WO2020065168A1 - Système de nébulisation pour véhicule automobile - Google Patents

Système de nébulisation pour véhicule automobile Download PDF

Info

Publication number
WO2020065168A1
WO2020065168A1 PCT/FR2019/052111 FR2019052111W WO2020065168A1 WO 2020065168 A1 WO2020065168 A1 WO 2020065168A1 FR 2019052111 W FR2019052111 W FR 2019052111W WO 2020065168 A1 WO2020065168 A1 WO 2020065168A1
Authority
WO
WIPO (PCT)
Prior art keywords
nebulization
fluid
reservoir
primary
tank
Prior art date
Application number
PCT/FR2019/052111
Other languages
English (en)
Inventor
Vincent Feuillard
Yves Rousseau
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2020065168A1 publication Critical patent/WO2020065168A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H3/022Moistening ; Devices influencing humidity levels, i.e. humidity control for only humidifying the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/40Filters located upstream of the spraying outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles

Definitions

  • the invention relates to a nebulization system for a motor vehicle. It is more particularly intended for the generation of fine droplets making it possible to cool and / or humidify a vector flow, in particular a flow of air so as to form a refreshing mist.
  • nebulization system because the mist of droplets quickly cools the air in the passenger compartment, ensuring an immediate feeling of cold. In addition to traditional air conditioning, it re-humidifies the too dry air.
  • Existing devices conventionally include a liquid reservoir and a liquid nebulization enclosure provided with a piezoelectric atomizer which, by emitting acoustic waves at a certain frequency, makes it possible to transform the liquid into droplets. Carried by the vector flow, the fine droplets escape from the nebulization system to be transported into the passenger compartment of the vehicle. The larger the tank, the greater the autonomy of the nebulization system. We therefore want to have large tanks. However, this is to the detriment of the bulk of the devices proposed so far, which is not satisfactory.
  • the invention proposes to overcome the aforementioned drawbacks and for this purpose proposes a nebulization system for a motor vehicle comprising:
  • a supply system comprising a primary reservoir for a fluid and a secondary reservoir supplying fluid to said primary reservoir, and
  • nebulization chamber extending longitudinally
  • said nebulization system being characterized in that the primary reservoir and the secondary reservoir are located side by side along the nebulization enclosure.
  • This provides a nebulization system in which the primary reservoir and the secondary reservoir being located side by side along the nebulization enclosure, the dimensions of the system are reduced in at least one direction of extension of said nebulization system. .
  • This improves the compactness of the nebulization system.
  • Such a system can then more easily be integrated, inter alia, into a central console of the motor vehicle.
  • the nebulization system has a substantially parallelepiped configuration
  • the nebulization system includes a pump for setting in motion the fluid communicating with the supply system;
  • the primary reservoir preferably forms a first housing in which the fluid movement pump extends;
  • the nebulization chamber comprises an atomizer capable of transforming the fluid coming from said pump into droplets
  • each of the spray enclosure, the primary tank and the secondary tank is located side by side with each of the other two;
  • the nebulization chamber and the secondary reservoir are located at the same level and are opposite a large face of the primary reservoir;
  • the spray enclosure, the primary tank and the secondary tank have substantially identical dimensions along a longitudinal axis of extension of the spray system;
  • the nebulization enclosure has a length, along the longitudinal axis, of between 10 and 20 cm; - the primary reservoir has a volume of between 10 and 150 ml;
  • the secondary tank has a lower wall conforming, at least in part, to the shape of the primary tank;
  • the secondary tank has a side wall conforming, at least in part, to the shape of the nebulization enclosure.
  • the nebulization system further comprises a system for filtering the fluid contained in the primary reservoir;
  • said filtration system extends to a second housing formed by the primary tank;
  • the nebulization system comprises an ultraviolet radiation generator fixed on an upper wall of the primary reservoir;
  • the ultraviolet radiation generator is substantially planar
  • the nebulization system in particular said nebulization enclosure, comprises a system for recovering large drops
  • the nebulization system further comprises a flow generator capable of generating a vector flow intended to entrain the droplets outside the nebulization system;
  • said flow generator extends at a third housing formed by the primary reservoir.
  • FIG. 1 is a schematic perspective view of a nebulization system according to the invention comprising a fluid supply system and a nebulizer;
  • FIG. 2 is a schematic perspective view of the nebulization system of Figure 1, from another angle of view than that illustrated in Figure 1;
  • FIG. 3 is a view along the longitudinal section A-A of the nebulization system, the sectional plane being vertical at a supply valve between a primary tank and a secondary tank;
  • FIG. 4 is a bottom view of the nebulization system of Figure 1;
  • FIG. 5a is a schematic view, in section, of a two-cavity ultraviolet radiation generator which can be used with or without a filtration system;
  • FIG. 5b is a nebulizer side view of the nebulization system of Figure 1, without the filtration system;
  • FIG. 6 is a view along longitudinal section B-B of the nebulization system, the sectional plane being vertical in the middle of a mist generator;
  • FIG. 7 schematically illustrates the route taken by the fluid in the nebulization system
  • FIG. 8 shows the evolution of the bacteria concentration for different filtration systems after one hour of recirculation within the nebulization system: the results obtained with the filtration system used in the nebulization system according to the invention are shown by the curve having symbols in the shape of a cross (with vertical and horizontal bars).
  • the invention relates to a nebulization system 1 comprising a fluid supply system and a nebulizer.
  • the nebulization system 1 here has a substantially parallelepiped configuration. It extends longitudinally along a longitudinal axis X and has reduced dimensions along a transverse axis Y, said axis Y being orthogonal to the axis X, and a axis Z, orthogonal to the axes X and Y, but suitable for the dimensioning of the system supply and nebulizer according to the substantially parallelepiped configuration.
  • the nebulization system 1 is intended to generate a mist of droplets capable of rapidly cooling the air in the passenger compartment of a vehicle and ensuring an immediate feeling of cold for the passengers of said vehicle. It is located, for example, in a central console located between two seats located at the front of the motor vehicle and is thus hidden from the view of passengers. This location is practical to allow a diffusion of the mist of droplets towards the seats located at the rear of the vehicle when the said nebulization system 1 is in operation.
  • the nebulizer comprises a nebulization enclosure 50 supplied with fluid by the supply system.
  • the nebulization enclosure 50 consists of a hollow body of elongated shape extending longitudinally along the longitudinal axis X. It comprises an atomizer 53 (FIG. 6) capable of generating waves acoustic so that the fluid from the supply system is transformed into fine droplets, that is to say nebulized, then spread in the form of mist in the vehicle interior.
  • the operating principle of the atomizer 53 will be described later.
  • a first way of controlling this concentration of bacteria consists in using a fluid containing little or no organic elements, in particular bacteria. It is therefore preferable that the fluid intended to supply the nebulizer is mineral water or distilled water or any other fluid whose concentration of bacteria is relatively low.
  • a second way of controlling this contamination consists on the one hand of isolating the fluid from the external atmosphere during the phase preceding its nebulization, and on the other hand of limiting as much as possible the period of stagnation of the fluid in the nebulization system 1, and more particularly within the tank. In this way, the proliferation of bacteria and the formation of mud within the reservoir can be prevented, or at least substantially delayed.
  • the supply system comprises a primary tank 10 for supplying fluid to the nebulizer, and a secondary tank 20.
  • the supply system comprises two separate tanks, the secondary tank 20 being removably mounted on the primary tank 10.
  • the primary reservoir 10 and the secondary reservoir 20 are located side by side along the nebulization enclosure 50. This makes it possible to improve the compactness of the nebulization system 1, and thus, facilitate the integration of said nebulization system in its environment.
  • each of the spray enclosure 50, the primary tank 10 and the secondary tank 20 is located side by side with each of the other two.
  • the primary reservoir 10 is located side by side with the nebulization enclosure 50 and with the secondary reservoir 20, here along the axis Z
  • the secondary reservoir 20 is located side by side with the nebulization enclosure 50, here along the Y axis.
  • the nebulization system 1 has small dimensions along the transverse axis Y and the axis Z, which further improves its compactness and facilitates its integration into the in the center console.
  • the nebulization enclosure 50 and the secondary tank 20 are located at the same level.
  • the nebulization enclosure 50 and the secondary reservoir 20 are located at an upper portion 2 of the nebulization system 1.
  • the primary reservoir 10 extends, as for him, essentially in a lower portion 3 of said nebulization system 1. It comprises an upper wall 1 1 and a lower wall 12.
  • the secondary tank 20 and the nebulization enclosure 50 are located opposite the upper wall 1 1.
  • the primary reservoir 10 and the secondary reservoir 20 have substantially identical dimensions along the longitudinal axis X.
  • the secondary reservoir 20 has a lower wall 22 conforming, at least in part, to the shape of the primary reservoir 10. Said lower wall 22 faces the upper wall 11 of the primary reservoir 10 and follows the contours. It is also opposite a system 60 for generating a vector stream which will be described later.
  • the secondary reservoir 20 is thus placed in close proximity to the primary reservoir 10 and to said system 60 for generating the vector flow.
  • the primary reservoir 10, the secondary reservoir 20 and the system 60 for generating a vector stream appear to be nested within one another.
  • the secondary reservoir 20 has a side wall 24 matching, at least in part, the shape of the nebulization enclosure 50.
  • the secondary reservoir 20 and the nebulization enclosure 50 are thus very close to one another. other, which makes it possible to further improve the compactness of the nebulization system 1.
  • the primary reservoir 10 for the fluid has a limited volume.
  • This volume is limited in that it does not constitute the essential, that is to say the largest part of the volume made available by all of said primary tanks 10 and secondary 20.
  • the primary tank 10 forms a buffer tank.
  • the secondary tank 20 is isolated from the outside atmosphere. In other words, it is hermetically sealed before any use. It is intended to be previously filled with fluid. Said secondary tank 20 is therefore in the form of a “ready to use” tank filled with the fluid to be nebulized. In other words still, it forms an auxiliary reservoir.
  • the fluid is preserved, at least up to use in the nebulization system 1, protected from the outside atmosphere and various sources of pollution.
  • the secondary tank 20 is in fluid communication with the primary tank 10 in a unidirectional manner in order to allow a circulation of the fluid from the secondary tank 20 to the primary tank 10.
  • the communication between said primary tanks 10 and secondary 20 being monodirectional, the fluid cannot circulate in the opposite direction, that is to say from the primary reservoir 10 to the secondary reservoir 20, once it is in the primary reservoir 10.
  • the secondary reservoir 20 being isolated from the outside atmosphere, in particular before use, it is particularly well suited to durable storage of the fluid.
  • the secondary reservoir 20 is suitable for storage over a relatively long period of time of the fluid.
  • the primary reservoir 10 having a limited volume, it promotes transient storage, that is to say limited in time, of the fluid which is particularly advantageous in the context of the invention.
  • the fluid contained in the primary reservoir 10 is continuously pumped in order to be transformed into droplets in the nebulization enclosure 50.
  • the fluid coming from the primary reservoir 10 and nebulized is replaced by the fluid still contained in the secondary reservoir 20.
  • the limited volume of the primary reservoir 10 makes it possible to limit the proportion of fluid caused to stagnate when the nebulization system 1 is not in operation.
  • the fluid flows from the secondary tank 20 to the primary tank 10 by gravity so that the fluid communication between said primary 10 and secondary tanks takes place unidirectionally.
  • the supply system may include a supply valve 30 allowing fluid communication between the primary tank 10 and the secondary tank 20.
  • the supply valve 30 can be located at a so-called high part of the primary tank 10 close to the secondary tank 20 and a so-called low part of the secondary tank 20 close to the primary tank 10.
  • the valve supply 30 is preferably mounted in a sealed manner on the upper part of the primary tank 10 in order to avoid any loss during the circulation of the fluid between the two tanks 10, 20. It also makes it possible to avoid any loss of fluid when the secondary tank 20 is returned.
  • the supply valve 30 comprises an inlet orifice 33 of the fluid in the primary reservoir 10.
  • the intake orifice 33 is itself located in the primary reservoir 10.
  • the primary reservoir 10 is permanently retained in the supply system, while, as already said, the secondary reservoir 20 is detachable from the primary reservoir 10.
  • the secondary reservoir 20 can be replaced by a new tank 20 by the driver of the vehicle, or any other person. This prevents the driver of the vehicle from having to replace the entire nebulization system 1 each time the fluid is exhausted or does not fill a tank with a fluid of uncontrolled origin.
  • the primary reservoir 10 is advantageously closed.
  • the filling of the primary reservoir 10 is not carried out by an open circuit but by means of the secondary reservoir 20 which is itself isolated from the outside atmosphere.
  • the driver of the vehicle can use a replacement secondary reservoir 20 containing a fluid whose properties are similar, in particular with regard to the concentration of bacteria, to that of the secondary reservoir 20 initially planned, ie integrated, in the nebulization system 1.
  • the fluid may include other constituents, which gives it, for example, scents or other properties, provided that these do not present a danger to the health of the user.
  • the fluid may contain a drop of fragrance.
  • An example of a supply valve 30 which would be suitable for the supply system of the above-mentioned configuration can be formed to cooperate with a neck 32 located at the lower part of the secondary tank 20 and delimiting the intake orifice 33. It comprises a male member 31 projecting from the upper part of said primary reservoir 10, said male member being able to fit into the neck 32.
  • Said neck 32 is configured to be inserted into an opening provided in the upper wall 11 of the primary reservoir 10. Before use, the neck 32 is closed, for example, by a cover capable of being pierced by the male member 31.
  • the male member 31 is more particularly able to occupy a first position in which no secondary reservoir 20 is present, and a position where pressure is exerted by the neck 32 and in which the intake orifice 33 is in configuration open and lets the fluid through.
  • the primary reservoir 10 has a volume of between 10 and 150 ml. As stated above, this volume must not be too high in order to limit the period during which the fluid is stored in the primary reservoir 10.
  • a minimum volume of fluid is required to allow priming of the pump 40 when the nebulization system 1 is started.
  • the level of fluid in the primary reservoir 10 must not be too low at the risk of adversely affecting the proper functioning of the nebulizer itself when the system 1 is in operation. Indeed, if the nebulizer is insufficiently supplied with fluid, and in particular the atomizer 53, the latter may undergo premature wear forcing the driver of the vehicle to replace it in its entirety.
  • the primary reservoir 10 can be equipped with a level sensor 35 capable of detecting an insufficient volume of fluid in said primary reservoir 10.
  • the level sensor 35 can be appropriately positioned within the primary reservoir 10 in order to detect when the fluid volume is less than 50 mL.
  • the volume of the secondary tank 20 is greater than the volume of the primary tank 10.
  • the secondary tank 20 is more suitable for the durable storage of the fluid because it is previously filled with fluid and isolated from the external atmosphere.
  • the primary reservoir 10 having a limited volume, it promotes transient storage of the fluid.
  • the fluid is protected from external sources of pollution and, at the same time, the quantity of fluid circulating within the system is even more limited. nebulization and the quantity of fluid likely to be polluted by air. In addition, it facilitates and accelerates the cleaning of said fluid.
  • the supply system preferably comprises a pump 40 for setting in motion the fluid.
  • the pump 40 is configured to supply the nebulization enclosure 50 with the fluid coming from the primary reservoir 10. It is advantageously located downstream of the primary reservoir 10 and upstream of the nebulization enclosure 50 relative to the direction of flow of the fluid .
  • the pump 40 for setting in motion the fluid is supplied with electricity by means of an electrical supply module (not illustrated), MANGP, for the purposes of its priming.
  • the electrical supply module, Maiim is adapted to apply to said pump 40 a voltage U P , called the supply voltage of the pump.
  • the primary reservoir 10 advantageously forms a first housing 17 in which the pump 40 for setting in motion the fluid extends.
  • the primary reservoir 10 is delimited, at a proximal border 14, by a plane, Pi, of axes Y and Z (the axis Z being orthogonal to FIG. 4) and, at the level of a first lateral border 15, by a plane, P 2, of axes X and Z.
  • the first housing 17 is delimited externally by the planes Pi and P2.
  • the pump 40 for setting in motion the fluid may project slightly beyond the planes Pi and P2. This configuration makes it possible to reduce the extension of the nebulization system 1, along the X and Y axes, and consequently its size.
  • the fluid movement pump 40 is fluidly connected to said primary reservoir 10 via a channel 41. As illustrated in FIG. 3, this channel 41 extends essentially inside the reservoir primary 10. It forms a suction strainer 41 of the pump. This configuration is very advantageous. Indeed, it makes it possible to reduce the distance separating the pump 40 for setting in motion the fluid of the primary reservoir 10, to improve the compactness of the nebulization system.
  • the fluid movement pump 40 is in fluid communication with the nebulization chamber 50 by means of a filtration system 70.
  • the filtration system 70 allows, in the event that bacteria are present in said fluid, to filter them, or even to kill them. Its functioning will be described later.
  • a first external pipe (not shown) fluidly connects the pump 40 and the filtration system 70 via a fitting 42 of the pump and a fitting 71 of the filtration system (figs. 3 and 4).
  • a second external pipe (not shown) fluidly connects the filtration system 70 to the nebulization enclosure 50 via a connection 73 of the filtration system and a connection 56 of the nebulization enclosure (FIGS. 1 and 2).
  • FIG. 7 schematically summarizes the route taken by the fluid from the secondary reservoir 20 to its dispersion in the form of mist in the nebulization enclosure 50.
  • the fluid movement pump 40 and the atomizer 53 are ideally located on the same side with respect to the nebulization enclosure. They are thus advantageously both positioned near the filtration system 70, which allows on the one hand to reduce the distance traveled by the fluid between the pump 40 and the nebulization chamber 50 and on the other hand to improve the compactness of the nebulization system.
  • said primary reservoir 10 is only in communication with the secondary reservoir 20 and the fluid movement pump 40. This limits, even more, the proliferation of bacteria and the formation of silt at the bottom of said primary reservoir 10. However, it can also be connected to the nebulization chamber by a recovery system 80, 82 of large drops which will be described later.
  • the primary reservoir 10 preferably forms a second housing 18 in which the filtration system 70 of the fluid extends.
  • the primary reservoir 10 is delimited, at a distal edge 16, by a plane, P3, of axes Y and Z.
  • the second housing 18 is delimited externally by the planes P2 and P3.
  • the filtration system 70 may extend slightly beyond the planes P2 and P3.
  • FIG. 4 it can be seen that a connector provided for a pipe projects substantially beyond the plane P3. This configuration makes it possible to reduce the size of the nebulization system 1, along the X and Y axes.
  • the filtration system 70 can conventionally comprise a membrane, or even an antibacterial barrier (not shown), adapted to filter the bacteria.
  • “Filter” means that the membrane traps, or even stops, bacteria. However, the use of such a membrane has limits. Indeed, the membrane traps bacteria without killing them.
  • the membrane in the long term, in addition when the fluid used has an uncontrolled concentration of bacteria, the membrane accumulates a high proportion of bacteria. In this, the membrane is more effective in blocking bacteria arriving on its upstream wall relative to the direction of circulation of the fluid. However, this induces a significant pressure drop, that is to say that the pressure required to pass through it increases, which results in a loss of flow.
  • a nebulization system equipped with such a filtration system 70 then generates a lower mist flow. In order to remedy this situation, the driver or any other person would therefore be forced to replace the filtration system.
  • the filtration system 70 may advantageously comprise an ultraviolet radiation generator 72.
  • the generator 72 is connected to a fluid inlet of the filtration system 70 via the connector 71 and / or to a fluid outlet from said filtration system 70 via the fitting 73.
  • the generator 72 of ultraviolet radiation is capable of killing the bacteria contained in the fluid. Such a generator 72 is particularly advantageous because it makes it possible to kill bacteria and not simply trap them.
  • a generator 72 comprises a source 74 capable of emitting ultraviolet radiation.
  • the source 74 emits radiation having a wavelength between 100 and 280 nm.
  • the share of effective radiation that is, the share of radiation that kills bacteria is between 200 and 280 nm.
  • the radiation source can emit between 280 and 400 nm even if the performance is lower in terms of the proportion of bacteria killed.
  • the ultraviolet radiation generator 72 consists of a photolysis reactor with light-emitting diodes emitting between 100 and 280 nm.
  • Light emitting diodes 74 are sources with many advantages. They have a low consumption, operate on DC supply voltage and do not cause any problem of electromagnetic compatibility, which facilitates their integration within the system. They also have small dimensions which allows to keep a compact system. In addition, they do not require the use of mercury and have a long service life, which is an advantage for recycling and maintenance issues.
  • FIG. 8 shows the best performance of the invention compared to the other methods used for the test.
  • the generator 72 of ultraviolet radiation is supplied with electricity by means of the power supply module, Maiim.
  • the Mann power supply module is adapted to apply to said generator 72 a voltage U g , called the supply voltage of the generator 72.
  • the supply voltage U g of the generator can be equal to the supply voltage U P of the pump 40.
  • the power module thus common to the pump 40 and to the UV radiation generator. This allows on the one hand to reduce the cost of such a system and on the other hand to simplify the electrical assembly of the nebulization system 1 since it is possible to supply either the generator 72 and the pump 40. This further allows to gain compactness.
  • the supply voltage of the generator U g is a direct voltage between 10 and 16V.
  • the supply voltage U P of the pump 40 for setting the fluid in motion is between 10 and 16 V.
  • FIG. 5a An example of a generator 72 of ultraviolet radiation which may be suitable for the nebulization system 1 is illustrated in FIG. 5a. It is composed of two cavities 75, 76.
  • a first cavity 75 comprises the source of ultraviolet radiation, preferably consisting of a photolysis reactor with light-emitting diode, and a second cavity 76 is dedicated to the circulation of water and intended for cooling. from the source of ultraviolet radiation, for example an LED, which when used for a long period is caused to heat up.
  • the membrane and the generator 72 of ultraviolet radiation can be combined, within the filtration system 70, the membrane and the generator 72 of ultraviolet radiation.
  • the filtration system 70 can be compartmentalized so that the membrane is located upstream of the generator 72 relative to the direction of circulation of the fluid in said filtration system 70. In other words, the fluid passes through the membrane at first. then the generator 72 of UV radiation in a second step.
  • the membrane plays the role of a pre-filter so that if particles are present in the fluid, they are preferably stopped before reaching the generator 72 of UV radiation.
  • this configuration is advantageous in that if bacteria have accumulated at the level of the membrane, the generator 72 of UV radiation being located downstream of said membrane, the latter is capable of killing the bacteria which would have proliferated from of this bacterial strain.
  • the fluid leaving the filtration system 70 then enters the nebulizer.
  • the generator 72 of ultraviolet radiation can be integrated into an element of said supply system other than the filtration system 70.
  • FIG. 5b illustrates an example of generator 72 of ultraviolet radiation. It can be fixed on the upper wall 1 1 of the primary tank 10. In other words, the generator 72 can be fixed above and in direct contact with the upper wall 1 1.
  • the generator 72 is less exposed to water and frost compared to a configuration where it would be fixed on the lower wall 12.
  • the nebulization system 1 is located at the center console of the vehicle and that said console being located at the level of a lower part of the vehicle, it may be exposed to such phenomena depending on the climatic conditions.
  • a filtration system 70 can be avoided, which makes it possible to reduce the size of the nebulization system 1.
  • the generator 72 being fixed above the primary reservoir 10, it is advantageously located so as to kill the bacteria which could have formed within said primary reservoir 10.
  • the bacteria being killed upstream of the pump relative to the direction of circulation of the fluid, this makes it possible to guarantee that the fluid penetrating into said pump, then into the nebulizer does not include bacteria still alive at the end of a certain number of cycles.
  • the generator 72 of ultraviolet radiation according to the exemplary embodiment illustrated in FIG. 5b is advantageously substantially planar.
  • substantially planar means that said generator 72 has a small thickness along the Z axis, and that it has appropriate dimensions along the longitudinal axis X and the transverse axis Y. In such a configuration, the generator 72 can easily be integrated into an empty space located between the nebulizer and the primary reservoir 10 so that its insertion into the nebulization system does not require resizing of the other parts.
  • the generator 72 is substantially planar and positioned above the primary reservoir 10, it can be placed in the immediate vicinity of the recovery system 80, 82 of large drops from the nebulizer. Thus, the cooling of the generator 72 of ultraviolet radiation can be even better controlled.
  • the fluid which flows from the nebulization enclosure 50 to the primary reservoir 10 advantageously makes it possible to cool the generator 72. It should also be noted that this configuration makes it possible to treat not only the fluid but also the air, origin of the bacteria, and the bottom of the primary reservoir 10, where most of the bacterial proliferation is concentrated.
  • the nebulizer comprises a nebulization enclosure 50.
  • the nebulization enclosure 50 comprises at least one nebulization chamber 51 and a nebulization chimney 54.
  • the nebulization chamber 51 and the nebulization chimney 54 are arranged, here, one after the other in the direction of the longitudinal axis X.
  • the nebulization chamber 51 and the nebulization chimney 54 are coaxial. They are cylindrical in shape with a generally circular, concentric section. It can be noted that the nebulization chamber 51 has a larger cross section than that of the nebulization chimney 54.
  • the nebulization chamber 51 also includes a nebulization nozzle 52 provided with the atomizer 53.
  • the longitudinal axis of the nebulization nozzle 52 is substantially parallel to the longitudinal axis X, in this case it is horizontal in Figure 6.
  • the nebulization nozzle 52 is arranged at least partially inside the chamber nebulization 51.
  • the insertion of the nebulization nozzle 22 may be carried out via an opening (not shown) with, if necessary, interposition of a seal (also not shown).
  • the nebulization nozzle 52 has a side wall defining an interior volume capable of containing the liquid to be nebulized.
  • the inner cross section of this side wall may have a gradual narrowing in the direction of an outlet for the fluid.
  • the progressive shrinkage forms a concentrator of acoustic waves.
  • the nebulization nozzle 52 also includes at least one inlet orifice 52a for the fluid to be nebulized which allows the introduction of the fluid into the interior volume of the nozzle.
  • the inlet port 52a is in fluid communication with the pump and / or the filter.
  • a plurality of inlet orifices 52a, for example four, for the fluid are provided around the longitudinal axis X of the nebulization nozzle 52, in an area close to the atomizer 53.
  • the orifices 52a are preferably distributed angularly around the longitudinal axis X.
  • the nebulization nozzle 52 also comprises at least one outlet orifice 52b through which a part of the fluid is expelled from said nozzle 52 while being transformed into droplets when the atomizer is supplied.
  • the outlet orifice 52b is preferably located at an equal distance from all the inlet orifices 52a in the event that the nozzle 52 has a plurality of inlet orifices 52a.
  • the atomizer 53 consists of a piezoelectric element (ceramic).
  • the piezoelectric element is capable of emitting acoustic waves in the fluid to be nebulized, which makes it possible to generate a mist of droplets of the fluid when the nebulization nozzle 52 is filled by the latter and when the piezoelectric element emits acoustic waves of appropriate frequency and intensity.
  • the piezoelectric element may emit ultrasound, the frequency of which will be between 1 MHz and 3 MHz, in particular between 1, 7 MHz and 2.4 MHz.
  • the piezoelectric element is, for example, made of lead titano-zirconate.
  • the diameter of the droplets contained in the fog follows a Gaussian profile located between 0 and 20 ⁇ m, this profile being centered on 2 to 3 ⁇ m in terms of number of drops and on 8 to 10 ⁇ m in terms of volume of drops.
  • the nebulizer is fluidly connected to the system 60 for generating a vector flow, in particular an air flow.
  • the system 60 for generating a vector flow is located on the other side of the nebulization system 1, in particular between the primary reservoir 10 and the secondary reservoir 20 (FIG. 1). More precisely, and as can be seen in FIG. 4, it is advantageously located at the level of a third housing 19 formed by the primary reservoir 10.
  • the primary reservoir 10 is delimited, at the level of a second lateral border 13, by a plane, P 4 , of axes Y and Z.
  • the third housing 19 is delimited externally by said plane P 4 .
  • the vector flow generation system may extend slightly beyond the plane P 4 , and therefore the third housing 19. This configuration makes it possible to reduce the extension, along the Y axis, of the nebulization system 1 and therefore its size.
  • the system 60 for generating a vector flow can be positioned indifferently around the nebulization enclosure 50.
  • the system 60 for generating a vector flow, in particular of air, is connected to the nebulization chamber 50 at the level of the nebulization chimney 54 so as to generate an air flow inside said chimney nebulization 54.
  • Air from the generation system 60 enters the chimney 54 via a supply channel 62 (fig. 6).
  • This supply channel 62 comprises a filter and an air flow generator (not visible) making it possible to generate an air flow whose flow rate is between 5 and 10 m 3 / h (cubic meter per hour).
  • the droplets leaving the spray nozzle 52 are transported in the form of a spray of droplets from the spray chimney 54 to an outlet 55 of the spray enclosure 50, as illustrated by dotted arrows at the figure 6.
  • the flow rate of the droplet mist generated at the level of the nebulization chimney is substantially equal to the flow rate of fluid flowing in the primary tank 10. This flow rate is between 0 and 20 ml_ / mm (milliliter per minute ) about.
  • the nebulization chamber 50 preferably measures between 10 and 20 cm. In other words, the distance between a distal edge of the nebulization chamber and the outlet 55 of said nebulization chamber is between 10 and 20 cm. This distance is sufficient to allow the generation and then the transport of the droplets of the fluid from the atomizer 53 to the outlet 55, via the nebulization chimney 54.
  • the nebulization chimney 54 comprises an inclined portion 54a, which in this case is inclined upwards from the nebulization system 1.
  • the inclined portion 54a allows, because of its inclination, to filter the droplets according to their weight.
  • the inclined portion 54a is selective as regards the weight of the droplets.
  • the system 80, 82 for recovering large drops comprises a first return large coarse 80 located near the distal edge 16 and a second return 82 large drop 82 located near the proximal edge 14 of the primary reservoir 10.
  • the large drop returns 80, 82 are in fluid communication with the primary reservoir 10, which allows the fluid coming from the nebulization chamber 50 to directly reach the primary reservoir 10 by gravity without having use of additional pipes.
  • the large drop returns 80, 82 may consist of fluidic connections having an enlarged portion at the level of the nebulization enclosure 50.
  • the fluid flows through the recovery system 80, 82 of the large drops with a flow rate of approximately 1 L / min (liter per minute).
  • the simplified representation of the route is illustrated in Figure 7.
  • the fluid movement pump 40, the filtration system 70, the nebulization chamber 50 (including the chimney 54), and the primary tank 10 form a closed loop circuit.
  • the route of the fluid within the nebulization system 1 is thus not only optimized but also makes it possible to avoid any loss of fluid.
  • the mode of operation of the nebulization system 1 is recalled below.
  • the fluid is initially contained in the secondary tank 20 within which it is kept sheltered from the outside atmosphere.
  • the fluid then flows from the secondary tank 20 to the primary tank 10, without being able to flow in the opposite direction.
  • the fluid is then transported to the filtration system 70 by means of the pump 40 for setting in motion the fluid.
  • the fluid supply system is equipped with the filtration system 70 (Figs, 1 -4; 6)
  • the fluid reaches the filtration system 70. It is filtered there and / or the bacteria which it contains are eliminated.
  • the fluid then flows from the filtration system 70 to the nebulizer.
  • the fluid directly reaches the nebulizer after it has passed through the pump 40.
  • the fluid is then transformed into droplets at the level of a nebulization nozzle 52 by means of an atomizer 53.
  • the fluid On leaving the nebulization nozzle 52, the fluid enters a nebulization chimney 54 where it will be transported towards the outlet from the nebulization chamber 55 in the form of a mist.
  • the vector flow generation system 60 generates the vector flow inside the chimney 54.
  • the fine droplets come out of the nebulization system 1, carried away by the vector flow, by the inclined portion 54a of the nebulization chimney, while the large droplets, under the effect of their weight, fall back into the right portion 54b of the chimney. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Nozzles (AREA)

Abstract

L'invention concerne un système de nébulisation (1) pour véhicule automobile comprenant : - un système d'alimentation comportant un réservoir primaire (10) pour un fluide et un réservoir secondaire (20) alimentant en fluide ledit réservoir primaire (10), et - une enceinte de nébulisation (50) s'étendant longitudinalement, le réservoir primaire (10) et le réservoir secondaire (20) étant situés côte à côte le long de l'enceinte de nébulisation (5).

Description

SYSTEME DE NEBULISATION POUR VEHICULE AUTOMOBILE
L’invention concerne un système de nébulisation pour véhicule automobile. Il est plus particulièrement destiné à la génération de fines gouttelettes permettant de rafraîchir et/ou d’humidifier un flux vecteur, notamment un flux d’air de sorte à former un brouillard rafraîchissant.
Dans un habitacle d’un véhicule automobile, il n’est pas rare que les usagers du véhicule souffrent de la chaleur dans l’habitacle, et, en particulier, les passagers arrière.
De ce fait, il est intéressant de recourir à un système de nébulisation, car le brouillard de gouttelettes rafraîchit rapidement l’air de l’habitacle, assurant une sensation de froid immédiate. En appoint à la climatisation traditionnelle, il ré-humifie l’ai généré trop sec.
Les dispositifs existants comprennent classiquement un réservoir de liquide et une enceinte de nébulisation du liquide muni d’un atomiseur piézoélectrique qui, en émettant des ondes acoustiques à une certaine fréquence, permet de transformer le liquide en gouttelettes. Portées par le flux vecteur, les fines gouttelettes s’échappent du système de nébulisation pour être acheminées jusque dans l’habitacle du véhicule. Plus le réservoir présente une capacité importante, plus l’autonomie du système de nébulisation est importante. On souhaite donc disposer de réservoirs de grandes tailles. Cependant, ceci est au détriment de l’encombrement des dispositifs proposés jusqu’à maintenant, qui n’est pas satisfaisante.
L’invention se propose de surmonter les inconvénients précités et propose à cet effet un système de nébulisation pour véhicule automobile comprenant :
- un système d’alimentation comportant un réservoir primaire pour un fluide et un réservoir secondaire alimentant en fluide ledit réservoir primaire, et
- une enceinte de nébulisation s’étendant longitudinalement,
ledit système de nébulisation étant caractérisé en ce que le réservoir primaire et le réservoir secondaire sont situés côte à côte le long de l’enceinte de nébulisation. On dispose ainsi d’un système de nébulisation dans lequel le réservoir primaire et le réservoir secondaire étant situés côte à côte le long de l’enceinte de nébulisation, les dimensions du système sont réduites selon au moins une direction d’extension dudit système de nébulisation. Cela permet d’améliorer la compacité du système de nébulisation. Un tel système peut alors plus facilement être intégré, entre autre, dans une console centrale du véhicule automobile.
Selon différentes caractéristiques de l’invention qui pourront être prises ensemble ou séparément :
- le système de nébulisation présente une configuration sensiblement parallélépipédique ;
- le système de nébulisation comprend une pompe de mise en mouvement du fluide communiquant avec le système d’alimentation ;
- ladite pompe de mise en mouvement du fluide est reliée de manière fluidique audit réservoir primaire par l’intermédiaire d’une canalisation interne ;
- le réservoir primaire forme préférentiellement un premier logement dans lequel la pompe de mise en mouvement du fluide s’étend ;
- l’enceinte de nébulisation comprend un atomiseur apte à transformer le fluide venant de ladite pompe en gouttelettes ;
- la pompe et l’atomiseur sont situés du même côté ;
- chacun parmi l’enceinte de nébulisation, le réservoir primaire et le réservoir secondaire est situé côte à côte avec chacun des deux autres ;
- l’enceinte de nébulisation et le réservoir secondaire sont situés au même niveau et sont en vis-à-vis d’une grande face du réservoir primaire ;
- l’enceinte de nébulisation, le réservoir primaire et le réservoir secondaire présentent des dimensions sensiblement identiques selon un axe longitudinal d’extension du système de nébulisation ;
- l’enceinte de nébulisation présente une longueur, selon l’axe longitudinal, comprise entre 10 et 20 cm ; - le réservoir primaire présente un volume compris entre 10 et 150 ml_ ;
- le réservoir secondaire présente une paroi inférieure épousant, au moins en partie, la forme du réservoir primaire ;
- le réservoir secondaire présente une paroi latérale épousant, au moins en partie, la forme de l’enceinte de nébulisation.
- le système de nébulisation comprend en outre un système de filtration du fluide contenu dans le réservoir primaire ;
- ledit système de filtration s’étend au niveau d’un deuxième logement formé par le réservoir primaire ;
- le système de nébulisation comprend un générateur de rayonnement ultraviolet fixé sur une paroi supérieure du réservoir primaire ;
- le générateur de rayonnement ultraviolet est sensiblement plan ;
- le système de nébulisation, en particulier ladite enceinte de nébulisation, comprend un système de récupération des grosses gouttes ;
- ledit système de récupération est situé au niveau du réservoir primaire ;
- le système de récupération des grosses gouttes communique avec le réservoir primaire ;
- le système de nébulisation comprend en outre un générateur de flux apte à générer un flux vecteur destiné à entraîner les gouttelettes à l’extérieur du système de nébulisation ;
- ledit générateur de flux s’étend au niveau d’un troisième logement formé par le réservoir primaire.
Présentation des figures
D’autres objets, caractéristiques et avantages de l’invention apparaîtront plus clairement dans la description qui suit, faite en référence aux figures annexées, dans lesquelles : - La figure 1 est une vue schématique, en perspective, d’un système de nébulisation selon l’invention comprenant un système d’alimentation en fluide et un nébuliseur ;
- la figure 2 est une vue schématique, en perspective, du système de nébulisation de la figure 1 , selon un autre angle de vue que celui illustré à la figure 1 ;
- la figure 3 est une vue selon la coupe longitudinale A-A du système de nébulisation, le plan en coupe étant vertical au niveau d’un clapet d’alimentation entre un réservoir primaire et un réservoir secondaire;
- la figure 4 est une vue de dessous du système de nébulisation de la figure 1 ;
- la figure 5a est une vue schématique, en section, d’un générateur de rayonnement ultraviolet à deux cavités pouvant être utilisé avec ou sans système de filtration ;
- la figure 5b est une vue côté nébuliseur du système de nébulisation de la figure 1 , sans le système de filtration ;
- la figure 6 est une vue selon la coupe longitudinale B-B du système de nébulisation, le plan en coupe étant vertical au milieu d’un générateur de brouillard ;
- la figure 7 illustre de manière schématique l’itinéraire emprunté par le fluide dans le système de nébulisation ;
- la figure 8 présente l’évolution de la concentration en bactéries pour différents systèmes de filtration après une heure de recirculation au sein du système de nébulisation : les résultats obtenus avec le système de filtration utilisé dans le système de nébulisation selon l’invention sont représentés par la courbe ayant des symboles en forme de croix (à barres verticale et horizontale).
Description détaillée
En référence aux figures 1 et 2, l’invention concerne un système de nébulisation 1 comprenant un système d’alimentation en fluide et un nébuliseur. Le système de nébulisation 1 présente ici une configuration sensiblement parallélépipédique. Il s’étend longitudinalement selon un axe longitudinal X et présente des dimensions réduites selon un axe transversal Y, ledit axe Y étant orthogonal à l’axe X, et un axe Z, orthogonal aux axes X et Y, mais appropriées au dimensionnement du système d’alimentation et du nébuliseur selon la configuration sensiblement parallélépipédique.
Le système de nébulisation 1 est destiné à générer un brouillard de gouttelettes apte à rafraîchir rapidement l’air de l’habitacle d’un véhicule et assurant une sensation de froid immédiate pour les passagers dudit véhicule. Il est situé, par exemple, dans une console centrale localisée entre deux sièges situés à l’avant du véhicule automobile et est ainsi caché à la vue des passagers. Cet emplacement est pratique pour permettre une diffusion du brouillard de gouttelettes en direction des sièges situés à l’arrière du véhicule lorsque ledit système de nébulisation 1 est en fonctionnement.
À cet égard, le nébuliseur comprend une enceinte de nébulisation 50 alimentée en fluide par le système d’alimentation. Comme cela peut être mieux vu à la figure 2, l’enceinte de nébulisation 50 consiste en un corps creux de forme allongée s’étendant longitudinalement selon l’axe longitudinal X. Elle comprend un atomiseur 53 (figure 6) apte à générer des ondes acoustiques de sorte que le fluide provenant du système d’alimentation soit transformé en fines gouttelettes, c’est-à- dire nébulisé, puis répandu sous forme de brouillard dans l’habitable du véhicule. Le principe de fonctionnement de l’atomiseur 53 sera décrit plus loin.
Le brouillard de gouttelettes étant en contact direct avec les passagers du véhicule, il est primordial de maîtriser la concentration du fluide en bactéries. Une première manière de contrôler cette concentration en bactérie consiste à utiliser un fluide contenant peu ou pas d’éléments organiques, notamment des bactéries. Il est donc préférable que le fluide destiné à alimenter le nébuliseur soit de l’eau minérale ou de l’eau distillée ou tout autre fluide dont la concentration en bactéries est relativement faible.
Cette solution est certes intéressante, mais présente une efficacité limitée dans le temps, notamment lorsque le fluide est amené à stagner au sein du système de nébulisation 1. En effet, à moyen termes, même si le fluide contient initialement très peu ou pas de bactéries, le réservoir non stérilisé dans lequel il est conservé engendre une prolifération des bactéries. Il est alors susceptible de former des amas, ou encore des agrégats, qui forment un dépôt de boue, conventionnellement appelé « vase » ou « bio-film » dans le réservoir du système de nébulisation et dont la concentration en bactéries peut être élevée.
Une deuxième manière de contrôler cette contamination consiste d’une part à isoler le fluide de l’atmosphère extérieure durant la phase précédant sa nébulisation, et d’autre part à limiter le plus que possible la période de stagnation du fluide dans le système de nébulisation 1 , et plus particulièrement au sein du réservoir. De cette manière, on peut prévenir, ou au moins retarder substantiellement, la prolifération des bactéries et la formation de vase au sein du réservoir.
À cet égard, le système d’alimentation selon l’invention comprend un réservoir primaire 10 pour l’alimentation en fluide du nébuliseur, et un réservoir secondaire 20. En d’autres termes, le système d’alimentation comprend deux réservoirs distincts, le réservoir secondaire 20 étant monté sur le réservoir primaire 10 de façon amovible.
Selon l’invention, le réservoir primaire 10 et le réservoir secondaire 20 sont situés côte à côte le long de l’enceinte de nébulisation 50. Cela permet d’améliorer la compacité du système de nébulisation 1 , et ainsi, faciliter l’intégration dudit système de nébulisation dans son environnement.
Avantageusement, chacun parmi l’enceinte de nébulisation 50, le réservoir primaire 10 et le réservoir secondaire 20 est situé côte à côte avec chacun des deux autres. Autrement dit, le réservoir primaire 10 est situé côte à côte avec l’enceinte de nébulisation 50 et avec le réservoir secondaire 20, ici selon l’axe Z, tandis que le réservoir secondaire 20 est situé côte à côte avec l’enceinte de nébulisation 50, ici selon l’axe Y. Il en résulte que le système de nébulisation 1 présente de faibles dimensions selon l’axe transversal Y et l’axe Z, ce qui permet encore plus d’améliorer sa compacité et de faciliter son intégration au sein de la console centrale.
Avantageusement, encore, on peut remarquer que l’enceinte de nébulisation 50 et le réservoir secondaire 20 sont situés au même niveau. En l’espèce, l’enceinte de nébulisation 50 et le réservoir secondaire 20 sont situés au niveau d’une portion supérieure 2 du système de nébulisation 1. Le réservoir primaire 10 s’étend, quant à lui, essentiellement dans une portion inférieure 3 dudit système de nébulisation 1. Il comprend une paroi supérieure 1 1 et une paroi inférieure 12. Le réservoir secondaire 20 et l’enceinte de nébulisation 50 sont situés en vis-à-vis de la paroi supérieure 1 1.
De manière très avantageuse, on peut également remarquer que le réservoir primaire 10 et le réservoir secondaire 20 présentent des dimensions sensiblement identiques selon l’axe longitudinal X.
Encore plus avantageusement, le réservoir secondaire 20 présente une paroi inférieure 22 épousant, au moins en partie, la forme du réservoir primaire 10. Ladite paroi inférieure 22 est en vis-à-vis de la paroi supérieure 1 1 du réservoir primaire 10 et en suit les contours. Elle est également en vis-à-vis d’un système de génération 60 d’un flux vecteur qui sera décrit plus loin. Le réservoir secondaire 20 est ainsi disposé de manière rapprochée du réservoir primaire 10 et dudit système de génération 60 du flux vecteur. Le réservoir primaire 10, le réservoir secondaire 20 et le système de génération 60 d’un flux vecteur apparaissent comme imbriqués les uns dans les autres.
De plus, le réservoir secondaire 20 présente une paroi latérale 24 épousant, au moins en partie, la forme de l’enceinte de nébulisation 50. Le réservoir secondaire 20 et l’enceinte de nébulisation 50 sont ainsi très rapprochés l’un de l’autre, ce qui permet d’améliorer encore plus la compacité du système de nébulisation 1.
Avantageusement, le réservoir primaire 10 pour le fluide présente un volume limité. Ce volume est limité en ce qu’il ne constitue pas l’essentiel, c’est-à-dire la part la plus importante du volume rendu disponible par l’ensemble desdits réservoirs primaire 10 et secondaire 20. En cela, le réservoir primaire 10 forme un réservoir tampon.
Préférentiellement, le réservoir secondaire 20 est isolé de l’atmosphère extérieure. Autrement dit, il est hermétiquement clos avant toute utilisation. Il est destiné à être préalablement rempli de fluide. Ledit réservoir secondaire 20 se présente donc sous la forme d’un réservoir « prêt à l’emploi » rempli du fluide à nébuliser. En d’autres termes encore, il forme un réservoir d’appoint. Ainsi, à l’exception de la période comprise entre son chargement dans le réservoir secondaire 20 et la fermeture dudit réservoir 20, le fluide est conservé, au moins jusqu’à utilisation dans le système de nébulisation 1 , à l’abri de l’atmosphère extérieure et des sources de pollution diverses.
Préférentiellement, également, le réservoir secondaire 20 est en communication fluide avec le réservoir primaire 10 de façon monodirectionnelle afin d’autoriser une circulation du fluide depuis le réservoir secondaire 20 vers le réservoir primaire 10. Dans une telle configuration, la communication entre lesdits réservoirs primaire 10 et secondaire 20 étant monodirectionnelle, le fluide ne peut pas circuler en sens inverse, c’est-à-dire depuis le réservoir primaire 10 vers le réservoir secondaire 20, une fois qu’il est dans le réservoir primaire 10.
Dans cette configuration, le réservoir secondaire 20 étant isolé de l’atmosphère extérieure, en particulier avant utilisation, il est particulièrement bien adapté à un stockage durable du fluide. Autrement dit, le réservoir secondaire 20 convient à un stockage sur une période de temps relativement longue du fluide. Après mise en place du réservoir secondaire 20, le fluide ainsi conservé pénètre dans le réservoir primaire 10 en ayant été peu ou pas exposé aux bactéries. Concomitamment, le réservoir primaire 10 ayant un volume limité, il favorise un stockage transitoire, c’est-à-dire limité dans le temps, du fluide ce qui est particulièrement avantageux dans le cadre de l’invention.
Précisons, en effet, que lorsque le système de nébulisation 1 de l’invention est en fonctionnement, le fluide contenu dans le réservoir primaire 10 est continuellement pompé afin d’être transformé en gouttelettes dans l’enceinte de nébulisation 50. Parallèlement, et de manière tout aussi continuelle, le fluide venant du réservoir primaire 10 et nébulisé est substitué par le fluide encore contenu dans le réservoir secondaire 20. Ceci limite, avantageusement, considérablement le phénomène de stagnation du fluide et, à moyen termes, la formation de vase au fond du réservoir primaire 10. En outre, le volume limité du réservoir primaire 10 permet de limiter la proportion de fluide amené à stagner lorsque le système de nébulisation 1 n’est pas en fonctionnement.
Le fluide s’écoule depuis le réservoir secondaire 20 vers le réservoir primaire 10 par gravité de sorte que la communication fluide entre lesdits réservoirs primaire 10 et secondaire se fasse de façon monodirectionnelle. Le système d’alimentation peut comprendre un clapet d’alimentation 30 permettant une communication fluide entre le réservoir primaire 10 et le réservoir secondaire 20.
De préférence, le clapet d’alimentation 30 peut être situé au niveau d’une partie, dite haute, du réservoir primaire 10 rapprochée du réservoir secondaire 20 et une partie, dite basse, du réservoir secondaire 20 rapprochée du réservoir primaire 10. Le clapet d’alimentation 30 est, de préférence, monté de manière étanche sur la partie haute du réservoir primaire 10 afin d’éviter toute perte lors de la circulation du fluide entre les deux réservoirs 10, 20. Il permet encore d’éviter toute perte de fluide lorsque le réservoir secondaire 20 est retourné.
À cet égard, et comme cela peut être mieux vu à la figure 3 qui illustre une vue en coupe longitudinale du système de nébulisation 1 selon le plan de coupe A-A de la figure 2, le clapet d’alimentation 30 comprend un orifice d’admission 33 du fluide dans le réservoir primaire 10. Préférentiellement, l’orifice d’admission 33 est lui- même situé dans le réservoir primaire 10.
Il est, plus précisément, séparé d’une paroi supérieure du réservoir primaire 10 par une distance, d, appropriée de sorte que le niveau maximum de fluide qui peut être atteint dans le réservoir primaire 10 est limité à un plan, dans le cas d’espèce sensiblement horizontal, passant par l’orifice d’admission 33. Ce niveau maximum de remplissage du réservoir primaire 10 permet de garantir une circulation du fluide uniquement depuis le réservoir secondaire 20 vers le réservoir primaire 10. Cela dit, cette fonction peut être réalisée en utilisant d’autres moyens/méthodes connu(e)s de l’homme du métier, comme par exemple des clapets à ressort tels que ceux utilisés dans les systèmes de nébulisation pour habitats ou encore des systèmes pilotés à électrovannes, ces derniers étant plus complexes à utiliser et plus coûteux.
Préférentiellement, le réservoir primaire 10 est maintenu à demeure dans le système d’alimentation, tandis que, comme déjà dit, le réservoir secondaire 20 est détachable du réservoir primaire 10. Dans une telle configuration, une fois que le réservoir secondaire 20 est complètement vidé du fluide, celui-ci peut être remplacé par un nouveau réservoir 20 par le conducteur du véhicule, ou toute autre personne. Cela permet d’éviter que le conducteur du véhicule n’ait à remplacer l’ensemble du système de nébulisation 1 à chaque fois que le fluide est épuisé ou ne remplisse un réservoir avec un fluide d’origine non contrôlée.
Autrement dit, le réservoir primaire 10 est avantageusement fermé. On entend par là que le remplissage du réservoir primaire 10 n’est pas effectué par un circuit ouvert mais au moyen du réservoir secondaire 20 qui est lui-même isolé de l’atmosphère extérieure.
S’il le souhaite, le conducteur du véhicule peut utiliser un réservoir secondaire 20 de remplacement contenant un fluide dont les propriétés sont similaires, notamment en ce qui concerne la concentration en bactéries, à celle du réservoir secondaire 20 initialement prévu, i.e. intégré, dans le système de nébulisation 1. Cela dit, le fluide peut comprendre d’autres constituants, qui lui confère, par exemple, des senteurs ou d’autres propriétés, à condition que ceux-ci ne présentent pas de danger pour la santé de l’utilisateur. Par exemple, le fluide peut contenir une goutte de fragrance.
Un exemple de clapet d’alimentation 30 qui conviendrait au système d’alimentation de la configuration ci-dessus mentionnée peut être formé pour coopérer avec un col 32 situé au niveau de la partie basse du réservoir secondaire 20 et délimitant l’orifice d’admission 33. Il comprend un organe mâle 31 en saillie de la partie haute dudit réservoir primaire 10, ledit organe mâle étant apte à s’insérer dans le col 32.
Ledit col 32 est configuré pour être inséré dans une ouverture prévue dans la paroi supérieure 1 1 du réservoir primaire 10. Avant usage, le col 32 est fermé, par exemple, par un opercule apte à être percé par l’organe mâle 31.
L’organe mâle 31 est plus particulièrement apte à occuper une première position dans laquelle aucun réservoir secondaire 20 n’est présent, et une position où une pression est exercée par le col 32 et dans laquelle l’orifice d’admission 33 est en configuration ouverte et laisse passer le fluide.
Lorsque l’organe mâle 31 est inséré dans ledit col 32, l’orifice d’admission 33 passe ainsi en configuration ouverte et le réservoir secondaire 20 et le réservoir primaire 10 sont raccordés de manière fluidique. Plus précisément, le fluide circule depuis le réservoir secondaire 20 vers le réservoir primaire 10, mais la circulation inverse n’est pas possible pour les motifs précités. Avantageusement, le réservoir primaire 10 présente un volume compris entre 10 et 150 ml_. Comme cela a été précisé précédemment, ce volume ne doit pas être trop élevé afin de limiter la période durant laquelle le fluide est stocké dans le réservoir primaire 10.
De plus, un volume minimum de fluide est requis afin de permettre l’amorçage de la pompe 40 lorsque le système de nébulisation 1 est mis en marche. De plus, encore, le niveau de fluide dans le réservoir primaire 10 ne doit pas être trop faible au risque de nuire au bon fonctionnement du nébuliseur, lui-même, lorsque le système 1 est en marche. En effet, si le nébuliseur est insuffisamment alimenté en fluide, et notamment l’atomiseur 53, celui-ci peut subir une usure prématurée obligeant le conducteur du véhicule à le remplacer dans son intégralité.
À cet égard, le réservoir primaire 10 peut être équipé d’un capteur 35 de niveau apte à détecter un volume insuffisant de fluide dans ledit réservoir primaire 10. Le capteur de niveau 35 peut être positionné de manière appropriée au sein du réservoir primaire 10 afin de détecter lorsque le volume de fluide est inférieur à 50 mL.
Préférentiellement, le volume du réservoir secondaire 20 est supérieur au volume du réservoir primaire 10. Comme cela a été précisé précédemment, le réservoir secondaire 20 est plus adapté au stockage durable du fluide car il est préalablement rempli de fluide et isolé de l’atmosphère extérieure. Concomitamment, le réservoir primaire 10 ayant un volume limité, il favorise un stockage transitoire du fluide. En optant pour un réservoir secondaire 20 ayant un volume supérieur à celui du réservoir primaire 10 on favorise la conservation du fluide à l’abri des sources de pollution extérieures et, parallèlement, on limite encore plus la quantité de fluide circulant au sein du système de nébulisation et la quantité de fluide susceptible d’être polluée par l’air. De plus, on facilite et on accélère le nettoyage dudit fluide.
En pratique, bien qu’il n’y ait pas de limite maximale en ce qui concerne le volume du réservoir secondaire 20, il est néanmoins avantageux que celui-ci ait un volume approprié à son dimensionnement provenant de son positionnement côte à côte le long de l’enceinte de nébulisation 50. Cela permet, en effet, d’avoir un système de nébulisation 1 dont la compacité est améliorée. Comme cela a été mentionné précédemment, le système d’alimentation comprend, de préférence, une pompe 40 de mise en mouvement du fluide. La pompe 40 est configurée pour alimenter l’enceinte de nébulisation 50 du fluide venant du réservoir primaire 10. Elle est avantageusement située en aval du réservoir primaire 10 et en amont de l’enceinte de nébulisation 50 relativement à la direction d’écoulement du fluide.
Préférentiellement, la pompe 40 de mise en mouvement du fluide est alimentée en électricité au moyen d’un module d’alimentation électrique (non illustré), MANGP, aux fins de son amorçage. Le module d’alimentation électrique, Maiim, est adapté pour appliquer à ladite pompe 40 une tension UP, dite tension d’alimentation de la pompe.
Comme cela peut être mieux vu à la figure 4, le réservoir primaire 10 forme avantageusement un premier logement 17 dans lequel la pompe 40 de mise en mouvement du fluide s’étend. Le réservoir primaire 10 est délimité, au niveau d’une bordure proximale 14, par un plan, Pi, d’axes Y et Z (l’axe Z étant orthogonal de la figure 4) et, au niveau d’une première bordure latérale 15, par un plan, P 2, d’axes X et Z. Le premier logement 17 est délimité extérieurement par les plans Pi et P2. La pompe 40 de mise en mouvement du fluide peut déborder légèrement au-delà des plans Pi et P2. Cette configuration permet de réduire l’extension du système de nébulisation 1 , selon les axes X et Y, et par conséquent son encombrement.
La pompe 40 de mise en mouvement du fluide est reliée de manière fluidique audit réservoir primaire 10 par l’intermédiaire d’un canal 41. Comme cela est illustré à la figure 3, ce canal 41 s’étend essentiellement à l’intérieur du réservoir primaire 10. Il forme une crépine d’aspiration 41 de la pompe. Cette configuration est très avantageuse. En effet, elle permet de réduire la distance séparant la pompe 40 de mise en mouvement du fluide du réservoir primaire 10, d’améliorer la compacité du système de nébulisation.
En outre, la pompe 40 de mise en mouvement du fluide est en communication fluidique avec l’enceinte de nébulisation 50 par l’intermédiaire d’un système de filtration 70. Le système de filtration 70 permet, dans l’éventualité où des bactéries seraient présentes dans ledit fluide, de les filtrer, voire de les tuer.Son fonctionnement sera décrit plus loin. À cet égard, une première canalisation externe (non illustrée) relie de manière fluidique la pompe 40 et le système de filtration 70 via un raccord 42 de la pompe et un raccord 71 du système de filtration (figs. 3 et 4). De plus, une deuxième canalisation externe (non illustrée) relie de manière fluidique le système de filtration 70 à l’enceinte de nébulisation 50 via un raccord 73 du système de filtration et un raccord 56 de l’enceinte de nébulisation (figs. 1 et 2). La figure 7 résume de manière schématique l’itinéraire emprunté par le fluide depuis le réservoir secondaire 20 jusqu’à sa dispersion sous forme de brouillard dans l’enceinte de nébulisation 50.
La pompe 40 de mise en mouvement du fluide et l’atomiseur 53 sont idéalement situés du même côté par rapport à l’enceinte de nébulisation. Ils sont ainsi avantageusement tous deux positionné à proximité du système de filtration 70, ce qui permet d’une part de réduire la distance parcourue par le fluide entre la pompe 40 et l’enceinte de nébulisation 50 et d’autre part d’améliorer la compacité du système de nébulisation.
Ainsi, ledit réservoir primaire 10 est uniquement en communication avec le réservoir secondaire 20 et la pompe 40 de mise en mouvement du fluide. Cela limite, encore plus, la prolifération des bactéries et la formation de vase au fond dudit réservoir primaire 10. Cela étant, il pourra en outre être relié à l’enceinte de nébulisation par un système de récupération 80, 82 des grosses gouttes qui sera décrit plus loin.
Comme illustré à la figure 4, le réservoir primaire 10 forme préférentiellement un deuxième logement 18 dans lequel le système de filtration 70 du fluide s’étend. Le réservoir primaire 10 est délimité, au niveau d’une bordure distale 16, par un plan, P3, d’axes Y et Z. Le deuxième logement 18 est délimité extérieurement par les plans P2 et P3. Le système de filtration 70 peut déborder légèrement au-delà des plans P2 et P3. Sur la figure 4, on peut remarquer qu’un raccord prévu pour une canalisation déborde sensiblement au-delà du plan P3. Cette configuration permet de réduire l’encombrement du système de nébulisation 1 , selon les axes X et Y.
Le système de filtration 70 peut comprendre classiquement une membrane, ou encore une barrière antibactérienne (non illustrée), adaptée pour filtrer les bactéries. On entend par « filtrer » que la membrane piège, ou encore arrête, les bactéries. Cela dit, l’utilisation d’une telle membrane présente des limites. En effet, la membrane piège les bactéries sans les tuer. Ainsi, sur le long terme, de surcroît lorsque le fluide utilisé présente une concentration en bactéries non contrôlée, la membrane accumule une proportion élevée de bactéries. En cela, la membrane est plus efficace pour bloquer les bactéries arrivant sur sa paroi amont relativement au sens de circulation du fluide. Cependant, cela induit une perte de charge importante, c’est-à-dire que la pression nécessaire pour la traverser augmente, ce qui entraîne une perte de débit. Un système de nébulisation équipé d’un tel système de filtration 70 génère alors un débit de brouillard plus faible. Afin de remédier à cette situation, le conducteur ou toute autre personne, serait donc contraint à remplacer le système de filtration.
Alternativement ou cumulativement à l’utilisation de la membrane, le système de filtration 70 peut avantageusement comprendre un générateur de rayonnement ultraviolet 72. Préférentiellement, le générateur 72 est connecté à une entrée fluide du système de filtration 70 via le raccord 71 et/ou à une sortie fluide dudit système de filtration 70 via le raccord 73.
Le générateur 72 de rayonnement ultraviolet est apte à tuer les bactéries contenues dans le fluide. Un tel générateur 72 est particulièrement avantageux car il permet de tuer, les bactéries et non simplement les piéger. Préférentiellement, il comprend une source 74 apte à émettre le rayonnement ultraviolet.
De préférence, la source 74 émet un rayonnement ayant une longueur d’onde comprise entre 100 et 280 nm. La part de rayonnement efficace, c’est-à-dire la part de rayonnement qui permet de tuer les bactéries est située entre 200 et 280 nm. Toutefois, la source de rayonnement peut émettre entre 280 et 400 nm même si les performances sont moindres en termes de proportion de bactéries tuées.
De manière très avantageuse, le générateur de rayonnement ultraviolet 72 consiste en un réacteur à photolyse à diodes électroluminescentes émettant entre 100 et 280 nm. Les diodes électroluminescentes 74 sont des sources présentant de nombreux avantages. Elles ont une faible consommation, fonctionnent en tension d’alimentation continue et n’engendrent pas de problème de compatibilité électromagnétique, ce qui facilite leur intégration au sein du système. Elles présentent également de faibles dimensions ce qui permet de conserver un système compact. De plus, elles ne nécessitent pas l'utilisation de mercure et présentent une longue durée de vie, ce qui représente un atout pour des problématiques de recyclage et de maintenance.
Les performances d’un tel générateur 72 ont été étudiées expérimentalement sous forme d’un test comparatif et sont présentées à la figure 8. Plus précisément, la concentration de bactéries a été évaluée en fonction du temps d’exposition du fluide au générateur 72, le fluide étant de l’eau, ni distillée ni filtrée. Avec l’invention, alors qu’initialement, la concentration en bactéries est d’environ 1 ,9- 105 CFU/mL, celle-ci diminue rapidement pour atteindre 210 CFU/mL au bout de 5 min, puis moins de 3,5 CFU/mL après seulement 20 minutes. Au bout de 40 minutes la concentration de bactéries est quasiment nulle, c’est-à-dire proche de zéro. La figure 8 montre la meilleure performance de l’invention comparée aux autres méthodes employées pour le test.
Préférentiellement, le générateur 72 de rayonnement ultraviolet est alimenté en électricité au moyen du module d’alimentation, Maiim. Cela n’est toutefois pas obligatoire dans le cas de la présente invention. Le module d’alimentation électrique Mann est adapté pour appliquer audit générateur 72 une tension Ug, dite tension d’alimentation du générateur 72. La tension d’alimentation Ug du générateur peut être égale à la tension d’alimentation UP de la pompe 40.
Dans une telle configuration, le module d’alimentation ainsi commun à la pompe 40 et au générateur de rayonnement UV. Cela permet d’une part de réduire le coût d’un tel système et d’autre part de simplifier le montage électrique du système de nébulisation 1 puisqu’il est possible d’alimenter indifféremment le générateur 72 et la pompe 40. Cela permet encore de gagner en compacité.
Préférentiellement, la tension d’alimentation du générateur Ug est une tension continue comprise entre 10 et 16V. Incidemment, la tension d’alimentation UP de la pompe 40 de mise en mouvement du fluide est comprise entre 10 et 16 V. Ces tensions permettent d’envisager l’alimentation en électricité du générateur 72 et de la pompe 40 au moyen d’une batterie d’accumulateur, même lorsque le véhicule n’est pas en marche. Un exemple de générateur 72 de rayonnement ultraviolet pouvant convenir pour le système de nébulisation 1 est illustré sur la figure 5a. Il est composé de deux cavités 75, 76. Une première cavité 75 comprend la source de rayonnement ultraviolet, préférentiellement consistant en un réacteur à photolyse à diode électroluminescente, et une deuxième cavité 76 est dédiée à la circulation de l’eau et destiné au refroidissement de la source de rayonnement ultraviolet, par exemple une LED, qui lorsqu’elle est utilisée sur une longue période est amenée à chauffer.
En outre, il est également possible de combiner, au sein du système de filtration 70, la membrane et le générateur 72 de rayonnement ultraviolet. À cet effet, le système de filtration 70 peut être compartimenté de sorte que la membrane soit située en amont du générateur 72 relativement au sens de circulation du fluide dans ledit système de filtration 70. Autrement dit, le fluide traverse la membrane dans un premier temps puis le générateur 72 de rayonnement UV dans un second temps.
Dans cette configuration, la membrane joue le rôle d’un pré-filtre de sorte que si des particules sont présentes dans le fluide elles sont préférentiellement arrêter avant d’atteindre le générateur 72 de rayonnement UV. De plus, cette configuration est avantageuse en ce que si des bactéries se sont accumulées au niveau de la membrane, le générateur 72 de rayonnement UV étant situé en aval de ladite membrane, celui-ci est capable de tuer les bactéries qui auraient proliféré à partir de cette souche bactérienne.
Le fluide sortant du système de filtration 70 pénètre ensuite dans le nébuliseur.
Alternativement, le générateur 72 de rayonnement ultraviolet peut être intégré à un élément dudit système d’alimentation autre que le système de filtration 70. La figure 5b illustre un exemple de générateur 72 de rayonnement ultraviolet. Il peut être fixé sur la paroi supérieure 1 1 du réservoir primaire 10. Autrement dit, le générateur 72 peut être fixé au-dessus et en contact direct avec la paroi supérieure 1 1.
Dans cette position, le générateur 72 est moins exposé à l’eau et au gel comparativement à une configuration où il serait fixé sur la paroi inférieure 12. En effet, il convient de rappeler ici que le système de nébulisation 1 est localisé au niveau de la console centrale du véhicule et que ladite console étant située au niveau d’une partie basse du véhicule elle peut être exposée à de tels phénomènes suivant les conditions climatiques.
De plus dans une telle configuration, un système de filtration 70 pourra être évité, ce qui permet de réduire l’encombrement du système de nébulisation 1.
De plus, encore, le générateur de 72 étant fixé au-dessus du réservoir primaire 10, il est avantageusement localisé de sorte à tuer les bactéries qui pourraient s’être formées au sein du dit réservoir primaire 10. De plus, encore, les bactéries étant tuées en amont de la pompe relativement au sens de circulation du fluide, cela permet de garantir que le fluide pénétrant dans ladite pompe, puis dans le nébuliseur ne comprend pas de bactéries encore vivantes au terme d’un certain nombre de cycles.
En outre, et comme on peut le remarquer, le générateur 72 de rayonnement ultraviolet selon l’exemple de réalisation illustré à la figure 5b est avantageusement substantiellement plan. On entend par « substantiellement plan » que ledit générateur 72 présente une faible épaisseur selon l’axe Z, et qu’il présente des dimensions appropriées selon l’axe longitudinal X et l’axe transversal Y. Dans une telle configuration, le générateur 72 peut aisément être intégré dans un espace vide situé entre le nébuliseur et le réservoir primaire 10 de sorte que son insertion dans le système de nébulisation ne nécessite pas un redimensionnement des autres pièces.
Du fait que le générateur 72 est substantiellement plan et positionné au- dessus du réservoir primaire 10, il peut être placé à proximité immédiate du système de récupération 80, 82 des grosses gouttes du nébuliseur. Ainsi, le refroidissement du générateur 72 de rayonnement ultraviolet peut être encore mieux contrôlé. En effet, le fluide qui s’écoule depuis l’enceinte de nébulisation 50 vers le réservoir primaire 10 permet avantageusement de refroidir le générateur 72. Soulignons également que cette configuration permet de traiter non seulement le fluide mais aussi l’air, à l’origine des bactéries, et le fond du réservoir primaire 10, où se concentre l’essentiel de la prolifération bactérienne.
En référence à la figure 6, et comme cela a été mentionné précédemment, le nébuliseur comprend une enceinte de nébulisation 50. L’enceinte de nébulisation 50 comporte au moins une chambre de nébulisation 51 et une cheminée de nébulisation 54. La chambre de nébulisation 51 et la cheminée de nébulisation 54 sont disposées, ici, l’une à la suite de l’autre selon la direction de l’axe longitudinal X. En d’autres termes, la chambre de nébulisation 51 et la cheminée de nébulisation 54 sont coaxiales. Elles sont de forme cylindrique de section globalement circulaire, concentriques. On peut remarquer que la chambre de nébulisation 51 présente une plus grande section transversale que celle de la cheminée de nébulisation 54.
La chambre de nébulisation 51 comporte également une buse de nébulisation 52 munie de l’atomiseur 53.
L’axe longitudinal de la buse de nébulisation 52 est sensiblement parallèle à l’axe longitudinal X, en l’espèce il est horizontal sur la figure 6. La buse de nébulisation 52 est disposée au moins en partie à l’intérieur de la chambre de nébulisation 51. L’insertion de la buse de nébulisation 22 pourra s’effectuer par l’intermédiaire d’une ouverture (non représentée) avec, au besoin, interposition d’un joint (lui aussi non représenté).
La buse de nébulisation 52 comporte une paroi latérale délimitant un volume intérieur apte à contenir le liquide à nébuliser. La section transversale intérieure de cette paroi latérale peut présenter un rétrécissement progressif en direction d’un orifice de sortie pour le fluide. Le rétrécissement progressif permet de former un concentrateur d’ondes acoustiques.
La buse de nébulisation 52 comporte aussi au moins un orifice 52a d’entrée pour le fluide à nébuliser qui permet l’introduction du fluide dans le volume intérieur de la buse. L’orifice d’entrée 52a est en communication fluidique avec la pompe et/ou le filtre. Dans un exemple particulier, une pluralité d’orifices d’entrée 52a, par exemple quatre, pour le fluide sont prévus autour de l’axe longitudinal X de la buse de nébulisation 52, dans une zone proche de l’atomiseur 53. Les orifices d’entrée 52a sont, de préférence répartis angulairement autour de l’axe longitudinal X.
La buse de nébulisation 52 comporte encore au moins un orifice de sortie 52b par lequel une partie du fluide est expulsée de ladite buse 52 en étant transformée en gouttelettes lorsque l’atomiseur est alimenté. L’orifice de sortie 52b est, de préférence situé à égale distance de tous les orifices d’entrée 52a dans l’éventualité où la buse 52 présente une pluralité d’orifices d’entrée 52a. De préférence, l’atomiseur 53 consiste en un élément (céramique) piézo électrique. L’élément piézo-électrique est apte à émettre des ondes acoustiques dans le fluide à nébuliser ce qui permet de générer un brouillard de gouttelettes du fluide lorsque la buse de nébulisation 52 est remplie par ce dernier et lorsque l’élément piézo-électrique émet des ondes acoustiques de fréquence et d’intensité appropriées.
De manière préférentielle, l’élément piézo-électrique pourra émettre des ultrasons dont la fréquence sera comprise entre 1 MHz et 3 MHz, notamment entre 1 ,7 MHz et 2,4 MHz.
L’élément piézoélectrique est, par exemple, fait de titano-zirconate de plomb.
Par exemple, le diamètre des gouttelettes contenues dans le brouillard suit un profil gaussien situé entre 0 et 20 miti, ce profil étant centré sur 2 à 3 pm en termes de nombres de gouttes et sur 8 à 10 pm en termes de volume de gouttes.
Aux fins du transport des gouttelettes du fluide, le nébuliseur est relié de manière fluidique au système de génération 60 d’un flux vecteur, notamment un flux d’air.
Le système de génération 60 d’un flux vecteur est situé sur l’autre versant du système de nébulisation 1 , en particulier entre le réservoir primaire 10 et le réservoir secondaire 20 (Fig. 1 ). Plus précisément, et comme cela peut être vu à la figure 4, il est avantageusement situé au niveau d’un troisième logement 19 formé par le réservoir primaire 10. Le réservoir primaire 10 est délimité, au niveau d’une deuxième bordure latérale 13, par un plan, P4, d’axes Y et Z. Le troisième logement 19 est délimité extérieurement par ledit plan P4. Le système de génération du flux vecteur peut déborder légèrement au-delà du plan P4, et donc du troisième logement 19. Cette configuration permet de réduire l’extension, selon l’axe Y, du système de nébulisation 1 et donc son encombrement. Cela étant, le système de génération 60 d’un flux vecteur peut être positionné indifféremment autour de l’enceinte de nébulisation 50.
Le système de génération 60 d’un flux vecteur, notamment d’air, est raccordé à l’enceinte de nébulisation 50 au niveau de la cheminée de nébulisation 54 de sorte à générer un flux d’air à l’intérieur de ladite cheminée de nébulisation 54. L’air provenant du système de génération 60 pénètre dans la cheminée 54 par l’intermédiaire d’un canal d’amenée 62 (fig. 6). Ce canal d’amenée 62 comprend un filtre et un générateur de flux d’air (non visibles) permettant de générer un flux d’air dont le débit est compris entre 5 et 10 m3/h (mètre cube par heure). De cette manière, les gouttelettes sortant de la buse de nébulisation 52 sont transportées sous forme de brouillard de gouttelettes depuis la cheminée de nébulisation 54 vers une sortie 55 de l’enceinte de nébulisation 50, comme cela est illustré par des flèches en pointillés à la figure 6. Concomitamment, le débit du brouillard de gouttelettes généré au niveau de la cheminée de nébulisation est sensiblement égal au débit de fluide s’écoulant dans le réservoir primaire 10. Ce débit est compris entre 0 et 20 ml_/mm (millilitre par minute) environ.
À ce propos, l’enceinte de nébulisation 50 mesure préférentiellement entre 10 et 20 cm. En d’autres termes, la distance séparant une bordure distale de la chambre de nébulisation et la sortie 55 de ladite enceinte de nébulisation est comprise entre 10 et 20 cm. Cette distance est suffisante pour permettre la génération puis le transport des gouttelettes du fluide depuis l’atomiseur 53 jusqu’à la sortie 55, via la cheminée de nébulisation 54.
Cela étant, seules les gouttelettes les plus fines peuvent sortir de l’enceinte de nébulisation 50. En effet, la cheminée de nébulisation 54 comprend une portion inclinée 54a, qui en l’espèce est inclinée vers le haut du système de nébulisation 1. La portion inclinée 54a permet, du fait de son inclinaison, de filtrer les gouttelettes en fonction de leur poids. Autrement dit, la portion inclinée 54a est sélective pour ce qui est du poids des gouttelettes.
Effectivement, lors de leur transport dans le flux vecteur, les plus grosses gouttelettes n’ayant pas eu suffisamment d’élan pour parcourir intégralement la portion inclinée 54a, notamment du fait de leur poids, retombent dans une portion droite 54b de ladite cheminée 54.
Ces grosses gouttelettes sont ensuite récupérées au niveau du système de récupération 80, 82 des grosses gouttes du système d’alimentation en fluide. Comme illustré à la figure 6, le système de récupération 80, 82 des grosses gouttes comprend un premier retour grosses gouttes 80 situé à proximité de la bordure distale 16 et un deuxième retour 82 grosses gouttes 82 situé à proximité de la bordure proximale 14 du réservoir primaire 10. Les retours grosses gouttes 80, 82 sont en communication fluidique avec le réservoir primaire 10, ce qui permet au fluide provenant de l’enceinte de nébulisation 50 d’atteindre directement le réservoir primaire 10 par gravité sans avoir recours à des canalisations supplémentaires. Par exemple, les retours grosses gouttes 80, 82 peuvent consister en des liaisons fluidiques présentant une portion élargie au niveau de l’enceinte de nébulisation 50.
Le fluide s’écoule à travers le système de récupération 80, 82 des grosses gouttes avec un débit d’environ 1 L/min (litre par minute). La représentation simplifiée de l’itinéraire est illustré à la figure 7. Une fois que les grosses gouttelettes ont atteint le réservoir primaire 10, elles repartent dans le circuit d’alimentation en fluide. En cela, la pompe 40 de mise en mouvement du fluide, le système de filtration 70, l’enceinte de nébulisation 50 (incluant la cheminée 54), et le réservoir primaire 10 forment un circuit en boucle fermée. L’itinéraire du fluide au sein du système de nébulisation 1 est ainsi non seulement optimisé mais permet également d’éviter toute perte de fluide.
En conclusion, selon les modes de réalisation illustrés, le mode de fonctionnement du système de nébulisation 1 est rappelé ci-dessous.
Le fluide est, initialement, contenu dans le réservoir secondaire 20 au sein duquel il est maintenu à l’abri de l’atmosphère extérieure.
Le fluide s’écoule ensuite depuis le réservoir secondaire 20 vers le réservoir primaire 10, sans pouvoir circuler dans le sens inverse.
Le fluide est ensuite transporté vers le système de filtration 70 au moyen de la pompe 40 de mise en mouvement du fluide.
Dans l’éventualité où le système d’alimentation en fluide est équipé du système de filtration 70 (Figs, 1 -4 ; 6), le fluide atteint le système de filtration 70. Il y est filtré et/ou les bactéries qu’il contient sont éliminées. Le fluide circule ensuite depuis le système de filtration 70 jusqu’au nébuliseur.
Dans le cas particulier où le générateur 72 de rayonnement ultraviolet est fixé sur la paroi supérieure 1 1 du réservoir primaire 10 et où il n’y a pas de système de filtration 70, le fluide atteint directement le nébuliseur après son passage dans la pompe 40.
Le fluide est ensuite transformé en gouttelettes au niveau d’une buse de nébulisation 52 au moyen d’un atomiseur 53. À la sortie de la buse de nébulisation 52, le fluide entre dans une cheminée de nébulisation 54 où il sera transporté vers la sortie de l’enceinte de nébulisation 55 sous forme de brouillard. À cet égard, le système de génération 60 du flux vecteur génère le flux vecteur à l’intérieur de la cheminée 54.
Les fines gouttelettes sortent du système de nébulisation 1 , emportées par le flux vecteur, par la portion inclinée 54a de la cheminée de nébulisation, tandis que les grosses gouttelettes, sous l’effet de leur poids, retombent dans la portion droite 54b de la cheminée.
Ces grosses gouttelettes sont ensuite récupérées par un système de récupération 80, 82 des grosses gouttes connecté de manière fluidique au réservoir primaire 10. Elles se mélangent au fluide contenu dans ledit réservoir primaire 10 et repasse par le circuit normal, c’est-à-dire la pompe 40 de mise en mouvement du fluide, le système de filtration 70 si présent, et enfin le nébuliseur.

Claims

REVENDICATIONS
1. Système de nébulisation (1 ) pour véhicule automobile comprenant :
- un système d’alimentation comportant un réservoir primaire (10) pour un fluide et un réservoir secondaire (20) alimentant en fluide ledit réservoir primaire (10), et
- une enceinte de nébulisation (50) s’étendant longitudinalement,
ledit système de nébulisation (1 ) étant caractérisé en ce que le réservoir primaire (10) et le réservoir secondaire (20) sont situés côte à côte le long de l’enceinte de nébulisation (50).
2. Système de nébulisation (1 ) selon la revendication 1 , comprenant une pompe (40) de mise en mouvement du fluide communiquant avec ledit système d’alimentation (10), et dans lequel l’enceinte de nébulisation comprend un atomiseur (51 ) apte à transformer le fluide venant de ladite pompe (40) en gouttelettes.
3. Système de nébulisation selon l’une des revendications 1 ou 2, dans lequel la pompe (40) et l’atomiseur (53) sont situés du même côté et en ce que chacun parmi l’enceinte de nébulisation (50), le réservoir primaire (10) et le réservoir secondaire (20) est situé côte à côte avec chacun des deux autres.
4. Système de nébulisation (1 ) selon l’une des revendications précédentes, dans lequel l’enceinte de nébulisation (50) et le réservoir secondaire (20) sont situés au même niveau et sont en vis-à-vis d’une grande paroi (1 1 ) du réservoir primaire.
5. Système de nébulisation (1 ) selon l’une des revendications précédentes, dans lequel l’enceinte de nébulisation (50), le réservoir primaire (10) et le réservoir secondaire (20) présentent des dimensions sensiblement identiques selon un axe longitudinal d’extension du système de nébulisation (1 ).
6. Système de nébulisation (1 ) selon l’une des revendications précédentes, dans lequel le réservoir secondaire (20) présente une paroi inférieure (22) épousant, au moins en partie, la forme du réservoir primaire (10).
7. Système de nébulisation (1 ) selon l’une des revendications précédentes, dans lequel le réservoir secondaire (20) présente une paroi latérale (24) épousant, au moins en partie, la forme de l’enceinte de nébulisation (50).
8. Système de nébulisation (1 ) selon l’une des revendications précédentes, comprenant en outre un système de filtration (70) du fluide contenu dans le réservoir primaire (10), ledit système de filtration (70) s’étendant au niveau d’un deuxième logement (18) formé par le réservoir primaire (10).
9. Système de nébulisation (1 ) selon la revendication 9, dans lequel l’enceinte de nébulisation (50) comprend un système de récupération (80, 82) des grosses gouttes communiquant avec le réservoir primaire (10).
10. Système de nébulisation (1 ) selon l’une des revendications précédentes, comprenant en outre un générateur de flux (60) apte à générer un flux vecteur destiné à entraîner les gouttelettes à l’extérieur du système de nébulisation, ledit générateur de flux (60) s’étendant au niveau d’un troisième logement (19) formé par le réservoir primaire (10).
PCT/FR2019/052111 2018-09-28 2019-09-12 Système de nébulisation pour véhicule automobile WO2020065168A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1859014A FR3086562A1 (fr) 2018-09-28 2018-09-28 Systeme de nebulisation pour vehicule automobile
FR1859014 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020065168A1 true WO2020065168A1 (fr) 2020-04-02

Family

ID=65244016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052111 WO2020065168A1 (fr) 2018-09-28 2019-09-12 Système de nébulisation pour véhicule automobile

Country Status (2)

Country Link
FR (1) FR3086562A1 (fr)
WO (1) WO2020065168A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653122U (fr) * 1979-10-02 1981-05-11
DE4024584A1 (de) * 1990-08-02 1992-02-06 Siemens Ag Geraet zur befeuchtung und reinigung von raumluft
FR3003775A1 (fr) * 2013-03-26 2014-10-03 Peugeot Citroen Automobiles Sa Dispositif de nebulisation compact a reservoir de liquide separe de la chambre de nebulisation
WO2017103548A1 (fr) * 2015-12-17 2017-06-22 Areco Finances Et Technologie - Arfitec Dispositif de pulvérisation a transducteur piézoélectrique, notamment pour véhicule
FR3051035A1 (fr) * 2016-05-09 2017-11-10 Peugeot Citroen Automobiles Sa Systeme de nebulisation dans l'habitacle d'un vehicule automobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653122U (fr) * 1979-10-02 1981-05-11
DE4024584A1 (de) * 1990-08-02 1992-02-06 Siemens Ag Geraet zur befeuchtung und reinigung von raumluft
FR3003775A1 (fr) * 2013-03-26 2014-10-03 Peugeot Citroen Automobiles Sa Dispositif de nebulisation compact a reservoir de liquide separe de la chambre de nebulisation
WO2017103548A1 (fr) * 2015-12-17 2017-06-22 Areco Finances Et Technologie - Arfitec Dispositif de pulvérisation a transducteur piézoélectrique, notamment pour véhicule
FR3051035A1 (fr) * 2016-05-09 2017-11-10 Peugeot Citroen Automobiles Sa Systeme de nebulisation dans l'habitacle d'un vehicule automobile

Also Published As

Publication number Publication date
FR3086562A1 (fr) 2020-04-03

Similar Documents

Publication Publication Date Title
EP2991773B1 (fr) Systeme de nebulisation pour rafraichir l'air
FR3070907A1 (fr) Systeme de nebulisation pour vehicule automobile
FR3045420A1 (fr) Dispositif de pulverisation a transducteur piezoelectrique, notamment pour vehicule
CA2518244C (fr) Buse de nebulisation et dispositif la comportant
WO2007006987A1 (fr) Extincteur a brouillard de liquide et son utilisation
EP3681644B1 (fr) Dispositif de generation de gouttelettes a partir d'un liquide comprenant des moyens ameliores de diffusion du brouillard, et son procede de mise en ouvre
WO2020065168A1 (fr) Système de nébulisation pour véhicule automobile
FR3003775A1 (fr) Dispositif de nebulisation compact a reservoir de liquide separe de la chambre de nebulisation
FR3086555A1 (fr) Systeme d'alimentation en fluide et systeme de nebulisation pour vehicule automobile equipe d'un tel systeme d'alimentation
FR3086561A1 (fr) Systeme d'alimentation en fluide et systeme de nebulisation pour vehicule automobile equipe d'un tel systeme d'alimentation
FR3095615A1 (fr) Dispositif de nébulisation d’un liquide et installation d’aération, notamment pour habitacle de véhicule, comprenant un tel dispositif de nébulisation
WO2020065206A1 (fr) Système d'alimentation en fluide et système de nébulisation pour véhicule automobile équipe d'un tel système d'alimentation
EP3681645B1 (fr) Dispositif de génération de gouttelettes à partir d'un liquide comprenant des moyens de ventilation améliorés, et son procédé de mise en oeuvre
WO2017012861A1 (fr) Dispositif de nebulisation et procede de mise en œuvre de ce dispositif
EP3681744B1 (fr) Systeme de nebulisation pour vehicule automobile
WO2004092016A1 (fr) Dispositif de remplissage d’un liquide dans un contenant
EP3703965B1 (fr) Systeme de nebulisation pour vehicule automobile et vehicule automobile comprenant un tel systeme
EP4096946B1 (fr) Systeme de nebulisation pour vehicule automobile
FR2886160A1 (fr) Diffuseur d'huiles essentielles
FR2707529A1 (fr) Appareil pour disperser un liquide par un flux gazeux.
EP4166236A1 (fr) Système de pulvérisation à débit variable
FR3070905A1 (fr) Systeme de nebulisation pour vehicule automobile et procede de rafraichissement d'un habitacle utilisant un tel systeme
FR3070906A1 (fr) Systeme de nebulisation pour vehicule automobile
FR3086559A1 (fr) Systeme de nebulisation pour vehicule automobile
EP4096945A1 (fr) Systeme de nebulisation pour vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19787029

Country of ref document: EP

Kind code of ref document: A1