WO2020063582A1 - 光网络的测距方法、注册方法、olt、onu、光网络系统 - Google Patents

光网络的测距方法、注册方法、olt、onu、光网络系统 Download PDF

Info

Publication number
WO2020063582A1
WO2020063582A1 PCT/CN2019/107502 CN2019107502W WO2020063582A1 WO 2020063582 A1 WO2020063582 A1 WO 2020063582A1 CN 2019107502 W CN2019107502 W CN 2019107502W WO 2020063582 A1 WO2020063582 A1 WO 2020063582A1
Authority
WO
WIPO (PCT)
Prior art keywords
olt
onu
optical power
power value
registered
Prior art date
Application number
PCT/CN2019/107502
Other languages
English (en)
French (fr)
Inventor
耿丹
张伟良
袁立权
马壮
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19865817.1A priority Critical patent/EP3860140A4/en
Priority to US17/279,432 priority patent/US11425475B2/en
Publication of WO2020063582A1 publication Critical patent/WO2020063582A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • This disclosure relates to, but is not limited to, the field of communications.
  • PON Passive Optical Network
  • Fig. 1 is a topology structure diagram of a PON system in the related art.
  • a PON system usually includes an optical line terminal (OLT) at the office side, and an optical network unit (ONU) at the user side.
  • Optical Distribution Network usually using a point-to-multipoint network structure.
  • ODN Optical Distribution Network consists of passive optical devices such as single-mode fiber, optical splitters, and optical connectors, and provides an optical transmission medium for the physical connection between the OLT and the ONU.
  • ODN optical Distribution Network
  • An aspect of an embodiment of the present disclosure provides a method for ranging an optical network, including: an OLT broadcasting a downlink optical signal, the downlink optical signal carrying a specified range of received optical power values, and an uplink bandwidth corresponding to the specified range of received optical power values; OLT Receive the upstream optical signal sent by the ONU to be registered, wherein the upstream optical signal is determined by the ONU to be registered in response to determining that the received optical power value of the downstream optical signal reaching the to-be-registered ONU is within the specified received optical power range, The uplink bandwidth corresponding to the power value range is sent to the OLT, and the uplink optical signal carries the received optical power value; and the OLT determines the optical fiber distance between the ONU to be registered and the OLT according to the received optical power value.
  • Another aspect of the embodiments of the present disclosure provides another ranging method for an optical network, including: an ONU to be registered receives a downlink optical signal broadcast by an OLT, the downlink optical signal carrying a specified range of received optical power values, and a specified received optical power The upstream bandwidth corresponding to the value range; the ONU to be registered determines the received optical power value of the downstream optical signal reaching the ONU to be registered; and in response to determining that the received optical power value is within the specified received optical power value range, the ONU to be registered is on the upstream bandwidth
  • the uplink optical signal is sent to the OLT, and the uplink optical signal carries a received optical power value, so that the OLT determines the optical fiber distance between the ONU and the OLT according to the received optical power value.
  • a method for registering an optical network includes: an OLT groups ONUs under the jurisdiction of the OLT according to the received optical power value of the ONU; and the OLT allocates corresponding uplink bandwidths to ONUs in different groups.
  • the uplink bandwidth is used by the ONU to be registered to send registration information.
  • another method for registering an optical network including: an ONU receiving a broadcast message sent by an OLT, where the broadcast message carries an uplink bandwidth allocated by the OLT, wherein the uplink bandwidth carries a specified received optical power A range of values; and in response to determining that the received optical power value of the ONU matches a specified range of received optical power values, the ONU uses the uplink bandwidth to send registration information to the OLT.
  • an OLT comprising: a grouping module configured to group ONUs under the control of the OLT according to the received optical power value of the ONU; and an allocation module configured to allocate ONUs in different groups Corresponding uplink bandwidth, where the uplink bandwidth is used by the ONU to be registered to send registration information.
  • an ONU including: a receiving module configured to receive a broadcast message sent by an OLT, where the broadcast message carries an uplink bandwidth allocated by the OLT, wherein the uplink bandwidth carries a specified received optical power A value range; and a sending module configured to send registration information to the OLT using the uplink bandwidth in response to determining that the received optical power value of the ONU matches a specified range of received optical power values.
  • an optical network system including an OLT and an ONU
  • the OLT is configured to group ONUs under the jurisdiction of the OLT according to the received optical power value of the ONU; and allocate ONUs in different groups Corresponding uplink bandwidth, where the uplink bandwidth is used by the ONU to be registered to send registration information; the ONU is configured to receive broadcast messages sent by the OLT, where the broadcast message carries the uplink bandwidth allocated by the OLT, where the uplink bandwidth carries the designated reception Optical power value range; and when the ONU's received optical power value matches a specified range of received optical power value, use this uplink bandwidth to send registration information to the OLT.
  • a computer-readable storage medium having stored thereon a computer program, the computer program being configured to execute a distance measurement method of an optical network or an optical network provided in any of the foregoing aspects when running. Registration method.
  • an electronic device including a memory and a processor, where the computer program is stored in the memory, and the processor is configured to run the computer program to execute the one provided in any of the foregoing aspects. Ranging method of optical network or registration method of optical network.
  • FIG. 1 is a topology structure diagram of a PON system in the related art.
  • FIG. 2 is a schematic flowchart of a registration method for an optical network according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of another registration method for an optical network according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an OLT according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an ONU according to an embodiment of the present disclosure.
  • FIG. 6 is an operation flowchart of an OLT and an ONU according to an embodiment of the present invention.
  • the OLT needs to perform ranging on the ONU to be registered. Since the OLT does not know the distance of the ONU to be registered from itself, the size of the quiet window opened by the OLT for ranging covers the PON. The minimum distance to the maximum distance supported by the system. The difference between the maximum distance and the minimum distance is 20km or 40km. Supports a PON system with a differential distance of 20km.
  • the standard recommends that the loop delay difference between the nearest ONU and the furthest ONU is 200 ⁇ s, the response time difference between the ONU is 2 ⁇ s, and the maximum random delay of the ONU is 48 ⁇ s. Therefore, the recommended quiet window is The size is 250 ⁇ s.
  • the standard recommends the loop delay difference between the nearest ONU and the furthest ONU is 400 ⁇ s, the response time difference between the ONU is 2 ⁇ s, and the maximum random delay of the ONU is 48 ⁇ s. Therefore, the recommended quiet window is The size is 450 ⁇ s.
  • the OLT does not allocate uplink bandwidth to the ONUs that have completed registration. Therefore, the ONUs that have completed registration cannot send uplink data within the time corresponding to the quiet window.
  • the OLT periodically opens a quiet window for ONU registration, so the PON system cannot meet the low-latency requirements of low-latency services.
  • FIG. 2 is a schematic flowchart of a registration method for an optical network according to an embodiment of the present disclosure. The method may include steps S202 and S204.
  • step S202 the OLT groups the ONUs under the jurisdiction of the OLT according to the received optical power value of the ONU.
  • step S204 the OLT allocates corresponding uplink bandwidth to ONUs in different groups, where the uplink bandwidth is used by the ONU to be registered to send registration information.
  • ONUs in each group allocate different uplink bandwidths, and ONUs to be registered in the group use the allocated uplink bandwidth to send registration information, which solves the related technology. Opening the quiet window in the middle causes technical problems with excessive delays, which guarantees low latency requirements for transmission services on the link.
  • allocating the corresponding uplink bandwidth to ONUs in different groups may include S11 and S12.
  • the OLT determines the time period for the upstream optical signals of the ONUs in different groups to reach the OLT according to the received optical power value, where each received optical power value range corresponds to one ONU group.
  • the OLT allocates a corresponding uplink bandwidth for each time period, and the uplink bandwidth carries a specified range of received optical power values.
  • allocating corresponding uplink bandwidths to ONUs in different groups includes: allocating corresponding uplink bandwidths to unregistered ONUs in different groups, where the time when the upstream optical signals of each group of ONUs reach the OLT No corresponding upstream bandwidth is allocated to any ONU that is already in operation within the segment.
  • the method further includes: receiving registration information sent by the ONU to be registered using the uplink bandwidth; and performing ranging based on the registration information to the ONU to be registered.
  • FIG. 3 is a schematic flowchart of another registration method for an optical network according to an embodiment of the present disclosure.
  • the method may include steps S302 and S304.
  • step S302 the ONU receives a broadcast message sent by the OLT, where the broadcast message carries an uplink bandwidth allocated by the OLT, and the uplink bandwidth carries a specified range of received optical power values.
  • step S304 in response to determining that the received optical power value of the ONU matches a specified range of the received optical power value, the ONU sends the registration information to the OLT using the uplink bandwidth.
  • the ONU determines that the specified received optical power value range includes the received optical power value of the ONU, it is determined that the received optical power value of the ONU matches the specified received optical power value range.
  • the technical solution of the present disclosure that is essentially or contributes to the existing technology can be embodied in the form of a software product that is stored in a storage medium (such as ROM / RAM, magnetic disk, The optical disc) includes several instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods described in the embodiments of the present disclosure.
  • a terminal device which may be a mobile phone, a computer, a server, or a network device, etc.
  • a registration device for an optical network may include an OLT and an ONU, which are respectively used to implement the foregoing embodiments and preferred implementations, which have already been described and will not be described again.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the OLT may include: a grouping module 40 configured to group ONUs under the jurisdiction of the OLT according to the received optical power value of the ONU; and, an allocation module. 42. It is configured to allocate corresponding uplink bandwidth to ONUs in different groups, where the uplink bandwidth is used by the ONU to be registered to send registration information.
  • the grouping module 40 may include: a determining unit configured to determine a time period when the upstream optical signals of the ONUs in different groups reach the OLT according to the received optical power values, where each received optical power value range corresponds to An ONU group; and an allocation unit configured to allocate a corresponding uplink bandwidth for each time period.
  • the ONU may include: a receiving module 50 configured to receive a broadcast message sent by an OLT, where the broadcast message carries an uplink bandwidth allocated by the OLT, where: The uplink bandwidth carries a specified range of received optical power values; and the sending module 52 is configured to send registration information to the OLT using the upstream bandwidth in response to determining that the received optical power value of the ONU matches the specified range of received optical power values.
  • the sending module 52 may be specifically configured to determine that when the specified received optical power value range includes the received optical power value of the ONU, determine that the received optical power value of the ONU matches the specified received optical power value range.
  • An embodiment of the present disclosure further provides an optical network system, which may include an OLT as shown in FIG. 4 and an ONU as shown in FIG. 5.
  • modules can be implemented by software or hardware. For the latter, they can be implemented in the following ways, but are not limited to the above: the above modules are located in the same processor; The forms are located in different processors.
  • the OLT allocates different uplink bandwidths for sending registration information to different groups of ONUs according to different ranges of optical signal transmission loss values (corresponding to received optical power values) with the ONUs.
  • the data of the registration message sent by the non-ranging ONU conflicts with the uplink data of the ONU that has been completed.
  • the OLT does not allocate any uplink bandwidth to any registered ONU, forming a Quiet window.
  • the OLT estimates the time period when the upstream optical signal of the ONU reaches itself according to the range of optical signal transmission loss between the ONU and the system topology.
  • the OLT does not allocate any upstream bandwidth to any registered ONU during the above period. , Forming a smaller quiet window.
  • the impact on low-latency services caused by the OLT opening a complete quiet window of 250us or 450us based on the differential distance of the 20km or 40km ONU supported in the related technology is solved.
  • the downlink signal sent by the OLT passes through the optical splitter and fiber when it reaches the ONU.
  • the attenuation of the optical signal after passing through the optical splitter is proportional to the size of the optical splitter's split ratio. The larger the split ratio, the greater the attenuation of the optical signal; 1: 2
  • the optical splitter has 3dB attenuation of the optical signal
  • the 1: 4 optical splitter has 6dB attenuation of the optical signal
  • the 1: 8 optical splitter has 9dB attenuation of the optical signal
  • the 1:16 optical splitter has 12dB of optical signal Attenuation.
  • the 1:32 splitter has a 15dB attenuation of the optical signal.
  • the attenuation of an optical signal after passing through the fiber is proportional to the length of the fiber. The longer the fiber, the greater the attenuation of the optical signal.
  • the attenuation of the optical signal through the fiber per kilometer is about 0.3 to 0.5 dB.
  • FIG. 6 is an operation flowchart of the OLT and the ONU according to the embodiment of the present disclosure.
  • the operation flow of the OLT and the ONU may include steps S602 to S608.
  • the OLT can obtain the optical splitting ratio of the optical splitter in the ODN in advance. In this embodiment, it is assumed that the optical splitting ratio of the optical splitter in the ODN is known to the OLT. If the OLT does not know the optical splitting ratio of the optical splitter, the OLT can open one according to the existing technology. A quiet window of 250us, and assign an uplink bandwidth allocation to the registered ONU.
  • the OLT sends the downlink optical power value P1 it sends to the ONU.
  • the ONU After the ONU receives the uplink bandwidth, it sends uplink data at the uplink time corresponding to the above bandwidth.
  • the ONU will The optical power value P2 of the downlink signal received by the OLT is sent to the OLT, and the OLT completes the ranging of the ONU according to the existing technology.
  • the time T2 of the data received by the OLT from the ONU minus the time T1 of the OLT sending the downlink signal is subtracted from the uplink.
  • the random delay value Tr of the ONU is subtracted, and the value obtained is the loop delay of the ONU.
  • the half of the loop delay value is multiplied by the optical speed of the ONU upstream optical signal in the fiber.
  • ONU distance L from its own fiber.
  • the OLT calculates the loss of the split ratio as P1-P2-L * 0.5. After the loss of the splitting ratio is obtained, the ONU can be registered according to the method of this implementation.
  • the OLT can also know the transmit optical power value of its own transmitter. After subtracting the attenuation value passing through the optical splitter and the attenuation value passing through the optical fiber, the optical power value of the downlink signal sent by the OLT can be obtained. If the distance between the nearest ONU and the furthest ONU supported by the PON system is 0km to 20km from the OLT, assuming that the optical fiber loss per kilometer is 0.5dB, then the downlink optical power sent by the OLT is PdBm, assuming the optical splitter of the optical splitter supported by the system The ratio is 1:32, so the optical power range of the downlink signal sent by the OLT to the ONU is: P-15 to P-15-0.5 * 20, that is, P-15dBm to P-25dBm.
  • the OLT can calculate the optical fiber distance between the OLT and the ONU based on the optical power value of the downlink optical signal sent by the OLT to the ONU, and the OLT can calculate the OLT and The optical fiber distance range between ONUs.
  • the OLT can calculate the time range when it orders the ONU to send the upstream optical signal to reach itself: L1 / C + T1 + T res + T r to L2 / C + T1 + T res + T r , where T1 is the start time when the OLT commands the ONU to send data, C is the speed at which the optical signal from the ONU is transmitted over the fiber, and T res is the ONU Response time, T r is the random delay value of the ONU.
  • the OLT can calculate the range of the optical fiber distance between the ONU and itself according to the range of optical power values at which the downstream signal reaches the ONU, and then calculate the time range of the upstream optical signal sent by the ONU to reach itself, so the OLT can The ONU in the signal optical power range allocates upstream bandwidth separately for registration, and at the same time, according to the calculated time range of the upstream optical signal sent by the ONU, it reaches its own time range and opens a reduced quiet window for ranging (less than the 250us or 450us quietness supported by standard technology). window).
  • the main steps for the OLT and ONU to send and receive data may include steps 1 to 3.
  • the OLT sends a broadcast message to the ONU.
  • the content of the message is the bandwidth allocation for registration of ONUs whose optical power value is a specific range (the specific range is the optical signal of the downstream optical signal received by the ONU).
  • the power value is less than P1; or greater than or equal to P1 and less than P2; or greater than or equal to P2 and less than P3; or greater than or equal to P3 and less than P4; or greater than or equal to P4, where P1, P2, P3, and P4 are specific optical power values.
  • the ranges of the optical power values received by the ONUs corresponding to the different bandwidths allocated by the OLT are non-overlapping.
  • the corresponding ONUs received by the different bandwidths allocated by the OLT may also be considered.
  • the specific range is that the optical power value of the downstream optical signal received by the ONU is less than P1; or greater than P2 and less than P3, where P2 is less than P1; or greater than P4 and less than P5, where , P4 is less than P3; or greater than P6 and less than P7, where P6 is less than P5; or greater than P7.
  • the OLT may be selected to send one of the above-mentioned bandwidth allocations at a time, for example, to allocate the first bandwidth allocation to an ONU whose received optical power value of the downstream optical signal is less than P1; then, the OLT sends the first bandwidth allocation at intervals, such as 125us.
  • Two bandwidth allocations for example: the ONU that receives the optical power value of the downstream optical signal greater than P1 and less than P2 allocates the second bandwidth allocation, and so on, and finally the OLT sets the optical power value of the received downstream optical signal to be greater than
  • the ONU of P7 allocates a fifth bandwidth allocation. In this embodiment, the OLT allocates five of the above-mentioned bandwidths in one cycle.
  • the OLT may also choose to allocate more bandwidth allocations in one cycle.
  • Each allocated bandwidth corresponds to an open quiet window.
  • the size and number depend on the requirements of the low-latency services supported by the system.
  • the size of the quiet window opened by the OLT is smaller than the delay requirements allowed by the low-latency services supported by the system.
  • the size of the quiet window of 200us in the prior art corresponds to the differential distance of the ONU of 20km.
  • the size of the quiet window acceptable for low-latency services is 10us
  • the differential distance of ONU of 1km corresponds to 10us.
  • the differential distance is 20km, then the OLT needs to allocate a total of 20 10us quiet windows to all ONUs, and each quiet window corresponds to an uplink bandwidth allocation.
  • the 20 different uplink bandwidths need to correspond to the optical power ranges of the 20 ONUs receiving the downlink signals, which are: less than P1, greater than P1 and less than P2, greater than P2 and less than P3, greater than P3 and less than P4, greater than P4 and less than P5, greater than P5 and less than P6, greater than P6 and less than P7, greater than P7 and less than P8, greater than P8 and less than P9, greater than P9 and less than P10, greater than P10 and less than P11, greater than P11 and less than P12, greater than P12 and less than P13, greater than P13 and Less than P14, greater than P14 and less than P15, greater than P15 and less than P16, greater than P16 and less than P17, greater than P17 and less than P18, greater than P18 and less than P19, and greater than P19.
  • the OLT allocates one of the above 20 bandwidth allocations in one cycle.
  • the interval between the two bandwidth allocations is a fixed time, such as 125us.
  • the OLT repeatedly sends the above bandwidth allocations for ONU registration in different cycles. ) If lower latency is required, a smaller quiet window can be opened, such as 5us, and the differential distance of the corresponding ONU is 0.5km.
  • step 2 if the ONU in the registration state receives the optical power value of the downstream optical signal that meets the specific range described in step 1, the uplink data is sent within the bandwidth allocated by the OLT in step 1.
  • the content of the uplink data is The identity information of the ONU, such as the media access address of the ONU or the serial number information of the ONU.
  • step 3 the OLT calculates the time range t1 to t2 when the upstream optical signal of the ONU in the range reaches the OLT according to the optical power value of the downlink signal received by the ONU in step 1.
  • the OLT is within this time range. No bandwidth is allocated to any registered ONU, forming a quiet window for ranging on registered ONUs.
  • the OLT receives the upstream optical signal sent by the ONU in step 2 in the above quiet window, and the OLT performs ranging on the ONU according to the method defined in the passive optical network standard to obtain an accurate ranging result of the ONU.
  • the OLT repeats the above steps to complete the ranging of ONUs receiving the optical power value of the downstream optical signal in other specific ranges. Using the above method, the OLT can complete the ranging of all ONUs within the range supported by the PON system and complete the ONU. Registration.
  • the OLT estimates the time period when the upstream optical signal of the ONU reaches its own according to the optical signal transmission loss value range (and the system topology) between the OLT and the OLT.
  • the range is reduced and the distance is quiet according to the above time period. Window to reduce the impact of the quiet window on the completion of the uplink service of the ONU registration, and to ensure the low latency requirement of the transmission service on the uplink.
  • An embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored, wherein the computer program is configured to execute steps in any one of the foregoing method embodiments when running.
  • the above-mentioned storage medium may be configured to store a computer program for performing the following steps: in S1, the OLT groups ONUs under the jurisdiction of the OLT according to the received optical power value of the ONU; in S2, The OLT allocates corresponding uplink bandwidth to the ONUs in different groups, where the uplink bandwidth is used by the ONU to be registered to send registration information.
  • the computer-readable storage medium may include, but is not limited to, a USB flash drive, a read-only memory (ROM), and a random access memory (RAM) , Removable hard disks, magnetic disks, or compact discs, which can store computer programs.
  • An embodiment of the present disclosure further provides an electronic device including a memory and a processor.
  • the memory stores a computer program
  • the processor is configured to run the computer program to perform the steps in any one of the foregoing method embodiments.
  • the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • the above processor may be configured to execute the following steps through a computer program: in S1, the OLT groups ONUs under the control of the OLT according to the received optical power value of the ONU; in S2, the OLT The ONUs in the group allocate the corresponding uplink bandwidth, where the uplink bandwidth is used by the ONU to be registered to send registration information.
  • modules or steps of the present disclosure may be implemented by a general-purpose computing device, and they may be centralized on a single computing device or distributed on a network composed of multiple computing devices. Above, optionally, they may be implemented with program code executable by a computing device, so that they may be stored in a storage device and executed by the computing device, and in some cases, may be in a different order than here
  • the steps shown or described are performed either by making them into individual integrated circuit modules or by making multiple modules or steps into a single integrated circuit module. As such, the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)

Abstract

本公开提供了一种光网络的测距方法、注册方法、OLT、ONU、光网络系统。OLT根据ONU的接收光功率值对OLT所辖的ONU进行分组;以及OLT对不同组内的ONU分配对应的上行带宽,其中,该上行带宽用于待注册的ONU发送注册信息。

Description

光网络的测距方法、注册方法、OLT、ONU、光网络系统 技术领域
本公开涉及(但不限于)通信领域。
背景技术
随着网络技术的发展,可以利用网络传输大量的语音、数据、视频等业务,因此对带宽的要求不断提高,无源光网络(Passive Optical Network,PON)就是在这种需求下产生的。
图1是相关技术中PON系统的拓扑结构图,如图1所示,PON系统通常由局侧的光线路终端(Optical Line Terminal,OLT)、用户侧的光网络单元(Optical Network Unit,ONU)和光分配网络(Optical Distribution Network,ODN)组成,通常采用点到多点的网络结构。ODN由单模光纤、分光器和光连接器等无源光器件组成,为OLT和ONU之间的物理连接提供光传输媒质。目前,虚拟现实业务和5G无线业务等低时延业务的发展,对PON提出了低时延需求。
发明内容
本公开实施例的一个方面,提供一种光网络的测距方法,包括:OLT广播下行光信号,下行光信号携带指定接收光功率值范围,以及指定接收光功率值范围对应的上行带宽;OLT接收待注册ONU发送的上行光信号,其中,该上行光信号是由待注册ONU响应于确定该下行光信号到达待注册ONU的接收光功率值位于指定接收光功率值范围内,在指定接收光功率值范围对应的上行带宽上发送给OLT的,且该上行光信号携带有接收光功率值;以及OLT根据接收光功率值确定待注册ONU与OLT之间的光纤距离。
本公开实施例的另一个方面,提供另一种光网络的测距方法,包括:待注册ONU接收OLT广播的下行光信号,该下行光信号携带指定接收光功率值范围,以及指定接收光功率值范围对应的上行带宽;待注册ONU确定该下行光信号到达待注册ONU的接收光功率值;以及 响应于确定接收光功率值位于指定接收光功率值范围内,待注册ONU在该上行带宽上向OLT发送上行光信号,且该上行光信号携带有接收光功率值,以使得OLT根据接收光功率值确定ONU与OLT之间的光纤距离。
本公开实施例的又一个方面,提供一种光网络的注册方法,包括:OLT根据ONU的接收光功率值对OLT所辖的ONU进行分组;以及OLT对不同组内的ONU分配对应的上行带宽,其中,该上行带宽用于待注册的ONU发送注册信息。
本公开实施例的再一个方面,提供另一种光网络的注册方法,包括:ONU接收OLT发送的广播消息,其中,广播消息携带OLT分配的上行带宽,其中,该上行带宽携带指定接收光功率值范围;以及响应于确定ONU的接收光功率值与指定接收光功率值范围匹配,ONU使用该上行带宽向OLT发送注册信息。
本公开实施例的另一方面,提供一种OLT,包括:分组模块,配置为根据ONU的接收光功率值对OLT所辖的ONU进行分组;以及分配模块,配置为对不同组内的ONU分配对应的上行带宽,其中,该上行带宽用于待注册的ONU发送注册信息。
本公开实施例的另一方面,提供了一种ONU,包括:接收模块,配置为接收OLT发送的广播消息,其中,广播消息携带OLT分配的上行带宽,其中,该上行带宽携带指定接收光功率值范围;以及发送模块,配置为响应于确定ONU的接收光功率值与指定接收光功率值范围匹配,使用该上行带宽向OLT发送注册信息。
本公开实施例的另一方面,提供一种光网络系统,包括OLT和ONU,OLT,配置为根据ONU的接收光功率值对OLT所辖的ONU进行分组;以及,对不同组内的ONU分配对应的上行带宽,其中,该上行带宽用于待注册的ONU发送注册信息;ONU,配置为接收OLT发送的广播消息,其中,广播消息携带OLT分配的上行带宽,其中,该上行带宽携带指定接收光功率值范围;以及,在ONU的接收光功率值与指定接收光功率值范围匹配时,使用该上行带宽向OLT发送注册信息。
本公开实施例的另一方面,提供一种计算机可读存储介质,其 上存储有计算机程序,该计算机程序被设置为运行时执行上述任一方面提供的光网络的测距方法或光网络的注册方法。
本公开实施例的另一方面,提供一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一方面提供的光网络的测距方法或光网络的注册方法。
附图说明
图1为相关技术中PON系统的拓扑结构图。
图2为根据本公开实施例的一种光网络的注册方法的一种流程示意图。
图3为根据本公开实施例的另一种光网络的注册方法的一种流程示意图。
图4是根据本公开实施例的OLT的结构示意图。
图5是根据本公开实施例的ONU的结构示意图。
图6是根据本发明实施例的OLT和ONU的一种操作流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
相关技术中,在ONU注册阶段,OLT需要对待注册的ONU进行测距,由于OLT事先并不知道待注册的ONU距离自己的距离,所以OLT开放的用于测距的安静窗口的大小覆盖了PON系统支持的最小距离到最大距离,最大距离与最小距离的距离差为20km或者40km。支持20km差分距离的PON系统,标准中推荐最近ONU和最远ONU的环路时延差值为200μs,ONU的响应时间差值为2μs,ONU最大随机时 延为48μs,因此推荐的安静窗口的大小为250μs。支持40km差分距离的PON系统,标准中推荐最近ONU和最远ONU的环路时延差值为400μs,ONU的响应时间差值为2μs,ONU最大随机时延为48μs,因此推荐的安静窗口的大小为450μs。在OLT开放安静窗口期间,OLT不给已经完成注册的ONU分配上行带宽,所以在安静窗口对应的时间内,完成注册的ONU不能发送上行数据;如果系统中有完成注册的传输低时延业务的ONU,由于较大的安静窗口会导致低延时业务的延迟发送,因此,该传输低时延业务ONU不能忍受PON系统开放较大的安静窗口。而在相关的PON系统中,OLT会定期开放安静窗口用于ONU注册,因此导致PON系统不能满足低时延业务的低时延需求。
有鉴于此,本公开实施例提供了一种光网络的注册方法,该方法可应用于如图1所示的光网络架构上。图2为本公开实施例提供的一种光网络的注册方法的一种流程示意图,该方法可包括步骤S202和步骤S204。
在步骤S202中,OLT根据ONU的接收光功率值对OLT所辖的ONU进行分组。
在步骤S204中,OLT对不同组内的ONU分配对应的上行带宽,其中,上行带宽用于待注册的ONU发送注册信息。
根据本公开提供的实施例,通过对OLT所辖的ONU进行分组,每个组内的ONU分配不同的上行带宽,组内的待注册的ONU使用分配的上行带宽发送注册信息,解决了相关技术中开放安静窗口导致时延过大的技术问题,保证了链路上传输业务的低时延需求。
根据本公开提供的实施例,对不同组内的ONU分配对应的上行带宽可包括S11和S12。
在S11中,OLT根据接收光功率值确定不同组内的ONU的上行光信号到达OLT的时间段,其中,每个接收光功率值范围对应一个ONU组。
在S12中,OLT为每个时间段分别分配对应的上行带宽,上行带宽携带指定接收光功率值范围。
根据本公开提供的实施例,对不同组内的ONU分配对应的上行 带宽包括:对不同组内的未注册的ONU分配对应的上行带宽,其中,在每组ONU的上行光信号到达OLT的时间段内不给任何已处于运行状态的ONU分配对应的上行带宽。
根据本公开提供的实施例,在对不同组内的ONU分配对应的上行带宽之后,方法还包括:接收待注册的ONU使用上行带宽发送的注册信息;根据注册信息对待注册的ONU进行测距。
本公开实施例提供了另一种光网络的注册方法,该方法可应用于如图1所示的光网络架构上。图3为本公开实施例提供的该另一种光网络的注册方法的一种流程示意图,该方法可包括步骤S302和步骤S304。
在步骤S302中,ONU接收OLT发送的广播消息,其中,广播消息携带OLT分配的上行带宽,其中,上行带宽携带指定接收光功率值范围。
在步骤S304中,响应于确定ONU的接收光功率值与指定接收光功率值范围匹配,ONU使用上行带宽向OLT发送注册信息。
根据本公开提供的实施例,在ONU确定指定接收光功率值范围包括ONU的接收光功率值时,确定ONU的接收光功率值与指定接收光功率值范围匹配。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种光网络的注册装置,该装置可包括OLT和ONU,分别用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软 件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
如图4所示,其为本公开实施例提供的OLT的结构示意图,该OLT可包括:分组模块40,配置为根据ONU的接收光功率值对OLT所辖的ONU进行分组;以及,分配模块42,配置为对不同组内的ONU分配对应的上行带宽,其中,上行带宽用于待注册的ONU发送注册信息。
根据本公开提供的实施例,分组模块40可包括:确定单元,配置为根据接收光功率值确定不同组内的ONU的上行光信号到达OLT的时间段,其中,每个接收光功率值范围对应一个ONU组;以及,分配单元,配置为为每个时间段分别分配对应的上行带宽。
如图5所示,其为本公开实施例提供的ONU的结构示意图,该ONU可包括:接收模块50,配置为接收OLT发送的广播消息,其中,广播消息携带OLT分配的上行带宽,其中,上行带宽携带指定接收光功率值范围;以及,发送模块52,配置为响应于确定ONU的接收光功率值与指定接收光功率值范围匹配,使用上行带宽向OLT发送注册信息。
根据本公开提供的实施例,发送模块52,可具体配置为在确定指定接收光功率值范围包括ONU的接收光功率值时,确定ONU的接收光功率值与指定接收光功率值范围匹配。
本公开实施例还提供了一种光网络系统,可包括如图4所示的OLT和如图5所示的ONU。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
根据本公开提供的实施例,OLT根据与ONU之间的光信号传输损耗值(对应接收光功率值)的范围不同,给不同组的ONU分配不同的用于发送注册信息的上行带宽,为防止未测距的ONU发送的注册消息的数据和已经完成的ONU发送上行数据冲突,OLT会在未测距的ONU 发送的注册消息的数据时,不给任何已经注册的ONU分配上行带宽,形成一个安静窗口,OLT根据与ONU之间的光信号传输损耗值范围(和系统拓扑结构)估计ONU的上行光信号到达自己的时间段,OLT在上述时间段内不给任何已经注册的ONU分配上行带宽,形成一个较小的安静窗口。解决了相关技术中OLT根据支持的20km或者40km的ONU的差分距离开放250us或者450us的完整安静窗口时,所导致的对低时延业务的影响。
下面通过一个具体实例对本公开实施例进行详细说明。
OLT发送的下行信号到达ONU时经过了分光器和光纤,光信号经过分光器后的衰减和分光器的分光比的大小成正比,分光比越大,光信号的衰减越大;1:2的分光器对光信号有3dB的衰减,1:4的分光器对光信号有6dB的衰减,1:8的分光器对光信号有9dB的衰减,1:16的分光器对光信号有12dB的衰减,1:32的分光器对光信号有15dB的衰减。
光信号经过光纤后的衰减和光纤长度成正比,光纤越长,光信号的衰减越大,光信号经过每公里光纤的衰减大约为0.3到0.5dB。
图6为本公开实施例提供的OLT和ONU的一种操作流程图,OLT和ONU的操作流程可包括步骤S602-步骤S608。OLT可以预先获知ODN中的分光器的分光比,在本实施例中,假设OLT已知ODN中的分光器的分光比,如果OLT不知道分光器的分光比,OLT可以按照现有技术开放一个250us的安静窗口,并给注册的ONU分配一个上行带宽分配,OLT将自己发送的下行光功率值P1发送给ONU,ONU收到上行带宽后,在上述带宽对应的上行时间发送上行数据,ONU将自己收到的下行信号的光功率值P2发送给OLT,OLT按照现有技术完成对ONU的测距,OLT接收到ONU发送的数据时间T2减去OLT发送下行信号的时间T1,再减去上行带宽分配中的开始时间T1,减去ONU的随机时延值Tr,得到的值为ONU的环路时延,环路时延值的一半乘以ONU上行光信号在光纤中的光速,得到该ONU距离自己的光纤长度L。然后OLT计算分光比的损耗值为P1-P2-L*0.5。得到分光比的损耗之后,可以按照本实施的方法对ONU进行注册。
OLT也可以获知自己的发射机的发射光功率值,OLT发出的下行信号的光功率减去经过分光器的衰减值和经过光纤的衰减值后,得到到达ONU处的下行信号的光功率值。如果PON系统支持的最近ONU和最远ONU距离OLT的距离为0km到20km,假设每公里光纤的损耗为0.5dB,那么,OLT发送的下行光功率为P dBm,假设系统支持的分光器的分光比为1:32,则OLT发送的下行信号到达ONU的光功率范围为:P-15到P-15-0.5*20,即,P-15dBm到P-25dBm。
根据上述关系,OLT根据自己发送的下行光信号到达ONU处的光功率值可以算出OLT和ONU之间的光纤距离,OLT根据自己发送的下行光信号到达ONU处的光功率范围值可以算出OLT和ONU之间的光纤距离范围,如果OLT计算出ONU和自己之间的距离为L1到L2之间,OLT可以计算出自己命令ONU发送上行光信号到达自己的时间范围:L1/C+T1+T res+T r到L2/C+T1+T res+T r之间,其中,T1为OLT命令ONU发送数据的开始时间,C为ONU发出的光信号在光纤传输的速度,T res为ONU的响应时间,T r为ONU的随机时延值。
因为OLT可以根据下行信号到达ONU处的光功率值范围推算出该ONU和自己之间的光纤距离范围,进而推算出ONU发送的上行光信号到达自己的时间范围,因此OLT可以对接收到不同下行信号光功率范围的ONU分开分配上行带宽进行注册,并同时根据推算出的ONU发送的上行光信号到达自己的时间范围开放测距的减小的安静窗口(小于标准技术支持的250us或者450us的安静窗口)。
OLT和ONU发送数据和接收数据的主要步骤可包括步骤1-步骤3。
在步骤1中,OLT给ONU发送广播消息,消息内容为收到下行光信号的光功率值为一个特定范围的ONU的用于注册的带宽分配(特定范围为ONU接收到的下行光信号的光功率值为小于P1;或者大于等于P1并且小于P2;或者大于等于P2并且小于P3;或者大于等于P3并且小于P4;或者大于等于P4,其中P1、P2、P3和P4为特定的光功率值。在本实施例中,OLT分配的不同带宽之间对应的ONU收到的光功率值的范围是不重叠的,在其他的实施例中也可以考虑OLT分配的不同带宽之间对应的ONU收到的光功率值的范围有重叠,例如:特 定范围为ONU接收到的下行光信号的光功率值为小于P1;或者大于P2并且小于P3,其中,P2小于P1;或者大于P4并且小于P5,其中,P4小于P3;或者大于P6并且小于P7,其中,P6小于P5;或者大于P7。
在本实例中,可选择OLT一次发送一个上述带宽分配,例如为接收到的下行光信号的光功率值为小于P1的ONU分配第一个带宽分配;然后OLT隔一段时间,例如125us,发送第二个带宽分配,例如:接收到的下行光信号的光功率值大于P1并且小于P2的ONU分配第二个带宽分配,以此类推,最后OLT为接收到的下行光信号的光功率值为大于P7的ONU分配第五个带宽分配。在本实施例中,OLT在一个周期内分配了5个上述带宽,在其他实施例中,OLT也可以选择在一个周期内分配更多个带宽分配,每个分配的带宽对应的开放的安静窗口的大小和个数取决于系统支持的低时延业务的需求,OLT开放的安静窗口的大小要小于系统支持的低时延业务允许的时延要求。例如,现有技术中200us的安静窗口的大小对应20km的ONU的差分距离,低时延业务能接受的安静窗口的大小为10us,10us对应的1km的ONU的差分距离,那么如果PON系统支持的差分距离为20km,则OLT需要为所有ONU分配共计20个10us的安静窗口,每个安静窗口对应一个上行带宽分配。20个不同的上行带宽需要对应20个ONU接收下行信号的光功率范围,分别为:小于P1,大于P1并且小于P2,大于P2并且小于P3,大于P3并且小于P4,大于P4并且小于P5,大于P5并且小于P6,大于P6并且小于P7,大于P7并且小于P8,大于P8并且小于P9,大于P9并且小于P10,大于P10并且小于P11,大于P11并且小于P12,大于P12并且小于P13,大于P13并且小于P14,大于P14并且小于P15,大于P15并且小于P16,大于P16并且小于P17,大于P17并且小于P18,大于P18并且小于P19,大于P19。OLT在一个周期内分配上述20个带宽分配中的一个,两个带宽分配之间的间隔为固定时间,例如125us,OLT在不同的周期反复发送上述带宽分配用于ONU注册。)如果要求更低时延,可以开放更小的安静窗口,例如5us,对应的ONU的差分距离为0.5km。
在步骤2中,处于注册状态的ONU,如果收到下行光信号的光功率值满足步骤1中描述的特定范围,则在OLT在步骤1中分配的带宽内发送上行数据,上行数据的内容为ONU的身份信息,如ONU的媒质接入地址或者ONU的序列号信息。
在步骤3中,OLT根据步骤1中ONU收到的特定范围的下行信号光功率值,计算出该范围内的ONU的上行光信号到达OLT的时间范围t 1到t2,OLT在这个时间范围内不给任何已经注册的ONU分配带宽,形成了一个对注册ONU进行测距的安静窗口。OLT在上述安静窗口中收到ONU在步骤2中发送的上行光信号,OLT按照无源光网络标准中定义的方法对ONU进行测距,获得ONU的精确测距结果。
OLT重复上述步骤可以完成对收到下行光信号的光功率值为其他特定范围的ONU进行测距,采用上述方法,OLT可以完成对PON系统支持的距离范围内的所有ONU进行测距,完成ONU的注册。
采用本实施例的方法,OLT根据与ONU之间的光信号传输损耗值范围(和系统拓扑结构)估计ONU的上行光信号到达自己的时间段,OLT根据上述时间段开放减小的测距安静窗口,减轻安静窗口对完成注册ONU的上行业务的影响,保证上行链路上传输业务的低时延需求。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开提供的实施例,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:在S1中,OLT根据ONU的接收光功率值对OLT所辖的ONU进行分组;在S2中,OLT对不同组内的ONU分配对应的上行带宽,其中,上行带宽用于待注册的ONU发送注册信息。
根据本公开提供的实施例,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开实施例还提供了一种电子装置,包括存储器和处理器, 该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
根据本公开提供的实施例,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
根据本公开提供的实施例,上述处理器可以被设置为通过计算机程序执行以下步骤:在S1中,OLT根据ONU的接收光功率值对OLT所辖的ONU进行分组;在S2中,OLT对不同组内的ONU分配对应的上行带宽,其中,上行带宽用于待注册的ONU发送注册信息。
本公开实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种光网络的测距方法,包括:
    光线路终端OLT广播下行光信号,所述下行光信号携带指定接收光功率值范围,以及所述指定接收光功率值范围对应的上行带宽;
    所述OLT接收待注册光网络单元ONU发送的上行光信号,其中,所述上行光信号是由所述待注册ONU响应于确定所述下行光信号到达所述待注册ONU的接收光功率值位于所述指定接收光功率值范围内,在所述指定接收光功率值范围对应的上行带宽上发送给所述OLT的,且所述上行光信号携带有所述接收光功率值;以及
    所述OLT根据所述接收光功率值确定所述待注册ONU与所述OLT之间的光纤距离。
  2. 根据权利要求1所述的方法,在所述OLT广播所述下行光信号之前,还包括:
    所述OLT将所述OLT支持的最小距离到最大距离的距离范围划分为多个子距离范围;
    所述OLT基于预先获取的所述下行光信号的发射光功率值、预先获取的分光器对所述下行光信号的功率衰减值以及预先获取的光信号经过每公里光纤的功率衰减值,确定任一子距离范围对应的接收光功率值范围;以及
    所述OLT为所述任一子距离范围分配对应的上行带宽。
  3. 根据权利要求2所述的方法,其中,所述OLT根据所述接收光功率值确定所述待注册ONU与所述OLT之间的光纤距离,包括:
    所述OLT根据所述预先获取的所述下行光信号的发射光功率值与所述接收光功率值的差值,确定所述下行光信号到达所述待注册ONU的功率衰减值;
    所述OLT根据所述功率衰减值与所述预先获取的分光器对所述下行光信号的功率衰减值的差值,确定所述待注册ONU与所述OLT之间的光纤对所述下行光信号的功率衰减值;以及
    所述OLT根据所述待注册ONU与所述OLT之间的光纤对所述下行光信号的功率衰减值与所述预先获取的光信号经过每公里光纤的 功率衰减值之比,确定所述待注册ONU与所述OLT之间的光纤距离。
  4. 根据权利要求2所述的方法,还包括:
    所述OLT根据所述指定接收光功率值范围,确定所述待注册ONU距离所述OLT的距离范围;
    所述OLT根据所述待注册ONU距离所述OLT的距离范围,估计所述待注册ONU发送的所述上行光信号到达所述OLT的时间段;以及
    在所述时间段内,所述OLT不为任何已经注册的ONU分配所述指定接收光功率值范围对应的上行带宽。
  5. 根据权利要求1所述的方法,其中,所述上行光信号还携带有所述待注册ONU的身份信息;以及
    所述方法还包括:所述OLT根据所述待注册ONU的身份信息,对所述待注册ONU进行注册。
  6. 一种光网络的测距方法,包括:
    待注册光网络单元ONU接收光线路终端OLT广播的下行光信号,所述下行光信号携带指定接收光功率值范围,以及所述指定接收光功率值范围对应的上行带宽;
    所述待注册ONU确定所述下行光信号到达所述待注册ONU的接收光功率值;以及
    响应于确定所述接收光功率值位于所述指定接收光功率值范围内,所述待注册ONU在所述上行带宽上向所述OLT发送上行光信号,且所述上行光信号携带有所述接收光功率值,以使得所述OLT根据所述接收光功率值确定所述ONU与所述OLT之间的光纤距离。
  7. 根据权利要求6所述的方法,其中,所述上行光信号还携带有所述待注册ONU的身份信息,以使得所述OLT根据所述待注册ONU的身份信息,对所述待注册ONU进行注册。
  8. 一种光网络的注册方法,包括:
    光线路终端OLT根据光网络单元ONU的接收光功率值对OLT所辖的ONU进行分组;以及
    所述OLT对不同组内的ONU分配对应的上行带宽,其中,所述上行带宽用于待注册的ONU发送注册信息。
  9. 根据权利要求8所述的方法,其中,所述OLT对不同组内的ONU分配对应的上行带宽包括:
    所述OLT根据所述接收光功率值确定不同组内的ONU的上行光信号到达OLT的时间段,其中,每个接收光功率值范围对应一个ONU组;以及
    所述OLT为每个所述时间段分别分配对应的上行带宽,所述上行带宽携带指定接收光功率值范围。
  10. 根据权利要求8所述的方法,其中,所述OLT对不同组内的ONU分配对应的上行带宽包括:
    所述OLT对不同组内的未注册的ONU分配对应的上行带宽,其中,在每组ONU的上行光信号到达OLT的时间段内不给任何已处于运行状态的ONU分配对应的上行带宽。
  11. 根据权利要求8所述的方法,在所述OLT对不同组内的ONU分配对应的上行带宽之后,所述方法还包括:
    所述OLT接收待注册的ONU使用所述上行带宽发送的注册信息;以及
    所述OLT根据所述注册信息对所述待注册的ONU进行测距。
  12. 一种光网络的注册方法,包括:
    光网络单元ONU接收光线路终端OLT发送的广播消息,其中,所述广播消息携带所述OLT分配的上行带宽,其中,所述上行带宽携带指定接收光功率值范围;以及
    响应于确定所述ONU的接收光功率值与所述指定接收光功率值范围匹配,所述ONU使用所述上行带宽向所述OLT发送注册信息。
  13. 根据权利要求12所述的方法,其中,在所述ONU确定所述指定接收光功率值范围包括所述ONU的接收光功率值时,确定所述ONU的接收光功率值与所述指定接收光功率值范围匹配。
  14. 一种光线路终端OLT,包括:
    分组模块,配置为根据光网络单元ONU的接收光功率值对OLT所辖的ONU进行分组;以及
    分配模块,配置为对不同组内的ONU分配对应的上行带宽,其 中,所述上行带宽用于待注册的ONU发送注册信息。
  15. 根据权利要求14所述的OLT,其中,所述分组模块包括:
    确定单元,配置为根据所述接收光功率值确定不同组内的ONU的上行光信号到达OLT的时间段,其中,每个接收光功率值范围对应一个ONU组;以及
    分配单元,配置为为每个所述时间段分别分配对应的上行带宽。
  16. 一种光网络单元ONU,包括:
    接收模块,配置为接收光线路终端OLT发送的广播消息,其中,所述广播消息携带所述OLT分配的上行带宽,其中,所述上行带宽携带指定接收光功率值范围;以及
    发送模块,配置为响应于确定所述ONU的接收光功率值与所述指定接收光功率值范围匹配,使用所述上行带宽向所述OLT发送注册信息。
  17. 根据权利要求16所述的ONU,其中,
    所述发送模块,配置为在确定所述指定接收光功率值范围包括所述ONU的接收光功率值时,确定所述ONU的接收光功率值与所述指定接收光功率值范围匹配。
  18. 一种光网络系统,包括光线路终端OLT和光网络单元ONU,其中,
    所述OLT,配置为根据光网络单元ONU的接收光功率值对OLT所辖的ONU进行分组;以及,对不同组内的ONU分配对应的上行带宽,其中,所述上行带宽用于待注册的ONU发送注册信息;
    所述ONU,配置为接收光线路终端OLT发送的广播消息,其中,所述广播消息携带所述OLT分配的上行带宽,其中,所述上行带宽携带指定接收光功率值范围;以及,在ONU的接收光功率值与所述指定接收光功率值范围匹配时,使用所述上行带宽向所述OLT发送注册信息。
  19. 一种存储介质,存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至13任一项中所述的方法。
  20. 一种电子装置,包括存储器和处理器,所述存储器中存储 有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至13任一项中所述的方法。
PCT/CN2019/107502 2018-09-25 2019-09-24 光网络的测距方法、注册方法、olt、onu、光网络系统 WO2020063582A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19865817.1A EP3860140A4 (en) 2018-09-25 2019-09-24 DISTANCE MEASUREMENT PROCEDURES AND REGISTRATION PROCEDURES FOR OPTICAL NETWORK, OLT, ONU AND OPTICAL NETWORK SYSTEM
US17/279,432 US11425475B2 (en) 2018-09-25 2019-09-24 Ranging method and registration method for optical network, OLT, ONU, and optical network system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811115958.X 2018-09-25
CN201811115958.XA CN110944248B (zh) 2018-09-25 2018-09-25 光网络的注册方法、olt、onu、光网络系统

Publications (1)

Publication Number Publication Date
WO2020063582A1 true WO2020063582A1 (zh) 2020-04-02

Family

ID=69905024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107502 WO2020063582A1 (zh) 2018-09-25 2019-09-24 光网络的测距方法、注册方法、olt、onu、光网络系统

Country Status (4)

Country Link
US (1) US11425475B2 (zh)
EP (1) EP3860140A4 (zh)
CN (1) CN110944248B (zh)
WO (1) WO2020063582A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111866627A (zh) * 2020-07-20 2020-10-30 芯河半导体科技(无锡)有限公司 一种gpon精确测距的方法及系统
CN117896641A (zh) * 2022-10-14 2024-04-16 华为技术有限公司 光通信网络中的注册方法、装置、通信设备以及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1109336A1 (en) * 1999-09-17 2001-06-20 Tellabs Denmark A/S A method of initialisation of an optical transmitter
CN101997605A (zh) * 2009-08-13 2011-03-30 中兴通讯股份有限公司 光分配网络和光网络单元故障处理、注册和物理定位方法
CN102739305A (zh) * 2011-04-07 2012-10-17 中兴通讯股份有限公司 无源光网络系统中异常onu的定位方法、系统及装置
WO2018166381A1 (zh) * 2017-03-13 2018-09-20 中兴通讯股份有限公司 光信号的功率控制方法、装置及光线路终端
CN110086545A (zh) * 2018-01-26 2019-08-02 华为技术有限公司 一种olt、onu、pon系统和pon系统中的信息传输方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003564A1 (fr) * 2000-06-30 2002-01-10 Fujitsu Limited Procede d'analyse de perte de ligne de transmission, station asservie utilisant ce procede, station principale, et systeme de communication
CN101873516B (zh) * 2009-04-22 2015-05-20 中兴通讯股份有限公司 一种吉比特无源光网络系统的光网络单元注册激活方法
CN103220588B (zh) * 2012-01-18 2016-04-13 中兴通讯股份有限公司 一种光网络单元的注册方法及系统
KR20140011544A (ko) * 2012-07-04 2014-01-29 (주)유비쿼스 이상 ont 검출 및 배제 방법
CN106878836B (zh) * 2015-12-14 2019-07-26 中兴通讯股份有限公司 带宽调度方法、onu注册方法、装置及olt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1109336A1 (en) * 1999-09-17 2001-06-20 Tellabs Denmark A/S A method of initialisation of an optical transmitter
CN101997605A (zh) * 2009-08-13 2011-03-30 中兴通讯股份有限公司 光分配网络和光网络单元故障处理、注册和物理定位方法
CN102739305A (zh) * 2011-04-07 2012-10-17 中兴通讯股份有限公司 无源光网络系统中异常onu的定位方法、系统及装置
WO2018166381A1 (zh) * 2017-03-13 2018-09-20 中兴通讯股份有限公司 光信号的功率控制方法、装置及光线路终端
CN110086545A (zh) * 2018-01-26 2019-08-02 华为技术有限公司 一种olt、onu、pon系统和pon系统中的信息传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3860140A4 *

Also Published As

Publication number Publication date
US20210409850A1 (en) 2021-12-30
EP3860140A1 (en) 2021-08-04
US11425475B2 (en) 2022-08-23
CN110944248B (zh) 2022-06-21
CN110944248A (zh) 2020-03-31
EP3860140A4 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
CN106851439B (zh) 一种多个光网络单元的接入方法及装置
US11329720B2 (en) Ranging method for optical network, OLT, ONU, and optical network system
CN108270749B (zh) 一种虚拟光网络单元的注册方法及系统
JP6900624B2 (ja) データ通信システム、光回線終端装置およびベースバンドユニット
WO2020063582A1 (zh) 光网络的测距方法、注册方法、olt、onu、光网络系统
WO2019205823A1 (zh) 开放安静窗口的方法和装置以及注册方法、装置和系统
CN111698581B (zh) 用于在无源光网络中控制突发的上游传输的设备和方法
US11777774B2 (en) Systems and methods for asymmetrical digital prefix transmissions
KR20140083160A (ko) 광 회선 단말 및 그것의 광 네트워크 단말 등록 방법
US20220256264A1 (en) Communication Method Based on Passive Optical Network, Related Device, and System
CN103703703A (zh) 光网络的节能动态带宽分配
WO2020063570A1 (zh) 光网络的测距方法、通信方法、olt、onu、光网络系统
JP4969367B2 (ja) 動的帯域割当方法、光端局装置、動的帯域割当プログラム
CN111901706B (zh) 一种tdm pon中的onu发现测距方法和系统
US11026002B2 (en) Method for managing ONU in passive optical network, OLT and system
WO2019042457A1 (zh) 带宽分配方法、装置及系统
JP5759420B2 (ja) 光通信システム及び新規接続端末検出方法
KR20170042256A (ko) 복수의 파장을 사용하는 광 네트워크 유닛의 자동 발견 프로세스
WO2019053097A1 (en) METHODS AND PRODUCTS FOR UN START PROCEDURE
CN114339481A (zh) 用于光通信的方法、设备、装置和计算机可读介质
CN114430372A (zh) 带宽分配方法、光线路终端、光网络单元及存储介质
CN116456227A (zh) 一种光网络单元的激活方法和装置
KR20170046012A (ko) 이더넷 수동 광 네트워크에서 동기식 동적 대역 할당 장치 및 방법
CN114666683A (zh) 光网络单元上线注册方法、光网络单元和光线路终端
CN117956320A (zh) 光通信网络中的载波分配方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019865817

Country of ref document: EP

Effective date: 20210426