JP4287677B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4287677B2
JP4287677B2 JP2003064498A JP2003064498A JP4287677B2 JP 4287677 B2 JP4287677 B2 JP 4287677B2 JP 2003064498 A JP2003064498 A JP 2003064498A JP 2003064498 A JP2003064498 A JP 2003064498A JP 4287677 B2 JP4287677 B2 JP 4287677B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat exchanger
flow path
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003064498A
Other languages
Japanese (ja)
Other versions
JP2004271105A (en
Inventor
啓夫 中村
淳 久保田
正之 野中
亮一 高藤
英範 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2003064498A priority Critical patent/JP4287677B2/en
Priority to CNB2004100080712A priority patent/CN1302239C/en
Priority to KR1020040015989A priority patent/KR100574717B1/en
Publication of JP2004271105A publication Critical patent/JP2004271105A/en
Application granted granted Critical
Publication of JP4287677B2 publication Critical patent/JP4287677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクル装置に係り、特に冷房・暖房等の空調運転に加えて給湯の運転が可能な冷凍サイクル装置に関するものである。
【0002】
【従来の技術】
冷房、暖房の運転に加えて給湯運転が可能なサイクル構成とした冷暖房給湯装置として、例えば特開2001−263857号公報(特許文献1)がある。この特許文献1では、四方弁を用いて冷房運転と暖房運転を切換える従来周知のサイクル構成において、圧縮機と四方弁を結ぶ部分に給湯用熱交換器を設けることにより、冷房や暖房運転に加えて給湯運転を可能にしている。即ち、冷媒の流れる冷凍サイクルを、圧縮機、四方弁、室外熱交換器、膨張機構部、空調用熱交換器(室内熱交換器)を環状に接続して構成し、さらに給湯用温水回路を、圧縮機と四方弁を結ぶ部分で熱交換する給湯用熱交換器により温水を作り、この温水を給湯用ポンプにより循環させるように構成している。さらには、給湯用熱交換器をバイパスする配管を設けることにより、冷房、暖房運転時には、冷媒をこのバイパス配管に流すようにして、圧縮機と四方弁を結ぶ部分での圧力損失を低減し、冷凍サイクルの効率低下を防ぐサイクル構成にしている。
【0003】
また、冷房、暖房の運転を行う冷凍サイクルにおいて、性能向上を図るために、特開平10−325622号公報(特許文献2)にあるような、ガスインジェクションサイクルを用いたものがある。このガスインジェクションサイクルは、絞り装置を二個用い、その間に気液分離器を設け、ここで分離した吸熱能力の無い中間圧力のガス冷媒を圧縮機のシリンダ内に注入するサイクル構成としたもので、冷房及び暖房の運転においてCOPを向上することができる。
【0004】
【特許文献1】
特開2001−263857号公報
【特許文献2】
特開平10−325622公報
【0005】
【発明が解決しようとする課題】
ところで、冷房・暖房運転に加えて給湯運転を行えるようにした冷凍サイクル装置においては、給湯運転における給湯温度の上昇や加熱時間の短縮に対するニーズが大きい。
【0006】
これに対し、特許文献1の給湯運転は、冷凍サイクル側では冷媒が室外熱交換器及び室内用熱交換器を流れるため、給湯用の加熱能力が低下する。即ち、冷媒が冷房運転と同じ方向に流れる場合には、室外熱交換器から外気に放熱するため、その分給湯用の加熱能力が低下する。また、冷媒が暖房運転と同じ方向に流れる場合には、室内用熱交換器から室内に放熱し、その分給湯用の加熱能力が低下する。さらには、冷凍サイクル側で、室外熱交換器及び空調用熱交換器の両方を通ることによる冷媒流の圧力損失により、圧縮仕事が増え、性能が低下する。従って、給湯運転における給湯温度や昇温速度の向上といった点に対して十分には考慮されていない。
【0007】
一方、特許文献2は、冷房及び暖房の運転において、ガスインジェクションサイクルを適用して性能(COP)向上を狙ったものであり、給湯を行えるサイクル構成となっていない。
【0008】
本発明の目的は、冷房、暖房及び給湯の運転を可能としつつ、給湯運転における給湯温度や加熱時間の短縮を図れると共に、各運転を高効率に行える冷凍サイクル装置を提供することにある。
【0009】
なお、本発明のその他の目的と有利点は以下の記述から明らかにされる。
【0010】
【課題を解決するための手段】
前記の目的を達成するために、本発明は、圧縮機、四方弁、室外熱交換器、冷暖房運転用の絞り装置及び室内熱交換器を環状に接続すると共に給湯装置及び給湯用絞り装置を順に接続して冷房、暖房及び給湯運転が可能な冷凍サイクルを備え、前記圧縮機を出た冷媒流路を第一の流路切換装置を介して二つの冷媒流路に分け、一方の冷媒流路を、前記四方弁、前記室外熱交換器、前記冷暖房用絞り装置及び前記室内熱交換器の順に接続した冷媒回路に接続し、他方の冷媒流路を、前記給湯装置及び前記給湯用絞り装置の順に接続した冷媒回路に接続し、それから更に第二の流路切換装置を介して二方向に分けて前記冷暖房用絞り装置の両側に接続したものである。
【0011】
なお、前記目的以外の目的を達成するための本発明の手段は以下の記述から明らかにされる。
【0012】
【発明の実施の形態】
以下、本発明の複数の実施例を、図を用いて説明する。なお、各実施例の図における同一符号は同一物または相当物を示す。
〔実施例1〕
まず、本発明による第一の実施例を図1及び図2を用いて説明する。本実施例の冷凍サイクル装置は、冷房運転、暖房運転、サイクル加熱除湿運転、及び給湯運転を行えるようにした冷凍サイクルを備えている。
【0013】
冷凍サイクル装置は、圧縮機1、第一の流路切換装置、四方弁6、室外熱交換器7、第1冷暖房用絞り装置8、第2冷暖房用絞り装置10、気液分離器9、インジェクション用弁11、除湿用絞り装置14、室内熱交換器12、給湯装置17、給湯用絞り装置18、第二の流路切換え装置からなる冷凍サイクルを有している。
【0014】
この冷凍サイクルは、圧縮機1、四方弁6、室外熱交換器7、第1冷暖房用絞り装置8、気液分離器9、第2冷暖房用絞り装置10、及び室内熱交換器12を環状に接続すると共に、給湯装置17及び給湯用絞り装置18を順に接続して構成されている。
【0015】
また、冷凍サイクル装置は、室外ファン30、室内ファン31、温水温度センサー32、外気温度センサー33、及び制御装置70を備えている。
【0016】
各構成要素を具体的に説明する。圧縮機1は、低段側圧縮部2と高段側圧縮部3から構成された二段圧縮機で構成されている。第一の流路切換装置は、圧縮機1からの吐出ガス冷媒を二方向に切換えるために二方弁あるいは流量調整弁からなる第1流路切換弁4と第2流路切換弁5とから構成されている。四方弁6は第1流路切換弁4に接続され、図1の実線に示す暖房側流路と破線に示す冷房側流路とに切換えが可能である。室外熱交換器7は外気と熱交換するように設置されている。第1冷暖房用絞り装置8及び第2冷暖房用絞り装置10は冷暖房用絞り装置を構成するものである。
【0017】
気液分離器9は、圧力容器21、圧力容器21内の底面近くまで挿入された第1挿入管22と第2挿入管23、圧力容器21内の底面部に設けた突起板24を備えて構成されている。第1挿入管22は第1冷暖房用絞り装置8に接続され、第2挿入管23は第2冷暖房用絞り装置10に接続されている。インジェクション管25は、圧力容器21内で分離されたガス冷媒を圧縮機1に注入するように構成されている。インジェクション管25の一側は圧力容器の上部と連通され、他側は低段側圧縮部2と高段側圧縮部3の間に連通されている。インジェクション用弁11は、インジェクション管25に設けられ、圧縮機1へのインジェクション量を制御する。
【0018】
室内熱交換器12は、第1室内熱交換器13と第2室内熱交換器15に分割されている。除湿用絞り装置14は、分割された第1室内熱交換器13と第2室内熱交換器15との間に設けられ、除湿運転時に絞り作用を行うように制御される。
【0019】
給湯装置17は、一側が第2流路切換弁5に接続され、他側が給湯用絞り装置18に接続された給湯用熱交換器と、この給湯用熱交換器により加熱される給湯用の温水部を内蔵している。第二の流路切換え装置は、給湯用絞り装置18側から室外熱交換器7と第1冷暖房用絞り装置8との間の配管へ冷媒を流す(逆方向は止める)第1逆止弁19、及び給湯用絞り装置18側から第2冷暖房用絞り装置10と第1室内熱交換器13を結ぶ配管へ冷媒を流す(逆方向は止める)第2逆止弁20を備えている。
【0020】
室外ファン30は、外気と室外熱交換器7とを熱交換させるために、室外熱交換器7に送風するように設けられている。室内ファン31は、室内空気と室内熱交換器12との熱交換のために、室内熱交換器12に送風するように設けられている。温水温度センサー32は給湯装置17の温水温度を測るように設置されている。外気温度センサー33は外気温度を測るように設置されている。
【0021】
制御装置70は、図2に示すように、リモコン71、温水温度センサー32、外気温度センサー33などから信号が入力され、これらの入力信号に基づいて、圧縮機1、第1流路切換弁4、第2流路切換弁5、四方弁6、第1冷暖房用絞り装置8、第2冷暖房用絞り装置10、インジェクション用弁11、除湿用絞り装置14、給湯用絞り装置18、室内ファン31、室外ファン30の動作を制御する。
【0022】
冷凍サイクル装置では、制御装置70により各弁や各絞り装置などを操作することにより、以下のような異なる複数の運転を行うことができる。
(冷房単独運転)
冷房単独運転を行う場合には、第1流路切換弁4を開、第2流路切換弁5を閉とし、四方弁6を冷房側流路に切換え、第1、第2の冷暖房用絞り装置8、10を両方あわせて凝縮圧力から蒸発圧力まで絞り、除湿用絞り装置14を開く。これにより、冷媒は、図1の破線矢印のように、二段圧縮機1の高段側圧縮部3から第1流路切換弁4、四方弁6、凝縮側となる室外熱交換器7、第1冷暖房用絞り装置8、気液分離器9、第2冷暖房用絞り装置10、蒸発側となる室内熱交換器12、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。この際、室内熱交換器12で吸熱し、室外熱交換器7で放熱することによって、冷房運転が行われる。ここで、第2流路切換弁5が閉じられていることから、給湯装置17には冷媒は流れず、給湯装置17は作用しない。
【0023】
また、第1冷暖房用絞り装置8と第2冷暖房用絞り装置10を気液分離器9内の圧力が二段圧縮機1の吸込圧力と吐出圧力の中間圧力になるように絞り、さらにインジェクション用弁11を開く。これにより、気液分離器9で発生したガス冷媒を二段圧縮機1の低段側圧縮部2と高段側圧縮部3の間に注入するガスインジェクションサイクルが構成される。これによって、冷凍サイクル装置のCOPを向上することができる。
【0024】
更に、図1のC点での高圧の冷媒流は第1逆止弁19で止められることから、給湯用絞り装置18を開くことにより、給湯装置17内が低圧側に連通され、給湯装置17内へ液冷媒が溜まるのを抑制することができる。
(暖房単独運転)
暖房単独運転を行う場合には、第1流路切換弁4を開、第2流路切換弁5を閉とし、四方弁を暖房側流路に切換え、第2、第1の冷暖房用絞り装置10、8を両方あわせて凝縮圧力から蒸発圧力まで絞り、除湿用絞り装置14を開く。これにより、冷媒は、図1の実線矢印のように、二段圧縮機1の高段側圧縮部3から第1流路切換弁4、四方弁6、凝縮側となる室内熱交換器12、第2冷暖房用絞り装置10、気液分離器9、第1冷暖房用絞り装置8、蒸発側となる室外熱交換器7、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。この際、室外熱交換器7で吸熱し、室内熱交換器12で放熱することによって、暖房運転が行なわれる。ここで、第2流路切換弁5を閉じていることから、給湯装置17には冷媒が流れず、給湯装置17は作用しない。
【0025】
また、第2冷暖房用絞り装置10と第1冷暖房用絞り装置8を気液分離器9内の圧力が二段圧縮機1の吸込圧力と吐出圧力の中間圧力となるように適正に絞り、さらにインジェクション用弁11を開く。これにより、気液分離器9で発生したガス冷媒を二段圧縮機1の低段側圧縮部2と高段側圧縮部3の間に注入するガスインジェクションサイクルが構成される。これによって、冷凍サイクル装置のCOPを向上することができる。
【0026】
更に、図1のD点での高圧の冷媒流が第2逆止弁20で止められることから、給湯用絞り装置18を開くことにより、給湯装置17内が低圧側に連通され、給湯装置17内へ液冷媒が溜まるのを抑制することができる。
(サイクル加熱除湿単独運転)
サイクル加熱除湿単独運転を行う場合には、第1流路切換弁4を開、第2流路切換弁5を閉とし、四方弁を冷房側流路に切換え、第1、第2の冷暖房用絞り装置8、10を開き、除湿用絞り装置14を絞る。これにより、冷媒は、図1に示す冷房と同じ破線矢印のように、二段圧縮機1の高段側圧縮部3から第1流路切換弁4、四方弁6、凝縮側となる室外熱交換器7、第1冷暖房用絞り装置8、気液分離器9、第2冷暖房用絞り装置10、凝縮側となる第1室内熱交換器13、除湿用絞り装置14、蒸発側となる第2室内熱交換器15、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。この際、室内側では第2室内熱交換器15で室内空気を冷却・除湿すると共に第1室内熱交換器13で加熱し、室内空気に対し室温の低下を抑えて湿度を下げるサイクル加熱除湿運転を行うことができる。ここで、室外ファン30の送風量や圧縮機1の能力を制御することにより、室内ユニットからの吹出空気の温度や湿度を調節することができる。
【0027】
また、第2流路切換弁5を閉じていることから、給湯装置17には冷媒が流れず、給湯装置17は作用しない。更にこのサイクル加熱除湿運転では、気液分離器9内が高圧側となるため、液冷媒が圧縮機1に入らないようにインジェクション用弁11は閉じて運転する。
【0028】
なお、第2流路切換弁5として流量調整弁を用い、これを多少開くと共に給湯用絞り装置18を開き、給湯装置17へも多少冷媒を流すことにより、給湯装置17へ液冷媒が溜まるのを抑制することができる。
(給湯単独運転)
給湯単独運転を行う場合には、第1流路切換弁4を閉、第2流路切換弁5を開とし、四方弁を暖房側流路に切換え、給湯用絞り装置18を凝縮圧力から蒸発圧力まで絞る。これにより、冷媒は、図1の一点鎖線矢印のように、二段圧縮機1の高段側圧縮部3から第2流路切換弁5、凝縮側となる給湯装置17、給湯用絞り装置18、蒸発側となる室外熱交換器7、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、室外熱交換器7で吸熱した熱を給湯装置17で放熱する運転が行なわれる。
【0029】
この場合、冷媒は、圧縮機1を介して放熱側の給湯装置17と吸熱側の室外熱交換器7の間を循環するだけで、室内熱交換器12を循環しないため、室外熱交換器で吸熱した全熱量を給湯装置17での水の加熱に利用でき、効率良く温水を作ることができる。さらに圧縮機として二段圧縮機を使用していることから、温水の高温化及び加熱時間の短縮を図ることができる。特に外気温が高い時には、蒸発側となる室外熱交換器7からの吸熱能力が大幅に向上し、より一層の温水の高温化及び加熱時間の短縮を図ることが可能になる。
【0030】
なお、この給湯単独運転の場合には、圧縮機からの冷媒の逆流を防ぐために、インジェクション用弁11は閉じて運転する。また、第1冷暖房用絞り装置8、第2冷暖房用絞り装置、及び除湿用絞り装置14を開くことにより、室内熱交換器12及び気液分離器9を低圧にすることができ、これらへ液冷媒がたまるのを抑制することができる。
【0031】
次に併用運転について説明する。
(冷房・給湯併用運転−1)
冷房・給湯併用運転−1を行う場合には、第1流路切換弁4及び第2流路切換弁5とも開とし、四方弁を冷房側流路に切換え、第1、第2の冷暖房用絞り装置8、10を両方合わせて凝縮圧力から蒸発圧力まで絞り、除湿用絞り装置14を開とし、給湯用絞り装置18を凝縮圧力から蒸発圧力まで絞る。これにより、冷媒は、図1の破線矢印及び一点鎖線矢印のように、二段圧縮機1の高段側圧縮部3から、第1流路切換弁4を通って四方弁6、凝縮側となる室外熱交換器7、第1冷暖用絞り装置8、気液分離器9、第2冷暖用絞り装置10に流れる流れと、第2流路切換弁5を通って凝縮側となる給湯装置17、給湯用絞り装置18、第2逆止弁20に流れる(B点が低圧、C点が高圧のため第1逆止弁19には冷媒が流れない)流れに分けられ、その後、図1のD点で合流されて、さらに蒸発側となる室内熱交換器12、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、室内熱交換器12で吸熱し、室外熱交換器7及び給湯装置17で放熱する冷房・給湯併用運転−1が行われる。
【0032】
また、第1冷暖房用絞り装置8と第2冷暖房用絞り装置10を、気液分離器9内の圧力が二段圧縮機1の吸込圧力と吐出圧力の中間圧力になるように適正に絞り、さらにインジェクション用弁11を開くことにより、気液分離器9で発生したガス冷媒を二段圧縮機1の低段側圧縮部2と高段側圧縮部3の間に注入するガスインジェクションサイクルを構成でき、冷凍サイクル装置のCOPを向上することができる。
(冷房・給湯併用運転−2)
冷房・給湯併用運転−2を行う場合には、冷房運転と給湯運転を併用する運転形態としてはもう一つある。すなわち、第1流路切換弁4を閉、第2流路切換弁5を開とし、四方弁6を冷房側流路に切換え、給湯用絞り装置18を凝縮圧力から蒸発圧力まで絞り、除湿用絞り装置14を開く。これにより、冷媒は、図1の一点鎖線矢印から破線矢印のように、二段圧縮機1の高段側圧縮部3から、第2流路切換弁5、凝縮側となる給湯装置17、給湯用絞り装置18、第2逆止弁20、蒸発側となる室内熱交換器12、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、室内熱交換器12で吸熱し、給湯装置17で放熱する冷房・給湯併用運転が行なわれる。さらに第1冷暖房用絞り装置8および第2冷暖房用絞り装置10を開くことにより、室外熱交換器7及び気液分離器9を低圧にすることができ、これらへ液冷媒がたまるのを抑制することができる。また、気液分離器9内が低圧側となるため、インジェクション用弁11を閉じ、圧縮機1から気液分離器9に冷媒が逆流しないようにする。
【0033】
ところで、この冷房・給湯併用運転−2は、室外熱交換器7から外気に放熱しないため、最初の給湯装置17の温水温度が低い場合には先に述べた冷房・給湯併用運転−1に比べて給湯装置17における加熱能力が大きいが、運転の経過に伴い給湯装置17内の温水温度が外気温以上になると、冷房・給湯併用運転−1に比べて入力が増加する。従って、図1のように、温水温度センサー32、外気温度センサー33を取りつけると共に、冷房性能優先の運転、あるいは給湯温度優先の運転を行えるようにする。それぞれの運転に対して所定の温度T1、T2(T1<T2)を設定し、冷房性能優先の運転の場合には温水温度がT1以上になったら冷房・給湯併用運転−2から冷房・給湯併用運転―1に切換え、給湯温度優先の運転の場合には温水温度がT2以上になったら冷房・給湯併用運転−2から冷房・給湯併用運転―1に切換えるように運転する。
(暖房・給湯併用運転)
暖房・給湯併用運転を行う場合には、第1流路切換弁4及び第2流路切換弁5とも開き、四方弁を暖房側流路に切換え、第2、第1の冷暖房用絞り装置10、8を両方合わせて凝縮圧力から蒸発圧力まで絞り、除湿用絞り装置14を開き、給湯用絞り装置18を凝縮圧力から蒸発圧力まで絞る。これにより、冷媒は、図1の実線矢印及び一点鎖線矢印のように、二段圧縮機1の高段側圧縮部3から、第1流路切換弁4を通って四方弁6、凝縮側となる室内熱交換器12、第2冷暖用絞り装置10、気液分離器9、第1冷暖用絞り装置8に流れる流れと、第2流路切換弁5を通って凝縮側となる給湯装置17、給湯用絞り装置18、第1逆止弁19に流れる(B点が低圧、D点が高圧のため第2逆止弁20には冷媒が流れない)流れに分けられる。その後、図1のC点で合流されて、さらに蒸発側となる室外熱交換器7、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、室外熱交換器7で吸熱し、室内熱交換器12及び給湯装置17で放熱をする暖房・給湯併用運転を行う。
【0034】
また、第2冷暖房用絞り装置10と第1冷暖房用絞り装置8を気液分離器9内の圧力が二段圧縮機1の吸込圧力と吐出圧力の中間圧力となるように適正に絞り、さらにインジェクション用弁11を開とする。これにより、気液分離器9で発生するガス冷媒を二段圧縮機1の低段側圧縮部2と高段側圧縮部3の間に注入するガスインジェクションサイクルを構成でき、冷凍サイクル装置のCOPを向上することができる。
【0035】
なお、図1の実施例においては圧縮機を二段圧縮機としたが、この代わりに単段圧縮機を用いて一つの圧縮室の中にインジェクションするようにしても良い(図示省略)。このようにしても、これまでの図1の実施例で述べた種々の運転が可能であり、同様な効果を得ることができる。この場合には、入力の低減や給湯温度の向上の点で多少劣るが低コスト化が可能である。
〔実施例2〕
次に、本発明の第二の実施例を、図1及び図3を用いて説明する。
【0036】
この実施例は、第一の実施例に対して、さらに給湯運転の時にもガスインジェクションをできるようにしたものである。また、図3は、図1における二点鎖線で囲んだ部分40に相当するもので、図1において、第1逆止弁19を第1二方弁51に変え、第2逆止弁20の流出側をE点で気液分離器9の第2挿入管23に接続するようにしたものである。
【0037】
図3の実施例における各種運転を、図1も参照しながら、以下に説明する。
(給湯単独運転)
給湯単独運転を行う場合には、第1流路切換弁4を閉、第2流路切換弁5を開、第1二方弁51を閉とし、四方弁を暖房側流路に切換え、給湯用絞り装置18と第1冷暖房用絞り装置8を気液分離器9が圧縮機1の吐出圧力と吸込圧力の中間圧力となるように絞る。これにより、冷媒は、図1及び図3の一点鎖線矢印のように、二段圧縮機1の高段側圧縮部3から第2流路切換弁5、凝縮側となる給湯装置17、給湯用絞り装置18、気液分離器9、第1冷暖房用絞り装置8、蒸発側となる室外熱交換器7、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、室外熱交換器7で吸熱した熱を給湯装置17で放熱する給湯単独運転が行われる。この場合、冷媒は、圧縮機1を介して放熱側の給湯装置17と吸熱側の室外熱交換器7の間を循環するだけで、室内熱交換器12を循環しないため、室外熱交換器で吸熱した全熱量を給湯装置17で水の加熱に利用できることになり、効率よく温水を作ることができる。
【0038】
さらに図3では、気液分離器9内が中間圧力となることから、インジェクション用弁11を開くことにより、気液分離器9で発生したガス冷媒を二段圧縮機1の低段側圧縮部2と高段側圧縮部3の間に注入するガスインジェクションサイクルを構成でき、冷凍サイクル装置のCOPを向上することができる。
【0039】
また、第2冷暖房用絞り装置10及び除湿用絞り装置14を開くことにより、室内熱交換器12を気液分離器内と同じ中間圧力にして、室内熱交換器12に液冷媒が溜まるのを抑制することができる。
(冷房・給湯併用運転−1)
冷房・給湯併用運転−1を行う場合には、第1二方弁51を閉じ、給湯用絞り装置18を、中間圧力である第1冷暖房用絞り装置8後の気液分離器9内の圧力になるように絞って運転するものである。他の操作は第一の実施例と同様にする。この結果、給湯装置17を通ってきた冷媒流は中間圧力となって、第2挿入管23から第2冷暖房用絞り装置10でさらに絞られ、室内熱交換器12へ流れる。また、室外熱交換器7を通ってきた冷媒流は、第一の実施例と同じように、第1、第2の冷暖房用絞り装置8、10によって絞られ、中間圧になって気液分離器9に入り、ここで分離されたガス冷媒が圧縮機にインジェクションされる。この結果、COPを向上でき、第一の実施例の冷房・給湯併用運転−1と同様の運転を行うことができる。
(冷房・給湯併用運転−2)
冷房・給湯併用運転−2を行う場合には、第1流路切換弁4を閉じ、第2流路切換弁5を開き、四方弁6を冷房側流路に切換え、除湿用絞り装置14を開き、第1及び第2冷暖房用絞り装置8、10を開き、更に給湯用絞り装置18を凝縮圧力から蒸発圧力まで絞って運転する。この結果、給湯装置17で放熱し、室内熱交換器12で吸熱する冷房・給湯併用運転となる。なお第1及び第2冷暖房用絞り装置8、10を開いていることから、室外熱交換器7を低圧に引くことができ、室外熱交換器7へ液冷媒が溜まるのを抑制することができる。
【0040】
また、この冷房・給湯併用運転−2の場合も、室外熱交換器7から外気に放熱しないため、最初の給湯装置17の温水温度が低い場合には冷房・給湯併用運転−1に比べて給湯装置17における加熱能力が大きいが、運転の経過に伴い給湯装置17の温水温度が外気温以上になると冷房・給湯併用運転−1に比べて入力が増加する。従って、第一の実施例と同様に、温水温度センサー32、外気温度センサー33を取りつけると共に、冷房性能優先の運転の場合には温水温度がT1以上になったら冷房・給湯併用運転−2から冷房・給湯併用運転―1に切換え、給湯温度優先の運転の場合には温水温度がT2(T1<T2)以上になったら冷房・給湯併用運転−2から冷房・給湯併用運転―1に切換えるように運転する。
(その他の運転)
なお第二の実施例においては、上記以外の運転である冷房単独運転、暖房単独運転、サイクル加熱除湿単独運転、暖房・給湯併用運転に対して、各弁や各絞り装置を、冷媒の流れが第一の実施例と同様になるように動作させることにより、第一の実施例と同様の作用・効果を得ることができる。
〔実施例3〕
次に、本発明による第三の実施例を図1及び図4を用いて説明する。この第三の実施例は、第一の実施例に対して、さらに給湯運転の時にもガスインジェクションをできるようにした他の実施例である。また、図4は、図1における二点鎖線で囲んだ部分40に相当するものである。図1において、第一逆止弁19を第1二方弁51に変え、気液分離器41を、圧力容器42、圧力容器42内の底面に設けられた二つの突起板43、44、先端が二つの突起板43、44の間にくるように圧力容器42内に設けられた第3挿入管45から構成し、更に第二逆止弁20の流出側の配管を第3挿入管45に接続したものである。他の部分は図1と同一である。図4の気液分離器41では、第3挿入管から圧力容器42内に入った気液二相冷媒は、二つの突起板43、44の間に噴射されて、第1挿入管22及び第2挿入管23の下端に大きな影響を与えることなくガス冷媒と液冷媒に分離される。
【0041】
図4の実施例における各種運転を、図1も参照しながら、以下に説明する。
(給湯単独運転)
給湯単独運転を行う場合には、第1流路切換弁4を閉、第2流路切換弁5を開とし、四方弁を暖房側流路に切換え、給湯用絞り装置18及び第1冷暖房用絞り装置8を両方合わせて凝縮圧力から蒸発圧力まで絞る。これにより、冷媒は、図1及び図4の一点鎖線矢印のように、二段圧縮機1の高段側圧縮部3から第2流路切換弁5、凝縮側となる給湯装置17、給湯用絞り装置18、気液分離器41、第1冷暖房用絞り装置8、蒸発側となる室外熱交換器7、四方弁6、二段圧縮機1の低段側圧縮部2の順に流し、室外熱交換器7で吸熱した熱を給湯装置17で放熱する運転となる。この場合、冷媒は、圧縮機1を介して放熱側の給湯装置17と吸熱側の室外熱交換器7の間を循環するだけで、室内熱交換器12を循環しないため、室外熱交換器で吸熱した全熱量すべてを給湯装置17で水の加熱に利用できることになり、効率よく温水を作ることができる。
【0042】
更に、図4の実施例では、気液分離器41内が中間圧力となることから、インジェクション用弁11を開とすることにより、気液分離器41で発生したガス冷媒を二段圧縮機1の低段側圧縮部2と高段側圧縮部3の間に注入するガスインジェクションサイクルを構成でき、冷凍サイクル装置のCOPを向上することができる。
【0043】
また、第2冷暖房用絞り装置10及び除湿用絞り装置14を開くことにより、室内熱交換器12を気液分離器41内と同じ中間圧力にして、室内熱交換器12に液冷媒が溜まるのを抑制することができる。
(冷房・給湯併用運転−1)
冷房・給湯併用運転−1を行う場合には、第1二方弁51を閉じ、給湯用絞り装置18の絞り量を、中間圧力である第1冷暖房用絞り装置8後の気液分離器41内の圧力になるように絞るようにしたものであり、他の操作は第一の実施例と同様である。この結果、給湯装置17を通ってきた冷媒流は中間圧力となって第3挿入管45を通って気液分離器41内に入り、ここで液冷媒とガス冷媒に分離されてガス冷媒がインジェクションされる。また、室外熱交換器7を通ってきた冷媒流は、第一の実施例と同じように、第1、第2の冷暖房用絞り装置8によって中間圧力まで絞られ、気液分離器41に入り、ここで分離されたガス冷媒が圧縮機1にインジェクションされる。
【0044】
以上より、この第三の実施例は、第一の実施例に比べて、給湯装置17を通ってきた冷媒流からのインジェクション量が増えることになり、よりいっそうのCOPを向上した冷房・給湯併用運転−1となる。
(冷房・給湯併用運転−2)
冷房・給湯併用運転−2を行う場合には、第1二方弁51を閉じ、第1冷暖房用絞り装置8と第2冷暖房用絞り装置10を気液分離器41内が中間圧力となるように適正に絞り、さらに給湯用絞り装置18の出口圧力を気液分離器41の内の圧力になるように絞るようにしたものであり、他の操作は図1の実施例と同様である。この結果、給湯装置17を通ってきた冷媒流は中間圧力となって第3挿入管を通って気液分離器41の中に入り、ここでガス冷媒が分離されて圧縮機1にインジェクションされることから、第一の実施例に比べてさらに冷凍サイクル装置のCOPを向上できる。
【0045】
また、この冷房・給湯併用運転−2の場合も、室外熱交換器7から外気に放熱しないため、最初の給湯装置17の温水温度が低い場合には冷房・給湯併用運転−1に比べて給湯装置17における加熱能力が大きいが、運転の経過に伴い給湯装置17の温水温度が外気温以上になると冷房・給湯併用運転−1に比べて入力が増加する。従って、第一の実施例と同様に、温水温度センサー32、外気温度センサー33を取りつけ、冷房性能優先の運転の場合には温水温度がT1以上になったら冷房・給湯併用運転−2から冷房・給湯併用運転―1に切換え、給湯温度優先の運転の場合には温水温度がT2(T1<T2)以上になったら冷房・給湯併用運転−2から冷房・給湯併用運転―1に切換えるように運転する。
(その他の運転)
なお、この第三の実施例においては、上記以外の運転である冷房単独運転、暖房単独運転、サイクル加熱除湿単独運転、暖房・給湯併用運転に対して、各弁や各絞り装置を冷媒の流れが第一の実施例と同様になるように動作させることにより、第一の実施例と同様の作用・効果を得ることができる。
〔実施例4〕
次に、本発明の第四の実施例を、図1及び図5を用いて説明する。
【0046】
この第四の実施例は、第一の実施例においてガスインジェクションを行わないようにしたものであり、図1において、気液分離器9、インジェクション管25、インジェクション用弁11を取り除き、さらに冷暖房用絞り装置を1個にしたサイクル構成にしたもので、53は冷暖房用絞り装置であり、さらに第2逆止弁20の流出側は冷暖房用絞り装置53と第1室内熱交換器13を結ぶ配管とF点で接続されている。
【0047】
第四の実施例における各種運転を、図1も参照しながら、以下に説明する。
(冷房単独運転)
冷房単独運転を行う場合には、第1流路切換弁4を開、第2流路切換弁5を閉とし、四方弁6を冷房側流路に切換え、冷暖房用絞り装置53を凝縮圧力から蒸発圧力まで絞り、除湿用絞り装置14を開く。これにより、冷媒は、破線矢印のように、二段圧縮機1の高段側圧縮部3から第1流路切換弁4、四方弁6、凝縮側となる室外熱交換器7、冷暖房用絞り装置53、蒸発側となる室内熱交換器12、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、室内熱交換器12で吸熱し、室外熱交換器7で放熱する冷房運転が行われる。この場合、第2流路切換弁5を閉じていることから、給湯装置17には冷媒は流れず、給湯装置17は作用しない。また、給湯用絞り装置18を開くことにより、給湯装置17が第2逆止弁20を通して低圧の圧縮機吸込側に引かれ、給湯装置17の中に液冷媒が溜まるのを抑制することができる。
(暖房単独運転)
暖房単独運転を行う場合には、第1流路切換弁4を開、第2流路切換弁5を閉とし、四方弁を暖房側流路に切換え、冷暖房用絞り装置53を絞り、除湿用絞り装置14を開く。これにより、冷媒は、実線矢印のように、二段圧縮機1の高段側圧縮部3から第1流路切換弁4、四方弁6、凝縮側となる室内熱交換器12、冷暖房用絞り装置53、蒸発側となる室外熱交換器7、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、室外熱交換器7で吸熱し、室内熱交換器12で放熱する暖房運転が行われる。この場合、第2流路切換弁5を閉じていることから、給湯装置17には冷媒が流れず、給湯装置17は作用しない。また、給湯用絞り装置18を開くことにより、給湯装置17が第1逆止弁19を通して低圧の圧縮機吸込側に引かれ、給湯装置17の中に液冷媒が溜まるのを抑制することができる。
(サイクル加熱除湿単独運転)
サイクル加熱除湿単独運転を行う場合には、第1流路切換弁4を開、第2流路切換弁5を閉とし、四方弁を冷房側流路に切換え、冷暖房用絞り装置53を開とし、除湿用絞り装置14を絞る。これにより、冷媒は、冷房と同じ破線矢印のように、二段圧縮機1の高段側圧縮部3から第1流路切換弁4、四方弁6、凝縮側となる室外熱交換器7、冷暖房用絞り装置53、凝縮側となる第1室内熱交換器13、除湿用絞り装置14、蒸発側となる第2室内熱交換器15、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、第一の実施例と同様に、室内側では第2室内熱交換器15で室内空気を冷却・除湿すると共に第1室内熱交換器13で加熱し、室内空気に対し室温の低下を抑えて湿度だけを下げるサイクル加熱除湿運転が行われる。さらに室内ユニットからの吹出空気に対し、室外ファン30の送風量や圧縮機1の能力を制御することにより、温度や湿度を調節することができる。また、第2流路切換弁5を閉じていることから、給湯装置17には冷媒が流れず、給湯装置17は作用しない。
【0048】
なお、この場合、第2流路切換弁5として流量調整弁を用い、これを多少開くと共に給湯用絞り装置18を開くことにより給湯装置17へ液冷媒が溜まるのを抑制することができる。
(給湯単独運転)
給湯単独運転を行う場合には、第1流路切換弁4を閉、第2流路切換弁5を開とし、四方弁を暖房側流路に切換え、給湯用絞り装置18を凝縮圧力から蒸発圧力まで絞る。これにより、冷媒は、一点鎖線矢印のように、二段圧縮機1の高段側圧縮部3から第2流路切換弁5、凝縮側となる給湯装置17、給湯用絞り装置18、蒸発側となる室外熱交換器7、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、室外熱交換器7で吸熱した熱を給湯装置17で放熱する運転となる。この場合、冷媒は、圧縮機1を介して放熱側の給湯装置17と吸熱側の室外熱交換器7の間を循環するだけで、室内熱交換器12を循環しないため、室外熱交換器で吸熱した全熱量を給湯装置17で水の加熱に利用できることになり、効率よく温水を作ることができる。
【0049】
更に冷暖房用絞り装置53及び除湿用絞り装置14を開くことにより、室内熱交換器12内を低圧に引くことができ、室内熱交換器12へ液冷媒が溜まりを抑制できる。
(冷房・給湯併用運転−1)
冷房・給湯併用運転−1を行う場合には、第1流路切換弁4及び第2流路切換弁5とも開き、四方弁6を冷房側流路に切換え、冷暖房用絞り装置53及び給湯用絞り装置18を両方合わせて凝縮圧力から蒸発圧力まで絞り、除湿用絞り装置14を開とする。これにより、冷媒は、破線矢印及び一点鎖線矢印のように、二段圧縮機1の高段側圧縮部3から、第1流路切換弁4を通って四方弁6、凝縮側となる室外熱交換器7、冷暖用絞り装置53に流れる流れと、第2流路切換弁5を通って凝縮側となる給湯装置17、給湯用絞り装置18、第2逆止弁20に流れる(B点が低圧、C点が高圧のため第1逆止弁19には冷媒が流れない)流れに分けられる。その後、F点で合流されて、さらに蒸発側となる室内熱交換器12、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、室内熱交換器12で吸熱し、室外熱交換器7及び給湯装置17で放熱をする冷房・給湯併用運転−1が行われる。
(冷房・給湯併用運転−2)
冷房・給湯併用運転−2を行う場合には、もう一つの冷房運転と給湯運転を併用する運転形態、すなわち、第1流路切換弁4を閉、第2流路切換弁5を開とし、四方弁6を冷房側流路に切換え、給湯用絞り装置18を凝縮圧力から蒸発圧力まで絞り、除湿用絞り装置14を開とする。これにより、冷媒は、一点鎖線矢印から破線矢印のように、二段圧縮機1の高段側圧縮部3から、第2流路切換弁5、凝縮側となる給湯装置17、給湯用絞り装置18、第2逆止弁20、蒸発側となる室内熱交換器12、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、室内熱交換器12で吸熱し、給湯装置17で放熱する冷房・給湯併用運転−2が行われる。この場合には、冷暖房用絞り装置53を開とすることにより、室外熱交換器7が低圧になり、ここに液冷媒が溜まるのを抑制することが出来る。
【0050】
また、この冷房・給湯併用運転−2の場合も、室外熱交換器7から外気に放熱しないため、最初の給湯装置17の温水温度が低い場合には冷房・給湯併用運転−1に比べて給湯装置17における加熱能力が大きいが、運転の経過に伴い給湯装置17の温水温度が外気温以上になると冷房・給湯併用運転−1に比べて入力が増加する。従って、第一の実施例と同様に、温水温度センサー32、外気温度センサー33を取りつけると共に、冷房性能優先の運転の場合には温水温度がT1以上になったら冷房・給湯併用運転−2から冷房・給湯併用運転―1に切換え、給湯温度優先の運転の場合には温水温度T2(T1<T2)以上になったら冷房・給湯併用運転−2から冷房・給湯併用運転―1に切換えるように運転する。
(暖房・給湯併用運転)
暖房・給湯併用運転を行う場合には、第1流路切換弁4及び第2流路切換弁5とも開とし、四方弁6を暖房側流路に切換え、冷暖房用絞り装置53及び給湯用絞り装置18とも凝縮圧力から蒸発圧力まで絞り、除湿用絞り装置14を開とする。これにより、冷媒は、実線矢印及び一点鎖線矢印のように、二段圧縮機1の高段側圧縮部3から、第1流路切換弁4を通って四方弁6、凝縮側となる室内熱交換器12、冷暖用絞り装置53に流れる流れと、第2流路切換弁5を通って凝縮側となる給湯装置17、給湯用絞り装置18、第1逆止弁19に流れる(B点が低圧、F点が高圧のため、第2逆止弁20には冷媒が流れない)流れに分けられる。その後、C点で合流され、さらに蒸発側となる室外熱交換器7、四方弁6、二段圧縮機1の低段側圧縮部2の順に流れる。これによって、室外熱交換器7で吸熱し、室内熱交換器12及び給湯装置17で放熱をする暖房・給湯併用運転が行われる。
【0051】
なお、図5の実施例においては二段圧縮機としたが、この代わりに単段圧縮機を用いてもよい(図示省略)。このようにしても、図5の実施例で述べた種々の運転が可能であり、同様な効果を得ることができる。この場合には、入力の低減や給湯温度の向上の点で多少劣るが、低コストが可能である。
〔その他の実施例〕
図6は、図1から図5における二点鎖線部分50の他の実施例であり、第1逆止弁19、第2逆止弁20の代わりに、それぞれ第1二方弁54、第2二方弁55を設けたものである。この実施例の場合にも、二方弁54、55の開閉を、図1から図5における第1逆止弁19や第2逆止弁20の冷媒流方向と同じになるように切換えたり、あるいは第1二方弁54を図3及び図4における第1二方弁51と同様に操作したりすることにより、第一から第四の実施例と同じ種々の運転を行い、同様の効果を得ることができる。さらに、第1逆止弁19、第2逆止弁20をそれぞれ第1二方弁54、第2二方弁55に変えたことにより、冷媒流路の切換え操作を、いっそう確実に行うことができる。
【0052】
図7は、図1から図5における二点鎖線部分50のさらに他の実施例であり、第1逆止弁19あるいは第1二方弁51、及び第2逆止弁20の代わりに、三方弁56を設けたものである。この実施例の場合にも、三方弁56の流路切換えにより、冷媒流路を、第一から第四の実施冷における第1逆止弁19あるいは第1二方弁51及び第2逆止弁20による冷媒流方向と同じになるように切換えることができ、第一から第四の実施例と同じ種々の運転を行い、同様の効果を得ることができる。また、三方弁56により、冷媒流路の切換え動作を確実に行うことができる。
【0053】
また、図8は、図1及び図5における二点鎖線部分60の他の実施例であり、第一の流路切換え装置として第1流路切換弁4及び第2流路切換弁5の代わりに三方弁61を設けたものである。この実施例の場合には、三方弁61により圧縮機からの冷媒流を四方弁6側あるいは給湯装置17側に切換えることにより、冷房・給湯併用運転及び暖房・給湯併用運転はできないが、図1から図5の実施例と同様に、冷房、暖房、サイクル加熱除湿、給湯の各単独運転を行うことができ、同様の効果を得ることができる。
【0054】
さらにまた、第一から第四の実施例において、給湯装置17の制御はそれほど高精度に制御する必要が無いため、給湯用絞り装置装置18としてキャピラリーチューブ(図示省略)を使用しても良く、この場合には第二及び第三の実施例において給湯用絞り装置を開いたり、給湯用絞り装置18の出口を中間圧力まで絞る制御の運転はできないが、それ以外では同様の運転を行うことができ、同様の効果を得ることができる。
【0055】
さらにまた、図1及び図5において、室内熱交換器12を除湿用絞り装置14を挟んで、第1室内熱交換器13と第2室内熱交換器15に分けず、一つの熱交換器としても良く、この場合にはサイクル加熱除湿運転はできないが、図1から図8における各弁や各絞り装置の同様な操作により、冷房単独、暖房単独、給湯単独、冷房・給湯併用、暖房・給湯併用の運転を行うことができ、同様の効果を得ることができる。
【0056】
ところで、これまでの説明における給湯の用途としては種々の用途が考えられ、例えばお湯を風呂や台所への給湯、及び床暖房に使うことができる。こうした種々のお湯の用途に対して、各弁や各絞り装置の操作は図1から図8と同様に行い、同様の効果となる。さらに床暖房の場合には、風呂や台所への給湯に比べてお湯の温度が低くてよい場合が多く、加熱能力が少なくて良い。さらには、冷房・床暖房の併用運転を行う場合には、冷房運転で冷却・除湿された空気を床暖房により加熱することができ、特に足元が冷えすぎない快適な(除湿)運転を行うことができる。従ってこの冷房・床暖房併用運転の場合には、図1及び図5において、室内熱交換器12を除湿用絞り装置14を除いて、一つの熱交換器として、冷えすぎのない快適な(除湿)運転を行うことができる。
【0057】
さらに図1から図8で説明してきた冷凍サイクルは、種々の単一冷媒や混合冷媒を使用した冷凍サイクルに適用でき、同様の効果を得ることができる。
【0058】
以上説明したように、上述した実施例によれば、圧縮機をでた冷媒を、第一の流路切換装置を介して空調を行うサイクルと給湯を行うサイクルに分け、さらに給湯を行うサイクルの一端を第二の流路切替え装置を介して空調を行うサイクルに接続した冷凍サイクルとしたことにより、冷房、暖房、給湯の単独運転及び冷房・給湯、暖房・給湯の併用運転等、種々の運転を行うことができ、一つの比較的簡単な冷凍サイクル構成により、種々の要求にこたえることができる。また、このうち特に給湯単独運転においては、室内熱交換器を通さずに、室外熱交換器で汲み上げた全熱量を給湯装置での加熱に使うことができ、高温給湯あるいは加熱時間の短縮が可能となる。
【0059】
また、圧縮機として二段圧縮機を使うことにより、冷房・暖房運転における高効率化や給湯運転におけるよりいっそうの高温化・加熱時間短縮を図ることができる。
【0060】
更にまた、空調サイクル側の絞り装置を二つ設けその間に気液分離器を設けたサイクル構成とし、この気液分離器からガス冷媒を単暖圧縮機あるいは二段圧縮機にインジェクションするようなサイクル構成にしたことにより、更なる冷房、暖房運転における高効率化や、給湯運転における高温化・加熱時間短縮を図ることができる。
【0061】
更にまた、室内熱交換器を除湿用絞り装置を介して二つの室内熱交換器に分割することにより、室内空気を冷却・除湿すると同時に加熱し、冷え過ぎの無い快適な除湿運転を行うことができる。
【0062】
【発明の効果】
上述した実施例の説明から明らかなように、本発明によれば、冷房、暖房及び給湯の運転を可能としつつ、給湯運転における給湯温度や加熱時間の短縮を図れると共に、各運転を高効率に行える冷凍サイクル装置を得ることができる。
【図面の簡単な説明】
【図1】本発明による第一の実施例の冷凍サイクル装置の構成図である。
【図2】図1の冷凍サイクル装置の制御装置の構成図である。
【図3】本発明による第二の実施例の冷凍サイクル装置の構成図である。
【図4】本発明による第三の実施例の冷凍サイクル装置の構成図である。
【図5】本発明による第四の実施例の冷凍サイクル装置の構成図である。
【図6】本発明による他の異なる実施例の冷凍サイクル装置の構成図である。
【図7】本発明による他の異なる実施例の冷凍サイクル装置の構成図である。
【図8】本発明による他の異なる実施例の冷凍サイクル装置の構成図である。
【符号の説明】
1…二段圧縮機、2…低段側圧縮部、3…高段側圧縮部、4…第1流路切換弁、5…第2流路切換弁、6…四方弁、7…室外熱交換器、8…第1冷暖房用絞り装置、9、41…気液分離器、10…第2冷暖房用絞り装置、11…インジェクション用弁、12…室内熱交換器、13…第1室内熱交換器、14…除湿用絞り装置、15…第2室内熱交換器、17…給湯装置、18…給湯用絞り装置、19…第1逆止弁、20…第2逆止弁、21、42…圧力容器、22…第1挿入管、23…第2挿入管、24、43、44…突起板、25…インジェクション管、30…室外ファン、31…室内ファン、32…温水温度センサー、33…外気温度センサー、51、54…第1二方弁、53…冷暖房用絞り装置、55…第2二方弁、56、61…三方弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus capable of hot water supply operation in addition to air conditioning operations such as cooling and heating.
[0002]
[Prior art]
As a cooling / heating hot water supply apparatus having a cycle configuration capable of performing a hot water supply operation in addition to cooling and heating operations, there is, for example, JP-A-2001-263857 (Patent Document 1). In Patent Document 1, in a conventionally well-known cycle configuration in which a cooling operation and a heating operation are switched using a four-way valve, a hot water supply heat exchanger is provided at a portion connecting the compressor and the four-way valve, thereby adding to the cooling and heating operation. Hot water supply operation is possible. That is, the refrigerant flow refrigeration cycle is configured by connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion mechanism, an air conditioning heat exchanger (indoor heat exchanger) in an annular shape, and a hot water supply hot water circuit. The hot water is made by a hot water supply heat exchanger that exchanges heat at the portion connecting the compressor and the four-way valve, and this hot water is circulated by a hot water supply pump. Furthermore, by providing piping that bypasses the heat exchanger for hot water supply, at the time of cooling and heating operation, the refrigerant flows through this bypass piping to reduce the pressure loss at the portion connecting the compressor and the four-way valve, The cycle configuration prevents the efficiency of the refrigeration cycle from decreasing.
[0003]
Moreover, in the refrigerating cycle which performs the operation | movement of air_conditioning | cooling and heating, in order to aim at a performance improvement, there exist some which used the gas injection cycle which exists in Unexamined-Japanese-Patent No. 10-325622 (patent document 2). This gas injection cycle has a cycle configuration in which two throttle devices are provided, a gas-liquid separator is provided between them, and a gas refrigerant having an intermediate pressure without heat absorption capability separated here is injected into the cylinder of the compressor. COP can be improved in cooling and heating operations.
[0004]
[Patent Document 1]
JP 2001-263857 A
[Patent Document 2]
Japanese Patent Laid-Open No. 10-325622
[0005]
[Problems to be solved by the invention]
By the way, in a refrigeration cycle apparatus that can perform a hot water supply operation in addition to a cooling / heating operation, there is a great need for an increase in hot water temperature and a reduction in heating time in the hot water operation.
[0006]
On the other hand, in the hot water supply operation of Patent Document 1, since the refrigerant flows through the outdoor heat exchanger and the indoor heat exchanger on the refrigeration cycle side, the heating capacity for hot water supply is reduced. That is, when the refrigerant flows in the same direction as the cooling operation, heat is radiated from the outdoor heat exchanger to the outside air, so that the heating capacity for hot water supply is reduced accordingly. Further, when the refrigerant flows in the same direction as the heating operation, heat is radiated from the indoor heat exchanger into the room, and the heating capacity for hot water supply is reduced accordingly. Furthermore, on the refrigeration cycle side, compression work increases due to pressure loss of the refrigerant flow caused by passing through both the outdoor heat exchanger and the heat exchanger for air conditioning, and the performance deteriorates. Therefore, sufficient consideration is not given to the point of improving the hot water supply temperature and the temperature increase rate in the hot water supply operation.
[0007]
On the other hand, Patent Document 2 aims at improving performance (COP) by applying a gas injection cycle in cooling and heating operations, and does not have a cycle configuration capable of supplying hot water.
[0008]
An object of the present invention is to provide a refrigeration cycle apparatus capable of shortening the hot water supply temperature and heating time in the hot water supply operation and enabling each operation with high efficiency while enabling the operation of cooling, heating and hot water supply.
[0009]
Other objects and advantages of the present invention will become apparent from the following description.
[0010]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention connects a compressor, a four-way valve, an outdoor heat exchanger, an expansion device for cooling and heating operation, and an indoor heat exchanger in an annular manner, and sequentially connects a hot water supply device and a hot water supply expansion device. A refrigerant flow path that is connected to perform cooling, heating, and hot water supply operation and that divides the refrigerant flow path exiting the compressor into two refrigerant flow paths via a first flow path switching device, and one refrigerant flow path Is connected to a refrigerant circuit that is connected in the order of the four-way valve, the outdoor heat exchanger, the cooling / heating expansion device, and the indoor heat exchanger, and the other refrigerant flow path is connected to the hot water supply device and the hot water supply expansion device. It connects to the refrigerant circuit connected in order, and is further divided into two directions via the 2nd flow-path switching apparatus, and is connected to the both sides of the said expansion apparatus for air conditioning.
[0011]
The means of the present invention for achieving an object other than the above objects will become apparent from the following description.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol in the figure of each Example shows the same thing or an equivalent.
[Example 1]
First, a first embodiment according to the present invention will be described with reference to FIGS. The refrigeration cycle apparatus of this embodiment includes a refrigeration cycle that can perform a cooling operation, a heating operation, a cycle heating dehumidification operation, and a hot water supply operation.
[0013]
The refrigeration cycle apparatus includes a compressor 1, a first flow path switching device, a four-way valve 6, an outdoor heat exchanger 7, a first cooling / heating throttle device 8, a second cooling / heating throttle device 10, a gas-liquid separator 9, and an injection. The refrigeration cycle includes a valve 11, a dehumidifying expansion device 14, an indoor heat exchanger 12, a hot water supply device 17, a hot water supply expansion device 18, and a second flow path switching device.
[0014]
In this refrigeration cycle, the compressor 1, the four-way valve 6, the outdoor heat exchanger 7, the first cooling / heating expansion device 8, the gas-liquid separator 9, the second cooling / heating expansion device 10, and the indoor heat exchanger 12 are made annular. In addition to the connection, the hot water supply device 17 and the hot water supply throttle device 18 are connected in order.
[0015]
Further, the refrigeration cycle apparatus includes an outdoor fan 30, an indoor fan 31, a hot water temperature sensor 32, an outdoor air temperature sensor 33, and a control device 70.
[0016]
Each component will be specifically described. The compressor 1 is composed of a two-stage compressor composed of a low-stage compression section 2 and a high-stage compression section 3. The first flow path switching device includes a first flow path switching valve 4 and a second flow path switching valve 5 each of which is a two-way valve or a flow rate adjusting valve for switching the discharged gas refrigerant from the compressor 1 in two directions. It is configured. The four-way valve 6 is connected to the first flow path switching valve 4 and can be switched between a heating side flow path indicated by a solid line and a cooling side flow path indicated by a broken line in FIG. The outdoor heat exchanger 7 is installed so as to exchange heat with the outside air. The first air-conditioning expansion / contraction device 8 and the second air-conditioning expansion / contraction device 10 constitute an air-conditioning expansion / contraction device.
[0017]
The gas-liquid separator 9 includes a pressure vessel 21, a first insertion tube 22 and a second insertion tube 23 that are inserted to the bottom of the pressure vessel 21, and a protruding plate 24 provided on the bottom surface of the pressure vessel 21. It is configured. The first insertion tube 22 is connected to the first air conditioning unit 8 and the second insertion tube 23 is connected to the second air conditioning unit 10. The injection pipe 25 is configured to inject the gas refrigerant separated in the pressure vessel 21 into the compressor 1. One side of the injection pipe 25 communicates with the upper part of the pressure vessel, and the other side communicates between the low-stage compression section 2 and the high-stage compression section 3. The injection valve 11 is provided in the injection pipe 25 and controls the amount of injection to the compressor 1.
[0018]
The indoor heat exchanger 12 is divided into a first indoor heat exchanger 13 and a second indoor heat exchanger 15. The dehumidifying squeezing device 14 is provided between the divided first indoor heat exchanger 13 and the second indoor heat exchanger 15, and is controlled to perform a squeezing action during the dehumidifying operation.
[0019]
The hot water supply device 17 has one side connected to the second flow path switching valve 5 and the other side connected to the hot water supply expansion device 18, and hot water for hot water heated by the hot water supply heat exchanger. Built-in part. The second flow path switching device has a first check valve 19 that causes the refrigerant to flow from the hot water supply expansion device 18 side to the pipe between the outdoor heat exchanger 7 and the first air conditioning / expansion expansion device 8 (the reverse direction is stopped). , And a second check valve 20 that causes the refrigerant to flow from the side of the hot water supply expansion device 18 to the pipe connecting the second cooling / heating expansion device 10 and the first indoor heat exchanger 13 (stops in the reverse direction).
[0020]
The outdoor fan 30 is provided to blow air to the outdoor heat exchanger 7 in order to exchange heat between the outside air and the outdoor heat exchanger 7. The indoor fan 31 is provided so as to blow air to the indoor heat exchanger 12 for heat exchange between the indoor air and the indoor heat exchanger 12. The hot water temperature sensor 32 is installed so as to measure the hot water temperature of the hot water supply device 17. The outside air temperature sensor 33 is installed so as to measure the outside air temperature.
[0021]
As shown in FIG. 2, the control device 70 receives signals from the remote controller 71, the hot water temperature sensor 32, the outside air temperature sensor 33, and the like, and based on these input signals, the compressor 1 and the first flow path switching valve 4. , Second flow path switching valve 5, four-way valve 6, first cooling / heating throttle device 8, second cooling / heating throttle device 10, injection valve 11, dehumidifying throttle device 14, hot water supply throttle device 18, indoor fan 31, The operation of the outdoor fan 30 is controlled.
[0022]
In the refrigeration cycle apparatus, a plurality of different operations as described below can be performed by operating each valve, each throttle device, and the like by the control device 70.
(Cooling only operation)
When performing the cooling only operation, the first flow path switching valve 4 is opened, the second flow path switching valve 5 is closed, the four-way valve 6 is switched to the cooling side flow path, and the first and second cooling and heating throttles The devices 8 and 10 are both throttled from the condensing pressure to the evaporation pressure, and the dehumidifying throttling device 14 is opened. Thereby, as shown by the broken line arrows in FIG. 1, the refrigerant flows from the high-stage compression section 3 of the two-stage compressor 1 to the first flow path switching valve 4, the four-way valve 6, the outdoor heat exchanger 7 on the condensation side, The first air conditioning unit 8, the gas-liquid separator 9, the second air conditioning unit 10, the indoor heat exchanger 12 on the evaporation side, the four-way valve 6, and the lower stage compression unit 2 of the two-stage compressor 1. Flowing. At this time, the cooling operation is performed by absorbing heat with the indoor heat exchanger 12 and radiating heat with the outdoor heat exchanger 7. Here, since the 2nd flow-path switching valve 5 is closed, a refrigerant | coolant does not flow into the hot water supply apparatus 17, and the hot water supply apparatus 17 does not act.
[0023]
Further, the first air conditioning unit 8 and the second air conditioning unit 10 are throttled so that the pressure in the gas-liquid separator 9 becomes an intermediate pressure between the suction pressure and the discharge pressure of the two-stage compressor 1, and further used for injection. Open the valve 11. As a result, a gas injection cycle is formed in which the gas refrigerant generated in the gas-liquid separator 9 is injected between the low-stage compressor 2 and the high-stage compressor 3 of the two-stage compressor 1. As a result, the COP of the refrigeration cycle apparatus can be improved.
[0024]
Further, since the high-pressure refrigerant flow at the point C in FIG. 1 is stopped by the first check valve 19, the hot water supply device 17 is communicated with the low pressure side by opening the hot water supply throttle device 18. It can suppress that a liquid refrigerant accumulates in the inside.
(Heating only operation)
When performing heating independent operation, the first flow path switching valve 4 is opened, the second flow path switching valve 5 is closed, the four-way valve is switched to the heating-side flow path, and the second and first cooling / heating throttle devices Both 10 and 8 are throttled from the condensation pressure to the evaporation pressure, and the dehumidifying throttling device 14 is opened. Thereby, as shown by the solid line arrows in FIG. 1, the refrigerant flows from the high-stage compression section 3 of the two-stage compressor 1 to the first flow path switching valve 4, the four-way valve 6, the indoor heat exchanger 12 on the condensation side, The second air conditioning unit 10, the gas-liquid separator 9, the first air conditioning unit 8, the outdoor heat exchanger 7 on the evaporation side, the four-way valve 6, and the lower stage compression unit 2 of the two-stage compressor 1. Flowing. At this time, the outdoor heat exchanger 7 absorbs heat and the indoor heat exchanger 12 dissipates heat to perform heating operation. Here, since the 2nd flow-path switching valve 5 is closed, a refrigerant | coolant does not flow into the hot water supply apparatus 17, and the hot water supply apparatus 17 does not act.
[0025]
Further, the second air conditioning unit 10 and the first air conditioning unit 8 are appropriately throttled so that the pressure in the gas-liquid separator 9 is an intermediate pressure between the suction pressure and the discharge pressure of the two-stage compressor 1, and Open the injection valve 11. As a result, a gas injection cycle is formed in which the gas refrigerant generated in the gas-liquid separator 9 is injected between the low-stage compressor 2 and the high-stage compressor 3 of the two-stage compressor 1. As a result, the COP of the refrigeration cycle apparatus can be improved.
[0026]
Further, since the high-pressure refrigerant flow at the point D in FIG. 1 is stopped by the second check valve 20, the hot water supply throttle device 18 is opened, whereby the hot water supply device 17 is communicated with the low pressure side. It can suppress that a liquid refrigerant accumulates in the inside.
(Cycle heating dehumidification single operation)
When the cycle heating and dehumidification single operation is performed, the first flow path switching valve 4 is opened, the second flow path switching valve 5 is closed, the four-way valve is switched to the cooling side flow path, and the first and second cooling and heating operations are performed. The squeezing devices 8 and 10 are opened, and the dehumidifying squeezing device 14 is squeezed. As a result, the refrigerant flows from the high-stage compression section 3 of the two-stage compressor 1 to the first flow path switching valve 4, the four-way valve 6, and the outdoor heat that is on the condensation side, as indicated by the same broken arrow as in the cooling shown in FIG. Exchanger 7, first air-conditioning expansion device 8, gas-liquid separator 9, second air-conditioning expansion device 10, first indoor heat exchanger 13 on the condensation side, dehumidification expansion device 14, and second on the evaporation side It flows in the order of the indoor heat exchanger 15, the four-way valve 6, and the lower stage compression unit 2 of the two-stage compressor 1. At this time, the indoor air is cooled and dehumidified by the second indoor heat exchanger 15 and heated by the first indoor heat exchanger 13 on the indoor side, and the cycle heating and dehumidifying operation is performed to reduce the humidity by suppressing a decrease in room temperature relative to the indoor air. It can be performed. Here, the temperature and humidity of the air blown from the indoor unit can be adjusted by controlling the air flow rate of the outdoor fan 30 and the capacity of the compressor 1.
[0027]
Moreover, since the 2nd flow-path switching valve 5 is closed, a refrigerant | coolant does not flow into the hot water supply apparatus 17, and the hot water supply apparatus 17 does not act. Furthermore, in this cycle heating and dehumidifying operation, since the gas-liquid separator 9 is on the high pressure side, the injection valve 11 is closed and operated so that liquid refrigerant does not enter the compressor 1.
[0028]
The flow rate adjusting valve is used as the second flow path switching valve 5, and the liquid refrigerant is accumulated in the hot water supply device 17 by opening the hot water supply throttle device 18 and opening the hot water supply throttle device 18 and flowing the refrigerant to the hot water supply device 17. Can be suppressed.
(Hot water supply single operation)
When the hot water supply single operation is performed, the first flow path switching valve 4 is closed, the second flow path switching valve 5 is opened, the four-way valve is switched to the heating side flow path, and the hot water supply expansion device 18 is evaporated from the condensation pressure. Squeeze to pressure. As a result, the refrigerant flows from the high-stage compression section 3 of the two-stage compressor 1 to the second flow path switching valve 5, the hot water supply device 17 on the condensing side, and the hot water supply expansion device 18, as indicated by the one-dot chain line arrow in FIG. 1. It flows in the order of the outdoor heat exchanger 7 on the evaporation side, the four-way valve 6, and the low-stage compression section 2 of the two-stage compressor 1. As a result, the heat absorbed by the outdoor heat exchanger 7 is radiated by the hot water supply device 17.
[0029]
In this case, since the refrigerant only circulates between the heat-dissipation-side hot water supply device 17 and the heat-absorption-side outdoor heat exchanger 7 through the compressor 1 and does not circulate through the indoor heat exchanger 12, the outdoor heat exchanger The total amount of heat absorbed can be used to heat water in the hot water supply device 17, and hot water can be made efficiently. Furthermore, since the two-stage compressor is used as the compressor, the temperature of the hot water can be increased and the heating time can be shortened. In particular, when the outside air temperature is high, the heat absorption capacity from the outdoor heat exchanger 7 on the evaporation side is greatly improved, and it becomes possible to further increase the temperature of hot water and shorten the heating time.
[0030]
In the case of this hot water supply single operation, the injection valve 11 is closed to operate in order to prevent the backflow of the refrigerant from the compressor. Moreover, the indoor heat exchanger 12 and the gas-liquid separator 9 can be made into a low pressure by opening the 1st air-conditioning expansion / contraction apparatus 8, the 2nd air-conditioning expansion / contraction expansion apparatus, and the dehumidification expansion-contraction apparatus 14, and liquid is supplied to these. It can suppress that a refrigerant | coolant accumulates.
[0031]
Next, the combined operation will be described.
(Cooling and hot water supply combined operation-1)
When the cooling / hot-water supply combined operation-1 is performed, both the first flow path switching valve 4 and the second flow path switching valve 5 are opened, the four-way valve is switched to the cooling side flow path, and the first and second cooling / heating applications are performed. The throttle devices 8 and 10 are combined to throttle from the condensation pressure to the evaporation pressure, the dehumidification throttle device 14 is opened, and the hot water supply throttle device 18 is throttled from the condensation pressure to the evaporation pressure. As a result, the refrigerant flows from the high-stage compression section 3 of the two-stage compressor 1 through the first flow path switching valve 4 to the four-way valve 6, the condensation side, and the like, as indicated by the dashed arrow and the alternate long and short dash arrow in FIG. The flow through the outdoor heat exchanger 7, the first cooling / heating throttle device 8, the gas-liquid separator 9, and the second cooling / heating throttle device 10, and the hot water supply device 17 on the condensation side through the second flow path switching valve 5. 1 is divided into flows that flow to the hot water supply throttle device 18 and the second check valve 20 (the B point is low pressure and the C point is high pressure so that no refrigerant flows through the first check valve 19). They are merged at point D, and flow in the order of the indoor heat exchanger 12 on the evaporation side, the four-way valve 6, and the low-stage side compression unit 2 of the two-stage compressor 1. As a result, the combined cooling and hot water supply operation -1 in which heat is absorbed by the indoor heat exchanger 12 and radiated by the outdoor heat exchanger 7 and the hot water supply device 17 is performed.
[0032]
Further, the first air conditioning unit 8 and the second air conditioning unit 10 are appropriately throttled so that the pressure in the gas-liquid separator 9 becomes an intermediate pressure between the suction pressure and the discharge pressure of the two-stage compressor 1, Further, a gas injection cycle in which the gas refrigerant generated in the gas-liquid separator 9 is injected between the low-stage compression unit 2 and the high-stage compression unit 3 of the two-stage compressor 1 by opening the injection valve 11 is configured. And COP of the refrigeration cycle apparatus can be improved.
(Cooling and hot water supply combined operation-2)
In the case of performing the cooling / hot water supply combined operation-2, there is another operation mode in which the cooling operation and the hot water supply operation are used in combination. That is, the first flow path switching valve 4 is closed, the second flow path switching valve 5 is opened, the four-way valve 6 is switched to the cooling side flow path, the hot water supply throttle device 18 is throttled from the condensation pressure to the evaporation pressure, and dehumidifying. Open the expansion device 14. Thereby, the refrigerant flows from the high-stage compression unit 3 of the two-stage compressor 1 to the second flow path switching valve 5, the hot water supply device 17 on the condensing side, the hot water supply, as indicated by the dashed-dotted arrow in FIG. The expansion device 18, the second check valve 20, the indoor heat exchanger 12 on the evaporation side, the four-way valve 6, and the low-stage side compression unit 2 of the two-stage compressor 1 flow in this order. As a result, a combined cooling and hot water supply operation in which heat is absorbed by the indoor heat exchanger 12 and radiated by the hot water supply device 17 is performed. Furthermore, the outdoor heat exchanger 7 and the gas-liquid separator 9 can be set to a low pressure by opening the first air-conditioning expansion device 8 and the second air-conditioning expansion device 10, and the liquid refrigerant is prevented from accumulating therein. be able to. Since the gas-liquid separator 9 is on the low pressure side, the injection valve 11 is closed so that the refrigerant does not flow back from the compressor 1 to the gas-liquid separator 9.
[0033]
By the way, this cooling / hot-water supply combined operation-2 does not radiate heat from the outdoor heat exchanger 7 to the outside air, so when the warm water temperature of the first hot water supply device 17 is low, it is compared with the above-described combined cooling / hot-water supply operation-1. Although the heating capacity of the hot water supply device 17 is large, when the temperature of the hot water in the hot water supply device 17 becomes equal to or higher than the outside air temperature as the operation progresses, the input increases as compared with the cooling / hot water supply combined operation-1. Therefore, as shown in FIG. 1, the hot water temperature sensor 32 and the outside air temperature sensor 33 are attached, and the cooling performance priority operation or the hot water supply temperature priority operation can be performed. Predetermined temperatures T1 and T2 (T1 <T2) are set for each operation, and in the case of the cooling performance priority operation, when the hot water temperature becomes T1 or higher, the cooling / hot water combined operation-2 to the cooling / hot water combined use In the case of operation with priority to hot water supply temperature, when the hot water temperature becomes equal to or higher than T2, operation is performed so as to switch from cooling / hot water combined operation-2 to cooling / hot water combined operation-1.
(Heating / hot water combined operation)
When the heating / hot water supply combined operation is performed, both the first flow path switching valve 4 and the second flow path switching valve 5 are opened, the four-way valve is switched to the heating-side flow path, and the second and first cooling / heating expansion devices 10 are operated. , 8 are combined to throttle from the condensation pressure to the evaporation pressure, the dehumidifying throttle device 14 is opened, and the hot water supply throttle device 18 is throttled from the condensation pressure to the evaporation pressure. As a result, the refrigerant flows from the high-stage compression unit 3 of the two-stage compressor 1 through the first flow path switching valve 4 to the four-way valve 6, the condensation side, and the like, as indicated by the solid line arrows and the dashed line arrows in FIG. The indoor heat exchanger 12, the second cooling / warming expansion device 10, the gas-liquid separator 9, the flow flowing through the first cooling / warming expansion device 8, and the hot water supply device 17 on the condensing side through the second flow path switching valve 5. The hot water supply throttling device 18 and the first check valve 19 are divided into flows (the B point is low pressure and the D point is high pressure so that no refrigerant flows through the second check valve 20). After that, they are merged at point C in FIG. 1, and further flow in the order of the outdoor heat exchanger 7 on the evaporation side, the four-way valve 6, and the low-stage compression unit 2 of the two-stage compressor 1. As a result, a combined operation of heating and hot water is performed in which heat is absorbed by the outdoor heat exchanger 7 and heat is radiated by the indoor heat exchanger 12 and the hot water supply device 17.
[0034]
Further, the second air conditioning unit 10 and the first air conditioning unit 8 are appropriately throttled so that the pressure in the gas-liquid separator 9 is an intermediate pressure between the suction pressure and the discharge pressure of the two-stage compressor 1, and The injection valve 11 is opened. Thereby, the gas injection cycle which inject | pours the gas refrigerant generate | occur | produced in the gas-liquid separator 9 between the low stage side compression part 2 and the high stage side compression part 3 of the two-stage compressor 1 can be comprised, and COP of a refrigerating-cycle apparatus can be comprised. Can be improved.
[0035]
In the embodiment of FIG. 1, the compressor is a two-stage compressor, but instead of this, a single-stage compressor may be used to inject into one compression chamber (not shown). Even in this case, various operations described in the embodiment of FIG. 1 can be performed, and similar effects can be obtained. In this case, although it is somewhat inferior in terms of reduction of input and improvement of hot water supply temperature, cost can be reduced.
[Example 2]
Next, a second embodiment of the present invention will be described with reference to FIGS.
[0036]
In this embodiment, gas injection can be performed even during a hot water supply operation as compared with the first embodiment. 3 corresponds to a portion 40 surrounded by a two-dot chain line in FIG. 1. In FIG. 1, the first check valve 19 is changed to the first two-way valve 51, and the second check valve 20 is changed. The outflow side is connected to the second insertion tube 23 of the gas-liquid separator 9 at point E.
[0037]
Various operations in the embodiment of FIG. 3 will be described below with reference to FIG.
(Hot water supply single operation)
When the hot water supply single operation is performed, the first flow path switching valve 4 is closed, the second flow path switching valve 5 is opened, the first two-way valve 51 is closed, and the four-way valve is switched to the heating-side flow path. The gas-liquid separator 9 is throttled so that the gas-liquid separator 9 becomes an intermediate pressure between the discharge pressure and the suction pressure of the compressor 1. As a result, the refrigerant flows from the high-stage side compression unit 3 of the two-stage compressor 1 to the second flow path switching valve 5, the hot water supply device 17 on the condensing side, and for hot water supply as indicated by the one-dot chain line arrows in FIGS. It flows in the order of the expansion device 18, the gas-liquid separator 9, the first cooling / heating expansion device 8, the outdoor heat exchanger 7 on the evaporation side, the four-way valve 6, and the low-stage compression unit 2 of the two-stage compressor 1. Thus, a hot water supply single operation is performed in which the heat absorbed by the outdoor heat exchanger 7 is radiated by the hot water supply device 17. In this case, since the refrigerant only circulates between the heat-dissipation-side hot water supply device 17 and the heat-absorption-side outdoor heat exchanger 7 through the compressor 1 and does not circulate through the indoor heat exchanger 12, the outdoor heat exchanger The total amount of heat absorbed can be used for heating water by the hot water supply device 17, and hot water can be efficiently produced.
[0038]
Further, in FIG. 3, since the gas-liquid separator 9 has an intermediate pressure, by opening the injection valve 11, the gas refrigerant generated in the gas-liquid separator 9 is reduced to the low-stage compression section of the two-stage compressor 1. The gas injection cycle injected between 2 and the high-stage compression unit 3 can be configured, and the COP of the refrigeration cycle apparatus can be improved.
[0039]
In addition, by opening the second air-conditioning and heating expansion device 10 and the dehumidifying expansion device 14, the indoor heat exchanger 12 is set to the same intermediate pressure as that in the gas-liquid separator, so that liquid refrigerant accumulates in the indoor heat exchanger 12. Can be suppressed.
(Cooling and hot water supply combined operation-1)
When the cooling / hot-water supply combined operation-1 is performed, the first two-way valve 51 is closed, and the hot water supply expansion device 18 is set to the pressure in the gas-liquid separator 9 after the first cooling / heating expansion device 8 which is an intermediate pressure. It is a thing to drive to squeeze. Other operations are the same as those in the first embodiment. As a result, the refrigerant flow that has passed through the hot water supply device 17 becomes an intermediate pressure, is further throttled by the second cooling / heating expansion device 10 from the second insertion pipe 23, and flows to the indoor heat exchanger 12. In addition, the refrigerant flow that has passed through the outdoor heat exchanger 7 is throttled by the first and second air conditioning units 8 and 10 in the same manner as in the first embodiment, and becomes an intermediate pressure to separate the gas and liquid. The gas refrigerant that enters the vessel 9 and is separated here is injected into the compressor. As a result, COP can be improved, and the same operation as the cooling / hot-water supply combined operation-1 of the first embodiment can be performed.
(Cooling and hot water supply combined operation-2)
When performing the cooling and hot water supply combined operation-2, the first flow path switching valve 4 is closed, the second flow path switching valve 5 is opened, the four-way valve 6 is switched to the cooling side flow path, and the dehumidifying throttling device 14 is turned on. The first and second air-conditioning and heating expansion devices 8 and 10 are opened, and the hot-water supply expansion device 18 is further operated from the condensation pressure to the evaporation pressure. As a result, the cooling / hot water supply combined operation in which heat is radiated by the hot water supply device 17 and absorbed by the indoor heat exchanger 12 is performed. In addition, since the 1st and 2nd expansion-contraction apparatus 8 and 10 for air conditioning are opened, the outdoor heat exchanger 7 can be pulled to low pressure, and it can suppress that a liquid refrigerant accumulates in the outdoor heat exchanger 7. .
[0040]
Also, in the case of this combined cooling and hot water supply operation-2, since heat is not radiated from the outdoor heat exchanger 7 to the outside air, hot water supply compared to the combined cooling and hot water supply operation-1 when the hot water temperature of the first hot water supply device 17 is low. Although the heating capacity in the device 17 is large, the input increases as compared with the cooling / hot water supply combined operation-1 when the hot water temperature of the hot water supply device 17 becomes equal to or higher than the outside air temperature as the operation progresses. Accordingly, similarly to the first embodiment, the hot water temperature sensor 32 and the outside air temperature sensor 33 are attached, and in the case of the cooling performance priority operation, when the warm water temperature becomes equal to or higher than T1, the cooling / hot water supply combined operation-2 is started.・ Switch to hot water supply combined operation-1 and switch to cooling / hot water combined operation-2 from cooling / hot water combined operation-2 when the hot water temperature exceeds T2 (T1 <T2) in the case of hot water temperature priority operation. drive.
(Other driving)
In the second embodiment, for each of the valves and the throttling devices, the cooling flow is different from the cooling operation, the heating single operation, the cycle heating dehumidification single operation, and the heating / hot water combined operation other than the above. By operating in the same manner as in the first embodiment, the same actions and effects as in the first embodiment can be obtained.
Example 3
Next, a third embodiment according to the present invention will be described with reference to FIGS. The third embodiment is another embodiment in which gas injection can be performed during the hot water supply operation as compared with the first embodiment. 4 corresponds to a portion 40 surrounded by a two-dot chain line in FIG. In FIG. 1, the first check valve 19 is changed to a first two-way valve 51, and the gas-liquid separator 41 is replaced with a pressure vessel 42, two projecting plates 43 and 44 provided on the bottom surface in the pressure vessel 42, and a tip. Is formed of a third insertion tube 45 provided in the pressure vessel 42 so that the two are located between the two projection plates 43 and 44, and the piping on the outflow side of the second check valve 20 is connected to the third insertion tube 45. Connected. The other parts are the same as in FIG. In the gas-liquid separator 41 of FIG. 4, the gas-liquid two-phase refrigerant that has entered the pressure vessel 42 from the third insertion tube is injected between the two projection plates 43, 44, and the first insertion tube 22 and the first insertion tube 22. 2 The gas refrigerant and the liquid refrigerant are separated without significantly affecting the lower end of the insertion tube 23.
[0041]
Various operations in the embodiment of FIG. 4 will be described below with reference to FIG.
(Hot water supply single operation)
When the hot water supply single operation is performed, the first flow path switching valve 4 is closed, the second flow path switching valve 5 is opened, the four-way valve is switched to the heating side flow path, and the hot water supply expansion device 18 and the first cooling / heating use are switched. Both of the expansion devices 8 are combined to reduce the condensation pressure to the evaporation pressure. As a result, the refrigerant flows from the high-stage side compression unit 3 of the two-stage compressor 1 to the second flow path switching valve 5, the hot water supply device 17 on the condensing side, and for hot water supply as indicated by the one-dot chain line arrows in FIGS. The expansion device 18, the gas-liquid separator 41, the first air-conditioning expansion / contraction device 8, the outdoor heat exchanger 7 on the evaporation side, the four-way valve 6, and the low-stage compression section 2 of the two-stage compressor 1 are flowed in this order. The heat absorbed by the exchanger 7 is dissipated by the hot water supply device 17. In this case, since the refrigerant only circulates between the heat-dissipation-side hot water supply device 17 and the heat-absorption-side outdoor heat exchanger 7 through the compressor 1 and does not circulate through the indoor heat exchanger 12, the outdoor heat exchanger All of the absorbed total heat can be used for heating water with the hot water supply device 17, and hot water can be efficiently produced.
[0042]
Further, in the embodiment of FIG. 4, since the gas-liquid separator 41 has an intermediate pressure, by opening the injection valve 11, the gas refrigerant generated in the gas-liquid separator 41 is removed from the two-stage compressor 1. The gas injection cycle injected between the lower stage compression section 2 and the higher stage compression section 3 can be configured, and the COP of the refrigeration cycle apparatus can be improved.
[0043]
In addition, by opening the second air-conditioning and heating expansion device 10 and the dehumidifying expansion device 14, the indoor heat exchanger 12 is set to the same intermediate pressure as that in the gas-liquid separator 41, and liquid refrigerant accumulates in the indoor heat exchanger 12. Can be suppressed.
(Cooling and hot water supply combined operation-1)
When the cooling / hot water supply combined operation-1 is performed, the first two-way valve 51 is closed, and the amount of throttle of the hot water supply expansion device 18 is set to the gas-liquid separator 41 after the first air conditioning / expansion expansion device 8 which is an intermediate pressure. The other operations are the same as in the first embodiment. As a result, the refrigerant flow that has passed through the hot water supply device 17 becomes an intermediate pressure and enters the gas-liquid separator 41 through the third insertion tube 45, where it is separated into liquid refrigerant and gas refrigerant, and the gas refrigerant is injected. Is done. In addition, the refrigerant flow that has passed through the outdoor heat exchanger 7 is throttled to an intermediate pressure by the first and second air conditioning unit 8 and enters the gas-liquid separator 41 as in the first embodiment. The gas refrigerant separated here is injected into the compressor 1.
[0044]
As described above, in the third embodiment, compared to the first embodiment, the amount of injection from the refrigerant flow that has passed through the hot water supply device 17 is increased, and the combined use of cooling and hot water with further improved COP. It becomes operation-1.
(Cooling and hot water supply combined operation-2)
When the cooling / hot-water supply combined operation-2 is performed, the first two-way valve 51 is closed so that the first air-conditioning expansion device 8 and the second air-conditioning expansion device 10 have an intermediate pressure in the gas-liquid separator 41. In addition, the outlet pressure of the hot water supply squeezing device 18 is squeezed so as to become the pressure in the gas-liquid separator 41, and the other operations are the same as in the embodiment of FIG. As a result, the refrigerant flow that has passed through the hot water supply device 17 becomes an intermediate pressure and enters the gas-liquid separator 41 through the third insertion tube, where the gas refrigerant is separated and injected into the compressor 1. Therefore, the COP of the refrigeration cycle apparatus can be further improved as compared with the first embodiment.
[0045]
Also, in the case of this combined cooling and hot water supply operation-2, since heat is not radiated from the outdoor heat exchanger 7 to the outside air, hot water supply compared to the combined cooling and hot water supply operation-1 when the hot water temperature of the first hot water supply device 17 is low. Although the heating capacity in the device 17 is large, the input increases as compared with the cooling / hot water supply combined operation-1 when the hot water temperature of the hot water supply device 17 becomes equal to or higher than the outside air temperature as the operation progresses. Accordingly, as in the first embodiment, the hot water temperature sensor 32 and the outside air temperature sensor 33 are attached, and in the case of the cooling performance priority operation, when the warm water temperature becomes T1 or higher, the cooling / hot water combined use operation -2 is started. Switched to hot water supply combined operation-1 and in the case of hot water temperature priority operation, when the hot water temperature exceeds T2 (T1 <T2), the operation is switched from cooling / hot water combined operation-2 to cooling / hot water combined operation-1 To do.
(Other driving)
In the third embodiment, the refrigerant flows through the valves and the throttle devices for cooling only operation, heating single operation, cycle heating dehumidification single operation, and heating / hot water supply combined operation other than those described above. By operating in the same manner as in the first embodiment, the same actions and effects as in the first embodiment can be obtained.
Example 4
Next, a fourth embodiment of the present invention will be described with reference to FIGS.
[0046]
In the fourth embodiment, gas injection is not performed in the first embodiment. In FIG. 1, the gas-liquid separator 9, the injection pipe 25, and the injection valve 11 are removed, and further, for air conditioning. This is a cycle configuration with a single expansion device. Reference numeral 53 is an expansion / contraction expansion device, and the outlet side of the second check valve 20 is a pipe connecting the expansion / contraction expansion device 53 and the first indoor heat exchanger 13. Are connected at point F.
[0047]
Various operations in the fourth embodiment will be described below with reference to FIG.
(Cooling only operation)
When performing the cooling only operation, the first flow path switching valve 4 is opened, the second flow path switching valve 5 is closed, the four-way valve 6 is switched to the cooling-side flow path, and the expansion / contraction expansion device 53 is switched from the condensation pressure. Throttle to the evaporation pressure and open the dehumidifying throttling device 14. As a result, as indicated by the broken line arrows, the refrigerant flows from the high-stage compression section 3 of the two-stage compressor 1 to the first flow path switching valve 4, the four-way valve 6, the outdoor heat exchanger 7 on the condensing side, and the cooling / heating throttle. It flows in the order of the apparatus 53, the indoor heat exchanger 12 on the evaporation side, the four-way valve 6, and the low-stage side compression unit 2 of the two-stage compressor 1. As a result, a cooling operation is performed in which heat is absorbed by the indoor heat exchanger 12 and radiated by the outdoor heat exchanger 7. In this case, since the second flow path switching valve 5 is closed, the refrigerant does not flow through the hot water supply device 17 and the hot water supply device 17 does not act. In addition, by opening the hot water supply throttle device 18, the hot water supply device 17 can be pulled to the low pressure compressor suction side through the second check valve 20, and liquid refrigerant can be prevented from accumulating in the hot water supply device 17. .
(Heating only operation)
When performing heating alone operation, the first flow path switching valve 4 is opened, the second flow path switching valve 5 is closed, the four-way valve is switched to the heating-side flow path, the cooling / heating expansion device 53 is throttled, and dehumidification is performed. Open the expansion device 14. Thereby, as shown by the solid line arrow, the refrigerant flows from the high-stage side compression unit 3 of the two-stage compressor 1 to the first flow path switching valve 4, the four-way valve 6, the indoor heat exchanger 12 on the condensing side, and the air conditioner throttle. It flows in the order of the device 53, the outdoor heat exchanger 7 on the evaporation side, the four-way valve 6, and the low-stage compression section 2 of the two-stage compressor 1. As a result, a heating operation is performed in which heat is absorbed by the outdoor heat exchanger 7 and radiated by the indoor heat exchanger 12. In this case, since the second flow path switching valve 5 is closed, the refrigerant does not flow through the hot water supply device 17 and the hot water supply device 17 does not act. Further, by opening the hot water supply throttle device 18, the hot water supply device 17 can be pulled to the low pressure compressor suction side through the first check valve 19, and liquid refrigerant can be prevented from accumulating in the hot water supply device 17. .
(Cycle heating dehumidification single operation)
When the cycle heating and dehumidification single operation is performed, the first flow path switching valve 4 is opened, the second flow path switching valve 5 is closed, the four-way valve is switched to the cooling side flow path, and the cooling and heating throttle device 53 is opened. The dehumidifying squeezing device 14 is squeezed. As a result, the refrigerant flows from the high-stage side compression unit 3 of the two-stage compressor 1 to the first flow path switching valve 4, the four-way valve 6, the outdoor heat exchanger 7 on the condensing side, as indicated by the same broken-line arrows as in cooling. Air conditioner expansion device 53, first indoor heat exchanger 13 on the condensation side, dehumidification expansion device 14, second indoor heat exchanger 15 on the evaporation side, four-way valve 6, low-stage compression of the two-stage compressor 1 It flows in the order of part 2. Thus, as in the first embodiment, indoor air is cooled and dehumidified by the second indoor heat exchanger 15 and heated by the first indoor heat exchanger 13 on the indoor side, and the room temperature is lowered relative to the indoor air. A cycle heating and dehumidifying operation is performed to reduce only the humidity. Furthermore, the temperature and humidity can be adjusted by controlling the blown amount of the outdoor fan 30 and the capacity of the compressor 1 with respect to the air blown from the indoor unit. Moreover, since the 2nd flow-path switching valve 5 is closed, a refrigerant | coolant does not flow into the hot water supply apparatus 17, and the hot water supply apparatus 17 does not act.
[0048]
In this case, it is possible to prevent liquid refrigerant from accumulating in the hot water supply device 17 by using a flow rate adjusting valve as the second flow path switching valve 5 and opening it somewhat and opening the hot water supply throttle device 18.
(Hot water supply single operation)
When the hot water supply single operation is performed, the first flow path switching valve 4 is closed, the second flow path switching valve 5 is opened, the four-way valve is switched to the heating side flow path, and the hot water supply expansion device 18 is evaporated from the condensation pressure. Squeeze to pressure. As a result, the refrigerant flows from the high-stage side compression unit 3 of the two-stage compressor 1 to the second flow path switching valve 5, the hot water supply device 17 on the condensing side, the hot water supply throttle device 18, and the evaporation side, as indicated by a dashed line arrow. The outdoor heat exchanger 7, the four-way valve 6, and the low-stage compression unit 2 of the two-stage compressor 1 flow in this order. As a result, the heat absorbed by the outdoor heat exchanger 7 is radiated by the hot water supply device 17. In this case, since the refrigerant only circulates between the heat-dissipation-side hot water supply device 17 and the heat-absorption-side outdoor heat exchanger 7 through the compressor 1 and does not circulate through the indoor heat exchanger 12, the outdoor heat exchanger The total amount of heat absorbed can be used for heating water by the hot water supply device 17, and hot water can be efficiently produced.
[0049]
Furthermore, by opening the expansion / contraction expansion device 53 and the dehumidification expansion device 14, the inside of the indoor heat exchanger 12 can be pulled to a low pressure, and the accumulation of liquid refrigerant in the indoor heat exchanger 12 can be suppressed.
(Cooling and hot water supply combined operation-1)
When the cooling / hot-water supply combined operation-1 is performed, both the first flow path switching valve 4 and the second flow path switching valve 5 are opened, the four-way valve 6 is switched to the cooling-side flow path, and the cooling / heating expansion device 53 and the hot water supply Both the throttle devices 18 are throttled from the condensation pressure to the evaporation pressure, and the dehumidifying throttle device 14 is opened. As a result, the refrigerant flows from the high-stage compression section 3 of the two-stage compressor 1 through the first flow path switching valve 4 to the four-way valve 6 and the outdoor heat that becomes the condensing side, as indicated by broken line arrows and one-dot chain line arrows. The flow that flows through the exchanger 7 and the cooling / heating throttle device 53, and the flow through the second flow path switching valve 5 to the hot water supply device 17, the hot water supply throttle device 18, and the second check valve 20 on the condensation side (point B is Since the low pressure and the C point are high pressure, the refrigerant does not flow through the first check valve 19). Thereafter, the refrigerant is merged at point F, and further flows in the order of the indoor heat exchanger 12 on the evaporation side, the four-way valve 6, and the low-stage compression unit 2 of the two-stage compressor 1. As a result, a combined cooling and hot water supply operation 1 is performed in which heat is absorbed by the indoor heat exchanger 12 and heat is radiated by the outdoor heat exchanger 7 and the hot water supply device 17.
(Cooling and hot water supply combined operation-2)
When performing the cooling / hot water supply combined operation-2, another operation mode in which the cooling operation and the hot water supply operation are used together, that is, the first flow path switching valve 4 is closed and the second flow path switching valve 5 is opened, The four-way valve 6 is switched to the cooling side flow path, the hot water supply throttle device 18 is throttled from the condensation pressure to the evaporation pressure, and the dehumidifying throttle device 14 is opened. As a result, the refrigerant flows from the high-stage compression section 3 of the two-stage compressor 1 to the second flow path switching valve 5, the hot water supply device 17 on the condensing side, and the hot water supply squeezing device, as indicated by the dashed-dotted arrow to the broken line arrow. 18, the second check valve 20, the indoor heat exchanger 12 on the evaporation side, the four-way valve 6, and the low-stage side compression unit 2 of the two-stage compressor 1. As a result, the combined cooling and hot water supply operation-2 in which heat is absorbed by the indoor heat exchanger 12 and radiated by the hot water supply device 17 is performed. In this case, by opening the cooling / heating expansion device 53, the outdoor heat exchanger 7 can be kept at a low pressure, and liquid refrigerant can be prevented from accumulating therein.
[0050]
Also, in the case of this combined cooling and hot water supply operation-2, since heat is not radiated from the outdoor heat exchanger 7 to the outside air, hot water supply compared to the combined cooling and hot water supply operation-1 when the hot water temperature of the first hot water supply device 17 is low. Although the heating capacity in the device 17 is large, the input increases as compared with the cooling / hot water supply combined operation-1 when the hot water temperature of the hot water supply device 17 becomes equal to or higher than the outside air temperature as the operation progresses. Accordingly, similarly to the first embodiment, the hot water temperature sensor 32 and the outside air temperature sensor 33 are attached, and in the case of the cooling performance priority operation, when the warm water temperature becomes equal to or higher than T1, the cooling / hot water supply combined operation-2 is started.・ Switching to hot water supply combined operation-1, switching to cooling / hot water combined operation -2 to cooling / hot water combined operation-1 when the hot water temperature is higher than T2 (T1 <T2) in the case of hot water temperature priority operation To do.
(Heating / hot water combined operation)
When the heating / hot water supply combined operation is performed, both the first flow path switching valve 4 and the second flow path switching valve 5 are opened, the four-way valve 6 is switched to the heating side flow path, and the cooling / heating throttle device 53 and the hot water supply throttle are switched. The device 18 is also squeezed from the condensation pressure to the evaporation pressure, and the dehumidifying squeezing device 14 is opened. As a result, as indicated by the solid line arrows and the one-dot chain line arrows, the refrigerant passes through the first flow path switching valve 4 from the high-stage side compression unit 3 of the two-stage compressor 1 and the indoor heat that becomes the condensing side. The flow that flows through the exchanger 12 and the cooling / warming throttle device 53, and the flow through the second flow path switching valve 5 to the hot water supply device 17, the hot water supply throttle device 18, and the first check valve 19 on the condensation side (point B is Since the low pressure and the F point are high pressure, the refrigerant does not flow through the second check valve 20). Thereafter, the refrigerant is merged at point C, and further flows in the order of the outdoor heat exchanger 7 on the evaporation side, the four-way valve 6, and the low-stage compression unit 2 of the two-stage compressor 1. Thus, a combined heating and hot water supply operation is performed in which heat is absorbed by the outdoor heat exchanger 7 and heat is radiated by the indoor heat exchanger 12 and the hot water supply device 17.
[0051]
Although the two-stage compressor is used in the embodiment of FIG. 5, a single-stage compressor may be used instead (not shown). Even in this case, various operations described in the embodiment of FIG. 5 are possible, and similar effects can be obtained. In this case, although it is somewhat inferior in terms of reduction in input and improvement in hot water supply temperature, low cost is possible.
[Other Examples]
FIG. 6 is another embodiment of the two-dot chain line portion 50 in FIGS. 1 to 5, and instead of the first check valve 19 and the second check valve 20, the first two-way valve 54 and the second check valve 20, respectively. A two-way valve 55 is provided. Also in the case of this embodiment, the opening and closing of the two-way valves 54 and 55 are switched so as to be the same as the refrigerant flow direction of the first check valve 19 and the second check valve 20 in FIGS. Alternatively, by operating the first two-way valve 54 in the same manner as the first two-way valve 51 in FIGS. 3 and 4, the same various operations as in the first to fourth embodiments are performed, and the same effect is obtained. Obtainable. Further, by changing the first check valve 19 and the second check valve 20 to the first two-way valve 54 and the second two-way valve 55, respectively, the refrigerant channel switching operation can be performed more reliably. it can.
[0052]
FIG. 7 shows still another embodiment of the two-dot chain line portion 50 in FIGS. 1 to 5, and instead of the first check valve 19 or the first two-way valve 51 and the second check valve 20, three-way A valve 56 is provided. Also in this embodiment, the flow path of the three-way valve 56 switches the refrigerant flow path to the first check valve 19 or the first two-way valve 51 and the second check valve in the first to fourth operation cooling. The direction of the refrigerant can be switched to the same direction as that of No. 20, and the same various operations as in the first to fourth embodiments can be performed to obtain the same effect. The three-way valve 56 can reliably perform the refrigerant channel switching operation.
[0053]
FIG. 8 shows another embodiment of the two-dot chain line portion 60 in FIGS. 1 and 5, and instead of the first flow path switching valve 4 and the second flow path switching valve 5 as the first flow path switching device. Is provided with a three-way valve 61. In the case of this embodiment, the cooling / hot water combined operation and the heating / hot water combined operation cannot be performed by switching the refrigerant flow from the compressor to the four-way valve 6 side or the hot water supply device 17 side by the three-way valve 61. As in the embodiment of FIG. 5, each operation of cooling, heating, cycle heating dehumidification, and hot water supply can be performed, and similar effects can be obtained.
[0054]
Furthermore, in the first to fourth embodiments, since it is not necessary to control the hot water supply device 17 with high accuracy, a capillary tube (not shown) may be used as the hot water supply expansion device device 18. In this case, in the second and third embodiments, it is impossible to open the hot water supply throttle device or to control the outlet of the hot water supply throttle device 18 to an intermediate pressure, but otherwise the same operation can be performed. And similar effects can be obtained.
[0055]
Furthermore, in FIG. 1 and FIG. 5, the indoor heat exchanger 12 is not divided into the first indoor heat exchanger 13 and the second indoor heat exchanger 15 with the dehumidifying throttling device 14 interposed therebetween, but as a single heat exchanger. In this case, the cycle heating and dehumidifying operation is not possible, but by operating the valves and the throttle devices in FIGS. 1 to 8 in the same manner, cooling alone, heating alone, hot water alone, combined cooling and hot water, heating and hot water The combined operation can be performed, and the same effect can be obtained.
[0056]
By the way, various uses can be considered as the use of hot water in the description so far, for example, hot water can be used for hot water supply to a bath or a kitchen, and floor heating. For these various types of hot water, the operation of each valve and each throttle device is performed in the same manner as in FIGS. Furthermore, in the case of floor heating, the temperature of the hot water may be lower than that of the hot water supplied to the bath or kitchen, and the heating capacity may be small. Furthermore, when performing a combined cooling / floor heating operation, the air cooled and dehumidified by the cooling operation can be heated by the floor heating, and especially comfortable (dehumidification) operation where the feet are not too cold is performed. Can do. Accordingly, in the case of this cooling / floor heating combined operation, in FIG. 1 and FIG. 5, the indoor heat exchanger 12 is removed as a single heat exchanger except for the dehumidifying expansion device 14, so that it is comfortable without being overcooled (dehumidification). ) Can drive.
[0057]
Furthermore, the refrigeration cycle described in FIGS. 1 to 8 can be applied to refrigeration cycles using various single refrigerants or mixed refrigerants, and the same effects can be obtained.
[0058]
As described above, according to the above-described embodiment, the refrigerant discharged from the compressor is divided into the cycle for performing air conditioning and the cycle for supplying hot water via the first flow path switching device, and the cycle for further supplying hot water. By adopting a refrigeration cycle with one end connected to a cycle that performs air conditioning via the second flow path switching device, various operations such as cooling, heating, hot water supply independent operation, and cooling / hot water, heating / hot water combined operation, etc. With a relatively simple refrigeration cycle configuration, various requirements can be met. Of these, especially in hot water supply operation alone, the total amount of heat pumped up by the outdoor heat exchanger can be used for heating in the hot water supply device without passing through the indoor heat exchanger, enabling high-temperature hot water supply or shortening of the heating time. It becomes.
[0059]
In addition, by using a two-stage compressor as the compressor, it is possible to achieve higher efficiency in cooling / heating operation and higher temperature and shorter heating time in hot water supply operation.
[0060]
Furthermore, a cycle configuration in which two throttle devices on the air conditioning cycle side are provided and a gas-liquid separator is provided between them, and a gas refrigerant is injected from the gas-liquid separator into a single warm compressor or a two-stage compressor. By adopting the configuration, it is possible to further increase the efficiency in cooling and heating operations, and to increase the temperature and shorten the heating time in hot water supply operations.
[0061]
Furthermore, by dividing the indoor heat exchanger into two indoor heat exchangers through the dehumidifying squeezing device, the indoor air can be cooled and dehumidified and simultaneously heated to perform a comfortable dehumidifying operation without overcooling. it can.
[0062]
【The invention's effect】
As is apparent from the description of the embodiments described above, according to the present invention, it is possible to reduce the hot water supply temperature and the heating time in the hot water supply operation while enabling the operation of cooling, heating and hot water supply, and each operation with high efficiency. A refrigeration cycle apparatus capable of performing can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a control device of the refrigeration cycle apparatus of FIG. 1;
FIG. 3 is a configuration diagram of a refrigeration cycle apparatus according to a second embodiment of the present invention.
FIG. 4 is a configuration diagram of a refrigeration cycle apparatus according to a third embodiment of the present invention.
FIG. 5 is a configuration diagram of a refrigeration cycle apparatus according to a fourth embodiment of the present invention.
FIG. 6 is a configuration diagram of a refrigeration cycle apparatus according to another embodiment of the present invention.
FIG. 7 is a configuration diagram of a refrigeration cycle apparatus of another different embodiment according to the present invention.
FIG. 8 is a configuration diagram of a refrigeration cycle apparatus according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Two-stage compressor, 2 ... Low stage side compression part, 3 ... High stage side compression part, 4 ... 1st flow-path switching valve, 5 ... 2nd flow-path switching valve, 6 ... Four-way valve, 7 ... Outdoor heat Exchanger, 8 ... first air conditioning unit, 9, 41 ... gas-liquid separator, 10 ... second air conditioning unit, 11 ... injection valve, 12: indoor heat exchanger, 13 ... first indoor heat exchange 14 ... Dehumidifying throttle device, 15 ... Second indoor heat exchanger, 17 ... Hot water supply device, 18 ... Hot water supply throttle device, 19 ... First check valve, 20 ... Second check valve, 21, 42 ... Pressure vessel, 22 ... first insertion tube, 23 ... second insertion tube, 24, 43, 44 ... projection plate, 25 ... injection tube, 30 ... outdoor fan, 31 ... indoor fan, 32 ... warm water temperature sensor, 33 ... outside air Temperature sensor, 51, 54 ... 1st two-way valve, 53 ... Air conditioner throttle, 55 ... 2nd two-way valve, 56, 61 ... Three-way .

Claims (12)

圧縮機、四方弁、室外熱交換器、第1冷暖房運転用絞り装置、気液分離器、第2冷暖房運転用絞り装置及び室内熱交換器を環状に接続すると共に給湯装置及び給湯用絞り装置を順に接続して冷房、暖房及び給湯運転が可能な冷凍サイクルを備え、
前記圧縮機を出た冷媒流路を第一の流路切換装置を介して二つの冷媒流路に分け、
一方の冷媒流路を、前記四方弁、前記室外熱交換器、前記第1冷暖房運転用絞り装置、前記気液分離器、前記第2冷暖房運転用絞り装置及び前記室内熱交換器の順に接続した冷媒回路に接続し、
他方の冷媒流路を、前記給湯装置及び前記給湯用絞り装置の順に接続した冷媒回路に接続し、それから更に第二の流路切換装置を介して二方向に分けて前記第1冷暖房用絞り装置の室外熱交換器側と前記第2冷暖房用絞り装置器の室内熱交換器側とに接続し、
前記気液分離器から前記圧縮機にガス冷媒をインジェクションする冷媒流路を設けた
ことを特徴とする冷凍サイクル装置。
A compressor, a four-way valve, an outdoor heat exchanger, a first air-conditioning operation expansion device, a gas-liquid separator, a second air-conditioning operation expansion device, and an indoor heat exchanger, and a hot water supply device and a hot water supply expansion device. It is equipped with a refrigeration cycle that can be connected in order to allow cooling, heating and hot water supply operation.
The refrigerant flow path exiting the compressor is divided into two refrigerant flow paths via the first flow path switching device,
One refrigerant flow path was connected in the order of the four-way valve, the outdoor heat exchanger, the first air-conditioning operation expansion device, the gas-liquid separator, the second air-conditioning operation expansion device, and the indoor heat exchanger. Connected to the refrigerant circuit,
The other refrigerant flow path is connected to a refrigerant circuit that is connected in the order of the hot water supply apparatus and the hot water supply expansion apparatus, and then divided into two directions via a second flow path switching apparatus, and the first cooling and heating expansion apparatus. Connected to the outdoor heat exchanger side and the indoor heat exchanger side of the second air conditioning unit.
A refrigeration cycle apparatus comprising a refrigerant flow path for injecting a gas refrigerant from the gas-liquid separator to the compressor.
前記第二の流路切換装置は、二方向に分けられた冷媒流路のそれぞれに、給湯用絞り装置側から冷媒を流し逆方向には流さない第1逆止弁と、給湯用絞り装置側から流し逆方向には流さない第2逆止弁とを有していることを特徴とする請求項1に記載の冷凍サイクル装置。  The second flow path switching device includes a first check valve that flows the refrigerant from the hot water supply throttle device side and does not flow in the reverse direction in each of the refrigerant flow channels divided in two directions, and the hot water supply throttle device side The refrigeration cycle apparatus according to claim 1, further comprising a second check valve that does not flow in a reverse direction. 圧縮機、四方弁、室外熱交換器、第1冷暖房運転用絞り装置、気液分離器、第2冷暖房運転用絞り装置及び室内熱交換器を環状に接続すると共に給湯装置及び給湯用絞り装置を順に接続して冷房、暖房及び給湯運転が可能な冷凍サイクルを備え、
前記圧縮機を出た冷媒流路を第一の流路切換装置を介して二つの冷媒流路に分け、
一方の冷媒流路を、前記四方弁、前記室外熱交換器、前記第1冷暖房運転用絞り装置、前記気液分離器、前記第2冷暖房運転用絞り装置及び前記室内熱交換器の順に接続した冷媒回路に接続し、
他方の冷媒流路を、前記給湯装置及び前記給湯用絞り装置の順に接続した冷媒回路に接続し、それから更に第二の流路切換装置を介して二方向に分け、その一方を室外熱交換器と第1冷暖房用絞り装置を結ぶ配管に接続し、その他方を気液分離器と第2冷暖房用絞り装置を結ぶ配管に接続し、
前記気液分離器から前記圧縮機にガス冷媒をインジェクションする冷媒流路を設けた
ことを特徴とする冷凍サイクル装置。
A compressor, a four-way valve, an outdoor heat exchanger, a first air-conditioning operation expansion device, a gas-liquid separator, a second air-conditioning operation expansion device, and an indoor heat exchanger, and a hot water supply device and a hot water supply expansion device. It is equipped with a refrigeration cycle that can be connected in order to allow cooling, heating and hot water supply operation.
The refrigerant flow path exiting the compressor is divided into two refrigerant flow paths via the first flow path switching device,
One refrigerant flow path was connected in the order of the four-way valve, the outdoor heat exchanger, the first air-conditioning operation expansion device, the gas-liquid separator, the second air-conditioning operation expansion device, and the indoor heat exchanger. Connected to the refrigerant circuit,
The other refrigerant flow path is connected to a refrigerant circuit connected in the order of the hot water supply device and the hot water supply throttling device, and then further divided into two directions via a second flow path switching device, one of which is an outdoor heat exchanger And the other connecting to the pipe connecting the first air conditioning unit, and the other to the piping connecting the gas-liquid separator and the second air conditioning unit,
A refrigeration cycle apparatus comprising a refrigerant flow path for injecting a gas refrigerant from the gas-liquid separator to the compressor.
圧縮機、四方弁、室外熱交換器、第1冷暖房運転用絞り装置、気液分離器、第2冷暖房運転用絞り装置及び室内熱交換器を環状に接続すると共に給湯装置及び給湯用絞り装置を順に接続して冷房、暖房及び給湯運転が可能な冷凍サイクルを備え、
前記圧縮機を出た冷媒流路を第一の流路切換装置を介して二つの冷媒流路に分け、
一方の冷媒流路を、前記四方弁、前記室外熱交換器、前記第1冷暖房運転用絞り装置、前記気液分離器、前記第2冷暖房運転用絞り装置及び前記室内熱交換器の順に接続した冷媒回路に接続し、
他方の冷媒流路を、前記給湯装置及び前記給湯用絞り装置の順に接続した冷媒回路に接続し、それから更に第二の流路切換装置を介して二方向に分け、その一方を室外熱交換器と第1冷暖房用絞り装置を結ぶ配管に接続し、その他方を気液分離器内への挿入管に接続し、
前記気液分離器から前記圧縮機にガス冷媒をインジェクションする冷媒流路を設けた
ことを特徴とする冷凍サイクル装置。
A compressor, a four-way valve, an outdoor heat exchanger, a first air-conditioning operation expansion device, a gas-liquid separator, a second air-conditioning operation expansion device, and an indoor heat exchanger, and a hot water supply device and a hot water supply expansion device. It is equipped with a refrigeration cycle that can be connected in order to allow cooling, heating and hot water supply operation.
The refrigerant flow path exiting the compressor is divided into two refrigerant flow paths via the first flow path switching device,
One refrigerant flow path was connected in the order of the four-way valve, the outdoor heat exchanger, the first air-conditioning operation expansion device, the gas-liquid separator, the second air-conditioning operation expansion device, and the indoor heat exchanger. Connected to the refrigerant circuit,
The other refrigerant flow path is connected to a refrigerant circuit connected in the order of the hot water supply device and the hot water supply throttling device, and then further divided into two directions via a second flow path switching device, one of which is an outdoor heat exchanger Is connected to the pipe connecting the first air conditioning unit, and the other is connected to the insertion pipe into the gas-liquid separator.
A refrigeration cycle apparatus comprising a refrigerant flow path for injecting a gas refrigerant from the gas-liquid separator to the compressor.
前記第二の流路切換装置は、前記給湯用絞り装置から前記室外熱交換器と前記第1冷暖房用絞り装置とを結ぶ配管に設けた二方弁と、給湯用絞り装置側から冷媒を流し逆方向には流さない逆止弁とを有して構成したことを特徴とする請求項3または4に記載の冷凍サイクル装置。  The second flow path switching device is configured to flow a refrigerant from a two-way valve provided on a pipe connecting the outdoor heat exchanger and the first cooling / heating expansion device from the hot water supply expansion device, and a hot water supply expansion device side. The refrigeration cycle apparatus according to claim 3 or 4, further comprising a check valve that does not flow in the reverse direction. 前記圧縮機を低段側圧縮部と高段側圧縮部とからなる二段圧縮機としたことを特徴とする請求項1から5の何れかに記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the compressor is a two-stage compressor including a low-stage compressor and a high-stage compressor. 前記圧縮機を低段側圧縮部と高段側圧縮部とからなる二段圧縮機とし、前記気液分離器から前記圧縮機にガス冷媒をインジェクションする冷媒流路を低段側圧縮部と高段側圧縮部との間に連通して設けたことを特徴とする請求項1、3から5の何れかに記載の冷凍サイクル装置。  The compressor is a two-stage compressor including a low-stage compressor and a high-stage compressor, and a refrigerant flow path for injecting gas refrigerant from the gas-liquid separator to the compressor is provided with a low-stage compressor and a high-stage compressor. The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigeration cycle apparatus is provided in communication with a stage-side compression section. 前記室内熱交換器を二つの室内熱交換器に分割し、その分割された室内熱交換器の間に除湿運転時に絞り作用する除湿用絞り装置を設けたことを特徴とする請求項1から7の何れかに記載の冷凍サイクル装置。  8. The indoor heat exchanger is divided into two indoor heat exchangers, and a dehumidifying squeezing device that performs a squeezing action during dehumidifying operation is provided between the divided indoor heat exchangers. The refrigeration cycle apparatus according to any one of the above. 前記給湯運転は、前記圧縮機からの冷媒を給湯装置側に流し四方弁側には流さないように前記第一の流路切換装置を切換え、前記四方弁を暖房側流路に切換え、前記給湯用絞り装置を絞って運転する給湯単独運転を有していることを特徴とする請求項1から8の何れかに記載の冷凍サイクル装置。  In the hot water supply operation, the first flow path switching device is switched so that the refrigerant from the compressor flows to the hot water supply side and not to the four-way valve side, the four-way valve is switched to the heating side flow path, and the hot water supply The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein the refrigeration cycle apparatus has a hot water supply single operation in which the throttle device is operated while being throttled. 冷房・給湯併用運転と冷房運転とを有しており、冷房・給湯併用運転は、前記圧縮機からの冷媒を給湯装置側に流し四方弁側に流さないように第一の流路切換装置を切換え、前記四方弁を冷房側流路に切換え、前記給湯用絞り装置を絞って前記給湯装置を凝縮器、前記室内熱交換器を蒸発器として使用するものであり、前記冷房運転は、前記圧縮機からの冷媒を四方弁側に流し給湯装置側には流さないように前記第一の流路切換装置を切換え、室外熱交換器が凝縮器、室内熱交換器が蒸発器として使用するものであることを特徴とする請求項1から9の何れかに記載の冷凍サイクル装置。  The cooling / hot water supply combined operation and the cooling operation have the first flow path switching device so that the refrigerant from the compressor flows to the hot water supply device side and does not flow to the four-way valve side. Switching, the four-way valve is switched to a cooling side flow path, the hot water supply throttling device is throttled to use the hot water supply device as a condenser, and the indoor heat exchanger as an evaporator. The first flow path switching device is switched so that the refrigerant from the machine flows to the four-way valve side but not to the hot water supply device side, the outdoor heat exchanger is used as a condenser, and the indoor heat exchanger is used as an evaporator. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is provided. 冷房性能優先運転に対する所定温水温度あるいは給湯温度優先運転に対する所定温水温度を設定し、冷房優先運転の場合には温水の温度が冷房優先運転に対する所定温水温度になったら、また給湯温度優先運転の場合には温水の温度が給湯温度優先運転に対する所定温水温度になったら、冷房・給湯併用運転から冷房運転に切換えることを特徴とする請求項10に記載の冷凍サイクル装置。  Set the specified hot water temperature for the cooling performance priority operation or the specified hot water temperature for the hot water temperature priority operation. In the case of the cooling priority operation, the temperature of the hot water becomes the predetermined hot water temperature for the cooling priority operation. The refrigeration cycle apparatus according to claim 10, wherein when the temperature of the hot water reaches a predetermined hot water temperature for the hot water supply temperature priority operation, the cooling / hot water supply combined operation is switched to the cooling operation. 冷房・給湯併用運転と冷房運転とを有しており、冷房・給湯併用運転は、前記圧縮機からの冷媒を給湯装置側に流し四方弁側に流さないように第一の流路切換装置を切換え、前記四方弁を冷房側流路に切換え、前記給湯用絞り装置を絞って前記給湯装置を凝縮器、前記室内熱交換器を蒸発器として使用する冷房・給湯併用運転−2と、前記圧縮機からの冷媒を給湯装置側及び四方弁側の両方に流すように第一の流路切換装置を切換え、前記四方弁を冷房側流路に切換え、前記給湯用絞り装置を絞ることにより前記給湯装置及び前記室外熱交換器を凝縮器、前記室内熱交換器を蒸発器として使用する冷房・給湯併用運転−1とを有するものであり、前記冷房運転は、前記圧縮機からの冷媒を四方弁側に流し給湯装置側には流さないように前記第一の流路切換装置を切換え、室外熱交換器が凝縮器、室内熱交換器が蒸発器として使用するものであることを特徴とする請求項1から9の何れかに記載の冷凍サイクル装置。  The cooling / hot water supply combined operation and the cooling operation have the first flow path switching device so that the refrigerant from the compressor flows to the hot water supply device side and does not flow to the four-way valve side. Switching, switching the four-way valve to a cooling-side flow path, constricting the hot-water supply throttling device to use the hot-water supply device as a condenser and the indoor heat exchanger as an evaporator, and the compression-hot-water supply operation-2, and the compression The first flow switching device is switched so that the refrigerant from the machine flows to both the hot water supply device side and the four-way valve side, the four-way valve is switched to the cooling-side flow channel, and the hot water supply throttle device is throttled to restrict the hot water supply. And the outdoor heat exchanger as a condenser and the indoor heat exchanger as an evaporator and the combined cooling and hot water supply operation -1, wherein the cooling operation is a four-way valve for the refrigerant from the compressor. So that it does not flow to the hot water supply side. Switching the flow path switching device, an outdoor heat exchanger as a condenser, the refrigeration cycle apparatus according to any one of claims 1 to 9, characterized in that the indoor heat exchanger is to be used as an evaporator.
JP2003064498A 2003-03-11 2003-03-11 Refrigeration cycle equipment Expired - Fee Related JP4287677B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003064498A JP4287677B2 (en) 2003-03-11 2003-03-11 Refrigeration cycle equipment
CNB2004100080712A CN1302239C (en) 2003-03-11 2004-03-09 Refrigeration circulator
KR1020040015989A KR100574717B1 (en) 2003-03-11 2004-03-10 Freezing cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064498A JP4287677B2 (en) 2003-03-11 2003-03-11 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2004271105A JP2004271105A (en) 2004-09-30
JP4287677B2 true JP4287677B2 (en) 2009-07-01

Family

ID=33125771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064498A Expired - Fee Related JP4287677B2 (en) 2003-03-11 2003-03-11 Refrigeration cycle equipment

Country Status (3)

Country Link
JP (1) JP4287677B2 (en)
KR (1) KR100574717B1 (en)
CN (1) CN1302239C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8037710B2 (en) * 2005-08-22 2011-10-18 Emerson Climate Technologies, Inc. Compressor with vapor injection system
JP2009293899A (en) * 2008-06-09 2009-12-17 Daikin Ind Ltd Refrigerating device
JP5334554B2 (en) * 2008-12-15 2013-11-06 三菱電機株式会社 Air conditioner
JP5042262B2 (en) * 2009-03-31 2012-10-03 三菱電機株式会社 Air conditioning and hot water supply complex system
JP5377041B2 (en) * 2009-04-09 2013-12-25 日立アプライアンス株式会社 Refrigeration cycle equipment
WO2012160597A1 (en) * 2011-05-23 2012-11-29 三菱電機株式会社 Air conditioning device
JP5865482B2 (en) * 2012-03-15 2016-02-17 三菱電機株式会社 Refrigeration cycle equipment
JP5990972B2 (en) * 2012-03-28 2016-09-14 株式会社富士通ゼネラル Air conditioner
CN107084548A (en) * 2017-06-08 2017-08-22 任宇彤 Air conditioner for both cooling and heating system with hot water function
EP3859238A4 (en) * 2018-09-26 2022-05-18 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioning and hot water supply device
CN113465220A (en) * 2021-07-06 2021-10-01 珠海格力电器股份有限公司 Refrigerating system and control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169968A (en) * 1988-12-21 1990-06-29 Mitsubishi Electric Corp Heat pump type room cooler/heater hot water supply apparatus
JP2543182B2 (en) * 1989-04-28 1996-10-16 松下電器産業株式会社 Cooling / heating hot water supply system
CN2560906Y (en) * 2002-07-10 2003-07-16 海尔集团公司 Refrigerator operation parameter setting-displaying device

Also Published As

Publication number Publication date
KR100574717B1 (en) 2006-04-28
JP2004271105A (en) 2004-09-30
CN1530592A (en) 2004-09-22
KR20040081323A (en) 2004-09-21
CN1302239C (en) 2007-02-28

Similar Documents

Publication Publication Date Title
US7640763B2 (en) Hot water supply system
KR101192346B1 (en) Heat pump type speed heating apparatus
US20100000713A1 (en) Vehicle air conditioning system
US8800319B2 (en) Refrigerating cycle device used in an air conditioning apparatus, a refrigerating device and the like
CN101438109A (en) Multi-loop air conditioner system with variable capacity
CA3081986A1 (en) Air conditioning system with capacity control and controlled hot water generation
JP2004507706A (en) Reversible vapor compression system
JP4287677B2 (en) Refrigeration cycle equipment
JP2006071174A (en) Refrigerating device
JP6760226B2 (en) Combined heat exchanger
JP2003172523A (en) Heat-pump floor heater air conditioner
JP2011133133A (en) Refrigerating device
JP2015215117A (en) Heat pump type air cooling device
US20220214091A1 (en) Solid-state refrigeration device
KR100877056B1 (en) Hybrid heat pump type heat and cooling system
KR102105706B1 (en) Heat pump system, bidiectional injection operation method of the heat pump
JP4360183B2 (en) Air conditioner
KR101212686B1 (en) Heat pump type speed heating apparatus
KR101852797B1 (en) A cascade heat pump
WO2022163194A1 (en) Temperature control system
JP2011133132A (en) Refrigerating device
JP4073341B2 (en) Multi-chamber air conditioner and control method thereof
KR100484635B1 (en) Expansion Valve of Heat Pump System for Automobile
JP3908830B2 (en) Air conditioner for vehicles
CN113883599A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4287677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees