WO2020065739A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2020065739A1
WO2020065739A1 PCT/JP2018/035526 JP2018035526W WO2020065739A1 WO 2020065739 A1 WO2020065739 A1 WO 2020065739A1 JP 2018035526 W JP2018035526 W JP 2018035526W WO 2020065739 A1 WO2020065739 A1 WO 2020065739A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation speed
correlation data
speed
hydraulic
work machine
Prior art date
Application number
PCT/JP2018/035526
Other languages
French (fr)
Japanese (ja)
Inventor
勝道 伊東
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to PCT/JP2018/035526 priority Critical patent/WO2020065739A1/en
Publication of WO2020065739A1 publication Critical patent/WO2020065739A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices

Definitions

  • the present invention relates to a work machine that controls at least one of a plurality of hydraulic actuators according to predetermined conditions when operating an operating device.
  • ⁇ Machine Control is a technique for improving the working efficiency of a working machine (for example, a hydraulic shovel) including a working device (for example, a front working device) driven by a hydraulic actuator.
  • MC is a technique for assisting the operation of an operator by executing semi-automatic control for operating a working device according to predetermined conditions when the operating device is operated by an operator.
  • WO 2015/129930 pamphlet discloses a technique of MC of a front working device so as to move a cutting edge of a bucket along a reference plane.
  • the correlation data between the boom cylinder speed and the operation command value for operating the boom cylinder a plurality of correlation data corresponding to the type of the bucket is stored, and the correlation data is stored according to the type of the bucket attached to the front.
  • Some work machines include an engine speed dial (engine control dial) and a work mode selection switch as a means by which the operator can change the engine speed.
  • engine speed dial engine control dial
  • work mode selection switch as a means by which the operator can change the engine speed.
  • the operator operates the engine speed dial, it can be adjusted to an arbitrary engine speed. Further, by operating the work mode selection switch to select the economy mode in which the upper limit of the engine speed is restricted, fuel consumption and noise can be reduced.
  • Patent Document 1 when performing MC, the boom cylinder speed is calculated using correlation data between the operation command value and the boom cylinder speed.
  • the actuator speed changes as described above. Therefore, the correlation between the operation command value and the boom cylinder speed also changes.
  • the boom cylinder speed is calculated based on correlation data different from the actual state, the behavior of the bucket in the MC may not be stable, and the excavation accuracy may be reduced.
  • An object of the present invention is to provide a working machine capable of suppressing a decrease in the accuracy of the MC even when the rotation speed of the prime mover that drives the hydraulic pump changes when the MC is performed.
  • the present invention provides a motor, a hydraulic pump driven by the motor, a plurality of hydraulic actuators driven by hydraulic oil discharged from the hydraulic pump, and a plurality of hydraulic actuators driven by the plurality of hydraulic actuators.
  • a working device to be operated an operating device for instructing the operation of the plurality of hydraulic actuators in accordance with an operation of an operator, a speed of a hydraulic actuator corresponding to an operation of the operating device among the plurality of hydraulic actuators
  • a storage device that stores correlation data indicating a relationship with the operation amount information of the plurality of hydraulic actuators, based on the operation amount information of the operation device and the correlation data when operating the operation device.
  • the speed of the hydraulic actuator corresponding to the operation of the operating device is calculated, and the calculation result is compared with a predetermined condition.
  • a control device for controlling at least one of the plurality of hydraulic actuators according to the following.
  • the control device further includes: a controller configured to generate the correlation data based on one of a target rotation speed and an actual rotation speed of the prime mover. I decided to change it.
  • the accuracy of MC can be stabilized irrespective of the rotation speed of the prime mover.
  • FIG. 1 is a configuration diagram of a hydraulic shovel according to an embodiment of the present invention.
  • FIG. 2 is a detailed view of a front control hydraulic unit according to the embodiment of the present invention.
  • FIG. 1 is a hardware configuration diagram of a controller of a hydraulic shovel according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a coordinate system and a target surface in the hydraulic shovel of FIG. 1.
  • FIG. 3 is a functional block diagram of an MC control unit according to the first embodiment of the present invention.
  • 5 is a flowchart of boom raising control by a boom control unit according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a relationship between a cylinder speed and an operation amount according to the embodiment of the present invention.
  • FIG. 9 is a functional block diagram of an MC control unit according to a second embodiment of the present invention.
  • FIG. 13 is a functional block diagram of an MC control unit according to a third embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a relationship between an engine speed and a correction coefficient according to a third embodiment of the present invention.
  • FIG. 7 is a functional block diagram of an MC control unit according to a modification of the first embodiment of the present invention.
  • FIG. 14 is a functional block diagram of an MC control unit according to a modification of the second embodiment of the present invention.
  • a hydraulic excavator including the bucket 10 is exemplified as a working tool (attachment) at the tip of the working device, but the present invention may be applied to a working machine including an attachment other than the bucket. Furthermore, as long as it has a multi-joint type working device constituted by connecting a plurality of link members (attachment, arm, boom, etc.), it can be applied to a working machine other than a hydraulic shovel.
  • the term “upper”, “upper”, or “lower” used together with a term indicating a certain shape means that “upper” means the shape of the certain shape. “Upper” means “above the surface” of the certain shape, and “below” means “lower than the surface” of the certain shape.
  • an alphabet may be added to the end of the reference numeral (number). However, the alphabet may be omitted and the plurality of components may be collectively described. is there. For example, when there are two pumps 2a and 2b, these may be collectively described as a pump 2.
  • FIG. 1 is a configuration diagram of a hydraulic shovel according to a first embodiment of the present invention
  • FIG. 2 is a diagram illustrating a controller of the hydraulic shovel according to the embodiment of the present invention together with a hydraulic drive device
  • FIG. FIG. 3 is a detailed view of a middle front control hydraulic unit 160.
  • the hydraulic excavator 1 includes an articulated front working device 1A and a vehicle body 1B.
  • the vehicle body 1B includes a lower traveling body 11 that travels by left and right traveling hydraulic motors 3a and 3b, and an upper revolving body 12 mounted on the lower traveling body 11 and revolved by the revolving hydraulic motor 4.
  • the front working device 1A is configured by connecting a plurality of front members (the boom 8, the arm 9, and the bucket 10) that rotate vertically.
  • the base end of the boom 8 is rotatably supported at the front of the upper swing body 12 via a boom pin.
  • a base end of an arm 9 is rotatably connected to a distal end of the boom 8 via an arm pin, and a bucket 10 is rotatably connected to a distal end of the arm 9 via a bucket pin.
  • the boom 8 is driven by a boom cylinder 5, the arm 9 is driven by an arm cylinder 6, and the bucket 10 is driven by a bucket cylinder 7.
  • the boom pin has a boom angle sensor 30, the arm pin has an arm angle sensor 31, and the bucket link 13 has a bucket angle sensor so that the rotation angles ⁇ , ⁇ , and ⁇ (see FIG. 5) of the boom 8, the arm 9, and the bucket 10 can be measured.
  • the upper revolving unit 12 is provided with a vehicle body inclination angle sensor 33 for detecting an inclination angle ⁇ (see FIG. 5) of the upper revolving unit 12 (vehicle body 1B) with respect to a reference plane (for example, a horizontal plane).
  • a reference plane for example, a horizontal plane
  • Each of the angle sensors 30, 31, and 32 can be replaced with an angle sensor (for example, an inertial measurement device) for a reference plane (for example, a horizontal plane).
  • An operating device 47a having a traveling right lever 23a (FIG. 1) for operating the traveling right hydraulic motor 3a (lower traveling body 11) is provided in a cab provided on the upper revolving unit 12.
  • the operating device 47b (FIG. 2) for operating the traveling left hydraulic motor 3b (lower traveling body 11) having the left lever 23b (FIG. 1) and the operating right lever 1a (FIG. 1) are shared and the boom cylinder 5 (
  • the operating devices 45a and 46a (FIG. 2) for operating the boom 8) and the bucket cylinder 7 (bucket 10) and the operating left lever 1b (FIG. 1) share the arm cylinder 6 (arm 9) and the swing hydraulic motor 4
  • Operating devices 45b and 46b (FIG. 2) having a traveling right lever 23a (FIG. 1) for operating the traveling right hydraulic motor 3a (lower traveling body 11)
  • the traveling right lever 23a, the traveling left lever 23b, the operation right lever 1a, and the operation left lever 1b may be collectively referred to as operation levers 1 and 23.
  • the upper rotating body 12 is equipped with an engine 18 as a prime mover, hydraulic pumps 2a and 2b, a pilot pump 48, and the like.
  • the hydraulic pumps 2 a and 2 b and the pilot pump 48 are driven by the engine 18.
  • the hydraulic pumps 2a and 2b are variable displacement pumps whose capacity is controlled by regulators 2aa and 2ba, and the pilot pump 48 is a fixed displacement pump.
  • the hydraulic pump 2 and the pilot pump 48 suck and discharge hydraulic oil from the tank 200.
  • a shuttle block 162 is provided in the middle of the pilot lines 144, 145, 146, 147, 148, 149.
  • the hydraulic signals output from the operating devices 45, 46, 47 are also input to the regulators 2aa, 2ba via the shuttle block 162. Although a detailed configuration of the shuttle block 162 is omitted, a hydraulic signal is input to the regulators 2aa and 2ba via the shuttle block 162, and the discharge flow rates of the hydraulic pumps 2a and 2b are controlled according to the hydraulic signal.
  • the pump line 48a which is the discharge pipe of the pilot pump 48, passes through the lock valve 39, is branched into a plurality of parts, and is connected to each of the operating devices 45, 46, 47 and each valve in the front control hydraulic unit 160.
  • the lock valve 39 is an electromagnetic switching valve in this embodiment, and its electromagnetic drive unit is electrically connected to a position detector of a gate lock lever (not shown) arranged in the cab (FIG. 1). The position of the gate lock lever is detected by a position detector, and a signal corresponding to the position of the gate lock lever is input to the lock valve 39 from the position detector.
  • the lock valve 39 is closed and the pump line 48a is shut off, and if it is at the unlock position, the lock valve 39 is opened and the pump line 48a is opened. That is, when the pump line 48a is shut off, the operations by the operation devices 45, 46, and 47 are invalidated, and operations such as turning and excavation are prohibited.
  • the operation devices 45, 46, and 47 are hydraulic pilot type operation devices that instruct the operation of a plurality of hydraulic actuators according to the operation of the operator.
  • the operation devices 45, 46, and 47 reduce the pressure oil discharged from the pilot pump 48, and operate the pilots according to the operation amounts (for example, lever strokes) and operation directions of the operation levers 1 and 23 respectively operated by the operator. Pressure (sometimes referred to as operating pressure).
  • the pilot pressure thus generated is supplied to the hydraulic drive units 150a to 155b of the corresponding flow control valves 15a to 15f (FIG. 2 or FIG. 3) via the pilot lines 144a to 149b (see FIG. 3). It is used as a control signal for driving the control valves 15a to 15f.
  • the hydraulic oil (hydraulic oil) discharged from the hydraulic pump 2 travels through the flow control valves 15a, 15b, 15c, 15d, 15e, and 15f (see FIG. 2) to travel right hydraulic motor 3a, travel left hydraulic motor 3b, and turn.
  • the hydraulic motor 4, boom cylinder 5, arm cylinder 6, and bucket cylinder 7 are supplied to drive them.
  • the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7 expand and contract by the supplied pressure oil
  • the boom 8, the arm 9, and the bucket 10 rotate, respectively, and the front work device 1A is driven.
  • the turning hydraulic motor 4 is rotated by the supplied pressure oil, so that the upper turning body 12 turns leftward or rightward with respect to the lower running body 11.
  • the traveling right hydraulic motor 3a and the traveling left hydraulic motor 3b are rotated by the supplied pressure oil, so that the lower traveling body 11 travels.
  • An engine speed detector 490 which is a rotation sensor for detecting the engine speed, is mounted around the output shaft of the engine 18.
  • FIG. 4 is a configuration diagram of a machine control (MC) system provided in the excavator according to the present embodiment.
  • the system shown in FIG. 4 executes a process of controlling the front working device 1A based on a predetermined condition when the operating devices 45 and 46 are operated by the operator as the MC.
  • the machine control (MC) is compared with “automatic control” in which the operation of the working device 1A is controlled by a computer when the operating devices 45 and 46 are not operated, whereas the operation of the working device 1A is performed only when the operating devices 45 and 46 are operated. May be referred to as “semi-automatic control” that is controlled by a computer.
  • automatic control May be referred to as “semi-automatic control” that is controlled by a computer.
  • the MC of the front working device 1A when a digging operation (specifically, at least one instruction of an arm cloud, a bucket cloud, and a bucket dump) is input via the operation devices 45b and 46a, the target surface 60 (FIG. 5) and the tip of the working device 1A (in this embodiment, the toe of the bucket 10), the position of the tip of the working device 1A is held on the target surface 60 and in an area above the target surface 60.
  • the control signal for forcibly operating at least one of the hydraulic actuators 5, 6, 7 (for example, the boom cylinder 5 is extended to forcibly perform the boom raising operation) is transmitted to the corresponding flow control valve 15a, 15b, 15c.
  • the control point of the front working device 1A at the time of MC is set to the tip of the bucket 10 of the hydraulic shovel (the tip of the working device 1A), but the control point is a point on the working device 1A. If so, it can be changed to something other than the bucket toe. For example, the bottom of the bucket 10 and the outermost part of the bucket link 13 can be selected.
  • the system shown in FIG. 4 is a display device that is installed in the operator's cab and is capable of displaying the positional relationship between the target surface 60 and the working device 1A, the working device attitude detecting device 50, the target surface setting device 51, the operator operation detecting device 52a.
  • a liquid crystal display 53 for example, a liquid crystal display 53, a control selection switch (control selection device) 97 for selecting either permission or prohibition (ON and OFF) of bucket angle control (also referred to as work implement angle control) by MC, Work of the hydraulic excavator 1 and the target angle setting device 96 for setting the angle (target angle) of the bucket 10 with respect to the target surface 60 in the bucket angle control by the MC, the engine speed detecting device 490 for detecting the engine speed, and the like.
  • mode selection device For selecting one of the normal mode (first mode) and the economy mode (second mode) as the mode
  • mode selection switch mode selection switch
  • engine speed dial which is a target engine speed setting device for adjusting a target engine speed of the engine 18 by setting a desired value as a target value of the engine speed.
  • controller controller
  • the working device posture detecting device 50 includes a boom angle sensor 30, an arm angle sensor 31, a bucket angle sensor 32, and a vehicle body tilt angle sensor 33. These angle sensors 30, 31, 32, and 33 function as posture sensors of the working device 1A.
  • the target plane setting device 51 is an interface capable of inputting information on the target plane 60 (including position information and inclination angle information of each target plane).
  • the target plane setting device 51 is connected to an external terminal (not shown) that stores three-dimensional data of a target plane defined on a global coordinate system (absolute coordinate system).
  • the input of the target plane via the target plane setting device 51 may be manually performed by the operator.
  • the operator operation detection device 52a includes a pressure sensor 70a that obtains an operation pressure (first control signal) generated in the pilot lines 144, 145, and 146 by an operation of the operation levers 1a, 1b (operation devices 45a, 45b, 46a) by the operator. 70b, 71a, 71b, 72a, and 72b. That is, the operation on the hydraulic cylinders 5, 6, 7 according to the working device 1A is detected.
  • a pressure sensor 70a that obtains an operation pressure (first control signal) generated in the pilot lines 144, 145, and 146 by an operation of the operation levers 1a, 1b (operation devices 45a, 45b, 46a) by the operator.
  • 70b, 71a, 71b, 72a, and 72b that is, the operation on the hydraulic cylinders 5, 6, 7 according to the working device 1A is detected.
  • the mode selection device 98 sets a first upper limit Ru1, which is the upper limit of the engine speed during normal operation, as a plurality of work modes predetermined by the upper limit of the engine speed during excavation work.
  • Mode selection for selecting one of the (first mode) and the economy-oriented MC mode (second mode) in which the second upper limit Ru2 which is an upper limit smaller than the first upper limit Ru1 is set.
  • Switch In addition to these work modes, a power MC mode in which a work amount is emphasized, in which a third upper limit Ru3 which is an upper limit larger than the first upper limit Ru1, may be selected.
  • the front control hydraulic unit 160 is provided on the pilot lines 144a and 144b of the operating device 45a for the boom 8, and detects a pilot pressure (first control signal) as an operation amount of the operation lever 1a.
  • the line 144a is connected to the secondary port of the electromagnetic proportional valve 54a, and selects the high pressure side of the pilot pressure in the pilot line 144a and the control pressure (second control signal) output from the electromagnetic proportional valve 54a.
  • the front control hydraulic unit 160 is provided on the pilot lines 145a and 145b for the arm 9, and detects a pilot pressure (first control signal) as an operation amount of the operation lever 1b and outputs the pressure sensor 71a to the controller 40.
  • 71b an electromagnetic proportional valve 55b installed in a pilot line 145b, and reducing and outputting a pilot pressure (first control signal) based on a control signal from the controller 40, and an electromagnetic proportional valve 55b installed in a pilot line 145a.
  • the front control hydraulic unit 160 includes a pilot line 146a, 146b for the bucket 10, a pressure sensor 72a that detects a pilot pressure (first control signal) as an operation amount of the operation lever 1a and outputs the pilot pressure to the controller 40.
  • 72 b electromagnetic proportional valves 56 a and 56 b for reducing and outputting a pilot pressure (first control signal) based on a control signal from the controller 40, and a pilot pressure from the pilot pump 48 which is connected to the pilot pump 48 on the primary port side.
  • Valves 56c and 56d for reducing the pressure and outputting, and the pilot pressure in the pilot lines 146a and 146b and the high pressure side of the control pressure output from the proportional valves 56c and 56d are selected to hydraulically drive the flow control valve 15c.
  • Shuttle valves 83a and 83b leading to the sections 152a and 152b are provided respectively. To have. In FIG. 3, connection lines between the pressure sensors 70, 71, 72 and the controller 40 are omitted.
  • the opening of the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b is maximum when power is not supplied, and the opening decreases as the current as a control signal from the controller 40 increases.
  • the electromagnetic proportional valves 54a, 56c, 56d have an opening of zero when not energized and have an opening when energized, and the opening increases as the current (control signal) from the controller 40 increases.
  • the opening degrees 54, 55, 56 of the respective solenoid proportional valves are in accordance with the control signal from the controller 40.
  • control hydraulic unit 160 configured as described above, when a control signal is output from the controller 40 to drive the electromagnetic proportional valves 54a, 56c, 56d, even when there is no operator operation of the corresponding operating devices 45a, 46a, Since the pilot pressure (second control signal) can be generated, the boom raising operation, the bucket cloud operation, and the bucket dump operation can be forcibly generated.
  • the controller 40 drives the proportional solenoid valves 54b, 55a, 55b, 56a, 56b, the pilot pressure (first control signal) generated by the operator operation of the operation devices 45a, 45b, 46a is reduced.
  • a pressure (second control signal) can be generated, and the speed of the boom lowering operation, the arm cloud / dump operation, and the bucket cloud / dump operation can be forcibly reduced from the value of the operator operation.
  • the pilot pressure generated by operating the operation devices 45a, 45b, 46a is referred to as a "first control signal”.
  • the controller 40 drives the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b to correct (reduce) the first control signal, and generates a pilot pressure;
  • the pilot pressure newly generated separately from the first control signal by driving the electromagnetic proportional valves 54a, 56c, 56d by the controller 40 is referred to as a "second control signal".
  • the second control signal is generated when the speed vector of the control point of the working device 1A generated by the first control signal violates a predetermined condition, and the speed vector of the control point of the working device 1A according to the predetermined condition is generated. Is generated as a control signal.
  • the second control signal is given priority.
  • the first control signal is cut off by an electromagnetic proportional valve, and the second control signal is input to the other hydraulic drive unit.
  • the controller 40 includes an input unit 91, a central processing unit (CPU) 92 as a processor, a read-only memory (ROM) 93 and a random access memory (RAM) 94 as storage units, and an output unit 95.
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • the input unit 91 receives signals from the angle sensors 30 to 32 and the inclination angle sensor 33 that are the working device attitude detection devices 50, signals from the target surface setting device 51 that is a device for setting the target surface 60, A signal from an operator operation detection device 52a, which is an operation amount sensor (including pressure sensors 70, 71, 72) for detecting an operation amount from the devices 45a, 45b, 46a, and a switching position of the control selection switch 97 (permission / prohibition) ), A signal indicating the target angle from the target angle setting device 96, a signal from the engine speed detection device 490, and a signal indicating the work mode (normal / economy) selected by the mode selection device 98.
  • the CPU 92 inputs a signal indicating the target engine speed set by the engine speed dial 99 and converts the signal so that the CPU 92 can calculate.
  • the ROM 93 is a storage device that stores a control program for executing an MC including a process related to a flowchart described later, and various information necessary for executing the flowchart, and the CPU 92 executes a control program stored in the ROM 93.
  • the predetermined arithmetic processing is performed on the signals fetched from the input unit 91 and the memories 93 and 94 according to the following.
  • the output unit 95 drives and controls the hydraulic actuators 5 to 7 by generating output signals corresponding to the calculation results of the CPU 92 and outputting the signals to the electromagnetic proportional valves 54 to 56 or the display device 53. Alternatively, images of the vehicle body 1B, the bucket 10, the target surface 60, and the like are displayed on the screen of the display device 53.
  • controller 40 in FIG. 4 includes semiconductor memories such as a ROM 93 and a RAM 94 as storage devices, any storage device can be used in particular.
  • a semiconductor memory such as an SSD (Solid State Drive) or an HHD ( A magnetic storage device such as a Hard Disc Drive is applicable.
  • FIG. 6 is a functional block diagram of the controller 40.
  • the controller 40 includes an MC control unit 43, an electromagnetic proportional valve control unit 44, a display control unit 374, and an engine speed control unit 49.
  • the display control unit 374 is a part that controls the display device 53 based on the working device attitude and the target plane output from the MC control unit 43.
  • the display control unit 374 is provided with a display ROM in which a large number of display-related data including images and icons of the working device 1A are stored, and the display control unit 374 determines a predetermined value based on a flag included in the input information.
  • the program is read and the display on the display device 53 is controlled.
  • FIG. 7 is a functional block diagram of the MC control unit 43 in FIG.
  • the MC control unit 43 includes an operation amount calculation unit 43a, a posture calculation unit 43b, a target plane calculation unit 43c, a cylinder speed correlation data storage unit 43d, a cylinder speed correlation data calculation unit 43e, a boom control unit 81a, A bucket control unit 81b.
  • the operation amount calculation unit 43a calculates the operation amount of the operation devices 45a, 45b, 46a (operation levers 1a, 1b) based on the input from the operator operation detection device 52a.
  • the operation amounts of the operation devices 45a, 45b, 46a can be calculated from the detection values of the pressure sensors 70, 71, 72, which are the operator operation detection devices 52a.
  • the calculation of the operation amount by the pressure sensors 70, 71, 72 is only an example.
  • a position sensor for example, a rotary encoder
  • a position sensor that detects the rotational displacement of the operation lever of each of the operation devices 45a, 45b, 46a uses the operation lever. May be detected.
  • the posture calculating unit 43b controls the front working device 1A in the shovel coordinate system (local coordinate system) set for the hydraulic shovel 1. The posture and the position of the toe of the bucket 10 are calculated.
  • the attitude of the front working device 1A can be defined on the shovel coordinate system (local coordinate system) in FIG.
  • the shovel coordinate system (XZ coordinate system) shown in FIG. 5 is a coordinate system set on the upper revolving superstructure 12, and for example, the center point of the center axis of the boom pin that rotatably supports the boom 8 on the upper revolving superstructure 12 is set as the origin.
  • the Z axis is set in the vertical direction (upward) and the X axis in the horizontal direction (forward) of the upper revolving unit 12.
  • the angle of inclination of the boom 8 with respect to the X axis is the boom angle ⁇
  • the angle of inclination of the arm 9 with respect to the boom 8 is the arm angle ⁇
  • the angle of inclination of the bucket toe with respect to the arm is the bucket angle ⁇ .
  • the inclination angle of the vehicle body 1B (the upper revolving unit 12) with respect to the horizontal plane (reference plane) is defined as the inclination angle ⁇ .
  • the boom angle ⁇ is detected by the boom angle sensor 30, the arm angle ⁇ is detected by the arm angle sensor 31, the bucket angle ⁇ is detected by the bucket angle sensor 32, and the tilt angle ⁇ is detected by the vehicle body tilt angle sensor 33.
  • the coordinates of the bucket toe position in the shovel coordinate system and the attitude of the working device 1A are L1, L2, and L3. , ⁇ , ⁇ , ⁇ .
  • the target plane calculation unit 43c calculates the position information of the target plane 60 based on the information from the target plane setting device 51, and stores this in the ROM 93.
  • a cross-sectional shape obtained by cutting the three-dimensional target plane data on the plane on which the work apparatus 1A moves (operating plane of the work machine) is defined as a target plane 60 (two-dimensional target plane). Use.
  • a method of setting the one closest to the working device 1A as the target plane for example, a method of setting the one located below the bucket toe as the target plane, or a method arbitrarily selected is used. There are methods to set the target plane.
  • the cylinder speed correlation data storage unit 43d is a storage area provided in a storage device (for example, the ROM 93) in the controller 40.
  • a storage device for example, the ROM 93
  • Correlation data indicating the relationship between the operation amount 46a and the cylinder speed is stored.
  • Three types of correlation data are stored according to the number of hydraulic cylinders 5, 6, and 7, and when executing MC, the speed of hydraulic cylinders 5, 6, 7 corresponding to the operation of operating devices 45a, 45b, 46a is determined. Used when performing calculations.
  • the correlation data of each of the hydraulic cylinders 5, 6, and 7 has a plurality of different graphs according to the range of the rotation speed of the engine 18. In the example of FIG.
  • the cylinder speed correlation data calculation unit 43e based on the operation amount information of the operation devices 45a, 45b, 46a and the correlation data stored in the cylinder speed correlation data storage unit 43d when operating the operation devices 45a, 45b, 46a. , Calculating the correlation data of the hydraulic actuators 5, 6, 7 corresponding to the operation of the operating devices 45a, 45b, 46a among the plurality of hydraulic actuators 5, 6, 7; It is characterized in that the graph used for each correlation data is changed according to the actual rotation speed of the engine 18 detected by the engine 490.
  • the cylinder speed correlation data calculation unit 43e first selects the correlation data of the hydraulic actuators 5, 6, 7 corresponding to the operation of the operating devices 45a, 45b, 46a from among the plurality of correlation data, and then selects the correlation data.
  • a graph corresponding to the actual rotation speed of the engine 18 is selected. For example, in the example of FIG.
  • a graph in which the actual engine speed Rr is “small” is selected when the engine speed belongs to a range of 0 or more and less than the first engine speed R1 (0 ⁇ Rr ⁇ R1)
  • the “middle” graph is selected when it belongs to the range (R1 ⁇ Rr ⁇ R2) equal to or more than the first rotation speed R1 and less than the second rotation speed R2
  • the “large” graph is equal to or more than the second rotation speed R2 and maximum rotation speed. It is selected when it belongs to the range of less than or equal to several Rmax (R2 ⁇ Rr ⁇ Rmax).
  • the cylinder speed correlation data calculation unit 43e calculates the corresponding engine speed from the correlation data stored in the cylinder speed correlation data storage unit 43d according to the actual rotation speed detected by the engine speed detection device 490.
  • the correlation data is selected and output to the actuator control unit 81.
  • the boom control unit 81a and the bucket control unit 81b constitute an actuator control unit 81 that controls at least one of the plurality of hydraulic actuators 5, 6, 7 according to predetermined conditions when operating the operation devices 45a, 45b, 46a. .
  • the actuator control section 81 calculates the target pilot pressure of the flow control valves 15a, 15b, 15c of the hydraulic cylinders 5, 6, 7 and outputs the calculated target pilot pressure to the electromagnetic proportional valve control section 44.
  • the boom control unit 81a determines the position of the target surface 60, the attitude of the front working device 1A and the position of the toe of the bucket 10, the operation amounts of the operation devices 45a, 45b, and 46a. Is a part for executing the MC for controlling the operation of the boom cylinder 5 (boom 8) so that the toe (control point) of the bucket 10 is located on or above the target surface 60.
  • the boom control unit 81a calculates a target pilot pressure of the flow control valve 15a of the boom cylinder 5. Details of the MC by the boom control unit 81a will be described later with reference to FIG.
  • the bucket control unit 81b is a part for executing bucket angle control by the MC when operating the operation devices 45a, 45b, 46a. Specifically, when the distance between the target surface 60 and the toe of the bucket 10 is equal to or less than a predetermined value, the angle ⁇ of the bucket 10 with respect to the target surface 60 becomes the target surface bucket angle ⁇ TGT set by the target angle setting device 96 in advance. Then, an MC (bucket angle control) for controlling the operation of the bucket cylinder 7 (bucket 10) is executed. The bucket controller 81b calculates a target pilot pressure of the flow control valve 15c of the bucket cylinder 7.
  • the electromagnetic proportional valve control unit 44 calculates a command to each of the electromagnetic proportional valves 54 to 56 based on the target pilot pressure output from the actuator control unit 81 to each of the flow control valves 15a, 15b, 15c. If the pilot pressure (first control signal) based on the operator's operation matches the target pilot pressure calculated by the actuator control unit 81, the current value (command value) to the corresponding electromagnetic proportional valves 54 to 56 Becomes zero, and the operation of the corresponding electromagnetic proportional valves 54 to 56 is not performed.
  • the engine speed control unit 49 is based on the target engine speed set by the engine speed dial 99 and the upper limit value (target engine speed) of the engine speed specified by the work mode selected by the mode selection device 98. , Generates and outputs a control signal to the engine 18, and executes processing for controlling the number of revolutions of the engine 18.
  • the engine rotation speed control unit 49 sets the upper limit value to the target rotation speed. It is configured to control the engine 18 as a number.
  • the engine speed control unit 49 is also called an engine control unit, and may be configured as a controller independent of the controller 40.
  • FIG. 8 shows a flow of the boom raising control by the boom control unit 81a.
  • FIG. 8 is a flowchart of the MC executed by the boom control unit 81a, and the processing is started when the operation device 45b is operated by the operator.
  • the boom control unit 81a determines the operation amount calculated by the operation amount calculation unit 43a and the cylinder speed correlation data calculation unit 43e for the hydraulic cylinders 5, 6, and 7 (for example, the arm cylinder 6) for which the operation amounts are calculated.
  • the operation speeds (cylinder speeds) of the hydraulic cylinders 5, 6, and 7 corresponding to the operation of the operating device are calculated based on the correlation data input from. Note that, as the correlation data input from the cylinder speed correlation data calculation unit 43e, correlation data regarding a hydraulic cylinder (for example, the arm cylinder 6) corresponding to the operation of the operating device is input. A graph corresponding to the actual engine speed detected by the engine speed detector 490 is selected.
  • the boom control unit 81a calculates the bucket tip by an operator operation based on the operation speeds of the hydraulic cylinders 5, 6, and 7 calculated in S410 and the posture of the working device 1A calculated in the posture calculation unit 43b.
  • a (toe) speed vector B is calculated.
  • the boom control unit 81a determines the target surface of the control target from the bucket tip from the position (coordinates) of the toe of the bucket 10 calculated by the posture calculation unit 43b and the distance of the straight line including the target surface 60 stored in the ROM 93.
  • a distance D (see FIG. 5) up to 60 is calculated.
  • the limit value ay of the component of the velocity vector at the tip of the bucket perpendicular to the target plane 60 is calculated.
  • the limit value ay is the lower limit value of the component of the speed vector at the tip of the bucket perpendicular to the target plane 60. If the vertical component of the speed vector B is smaller than the limit value ay, the speed vector at the tip of the bucket is The component is corrected so as to be held at the limit value ay.
  • the boom control unit 81a acquires a component by perpendicular to the target plane 60 in the speed vector B at the tip of the bucket calculated by the operator in S420.
  • the boom control unit 81a determines whether the limit value ay calculated in S430 is 0 or more.
  • the xy coordinates are set as shown in the upper right of FIG. In the xy coordinates, the x axis is parallel to the target plane 60 and the right direction in the figure is positive, and the y axis is perpendicular to the target plane 60 and upward in the figure is positive.
  • the vertical component by and the limit value ay are negative, and the horizontal component bx, the horizontal component cx, and the vertical component cy are positive.
  • the limit value ay is 0, the distance D is 0, that is, when the toe is located on the target surface 60.
  • the boom control unit 81a determines whether or not the vertical component by of the toe speed vector B by the operator's operation is 0 or more.
  • step S460 When by is positive, it indicates that the vertical component by of the velocity vector B is upward, and when by is negative, it indicates that the vertical component by of the velocity vector B is downward. If it is determined in step S460 that the vertical component by is equal to or greater than 0 (that is, if the vertical component by is upward), the process proceeds to step S470. If the vertical component by is less than 0, the process proceeds to step S500. In S470, the boom control unit 81a compares the limit value ay with the absolute value of the vertical component by. If the absolute value of the limit value ay is equal to or greater than the absolute value of the vertical component by, the process proceeds to S500. On the other hand, if the absolute value of the limit value ay is less than the absolute value of the vertical component by, the process proceeds to S530.
  • the vertical component cy is calculated based on the equation, the limit value ay in S430, and the vertical component by in S440.
  • a velocity vector C capable of outputting the calculated vertical component cy is calculated, and its horizontal component is set as cx (S510).
  • the boom control unit 81a determines whether the vertical component by of the toe speed vector B by the operator's operation is 0 or more. If the vertical component by is determined to be 0 or more in S480 (that is, if the vertical component by is upward), the process proceeds to S530. If the vertical component by is less than 0, the process proceeds to S490.
  • the boom control unit 81ad compares the limit value ay with the absolute value of the vertical component by, and proceeds to S530 if the absolute value of the limit value ay is equal to or greater than the absolute value of the vertical component by. On the other hand, if the absolute value of the limit value ay is less than the absolute value of the vertical component by, the process proceeds to S500.
  • the boom control unit 81a sets the speed vector C to zero.
  • the boom control unit 81a calculates the target speed of each of the hydraulic cylinders 5, 6, 7 based on the target speed vector T (ty, tx) determined in S520 or S540. As is apparent from the above description, when the target speed vector T does not coincide with the speed vector B in FIG. 8, the speed vector C generated by the operation of the boom 8 by the machine control is added to the speed vector B. A speed vector T is realized.
  • the boom control unit 81a determines the target speed of each of the hydraulic cylinders 5, 6, 7 (for example, the boom cylinder 5 and the arm cylinder 6) calculated in S550, and the hydraulic cylinders 5, 6 for which the target speed has been calculated. , 7 on the basis of the correlation data input from the cylinder speed correlation data calculation unit 43e, and the operation of the operating devices 45a, 45b, 46a required to output the target speeds calculated by the hydraulic cylinders 5, 6, 7 respectively.
  • the amount, that is, the target pilot pressure to the flow control valves 15a, 15b, 15c of the hydraulic cylinders 5, 6, 7 is calculated.
  • the correlation data input from the cylinder speed correlation data calculation unit 43e correlation data regarding the hydraulic cylinders 5, 6, and 7 for which the target speed has been calculated in S550 is input, and the correlation data is the same as in S410.
  • a graph corresponding to the actual engine speed detected by the engine speed detector 490 is selected.
  • the correlation data input from the cylinder speed correlation data calculator 43e is used when converting the cylinder speed to the target pilot pressure, mainly from the viewpoint of saving the storage capacity of the storage device in the controller 40.
  • the use of the correlation data is only one of the methods of calculating the target pilot pressure, and the target pilot pressure may be calculated by another method.
  • the boom control unit 81a outputs the target pilot pressure to the flow control valves 15a, 15b, 15c of each of the hydraulic cylinders 5, 6, 7 to the electromagnetic proportional valve control unit 44.
  • the electromagnetic proportional valve control unit 44 controls the electromagnetic proportional valves 54, 55, and 56 so that the target pilot pressure acts on the flow control valves 15a, 15b, and 15c of the hydraulic cylinders 5, 6, and 7, thereby controlling the working device.
  • Excavation by 1A is performed.
  • the electromagnetic proportional valve 55c is controlled so that the tip of the bucket 10 does not enter the target surface 60, and the boom 8 is raised. Is done automatically.
  • the actual engine speed of the engine 18 is detected by the engine speed detector 490, and the correlation data corresponding to the actual engine speed is calculated by the cylinder speed correlation data calculation unit 43e to obtain the actuator control unit 81 (boom).
  • the target rotation is output from the engine speed dial 99 to the cylinder speed correlation data calculation unit 43e, and the correlation data according to the target rotation speed is calculated.
  • a configuration in which the calculation is performed by the unit 43e and output to the actuator control unit 81 (boom control unit 81a) may be employed.
  • FIG. 14 shows a functional block diagram of the MC control unit 43 in this case.
  • FIG. 11 is a functional block diagram of the MC control unit 43 according to the second embodiment.
  • the same parts as those in the previous figures are denoted by the same reference numerals, and the description may be appropriately omitted.
  • the MC control unit 43 of the present embodiment includes an engine speed upper limit value calculation unit 43f.
  • the engine rotation speed upper limit calculation unit 43f determines the upper limit (first upper limit Ru1 or second upper limit Ru2) of the engine rotation speed in accordance with the work mode (normal MC mode or economy MC mode) set by the mode selection device 98. (Where Ru1> Ru2) is calculated, and the upper limit value is output to the engine speed control unit 49.
  • the engine speed control unit 49 controls the engine speed so as not to exceed the input upper limit. Since this control is performed prior to the target speed input from the engine speed dial 99, when the upper limit value is smaller than the target speed input from the engine speed dial 99, the engine speed is controlled to the upper limit value. You.
  • the operator can select the economy MC mode in which the upper limit Ru2 of the engine speed is lower than the upper limit Ru1 of the engine speed when the normal MC is performed.
  • the operator selects the economy MC mode in which the upper limit value Ru2 of the engine speed is set lower than the normal MC mode by using the mode selection device 98, so that the actual operation of the engine 18 is performed.
  • the controller 40 cylinder speed correlation data calculation unit 43e
  • the controller 40 selects correlation data of the operation amount and the cylinder speed suitable for the fluctuated actual rotation speed. Since the MC by the controller 40 (actuator control unit 81) is executed based on the cylinder speed close to the actual speed obtained from the correlation data, the excavation accuracy of the MC decreases even if the work mode is changed. Can be suppressed. Further, since the upper limit of the engine speed is lower than that in the normal MC mode, fuel efficiency can be improved.
  • the actual engine speed of the engine 18 is detected by the engine speed detector 490, and the correlation data corresponding to the actual engine speed is calculated by the cylinder speed correlation data calculation unit 43e to obtain the actuator control unit 81 (boom).
  • the target rotation speed upper limit value of the engine rotation speed
  • the target rotation speed is output from the engine rotation speed upper limit calculation unit 43f to the cylinder speed correlation data calculation unit 43e, and the target rotation speed is output.
  • a configuration may be adopted in which correlation data corresponding to the above is calculated by the cylinder speed correlation data calculation unit 43e and output to the actuator control unit 81 (boom control unit 81a).
  • FIG. 15 shows a functional block diagram of the MC control unit 43 in this case.
  • a plurality of correlation data tables are stored in the cylinder speed correlation data storage unit 43d in order to calculate cylinder speed correlation data corresponding to the engine speed.
  • the table corresponding to the engine speed was selected from among them.
  • only the correlation data at the representative engine speed (for example, the rated speed) is stored in the cylinder speed correlation data storage unit 43d, and a correction coefficient according to the engine speed is calculated to calculate the cylinder speed correlation data.
  • a configuration may be adopted in which the correlation data is corrected by adding or multiplying the correction coefficient to the correlation data by the section 43e, and the corrected correlation data is output to the actuator control section 81.
  • This embodiment is referred to as a third embodiment and will be described with reference to FIGS.
  • FIG. 12 is a functional block diagram of the MC control unit 43 according to the third embodiment.
  • the same parts as those in the previous figures are denoted by the same reference numerals, and the description may be appropriately omitted.
  • the MC control unit 43 shown in FIG. 12 includes a correction coefficient calculation unit 43g, a cylinder speed correlation data storage unit 43d, and a cylinder speed correlation data calculation unit 43e.
  • the correction coefficient calculation unit 43g is a part that executes a process of calculating a correction coefficient based on the actual rotation speed input from the engine speed detection device 490.
  • FIG. 13 shows a table that defines the relationship between the engine speed and the correction coefficient. According to this table, the correction coefficient calculation unit 43g outputs 1 as the correction coefficient k when the engine speed is at the rated speed, and when the engine speed is less than the rated speed, it is monotonous as the engine speed decreases. (That is, the correction coefficient k is greater than 0 and less than 1). The correction coefficient k is output to the cylinder speed correlation data calculation unit 43e.
  • the cylinder speed correlation data storage unit 43d stores the relationship between the operation amounts of the operating devices 45a, 45b, and 46a and the cylinder speed when the engine speed is the rated speed for each of the hydraulic cylinders (each hydraulic actuator) 5, 6, and 7. Is stored.
  • the cylinder speed correlation data calculating unit 43e calculates the operation amount information of the operating devices 45a, 45b, 46a, the correlation data stored in the cylinder speed correlation data storage unit 43d, and the correction coefficient. Based on the correction coefficient k calculated by the calculation unit 43g, correlation data of the hydraulic actuators 5, 6, 7 corresponding to the operation of the operating devices 45a, 45b, 46a among the plurality of hydraulic actuators 5, 6, 7 is calculated. This is the part that executes processing.
  • the cylinder speed correlation data calculation unit 43e of the present embodiment calculates the actual rotation speed of the engine 18 detected by the engine speed detection device 490 and the correction coefficient k calculated using the table of FIG.
  • the correlation data of the rated rotational speed stored in 43d is multiplied and corrected, and the corrected correlation data is output to the actuator control unit 81.
  • the coefficient calculation unit 43g calculates a correction coefficient k corresponding to the actual rotation speed, and determines the operation amounts of the hydraulic actuators 5, 6, and 7 corresponding to the operation of the operation devices 45a, 45b, and 46a and the rated rotation speed that defines the cylinder speed. Is multiplied by the correction coefficient k to obtain corrected correlation data.
  • the excavation of the MC is performed as in the first embodiment. A decrease in accuracy can be suppressed. Furthermore, since the data capacity stored in the cylinder speed correlation data storage unit 43d can be reduced as compared with the first embodiment, the storage capacity of the storage device in the controller 40 can be saved.
  • the correlation data may be calculated based on the target rotation speed of the engine 18. That is, the target rotation speed or the upper limit thereof is input from the engine rotation speed dial 99 or the engine rotation speed upper limit calculation unit 43f to the correction coefficient calculation unit 43g, and the correction coefficient k corresponding to the target rotation speed is corrected. , And outputs the result to the cylinder speed correlation data calculation unit 43e.
  • the correlation data is corrected based on the target rotation speed in this manner, the correlation data (line graph) is prevented from being changed more frequently than when the correlation data is corrected based on the actual rotation speed. A stable improvement in MC accuracy can be expected.
  • the present invention is not limited to the above embodiments, and includes various modifications without departing from the gist thereof.
  • the present invention is not limited to one having all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted. Further, a part of the configuration according to one embodiment can be added to or replaced by the configuration according to another embodiment.
  • the angle sensor that detects the angle of the boom 8, the arm 9, and the bucket 10 is used.
  • the posture information of the shovel may be calculated using a cylinder stroke sensor instead of the angle sensor.
  • a hydraulic pilot type shovel has been described as an example, but an electric lever type shovel may be configured to control a command current generated from the electric lever.
  • the method of calculating the speed vector of the front work device 1A may be obtained from the angular speed calculated by differentiating the angles of the boom 8 and the bucket 10, instead of the pilot pressure by the operator's operation.
  • the components of the controller 40 and the functions and execution processes of the components may be partially or wholly realized by hardware (for example, a logic that executes the functions is designed by an integrated circuit). good.
  • the configuration related to the controller 40 may be a program (software) that realizes each function related to the configuration of the controller 40 by being read and executed by an arithmetic processing unit (for example, a CPU).
  • Information relating to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disk, etc.), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

A hydraulic shovel 1 comprising a controller (40) that calculates the speed of an arm cylinder (6) on the basis of information on the amount an operation device (45b) is manipulated when the operation device (45b) is operated and correlation data in which the relationship between the information on the amount the operation device (45b) is manipulated and the arm cylinder (6) speed is defined, and that executes machine control for a boom cylinder (5) according to that calculation result and a preset condition, wherein the controller (40) modifies the correlation data on the basis of either of a target speed and the actual speed of an engine (18). Thereby, machine control precision can be stabilized regardless of the engine speed.

Description

作業機械Work machine
 本発明は,操作装置の操作時に,予め定めた条件に従って複数の油圧アクチュエータの少なくとも1つを制御する作業機械に関する。 The present invention relates to a work machine that controls at least one of a plurality of hydraulic actuators according to predetermined conditions when operating an operating device.
 油圧アクチュエータで駆動される作業装置(例えばフロント作業装置)を備える作業機械(例えば油圧ショベル)の作業効率を向上する技術としてマシンコントロール(Machine Control:MC)がある。MCは,操作装置がオペレータに操作された場合に,予め定めた条件に従って作業装置を動作させる半自動制御を実行することでオペレータの操作支援を行う技術である。 技術 Machine Control (MC) is a technique for improving the working efficiency of a working machine (for example, a hydraulic shovel) including a working device (for example, a front working device) driven by a hydraulic actuator. MC is a technique for assisting the operation of an operator by executing semi-automatic control for operating a working device according to predetermined conditions when the operating device is operated by an operator.
 例えば国際公開第2015/129930号パンフレットには,バケットの刃先を基準面に沿って移動させるようにフロント作業装置をMCする技術が開示されている。この文献では,ブームシリンダ速度とブームシリンダを動作させる操作指令値との相関データに関して,バケットの種別に対応した複数の相関データを記憶しており,フロントに取り付けられたバケットの種別に応じて対応する相関データを用いて制御することで,掘削精度の低下を抑制している。 For example, WO 2015/129930 pamphlet discloses a technique of MC of a front working device so as to move a cutting edge of a bucket along a reference plane. In this document, as for the correlation data between the boom cylinder speed and the operation command value for operating the boom cylinder, a plurality of correlation data corresponding to the type of the bucket is stored, and the correlation data is stored according to the type of the bucket attached to the front. By controlling using the correlation data, the decrease in excavation accuracy is suppressed.
国際公開第2015/129930号パンフレットWO 2015/129930 pamphlet
 作業機械には,オペレータがエンジンの回転数を変更し得る手段として,エンジン回転数ダイヤル(エンジンコントロールダイヤル)や作業モード選択スイッチを備えたものがある。オペレータがエンジン回転数ダイヤルを操作すると任意のエンジン回転数へ調整できる。また,作業モード選択スイッチを操作してエンジン回転数の上限を規制するエコノミーモードを選択すると,燃料消費量や騒音を低減できる。 Some work machines include an engine speed dial (engine control dial) and a work mode selection switch as a means by which the operator can change the engine speed. When the operator operates the engine speed dial, it can be adjusted to an arbitrary engine speed. Further, by operating the work mode selection switch to select the economy mode in which the upper limit of the engine speed is restricted, fuel consumption and noise can be reduced.
 このように,作業機械は燃料消費量低減や騒音低減等を目的としてエンジン回転数が小さい状態で使用されることがある。エンジンの回転数が小さくなると,エンジンが駆動するポンプの回転数も小さくなってポンプの吐出流量も小さくなるので,結果としてアクチュエータ速度が低下する。 作業 Thus, work machines are sometimes used at low engine speeds for the purpose of reducing fuel consumption and noise. When the rotation speed of the engine decreases, the rotation speed of the pump driven by the engine also decreases, and the discharge flow rate of the pump also decreases. As a result, the actuator speed decreases.
 一方,特許文献1では,MCの実施に際し,操作指令値とブームシリンダ速度の相関データを用いてブームシリンダ速度を演算しているが,エンジン回転数が変化すると前述したようにアクチュエータ速度は変化するので,操作指令値とブームシリンダ速度の相関も変化する。このとき,実態と異なる相関データに基づいてブームシリンダ速度を演算することになるので,MC中のバケットの挙動が安定せず掘削精度の低下を起こしてしまう可能性がある。 On the other hand, in Patent Document 1, when performing MC, the boom cylinder speed is calculated using correlation data between the operation command value and the boom cylinder speed. However, when the engine speed changes, the actuator speed changes as described above. Therefore, the correlation between the operation command value and the boom cylinder speed also changes. At this time, since the boom cylinder speed is calculated based on correlation data different from the actual state, the behavior of the bucket in the MC may not be stable, and the excavation accuracy may be reduced.
 また,MCのモードとして燃料消費量低減や騒音低減を目的としてエンジン回転数の上限を規制するモードを設けたりする等して,モード変更によりエンジン回転数を変更する際にも,同様の課題が生じ得る。 A similar problem arises when changing the engine speed by changing the mode, for example, by providing a mode for restricting the upper limit of the engine speed for the purpose of reducing fuel consumption and noise as the MC mode. Can occur.
 本発明の目的は,MCの実施に際して油圧ポンプを駆動する原動機の回転数が変化した場合にもMCの精度低下を抑止できる作業機械を提供することにある。 An object of the present invention is to provide a working machine capable of suppressing a decrease in the accuracy of the MC even when the rotation speed of the prime mover that drives the hydraulic pump changes when the MC is performed.
 本発明は、上記目的を達成するために、原動機と,前記原動機によって駆動される油圧ポンプと,前記油圧ポンプが吐出する作動油によって駆動される複数の油圧アクチュエータと,前記複数の油圧アクチュエータによって駆動される作業装置と,オペレータの操作に応じて前記複数の油圧アクチュエータの動作を指示する操作装置と,前記複数の油圧アクチュエータのうち前記操作装置の操作に対応する油圧アクチュエータの速度と,前記操作装置の操作量情報との関係を示す相関データが記憶された記憶装置と,前記操作装置の操作時に,前記操作装置の操作量情報と前記相関データとに基づいて,前記複数の油圧アクチュエータのうち前記操作装置の操作に対応する油圧アクチュエータの速度を演算し,その演算結果と予め定めた条件とに従って前記複数の油圧アクチュエータの少なくとも1つを制御する制御装置とを備えた作業機械において,前記制御装置は,前記原動機の目標回転数及び実回転数のいずれか一方に基づいて前記相関データを変更することとした。 In order to achieve the above object, the present invention provides a motor, a hydraulic pump driven by the motor, a plurality of hydraulic actuators driven by hydraulic oil discharged from the hydraulic pump, and a plurality of hydraulic actuators driven by the plurality of hydraulic actuators. A working device to be operated, an operating device for instructing the operation of the plurality of hydraulic actuators in accordance with an operation of an operator, a speed of a hydraulic actuator corresponding to an operation of the operating device among the plurality of hydraulic actuators, A storage device that stores correlation data indicating a relationship with the operation amount information of the plurality of hydraulic actuators, based on the operation amount information of the operation device and the correlation data when operating the operation device. The speed of the hydraulic actuator corresponding to the operation of the operating device is calculated, and the calculation result is compared with a predetermined condition. And a control device for controlling at least one of the plurality of hydraulic actuators according to the following. The control device further includes: a controller configured to generate the correlation data based on one of a target rotation speed and an actual rotation speed of the prime mover. I decided to change it.
 本発明によれば、原動機の回転数に依らず,MCの精度を安定させることができる。 According to the present invention, the accuracy of MC can be stabilized irrespective of the rotation speed of the prime mover.
本発明の実施形態に係る油圧ショベルの構成図。FIG. 1 is a configuration diagram of a hydraulic shovel according to an embodiment of the present invention. 本発明の実施形態に係る油圧ショベルのコントローラを油圧駆動装置と共に示す図。The figure which shows the controller of the hydraulic shovel which concerns on embodiment of this invention with a hydraulic drive. 本発明の実施形態に係るフロント制御用油圧ユニットの詳細図。FIG. 2 is a detailed view of a front control hydraulic unit according to the embodiment of the present invention. 本発明の実施形態に係る油圧ショベルのコントローラのハードウェア構成図。FIG. 1 is a hardware configuration diagram of a controller of a hydraulic shovel according to an embodiment of the present invention. 図1の油圧ショベルにおける座標系および目標面を示す図。FIG. 2 is a diagram showing a coordinate system and a target surface in the hydraulic shovel of FIG. 1. 図1の油圧ショベルのコントローラの機能ブロック図。The functional block diagram of the controller of the hydraulic shovel of FIG. 本発明の第1実施形態に係るMC制御部の機能ブロック図。FIG. 3 is a functional block diagram of an MC control unit according to the first embodiment of the present invention. 本発明の実施形態に係るブーム制御部によるブーム上げ制御のフローチャート。5 is a flowchart of boom raising control by a boom control unit according to the embodiment of the present invention. 本発明の実施形態に係る操作量に対するシリンダ速度の関係を示す図。FIG. 4 is a diagram illustrating a relationship between a cylinder speed and an operation amount according to the embodiment of the present invention. 本発明の実施形態に係るバケット爪先速度の垂直成分の制限値ayと距離Dとの関係を示す図。The figure which shows the relationship between the limit value ay of the vertical component and the distance D of the bucket toe speed which concern on embodiment of this invention. 本発明の第2実施形態に係るMC制御部の機能ブロック図。FIG. 9 is a functional block diagram of an MC control unit according to a second embodiment of the present invention. 本発明の第3実施形態に係るMC制御部の機能ブロック図。FIG. 13 is a functional block diagram of an MC control unit according to a third embodiment of the present invention. 本発明の第3実施形態に係るエンジン回転数と補正係数の関係を示す図。FIG. 9 is a diagram illustrating a relationship between an engine speed and a correction coefficient according to a third embodiment of the present invention. 本発明の第1実施形態の変形例に係るMC制御部の機能ブロック図。FIG. 7 is a functional block diagram of an MC control unit according to a modification of the first embodiment of the present invention. 本発明の第2実施形態の変形例に係るMC制御部の機能ブロック図。FIG. 14 is a functional block diagram of an MC control unit according to a modification of the second embodiment of the present invention.
 以下,本発明の実施形態について図面を用いて説明する。なお,以下では,作業装置の先端の作業具(アタッチメント)としてバケット10を備える油圧ショベルを例示するが,バケット以外のアタッチメントを備える作業機械で本発明を適用しても構わない。さらに,複数のリンク部材(アタッチメント,アーム,ブーム等)を連結して構成される多関節型の作業装置を有するものであれば油圧ショベル以外の作業機械への適用も可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, a hydraulic excavator including the bucket 10 is exemplified as a working tool (attachment) at the tip of the working device, but the present invention may be applied to a working machine including an attachment other than the bucket. Furthermore, as long as it has a multi-joint type working device constituted by connecting a plurality of link members (attachment, arm, boom, etc.), it can be applied to a working machine other than a hydraulic shovel.
 また,本稿では,或る形状を示す用語(例えば,目標面,設計面等)とともに用いられる「上」,「上方」又は「下方」という語の意味に関し,「上」は当該或る形状の「表面」を意味し,「上方」は当該或る形状の「表面より高い位置」を意味し,「下方」は当該或る形状の「表面より低い位置」を意味することとする。また,以下の説明では,同一の構成要素が複数存在する場合,符号(数字)の末尾にアルファベットを付すことがあるが,当該アルファベットを省略して当該複数の構成要素をまとめて表記することがある。例えば,2つのポンプ2a,2b,が存在するとき,これらをまとめてポンプ2と表記することがある。 In this paper, the term “upper”, “upper”, or “lower” used together with a term indicating a certain shape (eg, target surface, design surface, etc.) means that “upper” means the shape of the certain shape. “Upper” means “above the surface” of the certain shape, and “below” means “lower than the surface” of the certain shape. In the following description, when there are a plurality of the same components, an alphabet may be added to the end of the reference numeral (number). However, the alphabet may be omitted and the plurality of components may be collectively described. is there. For example, when there are two pumps 2a and 2b, these may be collectively described as a pump 2.
 <第1実施形態>
 <基本構成>
 図1は本発明の第1の実施形態に係る油圧ショベルの構成図であり,図2は本発明の実施形態に係る油圧ショベルのコントローラを油圧駆動装置と共に示す図であり,図3は図2中のフロント制御用油圧ユニット160の詳細図である。
<First embodiment>
<Basic configuration>
FIG. 1 is a configuration diagram of a hydraulic shovel according to a first embodiment of the present invention, FIG. 2 is a diagram illustrating a controller of the hydraulic shovel according to the embodiment of the present invention together with a hydraulic drive device, and FIG. FIG. 3 is a detailed view of a middle front control hydraulic unit 160.
 図1において,油圧ショベル1は,多関節型のフロント作業装置1Aと,車体1Bで構成されている。車体1Bは,左右の走行油圧モータ3a,3bにより走行する下部走行体11と,下部走行体11の上に取り付けられ,旋回油圧モータ4により旋回する上部旋回体12とからなる。 In FIG. 1, the hydraulic excavator 1 includes an articulated front working device 1A and a vehicle body 1B. The vehicle body 1B includes a lower traveling body 11 that travels by left and right traveling hydraulic motors 3a and 3b, and an upper revolving body 12 mounted on the lower traveling body 11 and revolved by the revolving hydraulic motor 4.
 フロント作業装置1Aは,垂直方向にそれぞれ回動する複数のフロント部材(ブーム8,アーム9及びバケット10)を連結して構成されている。ブーム8の基端は上部旋回体12の前部においてブームピンを介して回動可能に支持されている。ブーム8の先端にはアームピンを介してアーム9の基端が回動可能に連結されており,アーム9の先端にはバケットピンを介してバケット10が回動可能に連結されている。ブーム8はブームシリンダ5によって駆動され,アーム9はアームシリンダ6によって駆動され,バケット10はバケットシリンダ7によって駆動される。 The front working device 1A is configured by connecting a plurality of front members (the boom 8, the arm 9, and the bucket 10) that rotate vertically. The base end of the boom 8 is rotatably supported at the front of the upper swing body 12 via a boom pin. A base end of an arm 9 is rotatably connected to a distal end of the boom 8 via an arm pin, and a bucket 10 is rotatably connected to a distal end of the arm 9 via a bucket pin. The boom 8 is driven by a boom cylinder 5, the arm 9 is driven by an arm cylinder 6, and the bucket 10 is driven by a bucket cylinder 7.
 ブーム8,アーム9,バケット10の回動角度α,β,γ(図5参照)を測定可能なように,ブームピンにブーム角度センサ30,アームピンにアーム角度センサ31,バケットリンク13にバケット角度センサ32が取付けられ,上部旋回体12には基準面(例えば水平面)に対する上部旋回体12(車体1B)の傾斜角θ(図5参照)を検出する車体傾斜角センサ33が取付けられている。なお,角度センサ30,31,32はそれぞれ基準面(例えば水平面)に対する角度センサ(例えば慣性計測装置)に代替可能である。 The boom pin has a boom angle sensor 30, the arm pin has an arm angle sensor 31, and the bucket link 13 has a bucket angle sensor so that the rotation angles α, β, and γ (see FIG. 5) of the boom 8, the arm 9, and the bucket 10 can be measured. The upper revolving unit 12 is provided with a vehicle body inclination angle sensor 33 for detecting an inclination angle θ (see FIG. 5) of the upper revolving unit 12 (vehicle body 1B) with respect to a reference plane (for example, a horizontal plane). Each of the angle sensors 30, 31, and 32 can be replaced with an angle sensor (for example, an inertial measurement device) for a reference plane (for example, a horizontal plane).
 上部旋回体12に設けられた運転室内には,走行右レバー23a(図1)を有し走行右油圧モータ3a(下部走行体11)を操作するための操作装置47a(図2)と,走行左レバー23b(図1)を有し走行左油圧モータ3b(下部走行体11)を操作するための操作装置47b(図2)と,操作右レバー1a(図1)を共有しブームシリンダ5(ブーム8)及びバケットシリンダ7(バケット10)を操作するための操作装置45a,46a(図2)と,操作左レバー1b(図1)を共有しアームシリンダ6(アーム9)及び旋回油圧モータ4(上部旋回体12)を操作するための操作装置45b,46b(図2)図が設置されている。以下では,走行右レバー23a,走行左レバー23b,操作右レバー1aおよび操作左レバー1bを操作レバー1,23と総称することがある。 An operating device 47a (FIG. 2) having a traveling right lever 23a (FIG. 1) for operating the traveling right hydraulic motor 3a (lower traveling body 11) is provided in a cab provided on the upper revolving unit 12. The operating device 47b (FIG. 2) for operating the traveling left hydraulic motor 3b (lower traveling body 11) having the left lever 23b (FIG. 1) and the operating right lever 1a (FIG. 1) are shared and the boom cylinder 5 ( The operating devices 45a and 46a (FIG. 2) for operating the boom 8) and the bucket cylinder 7 (bucket 10) and the operating left lever 1b (FIG. 1) share the arm cylinder 6 (arm 9) and the swing hydraulic motor 4 Operating devices 45b and 46b (FIG. 2) for operating the (upper revolving superstructure 12) are provided. Hereinafter, the traveling right lever 23a, the traveling left lever 23b, the operation right lever 1a, and the operation left lever 1b may be collectively referred to as operation levers 1 and 23.
 上部旋回体12には,原動機であるエンジン18と,油圧ポンプ2a,2bと,パイロットポンプ48等が搭載されている。油圧ポンプ2a,2bとパイロットポンプ48はエンジン18によって駆動される。油圧ポンプ2a,2bはレギュレータ2aa,2baによって容量が制御される可変容量型ポンプであり,パイロットポンプ48は固定容量型ポンプである。油圧ポンプ2およびパイロットポンプ48はタンク200より作動油を吸引して吐出する。本実施形態においては,図2に示すように,パイロットライン144,145,146,147,148,149の途中にシャトルブロック162が設けられている。操作装置45,46,47から出力された油圧信号が,このシャトルブロック162を介してレギュレータ2aa,2baにも入力される。シャトルブロック162の詳細構成は省略するが,油圧信号がシャトルブロック162を介してレギュレータ2aa,2baに入力されており,油圧ポンプ2a,2bの吐出流量が当該油圧信号に応じて制御される。 The upper rotating body 12 is equipped with an engine 18 as a prime mover, hydraulic pumps 2a and 2b, a pilot pump 48, and the like. The hydraulic pumps 2 a and 2 b and the pilot pump 48 are driven by the engine 18. The hydraulic pumps 2a and 2b are variable displacement pumps whose capacity is controlled by regulators 2aa and 2ba, and the pilot pump 48 is a fixed displacement pump. The hydraulic pump 2 and the pilot pump 48 suck and discharge hydraulic oil from the tank 200. In the present embodiment, as shown in FIG. 2, a shuttle block 162 is provided in the middle of the pilot lines 144, 145, 146, 147, 148, 149. The hydraulic signals output from the operating devices 45, 46, 47 are also input to the regulators 2aa, 2ba via the shuttle block 162. Although a detailed configuration of the shuttle block 162 is omitted, a hydraulic signal is input to the regulators 2aa and 2ba via the shuttle block 162, and the discharge flow rates of the hydraulic pumps 2a and 2b are controlled according to the hydraulic signal.
 パイロットポンプ48の吐出配管であるポンプライン48aはロック弁39を通った後,複数に分岐して操作装置45,46,47,フロント制御用油圧ユニット160内の各弁に接続している。ロック弁39は本例では電磁切換弁であり,その電磁駆動部は運転室(図1)に配置されたゲートロックレバー(不図示)の位置検出器と電気的に接続している。ゲートロックレバーのポジションは位置検出器で検出され,その位置検出器からロック弁39に対してゲートロックレバーのポジションに応じた信号が入力される。ゲートロックレバーのポジションがロック位置にあればロック弁39が閉じてポンプライン48aが遮断され,ロック解除位置にあればロック弁39が開いてポンプライン48aが開通する。つまり,ポンプライン48aが遮断された状態では操作装置45,46,47による操作が無効化され,旋回,掘削等の動作が禁止される。 The pump line 48a, which is the discharge pipe of the pilot pump 48, passes through the lock valve 39, is branched into a plurality of parts, and is connected to each of the operating devices 45, 46, 47 and each valve in the front control hydraulic unit 160. The lock valve 39 is an electromagnetic switching valve in this embodiment, and its electromagnetic drive unit is electrically connected to a position detector of a gate lock lever (not shown) arranged in the cab (FIG. 1). The position of the gate lock lever is detected by a position detector, and a signal corresponding to the position of the gate lock lever is input to the lock valve 39 from the position detector. If the position of the gate lock lever is at the lock position, the lock valve 39 is closed and the pump line 48a is shut off, and if it is at the unlock position, the lock valve 39 is opened and the pump line 48a is opened. That is, when the pump line 48a is shut off, the operations by the operation devices 45, 46, and 47 are invalidated, and operations such as turning and excavation are prohibited.
 操作装置45,46,47は,オペレータの操作に応じて複数の油圧アクチュエータの動作を指示する油圧パイロット方式の操作装置である。操作装置45,46,47は,パイロットポンプ48から吐出される圧油を減圧して,それぞれオペレータにより操作される操作レバー1,23の操作量(例えば,レバーストローク)と操作方向に応じたパイロット圧(操作圧と称することがある)を発生する。このように発生したパイロット圧は,対応する流量制御弁15a~15f(図2または図3)の油圧駆動部150a~155bにパイロットライン144a~149b(図3参照)を介して供給され,これら流量制御弁15a~15fを駆動する制御信号として利用される。 The operation devices 45, 46, and 47 are hydraulic pilot type operation devices that instruct the operation of a plurality of hydraulic actuators according to the operation of the operator. The operation devices 45, 46, and 47 reduce the pressure oil discharged from the pilot pump 48, and operate the pilots according to the operation amounts (for example, lever strokes) and operation directions of the operation levers 1 and 23 respectively operated by the operator. Pressure (sometimes referred to as operating pressure). The pilot pressure thus generated is supplied to the hydraulic drive units 150a to 155b of the corresponding flow control valves 15a to 15f (FIG. 2 or FIG. 3) via the pilot lines 144a to 149b (see FIG. 3). It is used as a control signal for driving the control valves 15a to 15f.
 油圧ポンプ2から吐出された圧油(作動油)は,流量制御弁15a,15b,15c,15d,15e,15f(図2参照)を介して走行右油圧モータ3a,走行左油圧モータ3b,旋回油圧モータ4,ブームシリンダ5,アームシリンダ6,バケットシリンダ7に供給されてそれらを駆動する。供給された圧油によってブームシリンダ5,アームシリンダ6,バケットシリンダ7が伸縮することで,ブーム8,アーム9,バケット10がそれぞれ回動してフロント作業装置1Aが駆動される。また,供給された圧油によって旋回油圧モータ4が回転することで,下部走行体11に対して上部旋回体12が左方向又は右方向に旋回する。そして,供給された圧油によって走行右油圧モータ3a,走行左油圧モータ3bが回転することで,下部走行体11が走行する。 The hydraulic oil (hydraulic oil) discharged from the hydraulic pump 2 travels through the flow control valves 15a, 15b, 15c, 15d, 15e, and 15f (see FIG. 2) to travel right hydraulic motor 3a, travel left hydraulic motor 3b, and turn. The hydraulic motor 4, boom cylinder 5, arm cylinder 6, and bucket cylinder 7 are supplied to drive them. When the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7 expand and contract by the supplied pressure oil, the boom 8, the arm 9, and the bucket 10 rotate, respectively, and the front work device 1A is driven. Further, the turning hydraulic motor 4 is rotated by the supplied pressure oil, so that the upper turning body 12 turns leftward or rightward with respect to the lower running body 11. Then, the traveling right hydraulic motor 3a and the traveling left hydraulic motor 3b are rotated by the supplied pressure oil, so that the lower traveling body 11 travels.
 エンジン18の出力軸の周囲にはエンジン回転数を検出するための回転センサであるエンジン回転数検出装置490が取り付けられている。 エ ン ジ ン An engine speed detector 490, which is a rotation sensor for detecting the engine speed, is mounted around the output shaft of the engine 18.
 図4は本実施形態に係る油圧ショベルが備えるマシンコントロール(MC)システムの構成図である。図4のシステムは,MCとして,操作装置45,46がオペレータに操作されたとき,フロント作業装置1Aを予め定められた条件に基づいて制御する処理を実行する。本稿ではマシンコントロール(MC)を,操作装置45,46の非操作時に作業装置1Aの動作をコンピュータにより制御する「自動制御」に対して,操作装置45,46の操作時にのみ作業装置1Aの動作をコンピュータにより制御する「半自動制御」と称することがある。次に本実施形態におけるMCの詳細を説明する。 FIG. 4 is a configuration diagram of a machine control (MC) system provided in the excavator according to the present embodiment. The system shown in FIG. 4 executes a process of controlling the front working device 1A based on a predetermined condition when the operating devices 45 and 46 are operated by the operator as the MC. In this paper, the machine control (MC) is compared with “automatic control” in which the operation of the working device 1A is controlled by a computer when the operating devices 45 and 46 are not operated, whereas the operation of the working device 1A is performed only when the operating devices 45 and 46 are operated. May be referred to as “semi-automatic control” that is controlled by a computer. Next, details of the MC in the present embodiment will be described.
 フロント作業装置1AのMCとしては,操作装置45b,46aを介して掘削操作(具体的には,アームクラウド,バケットクラウド及びバケットダンプの少なくとも1つの指示)が入力された場合,目標面60(図5参照)と作業装置1Aの先端(本実施形態ではバケット10の爪先とする)の位置関係に基づいて,作業装置1Aの先端の位置が目標面60上及びその上方の領域内に保持されるように油圧アクチュエータ5,6,7のうち少なくとも1つを強制的に動作させる制御信号(例えば,ブームシリンダ5を伸ばして強制的にブーム上げ動作を行う)を該当する流量制御弁15a,15b,15cに出力する。 As the MC of the front working device 1A, when a digging operation (specifically, at least one instruction of an arm cloud, a bucket cloud, and a bucket dump) is input via the operation devices 45b and 46a, the target surface 60 (FIG. 5) and the tip of the working device 1A (in this embodiment, the toe of the bucket 10), the position of the tip of the working device 1A is held on the target surface 60 and in an area above the target surface 60. As described above, the control signal for forcibly operating at least one of the hydraulic actuators 5, 6, 7 (for example, the boom cylinder 5 is extended to forcibly perform the boom raising operation) is transmitted to the corresponding flow control valve 15a, 15b, 15c.
 このMCによりバケット10の爪先が目標面60の下方に侵入することが防止されるので,オペレータの技量の程度に関わらず目標面60に沿った掘削が可能となる。なお,本実施形態では,MC時のフロント作業装置1Aの制御点を,油圧ショベルのバケット10の爪先(作業装置1Aの先端)に設定しているが,制御点は作業装置1A上の点であればバケット爪先以外にも変更可能である。例えば,バケット10の底面や,バケットリンク13の最外部も選択可能である。 (4) Since the MC prevents the toe of the bucket 10 from intruding below the target surface 60, excavation along the target surface 60 is possible regardless of the skill level of the operator. In the present embodiment, the control point of the front working device 1A at the time of MC is set to the tip of the bucket 10 of the hydraulic shovel (the tip of the working device 1A), but the control point is a point on the working device 1A. If so, it can be changed to something other than the bucket toe. For example, the bottom of the bucket 10 and the outermost part of the bucket link 13 can be selected.
 図4のシステムは,作業装置姿勢検出装置50と,目標面設定装置51と,オペレータ操作検出装置52aと,運転室内に設置され,目標面60と作業装置1Aの位置関係が表示可能な表示装置(例えば液晶ディスプレイ)53と,MCによるバケット角度制御(作業具角度制御とも称する)の許可及び禁止(ON及びOFF)のいずれか一方を選択するための制御選択スイッチ(制御選択装置)97と,MCによるバケット角度制御における目標面60に対するバケット10の角度(目標角度)を設定するための目標角度設定装置96と,エンジンの回転数を検出するエンジン回転数検出装置490と,油圧ショベル1の作業モードとして通常モード(第1モード)及びエコノミーモード(第2モード)のいずれか一方を選択するためのモード選択装置(モード選択スイッチ)98と,エンジン回転数の目標値としてオペレータが所望の値を設定することでエンジン18の目標回転数を調整する目標エンジン回転数設定器であるエンジン回転数ダイヤル(回転数ダイヤル)99と,MC制御を司るコンピュータであるコントローラ(制御装置)40とを備えている。 The system shown in FIG. 4 is a display device that is installed in the operator's cab and is capable of displaying the positional relationship between the target surface 60 and the working device 1A, the working device attitude detecting device 50, the target surface setting device 51, the operator operation detecting device 52a. (For example, a liquid crystal display) 53, a control selection switch (control selection device) 97 for selecting either permission or prohibition (ON and OFF) of bucket angle control (also referred to as work implement angle control) by MC, Work of the hydraulic excavator 1 and the target angle setting device 96 for setting the angle (target angle) of the bucket 10 with respect to the target surface 60 in the bucket angle control by the MC, the engine speed detecting device 490 for detecting the engine speed, and the like. For selecting one of the normal mode (first mode) and the economy mode (second mode) as the mode A mode selection device (mode selection switch) 98 and an engine speed dial which is a target engine speed setting device for adjusting a target engine speed of the engine 18 by setting a desired value as a target value of the engine speed. (Rotational number dial) 99 and a controller (control device) 40 which is a computer for controlling the MC.
 作業装置姿勢検出装置50は,ブーム角度センサ30,アーム角度センサ31,バケット角度センサ32,車体傾斜角センサ33から構成される。これらの角度センサ30,31,32,33は作業装置1Aの姿勢センサとして機能している。 The working device posture detecting device 50 includes a boom angle sensor 30, an arm angle sensor 31, a bucket angle sensor 32, and a vehicle body tilt angle sensor 33. These angle sensors 30, 31, 32, and 33 function as posture sensors of the working device 1A.
 目標面設定装置51は,目標面60に関する情報(各目標面の位置情報や傾斜角度情報を含む)を入力可能なインターフェースである。目標面設定装置51は,グローバル座標系(絶対座標系)上に規定された目標面の3次元データを格納した外部端末(図示せず)と接続されている。なお,目標面設定装置51を介した目標面の入力は,オペレータが手動で行っても良い。 The target plane setting device 51 is an interface capable of inputting information on the target plane 60 (including position information and inclination angle information of each target plane). The target plane setting device 51 is connected to an external terminal (not shown) that stores three-dimensional data of a target plane defined on a global coordinate system (absolute coordinate system). The input of the target plane via the target plane setting device 51 may be manually performed by the operator.
 オペレータ操作検出装置52aは,オペレータによる操作レバー1a,1b(操作装置45a,45b,46a)の操作によってパイロットライン144,145,146に生じる操作圧(第1制御信号)を取得する圧力センサ70a,70b,71a,71b,72a,72bから構成される。すなわち,作業装置1Aに係る油圧シリンダ5,6,7に対する操作を検出している。 The operator operation detection device 52a includes a pressure sensor 70a that obtains an operation pressure (first control signal) generated in the pilot lines 144, 145, and 146 by an operation of the operation levers 1a, 1b ( operation devices 45a, 45b, 46a) by the operator. 70b, 71a, 71b, 72a, and 72b. That is, the operation on the hydraulic cylinders 5, 6, 7 according to the working device 1A is detected.
 モード選択装置98は,掘削作業中のエンジン回転数の上限値で予め決められた複数の作業モードとして,通常運転時におけるエンジン回転数の上限値である第1上限値Ru1を設定する通常MCモード(第1モード)と,第1上限値Ru1よりも小さい上限値である第2上限値Ru2を設定した効率重視のエコノミーMCモード(第2モード)とのいずれか一方を選択するためのモード選択スイッチである。なお,これらの作業モード以外にも,第1上限値Ru1よりも大きい上限値である第3上限値Ru3を設定した作業量重視のパワーMCモードを選択可能に構成しても良い。 The mode selection device 98 sets a first upper limit Ru1, which is the upper limit of the engine speed during normal operation, as a plurality of work modes predetermined by the upper limit of the engine speed during excavation work. Mode selection for selecting one of the (first mode) and the economy-oriented MC mode (second mode) in which the second upper limit Ru2 which is an upper limit smaller than the first upper limit Ru1 is set. Switch. In addition to these work modes, a power MC mode in which a work amount is emphasized, in which a third upper limit Ru3 which is an upper limit larger than the first upper limit Ru1, may be selected.
 <フロント制御用油圧ユニット160>
 図3に示すように,フロント制御用油圧ユニット160は,ブーム8用の操作装置45aのパイロットライン144a,144bに設けられ,操作レバー1aの操作量としてパイロット圧(第1制御信号)を検出する圧力センサ70a,70bと,一次ポート側がポンプライン48aを介してパイロットポンプ48に接続されパイロットポンプ48からのパイロット圧を減圧して出力する電磁比例弁54aと,ブーム8用の操作装置45aのパイロットライン144aと電磁比例弁54aの二次ポート側に接続され,パイロットライン144a内のパイロット圧と電磁比例弁54aから出力される制御圧(第2制御信号)の高圧側を選択し,流量制御弁15aの油圧駆動部150aに導くシャトル弁82aと,ブーム8用の操作装置45aのパイロットライン144bに設置され,コントローラ40からの制御信号を基にパイロットライン144b内のパイロット圧(第1制御信号)を低減して出力する電磁比例弁54bを備えている。
<Front control hydraulic unit 160>
As shown in FIG. 3, the front control hydraulic unit 160 is provided on the pilot lines 144a and 144b of the operating device 45a for the boom 8, and detects a pilot pressure (first control signal) as an operation amount of the operation lever 1a. Pressure sensors 70a and 70b, an electromagnetic proportional valve 54a whose primary port side is connected to a pilot pump 48 via a pump line 48a to reduce and output a pilot pressure from the pilot pump 48, and a pilot of an operating device 45a for the boom 8 The line 144a is connected to the secondary port of the electromagnetic proportional valve 54a, and selects the high pressure side of the pilot pressure in the pilot line 144a and the control pressure (second control signal) output from the electromagnetic proportional valve 54a. A shuttle valve 82a for guiding the hydraulic drive unit 150a to the hydraulic drive unit 15a and an operating device 45a for the boom 8; B is installed in the lot line 144b, and a solenoid proportional valve 54b to reduce and output the pilot pressure of the control signal in the pilot line 144b based on (first control signal) from the controller 40.
 また,フロント制御用油圧ユニット160は,アーム9用のパイロットライン145a,145bに設置され,操作レバー1bの操作量としてパイロット圧(第1制御信号)を検出してコントローラ40に出力する圧力センサ71a,71bと,パイロットライン145bに設置され,コントローラ40からの制御信号を基にパイロット圧(第1制御信号)を低減して出力する電磁比例弁55bと,パイロットライン145aに設置され,コントローラ40からの制御信号を基にパイロットライン145a内のパイロット圧(第1制御信号)を低減して出力する電磁比例弁55aが設けられている。 Further, the front control hydraulic unit 160 is provided on the pilot lines 145a and 145b for the arm 9, and detects a pilot pressure (first control signal) as an operation amount of the operation lever 1b and outputs the pressure sensor 71a to the controller 40. , 71b, an electromagnetic proportional valve 55b installed in a pilot line 145b, and reducing and outputting a pilot pressure (first control signal) based on a control signal from the controller 40, and an electromagnetic proportional valve 55b installed in a pilot line 145a. Is provided with an electromagnetic proportional valve 55a that reduces the pilot pressure (first control signal) in the pilot line 145a based on the control signal described above.
 また,フロント制御用油圧ユニット160は,バケット10用のパイロットライン146a,146bには,操作レバー1aの操作量としてパイロット圧(第1制御信号)を検出してコントローラ40に出力する圧力センサ72a,72bと,コントローラ40からの制御信号を基にパイロット圧(第1制御信号)を低減して出力する電磁比例弁56a,56bと,一次ポート側がパイロットポンプ48に接続されパイロットポンプ48からのパイロット圧を減圧して出力する電磁比例弁56c,56dと,パイロットライン146a,146b内のパイロット圧と電磁比例弁56c,56dから出力される制御圧の高圧側を選択し,流量制御弁15cの油圧駆動部152a,152bに導くシャトル弁83a,83bとがそれぞれ設けられている。なお,図3では,圧力センサ70,71,72とコントローラ40との接続線は省略している。 Further, the front control hydraulic unit 160 includes a pilot line 146a, 146b for the bucket 10, a pressure sensor 72a that detects a pilot pressure (first control signal) as an operation amount of the operation lever 1a and outputs the pilot pressure to the controller 40. 72 b, electromagnetic proportional valves 56 a and 56 b for reducing and outputting a pilot pressure (first control signal) based on a control signal from the controller 40, and a pilot pressure from the pilot pump 48 which is connected to the pilot pump 48 on the primary port side. Valves 56c and 56d for reducing the pressure and outputting, and the pilot pressure in the pilot lines 146a and 146b and the high pressure side of the control pressure output from the proportional valves 56c and 56d are selected to hydraulically drive the flow control valve 15c. Shuttle valves 83a and 83b leading to the sections 152a and 152b are provided respectively. To have. In FIG. 3, connection lines between the pressure sensors 70, 71, 72 and the controller 40 are omitted.
 電磁比例弁54b,55a,55b,56a,56bは,非通電時には開度が最大で,コントローラ40からの制御信号である電流を増大させるほど開度は小さくなる。一方,電磁比例弁54a,56c,56dは,非通電時には開度をゼロ,通電時に開度を有し,コントローラ40からの電流(制御信号)を増大させるほど開度は大きくなる。このように各電磁比例弁の開度54,55,56はコントローラ40からの制御信号に応じたものとなる。
上記のように構成される制御用油圧ユニット160において,コントローラ40から制御信号を出力して電磁比例弁54a,56c,56dを駆動すると,対応する操作装置45a,46aのオペレータ操作が無い場合にもパイロット圧(第2制御信号)を発生できるので,ブーム上げ動作,バケットクラウド動作,バケットダンプ動作を強制的に発生できる。また,これと同様にコントローラ40により電磁比例弁54b,55a,55b,56a,56bを駆動すると,操作装置45a,45b,46aのオペレータ操作により発生したパイロット圧(第1制御信号)を減じたパイロット圧(第2制御信号)を発生することができ,ブーム下げ動作,アームクラウド/ダンプ動作,バケットクラウド/ダンプ動作の速度をオペレータ操作の値から強制的に低減できる。
The opening of the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b is maximum when power is not supplied, and the opening decreases as the current as a control signal from the controller 40 increases. On the other hand, the electromagnetic proportional valves 54a, 56c, 56d have an opening of zero when not energized and have an opening when energized, and the opening increases as the current (control signal) from the controller 40 increases. As described above, the opening degrees 54, 55, 56 of the respective solenoid proportional valves are in accordance with the control signal from the controller 40.
In the control hydraulic unit 160 configured as described above, when a control signal is output from the controller 40 to drive the electromagnetic proportional valves 54a, 56c, 56d, even when there is no operator operation of the corresponding operating devices 45a, 46a, Since the pilot pressure (second control signal) can be generated, the boom raising operation, the bucket cloud operation, and the bucket dump operation can be forcibly generated. Similarly, when the controller 40 drives the proportional solenoid valves 54b, 55a, 55b, 56a, 56b, the pilot pressure (first control signal) generated by the operator operation of the operation devices 45a, 45b, 46a is reduced. A pressure (second control signal) can be generated, and the speed of the boom lowering operation, the arm cloud / dump operation, and the bucket cloud / dump operation can be forcibly reduced from the value of the operator operation.
 本稿では,流量制御弁15a~15cに対する制御信号のうち,操作装置45a,45b,46aの操作によって発生したパイロット圧を「第1制御信号」と称する。そして,流量制御弁15a~15cに対する制御信号のうち,コントローラ40で電磁比例弁54b,55a,55b,56a,56bを駆動して第1制御信号を補正(低減)して生成したパイロット圧と,コントローラ40で電磁比例弁54a,56c,56dを駆動して第1制御信号とは別に新たに生成したパイロット圧を「第2制御信号」と称する。 In this document, among the control signals for the flow control valves 15a to 15c, the pilot pressure generated by operating the operation devices 45a, 45b, 46a is referred to as a "first control signal". Then, among the control signals for the flow rate control valves 15a to 15c, the controller 40 drives the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b to correct (reduce) the first control signal, and generates a pilot pressure; The pilot pressure newly generated separately from the first control signal by driving the electromagnetic proportional valves 54a, 56c, 56d by the controller 40 is referred to as a "second control signal".
 第2制御信号は,第1制御信号によって発生される作業装置1Aの制御点の速度ベクトルが所定の条件に反するときに生成され,当該所定の条件に即した作業装置1Aの制御点の速度ベクトルを発生させる制御信号として生成される。なお,同一の流量制御弁15a~15cにおける一方の油圧駆動部に対して第1制御信号が,他方の油圧駆動部に対して第2制御信号が生成される場合は,第2制御信号を優先的に油圧駆動部に作用させるものとし,第1制御信号を電磁比例弁で遮断し,第2制御信号を当該他方の油圧駆動部に入力する。したがって,流量制御弁15a~15cのうち第2制御信号が演算されたものについては第2制御信号を基に制御され,第2制御信号が演算されなかったものについては第1制御信号を基に制御され,第1及び第2制御信号の双方が発生しなかったものについては制御(駆動)されないことになる。上記のように第1制御信号と第2制御信号を定義すると,MCは,第2制御信号に基づく流量制御弁15a~15cの制御ということもできる。 The second control signal is generated when the speed vector of the control point of the working device 1A generated by the first control signal violates a predetermined condition, and the speed vector of the control point of the working device 1A according to the predetermined condition is generated. Is generated as a control signal. When the first control signal is generated for one hydraulic drive unit and the second control signal is generated for the other hydraulic drive unit in the same flow control valves 15a to 15c, the second control signal is given priority. The first control signal is cut off by an electromagnetic proportional valve, and the second control signal is input to the other hydraulic drive unit. Therefore, among the flow control valves 15a to 15c, those for which the second control signal is calculated are controlled based on the second control signal, and those for which the second control signal is not calculated are based on the first control signal. Those that are controlled and for which neither the first nor the second control signal is generated are not controlled (driven). When the first control signal and the second control signal are defined as described above, MC can be said to be control of the flow control valves 15a to 15c based on the second control signal.
 <コントローラ40>
 図4においてコントローラ40は,入力部91と,プロセッサである中央処理装置(CPU)92と,記憶装置であるリードオンリーメモリ(ROM)93及びランダムアクセスメモリ(RAM)94と,出力部95とを有している。入力部91は,作業装置姿勢検出装置50である角度センサ30~32及び傾斜角センサ33からの信号と,目標面60を設定するための装置である目標面設定装置51からの信号と,操作装置45a,45b,46aからの操作量を検出する操作量センサ(圧力センサ70,71,72を含む)であるオペレータ操作検出装置52aからの信号と,制御選択スイッチ97の切替位置(許可・禁止)を示す信号と,目標角度設定装置96からの目標角度を示す信号と,エンジン回転数検出装置490からの信号と,モード選択装置98で選択された作業モード(通常/エコノミー)を示す信号と,エンジン回転数ダイヤル99で設定されたエンジン目標回転数を示す信号を入力し,CPU92が演算可能なように変換する。ROM93は,後述するフローチャートに係る処理を含めMCを実行するための制御プログラムと,当該フローチャートの実行に必要な各種情報等が記憶された記憶装置であり,CPU92は,ROM93に記憶された制御プログラムに従って入力部91及びメモリ93,94から取り入れた信号に対して所定の演算処理を行う。出力部95は,CPU92での演算結果に応じた出力用の信号を作成し,その信号を電磁比例弁54~56または表示装置53に出力することで,油圧アクチュエータ5~7を駆動・制御したり,車体1B,バケット10及び目標面60等の画像を表示装置53の画面上に表示させたりする。
<Controller 40>
4, the controller 40 includes an input unit 91, a central processing unit (CPU) 92 as a processor, a read-only memory (ROM) 93 and a random access memory (RAM) 94 as storage units, and an output unit 95. Have. The input unit 91 receives signals from the angle sensors 30 to 32 and the inclination angle sensor 33 that are the working device attitude detection devices 50, signals from the target surface setting device 51 that is a device for setting the target surface 60, A signal from an operator operation detection device 52a, which is an operation amount sensor (including pressure sensors 70, 71, 72) for detecting an operation amount from the devices 45a, 45b, 46a, and a switching position of the control selection switch 97 (permission / prohibition) ), A signal indicating the target angle from the target angle setting device 96, a signal from the engine speed detection device 490, and a signal indicating the work mode (normal / economy) selected by the mode selection device 98. The CPU 92 inputs a signal indicating the target engine speed set by the engine speed dial 99 and converts the signal so that the CPU 92 can calculate. The ROM 93 is a storage device that stores a control program for executing an MC including a process related to a flowchart described later, and various information necessary for executing the flowchart, and the CPU 92 executes a control program stored in the ROM 93. The predetermined arithmetic processing is performed on the signals fetched from the input unit 91 and the memories 93 and 94 according to the following. The output unit 95 drives and controls the hydraulic actuators 5 to 7 by generating output signals corresponding to the calculation results of the CPU 92 and outputting the signals to the electromagnetic proportional valves 54 to 56 or the display device 53. Alternatively, images of the vehicle body 1B, the bucket 10, the target surface 60, and the like are displayed on the screen of the display device 53.
 なお,図4のコントローラ40は,記憶装置としてROM93及びRAM94という半導体メモリを備えているが,記憶装置であれば特に代替可能であり,例えばSSD(Solid State Drive)等の半導体メモリや,HHD(Hard Disc Drive)等の磁気記憶装置が適用可能である。 Although the controller 40 in FIG. 4 includes semiconductor memories such as a ROM 93 and a RAM 94 as storage devices, any storage device can be used in particular. For example, a semiconductor memory such as an SSD (Solid State Drive) or an HHD ( A magnetic storage device such as a Hard Disc Drive is applicable.
 図6は,コントローラ40の機能ブロック図である。コントローラ40は,MC制御部43と,電磁比例弁制御部44と,表示制御部374と,エンジン回転数制御部49とを備えている。 FIG. 6 is a functional block diagram of the controller 40. The controller 40 includes an MC control unit 43, an electromagnetic proportional valve control unit 44, a display control unit 374, and an engine speed control unit 49.
 ―表示制御部374―
 表示制御部374は,MC制御部43から出力される作業装置姿勢及び目標面を基に表示装置53を制御する部分である。表示制御部374には,作業装置1Aの画像及びアイコンを含む表示関連データが多数格納されている表示ROMが備えられており,表示制御部374が,入力情報に含まれるフラグに基づいて所定のプログラムを読み出すとともに,表示装置53における表示制御をする。
-Display control unit 374-
The display control unit 374 is a part that controls the display device 53 based on the working device attitude and the target plane output from the MC control unit 43. The display control unit 374 is provided with a display ROM in which a large number of display-related data including images and icons of the working device 1A are stored, and the display control unit 374 determines a predetermined value based on a flag included in the input information. The program is read and the display on the display device 53 is controlled.
 ―MC制御部43―
 図7は図6中のMC制御部43の機能ブロック図である。MC制御部43は,操作量演算部43aと,姿勢演算部43bと,目標面演算部43cと,シリンダ速度相関データ記憶部43dと,シリンダ速度相関データ算出部43eと,ブーム制御部81aと,バケット制御部81bとを備えている。
-MC controller 43-
FIG. 7 is a functional block diagram of the MC control unit 43 in FIG. The MC control unit 43 includes an operation amount calculation unit 43a, a posture calculation unit 43b, a target plane calculation unit 43c, a cylinder speed correlation data storage unit 43d, a cylinder speed correlation data calculation unit 43e, a boom control unit 81a, A bucket control unit 81b.
 操作量演算部43aは,オペレータ操作検出装置52aからの入力を基に操作装置45a,45b,46a(操作レバー1a,1b)の操作量を算出する。本実施形態ではオペレータ操作検出装置52aである圧力センサ70,71,72の検出値から操作装置45a,45b,46aの操作量が算出できる。 The operation amount calculation unit 43a calculates the operation amount of the operation devices 45a, 45b, 46a (operation levers 1a, 1b) based on the input from the operator operation detection device 52a. In the present embodiment, the operation amounts of the operation devices 45a, 45b, 46a can be calculated from the detection values of the pressure sensors 70, 71, 72, which are the operator operation detection devices 52a.
 なお,圧力センサ70,71,72による操作量の算出は一例に過ぎず,例えば各操作装置45a,45b,46aの操作レバーの回転変位を検出する位置センサ(例えば,ロータリーエンコーダ)で当該操作レバーの操作量を検出しても良い。 The calculation of the operation amount by the pressure sensors 70, 71, 72 is only an example. For example, a position sensor (for example, a rotary encoder) that detects the rotational displacement of the operation lever of each of the operation devices 45a, 45b, 46a uses the operation lever. May be detected.
 姿勢演算部43bは作業装置姿勢検出装置50である角度センサ30~32及び傾斜角センサ33からの情報に基づき,油圧ショベル1に設定されたショベル座標系(ローカル座標系)におけるフロント作業装置1Aの姿勢と,バケット10の爪先の位置を演算する。 Based on information from the angle sensors 30 to 32 and the inclination angle sensor 33 that are the working device posture detecting devices 50, the posture calculating unit 43b controls the front working device 1A in the shovel coordinate system (local coordinate system) set for the hydraulic shovel 1. The posture and the position of the toe of the bucket 10 are calculated.
 フロント作業装置1Aの姿勢は図5のショベル座標系(ローカル座標系)上に定義できる。図5のショベル座標系(XZ座標系)は,上部旋回体12に設定された座標系であり,上部旋回体12にブーム8を回動可能に支持するブームピンの中心軸における例えば中点を原点とし,上部旋回体12における垂直方向(上方向)にZ軸,水平方向(前方向)にX軸を設定した。X軸に対するブーム8の傾斜角をブーム角α,ブーム8に対するアーム9の傾斜角をアーム角β,アームに対するバケット爪先の傾斜角をバケット角γとした。水平面(基準面)に対する車体1B(上部旋回体12)の傾斜角を傾斜角θとした。ブーム角αはブーム角度センサ30により,アーム角βはアーム角度センサ31により,バケット角γはバケット角度センサ32により,傾斜角θは車体傾斜角センサ33により検出される。図5中に規定したようにブーム8,アーム9,バケット10の長さをそれぞれL1,L2,L3とすると,ショベル座標系におけるバケット爪先位置の座標および作業装置1Aの姿勢はL1,L2,L3,α,β,γで表現できる。 The attitude of the front working device 1A can be defined on the shovel coordinate system (local coordinate system) in FIG. The shovel coordinate system (XZ coordinate system) shown in FIG. 5 is a coordinate system set on the upper revolving superstructure 12, and for example, the center point of the center axis of the boom pin that rotatably supports the boom 8 on the upper revolving superstructure 12 is set as the origin. The Z axis is set in the vertical direction (upward) and the X axis in the horizontal direction (forward) of the upper revolving unit 12. The angle of inclination of the boom 8 with respect to the X axis is the boom angle α, the angle of inclination of the arm 9 with respect to the boom 8 is the arm angle β, and the angle of inclination of the bucket toe with respect to the arm is the bucket angle γ. The inclination angle of the vehicle body 1B (the upper revolving unit 12) with respect to the horizontal plane (reference plane) is defined as the inclination angle θ. The boom angle α is detected by the boom angle sensor 30, the arm angle β is detected by the arm angle sensor 31, the bucket angle γ is detected by the bucket angle sensor 32, and the tilt angle θ is detected by the vehicle body tilt angle sensor 33. Assuming that the lengths of the boom 8, the arm 9, and the bucket 10 are L1, L2, and L3, respectively, as defined in FIG. 5, the coordinates of the bucket toe position in the shovel coordinate system and the attitude of the working device 1A are L1, L2, and L3. , Α, β, γ.
 目標面演算部43cは,目標面設定装置51からの情報に基づき目標面60の位置情報を演算し,これをROM93内に記憶する。本実施形態では,図5に示すように,3次元の目標面データを作業装置1Aが移動する平面(作業機の動作平面)で切断した断面形状を目標面60(2次元の目標面)として利用する。 The target plane calculation unit 43c calculates the position information of the target plane 60 based on the information from the target plane setting device 51, and stores this in the ROM 93. In the present embodiment, as shown in FIG. 5, a cross-sectional shape obtained by cutting the three-dimensional target plane data on the plane on which the work apparatus 1A moves (operating plane of the work machine) is defined as a target plane 60 (two-dimensional target plane). Use.
 なお,図5の例では目標面60は1つだが,目標面が複数存在する場合もある。目標面が複数存在する場合には,例えば,作業装置1Aから最も近いものを目標面と設定する方法や,バケット爪先の下方に位置するものを目標面とする方法や,任意に選択したものを目標面とする方法等がある。 In the example of FIG. 5, there is one target plane 60, but there may be a plurality of target planes. When there are a plurality of target planes, for example, a method of setting the one closest to the working device 1A as the target plane, a method of setting the one located below the bucket toe as the target plane, or a method arbitrarily selected is used. There are methods to set the target plane.
 シリンダ速度相関データ記憶部43dは,コントローラ40内の記憶装置(例えばROM93)内に設けられた記憶領域であり,各油圧シリンダ(各油圧アクチュエータ)5,6,7について,操作装置45a,45b,46aの操作量とシリンダ速度の関係を示す相関データが記憶されている。相関データは油圧シリンダ5,6,7の数に合わせて3種類記憶されており,MCを実行する場合に操作装置45a,45b,46aの操作に対応する油圧シリンダ5,6,7の速度を演算する際に利用される。そして,各油圧シリンダ5,6,7の相関データは,エンジン18の回転数の範囲に応じて異なる複数のグラフを有している。図9の例では,エンジン回転数の範囲を大,中,小の3つに分けた3つのグラフが存在しており,後述のシリンダ速度相関データ算出部43eではエンジン18の目標回転数や実回転数がどの範囲に属しているかに応じてシリンダ速度の演算に利用されるグラフが変更されるようになっている。これらの相関データは,あらかじめ実験やシミュレーションで求めた操作量に対するシリンダ速度をテーブルとして設定されており,同じ操作量で比較するとエンジン回転数が増加するほどシリンダ速度が増加するように設定されている。なお,図9の相関データにおけるグラフ形状(折線形状)は一例に過ぎず例えば曲線を利用しても構わない。また,図9のようにエンジン回転数を3つに分類する必要はなく,実情に即したものであれば例えば2つや4つ以上に分類しても構わない。 The cylinder speed correlation data storage unit 43d is a storage area provided in a storage device (for example, the ROM 93) in the controller 40. For each of the hydraulic cylinders (each hydraulic actuator) 5, 6, 7, the operating devices 45a, 45b, Correlation data indicating the relationship between the operation amount 46a and the cylinder speed is stored. Three types of correlation data are stored according to the number of hydraulic cylinders 5, 6, and 7, and when executing MC, the speed of hydraulic cylinders 5, 6, 7 corresponding to the operation of operating devices 45a, 45b, 46a is determined. Used when performing calculations. The correlation data of each of the hydraulic cylinders 5, 6, and 7 has a plurality of different graphs according to the range of the rotation speed of the engine 18. In the example of FIG. 9, there are three graphs in which the range of the engine speed is divided into three, large, medium, and small. The graph used for calculating the cylinder speed is changed according to the range to which the rotation speed belongs. These correlation data are set in advance as a table of cylinder speeds with respect to operation amounts obtained by experiments and simulations, and are set so that the cylinder speed increases as the engine speed increases when compared with the same operation amount. . Note that the graph shape (broken line shape) in the correlation data of FIG. 9 is merely an example, and for example, a curve may be used. Further, it is not necessary to classify the engine speed into three as shown in FIG. 9, and the engine speed may be classified into, for example, two or four or more as long as it matches the actual situation.
 シリンダ速度相関データ算出部43eは,操作装置45a,45b,46aの操作時に,操作装置45a,45b,46aの操作量情報と,シリンダ速度相関データ記憶部43dに記憶された相関データとに基づいて,複数の油圧アクチュエータ5,6,7のうち操作装置45a,45b,46aの操作に対応する油圧アクチュエータ5,6,7の相関データを算出する部分であり,本実施形態ではエンジン回転数検出装置490によって検出されたエンジン18の実回転数に応じて各相関データにおいて利用するグラフを変更している点に特徴がある。 The cylinder speed correlation data calculation unit 43e, based on the operation amount information of the operation devices 45a, 45b, 46a and the correlation data stored in the cylinder speed correlation data storage unit 43d when operating the operation devices 45a, 45b, 46a. , Calculating the correlation data of the hydraulic actuators 5, 6, 7 corresponding to the operation of the operating devices 45a, 45b, 46a among the plurality of hydraulic actuators 5, 6, 7; It is characterized in that the graph used for each correlation data is changed according to the actual rotation speed of the engine 18 detected by the engine 490.
 シリンダ速度相関データ算出部43eは,まず,複数ある相関データの中から操作装置45a,45b,46aの操作に対応する油圧アクチュエータ5,6,7の相関データを選択し,次にその相関データにおいてエンジン18の実回転数に対応するグラフを選択する。例えば、図9の例では,エンジンの実回転数Rrが「小」のグラフはエンジン回転数がゼロ以上かつ第1回転数R1未満の範囲(0≦Rr<R1)に属する場合に選択され,「中」のグラフは第1回転数R1以上かつ第2回転数R2未満の範囲(R1≦Rr<R2)に属する場合に選択され,「大」のグラフは第2回転数R2以上かつ最大回転数Rmax以下の範囲(R2≦Rr≦Rmax)に属する場合に選択される。このようにシリンダ速度相関データ算出部43eは,エンジン回転数検出装置490によって検出された実回転数に応じてシリンダ速度相関データ記憶部43dに記憶されている相関データから,対応するエンジン回転数の相関データを選択し,アクチュエータ制御部81へ出力する。 The cylinder speed correlation data calculation unit 43e first selects the correlation data of the hydraulic actuators 5, 6, 7 corresponding to the operation of the operating devices 45a, 45b, 46a from among the plurality of correlation data, and then selects the correlation data. A graph corresponding to the actual rotation speed of the engine 18 is selected. For example, in the example of FIG. 9, a graph in which the actual engine speed Rr is “small” is selected when the engine speed belongs to a range of 0 or more and less than the first engine speed R1 (0 ≦ Rr <R1), The “middle” graph is selected when it belongs to the range (R1 ≦ Rr <R2) equal to or more than the first rotation speed R1 and less than the second rotation speed R2, and the “large” graph is equal to or more than the second rotation speed R2 and maximum rotation speed. It is selected when it belongs to the range of less than or equal to several Rmax (R2 ≦ Rr ≦ Rmax). As described above, the cylinder speed correlation data calculation unit 43e calculates the corresponding engine speed from the correlation data stored in the cylinder speed correlation data storage unit 43d according to the actual rotation speed detected by the engine speed detection device 490. The correlation data is selected and output to the actuator control unit 81.
 ブーム制御部81aとバケット制御部81bは,操作装置45a,45b,46aの操作時に,予め定めた条件に従って複数の油圧アクチュエータ5,6,7の少なくとも1つを制御するアクチュエータ制御部81を構成する。アクチュエータ制御部81は,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cの目標パイロット圧を演算し,その演算した目標パイロット圧を電磁比例弁制御部44に出力する。 The boom control unit 81a and the bucket control unit 81b constitute an actuator control unit 81 that controls at least one of the plurality of hydraulic actuators 5, 6, 7 according to predetermined conditions when operating the operation devices 45a, 45b, 46a. . The actuator control section 81 calculates the target pilot pressure of the flow control valves 15a, 15b, 15c of the hydraulic cylinders 5, 6, 7 and outputs the calculated target pilot pressure to the electromagnetic proportional valve control section 44.
 ブーム制御部81aは,操作装置45a,45b,46aの操作時に,目標面60の位置と,フロント作業装置1Aの姿勢及びバケット10の爪先の位置と,操作装置45a,45b,46aの操作量とに基づいて,目標面60上またはその上方にバケット10の爪先(制御点)が位置するようにブームシリンダ5(ブーム8)の動作を制御するMCを実行するための部分である。ブーム制御部81aでは,ブームシリンダ5の流量制御弁15aの目標パイロット圧が演算される。ブーム制御部81aによるMCの詳細は図8を用いて後述する。 When operating the operation devices 45a, 45b, and 46a, the boom control unit 81a determines the position of the target surface 60, the attitude of the front working device 1A and the position of the toe of the bucket 10, the operation amounts of the operation devices 45a, 45b, and 46a. Is a part for executing the MC for controlling the operation of the boom cylinder 5 (boom 8) so that the toe (control point) of the bucket 10 is located on or above the target surface 60. The boom control unit 81a calculates a target pilot pressure of the flow control valve 15a of the boom cylinder 5. Details of the MC by the boom control unit 81a will be described later with reference to FIG.
 バケット制御部81bは,操作装置45a,45b,46aの操作時に,MCによるバケット角度制御を実行するための部分である。具体的には,目標面60とバケット10の爪先の距離が所定値以下のとき,目標面60に対するバケット10の角度θが目標角度設定装置96で予め設定した対目標面バケット角度θTGTとなるようにバケットシリンダ7(バケット10)の動作を制御するMC(バケット角度制御)が実行される。バケット制御部81bでは,バケットシリンダ7の流量制御弁15cの目標パイロット圧が演算される。 The bucket control unit 81b is a part for executing bucket angle control by the MC when operating the operation devices 45a, 45b, 46a. Specifically, when the distance between the target surface 60 and the toe of the bucket 10 is equal to or less than a predetermined value, the angle θ of the bucket 10 with respect to the target surface 60 becomes the target surface bucket angle θTGT set by the target angle setting device 96 in advance. Then, an MC (bucket angle control) for controlling the operation of the bucket cylinder 7 (bucket 10) is executed. The bucket controller 81b calculates a target pilot pressure of the flow control valve 15c of the bucket cylinder 7.
 -電磁比例弁制御部44-
 電磁比例弁制御部44は,アクチュエータ制御部81から出力される各流量制御弁15a,15b,15cへの目標パイロット圧を基に,各電磁比例弁54~56への指令を演算する。なお,オペレータ操作に基づくパイロット圧(第1制御信号)と,アクチュエータ制御部81で算出された目標パイロット圧が一致する場合には,該当する電磁比例弁54~56への電流値(指令値)はゼロとなり,該当する電磁比例弁54~56の動作は行われない。
-Electromagnetic proportional valve control unit 44-
The electromagnetic proportional valve control unit 44 calculates a command to each of the electromagnetic proportional valves 54 to 56 based on the target pilot pressure output from the actuator control unit 81 to each of the flow control valves 15a, 15b, 15c. If the pilot pressure (first control signal) based on the operator's operation matches the target pilot pressure calculated by the actuator control unit 81, the current value (command value) to the corresponding electromagnetic proportional valves 54 to 56 Becomes zero, and the operation of the corresponding electromagnetic proportional valves 54 to 56 is not performed.
 ―エンジン回転数制御部49―
 エンジン回転数制御部49は,エンジン回転数ダイヤル99で設定された目標回転数や,モード選択装置98で選択された作業モードで規定されたエンジン回転数の上限値(目標回転数)に基づいて,エンジン18に対する制御信号を生成・出力して,エンジン18の回転数を制御する処理を実行する部分である。エンジン回転数ダイヤル99で設定された目標回転数がモード選択装置98で選択された作業モードで規定されたエンジン回転数の上限値を超える場合,エンジン回転数制御部49はその上限値を目標回転数としてエンジン18を制御するように構成されている。なお,エンジン回転数制御部49はエンジンコントロールユニットとも称され,コントローラ40と独立したコントローラとして構成しても良い。
-Engine speed control unit 49-
The engine speed control unit 49 is based on the target engine speed set by the engine speed dial 99 and the upper limit value (target engine speed) of the engine speed specified by the work mode selected by the mode selection device 98. , Generates and outputs a control signal to the engine 18, and executes processing for controlling the number of revolutions of the engine 18. When the target rotation speed set by the engine rotation speed dial 99 exceeds the upper limit value of the engine rotation speed specified by the work mode selected by the mode selection device 98, the engine rotation speed control unit 49 sets the upper limit value to the target rotation speed. It is configured to control the engine 18 as a number. The engine speed control unit 49 is also called an engine control unit, and may be configured as a controller independent of the controller 40.
 <ブーム制御部81aによるブーム上げ制御のフロー>
 本実施の形態のコントローラ40は,ブーム制御部81aによるブーム上げ制御をMCとして実行する。このブーム制御部81aによるブーム上げ制御のフローを図8に示す。図8はブーム制御部81aで実行されるMCのフローチャートであり,操作装置45bがオペレータにより操作されると処理が開始される。
<Flow of boom raising control by boom control unit 81a>
The controller 40 of the present embodiment executes the boom raising control by the boom control unit 81a as MC. FIG. 8 shows a flow of the boom raising control by the boom control unit 81a. FIG. 8 is a flowchart of the MC executed by the boom control unit 81a, and the processing is started when the operation device 45b is operated by the operator.
 S410では,ブーム制御部81aは,操作量演算部43aで演算された操作量と,その操作量が演算された油圧シリンダ5,6,7(例えばアームシリンダ6)に関してシリンダ速度相関データ算出部43eから入力された相関データとに基づいて,操作装置の操作に対応する油圧シリンダ5,6,7の動作速度(シリンダ速度)を演算する。なお,シリンダ速度相関データ算出部43eから入力される相関データとしては,操作装置の操作に対応する油圧シリンダ(例えばアームシリンダ6)に関する相関データが入力されており,その相関データでは上述の通りエンジン回転数検出装置490が検出したエンジン実回転数に応じたグラフが選択されている。 In S410, the boom control unit 81a determines the operation amount calculated by the operation amount calculation unit 43a and the cylinder speed correlation data calculation unit 43e for the hydraulic cylinders 5, 6, and 7 (for example, the arm cylinder 6) for which the operation amounts are calculated. The operation speeds (cylinder speeds) of the hydraulic cylinders 5, 6, and 7 corresponding to the operation of the operating device are calculated based on the correlation data input from. Note that, as the correlation data input from the cylinder speed correlation data calculation unit 43e, correlation data regarding a hydraulic cylinder (for example, the arm cylinder 6) corresponding to the operation of the operating device is input. A graph corresponding to the actual engine speed detected by the engine speed detector 490 is selected.
 S420では,ブーム制御部81aは,S410で演算された各油圧シリンダ5,6,7の動作速度と,姿勢演算部43bで演算された作業装置1Aの姿勢とを基に,オペレータ操作によるバケット先端(爪先)の速度ベクトルBを演算する。 In S420, the boom control unit 81a calculates the bucket tip by an operator operation based on the operation speeds of the hydraulic cylinders 5, 6, and 7 calculated in S410 and the posture of the working device 1A calculated in the posture calculation unit 43b. A (toe) speed vector B is calculated.
 S430では,ブーム制御部81aは,姿勢演算部43bで演算したバケット10の爪先の位置(座標)と,ROM93に記憶された目標面60を含む直線の距離から,バケット先端から制御対象の目標面60までの距離D(図5参照)を算出する。そして,距離Dと図10のグラフを基にバケット先端の速度ベクトルの目標面60に垂直な成分の制限値ayを算出する。なお,制限値ayとはバケット先端の速度ベクトルの目標面60に垂直な成分の下限値であり,速度ベクトルBの垂直成分が制限値ayより小さい場合には,バケット先端の速度ベクトルはその垂直成分が制限値ayに保持されるように補正される。 In S430, the boom control unit 81a determines the target surface of the control target from the bucket tip from the position (coordinates) of the toe of the bucket 10 calculated by the posture calculation unit 43b and the distance of the straight line including the target surface 60 stored in the ROM 93. A distance D (see FIG. 5) up to 60 is calculated. Then, based on the distance D and the graph of FIG. 10, the limit value ay of the component of the velocity vector at the tip of the bucket perpendicular to the target plane 60 is calculated. Note that the limit value ay is the lower limit value of the component of the speed vector at the tip of the bucket perpendicular to the target plane 60. If the vertical component of the speed vector B is smaller than the limit value ay, the speed vector at the tip of the bucket is The component is corrected so as to be held at the limit value ay.
 S440では,ブーム制御部81aは,S420で算出したオペレータ操作によるバケット先端の速度ベクトルBにおいて,目標面60に垂直な成分byを取得する。 In S440, the boom control unit 81a acquires a component by perpendicular to the target plane 60 in the speed vector B at the tip of the bucket calculated by the operator in S420.
 S450では,ブーム制御部81aは,S430で算出した制限値ayが0以上か否かを判定する。なお,図8の右上に示したようにxy座標を設定する。当該xy座標では,x軸は目標面60と平行で図中右方向を正とし,y軸は目標面60に垂直で図中上方向を正とする。図8中の凡例では垂直成分by及び制限値ayは負であり,水平成分bx及び水平成分cx及び垂直成分cyは正である。そして,図10から明らかであるが,制限値ayが0のときは距離Dが0,すなわち爪先が目標面60上に位置する場合であり,制限値ayが正のときは距離Dが負,すなわち爪先が目標面60より下方に位置する場合であり,制限値ayが負のときは距離Dが正,すなわち爪先が目標面60より上方に位置する場合である。S450で制限値ayが0以上と判定された場合(すなわち,爪先が目標面60上またはその下方に位置する場合)にはS460に進み,制限値ayが0未満の場合にはS480に進む。
S460では,ブーム制御部81aは,オペレータ操作による爪先の速度ベクトルBの垂直成分byが0以上か否かを判定する。byが正の場合は速度ベクトルBの垂直成分byが上向きであることを示し,byが負の場合は速度ベクトルBの垂直成分byが下向きであることを示す。S460で垂直成分byが0以上と判定された場合(すなわち,垂直成分byが上向きの場合)にはS470に進み,垂直成分byが0未満の場合にはS500に進む。
S470では,ブーム制御部81aは,制限値ayと垂直成分byの絶対値を比較し,制限値ayの絶対値が垂直成分byの絶対値以上の場合にはS500に進む。一方,制限値ayの絶対値が垂直成分byの絶対値未満の場合にはS530に進む。
In S450, the boom control unit 81a determines whether the limit value ay calculated in S430 is 0 or more. The xy coordinates are set as shown in the upper right of FIG. In the xy coordinates, the x axis is parallel to the target plane 60 and the right direction in the figure is positive, and the y axis is perpendicular to the target plane 60 and upward in the figure is positive. In the legend in FIG. 8, the vertical component by and the limit value ay are negative, and the horizontal component bx, the horizontal component cx, and the vertical component cy are positive. As is apparent from FIG. 10, when the limit value ay is 0, the distance D is 0, that is, when the toe is located on the target surface 60. When the limit value ay is positive, the distance D is negative. That is, the toe is located below the target surface 60, and when the limit value ay is negative, the distance D is positive, that is, the toe is located above the target surface 60. If the limit value ay is determined to be 0 or more in S450 (that is, if the toe is located on or below the target surface 60), the process proceeds to S460, and if the limit value ay is less than 0, the process proceeds to S480.
In S460, the boom control unit 81a determines whether or not the vertical component by of the toe speed vector B by the operator's operation is 0 or more. When by is positive, it indicates that the vertical component by of the velocity vector B is upward, and when by is negative, it indicates that the vertical component by of the velocity vector B is downward. If it is determined in step S460 that the vertical component by is equal to or greater than 0 (that is, if the vertical component by is upward), the process proceeds to step S470. If the vertical component by is less than 0, the process proceeds to step S500.
In S470, the boom control unit 81a compares the limit value ay with the absolute value of the vertical component by. If the absolute value of the limit value ay is equal to or greater than the absolute value of the vertical component by, the process proceeds to S500. On the other hand, if the absolute value of the limit value ay is less than the absolute value of the vertical component by, the process proceeds to S530.
 S500では,ブーム制御部81aは,マシンコントロールによるブーム8の動作で発生すべきバケット先端の速度ベクトルCの目標面60に垂直な成分cyを算出する式として「cy=ay-by」を選択し,その式とS430の制限値ayとS440の垂直成分byを基に垂直成分cyを算出する。そして,算出した垂直成分cyを出力可能な速度ベクトルCを算出し,その水平成分をcxとする(S510)。 In S500, the boom control unit 81a selects "cy = ay-by" as an equation for calculating a component cy of the speed vector C at the tip of the bucket to be generated by the operation of the boom 8 under machine control, which is perpendicular to the target plane 60. The vertical component cy is calculated based on the equation, the limit value ay in S430, and the vertical component by in S440. Then, a velocity vector C capable of outputting the calculated vertical component cy is calculated, and its horizontal component is set as cx (S510).
 S520では,目標速度ベクトルTを算出する。目標速度ベクトルTの目標面60に垂直な成分をty,水平な成分txとすると,それぞれ「ty=by+cy,tx=bx+cx」と表すことができる。これにS500の式(cy=ay-by)を代入すると目標速度ベクトルTは結局「ty=ay,tx=bx+cx」となる。つまり,S520に至った場合の目標速度ベクトルの垂直成分tyは制限値ayに制限され,マシンコントロールによる強制ブーム上げが発動される。 In S520, the target speed vector T is calculated. Assuming that a component perpendicular to the target plane 60 of the target speed vector T is ty and a horizontal component tx, they can be expressed as “ty = by + cy, tx = bx + cx”, respectively. Substituting the expression (cy = ay−by) of S500 into this, the target speed vector T is eventually “ty = ay, tx = bx + cx”. That is, the vertical component ty of the target speed vector when S520 is reached is limited to the limit value ay, and the forced boom raising by machine control is activated.
 S480では,ブーム制御部81aは,オペレータ操作による爪先の速度ベクトルBの垂直成分byが0以上か否かを判定する。S480で垂直成分byが0以上と判定された場合(すなわち,垂直成分byが上向きの場合)にはS530に進み,垂直成分byが0未満の場合にはS490に進む。 In S480, the boom control unit 81a determines whether the vertical component by of the toe speed vector B by the operator's operation is 0 or more. If the vertical component by is determined to be 0 or more in S480 (that is, if the vertical component by is upward), the process proceeds to S530. If the vertical component by is less than 0, the process proceeds to S490.
 S490では,ブーム制御部81adは,制限値ayと垂直成分byの絶対値を比較し,制限値ayの絶対値が垂直成分byの絶対値以上の場合にはS530に進む。一方,制限値ayの絶対値が垂直成分byの絶対値未満の場合にはS500に進む。 In S490, the boom control unit 81ad compares the limit value ay with the absolute value of the vertical component by, and proceeds to S530 if the absolute value of the limit value ay is equal to or greater than the absolute value of the vertical component by. On the other hand, if the absolute value of the limit value ay is less than the absolute value of the vertical component by, the process proceeds to S500.
 S530に至った場合,マシンコントロールでブーム8を動作させる必要が無いので,ブーム制御部81aは,速度ベクトルCをゼロとする。この場合,目標速度ベクトルTは,S520で利用した式(ty=by+cy,tx=bx+cx)に基づくと「ty=by,tx=bx」となり,オペレータ操作による速度ベクトルBと一致する(S540)。 If it reaches S530, there is no need to operate the boom 8 by machine control, so the boom control unit 81a sets the speed vector C to zero. In this case, the target speed vector T becomes “ty = by, tx = bx” based on the equation (ty = by + cy, tx = bx + cx) used in S520, and matches the speed vector B by the operator operation (S540).
 S550では,ブーム制御部81aは,S520またはS540で決定した目標速度ベクトルT(ty,tx)を基に各油圧シリンダ5,6,7の目標速度を演算する。なお,上記説明から明らかであるが,図8の場合に目標速度ベクトルTが速度ベクトルBに一致しないときには,マシンコントロールによるブーム8の動作で発生する速度ベクトルCを速度ベクトルBに加えることで目標速度ベクトルTを実現する。 In S550, the boom control unit 81a calculates the target speed of each of the hydraulic cylinders 5, 6, 7 based on the target speed vector T (ty, tx) determined in S520 or S540. As is apparent from the above description, when the target speed vector T does not coincide with the speed vector B in FIG. 8, the speed vector C generated by the operation of the boom 8 by the machine control is added to the speed vector B. A speed vector T is realized.
 S560では,ブーム制御部81aは,S550で算出された各油圧シリンダ5,6,7(例えば,ブームシリンダ5及びアームシリンダ6)の目標速度と,その目標速度が演算された油圧シリンダ5,6,7に関してシリンダ速度相関データ算出部43eから入力された相関データとに基づいて,演算した目標速度を各油圧シリンダ5,6,7で出力するために必要な操作装置45a,45b,46aの操作量,すなわち,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cへの目標パイロット圧を演算する。なお,シリンダ速度相関データ算出部43eから入力される相関データとしては,S550で目標速度が算出された油圧シリンダ5,6,7に関する相関データが入力されており,その相関データではS410と同様にエンジン回転数検出装置490が検出したエンジン実回転数に応じたグラフが選択されている。なお,本実施形態では,主としてコントローラ40内の記憶装置の記憶容量の節約の観点から,シリンダ速度を目標パイロット圧に変換する際にシリンダ速度相関データ算出部43eから入力された相関データを利用したが,この相関データの利用は目標パイロット圧の演算方法の1つに過ぎず他の方法から目標パイロット圧を演算しても構わない。 In S560, the boom control unit 81a determines the target speed of each of the hydraulic cylinders 5, 6, 7 (for example, the boom cylinder 5 and the arm cylinder 6) calculated in S550, and the hydraulic cylinders 5, 6 for which the target speed has been calculated. , 7 on the basis of the correlation data input from the cylinder speed correlation data calculation unit 43e, and the operation of the operating devices 45a, 45b, 46a required to output the target speeds calculated by the hydraulic cylinders 5, 6, 7 respectively. The amount, that is, the target pilot pressure to the flow control valves 15a, 15b, 15c of the hydraulic cylinders 5, 6, 7 is calculated. In addition, as the correlation data input from the cylinder speed correlation data calculation unit 43e, correlation data regarding the hydraulic cylinders 5, 6, and 7 for which the target speed has been calculated in S550 is input, and the correlation data is the same as in S410. A graph corresponding to the actual engine speed detected by the engine speed detector 490 is selected. In the present embodiment, the correlation data input from the cylinder speed correlation data calculator 43e is used when converting the cylinder speed to the target pilot pressure, mainly from the viewpoint of saving the storage capacity of the storage device in the controller 40. However, the use of the correlation data is only one of the methods of calculating the target pilot pressure, and the target pilot pressure may be calculated by another method.
 S590では,ブーム制御部81aは,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cへの目標パイロット圧を電磁比例弁制御部44に出力する。 In S590, the boom control unit 81a outputs the target pilot pressure to the flow control valves 15a, 15b, 15c of each of the hydraulic cylinders 5, 6, 7 to the electromagnetic proportional valve control unit 44.
 電磁比例弁制御部44は,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cに目標パイロット圧が作用するように電磁比例弁54,55,56を制御し,これにより作業装置1Aによる掘削が行われる。例えば,オペレータが操作装置45bを操作して,アームクラウド動作によって水平掘削を行う場合には,バケット10の先端が目標面60に侵入しないように電磁比例弁55cが制御され,ブーム8の上げ動作が自動的に行われる。 The electromagnetic proportional valve control unit 44 controls the electromagnetic proportional valves 54, 55, and 56 so that the target pilot pressure acts on the flow control valves 15a, 15b, and 15c of the hydraulic cylinders 5, 6, and 7, thereby controlling the working device. Excavation by 1A is performed. For example, when the operator operates the operation device 45b to perform horizontal excavation by arm cloud operation, the electromagnetic proportional valve 55c is controlled so that the tip of the bucket 10 does not enter the target surface 60, and the boom 8 is raised. Is done automatically.
 <動作・効果>
 上記のように構成される油圧ショベルでは,エンジン回転数ダイヤル99を利用してオペレータがエンジン目標回転数を調整したことでエンジン18の実回転数に変動が生じた場合であっても,コントローラ40(シリンダ速度相関データ算出部43e)はその変動した実回転数に適した操作量とシリンダ速度の相関データを選択する。そして,その相関データから得られる実際の速度に近いシリンダ速度に基づいてコントローラ40(アクチュエータ制御部81)によるMCが実行されることになるので,従前よりもMCの掘削精度の低下を抑止できる。すなわちエンジン回転数に依らずMCの精度を安定させることができる。
<Operation / effect>
In the hydraulic shovel configured as described above, even if the actual rotational speed of the engine 18 fluctuates due to the operator adjusting the engine target rotational speed using the engine rotational speed dial 99, the controller 40 is controlled. The (cylinder speed correlation data calculation unit 43e) selects correlation data between the operation amount and the cylinder speed suitable for the changed actual rotation speed. Then, since the MC by the controller 40 (actuator control unit 81) is executed based on the cylinder speed close to the actual speed obtained from the correlation data, the excavation accuracy of the MC can be suppressed from lowering than before. That is, the accuracy of MC can be stabilized regardless of the engine speed.
 <変形例>
 なお,上記の実施形態ではエンジン回転数検出装置490でエンジン18の実回転数を検出し,その実回転数に応じた相関データをシリンダ速度相関データ算出部43eで演算してアクチュエータ制御部81(ブーム制御部81a)に出力する構成について説明したが,エンジン回転数ダイヤル99からシリンダ速度相関データ算出部43eに対して目標回転を出力し,その目標回転数に応じた相関データをシリンダ速度相関データ算出部43eで演算してアクチュエータ制御部81(ブーム制御部81a)に出力する構成を採用しても良い。このように目標回転数を基に相関データを選択すると,実回転数を基に相関データを選択した場合よりも頻繁に相関データ(折れ線グラフ)が変更されることが抑制されるため,制御が安定してMC精度の向上が見込める。この場合のMC制御部43の機能ブロック図を図14に示す。
<Modification>
In the above embodiment, the actual engine speed of the engine 18 is detected by the engine speed detector 490, and the correlation data corresponding to the actual engine speed is calculated by the cylinder speed correlation data calculation unit 43e to obtain the actuator control unit 81 (boom). Although the configuration for outputting to the control unit 81a) has been described, the target rotation is output from the engine speed dial 99 to the cylinder speed correlation data calculation unit 43e, and the correlation data according to the target rotation speed is calculated. A configuration in which the calculation is performed by the unit 43e and output to the actuator control unit 81 (boom control unit 81a) may be employed. When the correlation data is selected based on the target rotation speed in this manner, the change of the correlation data (line graph) is suppressed more frequently than when the correlation data is selected based on the actual rotation speed. A stable improvement in MC accuracy can be expected. FIG. 14 shows a functional block diagram of the MC control unit 43 in this case.
 <第2実施形態>
 次に第2実施形態について図11を用いて説明する。図11は第2実施形態に係るMC制御部43の機能ブロック図である。なお,先の図と同じ部分には同じ符号を付して適宜説明を省略することがある。
<Second embodiment>
Next, a second embodiment will be described with reference to FIG. FIG. 11 is a functional block diagram of the MC control unit 43 according to the second embodiment. The same parts as those in the previous figures are denoted by the same reference numerals, and the description may be appropriately omitted.
 図11に示すように,本実施形態のMC制御部43はエンジン回転数上限値演算部43fを備えている。エンジン回転数上限値演算部43fはモード選択装置98にて設定された作業モード(通常MCモード又はエコノミーMCモード)に応じてエンジン回転数の上限値(第1上限値Ru1又は第2上限値Ru2(但し,Ru1>Ru2))を演算し,その上限値をエンジン回転数制御部49に出力する。エンジン回転数制御部49は,入力された上限値を超えないようにエンジン回転数を制御する。この制御はエンジン回転数ダイヤル99から入力される目標回転数に優先して行われるため,エンジン回転数ダイヤル99から入力される目標回転数より上限値が小さいときにはエンジン回転数は上限値に制御される。 As shown in FIG. 11, the MC control unit 43 of the present embodiment includes an engine speed upper limit value calculation unit 43f. The engine rotation speed upper limit calculation unit 43f determines the upper limit (first upper limit Ru1 or second upper limit Ru2) of the engine rotation speed in accordance with the work mode (normal MC mode or economy MC mode) set by the mode selection device 98. (Where Ru1> Ru2) is calculated, and the upper limit value is output to the engine speed control unit 49. The engine speed control unit 49 controls the engine speed so as not to exceed the input upper limit. Since this control is performed prior to the target speed input from the engine speed dial 99, when the upper limit value is smaller than the target speed input from the engine speed dial 99, the engine speed is controlled to the upper limit value. You.
 モード選択装置98では,上述のとおり,通常MCが行われる場合のエンジン回転数の上限値Ru1よりも低いエンジン回転数の上限値Ru2に制限するエコノミーMCモードをオペレータが選択できる。 In the mode selection device 98, as described above, the operator can select the economy MC mode in which the upper limit Ru2 of the engine speed is lower than the upper limit Ru1 of the engine speed when the normal MC is performed.
 <動作・効果>
 上記のように構成される油圧ショベルでは,モード選択装置98を利用してオペレータが通常MCモードよりもエンジン回転数の上限値Ru2が低く設定されるエコノミーMCモードを選択したことでエンジン18の実回転数に変動が生じた場合であっても,コントローラ40(シリンダ速度相関データ算出部43e)はその変動した実回転数に適した操作量とシリンダ速度の相関データを選択する。そして,その相関データから得られる実際の速度に近いシリンダ速度に基づいてコントローラ40(アクチュエータ制御部81)によるMCが実行されることになるので,作業モードを変更してもMCの掘削精度の低下を抑止できる。さらに,通常のMCモードよりもエンジン回転数の上限が低くなるので燃費を向上させることができる。
<Operation / effect>
In the hydraulic excavator configured as described above, the operator selects the economy MC mode in which the upper limit value Ru2 of the engine speed is set lower than the normal MC mode by using the mode selection device 98, so that the actual operation of the engine 18 is performed. Even when the rotation speed fluctuates, the controller 40 (cylinder speed correlation data calculation unit 43e) selects correlation data of the operation amount and the cylinder speed suitable for the fluctuated actual rotation speed. Since the MC by the controller 40 (actuator control unit 81) is executed based on the cylinder speed close to the actual speed obtained from the correlation data, the excavation accuracy of the MC decreases even if the work mode is changed. Can be suppressed. Further, since the upper limit of the engine speed is lower than that in the normal MC mode, fuel efficiency can be improved.
 <変形例>
 なお,上記の実施形態ではエンジン回転数検出装置490でエンジン18の実回転数を検出し,その実回転数に応じた相関データをシリンダ速度相関データ算出部43eで演算してアクチュエータ制御部81(ブーム制御部81a)に出力する構成について説明したが,エンジン回転数上限値演算部43fからシリンダ速度相関データ算出部43eに対して目標回転(エンジン回転数の上限値)を出力し,その目標回転数に応じた相関データをシリンダ速度相関データ算出部43eで演算してアクチュエータ制御部81(ブーム制御部81a)に出力する構成を採用しても良い。このように目標回転数を基に相関データを選択すると,実回転数を基に相関データを選択した場合よりも頻繁に相関データ(折れ線グラフ)が変更されることが抑制されるため,制御が安定してMC精度の向上が見込める。この場合のMC制御部43の機能ブロック図を図15に示す。
<Modification>
In the above embodiment, the actual engine speed of the engine 18 is detected by the engine speed detector 490, and the correlation data corresponding to the actual engine speed is calculated by the cylinder speed correlation data calculation unit 43e to obtain the actuator control unit 81 (boom). Although the configuration for outputting to the control unit 81a) has been described, the target rotation speed (upper limit value of the engine rotation speed) is output from the engine rotation speed upper limit calculation unit 43f to the cylinder speed correlation data calculation unit 43e, and the target rotation speed is output. A configuration may be adopted in which correlation data corresponding to the above is calculated by the cylinder speed correlation data calculation unit 43e and output to the actuator control unit 81 (boom control unit 81a). When the correlation data is selected based on the target rotation speed in this manner, the change of the correlation data (line graph) is suppressed more frequently than when the correlation data is selected based on the actual rotation speed. A stable improvement in MC accuracy can be expected. FIG. 15 shows a functional block diagram of the MC control unit 43 in this case.
 <第3実施形態>
 上記の第1実施形態および第2実施形態ではエンジン回転数に応じたシリンダ速度の相関データを算出するために,複数の相関データのテーブルをシリンダ速度相関データ記憶部43dに記憶しており,その中からエンジン回転数に対応したテーブルを選択した。しかし,代表のエンジン回転数(例えば定格回転数)のときの相関データのみをシリンダ速度相関データ記憶部43dに記憶しておき,エンジン回転数に応じた補正係数を演算し,シリンダ速度相関データ算出部43eでその補正係数を相関データに加算,乗算する等して相関データを補正し,補正後の相関データをアクチュエータ制御部81に出力する構成を採用しても良い。この実施形態を第3実施形態とし,図12及び図13を用いて説明する。
<Third embodiment>
In the first and second embodiments, a plurality of correlation data tables are stored in the cylinder speed correlation data storage unit 43d in order to calculate cylinder speed correlation data corresponding to the engine speed. The table corresponding to the engine speed was selected from among them. However, only the correlation data at the representative engine speed (for example, the rated speed) is stored in the cylinder speed correlation data storage unit 43d, and a correction coefficient according to the engine speed is calculated to calculate the cylinder speed correlation data. A configuration may be adopted in which the correlation data is corrected by adding or multiplying the correction coefficient to the correlation data by the section 43e, and the corrected correlation data is output to the actuator control section 81. This embodiment is referred to as a third embodiment and will be described with reference to FIGS.
 図12は第3実施形態に係るMC制御部43の機能ブロック図である。なお,先の図と同じ部分には同じ符号を付して適宜説明を省略することがある。 FIG. 12 is a functional block diagram of the MC control unit 43 according to the third embodiment. The same parts as those in the previous figures are denoted by the same reference numerals, and the description may be appropriately omitted.
 図12に示すMC制御部43は,補正係数算出部43gと,シリンダ速度相関データ記憶部43dと,シリンダ速度相関データ算出部43eを備えている。 The MC control unit 43 shown in FIG. 12 includes a correction coefficient calculation unit 43g, a cylinder speed correlation data storage unit 43d, and a cylinder speed correlation data calculation unit 43e.
 補正係数算出部43gは,エンジン回転数検出装置490から入力される実回転数に基づいて補正係数を演算する処理を実行する部分である。図13にエンジン回転数と補正係数の関係を規定するテーブルを示す。このテーブルにより,補正係数算出部43gは,エンジン回転数が定格回転数のときに補正係数kとして1を出力し,エンジン回転数が定格回転数未満の場合にはエンジン回転数の減少に伴い単調に減少する補正係数k(すなわち,補正係数kは0より大きく1未満の値)を出力するように設定されている。補正係数kはシリンダ速度相関データ算出部43eに出力される。 The correction coefficient calculation unit 43g is a part that executes a process of calculating a correction coefficient based on the actual rotation speed input from the engine speed detection device 490. FIG. 13 shows a table that defines the relationship between the engine speed and the correction coefficient. According to this table, the correction coefficient calculation unit 43g outputs 1 as the correction coefficient k when the engine speed is at the rated speed, and when the engine speed is less than the rated speed, it is monotonous as the engine speed decreases. (That is, the correction coefficient k is greater than 0 and less than 1). The correction coefficient k is output to the cylinder speed correlation data calculation unit 43e.
 シリンダ速度相関データ記憶部43dには,各油圧シリンダ(各油圧アクチュエータ)5,6,7について,エンジン回転数が定格回転数の場合の操作装置45a,45b,46aの操作量とシリンダ速度の関係を示す相関データが記憶されている。 The cylinder speed correlation data storage unit 43d stores the relationship between the operation amounts of the operating devices 45a, 45b, and 46a and the cylinder speed when the engine speed is the rated speed for each of the hydraulic cylinders (each hydraulic actuator) 5, 6, and 7. Is stored.
 シリンダ速度相関データ算出部43eは,操作装置45a,45b,46aの操作時に,操作装置45a,45b,46aの操作量情報と,シリンダ速度相関データ記憶部43dに記憶された相関データと,補正係数算出部43gで演算された補正係数kに基づいて,複数の油圧アクチュエータ5,6,7のうち操作装置45a,45b,46aの操作に対応する油圧アクチュエータ5,6,7の相関データを算出する処理を実行する部分である。本実施形態のシリンダ速度相関データ算出部43eは,エンジン回転数検出装置490によって検出されたエンジン18の実回転数と図13のテーブルを利用して算出した補正係数kをシリンダ速度相関データ記憶部43dに記憶された定格回転数の相関データに乗算して補正し,その補正後の相関データをアクチュエータ制御部81に出力している。 When operating the operating devices 45a, 45b, 46a, the cylinder speed correlation data calculating unit 43e calculates the operation amount information of the operating devices 45a, 45b, 46a, the correlation data stored in the cylinder speed correlation data storage unit 43d, and the correction coefficient. Based on the correction coefficient k calculated by the calculation unit 43g, correlation data of the hydraulic actuators 5, 6, 7 corresponding to the operation of the operating devices 45a, 45b, 46a among the plurality of hydraulic actuators 5, 6, 7 is calculated. This is the part that executes processing. The cylinder speed correlation data calculation unit 43e of the present embodiment calculates the actual rotation speed of the engine 18 detected by the engine speed detection device 490 and the correction coefficient k calculated using the table of FIG. The correlation data of the rated rotational speed stored in 43d is multiplied and corrected, and the corrected correlation data is output to the actuator control unit 81.
 <動作・効果>
 上記のように構成される油圧ショベルでは,エンジン回転数ダイヤル99を利用してオペレータがエンジン目標回転数を調整したことでエンジン18の実回転数に変動が生じた場合には,コントローラ40(補正係数算出部43g)はその実回転数に応じた補正係数kを演算し,操作装置45a,45b,46aの操作に対応した油圧アクチュエータ5,6,7の操作量とシリンダ速度を規定した定格回転数の相関データにその補正係数kを乗じたものを補正後の相関データとする。そして,その補正後の相関データから得られる実際の速度に近いシリンダ速度に基づいてコントローラ40(アクチュエータ制御部81)によるMCが実行されることになるので,第1実施形態と同様にMCの掘削精度の低下を抑止できる。さらに,第1実施形態と比較してシリンダ速度相関データ記憶部43dに記憶されるデータ容量を削減できるので,コントローラ40内の記憶装置の記憶容量を節約できる。
<Operation / effect>
In the hydraulic excavator configured as described above, if the actual rotation speed of the engine 18 fluctuates due to the operator adjusting the engine target rotation speed using the engine rotation speed dial 99, the controller 40 (correction). The coefficient calculation unit 43g) calculates a correction coefficient k corresponding to the actual rotation speed, and determines the operation amounts of the hydraulic actuators 5, 6, and 7 corresponding to the operation of the operation devices 45a, 45b, and 46a and the rated rotation speed that defines the cylinder speed. Is multiplied by the correction coefficient k to obtain corrected correlation data. Then, since the MC is executed by the controller 40 (actuator control unit 81) based on the cylinder speed close to the actual speed obtained from the corrected correlation data, the excavation of the MC is performed as in the first embodiment. A decrease in accuracy can be suppressed. Furthermore, since the data capacity stored in the cylinder speed correlation data storage unit 43d can be reduced as compared with the first embodiment, the storage capacity of the storage device in the controller 40 can be saved.
 <変形例>
 なお,本実施形態においても第1及び第2実施形態の変形例と同様に,エンジン18の目標回転数に基づいて相関データを算出しても良い。すなわち,エンジン回転数ダイヤル99またはエンジン回転数上限値演算部43fから目標回転数またはその上限値を補正係数算出部43gに入力し,その目標回転数に応じた補正係数kを補正係数算出部43gで演算してシリンダ速度相関データ算出部43eに出力する構成を採用しても良い。このように目標回転数を基に相関データを補正すると,実回転数を基に相関データを補正した場合よりも頻繁に相関データ(折れ線グラフ)が変更されることが抑制されるため,制御が安定してMC精度の向上が見込める。
<Modification>
Note that, in the present embodiment, similarly to the modified examples of the first and second embodiments, the correlation data may be calculated based on the target rotation speed of the engine 18. That is, the target rotation speed or the upper limit thereof is input from the engine rotation speed dial 99 or the engine rotation speed upper limit calculation unit 43f to the correction coefficient calculation unit 43g, and the correction coefficient k corresponding to the target rotation speed is corrected. , And outputs the result to the cylinder speed correlation data calculation unit 43e. When the correlation data is corrected based on the target rotation speed in this manner, the correlation data (line graph) is prevented from being changed more frequently than when the correlation data is corrected based on the actual rotation speed. A stable improvement in MC accuracy can be expected.
 <その他>
 なお,本発明は,上記の各実施の形態に限定されるものではなく,その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば,本発明は,上記の実施の形態で説明した全ての構成を備えるものに限定されず,その構成の一部を削除したものも含まれる。また,ある実施の形態に係る構成の一部を,他の実施の形態に係る構成に追加又は置換することが可能である。
<Others>
It should be noted that the present invention is not limited to the above embodiments, and includes various modifications without departing from the gist thereof. For example, the present invention is not limited to one having all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted. Further, a part of the configuration according to one embodiment can be added to or replaced by the configuration according to another embodiment.
 上記の第1実施形態および第2実施形態ではブーム8,アーム9,バケット10の角度を検出する角度センサを用いたが,角度センサではなくシリンダストロークセンサによりショベルの姿勢情報を算出するとしても良い。また,油圧パイロット式のショベルを例として説明したが,電気レバー式のショベルであれば電気レバーから生成される指令電流を制御するような構成としても良い。フロント作業装置1Aの速度ベクトルの算出方法について,オペレータ操作によるパイロット圧ではなく,ブーム8,バケット10の角度を微分することで算出される角速度から求めても良い。 In the above-described first and second embodiments, the angle sensor that detects the angle of the boom 8, the arm 9, and the bucket 10 is used. However, the posture information of the shovel may be calculated using a cylinder stroke sensor instead of the angle sensor. . Also, a hydraulic pilot type shovel has been described as an example, but an electric lever type shovel may be configured to control a command current generated from the electric lever. The method of calculating the speed vector of the front work device 1A may be obtained from the angular speed calculated by differentiating the angles of the boom 8 and the bucket 10, instead of the pilot pressure by the operator's operation.
 上記のコントローラ40に係る各構成や当該各構成の機能及び実行処理等は,それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また,上記のコントローラ40に係る構成は,演算処理装置(例えばCPU)によって読み出し・実行されることで当該コントローラ40の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は,例えば,半導体メモリ(フラッシュメモリ,SSD等),磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク,光ディスク等)等に記憶することができる。 The components of the controller 40 and the functions and execution processes of the components may be partially or wholly realized by hardware (for example, a logic that executes the functions is designed by an integrated circuit). good. Further, the configuration related to the controller 40 may be a program (software) that realizes each function related to the configuration of the controller 40 by being read and executed by an arithmetic processing unit (for example, a CPU). Information relating to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disk, etc.), and the like.
 1A…フロント作業装置,8…ブーム,9…アーム,10…バケット,30…ブーム角度センサ,31…アーム角度センサ,32…バケット角度センサ,40…コントローラ(制御装置),43…MC制御部,43a…操作量演算部,43b…姿勢演算部,43c…目標面演算部,43d…シリンダ速度相関データ記憶部,43e…シリンダ速度相関データ算出部,43f…エンジン回転数上限値演算部,43g…補正係数算出部,44…電磁比例弁制御部,45…操作装置(ブーム,アーム),46…操作装置(バケット,旋回),49…エンジン回転数制御部,50…作業装置姿勢検出装置,51…目標面設定装置,52a…オペレータ操作検出装置,53…表示装置,54,55,56…電磁比例弁,81…アクチュエータ制御部,81a…ブーム制御部,81b…バケット制御部,96…目標角度設定装置,98…モード選択装置,99…エンジン回転数ダイヤル,374…表示制御部,490…エンジン回転数検出装置 1A front working device, 8 boom, 9 arm, 10 bucket, 30 boom angle sensor, 31 arm angle sensor, 32 bucket angle sensor, 40 controller (control device), 43 MC controller, 43a: manipulated variable calculator, 43b: posture calculator, 43c: target plane calculator, 43d: cylinder speed correlation data storage unit, 43e: cylinder speed correlation data calculator, 43f: engine speed upper limit value calculator, 43g ... Correction coefficient calculation unit, 44: electromagnetic proportional valve control unit, 45: operating device (boom, arm), 46: operating device (bucket, turning), 49: engine speed control unit, 50: working device attitude detecting device, 51 ... Target plane setting device, 52a ... Operator operation detection device, 53 ... Display device, 54, 55, 56 ... Electromagnetic proportional valve, 81 ... Actuator control unit, 1a ... boom control unit, 81b ... bucket control unit, 96 ... target angle setting device, 98 ... mode selection device 99: engine rotational speed dials, 374 ... display controller, 490 ... engine speed detecting device

Claims (7)

  1.  原動機と,
     前記原動機によって駆動される油圧ポンプと,
     前記油圧ポンプが吐出する作動油によって駆動される複数の油圧アクチュエータと,
     前記複数の油圧アクチュエータによって駆動される作業装置と,
     オペレータの操作に応じて前記複数の油圧アクチュエータの動作を指示する操作装置と,
     前記複数の油圧アクチュエータのうち前記操作装置の操作に対応する油圧アクチュエータの速度と,前記操作装置の操作量情報との関係を示す相関データが記憶された記憶装置と,
     前記操作装置の操作時に,前記操作装置の操作量情報と前記相関データとに基づいて,前記複数の油圧アクチュエータのうち前記操作装置の操作に対応する油圧アクチュエータの速度を演算し,その演算結果と予め定めた条件とに従って前記複数の油圧アクチュエータの少なくとも1つを制御する制御装置とを備えた作業機械において,
     前記制御装置は,前記原動機の目標回転数及び実回転数のいずれか一方に基づいて前記相関データを変更することを特徴とする作業機械。
    Motor and
    A hydraulic pump driven by the prime mover,
    A plurality of hydraulic actuators driven by hydraulic oil discharged from the hydraulic pump;
    A working device driven by the plurality of hydraulic actuators,
    An operation device for instructing the operation of the plurality of hydraulic actuators according to an operation of an operator;
    A storage device that stores correlation data indicating a relationship between a speed of a hydraulic actuator corresponding to an operation of the operating device of the plurality of hydraulic actuators and operation amount information of the operating device;
    When operating the operating device, a speed of a hydraulic actuator corresponding to an operation of the operating device among the plurality of hydraulic actuators is calculated based on the operation amount information of the operating device and the correlation data. A control device for controlling at least one of the plurality of hydraulic actuators according to a predetermined condition,
    The work machine, wherein the control device changes the correlation data based on one of a target rotation speed and an actual rotation speed of the prime mover.
  2.  請求項1に記載の作業機械において,
     前記記憶装置には,前記原動機の回転数に応じて前記相関データが複数記憶されており,
     前記制御装置は,前記原動機の目標回転数及び実回転数のいずれか一方に基づいて,前記記憶装置に記憶された前記複数の相関データの中から1つの相関データを選択することを特徴とする作業機械。
    The work machine according to claim 1,
    The storage device stores a plurality of the correlation data in accordance with the number of revolutions of the prime mover,
    The controller selects one correlation data from the plurality of correlation data stored in the storage device based on one of a target rotation speed and an actual rotation speed of the prime mover. Work machine.
  3.  請求項1に記載の作業機械において,
     前記制御装置は,前記原動機の目標回転数及び実回転数のいずれか一方に基づいて,前記記憶装置に記憶された前記相関データを補正することを特徴とする作業機械。
    The work machine according to claim 1,
    The work machine, wherein the control device corrects the correlation data stored in the storage device based on one of a target rotation speed and an actual rotation speed of the prime mover.
  4.  請求項1に記載の作業機械において,
     前記原動機の実回転数を検出する回転数センサを備え,
     前記制御装置は,前記回転数センサで検出された前記原動機の実回転数に基づいて前記相関データを変更することを特徴とする作業機械。
    The work machine according to claim 1,
    A rotation speed sensor for detecting an actual rotation speed of the prime mover;
    The work machine according to claim 1, wherein the control device changes the correlation data based on an actual rotation speed of the prime mover detected by the rotation speed sensor.
  5.  請求項1に記載の作業機械において,
     前記原動機の目標回転数を設定する回転数設定装置を備え,
     前記制御装置は,前記回転数設定装置で設定された前記原動機の目標回転数に基づいて前記相関データを変更することを特徴とする作業機械。
    The work machine according to claim 1,
    A rotation speed setting device for setting a target rotation speed of the motor;
    The work machine, wherein the control device changes the correlation data based on a target rotation speed of the prime mover set by the rotation speed setting device.
  6.  請求項5に記載の作業機械において,
     前記回転数設定装置は,前記原動機の回転数を調整する回転数ダイヤルであることを特徴とする作業機械。
    The work machine according to claim 5,
    The work machine according to claim 1, wherein the rotation speed setting device is a rotation speed dial for adjusting a rotation speed of the prime mover.
  7.  請求項5に記載の作業機械において,
     前記回転数設定装置は,前記作業機械の作業モードとして,通常運転時における前記原動機の回転数の上限値である第1上限値を設定する第1モードと,前記第1上限値よりも小さい上限値である第2上限値を設定する第2モードとを少なくとも含む複数の作業モードから任意の作業モードを選択するモード選択装置であり,
     前記制御装置は,前記モード選択装置によって選択されたモードで規定された前記原動機の回転数の上限値以下に前記原動機の回転数を制御し,その上限値に基づいて前記相関データを変更することを特徴とする作業機械。
    The work machine according to claim 5,
    The rotation speed setting device includes, as a work mode of the work machine, a first mode for setting a first upper limit value that is an upper limit value of a rotation speed of the prime mover during a normal operation, and an upper limit smaller than the first upper limit value. A mode selection device for selecting an arbitrary operation mode from a plurality of operation modes including at least a second mode for setting a second upper limit value,
    The control device controls the rotation speed of the prime mover to be equal to or less than an upper limit value of the rotation speed of the prime mover specified in the mode selected by the mode selection device, and changes the correlation data based on the upper limit value. A working machine characterized by:
PCT/JP2018/035526 2018-09-25 2018-09-25 Work machine WO2020065739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035526 WO2020065739A1 (en) 2018-09-25 2018-09-25 Work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035526 WO2020065739A1 (en) 2018-09-25 2018-09-25 Work machine

Publications (1)

Publication Number Publication Date
WO2020065739A1 true WO2020065739A1 (en) 2020-04-02

Family

ID=69952950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035526 WO2020065739A1 (en) 2018-09-25 2018-09-25 Work machine

Country Status (1)

Country Link
WO (1) WO2020065739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210858A1 (en) * 2021-03-31 2022-10-06 住友建機株式会社 Excavator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011902A (en) * 2002-06-12 2004-01-15 Sumitomo Heavy Industries Construction Crane Co Ltd Hydraulic operating device for construction machinery
JP2006226255A (en) * 2005-02-21 2006-08-31 Shin Caterpillar Mitsubishi Ltd Control device of work machine
JP2015040604A (en) * 2013-08-22 2015-03-02 日立建機株式会社 Hydraulic control device of work machine
JP2017115402A (en) * 2015-12-24 2017-06-29 キャタピラー エス エー アール エル Actuator drive control device of construction machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011902A (en) * 2002-06-12 2004-01-15 Sumitomo Heavy Industries Construction Crane Co Ltd Hydraulic operating device for construction machinery
JP2006226255A (en) * 2005-02-21 2006-08-31 Shin Caterpillar Mitsubishi Ltd Control device of work machine
JP2015040604A (en) * 2013-08-22 2015-03-02 日立建機株式会社 Hydraulic control device of work machine
JP2017115402A (en) * 2015-12-24 2017-06-29 キャタピラー エス エー アール エル Actuator drive control device of construction machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210858A1 (en) * 2021-03-31 2022-10-06 住友建機株式会社 Excavator

Similar Documents

Publication Publication Date Title
US11053661B2 (en) Work machine
KR102189225B1 (en) Working machine
KR102024701B1 (en) Working machine
JP6633464B2 (en) Work machine
JP6618652B2 (en) Work machine
US11466435B2 (en) Hydraulic excavator with area limiting control function
JP6889579B2 (en) Work machine
JP6860329B2 (en) Work machine
KR102154581B1 (en) Working machine
JP6889806B2 (en) Work machine
KR20200028993A (en) Working machine
KR102520407B1 (en) work machine
WO2020065739A1 (en) Work machine
WO2021065952A1 (en) Work machine
JP2021161611A (en) Work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP