WO2020063580A1 - 永磁直流电机 - Google Patents

永磁直流电机 Download PDF

Info

Publication number
WO2020063580A1
WO2020063580A1 PCT/CN2019/107497 CN2019107497W WO2020063580A1 WO 2020063580 A1 WO2020063580 A1 WO 2020063580A1 CN 2019107497 W CN2019107497 W CN 2019107497W WO 2020063580 A1 WO2020063580 A1 WO 2020063580A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
curve
permanent magnet
magnetic cylinder
rotor
Prior art date
Application number
PCT/CN2019/107497
Other languages
English (en)
French (fr)
Inventor
龚红宇
冯臣
田立
陈亮
严明初
Original Assignee
广东肇庆爱龙威机电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东肇庆爱龙威机电有限公司 filed Critical 广东肇庆爱龙威机电有限公司
Priority to EP19866830.3A priority Critical patent/EP3859952A4/en
Priority to US17/279,979 priority patent/US20220037964A1/en
Publication of WO2020063580A1 publication Critical patent/WO2020063580A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • H02K11/022
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention belongs to the field of motors, and in particular relates to a permanent magnet DC motor.
  • Permanent magnet DC motors are widely used in various portable electronic equipment or other devices. With the continuous improvement of the intelligence and comfort of automobiles, the applications of permanent magnet DC motors in automobiles are becoming more and more widespread, such as multi-directional adjustment of seats and adjustment of windows. The application environment of permanent magnet DC motors determines the need for the lowest possible noise and vibration. In addition, when applied to automobiles, because there are many electronic devices on the automobile, the electromagnetic compatibility (EMC, ElectroMagnetic Compatibility) level of the permanent magnet DC motor has high requirements to avoid affecting the normal operation of the automobile. EMC can be divided into electromagnetic interference (EMI) and electromagnetic sensitivity (EMS) according to its content. For various products driven by small permanent magnet DC motors, there is usually only EMI, and EMI can be divided into conducted interference and radiated interference.
  • EMI electromagnetic interference
  • EMS electromagnetic sensitivity
  • the sources of permanent magnet DC motor EMI include the spark of the motor, non-linear devices such as thyristors, diodes and transistor switches, and the magnetic circuit of the motor.
  • non-linear devices such as thyristors, diodes and transistor switches
  • magnetic circuit of the motor At present, there are many ways to suppress EMI.
  • a filter is installed in the product as a shielding method, and the reactance potential is suppressed by adjusting the rotor coil turns ratio or increasing the number of commutator pieces, and so on. But none of the above methods can effectively achieve EMI suppression, because it will either increase the cost of the motor or weaken other performance of the motor.
  • the square structure can prevent the motor from rotating naturally due to the square edges.
  • this shape has two problems: for some irregular installation spaces, it may be difficult to install due to the interference of only one corner; And because the shape of the rotor is circular, this causes the volume of the outer and inner magnetic cylinder at the corners to be much larger than the volume between its two adjacent corners, making the distribution of the magnets extremely uneven, which significantly reduces the performance of the motor. And, waste of magnetic material at the corners of the magnetic cylinder is caused.
  • the present invention proposes the following technical solutions.
  • a permanent magnet DC motor includes a stator assembly and a rotor assembly, wherein the stator assembly includes a casing and a magnetic cylinder, and the rotor assembly includes a rotor, and the rotor, the magnetic cylinder, and the casing are sequentially arranged from the inside to the outside.
  • the ratio of the angle corresponding to the commutation interval of the surface magnetic curve of the magnetic cylinder to the corresponding angle of the surface magnetic curve of the corresponding magnetic pole is 15% or less.
  • the present invention proposes a new way to improve the EMC level of the motor, that is, limiting the surface magnetic curve of the magnetic cylinder. Compared with the method already discussed in the background, this method does not need to add new components, nor does it increase processing and manufacturing costs, and has the advantages of low cost and easy implementation.
  • the surface magnetic curve in the commutation interval of the magnetic cylinder is a straight line, a curve, or a combination of a straight line and a curve.
  • the present invention also defines the outline of the magnetic cylinder and the housing of the motor.
  • the outer contour of the magnetic cylinder is based on a regular polygon, and a curve is provided at the connection of each side of the regular polygon to make the regular The sides of the polygon are smoothly connected.
  • the permanent magnet DC motor obtained according to the above technical solution because the shape of the magnetic cylinder and the shell are not simple polygons or circles, can effectively reduce the materials of neodymium iron boron, so it can be used in the installation space of the motor and the cost of magnetic materials. And achieve a good balance between the performance of the motor.
  • FIG. 1 is a schematic diagram of the overall structure of a permanent magnet DC motor according to the present invention.
  • FIG. 2 is a surface magnetic curve diagram of a magnetic cylinder of a permanent magnet DC motor according to the present invention.
  • Figure 3a is a surface magnetic curve in the form of a sine wave in the prior art.
  • Fig. 3b is a surface magnetic curve having the characteristics defined by the present invention.
  • FIG. 4 is a conduction emission test chart of a motor having a magnetic cylinder with a surface magnetic curve in FIG. 3a and FIG. 3b.
  • Fig. 5 is a radiation emission test chart of a motor having a magnetic cylinder with a surface magnetic curve in Figs. 3a and 3b.
  • FIG. 6 is a schematic structural diagram of a permanent magnet DC motor of the present invention showing a commutation section.
  • the permanent magnet DC motor of the present invention includes a stator assembly and a rotor assembly, wherein the stator assembly includes a casing 1 and a magnetic cylinder 2, and the rotor assembly includes a rotor 3, and the rotor 3, the magnetic cylinder 2, and the casing 1 are in order from the inside to the outside.
  • the rotor 3 is provided on a rotor shaft not shown, and the rotor shaft serves as an output shaft.
  • the rotor 3 specifically includes a rotor magnetic pole and a winding.
  • the outer periphery of the rotor 3 is circular, and a magnetic cylinder 2 is provided on the outer periphery.
  • the inner wall contour of the magnetic cylinder 2 is circular, and its diameter is slightly larger than the outer diameter of the rotor 3, that is, between the inner wall contour of the magnetic cylinder 2 and the outer periphery of the rotor 3. There is an air gap.
  • the number of magnetic poles of the magnetic cylinder is set to four. Of course, those skilled in the art know that other numbers of magnetic poles can be set, such as 2, 6, 8, 10, and so on.
  • the surface magnetic curve of the magnetic cylinder of the motor in FIG. 1 is set as shown in FIG. 2.
  • the transition region where the N and S poles are switched is defined as a commutation interval.
  • FIG. 2 there are four commutation intervals on the surface magnetic curve, and the commutation interval is narrow.
  • the surface magnetic curve of the magnetic cylinder of the present invention has the characteristics that the surface magnetic curve is between the N and S poles, and the larger the slope is, the better; that is, the surface magnetic curve between the N and S poles is as steep as possible.
  • FIG. 6 shows the commutation intervals A to D of a motor having the surface magnetic curve in the example shown in FIG. 1.
  • the ratio of the angle corresponding to the commutation interval to the corresponding angle of the surface magnetic curve of the corresponding magnetic pole satisfies: B1 ⁇ P1 ⁇ 100% ⁇ 15%.
  • the measuring method of the surface magnetic curve is: the curve obtained by measuring the surface magnetic induction intensity after the motor casing is installed in the magnetic cylinder and magnetized. It should be noted here that in order to better show the proportional relationship between the commutation interval and the magnetic poles, P1, P2, P3, and P4 in FIG. 2 do not strictly correspond to a single magnetic pole interval, but are biased at the same ratio. Shift so that it just contains the corresponding commutation interval.
  • the types of magnetizing magnetic curves in the areas A1, B1, C1, and D1 are not limited, and may include straight lines, curves, wave lines, or any combination thereof.
  • the waveform of the surface magnetic curve corresponding to each magnetic pole is the same; that is, as shown in FIG. 2, the waveform of the surface magnetic curve corresponding to P1 is the same as the waveform of the surface magnetic curve corresponding to P3, and the surface magnetic field corresponding to P1 is the same as shown in FIG. 2.
  • the waveform of the curve is the same as the waveform of the surface magnetic curve corresponding to P2, but with the opposite polarity.
  • FIG. 4 is a comparative test result for conducted radiation (CE);
  • FIG. 5 is a comparative test result for radiation emitted (RE).
  • CE conducted radiation
  • RE comparative test result for radiation emitted
  • the CE level of the motor employing the surface magnetic curve of the present invention has been raised from the third level to the fifth level compared to the traditional surface magnetic curve in the form of a sine wave.
  • the two upper curves as a whole are used as reference lines for the third and fifth grades, while the lower ones as a whole correspond to the REs of the motors corresponding to the table magnetic curves in FIGS. 3 a and 3 b, respectively.
  • Level the two upper curves as a whole are used as reference lines for the third and fifth grades, while the lower ones as a whole correspond to the REs of the motors corresponding to the table magnetic curves in FIGS. 3 a and 3 b, respectively.
  • the RE level of the motor employing the surface magnetic curve of the present invention has also been improved to a certain extent compared to the traditional surface magnetic curve in the form of a sine wave, reaching the first level. 5 levels.
  • the present invention is not limited to four magnetic poles, but focuses on limiting the high-slope, especially in accordance with the preferred commutation interval and Surface magnetic curve with a single magnetic pole ratio of less than 15%.
  • what kind of magnetization method is adopted to obtain the specific type of surface magnetic curve of the present invention, it is not the focus of the present invention, and those skilled in the art can obtain it as required.
  • the ratio of the arc length of the notch on the outermost peripheral edge of the magnetizing fixture to the arc length of a single magnetic pole is ⁇ 15%.
  • the present invention limits the surface magnetic curve of the magnetic cylinder of the motor and sets a high-slope magnetic curve.
  • the CE and RE levels increase their level, thereby increasing the EMC level.
  • the outer contour of the magnetic cylinder 2 is based on a regular polygon, and a curve is set at the connection of each side of the regular polygon, that is, the outer contour of the magnetic cylinder 2 is straight.
  • a combination of edges and curved edges Specifically, in the exemplary embodiment shown in FIG. 1, the outer contour of the magnetic cylinder 2 includes four straight edges 2a, 2b, 2c, 2d and four curved edges 2e, 2f, 2g, and 2h.
  • the inner and outer contours are both straight segments, while the inner and outer contours of the four curved edges are curved, and straight edges and curved edges are alternately connected, and each curved edge curve connects the straight line segments at both ends smoothly.
  • the thickness of the straight edge of the portion where the outer contour of the magnetic cylinder 2 is a straight segment is small, and the thickness of the curved edge, which is the portion whose outer contour is curved, is large.
  • a housing 1 is provided on the outside of the magnetic cylinder 2.
  • the inside contour of the housing 1 matches the outside contour of the magnetic cylinder 2. That is, as shown in FIG. 1, the casing 1 also includes four straight edges 1a, 1b, 1c, 1d and four curved edges 1e, 1f, 1g, 1h.
  • the inner and outer contours of straight edges are straight line segments, while the inner and outer contours of curved edges are curved lines. Straight edges and curved edges are alternately connected, and each curved edge curve connects the straight line segments at both ends smoothly.
  • the thickness of the casing 1 is preferably the same everywhere.
  • the permanent magnet motor of the present invention adopts a combination design of straight edges and curved edges to improve the adaptability of its shape to the installation space, and achieve a balance between materials and motor performance.
  • the housing 1 and the magnetic cylinder 2 of the permanent magnet DC motor in the present invention are not limited to this number, and may have a curve
  • the structure of the arbitrary regular polygon of the connecting segments is preferably six straight edges, six curved edges, eight straight edges, eight curved edges, or ten straight edges and ten curved edges. A larger number of polygons are also possible, but considering manufacturing costs and other factors, it is not the preferred solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种永磁直流电机,包括定子组件和转子组件,定子组件包括外壳(1)和磁筒(2),转子组件包括转子(3),转子(3)、磁筒(2)和外壳(1)由内向外依次设置,所述磁筒(2)的表磁曲线的换向区间对应的角度与对应的磁极的表磁曲线的对应的角度之比小于等于15%,且所述磁筒(2)的外周轮廓以正多边形为基础,在所述正多边形的各边的连接处设置有曲线,以将所述正多边形的各边平滑连接。该电机降低了电机的噪音和振动,提高了其EMC等级。

Description

永磁直流电机 技术领域
本发明属于电机领域,具体涉及一种永磁直流电机。
背景技术
永磁直流电机广泛应用于各种便携式的电子设备或其它装置中。随着汽车的智能化和舒适性不断提高,永磁直流电机在汽车上的应用也越来越广泛,例如用于座椅的多向调节、车窗的调节等。永磁直流电机的应用环境决定了对尽可能低的噪音和振动的需求。另外,当应用在汽车上时,由于汽车上有众多电子设备,因此对永磁直流电机的电磁兼容性(EMC,Electro Magnetic Compatibility)等级有很高的要求,以免对汽车的正常运行产生影响。EMC根据其内容可以分为电磁干扰(EMI)和电磁敏感性(EMS),对于由小型永磁直流电机驱动的各类产品,通常只有EMI的问题,而EMI可分为传导干扰和辐射干扰。
永磁直流电机EMI的来源包括电机的火花、非线性器件如可控硅、二极管和晶体管开关等、电机的磁路等。目前抑制EMI的手段有很多,例如在产品中加装滤波器作为屏蔽手段,通过调整转子线圈匝数比或增加换向片数量来抑制电抗电势,等等。但是上述手段均不能有效地实现对EMI的抑制,因为其要么会增加电机成本,要么会削弱电机的其它性能。
此外,对永磁电机的形状及安装也有需求。常见的永磁直流电机的外壳有圆形和方形两种。对于圆形的结构形式来说,虽然制造方便而且对安装所需的空间相对更小,但是由于其壳体为圆形,因此为了防止电机整体旋转,需要另外设置固定元件来对其进行固定,这增加了对安装空间的需求以及安装的复杂程度。
方形的结构形式由于存在方形边,能够自然地防止电机旋转,但是这种形状存在两方面的问题:对于一些不规则的安装空间而言,可能仅仅由于某一个角部的干涉而造成难以安装;而由于转子的形状为圆形,这就导致外方内圆的磁筒在角部体积远大于其相邻两个角部之间的体积,使得磁体的分布极不均匀,明显降低了电机性能,而且导致了磁筒的角部的磁性材料的浪费。
发明内容
为了在一定程度上解决上述技术问题,本发明提出了以下技术方案。
一种永磁直流电机,包括定子组件和转子组件,其中定子组件包括外壳和磁筒,所述转子组件包括转子,所述转子、所述磁筒和所述外壳由内向外依次设置,所述磁筒的表磁曲线的换向区间对应的角度与对应的磁极的表磁曲线的对应的角度之比小于等于15%。
根据上述技术方案,本发明提出了一种新的提高电机的EMC等级的方式,即限定磁筒的表磁曲线。这种方式相比于已经在背景技术中论述的方式而言,无需加装新的元器件,也不会增加加工制造成本,具有成本低、易于实施等优点。
进一步地,所述磁筒的换向区间内的表磁曲线是直线、曲线或者直线与曲线的组合。
此外,本发明还对电机的磁筒以及外壳的轮廓进行限定,所述磁筒的外周轮廓以正多边形为基础,在所述正多边形的各边的连接处设置有曲线,以将所述正多边形的各边平滑连接。
根据上述技术方案获得的永磁直流电机,由于其磁筒外形和外壳外形并非简单的多边形或圆形的形式,可以有效降低钕铁硼用料,因此能够在电机的安装空间、磁性材料的成本以及电机的性能之间取得较好的平衡。
附图说明
参考附图描述本发明的示例性实施例,其中:
图1是本发明的永磁直流电机的整体结构示意图。
图2是本发明的永磁直流电机的磁筒的表磁曲线图。
图3a是现有技术中正弦波形式的表磁曲线。
图3b是具有本发明限定的特性的表磁曲线。
图4是分别具有图3a与图3b中表磁曲线的磁筒的电机的传导放射测试图。
图5是分别具有图3a与图3b中表磁曲线的磁筒的电机的辐射放射测试图。
图6是示出了换向区间的本发明的永磁直流电机的结构示意图。
所有附图都只是示意性的,而且并不一定按比例绘制,此外它们仅示出为了阐明本发明而必需的那些部分,其他部分被省略或仅仅提及。即,除附图中所示出的部件外,本发明还可以包括其他部件。
具体实施方式
以下结合附图对本发明的技术方案进行详细说明。
参见图1,本发明的永磁直流电机包括定子组件和转子组件,其中定子组件包括外壳1和磁筒2,转子组件包括转子3,由内向外依次是转子3、磁筒2和外壳1。转子3设置在未示出的转子轴上,转子轴作为输出轴。转子3具体包括转子磁极以及绕组。转子3外周为圆形,在其外周设置有磁筒2,磁筒2的内壁轮廓为圆形,其直径略大于转子3的外径,即在磁筒2的内壁轮廓与转子3外周之间存在气隙。图1中,磁筒的磁极设置为4个。当然,所属领域技术人员知晓,可以设置其他数量的磁极,例如2、6、8、10等。
为了提高电机的EMC等级,尤其是与EMI相关的性能,根据本发明的实施例,将图1中的电机的磁筒的表磁曲线设置成如图2所示。将N极和S极切换的过渡区域定义为换向区间,由图2可知,表磁曲线存在4个换向区间,且换向区间较窄。本发明的磁筒的表磁曲线具有这样的特征:表磁曲线在N、S极之间,斜率越大越好;即N、S极之间表磁曲线越陡越 好。其中,A1、B1、C1、D1是整个循环之中的不同的换向区间,而P1、P2、P3、P4则对应于不同的单个磁极区间。图6则在图1所示出的示例中示出了具有该表磁曲线的电机的换向区间A~D。
作为本发明的优选实施方式,以磁极P1及其对应的换向区间B1为例,换向区间对应的角度与其对应的磁极的表磁曲线的对应的角度之比满足:B1÷P1×100%≤15%。其中,表磁曲线的测量方式为:电机外壳装入磁筒并充磁后,测量其表面磁感应强度所得曲线。在此需要说明的是,为了更好地示出换向区间与磁极之间的比例关系,图2中的P1、P2、P3、P4并非严格对应于单个磁极区间,而是以相同的比例偏移,使其刚好包含对应的换向区间。
A1、B1、C1、D1区间内的充磁表磁曲线类型并不受限,可以包括直线、曲线、波折线或者它们中的任意组合等。此外,每个磁极对应的表磁曲线的波形相同;即,如图2所示,P1所对应的表磁曲线的波形与P3所对应的表磁曲线的波形相同,而P1所对应的表磁曲线的波形与P2所对应的表磁曲线的波形也相同,只是极性相反。
以具有图3a所示的传统的正弦波形式的表磁曲线的磁筒的电机和具有图3b所示的根据本发明的表磁曲线的磁筒的电机作为对比,对二者的EMI进行测试,结果如图4和图5所示。图4是对传导放射(CE)的对比测试结果;图5是对辐射放射(RE)的对比测试结果。在图4中,整体上处于上方的两条曲线是作为第3等级和第5等级的基准线,而整体上处于下方的是分别对应于图3a和图3b中的表磁曲线的电机的CE水平。将整体上低于基准线视为通过该标准,可知相对于传统的正弦波形式的表磁曲线,采用本发明的表磁曲线的电机的CE水平从第3等级已经提升到了第5等级。在图5中,整体上处于上方的两条曲线是作为第3等级和第5等级的基准线,而整体上处于下方的是分别对应于图3a和图3b中的表磁曲线的电机的RE水平。同样地,将整体上低于基准线视为通过该标准,可知相对于传统的正弦波形式的表磁曲线,采用本发明的表磁曲线的电机的RE水平也有一定程度的提升,达到了第5等级。
虽然上述实施例以四个磁极的磁筒为例进行了示例性说明,但是本发明并不限制为四个磁极,而是重点在于限制高斜率的、特别是符合本发明优选的换向区间与单个磁极的比值小于15%的表磁曲线。至于采用何种充磁方式获得本发明的特定类型的表磁曲线,则非本发明的重点,所属领域技术人员可以根据需要来获得。例如,可以通过改变充磁夹具槽口的宽度的方式,使槽口在充磁夹具的最外周边缘上的弧长与单个磁极的弧长之比≤15%。
由此可知,本发明通过对电机的磁筒的表磁曲线进行限定,设置高斜率的磁性曲线,在EMI的两个重要方面CE和RE水平均提高了其等级,从而提高了EMC等级。
作为本发明的一个重要改进方面,回到图1,磁筒2的外周轮廓以正多边形为基础,在正多边形的各条边的连接处设置有曲线,即,磁筒2的外周轮廓为直边与曲边的组合。具体来说,在图1所示出的示例性实施例中,磁筒2的外周轮廓包括四条直边2a、2b、2c、2d以及四条曲边2e、2f、2g、2h,四条直边的内侧轮廓和外侧轮廓均是直线段,而四条曲边的内侧轮廓和外侧轮廓是曲线,直边与曲边交替连接,且每一曲边的曲线均将其两端的直线段平滑连接。因此,从磁筒2的厚度方面来说,磁筒2的外轮廓为直线段的部分即直边的厚度较小,而外周轮廓为曲线的部分即曲边的厚度较大。
在磁筒2的外侧,设置有外壳1。外壳1的内侧轮廓与磁筒2的外侧轮廓相匹配。即,如图1中示出的那样,外壳1也包括四条直边1a、1b、1c、1d以及四条曲边1e、1f、1g、1h。同样地,直边的内外侧轮廓为直线段,而曲边的内外侧为曲线,直边与曲边交替连接,且每一曲边的曲线均将其两端的直线段平滑连接。外壳1的厚度优选为处处相同。
在装配完成后的电机中,磁筒2的外侧的直边部分与外壳1的内侧的直边部分没有间隙,而磁筒2的外侧的曲线部分与外壳1的内侧的曲线部分有间隙,以便于装配及固定。
通过上述结构设置,本发明的永磁电机采用直边与曲边的组合设计提 高了其外形对安装空间的适应能力,并且在材料用料和电机性能之间取得了平衡。
虽然在上述实施例中以四条直边四条侧边的具体结构进行了说明,但是显然地,本发明中的永磁直流电机的外壳1及磁筒2并不限于这种数量,可以是具有曲线连接段的任意正多边形的结构,优选为六条直边六条曲边、八条直边八条曲边或十条直边十条曲边。更多数量的多边形也是可行的,但是考虑到制造成本等因素,并非优选的方案。
参考以上的示意性实施例已经对本发明做出了清楚、完整的说明,本领域技术人员应当理解的是,在不脱离本发明的精神和范围的情况下,通过对所公开的技术方案的修改可以设想各种其它的实施例。这些实施例应当被理解成落在本发明的基于权利要求和其任何等同技术方案所确定的范围之内。

Claims (7)

  1. 一种永磁直流电机,包括定子组件和转子组件,其中所述定子组件包括外壳(1)和磁筒(2),所述转子组件包括转子(3),所述转子(3)、所述磁筒(2)和所述外壳(1)由内向外依次设置,其特征在于,所述磁筒(2)的表磁曲线的换向区间(B1)对应的角度与对应的磁极(P1)的表磁曲线的对应的角度之比小于等于15%。
  2. 根据权利要求1所述的永磁直流电机,其特征在于,所述磁筒(2)的换向区间内的表磁曲线是直线、曲线或者直线与曲线的组合。
  3. 根据权利要求1所述的永磁直流电机,其特征在于,所述磁筒(2)的外周轮廓以正多边形为基础,在所述正多边形的各边的连接处设置有曲线,以将所述正多边形的各边平滑连接。
  4. 根据权利要求1-3中任一项所述的永磁直流电机,其特征在于,所述磁筒的外周轮廓的多边形边数为4、6、8、或10。
  5. 根据权利要求1-3中任一项所述的永磁直流电机,其特征在于,所述外壳(1)的内侧轮廓和外侧轮廓的形式均与所述磁筒(2)的外周轮廓的形式相同。
  6. 根据权利要求1-3中任一项所述的永磁直流电机,其特征在于,对应所述磁筒(2)的磁极个数为2、4、6、8或10个。
  7. 根据权利要求1-3中任一项所述的永磁直流电机,其特征在于,每个磁极对应的表磁曲线的波形相同。
PCT/CN2019/107497 2018-09-30 2019-09-24 永磁直流电机 WO2020063580A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19866830.3A EP3859952A4 (en) 2018-09-30 2019-09-24 Permanent magnet direct-current electric motor
US17/279,979 US20220037964A1 (en) 2018-09-30 2019-09-24 Permanent magnet direct-current electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811155023.4 2018-09-30
CN201811155023.4A CN110971024A (zh) 2018-09-30 2018-09-30 永磁直流电机

Publications (1)

Publication Number Publication Date
WO2020063580A1 true WO2020063580A1 (zh) 2020-04-02

Family

ID=69949300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107497 WO2020063580A1 (zh) 2018-09-30 2019-09-24 永磁直流电机

Country Status (4)

Country Link
US (1) US20220037964A1 (zh)
EP (1) EP3859952A4 (zh)
CN (1) CN110971024A (zh)
WO (1) WO2020063580A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060208179A1 (en) * 2005-03-18 2006-09-21 Yukio Itami DC brushless motor, light deflector, optical scanning device, and image forming apparatus
CN101051766A (zh) * 2006-02-24 2007-10-10 马渊马达株式会社 具有多边形外形的小型电机
JP2009100564A (ja) * 2007-10-17 2009-05-07 Minebea Co Ltd 小型dcモータ
CN104953728A (zh) * 2014-03-28 2015-09-30 德昌电机(深圳)有限公司 多边形定子铁芯及包括其的电机
CN208767926U (zh) * 2018-09-30 2019-04-19 广东肇庆爱龙威机电有限公司 永磁直流电机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344002B2 (zh) * 1972-08-28 1978-11-25
JP3839428B2 (ja) * 2003-06-10 2006-11-01 アスモ株式会社 直流機
JP3958715B2 (ja) * 2003-06-19 2007-08-15 アスモ株式会社 直流機及びその製造方法
TWI343689B (en) * 2006-12-28 2011-06-11 Delta Electronics Inc Permanent magnet rotary structure of electric machinery
JP6220662B2 (ja) * 2013-01-11 2017-10-25 アスモ株式会社 ブラシレスモータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060208179A1 (en) * 2005-03-18 2006-09-21 Yukio Itami DC brushless motor, light deflector, optical scanning device, and image forming apparatus
CN101051766A (zh) * 2006-02-24 2007-10-10 马渊马达株式会社 具有多边形外形的小型电机
JP2009100564A (ja) * 2007-10-17 2009-05-07 Minebea Co Ltd 小型dcモータ
CN104953728A (zh) * 2014-03-28 2015-09-30 德昌电机(深圳)有限公司 多边形定子铁芯及包括其的电机
CN208767926U (zh) * 2018-09-30 2019-04-19 广东肇庆爱龙威机电有限公司 永磁直流电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3859952A4 *

Also Published As

Publication number Publication date
EP3859952A1 (en) 2021-08-04
CN110971024A (zh) 2020-04-07
EP3859952A4 (en) 2022-06-29
US20220037964A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US20160056672A1 (en) Permanent magnet motor
CN107240975B (zh) 切向电机、切向电机转子及其转子铁芯
JP5610726B2 (ja) 電気モータ
CN107222047B (zh) 切向电机、切向电机转子及其转子铁芯
KR20070066088A (ko) Lspm 동기모터의 로터
CN107294243B (zh) 低转矩波动内置式永磁电机转子及优化电机磁密的方法
WO2014183410A1 (en) Rotor for permanent magnet motor
JP2001037126A (ja) 自己始動形永久磁石式同期電動機
JP2002084695A (ja) 永久磁石形モータ
US20230283130A1 (en) Motor rotor, permanent magnet motor, and electric vehicle
CN106787568B (zh) 压缩机和空调
WO2020063580A1 (zh) 永磁直流电机
CN106357029B (zh) 电机转子磁场正弦化的方法、转子结构、电机和压缩机
US20140319935A1 (en) Mover and stator assembly of electric machine
CN208767926U (zh) 永磁直流电机
JP2021083223A (ja) 永久磁石式モータの回転子構造
JP2004166395A (ja) 車両用回転電機
CN206099564U (zh) 电机转子结构、电机和压缩机
CN104518586A (zh) 适用于大型永磁同步电机的直槽错极结构
CN106411100B (zh) 一种具有静止励磁环的同轴磁性齿轮
CN110994843A (zh) 永磁同步电机的转子结构
KR20200101586A (ko) 영구자석 절감형 직류 모터
CN201286033Y (zh) 电机
CN216851480U (zh) 电机的转子和电机
CN108429371A (zh) 一种改善法向电磁力的电机永磁体磁极分布结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019866830

Country of ref document: EP