WO2020064050A1 - Device for guiding the flow of a process medium for a laser machining device - Google Patents

Device for guiding the flow of a process medium for a laser machining device Download PDF

Info

Publication number
WO2020064050A1
WO2020064050A1 PCT/DE2019/100801 DE2019100801W WO2020064050A1 WO 2020064050 A1 WO2020064050 A1 WO 2020064050A1 DE 2019100801 W DE2019100801 W DE 2019100801W WO 2020064050 A1 WO2020064050 A1 WO 2020064050A1
Authority
WO
WIPO (PCT)
Prior art keywords
process medium
channel
nozzle
pressure chamber
flow
Prior art date
Application number
PCT/DE2019/100801
Other languages
German (de)
French (fr)
Inventor
Marc-Gordon Griguhn
Mark Ninow
Original Assignee
Scansonic Mi Gmbh
Thermacut, K. S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scansonic Mi Gmbh, Thermacut, K. S. filed Critical Scansonic Mi Gmbh
Publication of WO2020064050A1 publication Critical patent/WO2020064050A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements

Definitions

  • the invention relates to a device for guiding the flow of a process medium for a laser processing device, in particular a laser cutting device.
  • cutting gas is required as a process medium for a successful cut.
  • the cutting gas is fed via a pressure line to a working channel in the laser machining head of the laser machining device, from which it is then guided to the machining position of the workpieces to be machined.
  • Disadvantages for a high cutting quality or a good cutting pattern are, in particular, turbulence when the processing or cutting position is approached.
  • the optics of the laser processing device are regularly shielded against impairments from the processing process, such as splashes, soiling, metal vapors or the like, by means of an optical element which is permeable to the laser beam, for example protective glass.
  • the optical element usually forms the process end or closure of the working channel in the laser processing head. The heating of the optical element, which occurs due to its proximity to the processing position and the laser beam penetration, significantly limits its service life.
  • the object of the invention is therefore to provide a device for flow guidance of a process medium in a laser processing device, which device Generation of a largely laminar flow profile of the process medium with effective cooling of the optical element guaranteed.
  • the device for guiding the flow of a process medium for a laser processing device comprises a working channel which guides the process medium coaxially to the laser beam to a processing position.
  • the working channel is sealed gas-tight on one side by means of an optical element that is transparent to the laser beam, for example a protective glass.
  • the working channel preferably has a circular cross section.
  • an annular nozzle for introducing the process medium into the working channel is introduced in the peripheral wall of the working channel without interruption over its entire circumference.
  • the ring nozzle is arranged in the vicinity of the optical element, i. that is, the ring nozzle is located in relation to the axial position in the working channel in the vicinity of the optical element or adjoins this.
  • the process medium When used as intended, the process medium is fed into the working channel in a ring through the ring nozzle. In the end region of the working channel, which is closed with the optical element, a part of the process medium emerging from the ring nozzle hits the optical element and is directed there to the axially opposite, open outlet of the working channel. The other part of the process medium flows, depending on the exit angle of the ring nozzle, after it has left the ring nozzle in the direction of the outlet of the working channel.
  • This open exit of the working channel is, for example, the cutting gas nozzle of a laser cutting device.
  • a pressure chamber is formed in the inflow area to the ring nozzle. This serves to homogenize the extensive pressure distribution at the Ring nozzle applied process media pressure. At the transition from the pressure chamber to the ring nozzle or in the ring nozzle itself, due to the geometrically inherent narrowing of the cross-section, the inflow of the process medium takes place, with the result that it is evenly distributed within the ring nozzle and a largely identical pressure at all circumferential positions of the ring nozzle outlet of the process medium prevails.
  • the pressure chamber of the device for flow guidance is toroidal, coaxial to the working channel; it has a feed line for supplying the process medium.
  • the pressure chamber has at least one turbulator for influencing the flow guidance of the process medium.
  • the turbulator improve the uniform distribution of the process medium supplied from one of the feed lines to the pressure chamber before it is introduced into the inflow area to the ring nozzle.
  • One of the turbulators is designed as a radial indentation in the pressure chamber and is arranged at the circumferential position of the pressure chamber opposite the feed line.
  • the turbulator which is designed as an indentation in the pressure chamber, directs or deflects the flow in the pressure chamber so that no turbulence forms at the circumferential position of the pressure chamber opposite the feed line.
  • An advantage of the device for flow guidance according to the invention is that the combination of pressure chamber and ring nozzle ensures that the process medium flows uniformly, annularly over the entire circumference and thus effectively cools the optical element.
  • the uniform cooling ensures - in addition to extending the service life of the optical element by reducing thermal aging - that the optical element hardly or only slightly warps due to the thermal effects of the laser beam.
  • the laser beam penetration through the optical element is thus hardly impaired even during continuous operation. This is also due to the fact that the surface of the optical element is cleaned of light soiling by the impacting process medium.
  • Another advantage in addition to the effective cooling effect and cleaning of the optical element and its associated increase in service life is the formation of a largely laminar flow profile of the flowing process medium in the working channel.
  • the laminar flow in the working channel thus enables the machining position of the workpieces to be machined with the laser machining device to be swirl-free, whereby ultimately a high machining quality or a good sectional view in the cutting gap can be achieved.
  • the ring nozzle is advantageously designed or aligned such that the outflowing process medium flows essentially radially into the working channel.
  • the ring nozzle has, for example, a symmetrical two-dimensional geometry in each of the axial section planes of the working channel, based on the radial plane of the working channel arranged in the center in the exit gap of the ring nozzle.
  • the gap dimension of the ring nozzle i.e. H. the gap at the nozzle outlet or the outlet gap is preferably 0.20 ⁇ 0.05 mm.
  • the gap dimension can be set in such a way that deliberately introduced, moderate turbulence is created in the working channel, which improves the cooling of the optical element without significantly affecting the flow to the machining position and thus the machining result.
  • the inflow area from the pressure chamber to the ring nozzle can be designed in the form of a ring-like nozzle channel arranged coaxially to the working channel.
  • the inlet of the nozzle channel is at the transition to the pressure chamber.
  • the nozzle channel merges continuously into the ring nozzle, ie the channel outlet is formed by the ring nozzle itself.
  • the gap dimension of the ring nozzle corresponds to the gap dimension at the duct outlet of the nozzle duct.
  • the nozzle duct preferably has a duct gap whose gap dimension at the duct outlet is 10% to 30% of the gap dimension at the duct inlet.
  • the nozzle duct in the end region on the duct outlet side can have an arcuate deflection region which bends by 90 ° for deflecting the flow of the process medium into the ring nozzle. This ensures that the flow flows largely radially into the outlet channel.
  • the gap dimension of the channel gap of the nozzle channel preferably decreases continuously in the arcuate deflection region of the nozzle channel.
  • the device for flow guidance comprises at least two distributor inserts which can be inserted into the laser processing device and which form the inflow areas of the process medium to the working channel with the pressure chamber and the annular nozzle.
  • the modular structure with the distributor inserts ensures simple manufacture of the components.
  • the pressure chamber, the ring nozzle and, if applicable, the nozzle channel are designed after assembly or assembly of the distributor inserts.
  • Fig. 2 the device for flow guidance in the sectional plane B-B, and
  • Fig. 3 the device for flow control in the sectional plane C-C.
  • the optical element 1 protected glass
  • the distributor inserts 3 designed as component inserts are introduced into the housing 7.
  • the distributor inserts 3 form the pressure chamber 4, the nozzle channel 8, the ring nozzle 6 and the working channel 9.
  • the process medium is introduced via the feed line 2, reaches the ring nozzle 6 via the pressure chamber 4 and the nozzle channel 8, then flows into the working channel 9 and finally to the processing position of the workpieces to be processed with the laser processing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

The invention relates to a device for guiding the flow of a process medium for a laser machining device, which permits the production of a largely laminar flow profile of the process medium while effectively cooling an optical element at the same time. The device for guiding flow has an annular nozzle (6) for introducing the process medium into a working channel (9) carrying the process medium in the near region of the optical element (1), and a pressure chamber (4) arranged in the inflow region to the annular nozzle (6) for homogenising the circumferential pressure distribution of the process medium pressure present on the annular nozzle (6). The invention is in particular suitable for the cutting gas guidance of laser cutting devices.

Description

Vorrichtung zur Strömungsführung eines Prozessmediums für eine Laserbearbeitungsvorrichtung  Device for flow guidance of a process medium for a laser processing device
Die Erfindung betrifft eine Vorrichtung zur Strömungsführung eines Prozessmediums für eine Laserbearbeitungs-, insbesondere eine Laserschneidvorrichtung. The invention relates to a device for guiding the flow of a process medium for a laser processing device, in particular a laser cutting device.
Bei Laserbearbeitungsverfahren wie dem Laserstrahlschneiden wird Schneidgas als Prozessmedium für einen erfolgreichen Schnitt benötigt. Dazu wird das Schneidgas über eine Druckleitung einem Arbeitskanal im Laserbearbeitungskopf der Laserbear- beitungsvorrichtung zugeführt, aus dem es anschließend an die Bearbeitungsposition der zu bearbeitenden Werkstücke geleitet wird. Nachteilig für eine hohe Schnittquali- tät bzw. ein gutes Schnittbild sind dabei insbesondere Verwirbelungen beim Anströ- men der Bearbeitungs- bzw. Schnittposition. In laser processing processes such as laser beam cutting, cutting gas is required as a process medium for a successful cut. For this purpose, the cutting gas is fed via a pressure line to a working channel in the laser machining head of the laser machining device, from which it is then guided to the machining position of the workpieces to be machined. Disadvantages for a high cutting quality or a good cutting pattern are, in particular, turbulence when the processing or cutting position is approached.
Des Weiteren ist die Optik der Laserbearbeitungsvorrichtung regelmäßig mittels ei- nes für den Laserstrahl durchlässigen optischen Elements, zum Beispiel eines Schutzglases, gegen Beeinträchtigungen aus dem Bearbeitungsprozess, wie Sprit- zer, Verschmutzungen, Metalldämpfe o. ä., abgeschirmt. Das optische Element bildet hierbei meist den prozessseitigen Abschluss bzw. Verschluss des Arbeitskanals im Laserbearbeitungskopf. Die Erwärmung des optischen Elements, die infolge seiner Nähe zur Bearbeitungsposition und des Laserstrahldurchtritts eintritt, limitiert maß- geblich dessen Lebensdauer. Furthermore, the optics of the laser processing device are regularly shielded against impairments from the processing process, such as splashes, soiling, metal vapors or the like, by means of an optical element which is permeable to the laser beam, for example protective glass. The optical element usually forms the process end or closure of the working channel in the laser processing head. The heating of the optical element, which occurs due to its proximity to the processing position and the laser beam penetration, significantly limits its service life.
Bekannt aus dem Stand der Technik sind Vorrichtungen zur Strömungsführung mit einer Vielzahl am Umfang des Arbeitskanals angeordneter Einzeldüsen bzw. am Um- fang angeordneter in Kanalrichtung ausgerichteter Nuten und Stege. Diese besitzen den Nachteil, dass entweder die Entstehung von Strömungsturbulenzen oder die Er- wärmung des optischen Elements nicht effektiv unterdrückt werden. Vorrichtungen zur Strömungsführung in Laserschneidköpfen mit integralem Schutzfenster sind bei- spielsweise in DE 44 26 458 A1 oder DE 10 2005 025 119 A1 beschrieben. Known from the prior art are devices for flow guidance with a large number of individual nozzles arranged on the circumference of the working channel or on the circumference of grooves and webs arranged in the channel direction. These have the disadvantage that either the occurrence of flow turbulence or the heating of the optical element are not effectively suppressed. Devices for flow guidance in laser cutting heads with an integral protective window are described, for example, in DE 44 26 458 A1 or DE 10 2005 025 119 A1.
Aufgabe der Erfindung ist es daher, eine Vorrichtung zur Strömungsführung eines Prozessmediums in einer Laserbearbeitungsvorrichtung bereitzustellen, die die Er- zeugung eines weitestgehend laminaren Strömungsprofils des Prozessmediums bei gleichzeitig effektiver Kühlung des optischen Elements gewährleistet. The object of the invention is therefore to provide a device for flow guidance of a process medium in a laser processing device, which device Generation of a largely laminar flow profile of the process medium with effective cooling of the optical element guaranteed.
Diese Aufgabe wird durch eine Vorrichtung zur Strömungsführung eines Prozessme- diums für eine Laserbearbeitungsvorrichtung mit den kennzeichnenden Merkmalen nach Anspruch 1 gelöst; zweckmäßige Weiterbildungen der Erfindung sind in den Ansprüchen 2 bis 8 beschrieben. This object is achieved by a device for flow control of a process medium for a laser processing device with the characterizing features according to claim 1; Expedient developments of the invention are described in claims 2 to 8.
Die Vorrichtung zur Strömungsführung eines Prozessmediums für eine Laserbearbei- tungsvorrichtung umfasst einen Arbeitskanal, der das Prozessmedium koaxial zum Laserstrahl zu einer Bearbeitungsposition leitet. Der Arbeitskanal ist einseitig mittels eines für den Laserstrahl durchlässigen optischen Elements, zum Beispiel eines Schutzglases, gasdicht verschlossen. Vorzugsweise besitzt der Arbeitskanal einen kreisförmigen Querschnitt. The device for guiding the flow of a process medium for a laser processing device comprises a working channel which guides the process medium coaxially to the laser beam to a processing position. The working channel is sealed gas-tight on one side by means of an optical element that is transparent to the laser beam, for example a protective glass. The working channel preferably has a circular cross section.
Nach Maßgabe der Erfindung ist in der Umfangswandung des Arbeitskanals unter- brechungsfrei über ihren gesamten Umfang eine Ringdüse zur Einleitung des Pro- zessmediums in den Arbeitskanal eingebracht. Die Ringdüse ist im Nahbereich des optischen Elements angeordnet, d. h., die Ringdüse befindet sich in Bezug auf die axiale Position im Arbeitskanal in der Nähe des optischen Elements bzw. schließt an dieses an. According to the invention, an annular nozzle for introducing the process medium into the working channel is introduced in the peripheral wall of the working channel without interruption over its entire circumference. The ring nozzle is arranged in the vicinity of the optical element, i. that is, the ring nozzle is located in relation to the axial position in the working channel in the vicinity of the optical element or adjoins this.
Bei bestimmungsgemäßer Verwendung wird das Prozessmedium durch die Ringdü- se ringförmig in den Arbeitskanal eingeleitet. In dem mit dem optischen Element ver- schlossenen Endbereich des Arbeitskanals trifft ein Teil des aus der Ringdüse aus- tretenden Prozessmediums auf das optische Element und wird an diesem zum axial entgegengesetzt liegenden, offenen Ausgang des Arbeitskanals gelenkt. Der andere Teil des Prozessmediums strömt, je nach Austrittswinkel der Ringdüse, bereits nach dem Austritt aus der Ringdüse in Richtung des Ausgangs des Arbeitskanals. Dieser offene Ausgang des Arbeitskanals ist beispielsweise die Schneidgasdüse einer La- serschneidvorrichtung. When used as intended, the process medium is fed into the working channel in a ring through the ring nozzle. In the end region of the working channel, which is closed with the optical element, a part of the process medium emerging from the ring nozzle hits the optical element and is directed there to the axially opposite, open outlet of the working channel. The other part of the process medium flows, depending on the exit angle of the ring nozzle, after it has left the ring nozzle in the direction of the outlet of the working channel. This open exit of the working channel is, for example, the cutting gas nozzle of a laser cutting device.
Im Zuströmbereich zur Ringdüse ist erfindungsgemäß eine Druckkammer ausgebil- det. Diese dient zur Homogenisierung der umfänglichen Druckverteilung des an der Ringdüse anliegenden Prozessmediendruckes. Am Übergang von Druckkammer zur Ringdüse bzw. in der Ringdüse selbst findet infolge der einer Düse geometrisch inhä- renten Querschnittsverengung eine Aufstauung des zuströmenden Prozessmediums mit der Folge statt, dass dieses sich gleichmäßig innerhalb der Ringdüse verteilt und an allen Umfangspositionen des Ringdüsenaustritts ein weitestgehend gleicher Druck des Prozessmediums herrscht. According to the invention, a pressure chamber is formed in the inflow area to the ring nozzle. This serves to homogenize the extensive pressure distribution at the Ring nozzle applied process media pressure. At the transition from the pressure chamber to the ring nozzle or in the ring nozzle itself, due to the geometrically inherent narrowing of the cross-section, the inflow of the process medium takes place, with the result that it is evenly distributed within the ring nozzle and a largely identical pressure at all circumferential positions of the ring nozzle outlet of the process medium prevails.
Die Druckkammer der Vorrichtung zur Strömungsführung ist toroidartig, koaxial zum Arbeitskanal ausgebildet; sie besitzt eine Zuleitung zur Zuführung des Prozessmedi- ums. The pressure chamber of the device for flow guidance is toroidal, coaxial to the working channel; it has a feed line for supplying the process medium.
Zudem weist die Druckkammer mindestens einen Turbulator zur Beeinflussung der Strömungsführung des Prozessmediums auf. Der oder die Turbulatoren verbessern die gleichmäßige Verteilung des aus einer der Zuleitungen zur Druckkammer zuge- führten Prozessmediums vor dessen Einleitung in den Zuström bereich zur Ringdüse. In addition, the pressure chamber has at least one turbulator for influencing the flow guidance of the process medium. The turbulator (s) improve the uniform distribution of the process medium supplied from one of the feed lines to the pressure chamber before it is introduced into the inflow area to the ring nozzle.
Einer der Turbulatoren ist als radiale Einbuchtung in die Druckkammer ausgebildet und an der der Zuleitung entgegengesetzten Umfangsposition der Druckkammer an- geordnet. Durch den als Einbuchtung in die Druckkammer gestalten Turbulator wird die Strömung in der Druckkammer gerichtet geführt bzw. umgelenkt, sodass sich an der der Zuleitung entgegengesetzten Umfangsposition der Druckkammer keine Tur- bulenzen ausbilden. One of the turbulators is designed as a radial indentation in the pressure chamber and is arranged at the circumferential position of the pressure chamber opposite the feed line. The turbulator, which is designed as an indentation in the pressure chamber, directs or deflects the flow in the pressure chamber so that no turbulence forms at the circumferential position of the pressure chamber opposite the feed line.
Ein Vorteil der erfindungsgemäßen Vorrichtung zur Strömungsführung ist, dass durch die Kombination aus Druckkammer und Ringdüse sichergestellt ist, dass das Pro- zessmedium das optische Element gleichmäßig, ringförmig über den gesamten Um- fang anströmt und somit effektiv kühlt. Durch die gleichmäßige Kühlung wird - neben der Lebensdauerverlängerung des optischen Elements durch Verringerung thermi- scher Alterungserscheinungen - gewährleistet, dass sich das optische Element kaum bzw. nur geringfügig durch die thermischen Einwirkungen des Laserstrahls verzieht. Der Laserstrahldurchtritt durch das optische Element wird somit auch bei Dauerbe- trieb kaum beeinträchtigt. Dazu trägt auch bei, dass die Oberfläche des optischen Elements durch das auftreffende Prozessmedium von leichten Verschmutzungen ge- reinigt wird. Ein weiterer Vorteil neben der effektiven Kühlwirkung und Reinigung des optischen Elements und dessen damit verbundener Lebensdauererhöhung ist die Ausbildung eines weitestgehend laminaren Strömungsprofils des strömenden Prozessmediums im Arbeitskanal. Durch die Vermeidung strömungsbehindernder Elemente werden Turbulenzen und die diese begleitenden Strömungsverluste reduziert. Die laminare Strömung im Arbeitskanal ermöglicht somit die wirbelfreie Anströmung der Bearbei- tungsposition der mit der Laserbearbeitungsvorrichtung zu bearbeitenden Werkstü- cke, wodurch letztlich eine hohe Bearbeitungsqualität bzw. ein gutes Schnittbild im Schnittspalt erreichbar sind. An advantage of the device for flow guidance according to the invention is that the combination of pressure chamber and ring nozzle ensures that the process medium flows uniformly, annularly over the entire circumference and thus effectively cools the optical element. The uniform cooling ensures - in addition to extending the service life of the optical element by reducing thermal aging - that the optical element hardly or only slightly warps due to the thermal effects of the laser beam. The laser beam penetration through the optical element is thus hardly impaired even during continuous operation. This is also due to the fact that the surface of the optical element is cleaned of light soiling by the impacting process medium. Another advantage in addition to the effective cooling effect and cleaning of the optical element and its associated increase in service life is the formation of a largely laminar flow profile of the flowing process medium in the working channel. By avoiding flow-restricting elements, turbulence and the accompanying flow losses are reduced. The laminar flow in the working channel thus enables the machining position of the workpieces to be machined with the laser machining device to be swirl-free, whereby ultimately a high machining quality or a good sectional view in the cutting gap can be achieved.
Vorteilhafterweise ist die Ringdüse so gestaltet bzw. ausgerichtet, dass das ausströ- mende Prozessmedium im Wesentlichen radial in den Arbeitskanal einströmt. Die Ringdüse besitzt dazu zum Beispiel in jeder der Axialschnittebenen des Arbeitska- nals eine symmetrische zweidimensionale Geometrie, bezogen auf die mittig im Aus- trittsspalt der Ringdüse angeordnete Radialebene des Arbeitskanals. The ring nozzle is advantageously designed or aligned such that the outflowing process medium flows essentially radially into the working channel. For this purpose, the ring nozzle has, for example, a symmetrical two-dimensional geometry in each of the axial section planes of the working channel, based on the radial plane of the working channel arranged in the center in the exit gap of the ring nozzle.
Das Spaltmaß der Ringdüse, d. h. der Spalt am Düsenaustritt bzw. der Austrittsspalt, beträgt vorzugsweise 0,20 ± 0,05 mm. The gap dimension of the ring nozzle, i.e. H. the gap at the nozzle outlet or the outlet gap is preferably 0.20 ± 0.05 mm.
Durch die geometrische Variation des Spaltes der Ringdüse können unterschiedlich ausgeprägte Strömungseffekte erzielt werden. Beispielsweise kann das Spaltmaß derart eingestellt sein, dass gezielt eingebrachte, moderate Verwirbelungen im Ar- beitskanal entstehen, wodurch die Kühlung des optischen Elements verbessert wird, ohne dass hierdurch die Anströmung der Bearbeitungsposition und damit das Bear- beitungsergebnis wesentlich beeinträchtigt werden. Due to the geometrical variation of the gap of the ring nozzle, differently pronounced flow effects can be achieved. For example, the gap dimension can be set in such a way that deliberately introduced, moderate turbulence is created in the working channel, which improves the cooling of the optical element without significantly affecting the flow to the machining position and thus the machining result.
Ferner kann der Zuström bereich von der Druckkammer zur Ringdüse in Form eines ringartigen, koaxial zum Arbeitskanal angeordneten Düsenkanals ausgebildet sein. Der Kanaleintritt des Düsenkanals befindet sich am Übergang zur Druckkammer. Kanalaustrittsseitig geht der Düsenkanal kontinuierlich in die Ringdüse über, d. h., der Kanalaustritt ist durch die Ringdüse selbst gebildet. Das Spaltmaß der Ringdüse entspricht dem Spaltmaß am Kanalaustritt des Düsenkanals. Vorzugsweise weist der Düsenkanal einen Kanalspalt auf, dessen Spaltmaß am Ka- nalaustritt 10 % bis 30 % des Spaltmaßes am Kanaleintritt beträgt. Furthermore, the inflow area from the pressure chamber to the ring nozzle can be designed in the form of a ring-like nozzle channel arranged coaxially to the working channel. The inlet of the nozzle channel is at the transition to the pressure chamber. On the channel outlet side, the nozzle channel merges continuously into the ring nozzle, ie the channel outlet is formed by the ring nozzle itself. The gap dimension of the ring nozzle corresponds to the gap dimension at the duct outlet of the nozzle duct. The nozzle duct preferably has a duct gap whose gap dimension at the duct outlet is 10% to 30% of the gap dimension at the duct inlet.
Weiterhin kann der Düsenkanal im kanalaustrittsseitigen Endbereich einen bogen- förmigen, um 90° abbiegenden Ablenkungsbereich zur Strömungsablenkung des Prozessmediums in die Ringdüse aufweisen. Dadurch ist gewährleistet, dass die Strömung weitestgehend radial in den Austrittskanal einströmt. Vorzugsweise verrin- gert sich das Spaltmaß des Kanalspalts des Düsenkanals stetig im bogenförmigen Ablenkungsbereich des Düsenkanals. Furthermore, the nozzle duct in the end region on the duct outlet side can have an arcuate deflection region which bends by 90 ° for deflecting the flow of the process medium into the ring nozzle. This ensures that the flow flows largely radially into the outlet channel. The gap dimension of the channel gap of the nozzle channel preferably decreases continuously in the arcuate deflection region of the nozzle channel.
In einer Ausgestaltung umfasst die Vorrichtung zur Strömungsführung mindestens zwei in die Laserbearbeitungsvorrichtung einsetzbare Verteilereinsätze, die die Zu- strömbereiche des Prozessmediums zum Arbeitskanal mit der Druckkammer und der Ringdüse ausbilden. Der modulare Aufbau mit den Verteilereinsätzen gewährleistet eine einfache Fertigung der Bauteile. Die Druckkammer, die Ringdüse und ggf. der Düsenkanal sind nach Montage bzw. Zusammenbau der Verteilereinsätze ausgebil- det. In one configuration, the device for flow guidance comprises at least two distributor inserts which can be inserted into the laser processing device and which form the inflow areas of the process medium to the working channel with the pressure chamber and the annular nozzle. The modular structure with the distributor inserts ensures simple manufacture of the components. The pressure chamber, the ring nozzle and, if applicable, the nozzle channel are designed after assembly or assembly of the distributor inserts.
Die Erfindung ist nachfolgend anhand eines Ausführungsbeispiels und mit Bezug auf die Zeichnungen näher erläutert. Dazu zeigen: The invention is explained in more detail below using an exemplary embodiment and with reference to the drawings. To show:
Fig. 1 : die Vorrichtung zur Strömungsführung in Schnittebene A-A, 1: the device for flow guidance in the sectional plane A-A,
Fig. 2: die Vorrichtung zur Strömungsführung in Schnittebene B-B, und  Fig. 2: the device for flow guidance in the sectional plane B-B, and
Fig. 3: die Vorrichtung zur Strömungsführung in Schnittebene C-C. Fig. 3: the device for flow control in the sectional plane C-C.
In den Fig. 1 und 2 ist die Vorrichtung zur Strömungsführung als Teileinheit des La- serbearbeitungskopfes einer Laserbearbeitungsvorrichtung in zwei verschiedenen Schnittebenen (vgl. Fig. 3) dargestellt. Im Gehäuse 7 ist das optische Ele- ment 1 (Schutzglas) am prozessseitigen Ende des Arbeitskanals 9 angebracht und verschließt den Arbeitskanal 9. In das Gehäuse 7 sind die als Bauteileinsätze ausge- bildeten Verteilereinsätze 3 eingebracht. Die Verteilereinsätze 3 bilden im montierten Zustand die Druckkammer 4, den Düsenkanal 8, die Ringdüse 6 und den Arbeitska- nal 9. Bei bestimmungemäßem Betrieb wird über die Zuleitung 2 das Prozessmedium ein- geleitet, gelangt über die Druckkammer 4 und den Düsenkanal 8 zur Ringdüse 6, strömt anschließend in den Arbeitskanal 9 und schließlich zur Bearbeitungsposition der mit der Laserbearbeitungsvorrichtung zu bearbeitenden Werkstücke. 1 and 2 show the device for flow guidance as a subunit of the laser processing head of a laser processing device in two different sectional planes (cf. FIG. 3). In the housing 7, the optical element 1 (protective glass) is attached to the process-side end of the working channel 9 and closes the working channel 9. The distributor inserts 3 designed as component inserts are introduced into the housing 7. In the assembled state, the distributor inserts 3 form the pressure chamber 4, the nozzle channel 8, the ring nozzle 6 and the working channel 9. When operating as intended, the process medium is introduced via the feed line 2, reaches the ring nozzle 6 via the pressure chamber 4 and the nozzle channel 8, then flows into the working channel 9 and finally to the processing position of the workpieces to be processed with the laser processing device.
Die Querschnittdarstellung der Vorrichtung zur Strömungsführung gemäß der Fig. 3 zeigt neben dem Arbeitskanal 9 und der Druckkammer 4, die Zuleitung 2 und den der Zuleitung 2 innerhalb der Druckkammer 4 gegenüberliegenden Turbulator 5. Nach Eintritt des Prozessmediums aus der Zuleitung 2 strömt dieses in der Druckkam- mer 4 um die Umfangswandung des zentralen Arbeitskanals 9 herum, wird an dem als radiale Einbuchtung ausgebildeten Turbulator 5 umgelenkt und verteilt sich gleichmäßig, verwirbelungsfrei in der Druckkammer 4. 3 shows, in addition to the working channel 9 and the pressure chamber 4, the feed line 2 and the turbulator 5 opposite the feed line 2 within the pressure chamber 4. After the process medium has entered the feed line 2, it flows in the pressure chamber - Mer 4 around the circumferential wall of the central working channel 9, is deflected at the turbulator 5 designed as a radial indentation and is distributed evenly, without swirling in the pressure chamber 4th
Liste der verwendeten Bezugszeichen List of the reference symbols used
1 Optisches Element, Schutzglas1 optical element, protective glass
2 Zuleitung für das Prozessmedium 3 Verteilereinsätze 2 supply line for the process medium 3 distributor inserts
4 Druckkammer  4 pressure chamber
5 Turbulator  5 turbulator
6 Ringdüse  6 ring nozzle
7 Gehäuse, Gehäuseelemente 8 Düsenkanal  7 housing, housing elements 8 nozzle channel
9 Arbeitskanal  9 working channel

Claims

Patentansprüche Claims
1. Vorrichtung zur Strömungsführung eines Prozessmediums für eine Laserbearbei- tungsvorrichtung, umfassend einen Arbeitskanal (9), der das Prozessmedium koaxial zum Laserstrahl zu einer Bearbeitungsposition leitet, wobei der Arbeitskanal (9) ein- seitig mittels eines für den Laserstrahl durchlässigen optischen Elements (1 ) gasdicht verschlossen ist, 1. Device for guiding the flow of a process medium for a laser processing device, comprising a working channel (9) which guides the process medium coaxially to the laser beam to a processing position, the working channel (9) on one side by means of an optical element (1 ) is sealed gastight,
dadurch gekennzeichnet, dass characterized in that
- in der Umfangswandung des Arbeitskanals (9) unterbrechungsfrei über ihren ge- samten Umfang eine Ringdüse (6) zur Einleitung des Prozessmediums in den Ar- beitskanal (9) im Nahbereich des optischen Elements (1 ) eingebracht ist,  an annular nozzle (6) for introducing the process medium into the working channel (9) in the vicinity of the optical element (1) is introduced in the peripheral wall of the working channel (9) without interruption over its entire circumference,
- im Zuström bereich zur Ringdüse (6) eine Druckkammer (4) zur Homogenisierung der umfänglichen Druckverteilung des an der Ringdüse (6) anliegenden Prozess- mediendruckes ausgebildet ist, und  - In the inflow area to the ring nozzle (6), a pressure chamber (4) for homogenizing the circumferential pressure distribution of the process medium pressure applied to the ring nozzle (6) is formed, and
- die Druckkammer (4) toroidartig, koaxial zum Arbeitskanal (9) ausgebildet ist, wo bei die Druckkammer (4) eine Zuleitung (2) zur Speisung der Druckkammer (4) mit Prozessmedium und mindestens einen Turbulator (5) zur Beeinflussung der Strö- mungsführung des Prozessmediums aufweist, wobei der Turbulator (5) als radiale Einbuchtung in die Druckkammer (4) ausgebildet und innerhalb der Druckkam- mer (4) an der der Zuleitung (2) entgegengesetzten Umfangsposition der Druck- kammer (4) angeordnet ist.  - The pressure chamber (4) is toroidal, coaxial to the working channel (9), where in the pressure chamber (4) a feed line (2) for supplying the pressure chamber (4) with process medium and at least one turbulator (5) for influencing the flow guidance of the process medium, the turbulator (5) being designed as a radial indentation in the pressure chamber (4) and being arranged inside the pressure chamber (4) at the circumferential position of the pressure chamber (4) opposite the feed line (2).
2. Vorrichtung zur Strömungsführung nach Anspruch 1 , dadurch gekennzeichnet, dass die Ringdüse (6) derart gestaltet und ausgerichtet ist, dass das ausströmende Prozessmedium im Wesentlich radial in den Arbeitskanal (9) einströmt. 2. Device for flow control according to claim 1, characterized in that the ring nozzle (6) is designed and aligned such that the outflowing process medium flows essentially radially into the working channel (9).
3. Vorrichtung zur Strömungsführung nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, dass das Spaltmaß der Ringdüse (6) 0,20 mm ± 0,05 mm beträgt. 3. Device for flow control according to claim 1 or 2, characterized in that the gap dimension of the ring nozzle (6) is 0.20 mm ± 0.05 mm.
4. Vorrichtung zur Strömungsführung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Zuström bereich von der Druckkammer (4) zur Ringdü- se (6) in Form eines ringartigen, koaxial zum Arbeitskanal (9) angeordneten Düsen- kanals (8) ausgebildet ist. 4. Device for flow guidance according to one of claims 1 to 3, characterized in that the inflow area from the pressure chamber (4) to the ring nozzle (6) in the form of a ring-like nozzle channel (8) arranged coaxially to the working channel (9) ) is trained.
5. Vorrichtung zur Strömungsführung nach Anspruch 4, dadurch gekennzeichnet, dass der Düsenkanal (8) einen Kanalspalt aufweist, dessen Spaltmaß am Kanalaus- tritt 10 % bis 30 % des Spaltmaßes am Kanaleintritt beträgt. 5. Device for flow control according to claim 4, characterized in that the nozzle channel (8) has a channel gap, the gap dimension at the channel outlet is 10% to 30% of the gap dimension at the channel inlet.
6. Vorrichtung zur Strömungsführung nach Anspruch 4 oder 5, dadurch gekenn- zeichnet, dass der Düsenkanals (8) im kanalaustrittsseitigen Endbereich einen bo- genförmigen, um 90° abbiegenden Ablenkungbereich zur Strömungsablenkung des Prozessmediums in die Ringdüse (6) aufweist. 6. The flow guiding device as claimed in claim 4 or 5, characterized in that the nozzle channel (8) has an arcuate deflection area in the channel outlet end region for deflecting the process medium into the ring nozzle (6).
7. Vorrichtung zur Strömungsführung nach Anspruch 6, dadurch gekennzeichnet, dass sich das Spaltmaß des Kanalspalts des Düsenkanals (8) stetig im bogenförmi- gen Ablenkungsbereich des Düsenkanals (8) verringert. 7. The flow guide device according to claim 6, characterized in that the gap dimension of the channel gap of the nozzle channel (8) is continuously reduced in the arcuate deflection region of the nozzle channel (8).
8. Vorrichtung zur Strömungsführung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Vorrichtung mindestens zwei in die Laserbearbeitungsvor- richtung einsetzbare Verteilereinsätze (3) umfasst, die die Zuström bereiche des Pro- zessmediums zum Arbeitskanal (9) mit der Druckkammer (4) und der Ringdüse (6) ausbilden. - Hierzu zwei Blatt Zeichnungen - 8. Device for flow guidance according to one of claims 1 to 7, characterized in that the device comprises at least two distributor inserts (3) which can be used in the laser processing device and which cover the inflow areas of the process medium to the working channel (9) with the pressure chamber ( 4) and the ring nozzle (6). - Two sheets of drawings -
PCT/DE2019/100801 2018-09-26 2019-09-09 Device for guiding the flow of a process medium for a laser machining device WO2020064050A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102018123727 2018-09-26
DE102018123727.8 2018-09-26
DE102018131886.3A DE102018131886B3 (en) 2018-09-26 2018-12-12 Device for flow control of a process medium for a laser processing device
DE102018131886.3 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020064050A1 true WO2020064050A1 (en) 2020-04-02

Family

ID=69186443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2019/100801 WO2020064050A1 (en) 2018-09-26 2019-09-09 Device for guiding the flow of a process medium for a laser machining device

Country Status (2)

Country Link
DE (1) DE102018131886B3 (en)
WO (1) WO2020064050A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426458A1 (en) 1994-07-26 1996-02-01 Precitec Gmbh Laser beam machine, avoiding damage to optical unit
US5756962A (en) * 1994-08-02 1998-05-26 Mcneil - Ppc, Inc. Laser-processing head for laser processing apparatus
JP2000225488A (en) * 1999-02-08 2000-08-15 Amada Eng Center Co Ltd Assist gas injection method in thermal cutting machine and machining head therefor
JP2004148360A (en) * 2002-10-30 2004-05-27 Toppan Forms Co Ltd Laser beam machining head, and laser beam machining system using the same
DE102005025119A1 (en) 2004-05-27 2005-12-29 Highyag Lasertechnologie Gmbh Laser welding head housing has a transverse cleaning jet mid-way between the laser lens and the crucible
CN203509343U (en) * 2013-10-18 2014-04-02 无锡庆源激光科技有限公司 Annular air guide mechanism for air blowing of laser head
JP2017170477A (en) * 2016-03-23 2017-09-28 三菱電機株式会社 Processing head of laser processing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642919B2 (en) * 2009-03-31 2014-02-04 Ats Automation Tooling Systems Inc. Laser processing nozzle
US9482249B2 (en) * 2013-09-09 2016-11-01 General Electric Company Three-dimensional printing process, swirling device and thermal management process
CN105436720B (en) * 2015-12-04 2017-05-24 大族激光科技产业集团股份有限公司 Laser cutting device and laser head thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426458A1 (en) 1994-07-26 1996-02-01 Precitec Gmbh Laser beam machine, avoiding damage to optical unit
US5756962A (en) * 1994-08-02 1998-05-26 Mcneil - Ppc, Inc. Laser-processing head for laser processing apparatus
JP2000225488A (en) * 1999-02-08 2000-08-15 Amada Eng Center Co Ltd Assist gas injection method in thermal cutting machine and machining head therefor
JP2004148360A (en) * 2002-10-30 2004-05-27 Toppan Forms Co Ltd Laser beam machining head, and laser beam machining system using the same
DE102005025119A1 (en) 2004-05-27 2005-12-29 Highyag Lasertechnologie Gmbh Laser welding head housing has a transverse cleaning jet mid-way between the laser lens and the crucible
CN203509343U (en) * 2013-10-18 2014-04-02 无锡庆源激光科技有限公司 Annular air guide mechanism for air blowing of laser head
JP2017170477A (en) * 2016-03-23 2017-09-28 三菱電機株式会社 Processing head of laser processing device

Also Published As

Publication number Publication date
DE102018131886B3 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
EP1797747B1 (en) Plasma torch
EP2076351B1 (en) Insert element, gas lens comprising such an insert element, and welding torch comprising such a gas lens
DE202011103257U1 (en) Plasma arc torch
DE3822097C2 (en)
DE4402000A1 (en) Nozzle arrangement for laser beam cutting
EP3746258B1 (en) Gas supply device and laser processing head comprising same
DE102012217082B4 (en) Laser processing head with a ring nozzle
EP3585553B1 (en) Device for laser material working along a working direction and method for working material by means of a laser beam
DE2633719C2 (en) Method for operating a cutting torch and nozzle for carrying out the method
DE202016100923U1 (en) Welding device with protective gas guide
DE1401826A1 (en) Combustion device for hydrocarbon fuels
DE102019103248A1 (en) Laser processing head with the function of rectifying auxiliary gas
DE102011082721B4 (en) System comprising a laser cutting machine and a universal nozzle and a method for operating the system
DE2659089C3 (en) Burners, in particular for liquid fuels
DE102016106960A1 (en) Device for processing a surface of a workpiece with a laser beam and method for operating the device
DE69408326T2 (en) PLASMA TORCH
DE102016116659A1 (en) Laser welding device and laser welding process for laser welding of metallic workpieces
DE1471981B2 (en)
WO2020064050A1 (en) Device for guiding the flow of a process medium for a laser machining device
DE102005028243C5 (en) Nozzle arrangement for a laser processing head
WO2008037310A1 (en) Protective device for the optics of a laser working device with at least one nozzle arranged in a corner region
DE3630127C2 (en)
DE2759004C2 (en) Oil burner for low heating output
DE102012025627A1 (en) Ring nozzle for a laser processing head and laser processing head with it
EP3746259B1 (en) Gas supply device and laser processing head comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19783415

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19783415

Country of ref document: EP

Kind code of ref document: A1