【0001】
【発明の属する技術分野】
本発明は建設機械の油圧操作装置に関するものであり、特に、コントロールレバーの操作量と機械の動きとの関係がエンジン回転数の影響を受けることを防止できるように構成した建設機械の油圧操作装置に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
此種建設機械の油圧操作装置は、図5に示すように、回転数を可変できる動力源であるエンジン1と、このエンジン1によって駆動される油圧ポンプ2と、該油圧ポンプ2の吐出油を流量制御してアクチュエータへ供給する流量制御弁3と、コントロールレバー4の操作にて2次圧を発生し、この2次圧にて前記流量制御弁3を制御する比例減圧弁5とから構成されたものが知られている。
【0003】
前記流量制御弁3のPポートには、油圧ポンプ2の吐出油が1次流量として供給される。また、前記比例減圧弁5のPポートに1次圧を入れ、コントロールレバー4を操作すれば、その操作量に応じた2次圧がa2またはb2ポートに発生する。例えば、a2ポートに操作圧Piを入れると、流量制御弁3の1次流量がAポートとTポートに分流されてAポートに2次流量が流れる。図6に示すように、流量制御弁3の内部にはスプールの移動量により変化する絞りが設けられており、PポートからTポートへの油路に絞り6を設け、PポートからAポートへの油路に絞り7を設け、BポートからTポートへの油路に絞り8を設ける。
【0004】
次に、図6及び図7にて流量制御弁3の作動原理について説明する。該流量制御弁3は、中立位置ではP→Tへの油路の絞り6が大きく開放され、P→Aへの油路の絞り7及びB→Tへの油路の絞り8は閉止している。該流量制御弁3のスプールを移動させていくと、図7の▲1▼に示すように、スプールの移動量に応じてP→Tへの油路の絞り6の開口面積が減少していく。これと同時に、P→Aへの油路の絞り7及びB→Tへの油路の絞り8は、同図▲2▼に示すように、開口面積が増加していく。この結果、流量制御弁3のPポートに流入する1次流量は、中立位置では全量Tポートに流れるが、スプールの移動に伴いP→Tへの油路の絞り6が絞られていき、Pポートには絞られ具合に応じた圧力Ppが発生する。この圧力PpがAポートに接続した負荷が必要とする圧力Paを超えると、PポートからAポートへ油が流れ始め、装置は動作を開始し始める。
【0005】
このとき発生する力と流量の関係は、絞りをオリフィスと仮定すれば、次式のようになる。
【0006】
【数1】
即ち、Ppは1次流量Qpの二乗に比例することが分かる。従って、1次流量Qpが変化すると、同じスプール位置で発生する圧力Ppが大きく変化することになり、負荷側が要求する圧力Paを該圧力Ppが超えるときの前記絞り6の面積が、1次流量の関数として決まる。即ち、装置が動き始めるときのスプールの移動量は1次流量の関数として決定されることを意味する。
【0007】
PポートからAポートへ油が流れると、前記絞り7による圧損が前述した式のように発生するため、Pp=Paでは実際には油は流れない。流れる油の量は、前述したように差圧(Pp−Pa)と絞り7の面積の関数となるが、Ppが1次流量Qpの影響を強く受けるために、この流量もQpの影響を強く受ける。
【0008】
以上の原理により、流量制御弁3のスプール移動量と装置の速度の関係を模式的に表すと、図8のようになり、流量制御弁3の1次流量が少ないときの特性は破線、1次流量が多いときの特性は実線で示すように、
(1) 装置が動き出すときのスプール位置が1次流量の変化で大きく変動する。
(2) 速度制御に使える範囲が少ない。
といった欠点がある。従って、コントロールレバーの操作量と流量制御弁のスプール移動量が略比例するため、上記の欠点は、
(1) 装置が動き始めるときのコントロールレバーの位置が、1次流量の変化で大きく変動する。
(2) 速度制御に使えるコントロールレバーの範囲が少ない。
ということになり、操作性が悪かった。
そこで、コントロールレバーの操作量と機械の動きとがエンジン回転数の影響を受けないようにするために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記目的を達成するために提案されたものであり、回転数を可変できる動力源にて駆動される油圧ポンプと、該油圧ポンプの吐出油を流量制御してアクチュエータへ供給する流量制御弁と、コントロールレバーの操作にて2次圧を発生し、この2次圧にて前記流量制御弁を制御する比例減圧弁とからなる建設機械の油圧操作装置に於いて、前記流量制御弁と前記比例減圧弁との間に介装されて比例減圧弁の2次圧を制御する電磁比例減圧弁と、該比例減圧弁の2次圧を検出する手段と、前記動力源の回転数を検出する手段とを設け、前記動力源の回転数と前記比例減圧弁の2次圧とに基づいて、前記電磁比例減圧弁を制御する演算装置を備えた建設機械の油圧操作装置、
及び、上記流量制御弁の1次流量が最小のときは、上記比例減圧弁の2次圧と電磁比例減圧弁の2次圧とが略等しくなるように制御し、上記流量制御弁の1次流量が最大のときは、上記比例減圧弁の2次圧を所定の関数に従って電磁比例減圧弁にて減圧するように制御する演算装置を備えた建設機械の油圧操作装置を提供するものである。
【0010】
【発明の実施の形態】
以下、本発明の一実施の形態を図面に従って詳述する。尚、説明の都合上、従来技術と同一構成部分には同一符号を付してその説明を省略する。図1は建設機械の油圧操作装置を示し、流量制御弁3のa1ポートと比例減圧弁5のa2ポートとの間には、該比例減圧弁5の2次圧を検出する手段としての圧力センサ10と、該比例減圧弁5の2次圧を制御して流量制御弁3のaポートへ供給する電磁比例減圧弁11を介装してある。
【0011】
これと同様に、流量制御弁3のb1ポートと比例減圧弁5のb2ポートとの間には、該比例減圧弁5の2次圧を検出する手段としての圧力センサ20と、該比例減圧弁5の2次圧を制御して流量制御弁3のbポートへ供給する電磁比例減圧弁21を介装してある。尚、30は動力源である前記エンジン1の回転数を検出する手段としての回転センサである。
【0012】
前記圧力センサ10,20並びに回転センサ30の検出信号は、演算装置を備えたコントローラ40へ入力される。該コントローラ40は、後述するように、前記圧力センサ10,20並びに回転センサ30の検出信号に基づいて、電磁比例減圧弁11及び21へ制御信号を出力する。
【0013】
次に、図2にて比例減圧弁5の2次圧と電磁比例減圧弁11,21の2次圧の関係を説明する。流量制御弁3の1次流量が最小のときには、破線で示すように、比例減圧弁5の2次圧と電磁比例減圧弁の2次圧が略同圧となるように制御する。即ち、コントローラ40は比例減圧弁の2次圧を圧力センサ10,20で検出し、この検出信号に基づいて、比例減圧弁5の2次圧と電磁比例減圧弁の2次圧が略同圧となるように、電磁比例減圧弁11,21へ指令を出す。
【0014】
一方、流量制御弁3の1次流量が最大のときには、実線で示すように、比例減圧弁5の2次圧を予め定められた所定の関数に従って電磁比例減圧弁11,21により減圧して、流量制御弁3のa1またはb1ポートへ供給できるように制御する。
【0015】
この関数は、次の条件を満たすものである。
(1) 装置の動き出し位置が1次流量の影響を受けずに略同位置となる。
(2) 速度制御範囲が1次流量の影響を受けずに略同一となる。
上記二つの制約条件を元に数種類の1次流量に関して実験を行って決定し、それ以外の1時流量ではこの値を補完して使用する。
【0016】
図3は本発明の油圧操作装置に於ける流量制御弁3の開口面積の変化を示し、改善後は、P→Tの開口面積をスプール移動が少ない時点で小さくしても、一次流量が最大のときに圧力Ppが急激に上昇することがない。従って、図4に示すように、コントロールレバーの操作角即ち比例減圧弁5の操作角(θ)と、装置の動き(装置速度)との関係が、1次流量の変化の影響を受けずに、速度制御に有効なコントロールレバー操作範囲が拡大される。
【0017】
尚、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
【0018】
【発明の効果】
本発明は上記一実施の形態に詳述したように、請求項1記載の発明は、アクチュエータへ圧油を供給する流量制御弁と、コントロールレバーの操作にて2次圧を発生する比例減圧弁との間に電磁比例減圧弁を介装し、動力源の回転数と比例減圧弁の2次圧とを検出して、前記電磁比例制御弁を制御する演算装置を備えたことにより、コントロールレバーの操作量と機械の動きとがエンジン回転数の影響を受けることを防止できるとともに、速度制御に有効なコントロールレバーの操作範囲を拡大することが可能となる。
【0019】
請求項2記載の発明は、上記流量制御弁の1次流量が最小のときは、上記比例減圧弁の2次圧と電磁比例減圧弁の2次圧とが略等しくなるように制御し、上記流量制御弁の1次流量が最大のときは、上記比例減圧弁の2次圧を所定の関数に従って電磁比例減圧弁にて減圧するように制御する演算装置を備えたことにより、請求項1記載の発明の効果に加えて、装置の動き出し位置が1次流量の影響を受けずに略同位置となるとともに、速度制御範囲が1次流量の影響を受けずに略同一となる等、正に諸種の効果を奏する発明である。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示し、建設機械の油圧操作装置の回路図。
【図2】本発明の一実施の形態を示し、比例減圧弁の2次圧と電磁比例減圧弁の2次圧指令の関係を示すグラフ。
【図3】本発明の一実施の形態を示し、流量制御弁のスプールの移動量と開口面積の変化との関係を示すグラフ。
【図4】本発明の一実施の形態を示し、比例減圧弁の操作角と装置速度の変化との関係を示すグラフ。
【図5】従来技術を示し、建設機械の油圧操作装置の回路図。
【図6】従来技術を示し、流量制御弁の内部絞りの説明図。
【図7】従来技術を示し、流量制御弁のスプールの移動量と開口面積の変化との関係を示すグラフ。
【図8】従来技術を示し、流量制御弁のスプールの移動量と装置速度の変化との関係を示すグラフ。
【符号の説明】
1 エンジン(動力源)
2 油圧ポンプ
3 流量制御弁
4 コントロールレバー
5 比例減圧弁
10,20 圧力センサ(2次圧検出手段)
11,21 電磁比例減圧弁
30 回転センサ(動力源の回転数検出手段)
40 コントローラ(演算装置)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydraulic operating device for a construction machine, and in particular, to a hydraulic operating device for a construction machine configured to prevent a relationship between an operation amount of a control lever and a movement of the machine from being affected by an engine speed. It is about.
[0002]
Problems to be solved by the prior art and the invention
As shown in FIG. 5, a hydraulic operating device of this type of construction machine includes an engine 1, which is a power source capable of changing the rotation speed, a hydraulic pump 2 driven by the engine 1, and a discharge oil of the hydraulic pump 2. It is composed of a flow control valve 3 for controlling the flow and supplying it to the actuator, and a proportional pressure reducing valve 5 for generating a secondary pressure by operating a control lever 4 and controlling the flow control valve 3 with the secondary pressure. Are known.
[0003]
Discharge oil of the hydraulic pump 2 is supplied to a P port of the flow control valve 3 as a primary flow rate. When the primary pressure is applied to the P port of the proportional pressure reducing valve 5 and the control lever 4 is operated, a secondary pressure corresponding to the operation amount is generated at the a2 or b2 port. For example, when the operating pressure Pi is input to the port a2, the primary flow rate of the flow control valve 3 is divided into the A port and the T port, and the secondary flow rate flows into the A port. As shown in FIG. 6, a throttle that changes according to the amount of movement of the spool is provided inside the flow control valve 3, and a throttle 6 is provided in the oil passage from the P port to the T port, and the throttle is provided from the P port to the A port. The throttle 7 is provided in the oil path of port B, and the throttle 8 is provided in the oil path from port B to port T.
[0004]
Next, the operating principle of the flow control valve 3 will be described with reference to FIGS. In the flow control valve 3, in the neutral position, the throttle 6 of the oil passage from P to T is greatly opened, the throttle 7 of the oil passage from P to A and the throttle 8 of the oil passage from B to T are closed. I have. As the spool of the flow control valve 3 is moved, as shown by (1) in FIG. 7, the opening area of the throttle 6 of the oil passage from P to T decreases according to the amount of movement of the spool. . At the same time, the opening area of the throttle 7 of the oil passage from P to A and the throttle 8 of the oil passage from B to T increase as shown in FIG. As a result, the entire primary flow rate flowing into the P port of the flow control valve 3 flows through the T port at the neutral position, but the throttle 6 of the oil passage from P to T narrows as the spool moves, and P A pressure Pp corresponding to the degree of throttle is generated at the port. When this pressure Pp exceeds the pressure Pa required by the load connected to the A port, oil starts to flow from the P port to the A port, and the device starts to operate.
[0005]
The relationship between the force generated at this time and the flow rate is as follows, assuming that the throttle is an orifice.
[0006]
(Equation 1)
That is, it can be seen that Pp is proportional to the square of the primary flow rate Qp. Therefore, when the primary flow rate Qp changes, the pressure Pp generated at the same spool position greatly changes, and when the pressure Pp exceeds the pressure Pa required by the load side, the area of the throttle 6 becomes equal to the primary flow rate. Is determined as a function of That is, the amount of movement of the spool when the apparatus starts moving is determined as a function of the primary flow rate.
[0007]
When oil flows from the P port to the A port, pressure loss due to the throttle 7 occurs as in the above-described equation, and therefore, when Pp = Pa, the oil does not actually flow. The amount of flowing oil is a function of the differential pressure (Pp-Pa) and the area of the throttle 7 as described above. However, since Pp is strongly affected by the primary flow rate Qp, this flow rate is also strongly affected by Qp. receive.
[0008]
According to the above principle, the relationship between the amount of spool movement of the flow control valve 3 and the speed of the apparatus is schematically shown in FIG. 8, where the characteristics when the primary flow rate of the flow control valve 3 is small are indicated by broken lines, As shown by the solid line,
(1) The spool position at the time when the device starts to move greatly fluctuates due to a change in the primary flow rate.
(2) The range that can be used for speed control is small.
There are drawbacks. Therefore, since the operation amount of the control lever and the spool movement amount of the flow control valve are approximately proportional,
(1) The position of the control lever when the device starts to move greatly fluctuates due to a change in the primary flow rate.
(2) The range of control levers that can be used for speed control is small.
Therefore, the operability was poor.
Therefore, there arises a technical problem to be solved in order to prevent the operation amount of the control lever and the movement of the machine from being affected by the engine speed, and the present invention aims to solve this problem. And
[0009]
[Means for Solving the Problems]
The present invention has been proposed to achieve the above object, and has a hydraulic pump driven by a power source capable of varying the number of revolutions, and a flow control for controlling the flow rate of oil discharged from the hydraulic pump and supplying the oil to an actuator. In a hydraulic operating device for a construction machine comprising a valve and a secondary pressure generated by operating a control lever, the proportional pressure reducing valve controlling the flow rate control valve with the secondary pressure. An electromagnetic proportional pressure reducing valve interposed between the proportional pressure reducing valve and controlling a secondary pressure of the proportional pressure reducing valve; a means for detecting a secondary pressure of the proportional pressure reducing valve; Means for controlling the electromagnetic proportional pressure reducing valve based on the rotational speed of the power source and the secondary pressure of the proportional pressure reducing valve,
And when the primary flow rate of the flow control valve is minimum, control is performed so that the secondary pressure of the proportional pressure reducing valve is substantially equal to the secondary pressure of the electromagnetic proportional pressure reducing valve. An object of the present invention is to provide a hydraulic operating device for a construction machine including an arithmetic device for controlling the secondary pressure of the proportional pressure reducing valve to be reduced by an electromagnetic proportional pressure reducing valve according to a predetermined function when the flow rate is maximum.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. For convenience of explanation, the same components as those of the conventional art are denoted by the same reference numerals, and description thereof will be omitted. FIG. 1 shows a hydraulic operating device of a construction machine. A pressure sensor as a means for detecting a secondary pressure of the proportional pressure reducing valve 5 is provided between an a1 port of the flow control valve 3 and an a2 port of the proportional pressure reducing valve 5. 10 and an electromagnetic proportional pressure reducing valve 11 for controlling the secondary pressure of the proportional pressure reducing valve 5 and supplying the secondary pressure to the port a of the flow control valve 3.
[0011]
Similarly, between the b1 port of the flow control valve 3 and the b2 port of the proportional pressure reducing valve 5, a pressure sensor 20 as means for detecting the secondary pressure of the proportional pressure reducing valve 5 is provided. An electromagnetic proportional pressure reducing valve 21 for controlling the secondary pressure of No. 5 and supplying it to the port b of the flow control valve 3 is provided. Reference numeral 30 denotes a rotation sensor as means for detecting the number of rotations of the engine 1 as a power source.
[0012]
The detection signals of the pressure sensors 10 and 20 and the rotation sensor 30 are input to a controller 40 having an arithmetic unit. The controller 40 outputs a control signal to the electromagnetic proportional pressure reducing valves 11 and 21 based on detection signals of the pressure sensors 10 and 20 and the rotation sensor 30 as described later.
[0013]
Next, the relationship between the secondary pressure of the proportional pressure reducing valve 5 and the secondary pressure of the electromagnetic proportional pressure reducing valves 11 and 21 will be described with reference to FIG. When the primary flow rate of the flow control valve 3 is minimum, the control is performed so that the secondary pressure of the proportional pressure reducing valve 5 and the secondary pressure of the electromagnetic proportional pressure reducing valve become substantially the same as shown by the broken line. That is, the controller 40 detects the secondary pressure of the proportional pressure reducing valve by the pressure sensors 10 and 20, and based on the detection signal, the secondary pressure of the proportional pressure reducing valve 5 and the secondary pressure of the electromagnetic proportional pressure reducing valve are substantially equal. A command is issued to the electromagnetic proportional pressure reducing valves 11 and 21 so that
[0014]
On the other hand, when the primary flow rate of the flow control valve 3 is the maximum, as shown by the solid line, the secondary pressure of the proportional pressure reducing valve 5 is reduced by the electromagnetic proportional pressure reducing valves 11 and 21 according to a predetermined function. It controls so that it can supply to the a1 or b1 port of the flow control valve 3.
[0015]
This function satisfies the following conditions.
(1) The movement start position of the device is substantially the same position without being affected by the primary flow rate.
(2) The speed control ranges are substantially the same without being affected by the primary flow rate.
Experiments are performed on several types of primary flow rates based on the above two constraints to determine the primary flow rates. For other temporary flow rates, the values are complemented and used.
[0016]
FIG. 3 shows a change in the opening area of the flow control valve 3 in the hydraulic operating device of the present invention. After the improvement, even if the opening area of P → T is reduced at a time when the spool movement is small, the primary flow rate is maximized. At this time, the pressure Pp does not rise sharply. Therefore, as shown in FIG. 4, the relationship between the operation angle of the control lever, that is, the operation angle (θ) of the proportional pressure reducing valve 5 and the movement of the device (device speed) is not affected by the change in the primary flow rate. Thus, the control lever operation range effective for speed control is expanded.
[0017]
The present invention can be variously modified without departing from the spirit of the present invention, and it goes without saying that the present invention extends to the modified ones.
[0018]
【The invention's effect】
As described in detail in the above embodiment, the invention according to claim 1 is a flow control valve for supplying pressure oil to an actuator, and a proportional pressure reducing valve for generating a secondary pressure by operating a control lever. And an arithmetic device for controlling the electromagnetic proportional control valve by detecting the number of rotations of the power source and the secondary pressure of the proportional pressure reducing valve. And the movement of the machine can be prevented from being affected by the engine speed, and the operating range of the control lever effective for speed control can be expanded.
[0019]
According to a second aspect of the present invention, when the primary flow rate of the flow control valve is minimum, the secondary pressure of the proportional pressure reducing valve is controlled to be substantially equal to the secondary pressure of the electromagnetic proportional pressure reducing valve. 2. An arithmetic unit for controlling the secondary pressure of the proportional pressure reducing valve to be reduced by an electromagnetic proportional pressure reducing valve according to a predetermined function when the primary flow rate of the flow rate control valve is maximum. In addition to the effects of the invention, the movement start position of the device is substantially the same without being affected by the primary flow rate, and the speed control range is substantially the same without being affected by the primary flow rate. This is an invention that provides various effects.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a hydraulic operating device of a construction machine according to an embodiment of the present invention.
FIG. 2 is a graph showing one embodiment of the present invention and showing a relationship between a secondary pressure of a proportional pressure reducing valve and a secondary pressure command of an electromagnetic proportional pressure reducing valve.
FIG. 3 is a graph showing an embodiment of the present invention and showing a relationship between a movement amount of a spool of a flow control valve and a change in an opening area.
FIG. 4 is a graph showing an embodiment of the present invention and showing a relationship between an operation angle of a proportional pressure reducing valve and a change in apparatus speed.
FIG. 5 is a circuit diagram of a hydraulic operating device of a construction machine, showing a conventional technique.
FIG. 6 is a view showing a conventional technique, and is an explanatory view of an internal throttle of a flow control valve.
FIG. 7 is a graph showing the prior art and showing the relationship between the amount of movement of the spool of the flow control valve and the change in the opening area.
FIG. 8 is a graph showing a prior art, and showing a relationship between a movement amount of a spool of a flow control valve and a change in apparatus speed.
[Explanation of symbols]
1 engine (power source)
2 Hydraulic pump 3 Flow control valve 4 Control lever 5 Proportional pressure reducing valve 10, 20 Pressure sensor (secondary pressure detecting means)
11, 21 Electromagnetic proportional pressure reducing valve 30 rotation sensor (power source rotation speed detecting means)
40 Controller (arithmetic unit)