WO2020065791A1 - Air conditioning and hot water supply device - Google Patents

Air conditioning and hot water supply device Download PDF

Info

Publication number
WO2020065791A1
WO2020065791A1 PCT/JP2018/035793 JP2018035793W WO2020065791A1 WO 2020065791 A1 WO2020065791 A1 WO 2020065791A1 JP 2018035793 W JP2018035793 W JP 2018035793W WO 2020065791 A1 WO2020065791 A1 WO 2020065791A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
water supply
hot water
valve
pipe
Prior art date
Application number
PCT/JP2018/035793
Other languages
French (fr)
Japanese (ja)
Inventor
典夫 高橋
正俊 村若
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to CN201880075252.7A priority Critical patent/CN111373216B/en
Priority to JP2019545386A priority patent/JP6671558B1/en
Priority to EP18935979.7A priority patent/EP3859238A4/en
Priority to PCT/JP2018/035793 priority patent/WO2020065791A1/en
Publication of WO2020065791A1 publication Critical patent/WO2020065791A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means

Definitions

  • the present invention relates to an air conditioning and hot water supply device.
  • Patent Document 1 discloses that during cooling air conditioning operation in which waste heat generated in an indoor heat exchanger is used for hot water supply in a hot water supply heat exchanger, the first condensation capacity of the outdoor heat exchanger and the second condensation capacity of the hot water supply heat exchanger are described. It describes that control is performed so that the total condensation capacity of the capacity and the capacity becomes a predetermined value.
  • an object of the present invention is to provide an air-conditioning and hot-water supply device that can appropriately perform a hot-water supply operation and the like.
  • an air conditioning hot water supply apparatus includes a compressor, a hot water supply heat exchanger, a first expansion valve, and a refrigerant circuit in which refrigerant circulates sequentially through an outdoor heat exchanger.
  • a main body a valve body provided inside the main body, a four-way valve for switching the flow path of the refrigerant in the refrigerant circuit, a low-pressure side connection port of the four-way valve and a suction side of the compressor.
  • a check valve provided in a first pipe to be connected, wherein a connection between a high-pressure side connection port of the four-way valve and a discharge side of the compressor is interrupted by first opening / closing means, and the check valve is The flow of the refrigerant from the four-way valve to the suction side of the compressor via the first pipe is allowed, and the flow in the opposite direction is prohibited.
  • an air-conditioning and hot-water supply device capable of appropriately performing a hot-water supply operation and the like.
  • FIG. 1 is a configuration diagram including a refrigerant circuit Q of the air-conditioning and hot-water supply device W according to the embodiment.
  • the air conditioning and hot water supply device W is a device that performs air conditioning and hot water supply.
  • FIG. 1 shows, as an example, a multi-type air-conditioning and hot-water supply device W including three indoor units Ui.
  • the air-conditioning and hot-water supply device W includes a compressor 1, a hot-water storage tank 2, a hot-water supply heat exchanger 3, an outdoor heat exchanger 4, an outdoor fan 5, an indoor heat exchanger 6, An indoor fan 7.
  • the air-conditioning and hot water supply device W includes a four-way valve 8, expansion valves 9 to 12, solenoid valves 13 and 14, a check valve 15, and a control device 16 in addition to the components described above.
  • the compressor 1 is a device that compresses a low-temperature and low-pressure gas refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant.
  • a compressor 1 for example, a scroll compressor or a rotary compressor is used, but is not limited thereto.
  • the hot water storage tank 2 is a shell-like member for storing hot water.
  • a water supply pipe (not shown) for supplying water from a water supply source (not shown) to the hot water storage tank 2 is connected to a lower portion of the hot water storage tank 2.
  • a hot water supply pipe (not shown) for taking out high-temperature water stored in hot water storage tank 2 is connected to an upper portion of hot water storage tank 2. Then, the high-temperature water flowing through the hot water supply pipe and the water supplied from the water supply source are mixed in a predetermined manner, and the mixed hot water is supplied to a hot water supply terminal (not shown). .
  • the hot water supply heat exchanger 3 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube 3a and the hot water stored in the hot water storage tank 2.
  • FIG. 1 shows an example in which the hot water supply heat exchanger 3 is disposed inside the hot water storage tank 2, the present invention is not limited to this. That is, the heat exchanger 3 for hot water supply is arranged outside the hot water storage tank 2, and heat exchange is performed between hot water pumped from the hot water storage tank 2 by a pump (not shown) and the refrigerant flowing through the heat transfer tube 3 a. May be performed.
  • one end p3 of the heat transfer tube 3a of the hot water supply heat exchanger 3 is connected to the discharge side of the compressor 1 via a pipe ka.
  • the other end q3 of the heat transfer tube 3a is connected to one end p6 of each indoor heat exchanger 6 via a pipe kb (third pipe). That is, the pipe kb is branched into three, and the ends thereof are connected to the three indoor heat exchangers 6 one-to-one.
  • the outdoor heat exchanger 4 is a heat exchanger in which heat is exchanged between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 5.
  • One end p4 of the outdoor heat exchanger 4 is connected to one end p6 of each indoor heat exchanger 6 via a pipe kc and a pipe kb (partly) in that order.
  • the other end q4 of the outdoor heat exchanger 4 is connected to another pipe ke (first pipe) via a pipe kd (second pipe).
  • This pipe ke is a pipe connecting the suction side of the compressor 1 and the four-way valve 8.
  • the outdoor fan 5 is a fan that sends outside air to the outdoor heat exchanger 4 and is arranged near the outdoor heat exchanger 4.
  • the indoor heat exchanger 6 is a heat exchanger in which heat is exchanged between a refrigerant flowing through a heat transfer tube (not shown) and indoor air (air in a space to be air-conditioned) sent from an indoor fan 7. It is.
  • One end p6 of each of the three indoor heat exchangers 6 is connected to the pipe kb as described above.
  • the other ends q6 of the three indoor heat exchangers 6 are connected to a four-way valve 8 via a pipe kf. That is, the pipe kf is branched into three, and one end thereof is connected to the three indoor heat exchangers 6 in a one-to-one relationship.
  • the indoor fan 7 is a fan that sends indoor air to the indoor heat exchanger 6, and is arranged near the indoor heat exchanger 6.
  • the four-way valve 8 is a valve that switches the flow path of the refrigerant in the refrigerant circuit Q according to the operation mode. The configuration of the four-way valve 8 will be described with reference to FIGS. 2A and 2B.
  • FIG. 2A is a cross-sectional view of the four-way valve 8 included in the air-conditioning and hot-water supply device.
  • the four-way valve 8 includes a main body 81, a valve body 82, a pedestal 83, a connecting plate 84, and pistons 85 and 86.
  • the main body 81 is a cylinder in which the pistons 85 and 86 move, and has a cylindrical outer shape.
  • a high pressure side connection port hg is provided at an upper portion of the main body 81.
  • the high pressure side connection port hg is a hole for communicating the discharge side of the compressor 1 (see FIG. 1) with the four-way valve 8.
  • One end of a pipe kg is connected to the high pressure side connection port hg.
  • a pedestal 83 is installed inside the main body 81 of the four-way valve 8 on the opposite side (lower side) of the high pressure side connection port hg.
  • the pedestal 83 is a fixed member that is a counterpart when the valve body 82 moves while sliding.
  • the pedestal 83 and the main body 81 are provided with an outdoor connection port hi, a low-pressure connection port he, and an indoor connection port hf, which are arranged side by side.
  • the outdoor connection port hi is a hole for communicating the outdoor heat exchanger 4 (see FIG. 1) with the four-way valve 8.
  • One end of a pipe ki is connected to the outdoor connection port hi.
  • the other end of the pipe ki (connection point m1 in FIG. 1) is connected to the pipe kd on the upstream side of the solenoid valve 13 (closer to the outdoor heat exchanger 4).
  • the low pressure side connection port he is a hole for connecting the suction side of the compressor 1 (see FIG. 1) and the four-way valve 8 via the check valve 15 and the like (see FIG. 1).
  • One end of a pipe ke is connected to the low pressure side connection port he.
  • the other end of the pipe ke is connected to the suction side of the compressor 1.
  • the indoor side connection port hf is a hole for communicating the other end q6 side of the indoor heat exchanger 6 (see FIG. 1) with the four-way valve 8.
  • the indoor side connection port hf is connected to the hot water supply heat exchanger 3 via the pipe kf, the indoor heat exchanger 6, and the pipe kb (third pipe) sequentially.
  • the valve body 82 switches the flow path of the four-way valve 8 by its movement, and is provided inside the main body 81.
  • the valve body 82 includes a curved portion 82a and a flange 82b.
  • the curved portion 82a is curved in an upwardly convex ⁇ shape in a vertical cross-sectional view.
  • the flange 82b is formed integrally with the curved portion 82a, and extends laterally outward from the periphery of the curved portion 82a. The flange 82b slides with respect to the pedestal 83 while the valve body 82 moves in the lateral direction.
  • connection plate 84 is a plate that connects the valve body 82 and the pistons 85 and 86.
  • the connecting plate 84 is fixed to the valve body 82 and both right and left ends thereof are fixed to pistons 85 and 86.
  • a hole hx (the state shown in FIG. 2A) for connecting the outdoor connection port hi to the space above the valve element 82 and the indoor connection port hf are connected to the space above the valve element 82.
  • Hole hy (the state of FIG. 2B) is provided.
  • the pistons 85 and 86 move the valve body 82 and the connecting plate 84 in the left-right direction.
  • the valve body 82 is arranged at the “first position” shown in FIG. 2A.
  • the high pressure side connection port hg and the outdoor side connection port hi communicate with each other via the space above the valve element 82.
  • the indoor connection port hf and the low-pressure connection port he communicate with each other via a space below the valve element 82.
  • Such a state of the four-way valve 8 is hereinafter referred to as a “first state”.
  • FIG. 2B is a cross-sectional view showing another state of four-way valve 8 provided in the air-conditioning and hot-water supply device.
  • the valve body 82 is disposed at the “second position” illustrated in FIG. 2B.
  • the high pressure side connection port hg and the indoor side connection port hf communicate with each other via the space above the valve element 82.
  • the outdoor connection port hi and the low-pressure connection port he communicate with each other via a space below the valve element 82.
  • Such a state of the four-way valve 8 is hereinafter referred to as a “second state”.
  • the configuration of the four-way valve 8 shown in FIGS. 2A and 2B is an example, and is not limited to this.
  • the expansion valve 9 shown in FIG. 1 is a valve that is opened when the hot water supply operation is performed, and is provided in the pipe ka.
  • Another expansion valve 10 (first opening / closing means) is a valve that is opened when the high-pressure refrigerant discharged from the compressor 1 is guided to the four-way valve 8, and is provided in the pipe kg.
  • One end of the pipe kg is connected to the high pressure side connection port hg.
  • the other end of the pipe kg is connected to the pipe ka on the upstream side of the expansion valve 9.
  • the expansion valve 11 (first expansion valve) is a valve that reduces the pressure of the refrigerant during the hot water supply operation, and is provided on the pipe kb. More specifically, the expansion valve 11 is provided upstream of the branch point m2 of the pipe kb (closer to the hot water supply heat exchanger 3).
  • the expansion valve 12 (second expansion valve) is a valve that reduces the pressure of the refrigerant when a cooling operation or a heating operation is performed.
  • the expansion valve 12 is provided near one end p6 of the indoor heat exchanger 6 in the pipe kb (third pipe).
  • the electromagnetic valve 13 (second opening / closing means) shown in FIG. 1 returns the refrigerant evaporated by the outdoor heat exchanger 4 to the suction side of the compressor 1.
  • the valve is opened in the pipe kd (second pipe).
  • the solenoid valve 13 is a two-way valve that can be switched between two states, open and closed (the same applies to the solenoid valve 14).
  • a pipe kj (fourth pipe) shown in FIG. 1 is provided.
  • the pipe kj has one end connected to the outdoor heat exchanger 4 side of the electromagnetic valve 13 in the pipe kd, and the other end connected to the hot water supply heat exchanger 3 side of the expansion valve 11 in the pipe kb.
  • the solenoid valve 14 (third opening / closing means) is a valve that is opened when the refrigerant condensed in the hot water supply heat exchanger 3 is guided to the outdoor heat exchanger 4, and is provided on the pipe kj.
  • the check valve 15 is a valve that allows the flow of the refrigerant from the four-way valve 8 to the suction side of the compressor 1 via the pipe ke (first pipe), and prohibits the flow in the reverse direction.
  • the check valve 15 is provided in a pipe ke that connects the low-pressure side connection port he of the four-way valve 8 and the suction side of the compressor 1. In the pipe ke, the downstream side of the check valve 15 and the outdoor heat exchanger 4 are connected via a pipe kd.
  • the control device 16 shown in FIG. 1 is a device that controls each device of the air conditioning and hot water supply device W.
  • the control device 16 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read and expanded in the RAM, and the CPU executes various processes.
  • the control device 16 controls each valve such as the four-way valve 8 in addition to the outdoor fan 5 and the indoor fan 7 based on detection values of various sensors (not shown) and signals from a remote controller.
  • the indoor heat exchanger 6 and the indoor fan 7 are provided in the indoor unit Ui.
  • FIG. 3 is a functional block diagram including the control device 16 of the air conditioning and hot water supply apparatus.
  • the control device 16 includes a compressor control unit 16a, a fan control unit 16b, and a valve control unit 16c.
  • the compressor control unit 16a controls the compressor 1 based on the detection value of each sensor (“sensor input” shown in FIG. 3) and a signal from a remote controller (“remote control input” shown in FIG. 3).
  • the fan control unit 16b controls the outdoor fan 5 and the indoor fan 7 based on a detection value of each sensor and the like.
  • the valve control unit 16c controls the four-way valve 8, the expansion valves 9 to 12, and the solenoid valve 13 based on the detection values of the respective sensors.
  • FIG. 3 shows an example in which the control device 16 provided in the outdoor unit Uo (see FIG. 1) controls each device
  • the invention is not limited to this. That is, another control device (not shown) may be provided for each of the three indoor units Ui (see FIG. 1), and predetermined communication may be performed with the control device 16 of the outdoor unit Uo.
  • predetermined communication may be performed with the control device 16 of the outdoor unit Uo.
  • FIG. 4 is an explanatory diagram showing the state of each valve and the flow of the refrigerant during the cooling only operation.
  • the “cooling independent operation” is an operation mode in which the cooling operation is performed independently without allowing the refrigerant to flow through the heat exchanger 3 for hot water supply.
  • the expansion valves 9 and 11 and the solenoid valves 13 and 14 in the closed state are shown by hatching (shaded lines), and the expansion valve 10 in the open state and the expansion valve 12 whose opening is adjusted are outlined. (The same applies to FIGS. 5 to 8).
  • FIG. 4 the flow path through which the refrigerant circulates is illustrated by a thick line.
  • the control device 16 sets the four-way valve 8 to the “first state” (see FIG. 2A), as shown in FIG. Further, the control device 16 closes the expansion valves 9 and 11 and the solenoid valves 13 and 14, opens the expansion valve 10 (substantially fully opens), and appropriately adjusts the opening degrees of the three expansion valves 12.
  • the refrigerant does not flow through the hot water supply heat exchanger 3, the outdoor heat exchanger 4 functions as a condenser, and the indoor heat exchanger 6 functions as an evaporator.
  • the refrigerant discharged from the compressor 1 passes through the four-way valve 8, the outdoor heat exchanger 4 (condenser), the expansion valve 12, the indoor heat exchanger 6 (evaporator), the four-way valve 8, and the check valve 15.
  • the refrigerant is sequentially returned to the suction side of the compressor 1.
  • the air in the air-conditioned space (not shown) provided with the indoor unit Ui is cooled.
  • FIG. 5 is an explanatory diagram showing the state of each valve and the flow of the refrigerant during the cooling hot water supply operation.
  • the “cooling hot water supply operation” is an operation mode in which a cooling operation is performed while a coolant is passed through the hot water supply heat exchanger 3 to increase or increase boiling water.
  • the control device 16 maintains the four-way valve 8 in the "first state" (see FIG. 2A), as shown in FIG. Further, the control device 16 closes the expansion valves 10 and 11 and the electromagnetic valve 13, opens the expansion valve 9 and the electromagnetic valve 14, and adjusts the opening of the expansion valve 12 appropriately.
  • the heat exchanger 3 for hot water supply and the outdoor heat exchanger 4 function as a condenser, while the indoor heat exchanger 6 functions as an evaporator.
  • the refrigerant discharged from the compressor 1 is supplied to the four-way valve 8, the expansion valve 9, the hot water supply heat exchanger 3 (condenser), the solenoid valve 14, the outdoor heat exchanger 4 (condenser), the expansion valve 12, and the indoor.
  • the heat is returned to the suction side of the compressor 1 through the heat exchanger 6 (evaporator), the four-way valve 8 and the check valve 15 in order.
  • a part of the heat of the refrigerant discharged from the compressor 1 can be used for hot water supply, and the remaining heat can be used for cooling.
  • control device 16 When the temperature of hot water stored in hot water storage tank 2 becomes equal to or higher than a predetermined value during cooling hot water supply operation, control device 16 maintains four-way valve 8 in the “first state” (see FIG. 2A). Then, the mode is switched to the cooling only operation (see FIG. 4).
  • FIG. 6 is an explanatory diagram showing the state of each valve and the flow of refrigerant during the first hot water supply independent operation.
  • the "first hot water supply independent operation” refers to an operation in which the four-way valve 8 is set to the "first state” (see FIG. 2A) without performing the air-conditioning operation, and the boiling and hot water is independently increased. Mode.
  • the control device 16 sets the four-way valve 8 to the "first state" (see FIG. 2A), as shown in FIG.
  • the control device 16 controls the four-way valve 8 to operate. Maintain in the “first state”.
  • the four-way valve 8 may be maintained in the “first state”, so that it is not necessary to temporarily stop the refrigeration cycle (that is, stop the compressor 1). Therefore, since the operation mode can be quickly switched in the summer, comfort for the user can be improved.
  • the control device 16 When performing the first hot water supply independent operation, the control device 16 closes the expansion valves 10 and 12 and the electromagnetic valve 14, opens the electromagnetic valve 13, and appropriately adjusts the opening of the expansion valve 11.
  • the heat exchanger 3 for hot water supply functions as a condenser
  • the outdoor heat exchanger 4 functions as an evaporator. That is, in the refrigerant circuit Q, the refrigerant discharged from the compressor 1 is supplied to the hot water supply heat exchanger 3 (condenser), the expansion valve 11 (first expansion valve), the outdoor heat exchanger 4 (evaporator), and the electromagnetic wave. Circulate through valve 13 in sequence.
  • the four-way valve 8 is in the “first state”. Thereby, the indoor heat exchanger 6 communicates with the pipe ke (first pipe) via the pipe kf, the indoor connection port hf of the four-way valve 8 and the low-pressure connection port he in order. In other words, the four-way valve 8 is placed at the “first position” where the other end q6 side of the indoor heat exchanger 6 where the flow of the refrigerant is blocked at one end P6 side and the pipe ke (the first pipe). A valve element 82 is present.
  • the expansion valve 10 is in the closed state. That is, the connection between the high pressure side connection port hg of the four-way valve 8 and the discharge side of the compressor 1 is shut off by the expansion valve 10 (first opening / closing means). Therefore, in the four-way valve 8, the high-pressure refrigerant hardly flows into the space above the valve element 82.
  • the upstream side of the pipe ke communicates with the indoor heat exchanger 6 via the low-pressure connection port he, the indoor connection port hf, and the pipe kf in order.
  • the check valve 15 is not provided in the pipe ke, the gas refrigerant evaporated in the outdoor heat exchanger 4 is discharged from the pipe kd, the pipe ke (partially), the low-pressure side connection port he, and the chamber k.
  • the gas flows into the indoor heat exchanger 6 via the inner connection port hf and the pipe kf sequentially.
  • a large amount of refrigerant is accumulated in the indoor heat exchanger 6 unnecessarily, which may cause a decrease in the efficiency of the refrigeration cycle.
  • the check valve 15 is provided in the pipe ke that connects the low-pressure side connection port he of the four-way valve 8 and the suction side of the compressor 1. Therefore, even when performing the first hot water supply independent operation, the gas refrigerant evaporated in the outdoor heat exchanger 4 is prevented from flowing out to the indoor heat exchanger 6 via the four-way valve 8, and the efficiency of the refrigeration cycle is improved. Can be planned.
  • the refrigerant circulates sequentially through the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4 (first hot water supply alone). Operation: see FIG. 6) and another state in which the outdoor heat exchanger 4 functions as a condenser and the indoor heat exchanger 6 functions as an evaporator (cooling alone operation or cooling and hot water supply operation: see FIGS. 4 and 5) Can be switched from one to the other.
  • the position of the valve element 82 of the four-way valve 8 is maintained at the "first position" (see FIG. 2A).
  • the operation mode can be switched quickly, and the comfort for the user can be increased.
  • the solenoid valve 13 (second opening / closing means) is open.
  • the outdoor heat exchanger 4 and the suction side of the compressor 1 communicate with each other via the pipe kd and the pipe ke (partly) in order. Therefore, the refrigerant evaporated in the outdoor heat exchanger 4 can be returned to the suction side of the compressor 1.
  • the control device 16 sets the four-way valve 8 to the “second state” (see FIG. 2B), closes the expansion valves 9, 11 and the electromagnetic valve 14, while the expansion valve 10 and the electromagnetic valve 13 is opened, and the opening of the expansion valve 12 is appropriately adjusted.
  • the indoor heat exchanger 6 functions as a condenser
  • the outdoor heat exchanger 4 functions as an evaporator, so that the air in the air-conditioned space (not shown) is heated.
  • FIG. 7 is an explanatory diagram showing the state of each valve and the flow of the refrigerant during the heating and hot water supply operation.
  • the “heating and hot water supply operation” is an operation mode in which the refrigerant is passed through the hot water supply heat exchanger 3 to perform the heating operation while raising or increasing the boiling water.
  • the control device 16 sets the four-way valve 8 to the "second state" (see FIG. 2B), as shown in FIG. Further, the control device 16 closes the electromagnetic valve 14, opens the expansion valves 9, 10 and the electromagnetic valve 13, and appropriately adjusts the degree of opening of the expansion valves 11, 12.
  • the heat exchanger 3 for hot water supply and the indoor heat exchanger 6 function as a condenser
  • the outdoor heat exchanger 4 functions as an evaporator.
  • the refrigerant discharged from the compressor 1 is guided to the hot water supply heat exchanger 3 via the expansion valve 9 and also to the four-way valve 8 via another expansion valve 10.
  • the refrigerant guided from the compressor 1 to the hot water supply heat exchanger 3 (condenser) is guided through the expansion valve 11 to the pipe kc, while the refrigerant guided from the compressor 1 to the four-way valve 8 is cooled by the indoor heat. It is led to the pipe kc via the exchanger 6 (condenser) and the expansion valve 12 in order.
  • FIG. 8 is an explanatory diagram showing the state of each valve and the flow of the refrigerant during the second hot water supply independent operation.
  • the "second hot water supply independent operation” refers to an operation in which the four-way valve 8 is set to the "second state" (see FIG. 2B) without performing the air-conditioning operation and the boiling water is increased or the boiling water is increased alone. Mode.
  • control device 16 sets four-way valve 8 to the "second state” (see FIG. 2B), as shown in FIG.
  • the control device 16 sets the four-way valve 8 to the “second state”. To maintain.
  • the four-way valve 8 can be maintained in the "second state", so that there is no need to stop the refrigeration cycle (that is, stop the compressor 1). Therefore, the operation mode can be quickly switched in the winter season, so that comfort for the user can be improved.
  • the control device 16 closes the expansion valves 10 and 12 and the electromagnetic valve 14, opens the expansion valve 9 and the electromagnetic valve 13, and adjusts the opening degree of the expansion valve 11 appropriately.
  • the heat exchanger 3 for hot water supply functions as a condenser
  • the outdoor heat exchanger 4 functions as an evaporator.
  • the refrigerant discharged from the compressor 1 is supplied with the hot water supply heat exchanger 3 (condenser), the expansion valve 11 (first expansion valve), the outdoor heat exchanger 4 (evaporator), and the electromagnetic wave. Circulate through valve 13 in sequence. A part of the refrigerant evaporated in the outdoor heat exchanger 4 is returned to the suction side of the compressor 1 via the four-way valve 8 and the check valve 15 in order.
  • the four-way valve 8 is in the “second state”, so that the outdoor heat exchanger 4 is connected to the pipe kd (partly), the outdoor connection port hi of the four-way valve 8, and the low pressure.
  • the pipe ke (first pipe) communicates with the side connection port he sequentially.
  • the valve element 82 of the four-way valve 8 exists at the “second position” that allows the outdoor heat exchanger 4 to communicate with the pipe ke (first pipe).
  • the expansion valve 10 is in the closed state. That is, the connection between the high pressure side connection port hg of the four-way valve 8 and the discharge side of the compressor 1 is shut off by the expansion valve 10 (first opening / closing means). Therefore, in the four-way valve 8, the high-pressure refrigerant hardly flows into the space above the valve element 82.
  • the pressure for pressing the valve body 82 against the pedestal 83 becomes weak.
  • the temperature of the outside air is often lower than the temperature of the air in the air-conditioned space heated by heating.
  • the space above (outside) the valve element 82 is communicated with the indoor heat exchanger 6 via the indoor connection port hf and the like.
  • the space below (inside) the valve element 82 communicates with the outdoor heat exchanger 4 via the outdoor connection port hi and the like.
  • the temperature of the upper side of the valve body 82 tends to be higher than that of the lower side, and the pressure tends to be high.
  • the valve element 82 is pressed from above onto the pedestal 83 (see FIG. 2B) of the four-way valve 8, a gap is hardly generated between the pedestal 83 and the valve element 82.
  • the check valve 15 is provided so as to allow the flow of the refrigerant from the four-way valve 8 to the suction side of the compressor 1 via the pipe ke, and prohibit the flow in the reverse direction. Therefore, the flow of the refrigerant flowing toward the suction side of the compressor 1 through the pipe kd (partly), the pipe ki, the outdoor connection port hi, the low pressure side connection port he, and the pipe ke in order is checked by the check valve 15. There is no risk of being hindered.
  • the refrigerant circulates sequentially through the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4 (second hot water supply alone). Operation: see FIG. 8) and another state in which the indoor heat exchanger 6 functions as a condenser and the outdoor heat exchanger 4 functions as an evaporator (heating alone operation or heating and hot water supply operation: see FIG. 7). It is possible to switch from one of them to the other. When switching from one to the other, the position of the valve element 82 of the four-way valve 8 is maintained at the "second position" (see FIG. 2B). As a result, as described above, the operation mode can be switched quickly, and the comfort for the user can be increased.
  • the solenoid valve 13 (second opening / closing means) is open.
  • the refrigerant evaporated in the outdoor heat exchanger 4 can be returned to the suction side of the compressor 1 via the electromagnetic valve 13.
  • valve element 82 is disposed at the “first position” shown in FIG. You.
  • the valve body 82 is arranged at the “second position” shown in FIG. 2B.
  • the valve element 82 of the four-way valve 8 can be maintained at the “first position” in summer, while the valve element 82 can be maintained at the “second position” in winter. Therefore, in both summer and winter, the operation mode of the air-conditioning and hot water supply device W can be quickly switched without changing the state of the four-way valve 8.
  • the first defrosting operation is an operation mode in which the frost of the outdoor heat exchanger 4 is melted using the heat of the hot and cold water in the hot water storage tank 2.
  • the open / close state of each valve in the first defrosting operation is the same as in the heating and hot water supply operation (see FIG. 7) except for the degree of opening of the expansion valves 9 to 12. Therefore, the first defrosting operation will be described with reference to FIG.
  • the temperature of hot water stored in hot water storage tank 2 is relatively high.
  • the control device 16 sets the four-way valve 8 to the “second state” (see FIG. 2B), as shown in FIG. Further, the control device 16 closes the solenoid valve 14 while opening the solenoid valve 13 and appropriately adjusts the degree of opening of the expansion valves 9 to 12. The opening of the expansion valve 11 is substantially fully open.
  • the control device 16 controls each valve including the four-way valve 8 as described above, and controls the expansion valve 11 that has been closed during the heating operation. Open almost completely. Then, the high-temperature refrigerant existing in the hot-water supply heat exchanger 3 flows into the outdoor heat exchanger 4 via the pipe kb (partly) and the pipe kc sequentially. Thereby, the frost adhering to the outdoor heat exchanger 4 is melted.
  • the valve element 82 of the four-way valve 8 is in the “second position” (see FIG. 2B), and the compressor 1, the hot water supply heat exchanger 3
  • the refrigerant circulates sequentially through the expansion valve 11 (first expansion valve) and the outdoor heat exchanger 4.
  • the compressor 1, the expansion valve 10 in an open state (first opening / closing means), the four-way valve 8, the indoor heat exchanger 6, the expansion valve 12 (second expansion valve), and the outdoor heat exchanger 4 are sequentially connected. Refrigerant circulates.
  • the state in which the opening of the expansion valve 10 is adjusted to a predetermined value is also included in the above-mentioned "valve open state".
  • FIG. 9 is an explanatory diagram showing the state of each valve and the flow of the refrigerant during the second defrosting operation.
  • the “second defrosting operation” refers to performing defrosting by making the outdoor heat exchanger 4 function as a condenser and defrosting the outdoor heat exchanger 4 using the heat of hot water in the hot water storage tank 2. This is an operation mode in which is performed. At the start of the second defrosting operation, the temperature of hot water stored in hot water storage tank 2 is relatively high.
  • the control device 16 sets the four-way valve 8 to the “first state” (see FIG. 2A), as shown in FIG. Further, the control device 16 closes the expansion valve 11 and the electromagnetic valve 13, opens the electromagnetic valve 14, and appropriately adjusts the opening degrees of the expansion valves 9, 10, and 12.
  • the solenoid valve 14 that has been closed during the heating operation is opened, the high-temperature refrigerant existing in the hot water supply heat exchanger 3 may be used. Flows into the outdoor heat exchanger 4 sequentially through the pipe kb (part), the pipe kj, and the pipe kd (part). Thereby, the frost adhering to the outdoor heat exchanger 4 is melted.
  • the refrigerant flowing sequentially through the compressor 1 and the hot water supply heat exchanger 3 bypasses the expansion valve 11 (first expansion valve), Furthermore, the refrigerant circulates sequentially through the outdoor heat exchanger 4, the expansion valve 12 (second expansion valve), the indoor heat exchanger 6, the four-way valve 8, and the check valve 15.
  • the valve element 82 of the four-way valve 8 exists at a “first position” that allows the other end q6 side of the indoor heat exchanger 6 to communicate with the pipe ke (first pipe).
  • the outdoor heat exchanger 4 functions as a condenser.
  • the frost in the outdoor heat exchanger 4 is quickly melted in combination with the high-temperature refrigerant guided from the hot water supply heat exchanger 3 to the outdoor heat exchanger 4. Therefore, in the second defrosting operation, the outdoor heat exchanger 4 can be defrosted in a shorter time than in the first defrosting operation.
  • the defrosting operation of the outdoor heat exchanger 4 is not limited to the control described above.
  • the flow of the refrigerant to the hot water supply heat exchanger 3 is shut off by the expansion valve 9, and the outdoor heat exchanger 4 functions as a condenser, while the indoor heat exchanger 6 functions as an evaporator.
  • the defrosting of the exchanger 4 may be performed.
  • the check valve 15 allows the flow of the refrigerant from the four-way valve 8 to the suction side of the compressor 1 via the pipe ke, and prohibits the flow in the reverse direction. Accordingly, when the first hot water supply independent operation (see FIG. 6) or the second hot water supply independent operation (see FIG. 8) is being performed, the gas refrigerant evaporated in the outdoor heat exchanger 4 causes the four-way valve 8 to operate. Through this, it is possible to prevent the heat from flowing into the indoor heat exchanger 6. Therefore, the efficiency of the refrigeration cycle can be improved.
  • the four-way valve 8 is in the "first state" (see FIG. 2A). ) Is maintained.
  • the heating operation is switched from the state in which the heating operation is being performed (see FIG. 7) to the second hot water supply independent operation (see FIG. 8)
  • the four-way valve 8 is maintained in the "second state" (see FIG. Is done. Therefore, since the switching of the operation mode is performed promptly, the comfort for the user can be enhanced.
  • the air-conditioning and hot-water supply device W has been described in the embodiments, but the present invention is not limited to these descriptions, and various changes can be made.
  • the configuration in which the expansion valve 9 is provided in the pipe ka and the expansion valve 10 (first opening / closing means) is provided in another pipe kg has been described. It is not always necessary to constitute each with a single valve. That is, instead of the expansion valves 9 and 10, a three-way valve (first opening / closing means) may be provided at the connection point between the pipes ka and kg, or a four-way valve (first opening / closing means) may be provided. With such a configuration, the same effect as that of the embodiment can be obtained.
  • an electromagnetic valve (not shown) is provided in place of the expansion valve 9 described in the embodiment (see FIG. 1), and an electromagnetic valve (first opening / closing means: not shown) is provided in place of another expansion valve 10. May be provided.
  • the open / closed state of each solenoid valve in each operation mode is the same as the open / closed state of the expansion valves 9 and 10.
  • the check valve 15 is provided in the pipe ke
  • an expansion valve (not shown) may be provided in the pipe ke.
  • the control valve 16 closes the expansion valve (not shown). Is also good. Even with such a configuration, it is possible to suppress the gas refrigerant evaporated in the outdoor heat exchanger 4 from flowing out to the indoor heat exchanger 6 via the four-way valve 8.
  • the configuration of the air-conditioning and hot-water supply device W described in the embodiment is an example, and the present invention is not limited to this.
  • the solenoid valve 13 and the like may be omitted as appropriate. That is, a flow path (see FIGS. 6 and 8) through which the refrigerant circulates sequentially through the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4 is included.
  • the air-conditioning and hot water supply device W including the refrigerant circuit Q further has the following configuration.
  • the air-conditioning and hot-water supply device W has a main body 81 and a valve element 82 provided inside the main body 81, a four-way valve 8 for switching the flow path of the refrigerant in the refrigerant circuit Q, and a low-pressure connection of the four-way valve 8.
  • a check valve 15 provided on a pipe ke (first pipe) connecting the port he and the suction side of the compressor 1.
  • the control device 16 when performing the hot water supply alone operation at least after the cooling operation is performed, the control device 16 maintains the valve element 82 of the four-way valve 8 at the “first position” (see FIG. 2A).
  • the present invention is not limited to this. That is, in the case of performing the hot water supply alone operation in which the hot water is heated by the hot water supply heat exchanger 3, the temperature of the indoor heat exchanger 6 is lower than the temperature of the outdoor heat exchanger 4, or the air conditioning of the indoor heat exchanger 6
  • the control device 16 may perform the following processing. That is, in a state where the valve element 82 of the four-way valve 8 is at the “first position” (see FIG. 2A), the control device 16 controls the compressor 1, the hot water supply heat exchanger 3, The refrigerant may be circulated through the expansion valve 11 (first expansion valve) and the outdoor heat exchanger 4 sequentially.
  • a temperature sensor (not shown) is installed in each of the outdoor heat exchanger 4 and the indoor heat exchanger 6, and an indoor temperature sensor (not shown) for detecting the temperature of the space to be air-conditioned and an outside air temperature. It is assumed that an outdoor temperature sensor (not shown) for detecting is installed.
  • the control device 16 sets the valve body 82 of the four-way valve 8 to the “first position”. The pressure on the upper side (outside) of 82 becomes higher than that on the lower side (inside). Therefore, a gap is less likely to be formed between the valve element 82 and the pedestal 83 (see FIG. 2A), so that the refrigerant can be prevented from flowing out of the outdoor heat exchanger 4 to the indoor heat exchanger 8 via the four-way valve 8.
  • the control device 16 performs the following processing. Is preferable. That is, when at least one of the plurality of indoor heat exchangers 6 whose temperature is lower than the temperature of the outdoor heat exchanger 4 exists, or when the air conditioning target space of each of the plurality of indoor heat exchangers 6 When at least one of the four-way valve 8 has a temperature lower than the temperature of the outside air, the control device 16 determines that the valve body 82 of the four-way valve 8 is in the “first position” (see FIG. 2A).
  • the refrigerant is circulated through the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4 sequentially.
  • the pressure on the upper side of the valve body 82 tends to be higher than that on the lower side, and a gap is less likely to be formed between the valve body 82 and the pedestal 83 (see FIG. 2A).
  • the control device 16 When performing the hot water supply alone operation in which the hot water is heated by the hot water supply heat exchanger 3, the difference between the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 4 is within a predetermined range.
  • the control device 16 It is preferable to perform the following processing. That is, the control device 16 maintains the valve body 82 at the “first position” and sequentially operates the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4. The refrigerant is circulated through. Thereby, it is possible to quickly switch to the hot water supply independent operation without moving the valve element 82 of the four-way valve 8.
  • the control device 16 preferably performs the following processing. That is, in a state where the valve element 82 of the four-way valve 8 is at the “second position” (see FIG. 2B), the control device 16 controls the compressor 1, the hot water supply heat exchanger 3, The refrigerant is circulated through the expansion valve 11 (first expansion valve) and the outdoor heat exchanger 4 sequentially.
  • the control device 16 sets the valve body 82 of the four-way valve 8 to the “second position”.
  • the upper side of 82 is more likely to have a higher pressure than the lower side. Therefore, a gap is less likely to be formed between the valve element 82 and the pedestal 83 (see FIG. 2B), so that the refrigerant can be prevented from flowing out of the outdoor heat exchanger 4 to the indoor heat exchanger 8 via the four-way valve 8.
  • the control device 16 performs the following processing. Is preferable. That is, when the respective temperatures of the plurality of indoor heat exchangers 6 are all higher than the temperature of the outdoor heat exchanger 4, or when the temperatures of the air-conditioned spaces of the plurality of indoor heat exchangers 6 are all outside air, When the temperature is higher than the temperature, the control device 16 controls the compressor 1, the hot water supply heat exchanger 3, and the expansion valve 11 in a state where the valve element 82 of the four-way valve 8 is in the "second position" (see FIG. 2B).
  • the refrigerant is circulated through the (first expansion valve) and the outdoor heat exchanger 4 sequentially.
  • the pressure on the upper side of the valve body 82 tends to be higher than that on the lower side, and a gap is less likely to be generated between the valve body 82 and the pedestal 83 (see FIG. 2B).
  • the control device 16 When performing the hot water supply alone operation in which the hot water is heated by the hot water supply heat exchanger 3, the difference between the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 4 is within a predetermined range.
  • the control device 16 It is preferable to perform the following processing. That is, the control device 16 maintains the valve body 82 at the “second position”, and sequentially operates the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4. The refrigerant is circulated through. Thereby, it is possible to quickly switch to the hot water supply independent operation without moving the valve element 82 of the four-way valve 8.
  • the valve element 82 of the four-way valve 8 may be arranged at the “first position” (see FIG. 2A) regardless of the operation mode immediately before.
  • the pressure below (inside) the valve element 82 of the four-way valve 8 increases It may be slightly higher than (outside).
  • a gap is formed between the valve element 82 and the pedestal 83 (see FIG. 2A), and the gas refrigerant evaporated in the outdoor heat exchanger 4 is transferred to the indoor heat exchanger 6 via the gap. May leak.
  • the indoor heat exchanger 6 often functions as a condenser, and the indoor heat exchanger 6 is filled with a gas refrigerant. Therefore, even if the gas refrigerant leaks somewhat into the indoor heat exchanger 6 through the gap formed in the four-way valve 8, the refrigerant pressure reaches an equilibrium state (equalized state) and the refrigerant leakage stops immediately. There is no particular problem.
  • the multi-type air-conditioning and hot-water supply device W provided with three indoor units Ui has been described, but the present invention is not limited to this.
  • the embodiment can be applied to various types of air conditioners in addition to an air conditioner (not shown) in which one indoor unit and one outdoor unit are provided.
  • Solenoid valve (third opening / closing means) 15 check valve 16 control device he low pressure side connection port hf indoor side connection port hg high pressure side connection port hi outdoor side connection port kb piping (third piping) kd piping (second piping) ke piping (first piping) kj piping (fourth piping) Ui Indoor unit Uo Outdoor unit W Air conditioning hot water supply device

Abstract

Provided is an air conditioning and hot water supply device capable of appropriately performing a hot water supply operation or the like. This air conditioning and hot water supply device (W) is provided with a refrigerant circuit Q through which a refrigerant is circulated via a compressor (1), a heat exchanger (3) for hot water supply, an expanding valve (11), and an outdoor heat exchanger (4) in this order. Furthermore, the air conditioning and hot water supply device (W) is provided with a check valve (15) provided to a pipe (ke) that connects a low pressure-side connection port (he) of a four-way valve (8) and the suction side of the compressor (1).The high pressure-side connection port (hg) of the four-way valve (8) and the discharge side of the compressor (1) are shut off by the expanding valve (10).The check valve (15) allows the flow of the refrigerant from the four-way valve (8) toward the suction side of the compressor (1) via the pipe (ke), and inhibits the flow in the reverse direction.

Description

空調給湯装置Air conditioning hot water supply system
 本発明は、空調給湯装置に関する。 The present invention relates to an air conditioning and hot water supply device.
 空調や給湯を行う空調給湯装置に関して、例えば、特許文献1に記載の技術が知られている。すなわち、特許文献1には、室内熱交換器で生じる排熱を給湯熱交換器において給湯に利用する冷房空調運転時、室外熱交換器の第1凝縮能力と、給湯熱交換器の第2凝縮能力と、の総凝縮能力が所定値となるように制御することが記載されている。 技術 Regarding an air-conditioning and hot-water supply device for performing air-conditioning and hot water supply, for example, a technique described in Patent Document 1 is known. That is, Patent Document 1 discloses that during cooling air conditioning operation in which waste heat generated in an indoor heat exchanger is used for hot water supply in a hot water supply heat exchanger, the first condensation capacity of the outdoor heat exchanger and the second condensation capacity of the hot water supply heat exchanger are described. It describes that control is performed so that the total condensation capacity of the capacity and the capacity becomes a predetermined value.
特開2013-213612号公報JP 2013-213612 A
 しかしながら、特許文献1に記載の技術では、室外熱交換器が常に凝縮器として機能するため、空調運転を行わずに給湯運転のみを単独で行うことができない構成になっている。また、特許文献1に記載の技術では、給湯運転時における四方弁を介した冷媒の流出の抑制等についても考慮されていない。 However, in the technology described in Patent Literature 1, the outdoor heat exchanger always functions as a condenser, so that only the hot water supply operation cannot be performed alone without performing the air conditioning operation. Further, in the technology described in Patent Document 1, no consideration is given to suppression of outflow of the refrigerant via the four-way valve during the hot water supply operation.
 そこで、本発明は、給湯運転等を適切に行うことが可能な空調給湯装置を提供することを課題とする。 Therefore, an object of the present invention is to provide an air-conditioning and hot-water supply device that can appropriately perform a hot-water supply operation and the like.
 前記課題を解決するために、本発明に係る空調給湯装置は、圧縮機、給湯用熱交換器、第1膨張弁、及び室外熱交換器を順次に介して冷媒が循環する冷媒回路を備えるとともに、本体と、前記本体の内部に設けられる弁体と、を有し、前記冷媒回路における冷媒の流路を切り替える四方弁と、前記四方弁の低圧側接続口と前記圧縮機の吸入側とを接続する第1配管に設けられる逆止弁と、を備え、前記四方弁の高圧側接続口と前記圧縮機の吐出側との間が第1開閉手段によって遮断され、前記逆止弁は、前記四方弁から前記第1配管を介して前記圧縮機の吸入側に向かう冷媒の流れを許容し、逆向きの流れを禁止することを特徴とする。 In order to solve the above problems, an air conditioning hot water supply apparatus according to the present invention includes a compressor, a hot water supply heat exchanger, a first expansion valve, and a refrigerant circuit in which refrigerant circulates sequentially through an outdoor heat exchanger. , A main body, a valve body provided inside the main body, a four-way valve for switching the flow path of the refrigerant in the refrigerant circuit, a low-pressure side connection port of the four-way valve and a suction side of the compressor. A check valve provided in a first pipe to be connected, wherein a connection between a high-pressure side connection port of the four-way valve and a discharge side of the compressor is interrupted by first opening / closing means, and the check valve is The flow of the refrigerant from the four-way valve to the suction side of the compressor via the first pipe is allowed, and the flow in the opposite direction is prohibited.
 本発明によれば、給湯運転等を適切に行うことが可能な空調給湯装置を提供できる。 According to the present invention, it is possible to provide an air-conditioning and hot-water supply device capable of appropriately performing a hot-water supply operation and the like.
本発明の実施形態に係る空調給湯装置の冷媒回路を含む構成図である。It is a lineblock diagram including a refrigerant circuit of an air-conditioning hot-water supply device concerning an embodiment of the present invention. 本発明の実施形態に係る空調給湯装置が備える四方弁の断面図である。It is sectional drawing of the four-way valve with which the air-conditioning hot-water supply apparatus which concerns on embodiment of this invention is provided. 本発明の実施形態に係る空調給湯装置が備える四方弁の別の状態を示す断面図である。It is sectional drawing which shows another state of the four-way valve with which the air-conditioning hot-water supply apparatus which concerns on embodiment of this invention is provided. 本発明の実施形態に係る空調給湯装置の制御装置を含む機能ブロック図である。It is a functional block diagram including a control device of an air-conditioning hot-water supply device concerning an embodiment of the present invention. 本発明の実施形態に係る空調給湯装置の冷房単独運転時における各弁の状態や冷媒の流れを示す説明図である。It is explanatory drawing which shows the state of each valve, and the flow of a refrigerant | coolant at the time of cooling only operation | movement of the air conditioning hot-water supply apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る空調給湯装置の冷房給湯運転時における各弁の状態や冷媒の流れを示す説明図である。It is explanatory drawing which shows the state of each valve and the flow of a refrigerant | coolant at the time of the cooling hot-water supply operation of the air-conditioning hot-water supply apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る空調給湯装置の第1の給湯単独運転時における各弁の状態や冷媒の流れを示す説明図である。It is explanatory drawing which shows the state of each valve, and the flow of a refrigerant | coolant at the time of the 1st hot-water supply independent operation of the air conditioning hot-water supply apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る空調給湯装置の暖房給湯運転時における各弁の状態や冷媒の流れを示す説明図である。It is explanatory drawing which shows the state of each valve, and the flow of a refrigerant | coolant at the time of the heating hot-water supply operation of the air-conditioning hot-water supply apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る空調給湯装置の第2の給湯単独運転時における各弁の状態や冷媒の流れを示す説明図である。It is explanatory drawing which shows the state of each valve, and the flow of a refrigerant | coolant at the time of the 2nd hot-water supply independent operation of the air conditioning hot-water supply apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る空調給湯装置の第2の除霜運転時における各弁の状態や冷媒の流れを示す説明図である。It is explanatory drawing which shows the state of each valve and the flow of a refrigerant | coolant at the time of the 2nd defrost driving | operation of the air conditioning hot-water supply apparatus which concerns on embodiment of this invention.
≪第1実施形態≫
<空調給湯装置の構成>
 図1は、実施形態に係る空調給湯装置Wの冷媒回路Qを含む構成図である。
 空調給湯装置Wは、空調や給湯を行う装置である。図1では、一例として、3台の室内ユニットUiを備えるマルチ型の空調給湯装置Wを示している。
 図1に示すように、空調給湯装置Wは、圧縮機1と、貯湯タンク2と、給湯用熱交換器3と、室外熱交換器4と、室外ファン5と、室内熱交換器6と、室内ファン7と、を備えている。また、空調給湯装置Wは、前記した構成の他に、四方弁8と、膨張弁9~12と、電磁弁13,14と、逆止弁15と、制御装置16と、を備えている。
<< 1st Embodiment >>
<Configuration of air-conditioning water heater>
FIG. 1 is a configuration diagram including a refrigerant circuit Q of the air-conditioning and hot-water supply device W according to the embodiment.
The air conditioning and hot water supply device W is a device that performs air conditioning and hot water supply. FIG. 1 shows, as an example, a multi-type air-conditioning and hot-water supply device W including three indoor units Ui.
As shown in FIG. 1, the air-conditioning and hot-water supply device W includes a compressor 1, a hot-water storage tank 2, a hot-water supply heat exchanger 3, an outdoor heat exchanger 4, an outdoor fan 5, an indoor heat exchanger 6, An indoor fan 7. In addition, the air-conditioning and hot water supply device W includes a four-way valve 8, expansion valves 9 to 12, solenoid valves 13 and 14, a check valve 15, and a control device 16 in addition to the components described above.
 圧縮機1は、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器である。このような圧縮機1として、例えば、スクロール圧縮機やロータリ圧縮機が用いられるが、これに限定されるものではない。 The compressor 1 is a device that compresses a low-temperature and low-pressure gas refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant. As such a compressor 1, for example, a scroll compressor or a rotary compressor is used, but is not limited thereto.
 貯湯タンク2は、湯水を貯留するための殻状部材である。なお、図1では図示を省略しているが、給水源(図示せず)から貯湯タンク2に水を供給するための給水管(図示せず)が、貯湯タンク2の下部に接続されている。また、貯湯タンク2に貯留されている高温水を取り出すための給湯管(図示せず)が、貯湯タンク2の上部に接続されている。そして、前記した給湯管を通流する高温水と、給水源から供給される水と、が所定に混合され、混合後の湯水が給湯端末(図示せず)に供給されるようになっている。 The hot water storage tank 2 is a shell-like member for storing hot water. Although not shown in FIG. 1, a water supply pipe (not shown) for supplying water from a water supply source (not shown) to the hot water storage tank 2 is connected to a lower portion of the hot water storage tank 2. . A hot water supply pipe (not shown) for taking out high-temperature water stored in hot water storage tank 2 is connected to an upper portion of hot water storage tank 2. Then, the high-temperature water flowing through the hot water supply pipe and the water supplied from the water supply source are mixed in a predetermined manner, and the mixed hot water is supplied to a hot water supply terminal (not shown). .
 給湯用熱交換器3は、その伝熱管3aを通流する冷媒と、貯湯タンク2に貯留された湯水と、の間で熱交換が行われる熱交換器である。なお、図1では、貯湯タンク2の内部に給湯用熱交換器3が配置される例を示しているが、これに限定されるものではない。すなわち、貯湯タンク2の外部に給湯用熱交換器3を配置し、貯湯タンク2からポンプ(図示せず)で圧送される湯水と、伝熱管3aを通流する冷媒と、の間で熱交換が行われるようにしてもよい。 The hot water supply heat exchanger 3 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube 3a and the hot water stored in the hot water storage tank 2. Although FIG. 1 shows an example in which the hot water supply heat exchanger 3 is disposed inside the hot water storage tank 2, the present invention is not limited to this. That is, the heat exchanger 3 for hot water supply is arranged outside the hot water storage tank 2, and heat exchange is performed between hot water pumped from the hot water storage tank 2 by a pump (not shown) and the refrigerant flowing through the heat transfer tube 3 a. May be performed.
 図1に示すように、給湯用熱交換器3の伝熱管3aの一端p3は、配管kaを介して、圧縮機1の吐出側に接続されている。また、伝熱管3aの他端q3は、配管kb(第3配管)を介して、それぞれの室内熱交換器6の一端p6に接続されている。つまり、配管kbは3つに分岐しており、その端部が一対一で3つの室内熱交換器6に接続されている。 As shown in FIG. 1, one end p3 of the heat transfer tube 3a of the hot water supply heat exchanger 3 is connected to the discharge side of the compressor 1 via a pipe ka. The other end q3 of the heat transfer tube 3a is connected to one end p6 of each indoor heat exchanger 6 via a pipe kb (third pipe). That is, the pipe kb is branched into three, and the ends thereof are connected to the three indoor heat exchangers 6 one-to-one.
 室外熱交換器4は、その伝熱管(図示せず)を通流する冷媒と、室外ファン5から送り込まれる外気と、の間で熱交換が行われる熱交換器である。室外熱交換器4の一端p4は、配管kc及び配管kb(一部)を順次に介して、それぞれの室内熱交換器6の一端p6に接続されている。室外熱交換器4の他端q4は、配管kd(第2配管)を介して、別の配管ke(第1配管)に接続されている。この配管keは、圧縮機1の吸入側と四方弁8とを接続する配管である。 外 The outdoor heat exchanger 4 is a heat exchanger in which heat is exchanged between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 5. One end p4 of the outdoor heat exchanger 4 is connected to one end p6 of each indoor heat exchanger 6 via a pipe kc and a pipe kb (partly) in that order. The other end q4 of the outdoor heat exchanger 4 is connected to another pipe ke (first pipe) via a pipe kd (second pipe). This pipe ke is a pipe connecting the suction side of the compressor 1 and the four-way valve 8.
 室外ファン5は、室外熱交換器4に外気を送り込むファンであり、室外熱交換器4の付近に配置されている。 The outdoor fan 5 is a fan that sends outside air to the outdoor heat exchanger 4 and is arranged near the outdoor heat exchanger 4.
 室内熱交換器6は、その伝熱管(図示せず)を通流する冷媒と、室内ファン7から送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。3つの室内熱交換器6の一端p6は、前記したように、配管kbに接続されている。3つの室内熱交換器6の他端q6は、配管kfを介して、四方弁8に接続されている。つまり、配管kfは3つに分岐しており、その端部が一対一で3つの室内熱交換器6に接続されている。 The indoor heat exchanger 6 is a heat exchanger in which heat is exchanged between a refrigerant flowing through a heat transfer tube (not shown) and indoor air (air in a space to be air-conditioned) sent from an indoor fan 7. It is. One end p6 of each of the three indoor heat exchangers 6 is connected to the pipe kb as described above. The other ends q6 of the three indoor heat exchangers 6 are connected to a four-way valve 8 via a pipe kf. That is, the pipe kf is branched into three, and one end thereof is connected to the three indoor heat exchangers 6 in a one-to-one relationship.
 室内ファン7は、室内熱交換器6に室内空気を送り込むファンであり、室内熱交換器6の付近に配置されている。
 四方弁8は、運転モードに応じて、冷媒回路Qにおける冷媒の流路を切り替える弁である。この四方弁8の構成について、図2A、図2Bを用いて説明する。
The indoor fan 7 is a fan that sends indoor air to the indoor heat exchanger 6, and is arranged near the indoor heat exchanger 6.
The four-way valve 8 is a valve that switches the flow path of the refrigerant in the refrigerant circuit Q according to the operation mode. The configuration of the four-way valve 8 will be described with reference to FIGS. 2A and 2B.
 図2Aは、空調給湯装置が備える四方弁8の断面図である。
 図2Aに示すように、四方弁8は、本体81と、弁体82と、台座83と、連結板84と、ピストン85,86と、を備えている。
 本体81は、その内部でピストン85,86が移動するシリンダであり、外形が円筒状を呈している。本体81の上部には、高圧側接続口hgが設けられている。この高圧側接続口hgは、圧縮機1(図1参照)の吐出側と四方弁8とを連通させるための孔である。高圧側接続口hgには、配管kgの一端が接続されている。
FIG. 2A is a cross-sectional view of the four-way valve 8 included in the air-conditioning and hot-water supply device.
As shown in FIG. 2A, the four-way valve 8 includes a main body 81, a valve body 82, a pedestal 83, a connecting plate 84, and pistons 85 and 86.
The main body 81 is a cylinder in which the pistons 85 and 86 move, and has a cylindrical outer shape. A high pressure side connection port hg is provided at an upper portion of the main body 81. The high pressure side connection port hg is a hole for communicating the discharge side of the compressor 1 (see FIG. 1) with the four-way valve 8. One end of a pipe kg is connected to the high pressure side connection port hg.
 図2Aに示すように、四方弁8の本体81の内部において、高圧側接続口hgの反対側(下側)には、台座83が設置されている。台座83は、弁体82が摺動しながら移動する際の相手方となる固定部材である。台座83及び本体81には、室外側接続口hi、低圧側接続口he、及び室内側接続口hfが、横並びで設けられている。 AAs shown in FIG. 2A, a pedestal 83 is installed inside the main body 81 of the four-way valve 8 on the opposite side (lower side) of the high pressure side connection port hg. The pedestal 83 is a fixed member that is a counterpart when the valve body 82 moves while sliding. The pedestal 83 and the main body 81 are provided with an outdoor connection port hi, a low-pressure connection port he, and an indoor connection port hf, which are arranged side by side.
 室外側接続口hiは、室外熱交換器4(図1参照)と四方弁8とを連通させるための孔である。この室外側接続口hiには、配管kiの一端が接続されている。なお、配管kiの他端(図1の接続箇所m1)は、配管kdにおいて電磁弁13よりも上流側(室外熱交換器4に近い側)に接続されている。 The outdoor connection port hi is a hole for communicating the outdoor heat exchanger 4 (see FIG. 1) with the four-way valve 8. One end of a pipe ki is connected to the outdoor connection port hi. The other end of the pipe ki (connection point m1 in FIG. 1) is connected to the pipe kd on the upstream side of the solenoid valve 13 (closer to the outdoor heat exchanger 4).
 低圧側接続口heは、圧縮機1(図1参照)の吸入側と四方弁8とを、逆止弁15等(図1参照)を介して接続するための孔である。この低圧側接続口heには、配管keの一端が接続されている。なお、配管keの他端は、圧縮機1の吸入側に接続されている。 The low pressure side connection port he is a hole for connecting the suction side of the compressor 1 (see FIG. 1) and the four-way valve 8 via the check valve 15 and the like (see FIG. 1). One end of a pipe ke is connected to the low pressure side connection port he. The other end of the pipe ke is connected to the suction side of the compressor 1.
 室内側接続口hfは、室内熱交換器6(図1参照)の他端q6側と四方弁8とを連通させるための孔である。この室内側接続口hfは、配管kf、室内熱交換器6、及び配管kb(第3配管)を順次に介して、給湯用熱交換器3に接続されている。 The indoor side connection port hf is a hole for communicating the other end q6 side of the indoor heat exchanger 6 (see FIG. 1) with the four-way valve 8. The indoor side connection port hf is connected to the hot water supply heat exchanger 3 via the pipe kf, the indoor heat exchanger 6, and the pipe kb (third pipe) sequentially.
 弁体82は、その移動によって四方弁8の流路を切り替えるものであり、本体81の内部に設けられている。図2Aに示すように、弁体82は、湾曲部82aと、フランジ82bと、を備えている。湾曲部82aは、縦断面視で上に凸の∩状に湾曲している。フランジ82bは、湾曲部82aと一体成形され、湾曲部82aの周縁から横方向外側に延びている。そして、弁体82が横方向に移動する過程で、台座83に対してフランジ82bが摺動するようになっている。 The valve body 82 switches the flow path of the four-way valve 8 by its movement, and is provided inside the main body 81. As shown in FIG. 2A, the valve body 82 includes a curved portion 82a and a flange 82b. The curved portion 82a is curved in an upwardly convex ∩ shape in a vertical cross-sectional view. The flange 82b is formed integrally with the curved portion 82a, and extends laterally outward from the periphery of the curved portion 82a. The flange 82b slides with respect to the pedestal 83 while the valve body 82 moves in the lateral direction.
 連結板84は、弁体82とピストン85,86とを連結する板である。この連結板84は、弁体82に固定されるとともに、その左右両端がピストン85,86に固定されている。連結板84には、室外側接続口hiを弁体82の上側の空間に連通させるための孔hx(図2Aの状態)や、室内側接続口hfを弁体82の上側の空間に連通させるための孔hy(図2Bの状態)が設けられている。
 ピストン85,86は、弁体82及び連結板84を左右方向に移動させるものである。
The connection plate 84 is a plate that connects the valve body 82 and the pistons 85 and 86. The connecting plate 84 is fixed to the valve body 82 and both right and left ends thereof are fixed to pistons 85 and 86. In the connection plate 84, a hole hx (the state shown in FIG. 2A) for connecting the outdoor connection port hi to the space above the valve element 82 and the indoor connection port hf are connected to the space above the valve element 82. Hole hy (the state of FIG. 2B) is provided.
The pistons 85 and 86 move the valve body 82 and the connecting plate 84 in the left-right direction.
 例えば、少なくとも冷房運転が行われる際には、図2Aに示す「第1の位置」に弁体82が配置される。これによって、高圧側接続口hgと室外側接続口hiとが弁体82の上側の空間を介して連通する。また、室内側接続口hfと低圧側接続口heとが弁体82の下側の空間を介して連通する。このような四方弁8の状態を、以下では、「第1の状態」という。 For example, at least when the cooling operation is performed, the valve body 82 is arranged at the “first position” shown in FIG. 2A. Thus, the high pressure side connection port hg and the outdoor side connection port hi communicate with each other via the space above the valve element 82. The indoor connection port hf and the low-pressure connection port he communicate with each other via a space below the valve element 82. Such a state of the four-way valve 8 is hereinafter referred to as a “first state”.
 図2Bは、空調給湯装置が備える四方弁8の別の状態を示す断面図である。
 例えば、少なくとも暖房運転が行われる際には、図2Bに示す「第2の位置」に弁体82が配置される。その結果、高圧側接続口hgと室内側接続口hfとが弁体82の上側の空間を介して連通する。また、室外側接続口hiと低圧側接続口heとが弁体82の下側の空間を介して連通する。このような四方弁8の状態を、以下では、「第2の状態」という。なお、図2A、図2Bに示す四方弁8の構成は一例であり、これに限定されるものではない。
FIG. 2B is a cross-sectional view showing another state of four-way valve 8 provided in the air-conditioning and hot-water supply device.
For example, at least when the heating operation is performed, the valve body 82 is disposed at the “second position” illustrated in FIG. 2B. As a result, the high pressure side connection port hg and the indoor side connection port hf communicate with each other via the space above the valve element 82. The outdoor connection port hi and the low-pressure connection port he communicate with each other via a space below the valve element 82. Such a state of the four-way valve 8 is hereinafter referred to as a “second state”. The configuration of the four-way valve 8 shown in FIGS. 2A and 2B is an example, and is not limited to this.
 再び、図1に戻って説明を続ける。なお、図1では、四方弁8に関して本体81及び弁体82を模式的に図示し、他の構成の図示を省略している。
 図1に示す膨張弁9は、給湯運転が行われる際に開かれる弁であり、配管kaに設けられている。
 別の膨張弁10(第1開閉手段)は、圧縮機1から吐出される高圧の冷媒を四方弁8に導く際に開かれる弁であり、配管kgに設けられている。なお、配管kgの一端は、高圧側接続口hgに接続されている。また、配管kgの他端は、配管kaにおいて膨張弁9よりも上流側に接続されている。
Returning to FIG. 1, the description will be continued. In FIG. 1, the main body 81 and the valve body 82 are schematically illustrated with respect to the four-way valve 8, and illustration of other components is omitted.
The expansion valve 9 shown in FIG. 1 is a valve that is opened when the hot water supply operation is performed, and is provided in the pipe ka.
Another expansion valve 10 (first opening / closing means) is a valve that is opened when the high-pressure refrigerant discharged from the compressor 1 is guided to the four-way valve 8, and is provided in the pipe kg. One end of the pipe kg is connected to the high pressure side connection port hg. The other end of the pipe kg is connected to the pipe ka on the upstream side of the expansion valve 9.
 膨張弁11(第1膨張弁)は、給湯運転中に冷媒を減圧する弁であり、配管kbに設けられている。より詳しく説明すると、配管kbの分岐点m2よりも上流側(給湯用熱交換器3に近い側)に膨張弁11が設けられている。
 膨張弁12(第2膨張弁)は、冷房運転や暖房運転が行われるときに冷媒を減圧する弁である。この膨張弁12は、配管kb(第3配管)において、室内熱交換器6の一端p6の付近に設けられている。
The expansion valve 11 (first expansion valve) is a valve that reduces the pressure of the refrigerant during the hot water supply operation, and is provided on the pipe kb. More specifically, the expansion valve 11 is provided upstream of the branch point m2 of the pipe kb (closer to the hot water supply heat exchanger 3).
The expansion valve 12 (second expansion valve) is a valve that reduces the pressure of the refrigerant when a cooling operation or a heating operation is performed. The expansion valve 12 is provided near one end p6 of the indoor heat exchanger 6 in the pipe kb (third pipe).
 図1に示す電磁弁13(第2開閉手段)は、室外熱交換器4が蒸発器として機能しているとき、この室外熱交換器4で蒸発した冷媒を圧縮機1の吸入側に戻す際に開かれる弁であり、配管kd(第2配管)に設けられている。なお、電磁弁13は、開・閉の2つの状態で切替可能な二方弁である(電磁弁14も同様)。 When the outdoor heat exchanger 4 functions as an evaporator, the electromagnetic valve 13 (second opening / closing means) shown in FIG. 1 returns the refrigerant evaporated by the outdoor heat exchanger 4 to the suction side of the compressor 1. The valve is opened in the pipe kd (second pipe). The solenoid valve 13 is a two-way valve that can be switched between two states, open and closed (the same applies to the solenoid valve 14).
 また、図1に示す配管kj(第4配管)が設けられている。この配管kjは、前記した配管kdにおいて電磁弁13よりも室外熱交換器4側に一端が接続され、配管kbにおいて膨張弁11よりも給湯用熱交換器3側に他端が接続されている。
 電磁弁14(第3開閉手段)は、給湯用熱交換器3で凝縮した冷媒を室外熱交換器4に導く際に開かれる弁であり、配管kjに設けられている。
Also, a pipe kj (fourth pipe) shown in FIG. 1 is provided. The pipe kj has one end connected to the outdoor heat exchanger 4 side of the electromagnetic valve 13 in the pipe kd, and the other end connected to the hot water supply heat exchanger 3 side of the expansion valve 11 in the pipe kb. .
The solenoid valve 14 (third opening / closing means) is a valve that is opened when the refrigerant condensed in the hot water supply heat exchanger 3 is guided to the outdoor heat exchanger 4, and is provided on the pipe kj.
 逆止弁15は、四方弁8から配管ke(第1配管)を介して圧縮機1の吸入側に向かう冷媒の流れを許容し、逆向きの流れを禁止する弁である。この逆止弁15は、四方弁8の低圧側接続口heと圧縮機1の吸入側とを接続する配管keに設けられている。また、配管keにおいて、逆止弁15の下流側と室外熱交換器4とが配管kdを介して接続されている。 The check valve 15 is a valve that allows the flow of the refrigerant from the four-way valve 8 to the suction side of the compressor 1 via the pipe ke (first pipe), and prohibits the flow in the reverse direction. The check valve 15 is provided in a pipe ke that connects the low-pressure side connection port he of the four-way valve 8 and the suction side of the compressor 1. In the pipe ke, the downstream side of the check valve 15 and the outdoor heat exchanger 4 are connected via a pipe kd.
 図1に示す制御装置16は、空調給湯装置Wの各機器を制御する装置である。制御装置16は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。制御装置16は、不図示の各種センサの検出値やリモコンからの信号に基づいて、室外ファン5や室内ファン7の他、四方弁8等の各弁を制御する。 制 御 The control device 16 shown in FIG. 1 is a device that controls each device of the air conditioning and hot water supply device W. Although not shown, the control device 16 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read and expanded in the RAM, and the CPU executes various processes. The control device 16 controls each valve such as the four-way valve 8 in addition to the outdoor fan 5 and the indoor fan 7 based on detection values of various sensors (not shown) and signals from a remote controller.
 なお、図1に示す例では、圧縮機1、室外熱交換器4、室外ファン5、四方弁8、膨張弁9~11、電磁弁13,14、逆止弁15、制御装置16等が、室外ユニットUoに設けられている。一方、室内熱交換器6や室内ファン7は、室内ユニットUiに設けられている。 In the example shown in FIG. 1, the compressor 1, the outdoor heat exchanger 4, the outdoor fan 5, the four-way valve 8, the expansion valves 9 to 11, the solenoid valves 13, 14, the check valve 15, the control device 16, etc. It is provided in the outdoor unit Uo. On the other hand, the indoor heat exchanger 6 and the indoor fan 7 are provided in the indoor unit Ui.
 図3は、空調給湯装置の制御装置16を含む機能ブロック図である。
 図3に示すように、制御装置16は、圧縮機制御部16aと、ファン制御部16bと、弁制御部16cと、を備えている。
 圧縮機制御部16aは、各センサの検出値(図3に示す「センサ入力」)やリモコンからの信号(図3に示す「リモコン入力」)に基づいて、圧縮機1を制御する。
 ファン制御部16bは、各センサの検出値等に基づいて、室外ファン5や室内ファン7を制御する。
 弁制御部16cは、各センサの検出値等に基づいて、四方弁8や膨張弁9~12、電磁弁13を制御する。
FIG. 3 is a functional block diagram including the control device 16 of the air conditioning and hot water supply apparatus.
As shown in FIG. 3, the control device 16 includes a compressor control unit 16a, a fan control unit 16b, and a valve control unit 16c.
The compressor control unit 16a controls the compressor 1 based on the detection value of each sensor (“sensor input” shown in FIG. 3) and a signal from a remote controller (“remote control input” shown in FIG. 3).
The fan control unit 16b controls the outdoor fan 5 and the indoor fan 7 based on a detection value of each sensor and the like.
The valve control unit 16c controls the four-way valve 8, the expansion valves 9 to 12, and the solenoid valve 13 based on the detection values of the respective sensors.
 なお、図3では、室外ユニットUo(図1参照)に設けられた制御装置16が各機器を制御する例を示したが、これに限らない。すなわち、3つの室内ユニットUi(図1参照)のそれぞれに別の制御装置(図示せず)を設け、室外ユニットUoの制御装置16との間で所定の通信を行うようにしてもよい。
 次に、空調給湯装置Wの各運転モードについて説明する。
Although FIG. 3 shows an example in which the control device 16 provided in the outdoor unit Uo (see FIG. 1) controls each device, the invention is not limited to this. That is, another control device (not shown) may be provided for each of the three indoor units Ui (see FIG. 1), and predetermined communication may be performed with the control device 16 of the outdoor unit Uo.
Next, each operation mode of the air conditioning and hot water supply device W will be described.
<冷房単独運転>
 図4は、冷房単独運転時における各弁の状態や冷媒の流れを示す説明図である。
 なお、「冷房単独運転」とは、給湯用熱交換器3に冷媒を通流させずに冷房運転を単独で行う運転モードである。図4では、閉弁状態の膨張弁9,11や電磁弁13,14をハッチング(斜線入り)で図示し、開弁状態の膨張弁10や、開度調整される膨張弁12を白抜きで図示している(図5~図8についても同様)。さらに、図4では、冷媒が循環する流路を太線で図示している。
<Cooling alone operation>
FIG. 4 is an explanatory diagram showing the state of each valve and the flow of the refrigerant during the cooling only operation.
The “cooling independent operation” is an operation mode in which the cooling operation is performed independently without allowing the refrigerant to flow through the heat exchanger 3 for hot water supply. In FIG. 4, the expansion valves 9 and 11 and the solenoid valves 13 and 14 in the closed state are shown by hatching (shaded lines), and the expansion valve 10 in the open state and the expansion valve 12 whose opening is adjusted are outlined. (The same applies to FIGS. 5 to 8). Further, in FIG. 4, the flow path through which the refrigerant circulates is illustrated by a thick line.
 冷房単独運転を行う際、制御装置16は、図4に示すように、四方弁8を「第1の状態」(図2A参照)にする。さらに、制御装置16は、膨張弁9,11及び電磁弁13,14を閉弁する一方、膨張弁10を開弁(略全開)し、3つの膨張弁12の開度を適宜に調整する。 際 When performing the cooling only operation, the control device 16 sets the four-way valve 8 to the “first state” (see FIG. 2A), as shown in FIG. Further, the control device 16 closes the expansion valves 9 and 11 and the solenoid valves 13 and 14, opens the expansion valve 10 (substantially fully opens), and appropriately adjusts the opening degrees of the three expansion valves 12.
 これによって、給湯用熱交換器3には冷媒が流れず、また、室外熱交換器4が凝縮器として機能するとともに、室内熱交換器6が蒸発器として機能する。そして、圧縮機1から吐出された冷媒は、四方弁8、室外熱交換器4(凝縮器)、膨張弁12、室内熱交換器6(蒸発器)、四方弁8、及び逆止弁15を順次に介して、圧縮機1の吸入側に戻される。その結果、室内ユニットUiが設けられた空調対象空間(図示せず)の空気が冷やされる。 Accordingly, the refrigerant does not flow through the hot water supply heat exchanger 3, the outdoor heat exchanger 4 functions as a condenser, and the indoor heat exchanger 6 functions as an evaporator. The refrigerant discharged from the compressor 1 passes through the four-way valve 8, the outdoor heat exchanger 4 (condenser), the expansion valve 12, the indoor heat exchanger 6 (evaporator), the four-way valve 8, and the check valve 15. The refrigerant is sequentially returned to the suction side of the compressor 1. As a result, the air in the air-conditioned space (not shown) provided with the indoor unit Ui is cooled.
<冷房給湯運転>
 図5は、冷房給湯運転時における各弁の状態や冷媒の流れを示す説明図である。
 なお、「冷房給湯運転」とは、給湯用熱交換器3に冷媒を通流させて湯水の沸上げや沸増しを行いつつ、冷房運転を行う運転モードである。
 冷房給湯運転を行う際、制御装置16は、図5に示すように、四方弁8を「第1の状態」(図2A参照)で維持する。さらに、制御装置16は、膨張弁10,11及び電磁弁13を閉弁する一方、膨張弁9及び電磁弁14を開弁し、膨張弁12の開度を適宜に調整する。
<Cooling hot water supply operation>
FIG. 5 is an explanatory diagram showing the state of each valve and the flow of the refrigerant during the cooling hot water supply operation.
Note that the “cooling hot water supply operation” is an operation mode in which a cooling operation is performed while a coolant is passed through the hot water supply heat exchanger 3 to increase or increase boiling water.
When performing the cooling hot water supply operation, the control device 16 maintains the four-way valve 8 in the "first state" (see FIG. 2A), as shown in FIG. Further, the control device 16 closes the expansion valves 10 and 11 and the electromagnetic valve 13, opens the expansion valve 9 and the electromagnetic valve 14, and adjusts the opening of the expansion valve 12 appropriately.
 これによって、給湯用熱交換器3及び室外熱交換器4が凝縮器として機能する一方、室内熱交換器6が蒸発器として機能する。そして、圧縮機1から吐出された冷媒は、四方弁8、膨張弁9、給湯用熱交換器3(凝縮器)、電磁弁14、室外熱交換器4(凝縮器)、膨張弁12、室内熱交換器6(蒸発器)、四方弁8、及び逆止弁15を順次に介して、圧縮機1の吸入側に戻される。これによって、圧縮機1から吐出される冷媒の熱の一部を給湯に用い、残りの熱を冷房に用いることができる。 に よ っ て Thereby, the heat exchanger 3 for hot water supply and the outdoor heat exchanger 4 function as a condenser, while the indoor heat exchanger 6 functions as an evaporator. The refrigerant discharged from the compressor 1 is supplied to the four-way valve 8, the expansion valve 9, the hot water supply heat exchanger 3 (condenser), the solenoid valve 14, the outdoor heat exchanger 4 (condenser), the expansion valve 12, and the indoor. The heat is returned to the suction side of the compressor 1 through the heat exchanger 6 (evaporator), the four-way valve 8 and the check valve 15 in order. Thereby, a part of the heat of the refrigerant discharged from the compressor 1 can be used for hot water supply, and the remaining heat can be used for cooling.
 なお、冷房給湯運転中、貯湯タンク2に貯留された湯水の温度が所定値以上になった場合、制御装置16は、四方弁8を「第1の状態」(図2A参照)で維持しつつ、冷房単独運転(図4参照)に切り替える。 When the temperature of hot water stored in hot water storage tank 2 becomes equal to or higher than a predetermined value during cooling hot water supply operation, control device 16 maintains four-way valve 8 in the “first state” (see FIG. 2A). Then, the mode is switched to the cooling only operation (see FIG. 4).
<第1の給湯単独運転>
 図6は、第1の給湯単独運転時における各弁の状態や冷媒の流れを示す説明図である。
 なお、「第1の給湯単独運転」とは、空調運転を行わずに、四方弁8を「第1の状態」(図2A参照)にして、湯水の沸上げや沸増しを単独で行う運転モードである。
 第1の給湯単独運転を行う際、制御装置16は、図6に示すように、四方弁8を「第1の状態」(図2A参照)にする。例えば、冷房単独運転(図4参照)から第1の給湯単独運転に切り替える場合や、冷房給湯運転(図5参照)から第1の給湯単独運転に切り替える際、制御装置16は、四方弁8を「第1の状態」で維持する。
<First hot water supply alone operation>
FIG. 6 is an explanatory diagram showing the state of each valve and the flow of refrigerant during the first hot water supply independent operation.
In addition, the "first hot water supply independent operation" refers to an operation in which the four-way valve 8 is set to the "first state" (see FIG. 2A) without performing the air-conditioning operation, and the boiling and hot water is independently increased. Mode.
When performing the first hot water supply independent operation, the control device 16 sets the four-way valve 8 to the "first state" (see FIG. 2A), as shown in FIG. For example, when switching from the cooling only operation (see FIG. 4) to the first hot water supply independent operation or when switching from the cooling hot water supply operation (see FIG. 5) to the first hot water supply independent operation, the control device 16 controls the four-way valve 8 to operate. Maintain in the “first state”.
 これによって、夏季に運転モードが切り替わっても、四方弁8を「第1の状態」で維持すればよいため、冷凍サイクルをいったん止める(つまり、圧縮機1を止める)必要がない。したがって、夏季に運転モードの切替えを速やかに行うことができるため、ユーザにとっての快適性を高めることができる。 Therefore, even if the operation mode is switched in the summer, the four-way valve 8 may be maintained in the “first state”, so that it is not necessary to temporarily stop the refrigeration cycle (that is, stop the compressor 1). Therefore, since the operation mode can be quickly switched in the summer, comfort for the user can be improved.
 第1の給湯単独運転を行う際、制御装置16は、膨張弁10,12及び電磁弁14を閉弁する一方、電磁弁13を開弁し、膨張弁11の開度を適宜に調整する。これによって、給湯用熱交換器3が凝縮器として機能する一方、室外熱交換器4が蒸発器として機能する。すなわち、圧縮機1から吐出された冷媒は、冷媒回路Qにおいて、給湯用熱交換器3(凝縮器)、膨張弁11(第1膨張弁)、室外熱交換器4(蒸発器)、及び電磁弁13を順次に介して循環する。 When performing the first hot water supply independent operation, the control device 16 closes the expansion valves 10 and 12 and the electromagnetic valve 14, opens the electromagnetic valve 13, and appropriately adjusts the opening of the expansion valve 11. Thus, the heat exchanger 3 for hot water supply functions as a condenser, while the outdoor heat exchanger 4 functions as an evaporator. That is, in the refrigerant circuit Q, the refrigerant discharged from the compressor 1 is supplied to the hot water supply heat exchanger 3 (condenser), the expansion valve 11 (first expansion valve), the outdoor heat exchanger 4 (evaporator), and the electromagnetic wave. Circulate through valve 13 in sequence.
 また、第1の給湯単独運転中、四方弁8は「第1の状態」になっている。これによって、室内熱交換器6が、配管kf、四方弁8の室内側接続口hf、及び低圧側接続口heを順次に介して、配管ke(第1配管)に連通する。言い換えると、一端P6側で冷媒の流れが遮断されている室内熱交換器6の他端q6側と、配管ke(第1配管)と、を連通させる「第1の位置」に四方弁8の弁体82が存在している。 中 During the first hot water supply operation alone, the four-way valve 8 is in the “first state”. Thereby, the indoor heat exchanger 6 communicates with the pipe ke (first pipe) via the pipe kf, the indoor connection port hf of the four-way valve 8 and the low-pressure connection port he in order. In other words, the four-way valve 8 is placed at the “first position” where the other end q6 side of the indoor heat exchanger 6 where the flow of the refrigerant is blocked at one end P6 side and the pipe ke (the first pipe). A valve element 82 is present.
 また、第1の給湯単独運転中、膨張弁10は閉弁状態である。つまり、四方弁8の高圧側接続口hgと圧縮機1の吐出側との間が膨張弁10(第1開閉手段)によって遮断されている。したがって、四方弁8において、弁体82の上側の空間には高圧冷媒がほとんど流れ込まない。 膨 張 Also, during the first hot water supply independent operation, the expansion valve 10 is in the closed state. That is, the connection between the high pressure side connection port hg of the four-way valve 8 and the discharge side of the compressor 1 is shut off by the expansion valve 10 (first opening / closing means). Therefore, in the four-way valve 8, the high-pressure refrigerant hardly flows into the space above the valve element 82.
 このような第1の給湯単独運転では、四方弁8の台座83(図2A参照)に対して弁体82を上から押さえ付ける圧力が弱くなる。ただし、第1の給湯単独運転が行われることが多い夏季には、冷房で冷やされた空調対象空間の空気の温度よりも外気の温度の方が高いことが多い。そして、四方弁8の本体81において、弁体82の上側(外側)の空間は室外側接続口hi等を介して室外熱交換器4に連通している。一方、弁体82の下側(内側)の空間は、室内側接続口hf等を介して室内熱交換器6に連通している。したがって、弁体82の上側の方が下側よりも温度が高くなりやすく、また、高圧になりやすい。 で は In such first hot water supply independent operation, the pressure of pressing the valve body 82 from above on the pedestal 83 (see FIG. 2A) of the four-way valve 8 becomes weak. However, in the summer months in which the first hot water supply alone operation is often performed, the temperature of the outside air is often higher than the temperature of the air in the air-conditioned space cooled by cooling. In the main body 81 of the four-way valve 8, the space above (outside) the valve element 82 communicates with the outdoor heat exchanger 4 via the outdoor connection port hi and the like. On the other hand, the space below (inside) the valve element 82 communicates with the indoor heat exchanger 6 via the indoor connection port hf and the like. Therefore, the temperature of the upper side of the valve body 82 tends to be higher than that of the lower side, and the pressure tends to be high.
 その結果、四方弁8の台座83(図2A参照)に対して弁体82が上から押さえ付けられるため、台座83と弁体82との間に隙間が生じることはほどんどない。したがって、室外熱交換器4から配管kdを介して通流する冷媒が、配管ki、四方弁8、及び配管kfを順次に介して、室内熱交換器6に流れ出ることはほとんどない。 As a result, since the valve element 82 is pressed from above against the pedestal 83 (see FIG. 2A) of the four-way valve 8, a gap is hardly generated between the pedestal 83 and the valve element 82. Therefore, the refrigerant flowing from the outdoor heat exchanger 4 via the pipe kd hardly flows out to the indoor heat exchanger 6 via the pipe ki, the four-way valve 8 and the pipe kf sequentially.
 一方、配管keの上流側は、低圧側接続口he、室内側接続口hf、及び配管kfを順次に介して、室内熱交換器6に連通している。ここで、仮に、配管keに逆止弁15が設けられていない場合には、室外熱交換器4で蒸発したガス冷媒が、配管kd、配管ke(一部)、低圧側接続口he、室内側接続口hf、及び配管kfを順次に介して、室内熱交換器6に流れ込む可能性がある。その結果、室内熱交換器6に冷媒が無駄に多く溜められ、冷凍サイクルの効率の低下を招く可能性がある。 On the other hand, the upstream side of the pipe ke communicates with the indoor heat exchanger 6 via the low-pressure connection port he, the indoor connection port hf, and the pipe kf in order. Here, if the check valve 15 is not provided in the pipe ke, the gas refrigerant evaporated in the outdoor heat exchanger 4 is discharged from the pipe kd, the pipe ke (partially), the low-pressure side connection port he, and the chamber k. There is a possibility that the gas flows into the indoor heat exchanger 6 via the inner connection port hf and the pipe kf sequentially. As a result, a large amount of refrigerant is accumulated in the indoor heat exchanger 6 unnecessarily, which may cause a decrease in the efficiency of the refrigeration cycle.
 これに対して本実施形態では、四方弁8の低圧側接続口heと、圧縮機1の吸入側と、を接続する配管keに逆止弁15が設けられている。したがって、第1の給湯単独運転を行う場合でも、室外熱交換器4で蒸発したガス冷媒が、四方弁8を介して室内熱交換器6に流れ出ることを抑制し、冷凍サイクルの高効率化を図ることができる。 On the other hand, in the present embodiment, the check valve 15 is provided in the pipe ke that connects the low-pressure side connection port he of the four-way valve 8 and the suction side of the compressor 1. Therefore, even when performing the first hot water supply independent operation, the gas refrigerant evaporated in the outdoor heat exchanger 4 is prevented from flowing out to the indoor heat exchanger 6 via the four-way valve 8, and the efficiency of the refrigeration cycle is improved. Can be planned.
 また、本実施形態では、圧縮機1、給湯用熱交換器3、膨張弁11(第1膨張弁)、及び室外熱交換器4を順次に介して冷媒が循環する状態(第1の給湯単独運転:図6参照)と、室外熱交換器4が凝縮器として機能し、室内熱交換器6が蒸発器として機能する別の状態(冷房単独運転や冷房給湯運転:図4、図5参照)と、のうち一方から他方に切替可能である。そして、前記した一方から他方に切り替えられる際、四方弁8の弁体82の位置が「第1の位置」(図2A参照)で維持される。これによって、前記したように、運転モードの切替えを速やかに行うことができ、ユーザにとっての快適性を高めることができる。 In this embodiment, the refrigerant circulates sequentially through the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4 (first hot water supply alone). Operation: see FIG. 6) and another state in which the outdoor heat exchanger 4 functions as a condenser and the indoor heat exchanger 6 functions as an evaporator (cooling alone operation or cooling and hot water supply operation: see FIGS. 4 and 5) Can be switched from one to the other. When switching from one to the other, the position of the valve element 82 of the four-way valve 8 is maintained at the "first position" (see FIG. 2A). As a result, as described above, the operation mode can be switched quickly, and the comfort for the user can be increased.
 また、第1の給湯単独運転中、電磁弁13(第2開閉手段)が開弁している。これによって、室外熱交換器4と、圧縮機1の吸入側と、が配管kd及び配管ke(一部)を順次に介して連通する。したがって、室外熱交換器4で蒸発した冷媒を圧縮機1の吸入側に戻すことができる。 電磁 During the first hot water supply alone operation, the solenoid valve 13 (second opening / closing means) is open. Thereby, the outdoor heat exchanger 4 and the suction side of the compressor 1 communicate with each other via the pipe kd and the pipe ke (partly) in order. Therefore, the refrigerant evaporated in the outdoor heat exchanger 4 can be returned to the suction side of the compressor 1.
 また、第1の給湯単独運転中、膨張弁12(第2膨張弁)及び電磁弁14(第3開閉手段)が、いずれも閉弁している。これによって、室外熱交換器4を蒸発器として機能させる一方、室内熱交換器6への冷媒の通流を遮断できる。 中 During the first hot water supply operation alone, the expansion valve 12 (second expansion valve) and the solenoid valve 14 (third opening / closing means) are all closed. Thereby, while the outdoor heat exchanger 4 functions as an evaporator, the flow of the refrigerant to the indoor heat exchanger 6 can be cut off.
<暖房単独運転>
 次に、図示は省略するが、給湯用熱交換器3に冷媒を通流させずに暖房運転を単独で行う「暖房単独運転」について簡単に説明する。
 暖房単独運転を行う際、制御装置16は、四方弁8を「第2の状態」(図2B参照)にし、膨張弁9,11及び電磁弁14を閉弁する一方、膨張弁10及び電磁弁13を開弁し、さらに、膨張弁12の開度を適宜に調整する。これによって、室内熱交換器6が凝縮器として機能し、室外熱交換器4が蒸発器として機能するため、空調対象空間(図示せず)の空気が温められる。
<Single heating operation>
Next, although not shown, the "heating alone operation" in which the heating operation is performed independently without flowing the refrigerant through the hot water supply heat exchanger 3 will be briefly described.
When performing the heating alone operation, the control device 16 sets the four-way valve 8 to the “second state” (see FIG. 2B), closes the expansion valves 9, 11 and the electromagnetic valve 14, while the expansion valve 10 and the electromagnetic valve 13 is opened, and the opening of the expansion valve 12 is appropriately adjusted. Thereby, the indoor heat exchanger 6 functions as a condenser, and the outdoor heat exchanger 4 functions as an evaporator, so that the air in the air-conditioned space (not shown) is heated.
<暖房給湯運転>
 図7は、暖房給湯運転時における各弁の状態や冷媒の流れを示す説明図である。
 なお、「暖房給湯運転」とは、給湯用熱交換器3に冷媒を通流させて湯水の沸上げや沸増しを行いつつ、暖房運転を行う運転モードである。
 暖房給湯運転を行う際、制御装置16は、図7に示すように、四方弁8を「第2の状態」(図2B参照)にする。さらに、制御装置16は、電磁弁14を閉弁し、膨張弁9,10及び電磁弁13を開弁し、膨張弁11,12の開度を適宜に調整する。
<Heating hot water supply operation>
FIG. 7 is an explanatory diagram showing the state of each valve and the flow of the refrigerant during the heating and hot water supply operation.
The “heating and hot water supply operation” is an operation mode in which the refrigerant is passed through the hot water supply heat exchanger 3 to perform the heating operation while raising or increasing the boiling water.
When performing the heating and hot water supply operation, the control device 16 sets the four-way valve 8 to the "second state" (see FIG. 2B), as shown in FIG. Further, the control device 16 closes the electromagnetic valve 14, opens the expansion valves 9, 10 and the electromagnetic valve 13, and appropriately adjusts the degree of opening of the expansion valves 11, 12.
 これによって、給湯用熱交換器3及び室内熱交換器6が凝縮器として機能するとともに、室外熱交換器4が蒸発器として機能する。そして、圧縮機1から吐出された冷媒は、膨張弁9を介して給湯用熱交換器3に導かれるとともに、別の膨張弁10を介して四方弁8にも導かれる。圧縮機1から給湯用熱交換器3(凝縮器)に導かれた冷媒は、膨張弁11を介して配管kcに導かれる一方、圧縮機1から四方弁8に導かれた冷媒は、室内熱交換器6(凝縮器)及び膨張弁12を順次に介して配管kcに導かれる。 Thereby, the heat exchanger 3 for hot water supply and the indoor heat exchanger 6 function as a condenser, and the outdoor heat exchanger 4 functions as an evaporator. The refrigerant discharged from the compressor 1 is guided to the hot water supply heat exchanger 3 via the expansion valve 9 and also to the four-way valve 8 via another expansion valve 10. The refrigerant guided from the compressor 1 to the hot water supply heat exchanger 3 (condenser) is guided through the expansion valve 11 to the pipe kc, while the refrigerant guided from the compressor 1 to the four-way valve 8 is cooled by the indoor heat. It is led to the pipe kc via the exchanger 6 (condenser) and the expansion valve 12 in order.
 配管kcで合流し、さらに、室外熱交換器4(蒸発器)で蒸発した冷媒の一部は、電磁弁13を介して、圧縮機1の吸入側に戻される。一方、室外熱交換器4(蒸発器)で蒸発した冷媒の残りは、四方弁8及び逆止弁15を順次に介して、圧縮機1の吸入側に戻される。これによって、圧縮機1から吐出される冷媒の熱の一部を給湯に用い、残りの熱を暖房に用いることができる。 Part of the refrigerant that has joined at the pipe kc and further evaporated at the outdoor heat exchanger 4 (evaporator) is returned to the suction side of the compressor 1 via the electromagnetic valve 13. On the other hand, the remainder of the refrigerant evaporated in the outdoor heat exchanger 4 (evaporator) is returned to the suction side of the compressor 1 via the four-way valve 8 and the check valve 15 sequentially. Thereby, a part of the heat of the refrigerant discharged from the compressor 1 can be used for hot water supply, and the remaining heat can be used for heating.
<第2の給湯単独運転>
 図8は、第2の給湯単独運転時における各弁の状態や冷媒の流れを示す説明図である。
 なお、「第2の給湯単独運転」とは、空調運転を行わずに、四方弁8を「第2の状態」(図2B参照)にして、湯水の沸上げや沸増しを単独で行う運転モードである。
 第2の給湯単独運転を行う際、制御装置16は、図8に示すように、四方弁8を「第2の状態」(図2B参照)にする。例えば、暖房単独運転から第2の給湯単独運転に切り替える場合や、暖房給湯運転(図7参照)から第2の給湯単独運転に切り替える場合、制御装置16は、四方弁8を「第2の状態」で維持する。
<Second hot water supply alone operation>
FIG. 8 is an explanatory diagram showing the state of each valve and the flow of the refrigerant during the second hot water supply independent operation.
In addition, the "second hot water supply independent operation" refers to an operation in which the four-way valve 8 is set to the "second state" (see FIG. 2B) without performing the air-conditioning operation and the boiling water is increased or the boiling water is increased alone. Mode.
When performing the second hot water supply independent operation, control device 16 sets four-way valve 8 to the "second state" (see FIG. 2B), as shown in FIG. For example, when switching from the heating-only operation to the second hot-water supply independent operation, or when switching from the heating-hot-water supply operation (see FIG. 7) to the second hot-water supply independent operation, the control device 16 sets the four-way valve 8 to the “second state”. To maintain.
 これによって、冬季に運転モードが切り替わっても、四方弁8を「第2の状態」で維持できるため、冷凍サイクルをいったん止める(つまり、圧縮機1を止める)必要がなくなる。したがって、冬季に運転モードの切替えを速やかに行うことができるため、ユーザにとっての快適性を高めることができる。 (4) As a result, even if the operation mode is switched in winter, the four-way valve 8 can be maintained in the "second state", so that there is no need to stop the refrigeration cycle (that is, stop the compressor 1). Therefore, the operation mode can be quickly switched in the winter season, so that comfort for the user can be improved.
 第2の給湯単独運転を行う際、制御装置16は、膨張弁10,12及び電磁弁14を閉弁する一方、膨張弁9及び電磁弁13を開弁し、膨張弁11の開度を適宜に調整する。これによって、給湯用熱交換器3が凝縮器として機能する一方、室外熱交換器4が蒸発器として機能する。そして、圧縮機1から吐出された冷媒は、冷媒回路Qにおいて、給湯用熱交換器3(凝縮器)、膨張弁11(第1膨張弁)、室外熱交換器4(蒸発器)、及び電磁弁13を順次に介して循環する。なお、室外熱交換器4で蒸発した冷媒の一部は、四方弁8及び逆止弁15を順次に介して、圧縮機1の吸入側に戻される。 When performing the second hot water supply independent operation, the control device 16 closes the expansion valves 10 and 12 and the electromagnetic valve 14, opens the expansion valve 9 and the electromagnetic valve 13, and adjusts the opening degree of the expansion valve 11 appropriately. Adjust to Thus, the heat exchanger 3 for hot water supply functions as a condenser, while the outdoor heat exchanger 4 functions as an evaporator. In the refrigerant circuit Q, the refrigerant discharged from the compressor 1 is supplied with the hot water supply heat exchanger 3 (condenser), the expansion valve 11 (first expansion valve), the outdoor heat exchanger 4 (evaporator), and the electromagnetic wave. Circulate through valve 13 in sequence. A part of the refrigerant evaporated in the outdoor heat exchanger 4 is returned to the suction side of the compressor 1 via the four-way valve 8 and the check valve 15 in order.
 また、第2の給湯単独運転中、四方弁8は「第2の状態」であるため、室外熱交換器4が、配管kd(一部)、四方弁8の室外側接続口hi、及び低圧側接続口heを順次に介して、配管ke(第1配管)に連通する。言い換えると、室外熱交換器4と配管ke(第1配管)とを連通させる「第2の位置」に四方弁8の弁体82が存在している。 During the second hot water supply operation alone, the four-way valve 8 is in the “second state”, so that the outdoor heat exchanger 4 is connected to the pipe kd (partly), the outdoor connection port hi of the four-way valve 8, and the low pressure. The pipe ke (first pipe) communicates with the side connection port he sequentially. In other words, the valve element 82 of the four-way valve 8 exists at the “second position” that allows the outdoor heat exchanger 4 to communicate with the pipe ke (first pipe).
 また、第2の給湯単独運転中、膨張弁10は閉弁状態である。つまり、四方弁8の高圧側接続口hgと圧縮機1の吐出側との間が膨張弁10(第1開閉手段)によって遮断されている。したがって、四方弁8において、弁体82の上側の空間には高圧冷媒がほとんど流れ込まない。 膨 張 During the second hot water supply operation alone, the expansion valve 10 is in the closed state. That is, the connection between the high pressure side connection port hg of the four-way valve 8 and the discharge side of the compressor 1 is shut off by the expansion valve 10 (first opening / closing means). Therefore, in the four-way valve 8, the high-pressure refrigerant hardly flows into the space above the valve element 82.
 このような第2の給湯単独運転では、弁体82を台座83(図2B参照)に押し付ける圧力が弱くなる。ただし、第2の給湯単独運転が行われることが多い冬季には、暖房で温められた空調対象空間の空気の温度よりも外気の温度の方が低いことが多い。そして、四方弁8の本体81において、弁体82の上側(外側)の空間は、室内側接続口hf等を介して室内熱交換器6に連通している。一方、弁体82の下側(内側)の空間は、室外側接続口hi等を介して室外熱交換器4に連通している。したがって、弁体82の上側の方が下側よりも温度が高くなりやすく、また、高圧になりやすい。その結果、四方弁8の台座83(図2B参照)に対して弁体82が上から押さえ付けられるため、台座83と弁体82との間に隙間が生じることはほどんどない。 で は In such a second hot water supply independent operation, the pressure for pressing the valve body 82 against the pedestal 83 (see FIG. 2B) becomes weak. However, in the winter season in which the second hot water supply single operation is often performed, the temperature of the outside air is often lower than the temperature of the air in the air-conditioned space heated by heating. In the main body 81 of the four-way valve 8, the space above (outside) the valve element 82 is communicated with the indoor heat exchanger 6 via the indoor connection port hf and the like. On the other hand, the space below (inside) the valve element 82 communicates with the outdoor heat exchanger 4 via the outdoor connection port hi and the like. Therefore, the temperature of the upper side of the valve body 82 tends to be higher than that of the lower side, and the pressure tends to be high. As a result, since the valve element 82 is pressed from above onto the pedestal 83 (see FIG. 2B) of the four-way valve 8, a gap is hardly generated between the pedestal 83 and the valve element 82.
 また、逆止弁15は、四方弁8から配管keを介して圧縮機1の吸入側に向かう冷媒の流れを許容し、逆向きの流れを禁止するように設置されている。したがって、配管kd(一部)、配管ki、室外側接続口hi、低圧側接続口he、及び配管keを順次に介して圧縮機1の吸入側に向かう冷媒の流れが、逆止弁15によって阻害されるおそれはない。 The check valve 15 is provided so as to allow the flow of the refrigerant from the four-way valve 8 to the suction side of the compressor 1 via the pipe ke, and prohibit the flow in the reverse direction. Therefore, the flow of the refrigerant flowing toward the suction side of the compressor 1 through the pipe kd (partly), the pipe ki, the outdoor connection port hi, the low pressure side connection port he, and the pipe ke in order is checked by the check valve 15. There is no risk of being hindered.
 また、本実施形態では、圧縮機1、給湯用熱交換器3、膨張弁11(第1膨張弁)、及び室外熱交換器4を順次に介して冷媒が循環する状態(第2の給湯単独運転:図8参照)と、室内熱交換器6が凝縮器として機能し、室外熱交換器4が蒸発器として機能する別の状態(暖房単独運転や暖房給湯運転:図7参照)と、のうち一方から他方に切替可能である。そして、前記した一方から他方に切り替えられる際、四方弁8の弁体82の位置が「第2の位置」で維持される(図2B参照)。これによって、前記したように、運転モードの切替えを速やかに行うことができ、ユーザにとっての快適性を高めることができる。 In the present embodiment, the refrigerant circulates sequentially through the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4 (second hot water supply alone). Operation: see FIG. 8) and another state in which the indoor heat exchanger 6 functions as a condenser and the outdoor heat exchanger 4 functions as an evaporator (heating alone operation or heating and hot water supply operation: see FIG. 7). It is possible to switch from one of them to the other. When switching from one to the other, the position of the valve element 82 of the four-way valve 8 is maintained at the "second position" (see FIG. 2B). As a result, as described above, the operation mode can be switched quickly, and the comfort for the user can be increased.
 また、第2の給湯単独運転中、電磁弁13(第2開閉手段)が開弁している。これによって、室外熱交換器4で蒸発した冷媒を、電磁弁13を介して圧縮機1の吸入側に戻すことができる。 電磁 During the second hot water supply operation alone, the solenoid valve 13 (second opening / closing means) is open. As a result, the refrigerant evaporated in the outdoor heat exchanger 4 can be returned to the suction side of the compressor 1 via the electromagnetic valve 13.
 また、第2の給湯単独運転中、膨張弁12(第2膨張弁)及び電磁弁14(第3開閉手段)が、いずれも閉弁している。これによって、室外熱交換器4を蒸発器として機能させる一方、室内熱交換器6への冷媒の通流を遮断できる。 中 During the second hot water supply operation alone, the expansion valve 12 (second expansion valve) and the solenoid valve 14 (third opening / closing means) are all closed. Thereby, while the outdoor heat exchanger 4 functions as an evaporator, the flow of the refrigerant to the indoor heat exchanger 6 can be cut off.
 また、少なくとも冷房運転(冷房単独運転、冷凍給湯運転:図4、図5参照)が行われる際には、四方弁8において、図2Aに示す「第1の位置」に弁体82が配置される。その一方、少なくとも暖房運転(暖房単独運転、暖房給湯運転:図7参照)が行われる際には、図2Bに示す「第2の位置」に弁体82が配置される。
 また、給湯単独運転の開始前に(つまり、給湯単独運転の開始直前の運転モードとして)少なくとも冷房運転が行われていた場合と、給湯単独運転の開始前に少なくとも暖房運転が行われていた場合とでは、給湯単独運転中の四方弁8の弁体82の位置が異なっている。
In addition, at least when the cooling operation (only cooling operation, freezing / hot water supply operation: see FIGS. 4 and 5) is performed, the valve element 82 is disposed at the “first position” shown in FIG. You. On the other hand, when at least the heating operation (heating alone operation, heating / hot water supply operation: see FIG. 7) is performed, the valve body 82 is arranged at the “second position” shown in FIG. 2B.
Further, a case where at least the cooling operation has been performed before the start of the hot water supply alone operation (that is, as an operation mode immediately before the start of the hot water supply alone operation) and a case where at least the heating operation has been performed before the start of the hot water supply alone operation And the position of the valve element 82 of the four-way valve 8 during the hot water supply alone operation is different.
 例えば、四方弁8の弁体82が「第1の位置」(図2A参照)に存在する場合の第1の給湯単独運転(図6参照)の開始前には、少なくとも冷房運転(図4、図5参照)が行われている。一方、四方弁8の弁体82が「第2の位置」(図2B参照)に存在する場合の第2の給湯単独運転(図8参照)の開始前には、少なくとも暖房運転(図7参照)が行われている。これによって、夏季には四方弁8の弁体82を「第1の位置」で維持できる一方、冬季には弁体82を「第2の位置」で維持できる。したがって、夏季・冬季のいずれにおいても、四方弁8の状態を変えることなく、空調給湯装置Wの運転モードを速やかに切り替えることができる。 For example, before the start of the first hot water supply independent operation (see FIG. 6) when the valve element 82 of the four-way valve 8 is at the “first position” (see FIG. 2A), at least the cooling operation (FIG. (See FIG. 5). On the other hand, before starting the second hot water supply independent operation (see FIG. 8) when the valve element 82 of the four-way valve 8 is at the “second position” (see FIG. 2B), at least the heating operation (see FIG. 7) ) Has been done. Thus, the valve element 82 of the four-way valve 8 can be maintained at the “first position” in summer, while the valve element 82 can be maintained at the “second position” in winter. Therefore, in both summer and winter, the operation mode of the air-conditioning and hot water supply device W can be quickly switched without changing the state of the four-way valve 8.
≪除霜運転≫
 蒸発器として機能している室外熱交換器4に多量の霜が付着した場合、室外熱交換器4の伝熱管(図示せず)に高温の冷媒を流して霜を溶かすことで、熱交換効率の低下を抑制することが望ましい。このような除霜運転として、以下では、第1の除霜運転及び第2の除霜運転について順に説明する。
≪Defrosting operation≫
When a large amount of frost adheres to the outdoor heat exchanger 4 functioning as an evaporator, a high-temperature refrigerant flows through a heat transfer tube (not shown) of the outdoor heat exchanger 4 to melt the frost, thereby improving the heat exchange efficiency. It is desirable to suppress the decrease in the temperature. Hereinafter, as such a defrosting operation, a first defrosting operation and a second defrosting operation will be sequentially described.
<第1の除霜運転>
 第1の除霜運転とは、貯湯タンク2の湯水の熱を用いて、室外熱交換器4の霜を溶かす運転モードである。なお、第1の除霜運転における各弁の開閉状態については、膨張弁9~12の開度の大きさ以外は、暖房給湯運転(図7参照)と同様である。したがって、図7を用いて、第1の除霜運転について説明する。なお、第1の除霜運転の開始時には、貯湯タンク2に貯留されている湯水の温度が比較的高いものとする。
<First defrosting operation>
The first defrosting operation is an operation mode in which the frost of the outdoor heat exchanger 4 is melted using the heat of the hot and cold water in the hot water storage tank 2. The open / close state of each valve in the first defrosting operation is the same as in the heating and hot water supply operation (see FIG. 7) except for the degree of opening of the expansion valves 9 to 12. Therefore, the first defrosting operation will be described with reference to FIG. At the start of the first defrosting operation, the temperature of hot water stored in hot water storage tank 2 is relatively high.
 第1の除霜運転を行う際、制御装置16は、図7に示すように、四方弁8を「第2の状態」(図2B参照)にする。さらに、制御装置16は、電磁弁14を閉弁する一方、電磁弁13を開弁し、膨張弁9~12の開度を適宜に調整する。なお、膨張弁11の開度は、略全開である。 際 When performing the first defrosting operation, the control device 16 sets the four-way valve 8 to the “second state” (see FIG. 2B), as shown in FIG. Further, the control device 16 closes the solenoid valve 14 while opening the solenoid valve 13 and appropriately adjusts the degree of opening of the expansion valves 9 to 12. The opening of the expansion valve 11 is substantially fully open.
 例えば、暖房運転から第1の除霜運転に移行する際、制御装置16は、四方弁8を含む各弁を前記したように制御し、暖房運転中は閉弁状態であった膨張弁11を略全開にする。そうすると、給湯用熱交換器3に存在していた高温の冷媒が、配管kb(一部)及び配管kcを順次に介して、室外熱交換器4に流れ込む。これによって、室外熱交換器4に付着した霜が溶かされる。 For example, when shifting from the heating operation to the first defrosting operation, the control device 16 controls each valve including the four-way valve 8 as described above, and controls the expansion valve 11 that has been closed during the heating operation. Open almost completely. Then, the high-temperature refrigerant existing in the hot-water supply heat exchanger 3 flows into the outdoor heat exchanger 4 via the pipe kb (partly) and the pipe kc sequentially. Thereby, the frost adhering to the outdoor heat exchanger 4 is melted.
 すなわち、室外熱交換器4の除霜を行う除霜運転中、四方弁8の弁体82は「第2の位置」(図2B参照)に存在し、圧縮機1、給湯用熱交換器3、膨張弁11(第1膨張弁)、及び室外熱交換器4を順次に介して冷媒が循環する。
 さらに、圧縮機1、開弁状態の膨張弁10(第1開閉手段)、四方弁8、室内熱交換器6、膨張弁12(第2膨張弁)、及び室外熱交換器4を順次に介して冷媒が循環する。これによって、室外熱交換器4の除霜を行いつつ、暖房運転を継続できる。なお、膨張弁10の開度が所定に調整されている状態も、前記した「開弁状態」に含まれる。
That is, during the defrosting operation in which the outdoor heat exchanger 4 is defrosted, the valve element 82 of the four-way valve 8 is in the “second position” (see FIG. 2B), and the compressor 1, the hot water supply heat exchanger 3 The refrigerant circulates sequentially through the expansion valve 11 (first expansion valve) and the outdoor heat exchanger 4.
Furthermore, the compressor 1, the expansion valve 10 in an open state (first opening / closing means), the four-way valve 8, the indoor heat exchanger 6, the expansion valve 12 (second expansion valve), and the outdoor heat exchanger 4 are sequentially connected. Refrigerant circulates. Thus, the heating operation can be continued while the outdoor heat exchanger 4 is being defrosted. The state in which the opening of the expansion valve 10 is adjusted to a predetermined value is also included in the above-mentioned "valve open state".
 また、暖房運転時、及び、第1の除霜運転時の一方から他方に移行する際、四方弁8の弁体82を移動させる必要がないため、運転モードの切替えを速やかに行うことができる。したがって、ユーザにとっての快適性を高めることができる。 In addition, at the time of the heating operation and when shifting from one of the first defrosting operation to the other, it is not necessary to move the valve element 82 of the four-way valve 8, so that the operation mode can be quickly switched. . Therefore, comfort for the user can be enhanced.
<第2の除霜運転>
 図9は、第2の除霜運転時における各弁の状態や冷媒の流れを示す説明図である。
 なお、「第2の除霜運転」とは、室外熱交換器4を凝縮器として機能させて除霜を行うとともに、貯湯タンク2の湯水の熱を用いて、室外熱交換器4の除霜を行う運転モードである。なお、第2の除霜運転の開始時には、貯湯タンク2に貯留されている湯水の温度が比較的高いものとする。
<Second defrosting operation>
FIG. 9 is an explanatory diagram showing the state of each valve and the flow of the refrigerant during the second defrosting operation.
The “second defrosting operation” refers to performing defrosting by making the outdoor heat exchanger 4 function as a condenser and defrosting the outdoor heat exchanger 4 using the heat of hot water in the hot water storage tank 2. This is an operation mode in which is performed. At the start of the second defrosting operation, the temperature of hot water stored in hot water storage tank 2 is relatively high.
 第2の除霜運転を行う際、制御装置16は、図9に示すように、四方弁8を「第1の状態」(図2A参照)にする。さらに、制御装置16は、膨張弁11及び電磁弁13を閉弁する一方、電磁弁14を開弁し、膨張弁9,10,12の開度を適宜に調整する。 際 When performing the second defrosting operation, the control device 16 sets the four-way valve 8 to the “first state” (see FIG. 2A), as shown in FIG. Further, the control device 16 closes the expansion valve 11 and the electromagnetic valve 13, opens the electromagnetic valve 14, and appropriately adjusts the opening degrees of the expansion valves 9, 10, and 12.
 例えば、暖房運転から第2の除霜運転に移行する際、暖房運転中は閉弁状態であった電磁弁14が開弁されると、給湯用熱交換器3に存在していた高温の冷媒が、配管kb(一部)、配管kj、及び配管kd(一部)を順次に介して、室外熱交換器4に流れ込む。これによって、室外熱交換器4に付着した霜が溶かされる。 For example, when shifting from the heating operation to the second defrosting operation, if the solenoid valve 14 that has been closed during the heating operation is opened, the high-temperature refrigerant existing in the hot water supply heat exchanger 3 may be used. Flows into the outdoor heat exchanger 4 sequentially through the pipe kb (part), the pipe kj, and the pipe kd (part). Thereby, the frost adhering to the outdoor heat exchanger 4 is melted.
 すなわち、室外熱交換器4の除霜を行う除霜運転中、圧縮機1及び給湯用熱交換器3を順次に介して通流する冷媒が膨張弁11(第1膨張弁)を迂回し、さらに、室外熱交換器4、膨張弁12(第2膨張弁)、室内熱交換器6、四方弁8、及び逆止弁15を順次に介して循環する。ここで、四方弁8の弁体82は、室内熱交換器6の他端q6側と配管ke(第1配管)とを連通させる「第1の位置」に存在している。これによって、室外熱交換器4が凝縮器として機能する。 That is, during the defrosting operation for defrosting the outdoor heat exchanger 4, the refrigerant flowing sequentially through the compressor 1 and the hot water supply heat exchanger 3 bypasses the expansion valve 11 (first expansion valve), Furthermore, the refrigerant circulates sequentially through the outdoor heat exchanger 4, the expansion valve 12 (second expansion valve), the indoor heat exchanger 6, the four-way valve 8, and the check valve 15. Here, the valve element 82 of the four-way valve 8 exists at a “first position” that allows the other end q6 side of the indoor heat exchanger 6 to communicate with the pipe ke (first pipe). Thereby, the outdoor heat exchanger 4 functions as a condenser.
 その結果、給湯用熱交換器3から室外熱交換器4に導かれる高温の冷媒と相まって、室外熱交換器4の霜が速やかに溶かされる。したがって、第2の除霜運転では、第1の除霜運転よりも短時間で室外熱交換器4の除霜を行うことができる。 As a result, the frost in the outdoor heat exchanger 4 is quickly melted in combination with the high-temperature refrigerant guided from the hot water supply heat exchanger 3 to the outdoor heat exchanger 4. Therefore, in the second defrosting operation, the outdoor heat exchanger 4 can be defrosted in a shorter time than in the first defrosting operation.
 なお、室外熱交換器4の除霜運転は、前記した制御に限定されない。例えば、給湯用熱交換器3への冷媒の流れを膨張弁9で遮断し、室外熱交換器4を凝縮器として機能させる一方、室内熱交換器6を蒸発器として機能させることで、室外熱交換器4の除霜を行うようにしてもよい。 Note that the defrosting operation of the outdoor heat exchanger 4 is not limited to the control described above. For example, the flow of the refrigerant to the hot water supply heat exchanger 3 is shut off by the expansion valve 9, and the outdoor heat exchanger 4 functions as a condenser, while the indoor heat exchanger 6 functions as an evaporator. The defrosting of the exchanger 4 may be performed.
<効果>
 本実施形態によれば、四方弁8から配管keを介して圧縮機1の吸入側に向かう冷媒の流れが逆止弁15によって許容され、逆向きの流れが禁止される。これによって、第1の給湯単独運転(図6参照)や、第2の給湯単独運転(図8参照)が行われているとき、室外熱交換器4で蒸発したガス冷媒が、四方弁8を介して、室内熱交換器6に流れ出ることを抑制できる。したがって、冷凍サイクルの高効率化を図ることができる。
<Effect>
According to the present embodiment, the check valve 15 allows the flow of the refrigerant from the four-way valve 8 to the suction side of the compressor 1 via the pipe ke, and prohibits the flow in the reverse direction. Accordingly, when the first hot water supply independent operation (see FIG. 6) or the second hot water supply independent operation (see FIG. 8) is being performed, the gas refrigerant evaporated in the outdoor heat exchanger 4 causes the four-way valve 8 to operate. Through this, it is possible to prevent the heat from flowing into the indoor heat exchanger 6. Therefore, the efficiency of the refrigeration cycle can be improved.
 また、少なくとも冷房運転が行われていた状態(図4、図5参照)から第1の給湯単独運転(図6参照)に切り替えられる際、四方弁8が「第1の状態」(図2A参照)で維持される。一方、少なくとも暖房運転が行われていた状態(図7参照)から第2の給湯単独運転(図8参照)に切り替えられる際、四方弁8が「第2の状態」(図2B参照)で維持される。したがって、運転モードの切替えが速やかに行われるため、ユーザにとっての快適性を高めることができる。 Further, at least when the cooling operation is switched from the state in which the cooling operation is being performed (see FIGS. 4 and 5) to the first hot water supply independent operation (see FIG. 6), the four-way valve 8 is in the "first state" (see FIG. 2A). ) Is maintained. On the other hand, at least when the heating operation is switched from the state in which the heating operation is being performed (see FIG. 7) to the second hot water supply independent operation (see FIG. 8), the four-way valve 8 is maintained in the "second state" (see FIG. Is done. Therefore, since the switching of the operation mode is performed promptly, the comfort for the user can be enhanced.
≪変形例≫
 以上、本発明に係る空調給湯装置Wについて実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、実施形態(図1参照)では、配管kaに膨張弁9が設けられ、別の配管kgに膨張弁10(第1開閉手段)が設けられる構成について説明したが、膨張弁9,10は必ずしもそれぞれ単独の弁で構成される必要はない。すなわち、膨張弁9,10に代えて、配管ka,kgの接続箇所に三方弁(第1開閉手段)を設けてもよいし、また、四方弁(第1開閉手段)を設けてもよい。このような構成でも、実施形態と同様の効果が奏される。
≪Modified example≫
As described above, the air-conditioning and hot-water supply device W according to the present invention has been described in the embodiments, but the present invention is not limited to these descriptions, and various changes can be made.
For example, in the embodiment (see FIG. 1), the configuration in which the expansion valve 9 is provided in the pipe ka and the expansion valve 10 (first opening / closing means) is provided in another pipe kg has been described. It is not always necessary to constitute each with a single valve. That is, instead of the expansion valves 9 and 10, a three-way valve (first opening / closing means) may be provided at the connection point between the pipes ka and kg, or a four-way valve (first opening / closing means) may be provided. With such a configuration, the same effect as that of the embodiment can be obtained.
 また、実施形態(図1参照)で説明した膨張弁9に代えて電磁弁(図示せず)を設け、さらに、別の膨張弁10に代えて電磁弁(第1開閉手段:図示せず)を設けてもよい。なお、前記した各電磁弁の各運転モードでの開閉状態は、膨張弁9,10の開閉状態と同様である。 Also, an electromagnetic valve (not shown) is provided in place of the expansion valve 9 described in the embodiment (see FIG. 1), and an electromagnetic valve (first opening / closing means: not shown) is provided in place of another expansion valve 10. May be provided. The open / closed state of each solenoid valve in each operation mode is the same as the open / closed state of the expansion valves 9 and 10.
 また、実施形態(図1参照)では、配管keに逆止弁15を設ける構成について説明したが、これに限らない。例えば、逆止弁15に代えて、配管keに膨張弁(図示せず)を設けてもよい。そして、制御装置16が、第1の給湯単独運転(図6参照)や第2の給湯単独運転(図8参照)を行う際、前記した膨張弁(図示せず)を閉弁するようにしてもよい。このような構成でも、室外熱交換器4で蒸発したガス冷媒が、四方弁8を介して室内熱交換器6に流れ出ることを抑制できる。 In the embodiment (see FIG. 1), the configuration in which the check valve 15 is provided in the pipe ke has been described, but the present invention is not limited to this. For example, instead of the check valve 15, an expansion valve (not shown) may be provided in the pipe ke. Then, when the control device 16 performs the first hot water supply independent operation (see FIG. 6) or the second hot water supply independent operation (see FIG. 8), the control valve 16 closes the expansion valve (not shown). Is also good. Even with such a configuration, it is possible to suppress the gas refrigerant evaporated in the outdoor heat exchanger 4 from flowing out to the indoor heat exchanger 6 via the four-way valve 8.
 また、実施形態で説明した空調給湯装置Wの構成は一例であり、これに限定されるものではない。例えば、電磁弁13等を適宜に省略してもよい。すなわち、圧縮機1、給湯用熱交換器3、膨張弁11(第1膨張弁)、及び室外熱交換器4を順次に介して冷媒が循環する流路(図6、図8参照)を含む冷媒回路Qを備える空調給湯装置Wは、さらに、次の構成を備えている。すなわち、空調給湯装置Wは、本体81と、本体81の内部に設けられる弁体82と、を有し、冷媒回路Qにおける冷媒の流路を切り替える四方弁8と、四方弁8の低圧側接続口heと圧縮機1の吸入側とを接続する配管ke(第1配管)に設けられる逆止弁15と、を備えている。そして、四方弁8の高圧側接続口hgと圧縮機1の吐出側との間が膨張弁10(第1開閉手段)によって遮断され、逆止弁15は、四方弁8から配管ke(第1配管)を介して圧縮機1の吸入側に向かう冷媒の流れを許容し、逆向きの流れを禁止する。これによって、空調給湯装置Wにおける給湯単独運転を適切に行うことができる。 The configuration of the air-conditioning and hot-water supply device W described in the embodiment is an example, and the present invention is not limited to this. For example, the solenoid valve 13 and the like may be omitted as appropriate. That is, a flow path (see FIGS. 6 and 8) through which the refrigerant circulates sequentially through the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4 is included. The air-conditioning and hot water supply device W including the refrigerant circuit Q further has the following configuration. That is, the air-conditioning and hot-water supply device W has a main body 81 and a valve element 82 provided inside the main body 81, a four-way valve 8 for switching the flow path of the refrigerant in the refrigerant circuit Q, and a low-pressure connection of the four-way valve 8. A check valve 15 provided on a pipe ke (first pipe) connecting the port he and the suction side of the compressor 1. Then, the connection between the high pressure side connection port hg of the four-way valve 8 and the discharge side of the compressor 1 is shut off by the expansion valve 10 (first opening / closing means), and the check valve 15 is connected to the pipe ke (first The flow of the refrigerant toward the suction side of the compressor 1 through the pipe (pipe) is permitted, and the flow in the opposite direction is prohibited. Thereby, the hot-water supply alone operation in the air-conditioning and hot-water supply device W can be appropriately performed.
 また、実施形態では、少なくとも冷房運転が行われていた後、給湯単独運転を行う場合、制御装置16が、四方弁8の弁体82を「第1の位置」(図2A参照)で維持する処理について説明したが、これに限らない。
 すなわち、給湯用熱交換器3で湯水を加熱する給湯単独運転を行う場合において、室内熱交換器6の温度が室外熱交換器4の温度よりも低いとき、又は、室内熱交換器6の空調対象空間の温度が外気の温度よりも低いとき、制御装置16が次の処理を行うようにしてもよい。すなわち、制御装置16は、四方弁8の弁体82が「第1の位置」(図2A参照)に存在する状態で、図6に示すように、圧縮機1、給湯用熱交換器3、膨張弁11(第1膨張弁)、及び室外熱交換器4を順次に介して冷媒を循環させるようにしてもよい。
In the embodiment, when performing the hot water supply alone operation at least after the cooling operation is performed, the control device 16 maintains the valve element 82 of the four-way valve 8 at the “first position” (see FIG. 2A). Although the processing has been described, the present invention is not limited to this.
That is, in the case of performing the hot water supply alone operation in which the hot water is heated by the hot water supply heat exchanger 3, the temperature of the indoor heat exchanger 6 is lower than the temperature of the outdoor heat exchanger 4, or the air conditioning of the indoor heat exchanger 6 When the temperature of the target space is lower than the temperature of the outside air, the control device 16 may perform the following processing. That is, in a state where the valve element 82 of the four-way valve 8 is at the “first position” (see FIG. 2A), the control device 16 controls the compressor 1, the hot water supply heat exchanger 3, The refrigerant may be circulated through the expansion valve 11 (first expansion valve) and the outdoor heat exchanger 4 sequentially.
 なお、室外熱交換器4や室内熱交換器6のそれぞれに温度センサ(図示せず)が設置されるとともに、空調対象空間の温度を検出する室内温度センサ(図示せず)や、外気温度を検出する室外温度センサ(図示せず)が設置されているものとする。
 前記したように、室内熱交換器6の温度が室外熱交換器4の温度よりも低いとき、制御装置16が四方弁8の弁体82を「第1の位置」にすることで、弁体82の上側(外側)の方が下側(内側)よりも高圧になりやすくなる。したがって、弁体82と台座83(図2A参照)との間に隙間が生じにくくなるため、室外熱交換器4から四方弁8を介して室内熱交換器8に冷媒が流れ出ることを抑制できる。
A temperature sensor (not shown) is installed in each of the outdoor heat exchanger 4 and the indoor heat exchanger 6, and an indoor temperature sensor (not shown) for detecting the temperature of the space to be air-conditioned and an outside air temperature. It is assumed that an outdoor temperature sensor (not shown) for detecting is installed.
As described above, when the temperature of the indoor heat exchanger 6 is lower than the temperature of the outdoor heat exchanger 4, the control device 16 sets the valve body 82 of the four-way valve 8 to the “first position”. The pressure on the upper side (outside) of 82 becomes higher than that on the lower side (inside). Therefore, a gap is less likely to be formed between the valve element 82 and the pedestal 83 (see FIG. 2A), so that the refrigerant can be prevented from flowing out of the outdoor heat exchanger 4 to the indoor heat exchanger 8 via the four-way valve 8.
 また、室外熱交換器4に複数の室内熱交換器6が並列接続され、給湯用熱交換器3で湯水を加熱する給湯単独運転を行う場合において、制御装置16が、次の処理を行うようにすることが好ましい。すなわち、複数の室内熱交換器6のうち、その温度が室外熱交換器4の温度よりも低いものが少なくとも一つ存在するとき、又は、複数の室内熱交換器6のそれぞれの空調対象空間のうち、その温度が外気の温度よりも低いものが少なくとも一つ存在するとき、制御装置16は、四方弁8の弁体82が「第1の位置」(図2A参照)に存在する状態で、圧縮機1、給湯用熱交換器3、膨張弁11(第1膨張弁)、及び室外熱交換器4を順次に介して冷媒を循環させる。これによって、弁体82の上側の方が下側よりも高圧になりやすくなり、弁体82と台座83(図2A参照)との間に隙間が生じにくくなる。 Further, when a plurality of indoor heat exchangers 6 are connected in parallel to the outdoor heat exchanger 4 and the hot water supply alone operation of heating hot water with the hot water supply heat exchanger 3 is performed, the control device 16 performs the following processing. Is preferable. That is, when at least one of the plurality of indoor heat exchangers 6 whose temperature is lower than the temperature of the outdoor heat exchanger 4 exists, or when the air conditioning target space of each of the plurality of indoor heat exchangers 6 When at least one of the four-way valve 8 has a temperature lower than the temperature of the outside air, the control device 16 determines that the valve body 82 of the four-way valve 8 is in the “first position” (see FIG. 2A). The refrigerant is circulated through the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4 sequentially. As a result, the pressure on the upper side of the valve body 82 tends to be higher than that on the lower side, and a gap is less likely to be formed between the valve body 82 and the pedestal 83 (see FIG. 2A).
 また、給湯用熱交換器3で湯水を加熱する給湯単独運転を行う場合において、室内熱交換器6の温度と室外熱交換器4の温度との差が所定範囲内であり、さらに、当該給湯単独運転の開始前に四方弁8の弁体82が「第1の位置」(図2A参照)に存在するときには(つまり、直前に少なくとも冷房運転が行われていた場合には)、制御装置16が次の処理を行うことが好ましい。すなわち、制御装置16は、弁体82を「第1の位置」に維持し、圧縮機1、給湯用熱交換器3、膨張弁11(第1膨張弁)、及び室外熱交換器4を順次に介して冷媒を循環させる。これによって、四方弁8の弁体82を移動させることなく、速やかに給湯単独運転に切り替えることができる。 In addition, when performing the hot water supply alone operation in which the hot water is heated by the hot water supply heat exchanger 3, the difference between the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 4 is within a predetermined range. When the valve element 82 of the four-way valve 8 is in the “first position” (see FIG. 2A) before the start of the single operation (that is, at least when the cooling operation has been performed immediately before), the control device 16 It is preferable to perform the following processing. That is, the control device 16 maintains the valve body 82 at the “first position” and sequentially operates the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4. The refrigerant is circulated through. Thereby, it is possible to quickly switch to the hot water supply independent operation without moving the valve element 82 of the four-way valve 8.
 また、給湯用熱交換器3で湯水を加熱する給湯単独運転を行う場合において、室内熱交換器6の温度が室外熱交換器4の温度よりも高いとき、又は、室内熱交換器6の空調対象空間の温度が外気の温度よりも高いとき、制御装置16が次の処理を行うことが好ましい。すなわち、制御装置16は、四方弁8の弁体82が「第2の位置」(図2B参照)に存在する状態で、図8に示すように、圧縮機1、給湯用熱交換器3、膨張弁11(第1膨張弁)、及び室外熱交換器4を順次に介して冷媒を循環させる。
 前記したように、室内熱交換器6の温度が室外熱交換器4の温度よりも高いとき、制御装置16が四方弁8の弁体82を「第2の位置」にすることで、弁体82の上側の方が下側よりも高圧になりやすくなる。したがって、弁体82と台座83(図2B参照)との間に隙間が生じにくくなるため、室外熱交換器4から四方弁8を介して室内熱交換器8に冷媒が流れ出ることを抑制できる。
Further, in the case of performing the hot water supply alone operation of heating the hot water with the hot water supply heat exchanger 3, when the temperature of the indoor heat exchanger 6 is higher than the temperature of the outdoor heat exchanger 4, or the air conditioning of the indoor heat exchanger 6 is performed. When the temperature of the target space is higher than the temperature of the outside air, the control device 16 preferably performs the following processing. That is, in a state where the valve element 82 of the four-way valve 8 is at the “second position” (see FIG. 2B), the control device 16 controls the compressor 1, the hot water supply heat exchanger 3, The refrigerant is circulated through the expansion valve 11 (first expansion valve) and the outdoor heat exchanger 4 sequentially.
As described above, when the temperature of the indoor heat exchanger 6 is higher than the temperature of the outdoor heat exchanger 4, the control device 16 sets the valve body 82 of the four-way valve 8 to the “second position”. The upper side of 82 is more likely to have a higher pressure than the lower side. Therefore, a gap is less likely to be formed between the valve element 82 and the pedestal 83 (see FIG. 2B), so that the refrigerant can be prevented from flowing out of the outdoor heat exchanger 4 to the indoor heat exchanger 8 via the four-way valve 8.
 また、室外熱交換器4に複数の室内熱交換器6が並列接続され、給湯用熱交換器3で湯水を加熱する給湯単独運転を行う場合において、制御装置16が、次の処理を行うようにすることが好ましい。すなわち、複数の室内熱交換器6のそれぞれの温度が全て、室外熱交換器4の温度よりも高いとき、又は、複数の室内熱交換器6のそれぞれの空調対象空間の温度が全て、外気の温度よりも高いとき、制御装置16は、四方弁8の弁体82が「第2の位置」(図2B参照)に存在する状態で、圧縮機1、給湯用熱交換器3、膨張弁11(第1膨張弁)、及び室外熱交換器4を順次に介して冷媒を循環させる。これによって、弁体82の上側の方が下側よりも高圧になりやすくなり、弁体82と台座83(図2B参照)との間に隙間が生じにくくなる。 Further, when a plurality of indoor heat exchangers 6 are connected in parallel to the outdoor heat exchanger 4 and the hot water supply alone operation of heating hot water with the hot water supply heat exchanger 3 is performed, the control device 16 performs the following processing. Is preferable. That is, when the respective temperatures of the plurality of indoor heat exchangers 6 are all higher than the temperature of the outdoor heat exchanger 4, or when the temperatures of the air-conditioned spaces of the plurality of indoor heat exchangers 6 are all outside air, When the temperature is higher than the temperature, the control device 16 controls the compressor 1, the hot water supply heat exchanger 3, and the expansion valve 11 in a state where the valve element 82 of the four-way valve 8 is in the "second position" (see FIG. 2B). The refrigerant is circulated through the (first expansion valve) and the outdoor heat exchanger 4 sequentially. As a result, the pressure on the upper side of the valve body 82 tends to be higher than that on the lower side, and a gap is less likely to be generated between the valve body 82 and the pedestal 83 (see FIG. 2B).
 また、給湯用熱交換器3で湯水を加熱する給湯単独運転を行う場合において、室内熱交換器6の温度と室外熱交換器4の温度との差が所定範囲内であり、さらに、当該給湯単独運転の開始前に四方弁8の弁体82が「第2の位置」(図2B参照)に存在するときには(つまり、直前に少なくとも暖房運転が行われていた場合には)、制御装置16が次の処理を行うことが好ましい。すなわち、制御装置16は、弁体82を「第2の位置」に維持し、圧縮機1、給湯用熱交換器3、膨張弁11(第1膨張弁)、及び室外熱交換器4を順次に介して冷媒を循環させる。これによって、四方弁8の弁体82を移動させることなく、速やかに給湯単独運転に切り替えることができる。 In addition, when performing the hot water supply alone operation in which the hot water is heated by the hot water supply heat exchanger 3, the difference between the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 4 is within a predetermined range. When the valve element 82 of the four-way valve 8 is in the “second position” (see FIG. 2B) before the start of the single operation (that is, at least when the heating operation has been performed immediately before), the control device 16 It is preferable to perform the following processing. That is, the control device 16 maintains the valve body 82 at the “second position”, and sequentially operates the compressor 1, the hot water supply heat exchanger 3, the expansion valve 11 (first expansion valve), and the outdoor heat exchanger 4. The refrigerant is circulated through. Thereby, it is possible to quickly switch to the hot water supply independent operation without moving the valve element 82 of the four-way valve 8.
 また、給湯単独運転を行う場合、その直前の運転モードに関わらず、四方弁8の弁体82を「第1の位置」(図2A参照)に配置するようにしてもよい。このような場合において、例えば、空調対象空間の温度よりも外気の温度の方が低くなりやすい冬季には、四方弁8の弁体82の下側(内側)の圧力が、弁体82の上側(外側)よりも若干高くなる可能性もある。このような場合、弁体82と台座83(図2A参照)との間に隙間が生じ、さらに、室外熱交換器4で蒸発したガス冷媒が、前記した隙間を介して室内熱交換器6に流出する可能性がある。しかしながら、室内熱交換器6が凝縮器として機能することが多い冬季には、室内熱交換器6にガス冷媒が充満している。したがって、四方弁8に生じた隙間を介して、室内熱交換器6にガス冷媒が多少漏れたとしても、冷媒の圧力が均衡状態(均圧状態)に達して冷媒の漏れがすぐに止まるため、特に問題はない。 In addition, when performing the hot water supply independent operation, the valve element 82 of the four-way valve 8 may be arranged at the “first position” (see FIG. 2A) regardless of the operation mode immediately before. In such a case, for example, in winter, when the temperature of the outside air tends to be lower than the temperature of the space to be air-conditioned, the pressure below (inside) the valve element 82 of the four-way valve 8 increases It may be slightly higher than (outside). In such a case, a gap is formed between the valve element 82 and the pedestal 83 (see FIG. 2A), and the gas refrigerant evaporated in the outdoor heat exchanger 4 is transferred to the indoor heat exchanger 6 via the gap. May leak. However, in winter, the indoor heat exchanger 6 often functions as a condenser, and the indoor heat exchanger 6 is filled with a gas refrigerant. Therefore, even if the gas refrigerant leaks somewhat into the indoor heat exchanger 6 through the gap formed in the four-way valve 8, the refrigerant pressure reaches an equilibrium state (equalized state) and the refrigerant leakage stops immediately. There is no particular problem.
 また、実施形態(図1参照)では、3台の室内ユニットUiが設けられるマルチ型の空調給湯装置Wについて説明したが、これに限らない。例えば、室内ユニットと室外ユニットとが一台ずつ設けられた空気調和機(図示せず)の他、さまざまな種類の空気調和機にも実施形態を適用できる。 Also, in the embodiment (see FIG. 1), the multi-type air-conditioning and hot-water supply device W provided with three indoor units Ui has been described, but the present invention is not limited to this. For example, the embodiment can be applied to various types of air conditioners in addition to an air conditioner (not shown) in which one indoor unit and one outdoor unit are provided.
 また、実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
The embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described above. Further, for a part of the configuration of the embodiment, it is possible to add, delete, or replace another configuration.
In addition, the above-described mechanisms and configurations are shown to be necessary for the description, and do not necessarily indicate all the mechanisms and configurations on the product.
 1  圧縮機
 2  貯湯タンク
 3  給湯用熱交換器
 4  室外熱交換器
 5  室外ファン
 6  室内熱交換器
 7  室内ファン
 8  四方弁
 81 本体
 82 弁体
 9  膨張弁
 10 膨張弁(第1開閉手段)
 11 膨張弁(第1膨張弁)
 12 膨張弁(第2膨張弁)
 13 電磁弁(第2開閉手段)
 14 電磁弁(第3開閉手段)
 15 逆止弁
 16 制御装置
 he 低圧側接続口
 hf 室内側接続口
 hg 高圧側接続口
 hi 室外側接続口
 kb 配管(第3配管)
 kd 配管(第2配管)
 ke 配管(第1配管)
 kj 配管(第4配管)
 Ui 室内ユニット
 Uo 室外ユニット
 W  空調給湯装置
DESCRIPTION OF SYMBOLS 1 Compressor 2 Hot water storage tank 3 Heat exchanger for hot-water supply 4 Outdoor heat exchanger 5 Outdoor fan 6 Indoor heat exchanger 7 Indoor fan 8 Four-way valve 81 Main body 82 Valve body 9 Expansion valve 10 Expansion valve (first opening / closing means)
11 Expansion valve (first expansion valve)
12 Expansion valve (second expansion valve)
13 solenoid valve (second opening / closing means)
14. Solenoid valve (third opening / closing means)
15 check valve 16 control device he low pressure side connection port hf indoor side connection port hg high pressure side connection port hi outdoor side connection port kb piping (third piping)
kd piping (second piping)
ke piping (first piping)
kj piping (fourth piping)
Ui Indoor unit Uo Outdoor unit W Air conditioning hot water supply device

Claims (19)

  1.  圧縮機、給湯用熱交換器、第1膨張弁、及び室外熱交換器を順次に介して冷媒が循環する冷媒回路を備えるとともに、
     本体と、前記本体の内部に設けられる弁体と、を有し、前記冷媒回路における冷媒の流路を切り替える四方弁と、
     前記四方弁の低圧側接続口と前記圧縮機の吸入側とを接続する第1配管に設けられる逆止弁と、を備え、
     前記四方弁の高圧側接続口と前記圧縮機の吐出側との間が第1開閉手段によって遮断され、
     前記逆止弁は、前記四方弁から前記第1配管を介して前記圧縮機の吸入側に向かう冷媒の流れを許容し、逆向きの流れを禁止する空調給湯装置。 
    A compressor, a heat exchanger for hot water supply, a first expansion valve, and a refrigerant circuit in which refrigerant circulates sequentially through the outdoor heat exchanger,
    A main body, and a valve body provided inside the main body, and a four-way valve that switches a flow path of a refrigerant in the refrigerant circuit,
    A check valve provided in a first pipe connecting a low pressure side connection port of the four-way valve and a suction side of the compressor,
    The first opening / closing means shuts off the connection between the high pressure side connection port of the four-way valve and the discharge side of the compressor,
    The air-conditioning and hot-water supply device, wherein the check valve allows a flow of the refrigerant from the four-way valve to the suction side of the compressor via the first pipe and prohibits a reverse flow.
  2.  前記第1配管において前記逆止弁の下流側と前記室外熱交換器とが第2配管を介して接続され、
     一端側で冷媒の流れが遮断されている室内熱交換器の他端側と前記第1配管とを連通させる第1の位置に、前記四方弁の前記弁体が存在していること
     を特徴とする請求項1に記載の空調給湯装置。
    In the first pipe, the downstream side of the check valve and the outdoor heat exchanger are connected via a second pipe,
    The valve body of the four-way valve is located at a first position that connects the other end of the indoor heat exchanger in which the flow of the refrigerant is blocked at one end to the first pipe. The air-conditioning and hot-water supply device according to claim 1.
  3.  前記圧縮機、前記給湯用熱交換器、前記第1膨張弁、及び前記室外熱交換器を順次に介して冷媒が循環する状態と、
     前記室外熱交換器が凝縮器として機能し、前記室内熱交換器が蒸発器として機能する別の状態と、のうち一方から他方に切替可能であり、
     前記一方から前記他方に切り替えられる際、前記四方弁の前記弁体の位置が、前記第1の位置で維持されること
     を特徴とする請求項2に記載の空調給湯装置。
    A state in which the refrigerant circulates sequentially through the compressor, the heat exchanger for hot water supply, the first expansion valve, and the outdoor heat exchanger;
    The outdoor heat exchanger functions as a condenser, and another state in which the indoor heat exchanger functions as an evaporator is switchable from one to the other,
    The air-conditioning and hot-water supply device according to claim 2, wherein the position of the valve body of the four-way valve is maintained at the first position when switching from the one to the other.
  4.  前記圧縮機、前記給湯用熱交換器、前記第1膨張弁、及び前記室外熱交換器を順次に介して冷媒を循環させる給湯単独運転の開始前に少なくとも冷房運転が行われていた場合と、前記給湯単独運転の開始前に少なくとも暖房運転が行われていた場合とでは、前記給湯単独運転中の前記弁体の位置が異なっており、
     前記弁体が前記第1の位置に存在する場合の前記給湯単独運転の開始前には、少なくとも冷房運転が行われていること
     を特徴とする請求項2に記載の空調給湯装置。
    The compressor, the hot-water supply heat exchanger, the first expansion valve, and the outdoor heat exchanger, in which at least the cooling operation has been performed before the start of the hot-water supply alone operation in which the refrigerant is circulated through the outdoor heat exchanger, In the case where at least the heating operation has been performed before the start of the hot water supply alone operation, the position of the valve body during the hot water supply alone operation is different,
    3. The air-conditioning and hot-water supply device according to claim 2, wherein at least the cooling operation is performed before the single hot-water supply operation starts when the valve element is at the first position. 4.
  5.  前記第2配管に設けられる第2開閉手段を備え、
     前記第2開閉手段が開弁していること
     を特徴とする請求項2に記載の空調給湯装置。
    A second opening / closing means provided in the second pipe,
    The air-conditioning and hot-water supply device according to claim 2, wherein the second opening / closing means is open.
  6.  前記四方弁の室内側接続口は、前記室内熱交換器及び第3配管を順次に介して、前記給湯用熱交換器に接続され、
     前記第2配管において前記第2開閉手段よりも前記室外熱交換器側に一端が接続され、前記第3配管に他端が接続される第4配管を備えるとともに、
     前記第3配管において、前記室内熱交換器の付近に設けられる第2膨張弁と、
     前記第4配管に設けられる第3開閉手段と、を備え、
     前記第2膨張弁及び前記第3開閉手段が、いずれも閉弁していること
     を特徴とする請求項5に記載の空調給湯装置。
    The indoor side connection port of the four-way valve is connected to the hot water supply heat exchanger through the indoor heat exchanger and the third pipe sequentially,
    A second pipe having one end connected to the outdoor heat exchanger side with respect to the second opening / closing means and a fourth pipe connected to the third pipe at the other end;
    A second expansion valve provided in the third pipe near the indoor heat exchanger;
    A third opening / closing means provided in the fourth pipe,
    The air conditioning and hot water supply apparatus according to claim 5, wherein both the second expansion valve and the third opening / closing means are closed.
  7.  前記給湯用熱交換器で湯水を加熱する給湯単独運転を行う場合において、
     前記室内熱交換器の温度が前記室外熱交換器の温度よりも低いとき、
     又は、
     前記室内熱交換器の空調対象空間の温度が外気の温度よりも低いとき、
     前記四方弁の前記弁体が前記第1の位置に存在する状態で、前記圧縮機、前記給湯用熱交換器、前記第1膨張弁、及び前記室外熱交換器を順次に介して冷媒を循環させること
     を特徴とする請求項2に記載の空調給湯装置。
    In the case of performing a hot water supply alone operation of heating hot water with the hot water supply heat exchanger,
    When the temperature of the indoor heat exchanger is lower than the temperature of the outdoor heat exchanger,
    Or
    When the temperature of the air-conditioned space of the indoor heat exchanger is lower than the temperature of the outside air,
    In a state where the valve element of the four-way valve is at the first position, the refrigerant is circulated sequentially through the compressor, the hot water supply heat exchanger, the first expansion valve, and the outdoor heat exchanger. The air-conditioning and hot-water supply device according to claim 2, wherein:
  8.  前記室外熱交換器に複数の前記室内熱交換器が並列接続され、
     前記給湯用熱交換器で湯水を加熱する給湯単独運転を行う場合において、
     複数の前記室内熱交換器のうち、その温度が前記室外熱交換器の温度よりも低いものが少なくとも一つ存在するとき、
     又は、
     複数の前記室内熱交換器のそれぞれの空調対象空間のうち、その温度が外気の温度よりも低いものが少なくとも一つ存在するとき、
     前記四方弁の前記弁体が前記第1の位置に存在する状態で、前記圧縮機、前記給湯用熱交換器、前記第1膨張弁、及び前記室外熱交換器を順次に介して冷媒を循環させること
     を特徴とする請求項2に記載の空調給湯装置。
    A plurality of the indoor heat exchangers are connected in parallel to the outdoor heat exchanger,
    In the case of performing a hot water supply alone operation of heating hot water with the hot water supply heat exchanger,
    When there is at least one of the plurality of indoor heat exchangers whose temperature is lower than the temperature of the outdoor heat exchanger,
    Or
    When the air conditioning target space of each of the plurality of indoor heat exchangers has at least one whose temperature is lower than the temperature of the outside air,
    In a state where the valve element of the four-way valve is at the first position, the refrigerant is circulated sequentially through the compressor, the hot water supply heat exchanger, the first expansion valve, and the outdoor heat exchanger. The air-conditioning and hot-water supply device according to claim 2, wherein:
  9.  前記給湯用熱交換器で湯水を加熱する給湯単独運転を行う場合において、前記室内熱交換器の温度と前記室外熱交換器の温度との差が所定範囲内であり、さらに、当該給湯単独運転の開始前に前記四方弁の前記弁体が前記第1の位置に存在するときには、前記弁体を前記第1の位置に維持し、前記圧縮機、前記給湯用熱交換器、前記第1膨張弁、及び前記室外熱交換器を順次に介して冷媒を循環させること
     を特徴とする請求項2に記載の空調給湯装置。
    In a case where the hot water supply alone operation for heating hot water with the hot water supply heat exchanger is performed, a difference between the temperature of the indoor heat exchanger and the temperature of the outdoor heat exchanger is within a predetermined range, and further, the hot water supply alone operation When the valve element of the four-way valve is at the first position before the start of the operation, the valve element is maintained at the first position, and the compressor, the hot water supply heat exchanger, the first expansion The air-conditioning and hot water supply apparatus according to claim 2, wherein the refrigerant is circulated sequentially through the valve and the outdoor heat exchanger.
  10.  前記室外熱交換器と前記第1配管とを連通させる第2の位置に、前記四方弁の前記弁体が存在していること
     を特徴とする請求項1に記載の空調給湯装置。
    The air conditioning and hot water supply apparatus according to claim 1, wherein the valve body of the four-way valve is located at a second position where the outdoor heat exchanger communicates with the first pipe.
  11.  前記圧縮機、前記給湯用熱交換器、前記第1膨張弁、及び前記室外熱交換器を順次に介して冷媒が循環する状態と、
     室内熱交換器が凝縮器として機能し、前記室外熱交換器が蒸発器として機能する別の状態と、のうち一方から他方に切替可能であり、
     前記一方から前記他方に切り替えられる際、前記四方弁の前記弁体の位置が、前記第2の位置で維持されること
     を特徴とする請求項10に記載の空調給湯装置。
    A state in which the refrigerant circulates sequentially through the compressor, the heat exchanger for hot water supply, the first expansion valve, and the outdoor heat exchanger;
    The indoor heat exchanger functions as a condenser, and the outdoor heat exchanger functions as an evaporator in another state, and can be switched from one to the other,
    The air conditioning and hot water supply apparatus according to claim 10, wherein the position of the valve body of the four-way valve is maintained at the second position when the one is switched from the one to the other.
  12.  前記圧縮機、前記給湯用熱交換器、前記第1膨張弁、及び前記室外熱交換器を順次に介して冷媒を循環させる給湯単独運転の開始前に少なくとも冷房運転が行われていた場合と、前記給湯単独運転の開始前に少なくとも暖房運転が行われていた場合とでは、前記給湯単独運転中の前記弁体の位置が異なっており、
     前記弁体が前記第2の位置に存在する場合の前記給湯単独運転の開始前には、少なくとも暖房運転が行われていること
     を特徴とする請求項10に記載の空調給湯装置。
    The compressor, the hot-water supply heat exchanger, the first expansion valve, and the outdoor heat exchanger, in which at least the cooling operation has been performed before the start of the hot-water supply alone operation in which the refrigerant is circulated through the outdoor heat exchanger, In the case where at least the heating operation has been performed before the start of the hot water supply alone operation, the position of the valve body during the hot water supply alone operation is different,
    The air-conditioning hot water supply apparatus according to claim 10, wherein at least the heating operation is performed before the hot water supply independent operation is started when the valve body is at the second position.
  13.  前記第1配管における前記逆止弁の下流側と、前記室外熱交換器と、を接続する第2配管を備えるとともに、
     前記第2配管に設けられる第2開閉手段を備え、
     前記第2開閉手段が開弁していること
     を特徴とする請求項10に記載の空調給湯装置。
    A second pipe that connects the downstream side of the check valve in the first pipe and the outdoor heat exchanger,
    A second opening / closing means provided in the second pipe,
    The said 2nd opening / closing means is opening a valve. The air conditioning hot-water supply apparatus of Claim 10 characterized by the above-mentioned.
  14.  前記四方弁の室内側接続口は、室内熱交換器及び第3配管を順次に介して、前記給湯用熱交換器に接続され、
     前記第2配管において前記第2開閉手段よりも前記室外熱交換器側に一端が接続され、前記第3配管に他端が接続される第4配管を備えるとともに、
     前記第3配管において、前記室内熱交換器の付近に設けられる第2膨張弁と、
     前記第4配管に設けられる第3開閉手段と、を備え、
     前記第2膨張弁及び前記第3開閉手段が、いずれも閉弁していること
     を特徴とする請求項13に記載の空調給湯装置。
    The indoor side connection port of the four-way valve is connected to the hot water supply heat exchanger through an indoor heat exchanger and a third pipe sequentially.
    A second pipe having one end connected to the outdoor heat exchanger side with respect to the second opening / closing means and a fourth pipe connected to the third pipe at the other end;
    A second expansion valve provided in the third pipe near the indoor heat exchanger;
    A third opening / closing means provided in the fourth pipe,
    The air conditioning and hot water supply apparatus according to claim 13, wherein both the second expansion valve and the third opening / closing means are closed.
  15.  前記室外熱交換器の除霜を行う除霜運転中、前記四方弁の前記弁体は前記第2の位置に存在し、前記圧縮機、前記給湯用熱交換器、前記第1膨張弁、及び前記室外熱交換器を順次に介して冷媒が循環するとともに、前記圧縮機、開弁状態の前記第1開閉手段、前記四方弁、室内熱交換器、第2膨張弁、及び前記室外熱交換器を順次に介して冷媒が循環すること
     を特徴とする請求項10に記載の空調給湯装置。
    During the defrosting operation for defrosting the outdoor heat exchanger, the valve element of the four-way valve is at the second position, and the compressor, the hot water supply heat exchanger, the first expansion valve, and The refrigerant circulates sequentially through the outdoor heat exchanger, and the compressor, the first opening / closing means in the open state, the four-way valve, the indoor heat exchanger, the second expansion valve, and the outdoor heat exchanger The air-conditioning and hot-water supply device according to claim 10, wherein the refrigerant circulates sequentially through the air-conditioner.
  16.  室内熱交換器の一端付近に設けられる第2膨張弁を備え、
     前記室外熱交換器の除霜を行う除霜運転中、前記圧縮機及び前記給湯用熱交換器を順次に介して通流する冷媒が前記第1膨張弁を迂回し、さらに、前記室外熱交換器、前記第2膨張弁、前記室内熱交換器、前記四方弁、及び前記逆止弁を順次に介して循環し、
     前記四方弁の前記弁体は、前記室内熱交換器の他端側と前記第1配管とを連通させる第1の位置に存在していること
     を特徴とする請求項10に記載の空調給湯装置。
    A second expansion valve provided near one end of the indoor heat exchanger;
    During the defrosting operation for defrosting the outdoor heat exchanger, the refrigerant flowing sequentially through the compressor and the hot water supply heat exchanger bypasses the first expansion valve, and further, the outdoor heat exchange Vessel, the second expansion valve, the indoor heat exchanger, the four-way valve, and circulates sequentially through the check valve,
    The air-conditioning and hot-water supply device according to claim 10, wherein the valve element of the four-way valve is located at a first position where the other end of the indoor heat exchanger communicates with the first pipe. .
  17.  前記給湯用熱交換器で湯水を加熱する給湯単独運転を行う場合において、
     室内熱交換器の温度が前記室外熱交換器の温度よりも高いとき、
     又は、
     前記室内熱交換器の空調対象空間の温度が外気の温度よりも高いとき、
     前記四方弁の前記弁体が前記第2の位置に存在する状態で、前記圧縮機、前記給湯用熱交換器、前記第1膨張弁、及び前記室外熱交換器を順次に介して冷媒を循環させること
     を特徴とする請求項10に記載の空調給湯装置。
    In the case of performing a hot water supply alone operation of heating hot water with the hot water supply heat exchanger,
    When the temperature of the indoor heat exchanger is higher than the temperature of the outdoor heat exchanger,
    Or
    When the temperature of the air-conditioned space of the indoor heat exchanger is higher than the temperature of the outside air,
    In a state where the valve element of the four-way valve is at the second position, the refrigerant is circulated sequentially through the compressor, the hot water supply heat exchanger, the first expansion valve, and the outdoor heat exchanger. The air-conditioning and hot-water supply device according to claim 10, wherein:
  18.  前記室外熱交換器に複数の室内熱交換器が並列接続され、
     前記給湯用熱交換器で湯水を加熱する給湯単独運転を行う場合において、
     複数の前記室内熱交換器のそれぞれの温度が全て、前記室外熱交換器の温度よりも高いとき、
     又は、
     複数の前記室内熱交換器のそれぞれの空調対象空間の温度が全て、外気の温度よりも高いとき、
     前記四方弁の前記弁体が前記第2の位置に存在する状態で、前記圧縮機、前記給湯用熱交換器、前記第1膨張弁、及び前記室外熱交換器を順次に介して冷媒を循環させること
     を特徴とする請求項10に記載の空調給湯装置。
    A plurality of indoor heat exchangers are connected in parallel to the outdoor heat exchanger,
    In the case of performing a hot water supply alone operation of heating hot water with the hot water supply heat exchanger,
    When the respective temperatures of the plurality of indoor heat exchangers are all higher than the temperature of the outdoor heat exchanger,
    Or
    When the temperature of each air-conditioned space of each of the plurality of indoor heat exchangers is higher than the temperature of the outside air,
    In a state where the valve element of the four-way valve is at the second position, the refrigerant is circulated sequentially through the compressor, the hot water supply heat exchanger, the first expansion valve, and the outdoor heat exchanger. The air-conditioning and hot-water supply device according to claim 10, wherein:
  19.  前記給湯用熱交換器で湯水を加熱する給湯単独運転を行う場合において、室内熱交換器の温度と前記室外熱交換器の温度との差が所定範囲内であり、さらに、当該給湯単独運転の開始前に前記四方弁の前記弁体が前記第2の位置に存在するときには、前記弁体を前記第2の位置に維持し、前記圧縮機、前記給湯用熱交換器、前記第1膨張弁、及び前記室外熱交換器を順次に介して冷媒を循環させること
     を特徴とする請求項10に記載の空調給湯装置。
    In the case of performing the hot water supply alone operation of heating hot water with the hot water supply heat exchanger, a difference between the temperature of the indoor heat exchanger and the temperature of the outdoor heat exchanger is within a predetermined range, and further, When the valve body of the four-way valve is at the second position before the start, the valve body is maintained at the second position, and the compressor, the hot water supply heat exchanger, and the first expansion valve are provided. The air-conditioning and hot-water supply device according to claim 10, wherein the refrigerant is circulated sequentially through the outdoor heat exchanger.
PCT/JP2018/035793 2018-09-26 2018-09-26 Air conditioning and hot water supply device WO2020065791A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880075252.7A CN111373216B (en) 2018-09-26 2018-09-26 Air-conditioning hot water supply device
JP2019545386A JP6671558B1 (en) 2018-09-26 2018-09-26 Air conditioning hot water supply system
EP18935979.7A EP3859238A4 (en) 2018-09-26 2018-09-26 Air conditioning and hot water supply device
PCT/JP2018/035793 WO2020065791A1 (en) 2018-09-26 2018-09-26 Air conditioning and hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035793 WO2020065791A1 (en) 2018-09-26 2018-09-26 Air conditioning and hot water supply device

Publications (1)

Publication Number Publication Date
WO2020065791A1 true WO2020065791A1 (en) 2020-04-02

Family

ID=69949341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035793 WO2020065791A1 (en) 2018-09-26 2018-09-26 Air conditioning and hot water supply device

Country Status (4)

Country Link
EP (1) EP3859238A4 (en)
JP (1) JP6671558B1 (en)
CN (1) CN111373216B (en)
WO (1) WO2020065791A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115096018A (en) * 2022-05-30 2022-09-23 浙江中广电器集团股份有限公司 Defrosting control method of heat pump EVI (evaporative air drying) natural fluorine and ground water multi-split air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095964B (en) * 2022-07-01 2023-07-25 广东开利暖通空调股份有限公司 Heat recovery multi-split system and operation method thereof
KR20240013558A (en) * 2022-07-22 2024-01-30 엘지전자 주식회사 Hybrid multi-air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149765U (en) * 1986-03-17 1987-09-22
JPH05296604A (en) * 1992-04-20 1993-11-09 Daikin Ind Ltd Heat pump type hot water feeder
JP2001235248A (en) * 2000-02-24 2001-08-31 Sanyo Electric Co Ltd Air conditioner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3284905B2 (en) * 1996-10-15 2002-05-27 ダイキン工業株式会社 Heat pump system
JP4287677B2 (en) * 2003-03-11 2009-07-01 日立アプライアンス株式会社 Refrigeration cycle equipment
JP4651394B2 (en) * 2005-01-13 2011-03-16 三菱電機株式会社 Four-way valve
CN101749904A (en) * 2008-12-05 2010-06-23 乐金电子(天津)电器有限公司 Hot air bypassing continuous heat-supply and defrost cycle structure of air conditioner
CN201355098Y (en) * 2009-02-24 2009-12-02 东南大学 Multifunctional heat pump air-conditioning water heater
CN104457026A (en) * 2014-12-30 2015-03-25 郎力文 Air source heat pump water heater hybrid air-conditioning device
CN108474586A (en) * 2016-01-20 2018-08-31 三菱电机株式会社 Conditioner
CN106016877A (en) * 2016-05-05 2016-10-12 广东美的制冷设备有限公司 Handling method and device for four-way valve faults in air-conditioner and air-conditioner
WO2017203655A1 (en) * 2016-05-26 2017-11-30 三菱電機株式会社 Heat pump type air conditioning and hot water supplying device
EP3534087B1 (en) * 2016-10-25 2022-03-30 Mitsubishi Electric Corporation Refrigeration cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149765U (en) * 1986-03-17 1987-09-22
JPH05296604A (en) * 1992-04-20 1993-11-09 Daikin Ind Ltd Heat pump type hot water feeder
JP2001235248A (en) * 2000-02-24 2001-08-31 Sanyo Electric Co Ltd Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3859238A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115096018A (en) * 2022-05-30 2022-09-23 浙江中广电器集团股份有限公司 Defrosting control method of heat pump EVI (evaporative air drying) natural fluorine and ground water multi-split air conditioner

Also Published As

Publication number Publication date
CN111373216A (en) 2020-07-03
EP3859238A1 (en) 2021-08-04
CN111373216B (en) 2022-01-18
JPWO2020065791A1 (en) 2021-01-07
JP6671558B1 (en) 2020-03-25
EP3859238A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
JP6320567B2 (en) Air conditioner
JP5308220B2 (en) Heat pump type hot water supply / air conditioner
JP3998024B2 (en) Heat pump floor heating air conditioner
JP2007051825A (en) Air-conditioner
JP6671558B1 (en) Air conditioning hot water supply system
WO2014129472A1 (en) Air conditioning device
WO2021039087A1 (en) Heat source unit and refrigeration device
EP3093586B1 (en) Air conditioning device
WO2017138108A1 (en) Air conditioning device
US11226112B2 (en) Air-conditioning system
JP7455211B2 (en) air conditioner
US10928105B2 (en) Air conditioner
JP2014070830A (en) Freezer unit
US20210048216A1 (en) Air-conditioning apparatus
WO2021065117A1 (en) Heat source unit and refrigeration device
US20220268498A1 (en) Intermediate unit for refrigeration apparatus, and refrigeration apparatus
US11486616B2 (en) Refrigeration device
WO2022239212A1 (en) Air conditioner and air conditioning system
JP2018096575A (en) Freezer
JP4774858B2 (en) Air conditioner
CN114341569A (en) Heat source unit and refrigerating device
JP6747226B2 (en) Refrigeration equipment
WO2017195294A1 (en) Refrigeration cycle device
JP7473775B2 (en) Heat source unit and refrigeration device
EP3217118B1 (en) Heat pump apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019545386

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935979

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018935979

Country of ref document: EP

Effective date: 20210426