EP1797747B1 - Plasma torch - Google Patents

Plasma torch Download PDF

Info

Publication number
EP1797747B1
EP1797747B1 EP05790759.4A EP05790759A EP1797747B1 EP 1797747 B1 EP1797747 B1 EP 1797747B1 EP 05790759 A EP05790759 A EP 05790759A EP 1797747 B1 EP1797747 B1 EP 1797747B1
Authority
EP
European Patent Office
Prior art keywords
secondary gas
nozzle
plasma torch
cap
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05790759.4A
Other languages
German (de)
French (fr)
Other versions
EP1797747A2 (en
Inventor
Volker Krink
Thomas Steudtner
Frank Laurisch
Ralf-Peter Reinke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kjellberg Finsterwalde Plasma und Maschinen GmbH
Original Assignee
Kjellberg Finsterwalde Plasma und Maschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35456944&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1797747(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kjellberg Finsterwalde Plasma und Maschinen GmbH filed Critical Kjellberg Finsterwalde Plasma und Maschinen GmbH
Priority to PL05790759T priority Critical patent/PL1797747T3/en
Publication of EP1797747A2 publication Critical patent/EP1797747A2/en
Application granted granted Critical
Publication of EP1797747B1 publication Critical patent/EP1797747B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3457Nozzle protection devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Definitions

  • the present invention relates to a plasma torch which serves both for dry cutting and underwater cutting of various metallic workpieces and to an arrangement of a nozzle cap and a secondary gas guide member for a plasma torch.
  • an arc In plasma cutting, an arc (pilot arc) is first ignited between a cathode (electrode) and anode (nozzle) and then transferred directly to a workpiece to produce a cut.
  • This arc creates a plasma, which is a thermally highly heated, electrically conductive gas consisting of positive and negative ions, electrons, and excited and neutral atoms and molecules.
  • gases such as argon, hydrogen, nitrogen, oxygen or air are used. These gases are ionized and dissociated by the energy of the arc. The resulting plasma jet is used to cut the workpiece
  • a modern plasma burner is made of basic components such as torch body, electrode (cathode), nozzle, one or more protective caps surrounding the nozzle, and the Connections used to supply the burner with electricity, gases and / or liquids.
  • the nozzle may consist of one or more parts.
  • the nozzle is held by a nozzle cap. Cooling water flows between the nozzle and the nozzle cap. The secondary gas flows between the nozzle and protective cap.
  • the nozzle cap can be omitted. Then the secondary gas flows between the nozzle and protective cap.
  • the electrode and the nozzle are arranged in a certain spatial relationship to one another and delimit a space - the plasma chamber in which this plasma jet is generated.
  • the plasma jet may be varied in parameters such as e.g. Diameter, temperature, energy density and flow rate of the plasma gas are strongly influenced by the design of the nozzle and electrode.
  • the electrodes and nozzles are made of different materials and in different shapes.
  • Nozzles are usually made of copper and water cooled directly or indirectly. Depending on the cutting task and electrical power of the plasma torch, nozzles are used which have different inner contours and openings with different diameters and thus provide the optimum cutting results.
  • nozzles are enclosed by protective caps. Through the gap between the nozzle and cap flows Secondary gas. This serves to create a defined atmosphere, to constrict the plasma jet and to protect against splashing during piercing.
  • the selection of the secondary gas plays an important role.
  • the present applicant uses nitrogen as a secondary gas.
  • the plasma jet is flowed around with the secondary gas, which is passed between the nozzle cap and protective cap through the resulting passage and exits from the annular opening in the direction of the workpiece. This ensures a substantially non-oxidizing atmosphere on the workpiece. This effect can be enhanced by adding small amounts of hydrogen (eg 1 to 20%).
  • the secondary gas passing through an annular secondary gas passage is aligned by an insulator between the nozzle cap and the protective cap.
  • the insulator has small holes which are shaped so that the secondary gas exits along the axial direction of the burner body and surrounds the plasma arc with sufficient quantity and speed.
  • the secondary current is generated as a circulating current in which the straightening channel formed in the insulator is formed spirally with respect to the central region of the burner.
  • a protective cap directs a secondary gas flow along the arcuate surface of a nozzle cap onto the arc. During cutting, the velocity of this flow is reduced so that the arc is not destabilized. This cap contains some vents that divert the excess gas away.
  • the protective cap and secondary gas flow protect the nozzle from molten metal that can splash from a workpiece onto the nozzle and cause damage or parallel arcing.
  • the plasma jet is unstable by the direct flow of the secondary gas, in particular at a secondary gas flow rate that is greater than the plasma gas flow rate.
  • the instability is especially when driving over technologically related kerfs and direction and speed changes, such. noticeable at corners and at the beginning of cutting.
  • the cutting arc stabilizes only slowly. It comes to swinging the cutting arc. This swinging forms on the resulting cut edge and thus leads to a deterioration in quality.
  • Disadvantage of this method is that the nozzle mouth is insufficiently protected against high-spraying metal in particular when piercing the plasma jet into the workpiece. Furthermore, the secondary gas can not be targeted in the plasma jet to achieve a good quality cut.
  • the active participation of the secondary gas in the plasma process is desired.
  • the secondary gas nitrogen not only acts as a protective gas to protect the interfaces of the oxidizing oxygen in the ambient air, but also actively participates in the plasma process. It reduces the surface tension of the melt, which becomes less viscous and better expelled from the kerf. The result is a beard-free cut. With the in US Pat. No. 6,207,923 B1 this arrangement is not possible. Even when using oxygen as the plasma gas for cutting structural steels, different effects on the quality of cut can be achieved by different composition of the secondary gas, for example different nitrogen and oxygen fractions.
  • the US 5 695 662 A discloses a plasma torch having a torch body, an electrode disposed in the torch body, a nozzle having a central nozzle opening and arranged to separately cover the electrode by a plasma gas channel formed therebetween, a nozzle cap, one at its front End face disposed, the nozzle opening opposite the outlet opening and an annular secondary gas channel within the nozzle cap which communicates with the outlet opening, wherein the nozzle cap is electrically isolated with respect to the electrode and the nozzle, a nozzle cap which covers the nozzle except the nozzle opening and disposed within the nozzle cap and is separated from the latter at its front end side by the secondary gas passage, and a secondary gas guide member having at least one passage in the form of bores, wherein the secondary gas guide member in the second is arranged between a secondary gas inlet and the front end of the secondary gas channel and the secondary gas channel between the secondary gas guide part and its front end is formed such that it passes the secondary gas after passing the Sekundärgas Equipmentsteils and a Sekundargaskan
  • the US 2001/007320 A1 discloses a nozzle with a nozzle cap and a secondary gas guide part.
  • the secondary gas guide part is formed as a ring.
  • the invention is therefore based on the object to eliminate the disadvantages of the prior art described.
  • the functions of the secondary gas such as protection against high-velocity metal, creation of a defined atmosphere around the plasma jet and the active participation of the secondary gas in the plasma process should be ensured without affecting the plasma jet in its stability.
  • this object is achieved by a plasma torch according to claim 1 and an arrangement according to claim 10.
  • the invention generates a homogeneous secondary gas flow.
  • This homogeneous secondary gas flow leads to a stabilization of the plasma jet.
  • the oscillation of the cutting arc in difficult-to-control technological cutting situations, such.
  • the secondary gas is guided via a secondary gas guide part into the secondary gas channel in such a way that the secondary gas flow initially strikes a virtually cylindrical first lateral surface of the nozzle cap which is directed parallel to the longitudinal axis of the plasma torch. Thereafter, the secondary gas is passed through the secondary gas channel part, which is bounded by almost conical mantle or inner surfaces of the nozzle or the nozzle cap and nozzle cap, to the front end of the plasma torch and then fed at an angle of almost 90 ° to the longitudinal axis of the plasma torch a plasma jet.
  • the particularly good homogeneity of the secondary gas ie the particularly good distribution around a plasma jet, is achieved by firstly directing the secondary gas flow onto the lateral surface of the secondary gas flow in a plane extending essentially at right angles to the longitudinal axis of the plasma torch Nozzle cap hits and that is further reset from the front end of the plasma torch and thus the secondary gas has more time in addition to spread.
  • this effect is enhanced even if, after passing through the secondary gas guide part, the secondary gas initially not only strikes the almost cylindrical first lateral surface of the nozzle cap, but at the same time flows into a relaxation space extension, which allows a greater relaxation of the secondary gas, before the secondary gas then flows over the conical jacket. or inner surfaces of the plasma jet is supplied radially or tangentially. In this case, this area of the nozzle cap with expansion chamber extension has a smaller diameter than the beginning of the subsequent conical section.
  • the nozzle cap is often omitted. Then the nozzle takes over the space-limiting task of the nozzle cap.
  • the nozzle is geometrically formed in this case as the nozzle cap.
  • FIG. 1 shows a plasma torch 1 according to a particular embodiment of the invention.
  • the plasma torch 1 has a torch body 2 with an electrode 3 and a nozzle 4 defining a longitudinal axis L of the plasma torch 1.
  • the electrode 3 and the nozzle 4 are arranged coaxially in the burner body 2, are in a certain spatial relationship and form a plasma chamber 6, through which flows a plasma gas PG, which is supplied via a plasma gas channel 6a.
  • a nozzle cap 5 is arranged coaxially to the longitudinal axis L of the plasma torch 1 and holds the nozzle 4. Between the nozzle 4 and the nozzle cap 5 is a space 11, flows through the cooling water.
  • the cooling water is supplied via a water feed WV and flows through a water return WR.
  • An annular secondary gas guide member 8 having a plurality of holes in the form of bores, only one of which is denoted by the reference numeral 8a, is in a formed between the nozzle cap 5 and a nozzle cap 7 secondary gas channel 9 between a secondary gas inlet 8b and the front end of the secondary gas channel 9 arranged that the flowing through the passage 8 a secondary gas SG on a nearly cylindrical first lateral surface of the nozzle cap 5, which results in a first cylindrical portion 5 a of the nozzle cap 5 hits.
  • the secondary gas SG is then passed through the secondary gas channel 9, which is bounded by a nearly conical second surface of the nozzle cap 5 in a lower portion 5 b and a corresponding conical inner surface 7 b of the nozzle cap 7, to the front end of the plasma torch 1, then at an angle of nearly 90 ° to the longitudinal axis L of the plasma torch. 1 a plasma jet (not shown) and exits through an outlet opening 7a of the nozzle cap 7 from.
  • the rotating secondary gas SG flows around the plasma jet after it leaves a nozzle opening 4a and additionally creates a defined atmosphere around the plasma jet.
  • the passages 8a of the secondary gas guide part 8 are arranged so that a rotating flow of the secondary gas SG is formed.
  • the passages in the secondary gas guide part 8a may be equidistant over the circumference of the secondary gas guide part 8 and radially extending (FIG. Figure 2.1 ) or with an offset to the radial ( Figure 2.2 ), ie, aligned with a respective point offset from the actual center of the circle.
  • the inclination of the almost cylindrical first lateral surface of the nozzle cap 5 can be up to ⁇ 15 ° ( Figures 1.1 . 1.2, and 1.3 ) relative to the longitudinal axis L of the plasma torch 1 amount.
  • W3 -15 ° ( Figure 1.3 ) the effect of homogeneity is achieved similar to enlargement of space by cylindrical surfaces and achieves a particularly good homogeneity.
  • transitions between the first and second lateral surfaces of the nozzle cap 5 and corresponding first and second inner surfaces of the nozzle protection cap 7 can be sharp-edged (FIG. Figures 1.1 - 1.3 ), with bevels ( Figures 1.4 - 1.6 ) or radii ( Figures 1.7 - 1.9 ) be provided. There is also the possibility of combinations of radii and chamfers at the transitions.
  • Figures 1.10 -1.12 show embodiments with a relaxation space extension 10, in which the secondary gas SG from the passages 8a of the secondary gas guide 8 flows to further improve the stability of the plasma jet.
  • This relaxation space extension 10 may be, for example, a round ( Figure 1.10 ), a rectangular ( Figure 1.11 ) or a multi-faceted ( Figure 1.12 ) Have shape.

Description

Die vorliegende Erfindung bezieht sich auf einen Plasmabrenner, der sowohl zum Trockenschneiden als auch Unterwasserschneiden verschiedener metallischer Werkstücke dient und auf eine Anordnung aus einer Düsenkappe und einem Sekundärgasführungsteil für einen Plasmabrenner.The present invention relates to a plasma torch which serves both for dry cutting and underwater cutting of various metallic workpieces and to an arrangement of a nozzle cap and a secondary gas guide member for a plasma torch.

Beim Plasmaschneiden wird zunächst ein Lichtbogen (Pilotlichtbogen) zwischen einer Kathode (Elektrode) und Anode (Düse) gezündet und danach direkt auf ein Werkstück übertragen, um damit einen Schnitt herzustellen.In plasma cutting, an arc (pilot arc) is first ignited between a cathode (electrode) and anode (nozzle) and then transferred directly to a workpiece to produce a cut.

Dieser Lichtbogen erzeugt ein Plasma, das ein thermisch hochaufgeheiztes, elektrisch leitfähiges Gas ist, welches aus positiven und negativen Ionen, Elektronen sowie angeregten und neutralen Atomen und Molekülen besteht.This arc creates a plasma, which is a thermally highly heated, electrically conductive gas consisting of positive and negative ions, electrons, and excited and neutral atoms and molecules.

Als Plasmagas werden Gase wie Argon, Wasserstoff, Stickstoff, Sauerstoff oder Luft eingesetzt. Diese Gase werden durch die Energie des Lichtbogens ionisiert und dissoziiert. Der daraus entstehende Plasmastrahl wird zum Schneiden des Werkstücks eingesetzteAs plasma gas, gases such as argon, hydrogen, nitrogen, oxygen or air are used. These gases are ionized and dissociated by the energy of the arc. The resulting plasma jet is used to cut the workpiece

Ein moderner Plasmabrenner entsteht aus Grundbauteilen wie Brennerkörper, Elektrode (Kathode), Düse, eine oder mehrere Schutzkappen, welche die Düse umgeben, sowie die Verbindungen, die zur Versorgung des Brenners mit Strom, Gasen und/oder Flüssigkeiten dienen.A modern plasma burner is made of basic components such as torch body, electrode (cathode), nozzle, one or more protective caps surrounding the nozzle, and the Connections used to supply the burner with electricity, gases and / or liquids.

Die Düse kann aus einem oder mehreren Teilen bestehen. Bei direkt wassergekühlten Brennern wird die Düse von einer Düsenkappe gehalten. Zwischen der Düse und Düsenkappe strömt Kühlwasser. Das Sekundärgas strömt zwischen der Düse und Schutzkappe.The nozzle may consist of one or more parts. For direct water-cooled burners, the nozzle is held by a nozzle cap. Cooling water flows between the nozzle and the nozzle cap. The secondary gas flows between the nozzle and protective cap.

Bei gasgekühlten Brennern und indirekt wassergekühlten Brennern kann die Düsenkappe entfallen. Dann strömt das Sekundärgas zwischen der Düse und Schutzkappe.For gas-cooled burners and indirect water-cooled burners, the nozzle cap can be omitted. Then the secondary gas flows between the nozzle and protective cap.

Die Elektrode und die Düse sind zueinander in einem bestimmten räumlichen Verhältnis angeordnet und begrenzen einen Raum - die Plasmakammer, in der dieser Plasmastrahl erzeugt wird. Der Plasmastrahl kann in seinen Parametern wie z.B. Durchmesser, Temperatur, Energiedichte und Durchflußrate des Plasmagases durch die Gestaltung der Düse und Elektrode stark beeinflußt werden.The electrode and the nozzle are arranged in a certain spatial relationship to one another and delimit a space - the plasma chamber in which this plasma jet is generated. The plasma jet may be varied in parameters such as e.g. Diameter, temperature, energy density and flow rate of the plasma gas are strongly influenced by the design of the nozzle and electrode.

Für die unterschiedlichen Plasmagase werden die Elektroden und Düsen aus unterschiedlichen Materialen und in verschiedenen Formen hergestellt.For the different plasma gases, the electrodes and nozzles are made of different materials and in different shapes.

Düsen werden in der Regel aus Kupfer hergestellt und direkt oder indirekt wassergekühlt. Je nach Schneidaufgabe und elektrischer Leistung des Plasmabrenners werden Düsen eingesetzt, die unterschiedliche Innenkonturen und Öffnungen mit unterschiedlichen Durchmessern aufweisen und damit die optimalen Schneidergebnisse liefern.Nozzles are usually made of copper and water cooled directly or indirectly. Depending on the cutting task and electrical power of the plasma torch, nozzles are used which have different inner contours and openings with different diameters and thus provide the optimum cutting results.

Um eine Düse während des Schneidprozesses vor der Wärme und herausspritzendem geschmolzenem Metall des Werkstücks zu schützen, werden Düsen durch Schutzkappen umschlossen. Durch den Zwischenraum zwischen Düse und Schutzkappe strömt ein Sekundärgas. Dieses dient zur Schaffung einer definierten Atmosphäre, zur Einschnürung des Plasmastrahls und den Schutz vor Spritzen beim Einstechen.To protect a nozzle from the heat and spewing molten metal of the workpiece during the cutting process, nozzles are enclosed by protective caps. Through the gap between the nozzle and cap flows Secondary gas. This serves to create a defined atmosphere, to constrict the plasma jet and to protect against splashing during piercing.

In der Patentanmeldung DE 38 32 630 A1 wird der Plasmastrahl beim Unterwasserschneiden durch einen Gaswirbel geschützt, der mit hoher Geschwindigkeit um den Plasmastrahl rotiert. Auf der Düsenkappe werden fünf bis zwanzig Gasleitführungen in Form eines Stabs symmetrisch angeordnet. Die durch die kegelförmige tangentiale Anordnung der Gasleitführungen und die Brennerkappe gebildeten Gasleitkanäle fließende Sekundärgas umströmt tangential den Plasmastrahl und bildet einen hyperbolischen Wirbel, was den Zutritt des Wassers zum Plasmastrahl verhindert. Dieser Brenner kann aber auch zum Trockenschneiden verwendet werden, wobei das wirbelnde Sekundärgas die Brennerspitze vor dem geschmolzenen Metall des Werkstücks insbesondere beim Einstechen wesentlich schützt.In the patent application DE 38 32 630 A1 In the case of underwater cutting, the plasma jet is protected by a gas vortex, which rotates at high speed around the plasma jet. On the nozzle cap five to twenty gas guide in the form of a rod are arranged symmetrically. The secondary gas flowing through the conical tangential arrangement of the Gasleitführungen and the burner cap flowing secondary gas flows tangentially around the plasma jet and forms a hyperbolic vortex, which prevents the access of the water to the plasma jet. However, this burner can also be used for dry cutting, wherein the swirling secondary gas protects the burner tip in front of the molten metal of the workpiece, especially during piercing substantially.

Um die Oxidation der Schnittflächen durch eine Reaktion mit dem in der Umgebungsluft befindlichen Sauerstoff zu verhindern, spielt die Auswahl des Sekundärgases eine wichtige Rolle. In der früheren Patentanmeldung DE 101 44 516 A1 der vorliegenden Anmelderin wird Stickstoff als Sekundärgas eingesetzt. Der Plasmastrahl wird mit dem Sekundärgas, das zwischen der Düsenkappe und Schutzkappe durch den daraus entstandenen Durchgang geleitet wird und aus der ringförmigen Öffnung in die Richtung des Werkstücks austritt, umströmt. Dadurch wird eine im wesentlichen nicht oxidierende Atmosphäre am Werkstück gewährleistet. Dieser Effekt kann durch das Zumischen von geringen Anteilen Wasserstoff (z. B. 1 bis 20 %) noch verstärkt werden.In order to prevent the oxidation of the cut surfaces by a reaction with the oxygen in the ambient air, the selection of the secondary gas plays an important role. In the earlier patent application DE 101 44 516 A1 The present applicant uses nitrogen as a secondary gas. The plasma jet is flowed around with the secondary gas, which is passed between the nozzle cap and protective cap through the resulting passage and exits from the annular opening in the direction of the workpiece. This ensures a substantially non-oxidizing atmosphere on the workpiece. This effect can be enhanced by adding small amounts of hydrogen (eg 1 to 20%).

Im Plasmabrenner nach dem Patent EP 0 573 653 B1 wird das durch einen ringförmigen Sekundärgaskanal hindurchtretende Sekundärgas durch einen Isolator zwischen der Düsenkappe und Schutzkappe ausgerichtet. Der Isolator hat kleine Bohrungen, die so geformt sind, daß das Sekundärgas entlang der Axialrichtung des Brennerkörpers austritt und mit ausreichender Menge und Geschwindigkeit den Plasmabogen umgibt. In einem anderen Isolator wird der Sekundärstrom als kreisender Strom erzeugt, in dem der im Isolator gebildete Richtkanal spiralförmig bezüglich des Zentralbereiches des Brenners ausgebildet ist.In the plasma torch after the Patent EP 0 573 653 B1 For example, the secondary gas passing through an annular secondary gas passage is aligned by an insulator between the nozzle cap and the protective cap. The insulator has small holes which are shaped so that the secondary gas exits along the axial direction of the burner body and surrounds the plasma arc with sufficient quantity and speed. In another Insulator, the secondary current is generated as a circulating current in which the straightening channel formed in the insulator is formed spirally with respect to the central region of the burner.

Im Patent EP 0 801 882 B1 lenkt eine Schutzkappe entlang einer kegelförmigen Oberfläche einer Düsenkappe eine Sekundärgasströmung auf den Lichtbogen. Während des Schneidens wird die Geschwindigkeit dieser Strömung so reduziert, daß der Lichtbogen nicht destabilisiert wird. Diese Schutzkappe enthält einige Entlüftungsöffnungen, die das überflüssige Gas weglenken. Die Schutzkappe und Sekundärgasströmung schützen die Düse vor geschmolzenem Metall, das von einem Werkstück auf die Düse spritzen und eine Beschädigung oder eine Parallellichtbogenbildung bewirken kann.in the Patent EP 0 801 882 B1 A protective cap directs a secondary gas flow along the arcuate surface of a nozzle cap onto the arc. During cutting, the velocity of this flow is reduced so that the arc is not destabilized. This cap contains some vents that divert the excess gas away. The protective cap and secondary gas flow protect the nozzle from molten metal that can splash from a workpiece onto the nozzle and cause damage or parallel arcing.

In den oben genannten Beispielen ergibt sich der Nachteil, daß der Plasmastrahl durch das direkte Anströmen mit dem Sekundärgas, insbesondere bei einem Sekundärgasvolumenstrom, der größer als der Plasmagasvolumenstrom ist, instabil wird. Die Instabilität macht sich vor allem beim Überfahren von technologisch bedingten Schnittfugen und bei Richtungs- und Geschwindigkeitsänderungen, wie z.B. an Ecken und am Schneidbeginn bemerkbar. Beim Überfahren einer Schnittfuge stabilisiert sich der Schneidlichtbogen nur langsam. Es kommt zum Schwingen des Schneidlichtbogens. Dieses Schwingen bildet sich auf der entstehenden Schnittkante ab und führt so zu einer Qualitätsverschlechterung.In the above examples, there is the disadvantage that the plasma jet is unstable by the direct flow of the secondary gas, in particular at a secondary gas flow rate that is greater than the plasma gas flow rate. The instability is especially when driving over technologically related kerfs and direction and speed changes, such. noticeable at corners and at the beginning of cutting. When crossing a kerf, the cutting arc stabilizes only slowly. It comes to swinging the cutting arc. This swinging forms on the resulting cut edge and thus leads to a deterioration in quality.

In US 6 207 923 B1 strömt ein Sekundärgas in einem Zwischenraum zwischen einer Düse mit einem verlängerten Düsenmund und einer Schutzkappe. Die Austrittsöffnung der Schutzkappe ist so geformt, daß der Düsenmund sich teilweise zwischen dem Eingang und dem Ausgang der Austrittsöffnung befindet. Eine solche Anordnung erzeugt eine im wesentlichen säulenförmige Strömung des Sekundärgases um den Plasmastrahl, ohne den Plasmastrahl wesentlich zu stören, und soll die Düse vor hochspritzendem Metall des Werkstücks schützen.In US Pat. No. 6,207,923 B1 A secondary gas flows in a gap between a nozzle with an extended nozzle mouth and a protective cap. The outlet opening of the protective cap is shaped so that the nozzle mouth is partially between the inlet and the outlet of the outlet opening. Such an arrangement produces a substantially columnar flow of secondary gas around the plasma jet without substantially disturbing the plasma jet and is intended to protect the nozzle from spattering metal of the workpiece.

Nachteil dieses Verfahrens ist, dass der Düsenmund nur unzureichend vor hochspritzendem Metall insbesondere beim Einstechen des Plasmastrahls in das Werkstück geschützt ist. Weiterhin kann das Sekundärgas nicht gezielt in den Plasmastrahl gelenkt werden, um eine gute Schnittqualität zu erreichen.Disadvantage of this method is that the nozzle mouth is insufficiently protected against high-spraying metal in particular when piercing the plasma jet into the workpiece. Furthermore, the secondary gas can not be targeted in the plasma jet to achieve a good quality cut.

Bei bestimmten Gaskombinationen ist die aktive Teilnahme des Sekundärgases am Plasmaprozess gewünscht. Dies gilt z.B. für das Schneiden von Edelstählen mit einem ArH2-Gemisch als Plasmagas und Stickstoff als Sekundärgas. Hier wirkt das Sekundärgas Stickstoff nicht nur als Schutzgas, um die Schnittflächen von dem oxidierenden Sauerstoff in der Umgebungsluft zu schützen, sondern nimmt auch aktiv am Plasmaprozess teil. Es verringert die Oberflächenspannung der Schmelze, diese wird dünnflüssiger und besser aus der Schnittfuge ausgetrieben. Es entsteht ein bartfreier Schnitt. Mit der in US 6 207 923 B1 beschriebenen Anordnung ist dies nicht möglich. Auch bei der Verwendung von Sauerstoff als Plasmagas für das Schneiden von Baustählen können durch unterschiedliche Zusammensetzung des Sekundärgases, beispielsweise unterschiedliche Stickstoff- und Sauerstoffanteile, unterschiedliche Effekte hinsichtlich der Schnittqualität erzielt werden.For certain gas combinations, the active participation of the secondary gas in the plasma process is desired. This applies, for example, for cutting stainless steels with an ArH 2 mixture as plasma gas and nitrogen as secondary gas. Here, the secondary gas nitrogen not only acts as a protective gas to protect the interfaces of the oxidizing oxygen in the ambient air, but also actively participates in the plasma process. It reduces the surface tension of the melt, which becomes less viscous and better expelled from the kerf. The result is a beard-free cut. With the in US Pat. No. 6,207,923 B1 this arrangement is not possible. Even when using oxygen as the plasma gas for cutting structural steels, different effects on the quality of cut can be achieved by different composition of the secondary gas, for example different nitrogen and oxygen fractions.

Die US 5 695 662 A offenbart einen Plasmabrenner mit einem Brennerkörper, einer im Brennerkörper angeordneten Elektrode, einer Düse, die eine zentrale Düsenöffnung aufweist und so angeordnet ist, dass sie die Elektrode durch einen Plasmagaskanal getrennt abdeckt, der zwischen diesen gebildet ist, einer Düsenschutzkappe, die eine an ihrer vorderen Endseite angeordnete, der Düsenöffnung gegenüberliegende Austrittsöffnung und einen ringförmigen Sekundärgaskanal innerhalb der Düsenschutzkappe aufweist, der mit der Austrittsöffnung in Verbindung steht, wobei die Düsenschutzkappe bezüglich der Elektrode und der Düse elektrisch isoliert angeordnet ist, eine Düsenkappe, die die Düse mit Ausnahme der Düsenöffnung abdeckt und innerhalb der Düsenschutzkappe angeordnet und von dieser an ihrer vorderen Endseite durch den Sekundärgaskanal getrennt ist, und einem Sekundärgasführungsteil, das mindestens einen Durchlass in Form von Bohrungen aufweist, wobei das Sekundärgasführungsteil im Sekundärgaskanal zwischen einem Sekundärgaseinlass und dem vorderen Ende des Sekundärgaskanals angeordnet ist und der Sekundärgaskanal zwischen dem Sekundärgasführungsteil und seinem vorderen Ende derart ausgebildet ist, dass er das Sekundärgas nach dem Passieren des Sekundärgasführungsteils und eines Sekundargaskanalteils schräg zur Längsachse des Plasmabrenners in Richtung zum vorderen Ende des Plasmabrenners führt und danach unter einem im wesentlichen rechten Winkel zur Längsachse des Plasmabrenners einem Plasmastrahl zuführt.The US 5 695 662 A discloses a plasma torch having a torch body, an electrode disposed in the torch body, a nozzle having a central nozzle opening and arranged to separately cover the electrode by a plasma gas channel formed therebetween, a nozzle cap, one at its front End face disposed, the nozzle opening opposite the outlet opening and an annular secondary gas channel within the nozzle cap which communicates with the outlet opening, wherein the nozzle cap is electrically isolated with respect to the electrode and the nozzle, a nozzle cap which covers the nozzle except the nozzle opening and disposed within the nozzle cap and is separated from the latter at its front end side by the secondary gas passage, and a secondary gas guide member having at least one passage in the form of bores, wherein the secondary gas guide member in the second is arranged between a secondary gas inlet and the front end of the secondary gas channel and the secondary gas channel between the secondary gas guide part and its front end is formed such that it passes the secondary gas after passing the Sekundärgasführungsteils and a Sekundargaskanalteils obliquely to the longitudinal axis of the plasma torch toward the front end of the plasma torch leads and then at a substantially right angle to the longitudinal axis of the plasma torch a plasma jet supplies.

Die US 2001/007320 A1 offenbart eine Düse mit einer Düsenschutzkappe und ein Sekundärgasführungsteil. Das Sekundärgasführungsteil ist als ein Ring ausgebildet.The US 2001/007320 A1 discloses a nozzle with a nozzle cap and a secondary gas guide part. The secondary gas guide part is formed as a ring.

Aus der US 5 317 126 A ist ein Plasmabrenner mit einer Düsenkappe und einem Sekundärgasführungsteil bekannt.From the US 5,317,126 A For example, a plasma torch with a nozzle cap and a secondary gas guide member is known.

Der Erfindung liegt somit die Aufgabe zugrunde, die beschriebenen Nachteile des Standes der Technik zu beseitigen. Dabei sollen die Funktionen des Sekundärgases, wie Schutz vor hochspritzendem Metall, Schaffung einer definierten Atmosphäre um den Plasmastrahl und die aktive Teilnahme des Sekundärgases am Plasmaprozess gewährleistet sein, ohne den Plasmastrahl in seiner Stabilität zu beeinflussen.The invention is therefore based on the object to eliminate the disadvantages of the prior art described. The functions of the secondary gas, such as protection against high-velocity metal, creation of a defined atmosphere around the plasma jet and the active participation of the secondary gas in the plasma process should be ensured without affecting the plasma jet in its stability.

Erfindungsgemäß wird diese Aufgabe durch einen Plasmabrenner gemäß Patentanspruch 1 und eine Anordnung gemäß Patentanspruch 10 gelöst.According to the invention this object is achieved by a plasma torch according to claim 1 and an arrangement according to claim 10.

Die jeweiligen Unteransprüche betreffen jeweilige vorteilhafte Weiterentwicklungen der Erfindung.The respective subclaims relate to respective advantageous developments of the invention.

Durch die Erfindung wird ein homogener Sekundärgasstrom erzeugt. Dieser homogene Sekundärgasstrom führt zu einer Stabilisierung des Plasmastrahls. Dadurch wird das Schwingen des Schneidlichtbogens in schwer zu beherrschenden technologisch bedingten Schneidsituationen, wie z.B. Überfahren der Schnittfuge und der Ecke sowie Schneidbeginn verhindert. Dadurch entstehen eine wesentliche Verbesserung der Qualität des Schnittes sowie eine höhere Schneidgeschwindigkeit.The invention generates a homogeneous secondary gas flow. This homogeneous secondary gas flow leads to a stabilization of the plasma jet. As a result, the oscillation of the cutting arc in difficult-to-control technological cutting situations, such. Driving over the kerf and the corner as well as cutting start prevented. This results in a significant improvement in the quality of the cut and a higher cutting speed.

Untersuchungen haben nämlich ergeben, dass die beschriebenen Nachteile durch eine neue Form der Sekundärgaszuführung beseitigt werden können. Hierdurch werden die Vorteile des Sekundärgases, wie Einschnürung des Plasmastrahls, Schutz der Düse vor hochspritzendem Metall beim Einstechen, Schaffung einer definierten Atmosphäre um den Plasmastrahl und die aktive Teilnahme des Sekundärgases am Plasmaprozess weiter genutzt und gleichzeitig die Stabilität des Plasmastrahls gesichert.Studies have shown that the disadvantages described can be eliminated by a new form of secondary gas supply. As a result, the advantages of the secondary gas, such as constriction of the plasma jet, protection of the nozzle against high-metal splash during piercing, creation of a defined atmosphere around the plasma jet and the active participation of the secondary gas in the plasma process continue to be used while ensuring the stability of the plasma jet.

Erfindungsgemäß wird das Sekundärgas über ein Sekundärgasführungsteil in den Sekundärgaskanal geführt derart, dass die Sekundärgasströmung zunächst auf eine nahezu zylindrische erste Mantelfläche der Düsenkappe, die parallel zur Längsachse des Plasmabrenners gerichtet ist, trifft. Danach wird das Sekundärgas über den Sekundärgaskanalteil, der durch nahezu kegelförmige Mantel- bzw. Innenflächen der Düse beziehungsweise der Düsenkappe und Düsenschutzkappe begrenzt ist, zum vorderen Ende des Plasmabrenners geführt und dann in einem Winkel von nahezu 90° zur Längsachse des Plasmabrenners einem Plasmastrahl zugeführt. Es wird angenommen, dass die besonders gute Homogenität des Sekundärgases, d.h. die besonders gute Verteilung um einen Plasmastrahl, dadurch erreicht wird, dass die Sekundärgasströmung das Sekundärgasströmung zunächst einmal in einer sich im wesentlichen im rechten Winkel zur Längsachse des Plasmabrenners erstreckenden Ebene auf die Mantelfläche der Düsenkappe trifft und dass vom vorderen Ende des Plasmabrenners weiter zurückgesetzt ist und somit das Sekundärgas zusätzlich mehr Zeit hat, um sich zu verteilen.According to the invention, the secondary gas is guided via a secondary gas guide part into the secondary gas channel in such a way that the secondary gas flow initially strikes a virtually cylindrical first lateral surface of the nozzle cap which is directed parallel to the longitudinal axis of the plasma torch. Thereafter, the secondary gas is passed through the secondary gas channel part, which is bounded by almost conical mantle or inner surfaces of the nozzle or the nozzle cap and nozzle cap, to the front end of the plasma torch and then fed at an angle of almost 90 ° to the longitudinal axis of the plasma torch a plasma jet. It is assumed that the particularly good homogeneity of the secondary gas, ie the particularly good distribution around a plasma jet, is achieved by firstly directing the secondary gas flow onto the lateral surface of the secondary gas flow in a plane extending essentially at right angles to the longitudinal axis of the plasma torch Nozzle cap hits and that is further reset from the front end of the plasma torch and thus the secondary gas has more time in addition to spread.

Vorteilhaft ist es auch, das Sekundärgas durch eine geeignete Ausführung des Sekundärgasführungsteils, z.B. durch Versatz der Durchlässe rotieren zu lassen. Dann erfolgt die Zufuhr des Sekundärgases zum Plasmastrahl nicht radial, sondern tangential. Der Plasmastrahl wird bei dieser Anordnung durch die große Homogenität der Sekundärgasströmung nicht instabil, sondern behält auch in Übergangsphasen seine Stabilität.It is also advantageous to separate the secondary gas by a suitable design of the secondary gas guidance part, e.g. to rotate by offsetting the passages. Then the supply of the secondary gas to the plasma jet is not radial, but tangential. The plasma jet is not unstable in this arrangement due to the great homogeneity of the secondary gas flow, but also retains its stability in transition phases.

Verstärkt wird dieser Effekt noch, wenn nach Passieren des Sekundärgasführungsteils das Sekundärgas zunächst nicht nur auf die nahezu zylindrische erste Mantelfläche der Düsenkappe trifft, sondern gleichzeitig in eine Entspannungsraumerweiterung strömt, die eine größere Entspannung des Sekundärgases zulässt, bevor das Sekundärgas dann über die kegelförmigen Mantel- bzw. Innenflächen dem Plasmastrahl radial oder tangential zugeführt wird. In diesem Falle verfügt dieser Bereich der Düsenkappe mit Entspannungsraumerweiterung über einen geringeren Durchmesser als der Beginn des nachfolgenden kegelförmigen Abschnitts.This effect is enhanced even if, after passing through the secondary gas guide part, the secondary gas initially not only strikes the almost cylindrical first lateral surface of the nozzle cap, but at the same time flows into a relaxation space extension, which allows a greater relaxation of the secondary gas, before the secondary gas then flows over the conical jacket. or inner surfaces of the plasma jet is supplied radially or tangentially. In this case, this area of the nozzle cap with expansion chamber extension has a smaller diameter than the beginning of the subsequent conical section.

Wird ein gasgekühlter oder indirekt wassergekühlter Plasmabrenner verwendet, entfällt oftmals die Düsenkappe. Dann übernimmt die Düse die raumbegrenzende Aufgabe der Düsenkappe. Die Düse ist in diesem Fall geometrisch so wie die Düsenkappe ausgebildet. Damit werden die Vorteile der Erfindung auch in dieser Plasmabrennervariante garantiert.If a gas-cooled or indirectly water-cooled plasma torch is used, the nozzle cap is often omitted. Then the nozzle takes over the space-limiting task of the nozzle cap. The nozzle is geometrically formed in this case as the nozzle cap. Thus, the advantages of the invention are also guaranteed in this plasma torch variant.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und aus der nachstehenden Beschreibung, in der Ausführungsbeispiele anhand der schematischen Zeichnungen im einzelnen erläutert sind. Dabei zeigt:

Figur 1
eine Teilschnittdarstellung des vorderen Bereiches eines Plasmabrenners gemäß einer besonderen Ausführungsform der Erfindung;
Figur 1.1 bis 1.12
Details von Fig.1 mit Varianten der Gestaltung des Sekundärgaskanals;
Fig. 2.1
eine Ausführungsform eines Sekundärgasführungsteils in Draufsicht von oben teilweise im Schnitt; und
Fig. 2.2
eine weitere Ausführungsform eines Sekundärgasführungsteils in Draufsicht von oben teilweise im Schnitt.
Further features and advantages of the invention will become apparent from the claims and from the following description, are explained in the embodiments with reference to the schematic drawings in detail. Showing:
FIG. 1
a partial sectional view of the front portion of a plasma torch according to a particular embodiment of the invention;
FIGS. 1.1 to 1.12
Details of Fig.1 with variants of the design of the secondary gas channel;
Fig. 2.1
an embodiment of a secondary gas guide member in plan view from above partially in section; and
Fig. 2.2
a further embodiment of a secondary gas guide part in plan view from above partially in section.

Figur 1 zeigt einen Plasmabrenner 1 gemäß einer besonderen Ausführungsform der Erfindung. Der Plasmabrenner 1 hat einen Brennerkörper 2 mit einer Elektrode 3 und einer Düse 4, der eine Längsachse L des Plasmabrenners 1 definiert. Die Elektrode 3 und die Düse 4 sind im Brennerkörper 2 koaxial angeordnet, befinden sich in einem bestimmten räumlichen Verhältnis und bilden eine Plasmakammer 6, durch die ein Plasmagas PG strömt, das über einen Plasmagaskanal 6a zugeführt wird. Eine Düsenkappe 5 ist koaxial zur Längsachse L des Plasmabrenners 1 angeordnet und hält die Düse 4. Zwischen der Düse 4 und der Düsenkappe 5 befindet sich ein Raum 11, durch den Kühlwasser strömt. Das Kühlwasser wird über einen Wasservorlauf WV zugeführt und strömt über einen Wasserrücklauf WR ab. FIG. 1 shows a plasma torch 1 according to a particular embodiment of the invention. The plasma torch 1 has a torch body 2 with an electrode 3 and a nozzle 4 defining a longitudinal axis L of the plasma torch 1. The electrode 3 and the nozzle 4 are arranged coaxially in the burner body 2, are in a certain spatial relationship and form a plasma chamber 6, through which flows a plasma gas PG, which is supplied via a plasma gas channel 6a. A nozzle cap 5 is arranged coaxially to the longitudinal axis L of the plasma torch 1 and holds the nozzle 4. Between the nozzle 4 and the nozzle cap 5 is a space 11, flows through the cooling water. The cooling water is supplied via a water feed WV and flows through a water return WR.

Ein ringförmiges Sekundärgasführungsteil 8 mit einer Vielzahl von Durchlässen in Form von Bohrungen, von denen nur einer mit dem Bezugszeichen 8a gekennzeichnet ist, ist so in einem zwischen der Düsenkappe 5 und einer Düsenschutzkappe 7 gebildeten Sekundärgaskanal 9 zwischen einem Sekundärgaseinlaß 8b und dem vorderen Ende des Sekundärgaskanals 9 angeordnet, daß das durch den Durchlaß 8a strömende Sekundärgas SG auf eine nahezu zylindrische erste Mantelfläche der Düsenkappe 5, die einen ersten zylindrischen Abschnitt 5a der Düsenkappe 5 ergibt, trifft. Das Sekundärgas SG wird danach durch den Sekundärgaskanal 9, der durch eine nahezu kegelförmige zweite Mantelfläche der Düsenkappe 5 in einem unteren Abschnitt 5b und eine entsprechende kegelförmigen Innenfläche 7b der Düsenschutzkappe 7 begrenzt ist, zum vorderen Ende des Plasmabrenners 1 geführt, dann in einem Winkel von nahezu 90° zur Längsachse L des Plasmabrenners 1 einem Plasmastrahl (nicht gezeigt) zugeführt und tritt durch eine Austrittsöffnung 7a der Düsenschutzkappe 7 aus. Das rotierende Sekundärgas SG umströmt den Plasmastrahl nach seinem Austritt aus einer Düsenöffnung 4a und schafft zusätzlich eine definierte Atmosphäre um den Plasmastrahl.An annular secondary gas guide member 8 having a plurality of holes in the form of bores, only one of which is denoted by the reference numeral 8a, is in a formed between the nozzle cap 5 and a nozzle cap 7 secondary gas channel 9 between a secondary gas inlet 8b and the front end of the secondary gas channel 9 arranged that the flowing through the passage 8 a secondary gas SG on a nearly cylindrical first lateral surface of the nozzle cap 5, which results in a first cylindrical portion 5 a of the nozzle cap 5 hits. The secondary gas SG is then passed through the secondary gas channel 9, which is bounded by a nearly conical second surface of the nozzle cap 5 in a lower portion 5 b and a corresponding conical inner surface 7 b of the nozzle cap 7, to the front end of the plasma torch 1, then at an angle of nearly 90 ° to the longitudinal axis L of the plasma torch. 1 a plasma jet (not shown) and exits through an outlet opening 7a of the nozzle cap 7 from. The rotating secondary gas SG flows around the plasma jet after it leaves a nozzle opening 4a and additionally creates a defined atmosphere around the plasma jet.

Die Durchlässe 8a des Sekundärgasführungsteils 8 sind so angeordnet, daß eine rotierende Strömung des Sekundärgases SG entsteht. Beispielsweise können die Durchlässe im Sekundärgasführungsteil 8a, äquidistant über den Kreisumfang des Sekundärgasführungsteils 8 und sich radial erstreckend (Figur 2.1) oder mit einem Versatz zur Radiale (Figur 2.2), d.h. auf einen jeweils gegenüber dem tatsächlichen Kreismittelpunkt versetzten Punkt ausgerichtet, angeordnet sein.The passages 8a of the secondary gas guide part 8 are arranged so that a rotating flow of the secondary gas SG is formed. For example, the passages in the secondary gas guide part 8a may be equidistant over the circumference of the secondary gas guide part 8 and radially extending (FIG. Figure 2.1 ) or with an offset to the radial ( Figure 2.2 ), ie, aligned with a respective point offset from the actual center of the circle.

Die Neigung der nahezu zylindrischen ersten Mantelfläche der Düsenkappe 5 kann bis ±15° (Figuren 1.1, 1.2, und 1.3) gegenüber der Längsachse L des Plasmabrenners 1 betragen. Bei einer Neigung von W3= -15° (Figur 1.3) wird der Effekt der Homogenität ähnlich wie bei Raumvergrößerung durch zylindrische Flächen erreicht und eine besonders gute Homogenität erreicht.The inclination of the almost cylindrical first lateral surface of the nozzle cap 5 can be up to ± 15 ° ( Figures 1.1 . 1.2, and 1.3 ) relative to the longitudinal axis L of the plasma torch 1 amount. At an inclination of W3 = -15 ° ( Figure 1.3 ) the effect of homogeneity is achieved similar to enlargement of space by cylindrical surfaces and achieves a particularly good homogeneity.

Die Übergänge zwischen den ersten und zweiten Mantelflächen der Düsenkappe 5 und entsprechenden ersten und zweiten Innenflächen der Düsenschutzkappe 7 können scharfkantig (Figuren 1.1 - 1.3), mit Fasen (Figuren 1.4 - 1.6) oder Radien (Figuren 1.7 - 1.9) versehen sein. Dabei besteht auch die Möglichkeit der Kombinationen von Radien und Fasen bei den Übergängen.The transitions between the first and second lateral surfaces of the nozzle cap 5 and corresponding first and second inner surfaces of the nozzle protection cap 7 can be sharp-edged (FIG. Figures 1.1 - 1.3 ), with bevels ( Figures 1.4 - 1.6 ) or radii ( Figures 1.7 - 1.9 ) be provided. There is also the possibility of combinations of radii and chamfers at the transitions.

Figuren 1.10 -1.12 zeigen Ausführungsformen mit einer Entspannungsraumerweiterung 10, in welche das Sekundärgas SG aus den Durchlässen 8a des Sekundärgasführungsteils 8 strömt, um die Stabilität des Plasmastrahls weiter zu verbessern. Diese Entspannungsraumerweiterung 10 kann beispielsweise eine runde (Figur 1.10), eine rechteckige (Figur 1.11) oder eine mehrfasige (Figur 1.12) Form haben. Figures 1.10 -1.12 show embodiments with a relaxation space extension 10, in which the secondary gas SG from the passages 8a of the secondary gas guide 8 flows to further improve the stability of the plasma jet. This relaxation space extension 10 may be, for example, a round ( Figure 1.10 ), a rectangular ( Figure 1.11 ) or a multi-faceted ( Figure 1.12 ) Have shape.

Die in der vorangehenden Beschreibung, in den Zeichnungen offenbarten Merkmale der Offenbarung können sowohl einzeln als auch in beliebigen Kombinationen für die Verwirklichung der Offenbarung in ihren verschiedenen Ausführungsformen wesentlich sein. Die folgenden Ansprüche definieren und begrenzen die vorliegende Erfindung.The features of the disclosure disclosed in the foregoing description, and in the drawings, may be material to the realization of the disclosure in its various embodiments both individually and in any combination thereof. The following claims define and limit the present invention.

Claims (13)

  1. Plasma torch (1) having:
    - a torch body (2),
    - an electrode (3) arranged in the torch body (2),
    - a nozzle (4) which has a central nozzle opening (4a) and is arranged such that it covers the electrode (3) separately by a plasma gas channel (6a) formed therebetween,
    - a nozzle protection cap (7) which has an outlet opening (7a) that is arranged on its front end side and is opposite the nozzle opening (4a), and has an annular secondary gas channel (9) within the nozzle protection cap (7), which channel is connected to the outlet opening (7a), wherein the nozzle protection cap (7) is arranged electrically insulated from the electrode (3) and the nozzle (4),
    - a nozzle cap (5) which covers the nozzle (4) with the exception of at least the nozzle opening (4a), is arranged inside the nozzle protection cap (7) and is separated from the latter at its front end side by the secondary gas channel (9),
    - a secondary gas guiding part (8) that has at least one opening (8a) in the form of bores, wherein the secondary gas guiding part (8) is arranged in the secondary gas channel (9) between a secondary gas inlet (8b) and the front end of the secondary gas channel (9), and the secondary gas channel (9) is formed between the secondary gas guiding part (8) and its front end such that it guides the secondary gas SG, after passage through the secondary gas guiding part (8) and a secondary gas channel part (9a) that is essentially parallel to the longitudinal axis L of the plasma torch (1), at an angle to the longitudinal axis L of the plasma torch (1) in the direction of the front end of the plasma torch (1) and afterwards essentially at right angles to the longitudinal axis L of the plasma torch (1) to a plasma beam, and the nozzle cap (5), which covers the nozzle (4) with the exception of at least the nozzle opening (4a) and is arranged inside the nozzle protection cap (7) and is separated from the latter at its front end side by the secondary gas channel (9), has in the region of the secondary gas guiding part (8) a first jacket surface, which is inclined at an angle in the range from 0 ± 15° with respect to the longitudinal axis L of the plasma torch (1), and a second jacket surface of the nozzle cap (5), which tapers essentially conically in the direction of the front end of the plasma torch (1), adjoins in the direction of the front end of the plasma torch (1).
  2. Plasma torch (1) according to Claim 1, characterized in that the transition between the first and second jacket surfaces is rounded, chamfered or sharp.
  3. Plasma torch (1) according to one of the preceding claims, characterized in that the first jacket surface is an essentially cylindrical jacket surface with a depression which receives the secondary gas that has passed through the secondary gas guiding part (8).
  4. Plasma torch (1) according to Claim 3, characterized in that the depression is round or polygonal.
  5. Plasma torch (1) according to one of the preceding claims, characterized in that the secondary gas guiding part (8) is a ring in which there are arranged, equidistant over its circumference, at least two openings (8a).
  6. Plasma torch (1) according to one of the preceding claims, characterized in that the openings (8a) extend radially.
  7. Plasma torch (1) according to one of Claims 1 to 5, characterized in that the openings (8a) have an offset with respect to the radial.
  8. Plasma torch (1) according to Claim 7, characterized in that the offset is in the range between 0.5 and 4 millimetres.
  9. Plasma torch (1) according to one of the preceding claims, characterized in that the openings (8a) have a diameter in the range from 0.2 to 1.0 millimetres.
  10. Arrangement of a nozzle cap (5) and a secondary gas guiding part (8) for a plasma torch (1), wherein the nozzle cap (5) has a jacket surface which has, in sequence proceeding from a front end of the nozzle cap (5):
    - a second section (5b) which tapers essentially conically in the direction of the front end of the nozzle cap (5),
    - an essentially cylindrical first section (5a) with an inclination in the range 0 ± 15° with respect to the longitudinal axis of the nozzle cap (5) and
    - a setback which is radial with respect to a longitudinal axis of the nozzle cap (5), wherein the secondary gas guiding part (8) is arranged on the setback, is of annular design and has a multiplicity of openings (8a) in the form of bores which extend radially with respect to the longitudinal axis of the nozzle cap (5) or have an offset with respect to the radial.
  11. Arrangement according to Claim 10, characterized in that the transition between the first and second sections of the jacket surfaces is rounded, chamfered or sharp.
  12. Arrangement according to Claim 10 or 11, characterized in that the first section of the jacket surface is an essentially cylindrical jacket surface with a depression which receives the secondary gas that has passed through the secondary gas guiding part (8).
  13. Arrangement according to Claim 12, characterized in that the depression is round or polygonal.
EP05790759.4A 2004-10-08 2005-09-28 Plasma torch Active EP1797747B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05790759T PL1797747T3 (en) 2004-10-08 2005-09-28 Plasma torch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004049445.2A DE102004049445C5 (en) 2004-10-08 2004-10-08 plasma torch
PCT/DE2005/001714 WO2006039890A2 (en) 2004-10-08 2005-09-28 Plasma torch

Publications (2)

Publication Number Publication Date
EP1797747A2 EP1797747A2 (en) 2007-06-20
EP1797747B1 true EP1797747B1 (en) 2017-06-28

Family

ID=35456944

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05790759.4A Active EP1797747B1 (en) 2004-10-08 2005-09-28 Plasma torch

Country Status (5)

Country Link
EP (1) EP1797747B1 (en)
DE (3) DE102004064160C5 (en)
ES (1) ES2641235T3 (en)
PL (1) PL1797747T3 (en)
WO (1) WO2006039890A2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0608903A2 (en) 2005-05-11 2010-02-17 Hypertherm Inc separate gas jet generation in plasma arc torch applications
US8097828B2 (en) 2006-05-11 2012-01-17 Hypertherm, Inc. Dielectric devices for a plasma arc torch
DE202009018173U1 (en) 2009-08-11 2011-03-17 Kjellberg Finsterwalde Plasma Und Maschinen Gmbh Nozzle cap and nozzle cap holder and arc plasma torch with the same and / or the same
DE102010005617A1 (en) 2009-10-01 2011-04-07 Kjellberg Finsterwalde Plasma Und Maschinen Gmbh Process for plasma cutting a workpiece by means of a plasma cutting machine
IT1399320B1 (en) 2010-04-12 2013-04-16 Cebora Spa TORCH FOR PLASMA CUTTING.
DE202011052130U1 (en) 2011-11-28 2012-12-05 Sato Schneidsysteme Anton Hubert E.K. plasma torch
US9949356B2 (en) 2012-07-11 2018-04-17 Lincoln Global, Inc. Electrode for a plasma arc cutting torch
US8698036B1 (en) * 2013-07-25 2014-04-15 Hypertherm, Inc. Devices for gas cooling plasma arc torches and related systems and methods
US9560733B2 (en) 2014-02-24 2017-01-31 Lincoln Global, Inc. Nozzle throat for thermal processing and torch equipment
US9572242B2 (en) 2014-05-19 2017-02-14 Lincoln Global, Inc. Air cooled plasma torch and components thereof
US9572243B2 (en) 2014-05-19 2017-02-14 Lincoln Global, Inc. Air cooled plasma torch and components thereof
US9398679B2 (en) 2014-05-19 2016-07-19 Lincoln Global, Inc. Air cooled plasma torch and components thereof
US9681528B2 (en) 2014-08-21 2017-06-13 Lincoln Global, Inc. Rotatable plasma cutting torch assembly with short connections
US9730307B2 (en) 2014-08-21 2017-08-08 Lincoln Global, Inc. Multi-component electrode for a plasma cutting torch and torch including the same
US9736917B2 (en) 2014-08-21 2017-08-15 Lincoln Global, Inc. Rotatable plasma cutting torch assembly with short connections
US9686848B2 (en) 2014-09-25 2017-06-20 Lincoln Global, Inc. Plasma cutting torch, nozzle and shield cap
US9457419B2 (en) 2014-09-25 2016-10-04 Lincoln Global, Inc. Plasma cutting torch, nozzle and shield cap
DE102016010341A1 (en) 2015-08-28 2017-03-02 Lincoln Global, Inc. PLASMABRENNER AND COMPONENTS OF PLASMABENENNER
US10863610B2 (en) 2015-08-28 2020-12-08 Lincoln Global, Inc. Plasma torch and components thereof
DE102016214146A1 (en) 2016-08-01 2018-02-01 Kjellberg Stiftung plasma torch
DE102016219350A1 (en) 2016-10-06 2018-04-12 Kjellberg-Stiftung Nozzle cap, arc plasma torch with this nozzle cap and use of the arc plasma torch
US10639748B2 (en) 2017-02-24 2020-05-05 Lincoln Global, Inc. Brazed electrode for plasma cutting torch
US10589373B2 (en) 2017-07-10 2020-03-17 Lincoln Global, Inc. Vented plasma cutting electrode and torch using the same
USD861758S1 (en) 2017-07-10 2019-10-01 Lincoln Global, Inc. Vented plasma cutting electrode
DE102021005500A1 (en) 2021-08-16 2023-02-16 Kjellberg-Stiftung Process for plasma cutting of valuables
WO2023020893A1 (en) 2021-08-16 2023-02-23 Kjellberg Stiftung Method for plasma-cutting workpieces

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641308A (en) * 1970-06-29 1972-02-08 Chemetron Corp Plasma arc torch having liquid laminar flow jet for arc constriction
DE2642649A1 (en) * 1976-09-22 1978-03-23 Nuc Weld Gmbh Plasma burner for underwater welding - where plasma jet is surrounded by high velocity water or gas curtain
US4311897A (en) * 1979-08-28 1982-01-19 Union Carbide Corporation Plasma arc torch and nozzle assembly
DE3050798C2 (en) * 1979-08-28 1984-10-31 Union Carbide Corp Plasma burner using transferred arc - esp. for high speed cutting of thick metal plates, has arc constricting channels of defined related length
US4361748A (en) * 1981-01-30 1982-11-30 Couch Jr Richard W Cooling and height sensing system for a plasma arc cutting tool
DE3641308A1 (en) 1986-12-03 1988-06-16 Weisse Hans Dietrich Circuit arrangement having a controlled rectifier bridge circuit, on which a single-phase or multi-phase voltage acts, and having an invertor which is supplied from said rectifier bridge circuit
IT1191365B (en) * 1986-06-26 1988-03-16 Cebora Spa Control circuit for plasma arc cutting and welding torch
DD282349A7 (en) * 1988-03-10 1990-09-12 Finsterwalde Schweisstechnik PLASMA MELT CUTTING BURNER FOR CUTTING METALLIC MATERIAL UNDER WATER
US5132512A (en) * 1988-06-07 1992-07-21 Hypertherm, Inc. Arc torch nozzle shield for plasma
US5695662A (en) * 1988-06-07 1997-12-09 Hypertherm, Inc. Plasma arc cutting process and apparatus using an oxygen-rich gas shield
US5023425A (en) * 1990-01-17 1991-06-11 Esab Welding Products, Inc. Electrode for plasma arc torch and method of fabricating same
WO1992015421A1 (en) * 1991-02-28 1992-09-17 Kabushiki Kaisha Komatsu Seisakusho Plasma torch for cutting
EP1324644B1 (en) * 1991-04-12 2008-07-30 Hypertherm, Inc. Plasma arc cutting apparatus
US5124525A (en) * 1991-08-27 1992-06-23 Esab Welding Products, Inc. Plasma arc torch having improved nozzle assembly
US5317126A (en) * 1992-01-14 1994-05-31 Hypertherm, Inc. Nozzle and method of operation for a plasma arc torch
US5308949A (en) * 1992-10-27 1994-05-03 Centricut, Inc. Nozzle assembly for plasma arc cutting torch
US5624586A (en) * 1995-01-04 1997-04-29 Hypertherm, Inc. Alignment device and method for a plasma arc torch system
JPH08215856A (en) * 1995-02-13 1996-08-27 Komatsu Sanki Kk Plasma cutting method
US5747767A (en) * 1995-09-13 1998-05-05 The Esab Group, Inc. Extended water-injection nozzle assembly with improved centering
US6215090B1 (en) * 1998-03-06 2001-04-10 The Esab Group, Inc. Plasma arc torch
US6207923B1 (en) * 1998-11-05 2001-03-27 Hypertherm, Inc. Plasma arc torch tip providing a substantially columnar shield flow
US6320156B1 (en) * 1999-05-10 2001-11-20 Komatsu Ltd. Plasma processing device, plasma torch and method for replacing components of same
US6268583B1 (en) * 1999-05-21 2001-07-31 Komatsu Ltd. Plasma torch of high cooling performance and components therefor
US6191380B1 (en) * 1999-06-16 2001-02-20 Hughen Gerrard Thomas Plasma arc torch head
US6424082B1 (en) * 2000-08-03 2002-07-23 Hypertherm, Inc. Apparatus and method of improved consumable alignment in material processing apparatus
DE10144516B4 (en) * 2001-09-10 2004-03-25 Kjellberg Finsterwalde Elektroden Und Maschinen Gmbh plasma torch
US6946617B2 (en) 2003-04-11 2005-09-20 Hypertherm, Inc. Method and apparatus for alignment of components of a plasma arc torch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1797747A2 (en) 2007-06-20
DE102004064160C5 (en) 2016-03-03
WO2006039890A2 (en) 2006-04-20
PL1797747T3 (en) 2018-03-30
DE102004049445A1 (en) 2006-04-20
DE202004021663U1 (en) 2010-05-12
DE102004049445C5 (en) 2016-04-07
DE102004064160B4 (en) 2010-12-30
ES2641235T3 (en) 2017-11-08
DE102004049445B4 (en) 2010-08-19
WO2006039890A3 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
EP1797747B1 (en) Plasma torch
DE69233071T3 (en) A plasma arc cutter
EP2465334B1 (en) Protective nozzle cap, protective nozzle cap retainer, and arc plasma torch having said protective nozzle cap and/or said protective nozzle cap retainer
DE2130394A1 (en) Arc cutting process
DE102011088433A1 (en) Process and plasma arc torch system for marking and cutting workpieces with the same set of auxiliaries
EP2449862B1 (en) Nozzle for a liquid-cooled plasma torch and plasma torch head having the same
DE4310762C2 (en) Plasma torch nozzle
DE2912843A1 (en) PLASMA BURNER, PLASMA BURNER ARRANGEMENT AND METHOD FOR PLASMA PRODUCTION
EP0168810B1 (en) Torch for plasma-mig welding
DE19963904C2 (en) Plasma torch and method for generating a plasma jet
EP2457681B1 (en) Torch for tungsten inert gas welding and electrode to be used in such torch
DE4407913A1 (en) Plasma burner and a method for carrying out plasma burning, especially for hollowing-out workpieces
EP2667689B1 (en) Electrode for plasma cutting torch and use of same
EP2531320B1 (en) Nozzle for a liquid-cooled plasma cutting torch with grooves
EP3524038B1 (en) Protective nozzle cap, arc plasma torch having said protective nozzle cap and the use of the arc plasma torch
DE1440618B2 (en)
DE1940040A1 (en) Plasma torch
DE102007041329A1 (en) Plasma torch, has ring anodes, where one ring anode is located at distance for temporary distribution of partial light arc per cathode of ring anode, and ignition anode arranged adjacent to two ring anodes in respective light arc channel
EP0962277B1 (en) Plasma welding torch
WO2020207522A1 (en) Plasma cutting method
DE1440541B2 (en) ELECTRIC PLASMA DEVICE FOR HEATING, CUTTING AND WELDING A WORKPIECE
DE1440618C (en) Process for generating a high temperature plasma flow
WO2023020893A1 (en) Method for plasma-cutting workpieces
DE1254364B (en) Process for generating a gas mixture with a high heat content for melting and / or refining metals and burners to carry out the process
DE4143273A1 (en) Plasma burner for cutting metal workpieces - has 2 channels for cutting gas with different oxygen contents giving high speed feed

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070410

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20070628

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KJELLBERG FINSTERWALDE PLASMA UND MASCHINEN GMBH

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KJELLBERG FINSTERWALDE PLASMA UND MASCHINEN GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KJELLBERG FINSTERWALDE PLASMA UND MASCHINEN GMBH

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170224

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 905870

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015639

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2641235

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170928

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 25347

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015639

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

26N No opposition filed

Effective date: 20180329

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170928

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230919

Year of fee payment: 19

Ref country code: NL

Payment date: 20230920

Year of fee payment: 19

Ref country code: FI

Payment date: 20230918

Year of fee payment: 19

Ref country code: CZ

Payment date: 20230918

Year of fee payment: 19

Ref country code: AT

Payment date: 20230915

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230919

Year of fee payment: 19

Ref country code: SE

Payment date: 20230921

Year of fee payment: 19

Ref country code: PL

Payment date: 20230918

Year of fee payment: 19

Ref country code: FR

Payment date: 20230918

Year of fee payment: 19

Ref country code: BE

Payment date: 20230918

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231019

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 19

Ref country code: DE

Payment date: 20231006

Year of fee payment: 19