を行うときのリアクトル2を介した交流電源1の短絡経路が示されている。図8に示すように、スイッチング素子Q1,Q3を期間T4でON動作させる。このようにすれば、交流電源1、リアクトル2、スイッチング素子Q1、スイッチング素子Q3、交流電源1の順で電流が流れ、リアクトル2に電気エネルギーが蓄積される。 FIG. 8 shows a short-circuit path of the AC power supply 1 via the reactor 2 when the power supply voltage is positive and synchronous rectification is performed. As shown in FIG. 8, the switching elements Q1 and Q3 are turned on in the period T4. By doing so, current flows in the order of AC power supply 1, reactor 2, switching element Q1, switching element Q3, AC power supply 1, and electric energy is accumulated in reactor 2.
 期間T4の後、図5の上段部で示したパッシブ同期整流モード時の動作となる。期間T4の直後では、交流電源1の電圧とリアクトル2に生じる電圧との和が、昇圧回路3に印加される。このため、昇圧回路3のダイオードD1,D4は導通する。そして、ダイオードD1,D4の導通タイミングに合わせてスイッチング素子Q1,Q4がON動作し、電源電流が流れる。 After the period T4, the operation is in the passive synchronous rectification mode shown in the upper part of FIG. Immediately after the period T4, the sum of the voltage of the AC power supply 1 and the voltage generated in the reactor 2 is applied to the booster circuit 3. Therefore, the diodes D1 and D4 of the booster circuit 3 conduct. Then, the switching elements Q1 and Q4 are turned on in accordance with the conduction timing of the diodes D1 and D4, and the power supply current flows.
 なお、図8では、スイッチング素子Q1,Q3をON動作させているが、これに代えて、スイッチング素子Q2,Q4をON動作させてもよい。この場合、交流電源1、リアクトル2、スイッチング素子Q2、スイッチング素子Q4、交流電源1の順で電流が流れる。 In FIG. 8, the switching elements Q1 and Q3 are turned on, but the switching elements Q2 and Q4 may be turned on instead. In this case, current flows in the order of the AC power supply 1, the reactor 2, the switching element Q2, the switching element Q4, and the AC power supply 1.
 負の半周期においても同様であり、1又は数回の電源短絡動作の後に、パッシブ同期整流動作となる。電源短絡動作では、スイッチング素子Q1,Q3をON動作させてもよいし、スイッチング素子Q2,Q4をON動作させてもよい。 で The same applies to the negative half cycle, and the passive synchronous rectification operation is performed after one or several power supply short-circuit operations. In the power supply short-circuit operation, the switching elements Q1 and Q3 may be turned on, or the switching elements Q2 and Q4 may be turned on.
 また、図5の下段部には、PWM制御モード時の電源電圧及び電源電流が示されている。この動作モードでは、リアクトル2に電気エネルギーを蓄積する電源短絡動作と、リアクトル2に蓄積した電気エネルギーを使用してコンデンサ4を充電する充電動作とが交互に繰り返される。電源短絡動作と充電動作との切り替えは、数kHzから数十kHzの高周波で行われる。これにより、図5の下段部に示されるように、電源電流は、正弦波状の電流に制御される。また、中段部に示す簡易スイッチングモードよりも、昇圧動作の時間が長く、簡易スイッチングモードよりも高い昇圧電圧が得られる。 (5) The lower part of FIG. 5 shows the power supply voltage and the power supply current in the PWM control mode. In this operation mode, a power supply short-circuit operation for storing electric energy in the reactor 2 and a charging operation for charging the capacitor 4 using the electric energy stored in the reactor 2 are alternately repeated. Switching between the power short-circuit operation and the charging operation is performed at a high frequency of several kHz to several tens kHz. Thereby, as shown in the lower part of FIG. 5, the power supply current is controlled to a sinusoidal current. Further, the boosting operation time is longer than in the simple switching mode shown in the middle part, and a boosted voltage higher than that in the simple switching mode can be obtained.
 上述した3つのモードは、運転条件及び負荷条件に応じて切り替えられる。これにより、モータ駆動装置100を、高効率に動作させることが可能となる。 3The above three modes are switched according to operating conditions and load conditions. Thereby, the motor drive device 100 can be operated with high efficiency.
 次に、実施の形態1に係るモータ駆動装置100における昇圧制御について、図1、及び図9から図11の図面を参照して説明する。なお、以下の説明では、図1に示すモータ500のように結線切替が可能な構造のモータを「結線切替モータ」と呼び、モータ500の運転効率を単に「効率」と呼ぶ。なお、ここで言う「効率」は、モータ500への入力電力に対するモータ500の機械出力の比である。また、幾つかの図面では、スター結線を「Y結線」、デルタ結線を「Δ結線」と表記する。 Next, boost control in the motor drive device 100 according to the first embodiment will be described with reference to FIG. 1 and FIGS. 9 to 11. In the following description, a motor having a structure capable of connection switching, such as the motor 500 shown in FIG. 1, is referred to as a “connection switching motor”, and the operation efficiency of the motor 500 is simply referred to as “efficiency”. Here, the “efficiency” is the ratio of the mechanical output of the motor 500 to the input power to the motor 500. In some drawings, the star connection is referred to as “Y connection” and the delta connection is referred to as “Δ connection”.
 図9は、実施の形態1の結線切替モータにおける結線状態と効率との関係の説明に供する図である。図10は、実施の形態1の結線切替モータを構成する際の着意事項の説明に供する図である。図11は、実施の形態1の昇圧回路3における出力電圧制御の説明に供する図である。 FIG. 9 is a diagram for explaining the relationship between the connection state and the efficiency in the connection switching motor according to the first embodiment. FIG. 10 is a diagram provided to explain matters to be considered when configuring the connection switching motor according to the first embodiment. FIG. 11 is a diagram provided for explanation of output voltage control in booster circuit 3 of the first embodiment.
 図9には、結線状態がスター結線とデルタ結線とにおけるモータ500の回転数とモータ500の効率との関係が示されている。横軸にはモータ500の回転数が示され、縦軸にはモータ500の効率が示されている。図9に示すように、結線状態がスター結線の場合のモータ500の効率は、回転数が小さい低速領域、即ち軽負荷領域では、デルタ結線に比べて良好であるが、回転数が大きい高速領域、即ち高負荷領域又は過負荷領域では低下する。 FIG. 9 shows the relationship between the number of rotations of the motor 500 and the efficiency of the motor 500 when the connection state is the star connection and the delta connection. The horizontal axis shows the rotation speed of the motor 500, and the vertical axis shows the efficiency of the motor 500. As shown in FIG. 9, the efficiency of the motor 500 when the connection state is the star connection is better in the low speed region where the rotation speed is small, that is, in the light load region, than in the delta connection, but in the high speed region where the rotation speed is large. That is, it decreases in the high load region or the overload region.
 一方、結線状態がデルタ結線の場合のモータ500の効率は、回転数が小さい低速領域ではスター結線に比べて劣るが、回転数が大きい高速領域では、向上する。 On the other hand, the efficiency of the motor 500 when the connection state is the delta connection is inferior to the star connection in the low speed region where the rotation speed is low, but is improved in the high speed region where the rotation speed is high.
 従って、低速領域では、デルタ結線よりもスター結線の方が効率が良く、高速領域では、スター結線よりもデルタ結線の方が効率が良い。よって、図9に示す切替点が存在し、この切替点で結線状態を切り替えれば、効率の良い運転が可能となる。なお、切替点における切替回転数を「第1回転数」と呼ぶ場合がある。 Therefore, the star connection is more efficient than the delta connection in the low speed region, and the delta connection is more efficient than the star connection in the high speed region. Therefore, the switching point shown in FIG. 9 exists, and if the connection state is switched at this switching point, efficient operation can be performed. Note that the switching speed at the switching point may be referred to as a “first speed”.
 モータ駆動装置100のアプリケーションの1つに、空気調和機がある。空気調和機における省エネルギーに関する指標の1つに、通年エネルギー消費効率(Annual Performance Factor:APF)がある。APFには、空気調和機の中間負荷での効率が大きく寄与する。なお、上述した低速領域又は軽負荷領域は、APFで言う中間負荷とほぼ同義と考えてよい。 ア プ リ ケ ー シ ョ ン One of the applications of the motor drive device 100 is an air conditioner. One of the indexes related to energy saving in an air conditioner is an annual performance factor (APF). The efficiency at an intermediate load of the air conditioner greatly contributes to the APF. Note that the above-described low-speed region or light-load region may be considered to be substantially synonymous with the intermediate load referred to in APF.
 図10には、モータ500の回転数と、2つの巻線の誘起電圧の関係が示されている。横軸にはモータ500の回転数が示され、縦軸には各種の電圧が示されている。 FIG. 10 shows the relationship between the number of rotations of the motor 500 and the induced voltages of the two windings. The horizontal axis indicates the number of rotations of the motor 500, and the vertical axis indicates various voltages.
 図10において、巻数以外の条件は同一である巻数Aの巻線と巻数Bの巻線において、巻数Aの巻線の誘起電圧が太実線で示され、巻数Bの巻線の誘起電圧が太破線で示されている。巻数Aと巻数Bとの間には、巻数B>巻数Aの関係があり、巻数Aの巻線の誘起電圧よりも、巻数Bの巻線の誘起電圧の方が高くなる。また、巻線の高巻数化により誘起電圧を高めれば、モータ電流を低減できるので、効率の向上が図れる。よって、巻線の高巻数化は、中間負荷での効率向上に有効であることが理解できる。 In FIG. 10, the induced voltage of the winding of the number A of turns is shown by a thick solid line in the winding of the number of turns A and the winding of the number of turns B, and the induced voltage of the winding of the number of turns B is large. Indicated by broken lines. The relationship between the number of turns A and the number of turns B is such that the number of turns B> the number of turns A, and the induced voltage of the winding of the number of turns B is higher than the induced voltage of the winding of the number of turns A. Further, if the induced voltage is increased by increasing the number of windings of the winding, the motor current can be reduced, so that the efficiency can be improved. Therefore, it can be understood that increasing the number of windings of the winding is effective for improving efficiency at an intermediate load.
 ところが、巻線の高巻数化により誘起電圧を高めた場合、低速領域又は軽負荷領域において、電圧不足になる場合がある。図10において、整流電圧は、昇圧回路3を昇圧動作させないとき、即ち昇圧回路3をパッシブ同期整流モードで動作させたときの昇圧回路3の出力電圧である。図10に示す整流電圧に対して、巻数Aの巻線は、定格回転数の場合でも電圧不足とならないが、巻数Bの巻線は、定格回転数未満の回転数で電圧不足となる状況が示されている。このため、巻数Bを使用するには、昇圧回路3によって昇圧電圧を出力する必要がある。 However, when the induced voltage is increased by increasing the number of windings of the winding, the voltage may be insufficient in a low speed region or a light load region. In FIG. 10, the rectified voltage is the output voltage of the booster circuit 3 when the booster circuit 3 is not operated to boost the voltage, that is, when the booster circuit 3 is operated in the passive synchronous rectification mode. With respect to the rectified voltage shown in FIG. 10, the winding with the number of turns A does not become insufficient in voltage even at the rated rotation speed, but the winding with the number of turns B becomes insufficient in voltage at the rotation speed less than the rated rotation speed. It is shown. Therefore, to use the number of turns B, it is necessary to output a boosted voltage by the boosting circuit 3.
 図11には、モータ500の結線状態がスター結線のときの誘起電圧と、モータ500の結線状態がデルタ結線のときの誘起電圧とが示されている。横軸にはモータ500の回転数が示され、縦軸には各種の電圧が示されている。図11では、図9に示される効率特性に鑑みて、モータ500の結線状態は、低速領域ではスター結線とし、高速領域ではデルタ結線としている。また、図11では、図9に示される第1回転数において、スター結線とデルタ結線とが切り替えられることが想定されている。 FIG. 11 shows an induced voltage when the connection state of the motor 500 is a star connection and an induced voltage when the connection state of the motor 500 is a delta connection. The horizontal axis indicates the number of rotations of the motor 500, and the vertical axis indicates various voltages. In FIG. 11, in consideration of the efficiency characteristics shown in FIG. 9, the connection state of the motor 500 is a star connection in a low-speed region and a delta connection in a high-speed region. In FIG. 11, it is assumed that the star connection and the delta connection are switched at the first rotational speed shown in FIG.
 スター結線における端子間の誘起電圧は、デルタ結線における端子間の誘起電圧の√3倍である。従って、結線状態をデルタ結線からスター結線にすることは、巻線の巻数を√3倍にしたのと同等となる。また、スター結線とデルタ結線とで、巻数を変えずに、巻線の結線状態のみで切り替えるものとすれば、スター結線における回転数に対する誘起電圧の傾きは、デルタ結線における回転数に対する誘起電圧の傾きの√3倍となる。 The induced voltage between terminals in the star connection is √3 times the induced voltage between terminals in the delta connection. Accordingly, changing the connection state from the delta connection to the star connection is equivalent to increasing the number of windings by √3 times. Also, if it is assumed that the number of turns is changed between star connection and delta connection without changing the number of windings and only the winding connection state is changed, the gradient of the induced voltage with respect to the rotation speed in the star connection is the gradient of the induced voltage with respect to the rotation speed in the delta connection. √3 times the slope.
 図11には、整流電圧、並びに2つの昇圧電圧である第1電圧及び第2電圧の各レベルが破線で示されている。前述したように、整流電圧は、昇圧回路3を昇圧動作させないときの昇圧回路3の出力電圧である。換言すると、整流電圧は、昇圧回路3のスイッチング素子の開閉動作を伴わない昇圧回路3の出力電圧である。 In FIG. 11, the levels of the rectified voltage and the two boosted voltages, that is, the first voltage and the second voltage are indicated by broken lines. As described above, the rectified voltage is the output voltage of the booster circuit 3 when the booster circuit 3 is not operated. In other words, the rectified voltage is an output voltage of the booster circuit 3 that does not involve the switching operation of the switching element of the booster circuit 3.
 ここで、実施の形態1では、2つの昇圧モードを定義する。1つは、昇圧回路3を昇圧動作させて第1電圧を出力する昇圧モードである。この昇圧モードを「第1の昇圧モード」と定義する。もう1つは、昇圧回路3を昇圧動作させて第2電圧を出力する昇圧モードである。この昇圧モードを「第2の昇圧モード」と定義する。 Here, in the first embodiment, two boosting modes are defined. One is a boosting mode in which the boosting circuit 3 performs a boosting operation and outputs a first voltage. This boost mode is defined as “first boost mode”. The other is a boosting mode in which the boosting circuit 3 performs a boosting operation and outputs a second voltage. This boost mode is defined as “second boost mode”.
 第1の昇圧モードにおいて、昇圧回路3は、前述した簡易スイッチングモードで動作し、図11に示すような第1電圧を発生する。第1電圧は、昇圧回路3のスイッチング素子の開閉動作によって昇圧される昇圧回路3の出力電圧である。 In the first boost mode, the boost circuit 3 operates in the simple switching mode described above, and generates the first voltage as shown in FIG. The first voltage is an output voltage of the booster circuit 3 that is boosted by the switching operation of the switching element of the booster circuit 3.
 また、第2の昇圧モードにおいて、昇圧回路3は、前述したPWM制御モードで動作し、図11に示すような第2電圧を発生する。第2電圧は、昇圧回路3のスイッチング素子の開閉動作によって昇圧される昇圧回路3の出力電圧であり、且つ、第1電圧よりも高い電圧である。なお、第2電圧と第1電圧との間のレベル差が小さい場合、第2電圧の発生を第1の昇圧モード、即ち簡易スイッチングモードで実施してもよい。 In the second boost mode, the boost circuit 3 operates in the above-described PWM control mode, and generates the second voltage as shown in FIG. The second voltage is an output voltage of the booster circuit 3 that is boosted by the switching operation of the switching element of the booster circuit 3 and is higher than the first voltage. When the level difference between the second voltage and the first voltage is small, the generation of the second voltage may be performed in the first boost mode, that is, the simple switching mode.
 図11には、所要母線電圧が太線の一点鎖線で示されている。所要母線電圧は、回転数の増加に応じて、モータ500の結線状態を切り替えたときに、電圧不足とならないレベルを示したものである。 所 要 In FIG. 11, the required bus voltage is indicated by a bold dashed line. The required bus voltage indicates a level at which the voltage does not become insufficient when the connection state of the motor 500 is switched according to an increase in the rotation speed.
 例えばスター結線において、回転数が増加し、誘起電圧が整流電圧に達する第2回転数と、モータ500の回転数が第1回転数となる回転数区間では、第1電圧に昇圧されている必要がある。図示のように、第2回転数は、第1回転数よりも低い回転数である。なお、実際の運転制御では、マージンを見込んで、第2回転数に達する前の予め設定された回転数で第1電圧に昇圧されることは言うまでもない。 For example, in a star connection, the rotation speed increases and the induced voltage needs to be boosted to the first voltage in the second rotation speed at which the induced voltage reaches the rectified voltage and in the rotation speed section in which the rotation speed of the motor 500 is the first rotation speed. There is. As illustrated, the second rotation speed is a lower rotation speed than the first rotation speed. In actual operation control, it is needless to say that the voltage is raised to the first voltage at a preset rotation speed before reaching the second rotation speed in consideration of a margin.
 また、デルタ結線において、誘起電圧が整流電圧に達する第3回転数と、誘起電圧が第1電圧に達する第4回転数との間の回転数区間では、第1電圧に昇圧されている必要がある。図示のように、第3回転数及び第4回転数は、第1回転数よりも高く、定格回転数よりも低い回転数である。また、第4回転数は、第3回転数よりも高い回転数である。なお、実際の運転制御では、マージンを見込んで、第2回転数となる前の予め設定された回転数で第1電圧に昇圧されることは言うまでもない。 Further, in the delta connection, in the rotation speed section between the third rotation speed at which the induced voltage reaches the rectified voltage and the fourth rotation speed at which the induced voltage reaches the first voltage, the voltage must be raised to the first voltage. is there. As illustrated, the third speed and the fourth speed are higher than the first speed and lower than the rated speed. The fourth rotation speed is a rotation speed higher than the third rotation speed. Needless to say, in actual operation control, the voltage is increased to the first voltage at a preset rotation speed before reaching the second rotation speed in consideration of a margin.
 更に、デルタ結線において、誘起電圧が第1電圧に達する第4回転数と、誘起電圧が第2電圧に達する定格回転数との間の回転数区間では、第2電圧に昇圧されている必要がある。なお、実際の運転制御では、マージンを見込んで、第4回転数となる前の予め設定された回転数で第2電圧に昇圧されることは言うまでもない。 Further, in the delta connection, in the rotation speed section between the fourth rotation speed at which the induced voltage reaches the first voltage and the rated rotation speed at which the induced voltage reaches the second voltage, the voltage must be raised to the second voltage. is there. In the actual operation control, it is needless to say that the voltage is raised to the second voltage at a preset rotation speed before reaching the fourth rotation speed in consideration of a margin.
 以上説明したように、実施の形態1に係るモータ駆動装置100は、モータ500の巻線の結線状態をスター結線とデルタ結線とで切り替える切替点の回転数である第1回転数において、昇圧回路3の出力電圧は、昇圧回路3を昇圧動作させないときの昇圧回路3の出力電圧よりも高い第1電圧に昇圧可能となるように構成される。この構成により、スター結線を使用する低速回転域での効率の更なる改善を図ることが可能となる。 As described above, the motor driving device 100 according to the first embodiment operates at the first rotation speed which is the switching speed at which the connection state of the winding of the motor 500 is switched between the star connection and the delta connection. The output voltage of the booster circuit 3 is configured to be able to be boosted to a first voltage higher than the output voltage of the booster circuit 3 when the booster circuit 3 is not operated. With this configuration, it is possible to further improve the efficiency in the low-speed rotation range using the star connection.
 低速回転域において、効率の更なる改善が図られる理由は、以下の通りである。 理由 The reason why the efficiency is further improved in the low-speed rotation range is as follows.
 上述したように、結線切替モータでは、スター結線での電圧不足と、デルタ結線での電圧不足とが起こらないよう、双方の電圧不足に注意する必要があった。また、従来の昇圧回路は、昇圧時の損失が大きく、高巻数化には制約があった。特に、中間負荷での損失が問題となるスター結線での昇圧は見送られていた。 (4) As described above, in the connection switching motor, it is necessary to pay attention to both the voltage shortage so that the voltage shortage in the star connection and the voltage shortage in the delta connection do not occur. Further, the conventional booster circuit has a large loss at the time of boosting, and there is a restriction in increasing the number of turns. In particular, boosting in a star connection, in which loss at an intermediate load becomes a problem, was forgotten.
 これに対し、実施の形態1では、昇圧回路3がパッシブ動作するときに同期整流を行うので、従来のダイオード整流で発生していた損失を改善することができる。また、2つの昇圧モードでも同期整流を行うので、昇圧動作による損失分を、昇圧動作時の同期整流による損失改善分で埋め合わせることができる。これにより、中間負荷での損失が問題となるスター結線においても、同期整流と併用することにより、スター結線を使用する低速回転域での効率を改善することが可能となる。また、これにより、結線切替モータによる高巻数化の効果を損なうことのない効率改善が可能となる。 On the other hand, in the first embodiment, since the synchronous rectification is performed when the booster circuit 3 performs the passive operation, the loss caused by the conventional diode rectification can be improved. Further, since synchronous rectification is performed even in the two boost modes, the loss due to the boost operation can be compensated for by the loss improvement due to the synchronous rectification during the boost operation. As a result, even in the star connection where the loss at the intermediate load becomes a problem, it is possible to improve the efficiency in the low-speed rotation region using the star connection by using the synchronous rectification together. In addition, this makes it possible to improve the efficiency without impairing the effect of increasing the number of windings by the connection switching motor.
 次に、実施の形態1における制御部10の機能を実現するためのハードウェア構成について、図12及び図13の図面を参照して説明する。図12は、実施の形態1における制御部10の機能を具現するハードウェア構成の一例を示すブロック図である。図13は、実施の形態1における制御部10の機能を具現するハードウェア構成の他の例を示すブロック図である。 Next, a hardware configuration for realizing the function of the control unit 10 according to the first embodiment will be described with reference to FIGS. 12 and 13. FIG. 12 is a block diagram illustrating an example of a hardware configuration that implements the function of the control unit 10 according to the first embodiment. FIG. 13 is a block diagram illustrating another example of a hardware configuration that implements the function of the control unit 10 according to the first embodiment.
 実施の形態1における制御部10の機能の全部又は一部を実現する場合には、図12に示されるように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。 When implementing all or a part of the functions of the control unit 10 according to the first embodiment, as shown in FIG. 12, a processor 300 for performing an operation, a memory 302 for storing a program read by the processor 300, And an interface 304 for inputting and outputting signals.
 プロセッサ300は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 300 may be an arithmetic unit such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). The memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (registered trademark) (Electrically EPROM). Examples include a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD (Digital @ Versatile @ Disc).
 メモリ302には、制御部10における機能の全部又は一部を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行することにより、昇圧回路3及びインバータ回路18を制御する。 The memory 302 stores a program for executing all or a part of the functions of the control unit 10. The processor 300 transmits and receives necessary information via the interface 304, and controls the booster circuit 3 and the inverter circuit 18 by executing the program stored in the memory 302 by the processor 300.
 また、図12に示すプロセッサ300及びメモリ302は、図13のように処理回路305に置き換えてもよい。処理回路305は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。 The processor 300 and the memory 302 shown in FIG. 12 may be replaced with a processing circuit 305 as shown in FIG. The processing circuit 305 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
実施の形態2.
 図14は、実施の形態2に係る空気調和機200の構成例を示す図である。実施の形態2に係る空気調和機200は、実施の形態1で説明したモータ駆動装置100を備える。空気調和機200は、実施の形態1におけるモータ500を内蔵した圧縮機251と、四方弁259と、室外熱交換器252と、膨張弁261と、室内熱交換器257とが冷媒配管262を介して取り付けられた冷凍サイクルを備えて、セパレート形空気調和機を構成している。なお、実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付している。
Embodiment 2 FIG.
FIG. 14 is a diagram illustrating a configuration example of an air conditioner 200 according to Embodiment 2. The air conditioner 200 according to Embodiment 2 includes the motor drive device 100 described in Embodiment 1. In the air conditioner 200, the compressor 251 including the motor 500 according to Embodiment 1; the four-way valve 259; the outdoor heat exchanger 252; the expansion valve 261; A separate type air conditioner is equipped with a refrigeration cycle attached. Note that components having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment.
 圧縮機251の内部には、冷媒を圧縮する圧縮機構250と、圧縮機構250を動作させるモータ500とが設けられている。圧縮機251から室外熱交換器252との間と、圧縮機251から室内熱交換器257との間を冷媒が循環することで冷暖房などを行う冷凍サイクルが構成されている。なお、図14に示した構成は、空気調和機だけでなく、冷蔵庫、冷凍庫といった冷凍サイクルを備える冷凍サイクル装置に適用可能である。 圧 縮 A compression mechanism 250 for compressing the refrigerant and a motor 500 for operating the compression mechanism 250 are provided inside the compressor 251. A refrigeration cycle for cooling and heating is configured by circulating a refrigerant between the compressor 251 and the outdoor heat exchanger 252 and between the compressor 251 and the indoor heat exchanger 257. The configuration shown in FIG. 14 is applicable not only to an air conditioner but also to a refrigeration cycle apparatus having a refrigeration cycle such as a refrigerator or a freezer.
 次に、実施の形態2に係る空気調和機200における要部の動作について、図15を参照して説明する。図15は、実施の形態2に係る空気調和機200の運転方法の一例を示すタイムチャートである。なお、図15の説明の前提として、モータ500の巻線の結線状態は、デフォルトの結線状態であるスター結線であるとする。また、図15において、太実線は回転数を表し、太破線は母線電圧を表している。 Next, the operation of the main part of the air conditioner 200 according to Embodiment 2 will be described with reference to FIG. FIG. 15 is a time chart illustrating an example of an operation method of the air conditioner 200 according to Embodiment 2. It is assumed that the connection state of the windings of the motor 500 is star connection, which is the default connection state, as a premise of the description of FIG. In FIG. 15, a bold solid line indicates the number of rotations, and a bold broken line indicates a bus voltage.
 まず、時刻t1において、空気調和機200への通電が開始され、時刻t2において起動される。なお、時刻t1と時刻t2との間において、巻線の結線状態は、スター結線からデルタ結線に切り替えられる。 {Circle around (1)} At time t1, energization of the air conditioner 200 is started, and the air conditioner 200 is started at time t2. In addition, between the time t1 and the time t2, the connection state of the winding is switched from the star connection to the delta connection.
 時刻t2と時刻t5との間ではモータ500が加速される。また、母線電圧の電圧不足が予測されるため、時刻t3において、1度目の昇圧が行われ、母線電圧が第1電圧に変更されている。また、母線電圧が第1電圧に変更された後、更に母線電圧の電圧不足が予測されるため、時刻t4において、2度目の昇圧が行われ、母線電圧が第2電圧に変更されている。1度目の昇圧は第1の昇圧モードで実施され、2度目の昇圧は第2の昇圧モードで実施される。 モ ー タ The motor 500 is accelerated between the time t2 and the time t5. In addition, since a shortage of the bus voltage is predicted, the first boosting is performed at time t3, and the bus voltage is changed to the first voltage. Further, after the bus voltage is changed to the first voltage, further shortage of the bus voltage is predicted. Therefore, at time t4, the second boosting is performed, and the bus voltage is changed to the second voltage. The first boosting is performed in the first boosting mode, and the second boosting is performed in the second boosting mode.
 時刻t5では定格負荷に到達し、時刻t5から時刻t6の間において、回転数一定の制御が実施される。また、時刻t5から時刻t6の間において、モータ駆動装置100の制御部10は、目標温度と室温との温度差の絶対値が閾値未満であるか否かを判断する。当該温度差が閾値未満であれば、再起動を行うため減速動作に移行する。なお、図15の例では、時刻t6で減速動作に移行している。 で は At time t5, the rated load is reached, and during the period from time t5 to time t6, constant rotation speed control is performed. Further, between time t5 and time t6, control unit 10 of motor drive device 100 determines whether or not the absolute value of the temperature difference between the target temperature and room temperature is less than the threshold. If the temperature difference is less than the threshold value, the operation shifts to a deceleration operation for restarting. Note that in the example of FIG. 15, the operation shifts to the deceleration operation at time t6.
 時刻t6と時刻t8との間の時刻t7では、効率を高めるため、昇圧動作は停止し、母線電圧は整流電圧となる。時刻t8では停止し、巻線の結線状態は、デルタ結線からスター結線に切り替えられる。 At the time t7 between the time t6 and the time t8, the boosting operation stops and the bus voltage becomes the rectified voltage in order to increase the efficiency. At time t8, the winding is stopped, and the connection state of the winding is switched from delta connection to star connection.
 時刻t9において再起動され、時刻t9と時刻t11との間ではモータ500が加速さる。電圧不足が見込まれる時刻t10では昇圧が行われ、母線電圧が第1電圧に変更される。時刻t11では中間負荷に到達し、時刻t11から時刻t12の間において、回転数一定の制御が実施される。なお、時刻t11と時刻t12との間は中間負荷の運転であり、第2電圧までの昇圧は不要である。 再 Restarted at time t9, the motor 500 accelerates between time t9 and time t11. At time t10 when a voltage shortage is expected, the boost is performed, and the bus voltage is changed to the first voltage. At time t11, the load reaches the intermediate load, and during the period from time t11 to time t12, control at a constant rotational speed is performed. In addition, the operation of the intermediate load is performed between the time t11 and the time t12, and the boosting to the second voltage is not necessary.
 時刻t12では、例えば図示しないリモコンから停止指令が入力され、減速動作に移行する。時刻t12と時刻t14との間の時刻t13では、効率を高めるため、昇圧動作は停止し、母線電圧は整流電圧となる。時刻t14では停止し、時刻t15で通電が終了する。 At time t12, for example, a stop command is input from a remote controller (not shown), and the operation shifts to a deceleration operation. At time t13 between time t12 and time t14, the boosting operation is stopped and the bus voltage becomes a rectified voltage in order to increase efficiency. The operation stops at time t14, and the energization ends at time t15.
 以上が、実施の形態2に係る空気調和機200における運転パターンの一例である。以下、一部の動作について補足する。 The above is an example of the operation pattern in the air conditioner 200 according to Embodiment 2. The following supplements some of the operations.
 まず、時刻t5から時刻t6の間の判定において必要とされる室温の情報は、空気調和機200が通常有する機能によって、把握可能である。 First, the information on the room temperature required for the determination between the time t5 and the time t6 can be grasped by a function normally included in the air conditioner 200.
 また、時刻t5から時刻t6の間では、目標温度と室温との温度差の絶対値を閾値と比較しているが、これに限定されない。温度差の絶対値は判定指標の一例であり他の判定指標を用いてもよい。また、閾値未満であるか否かは、判定指標によって決まる条件の一例であり、他の条件を用いてもよい。ここでは、この条件を「第1の条件」と呼ぶ。つまり、時刻t5から時刻t6の間では、判定指標が第1の条件を満たしているか否かの判定を行えばよい。 Also, from time t5 to time t6, the absolute value of the temperature difference between the target temperature and room temperature is compared with the threshold value, but the present invention is not limited to this. The absolute value of the temperature difference is an example of a determination index, and another determination index may be used. Whether or not the value is smaller than the threshold is an example of a condition determined by the determination index, and another condition may be used. Here, this condition is referred to as a “first condition”. That is, it is sufficient to determine whether the determination index satisfies the first condition from the time t5 to the time t6.
 また、図15の例は、最初の起動において、巻線の結線状態をスター結線からデルタ結線に切り替えているが、判定指標が第1の条件を満たしていれば、巻線の結線状態をスター結線からデルタ結線に切り替える必要はなく、デルタ結線で起動すればよい。 Also, in the example of FIG. 15, the connection state of the winding is switched from the star connection to the delta connection at the first startup. However, if the determination index satisfies the first condition, the connection state of the winding is changed to the star connection. It is not necessary to switch from the connection to the delta connection, and it is only necessary to start with the delta connection.
 また、図15の例は、起動から停止までの期間と、再起動から停止までの期間の双方において、巻線の結線状態を切り替えない実施例であるが、負荷が急変した場合には、巻線の結線状態を切り替えてもよい。負荷の急変とは、ドア、窓の開閉、キッチンでの調理により温度差が急変した場合などが想定される。なお、空気調和機200の運転中に巻線のる場合には、結線状態の切り替えが頻繁に行われないように、温度差の閾値にヒステリシスを持たせることが好ましい。 Further, the example of FIG. 15 is an embodiment in which the connection state of the winding is not switched in both the period from the start to the stop and the period from the restart to the stop. The connection state of the line may be switched. The sudden change in the load is assumed to be a case where the temperature difference suddenly changes due to opening and closing of a door and a window, and cooking in a kitchen. When the winding is performed during the operation of the air conditioner 200, it is preferable that the threshold value of the temperature difference has hysteresis so that the connection state is not frequently switched.
 以上説明したように、実施の形態2に係る空気調和機200は、判定指標が第1の条件を満たさないときは、巻線の結線状態をデルタ結線に切り替えて起動し、判定指標が第1の条件を満たすようになったときは、モータ駆動装置100を停止した後に巻線の結線状態をスター結線に切り替えて再起動する。これにより、スター結線とデルタ結線とのそれぞれの特徴を活かした運転ができ、結線切替モータを用いない場合に比べて、空気調和機200の効率を高めることができる。 As described above, when the determination index does not satisfy the first condition, the air conditioner 200 according to Embodiment 2 is started by switching the winding connection state to the delta connection, and the determination index is changed to the first index. Is satisfied, the motor driving device 100 is stopped and then the winding connection state is switched to the star connection and restarted. As a result, operation utilizing the characteristics of the star connection and the delta connection can be performed, and the efficiency of the air conditioner 200 can be increased as compared with a case where a connection switching motor is not used.
 なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 It should be noted that the configuration shown in the above-described embodiment is an example of the content of the present invention, and can be combined with another known technology, and the configuration is not deviated from the gist of the present invention. Can be omitted or changed.
 1 交流電源、2 リアクトル、3 昇圧回路、3a,3b,3c,3d,26a,26b,26c 接続点、4 コンデンサ、5,7 電圧検出器、10 制御部、12a,12b 直流母線、18,18X インバータ回路、18A,18B,18C レグ、18a トランジスタ、18DS シャント抵抗、18UP,18VP,18WP 上アーム素子、18UN,18VN,18WN 下アーム素子、18US,18VS,18WS 下アームシャント抵抗、18b,D1,D2,D3,D4 ダイオード、18S 電流検出器、31 第1のレグ、32 第2のレグ、33U1,33U2,502U U相巻線、33V1,33V2,502V V相巻線、33W1,33W2,502W W相巻線、60 結線切替部、62U U相スイッチ、62V V相スイッチ、62W W相スイッチ、100 モータ駆動装置、200 空気調和機、250 圧縮機構、251 圧縮機、252 室外熱交換器、257 室内熱交換器、259 四方弁、261 膨張弁、262 冷媒配管、300 プロセッサ、302 メモリ、304 インタフェース、305 処理回路、311 第1の上アーム素子、312 第1の下アーム素子、321 第2の上アーム素子、322 第2の下アーム素子、500 モータ、Q1,Q2,Q3,Q4 スイッチング素子。 1 AC power supply, 2 reactor, 3 booster circuit, 3a, 3b, 3c, 3d, 26a, 26b, 26c connection point, 4 capacitor, 5, 7 voltage detector, 10 control unit, 12a, 12b DC bus, 18, 18X Inverter circuit, 18A, 18B, 18C leg, 18a transistor, 18DS shunt resistor, 18UP, 18VP, 18WP upper arm element, 18UN, 18VN, 18WN lower arm element, 18US, 18VS, 18WS lower arm shunt resistor, 18b, D1, D2 , D3, D4} diode, 18S} current detector, 31} first leg, 32} second leg, 33U1, 33U2, 502U U phase winding, 33V1, 33V2, 502V {V phase winding, 33W1, 33W2, 502W} W phase Winding, 60 ° connection switching unit, 62 U-phase switch, 62V V-phase switch, 62W W-phase switch, 100 motor drive, 200 air conditioner, 250 compression mechanism, 251 compressor, 252 outdoor heat exchanger, 257 indoor heat exchanger, 259 4 way valve, 261 expansion Valve, 262 refrigerant line, 300 processor, 302 memory, 304 interface, 305 processing circuit, 311 first upper arm element, 312 first lower arm element, 321 second upper arm element, 322 second lower arm element , 500 motor, Q1, Q2, Q3, Q4 switching element.

Claims (9)

  1.  少なくとも1つのスイッチング素子を有し、前記スイッチング素子の開閉動作によって交流電源から出力される交流電圧を直流電圧に変換及び昇圧する昇圧回路と、
     前記昇圧回路から出力される直流電圧を平滑するコンデンサと、
     前記コンデンサに蓄積された電力を交流電力に変換してモータに供給するインバータ回路と、
     を備え、
     前記モータは、複数の巻線を有し、
     前記巻線は両端が開放され、前記両端の接続先を変更することで、前記巻線の結線状態を第1の結線状態と第2の結線状態との間で相互に切り替え可能であり、
     前記第1の結線状態におけるモータ印加電圧は、モータ回転数が同一の条件において、第2の結線状態におけるモータ印加電圧よりも高く、
     前記巻線の結線状態を前記第1の結線状態と前記第2の結線状態とで切り替える切替点の回転数である第1回転数において、前記昇圧回路の出力電圧は、前記昇圧回路を昇圧動作させないときの前記昇圧回路の出力電圧である整流電圧よりも高い第1電圧に昇圧可能である
     モータ駆動装置。
    A booster circuit having at least one switching element, converting and boosting an AC voltage output from an AC power supply to a DC voltage by opening and closing the switching element,
    A capacitor for smoothing the DC voltage output from the booster circuit,
    An inverter circuit that converts the power stored in the capacitor into AC power and supplies the AC power to the motor;
    With
    The motor has a plurality of windings,
    Both ends of the winding are open, and the connection state of the winding can be switched between a first connection state and a second connection state by changing a connection destination of the both ends,
    The motor applied voltage in the first connection state is higher than the motor applied voltage in the second connection state under the same motor rotation speed,
    At a first rotation speed, which is a rotation speed at a switching point at which the connection state of the winding is switched between the first connection state and the second connection state, the output voltage of the booster circuit causes the booster circuit to perform a boost operation. A motor drive device capable of boosting to a first voltage higher than a rectified voltage which is an output voltage of the booster circuit when not performed.
  2.  前記巻線の結線状態が前記第2の結線状態に切り替えられているとき、前記昇圧回路の出力電圧は、前記第1電圧よりも高い第2電圧に昇圧可能である
     請求項1に記載のモータ駆動装置。
    2. The motor according to claim 1, wherein when a connection state of the winding is switched to the second connection state, an output voltage of the booster circuit can be boosted to a second voltage higher than the first voltage. Drive.
  3.  前記昇圧回路の出力電圧は、
     前記第1の結線状態では、前記整流電圧又は前記第1電圧とされ、
     前記第2の結線状態では、前記整流電圧、前記第1電圧又は前記第2電圧とされる
     請求項2に記載のモータ駆動装置。
    The output voltage of the booster circuit is
    In the first connection state, the rectified voltage or the first voltage is set,
    The motor drive device according to claim 2, wherein the rectified voltage, the first voltage, or the second voltage is set in the second connection state.
  4.  前記第1の結線状態はスター結線であり、
     前記第2の結線状態はデルタ結線である
     請求項1から3の何れか1項に記載のモータ駆動装置。
    The first connection state is a star connection,
    The motor drive device according to any one of claims 1 to 3, wherein the second connection state is a delta connection.
  5.  前記スイッチング素子は、ワイドバンドギャップ半導体により形成されている
     請求項1から4の何れか1項に記載のモータ駆動装置。
    The motor drive device according to any one of claims 1 to 4, wherein the switching element is formed of a wide band gap semiconductor.
  6.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドである
     請求項5に記載のモータ駆動装置。
    The motor driving device according to claim 5, wherein the wide band gap semiconductor is silicon carbide, gallium nitride, gallium oxide, or diamond.
  7.  請求項4に記載のモータ駆動装置によって駆動される空気調和機であって、
     判定指標が第1の条件を満たさないときは、前記巻線の結線状態を前記デルタ結線に切り替えて起動し、
     判定指標が第1の条件を満たすようになったときは、前記モータ駆動装置を停止した後に前記巻線の結線状態を前記スター結線に切り替えて再起動する
     空気調和機。
    An air conditioner driven by the motor drive device according to claim 4,
    When the determination index does not satisfy the first condition, the connection state of the winding is switched to the delta connection and activated.
    When the determination index satisfies the first condition, the air conditioner restarts by stopping the motor drive device, switching the connection state of the winding to the star connection, and restarting.
  8.  請求項4に記載のモータ駆動装置によって駆動される空気調和機であって、
     初期状態において前記巻線は前記スター結線に切り替えられており、
     判定指標が第1の条件を満たさないときは、前記巻線の結線状態を前記デルタ結線に切り替えて起動し、
     判定指標が第1の条件を満たすときは、前記巻線の結線状態を前記スター結線のままで起動する
     空気調和機。
    An air conditioner driven by the motor drive device according to claim 4,
    In the initial state, the winding is switched to the star connection,
    When the determination index does not satisfy the first condition, the connection state of the winding is switched to the delta connection and activated.
    When the judgment index satisfies the first condition, the air conditioner starts up while the connection state of the windings remains in the star connection state.
  9.  前記判定指標は、目標温度と室温との温度差の絶対値であり、
     前記判定指標が前記第1の条件を満たすときとは、前記温度差の絶対値が閾値未満であるときである
     請求項7又は8に記載の空気調和機。
    The determination index is an absolute value of a temperature difference between the target temperature and room temperature,
    The air conditioner according to claim 7, wherein the time when the determination index satisfies the first condition is when the absolute value of the temperature difference is less than a threshold.
PCT/JP2018/036605 2018-09-28 2018-09-28 Motor drive device and air conditioner WO2020066028A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/036605 WO2020066028A1 (en) 2018-09-28 2018-09-28 Motor drive device and air conditioner
JP2020547892A JP7312189B2 (en) 2018-09-28 2018-09-28 Motor drive device and air conditioner
JP2022099642A JP7337232B2 (en) 2018-09-28 2022-06-21 Motor drive device and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036605 WO2020066028A1 (en) 2018-09-28 2018-09-28 Motor drive device and air conditioner

Publications (1)

Publication Number Publication Date
WO2020066028A1 true WO2020066028A1 (en) 2020-04-02

Family

ID=69951290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036605 WO2020066028A1 (en) 2018-09-28 2018-09-28 Motor drive device and air conditioner

Country Status (2)

Country Link
JP (1) JP7312189B2 (en)
WO (1) WO2020066028A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355426A (en) * 2020-04-16 2020-06-30 邯郸美的制冷设备有限公司 Drive control circuit, drive method and device, compressor and air conditioning equipment
EP4300810A4 (en) * 2021-02-25 2024-04-03 Mitsubishi Electric Corporation Electric motor drive device and refrigeration cycle application device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045169A1 (en) * 2013-09-30 2015-04-02 三菱電機株式会社 Motor drive control device, compressor, fan, and air-conditioning device
WO2018078845A1 (en) * 2016-10-31 2018-05-03 三菱電機株式会社 Drive device, air conditioner and electric motor drive method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045169A1 (en) * 2013-09-30 2015-04-02 三菱電機株式会社 Motor drive control device, compressor, fan, and air-conditioning device
WO2018078845A1 (en) * 2016-10-31 2018-05-03 三菱電機株式会社 Drive device, air conditioner and electric motor drive method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355426A (en) * 2020-04-16 2020-06-30 邯郸美的制冷设备有限公司 Drive control circuit, drive method and device, compressor and air conditioning equipment
EP4300810A4 (en) * 2021-02-25 2024-04-03 Mitsubishi Electric Corporation Electric motor drive device and refrigeration cycle application device

Also Published As

Publication number Publication date
JPWO2020066028A1 (en) 2021-02-18
JP7312189B2 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
CN107546991B (en) Power conversion device and air conditioner provided with power conversion device
JP5822792B2 (en) Power supply circuit and air conditioner having the same
KR102096810B1 (en) Power converter and refrigeration and air conditioning equipment
JP6991336B2 (en) Motor drive device and refrigeration cycle applicable equipment
US10756666B2 (en) Electric-motor driving apparatus, electric motor system and refrigeration cycle apparatus
CN109155601B (en) Motor driving device and electric apparatus having compressor using the same
WO2020066028A1 (en) Motor drive device and air conditioner
WO2017199299A1 (en) Dc power source, refrigeration cycle device and air-conditioner
WO2020066030A1 (en) Dc power supply device, motor drive device, blower, compressor and air conditioner
JP7337232B2 (en) Motor drive device and air conditioner
JP6933469B2 (en) Motor control circuit, motor control method, and program
JP7335258B2 (en) Motor drive device and air conditioner
JP2008061411A (en) Power conversion device
CN111355425A (en) Drive control circuit, drive method and device, compressor and air conditioning equipment
JP6462821B2 (en) Motor drive device
JP6518506B2 (en) POWER SUPPLY DEVICE AND AIR CONDITIONER USING SAME
US20230412107A1 (en) Electric motor drive device and refrigeration cycle application device
WO2021171562A1 (en) Electric motor drive device and air conditioner
WO2024089759A1 (en) Motor drive device and refrigeration cycle apparatus
WO2023002559A1 (en) Dc power source device and refrigeration cycle apparatus
JP7471991B2 (en) Power Conversion Equipment
WO2024089760A1 (en) Motor drive device and refrigeration cycle instrument
JP7086016B2 (en) Power converter, motor drive, refrigeration cycle device, blower, air conditioner, refrigeration equipment
JP5310882B2 (en) Inverter device, air conditioner, and control method for inverter device
JP7030921B2 (en) Load drive and refrigeration cycle applicable equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547892

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934716

Country of ref document: EP

Kind code of ref document: A1