WO2020063375A1 - 集射真空泵 - Google Patents
集射真空泵 Download PDFInfo
- Publication number
- WO2020063375A1 WO2020063375A1 PCT/CN2019/105876 CN2019105876W WO2020063375A1 WO 2020063375 A1 WO2020063375 A1 WO 2020063375A1 CN 2019105876 W CN2019105876 W CN 2019105876W WO 2020063375 A1 WO2020063375 A1 WO 2020063375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ejection
- pump body
- gear
- exhaust
- cavity
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/02—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
- F04F5/04—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/44—Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
Definitions
- Vacuum is often required in scientific research and industrial production to provide the ideal environmental conditions required for experiments and production, which requires the use of vacuum pumps.
- steam jet pumps and volumetric mechanical pumps such as Roots pumps, screw pumps, rotary vane pumps, etc.
- volumetric mechanical pumps such as Roots pumps, screw pumps, rotary vane pumps, etc.
- the steam jet pump on the one hand, it takes a lot of energy to obtain steam; on the other hand, as the number of extraction stages increases, the amount of steam consumed increases step by step; at the same time, the turbulent loss of the air flow is also large.
- this method uses high energy consumption for high temperature, high temperature for high pressure, high pressure for high speed, and high speed low pressure suction vacuum.
- energy conversion links and large energy consumption There are many energy conversion links and large energy consumption.
- volumetric mechanical pumps as the vacuum increases during operation, the pumped gas becomes thinner and the volumetric efficiency decreases, and this trend becomes more serious as the environmental vacuum increases. Therefore, the existing vacuum technology obviously has the problems of high energy consumption and low efficiency.
- the collective jet vacuum pump is mainly composed of a pump body, a gear, a shaft, a bearing and a pump cover.
- the internal cavity of the pump is provided with a multi-stage ejection cavity divided by a spacer ring, and each of the ejection cavities cooperates with a gear that is cut off by the groove to form a multi-stage tooth row.
- the pump body is provided with a pumping channel which is undulated in a radial direction and propelled in an axial spiral.
- One end of the extraction channel is an air inlet, and the other end is an air outlet, which communicates with the injection cavity in the pump body at the small diameter and contacts the gear.
- the invention has the advantage that the rigid fluid formed by the gear rotation can replace the flexible steam, so that the mechanical energy of the gear teeth directly acts on the gas to be evacuated and has a good effect. Except for the pumping work, the kinetic energy of the gears is maintained to maintain its rotary motion, without conversion links, avoiding the energy loss of multiple stages and multiple conversions, thereby reducing the energy consumption of pumping.
- Fig. 2 is a schematic cross-sectional structure view taken along A-A in Fig. 1.
- the pump cover 1 is provided with a pump cover at both ends. Since the pump cover is a conventional cover structure, for convenience of illustration, the drawing of the pump cover is omitted in the view, and is described here.
- Fig. 4 is a schematic sectional view of rotation taken along C-C in Fig. 1.
- the pump body 1 is provided with a plurality of extraction channels 3 independent of each other and working simultaneously.
- the extraction channel 3 is diagonally intersected with each ejection cavity, and communicates with the ejection cavity at a small diameter, respectively.
- the extraction amounts of the extraction channels 3 are superimposed to form a large extraction amount, thereby obtaining a large extraction rate.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
一种集射真空泵,包括内腔由隔环(4)分割成多级引射腔(5 1,6 1)且设有径向波浪起伏、轴向螺旋推进的抽排通道(3)的泵体(1)、开有凹槽(10)将轮齿断开为多级齿列绕轴(13)高速旋转的齿轮(2)及轴承、泵盖组成,抽排通道(3)在小径部分与泵体(1)的内腔连通,通过轮齿各级齿列(5,6)高速旋转形成的刚性流体的低压抽吸作用、机械推动作用和离心力作用迫使经吸气口(7)进入抽排通道(3)的气体形成定向流动,在压缩区(11)压缩,并在切分刃(12)处分离引导至下一级引射腔逐级加压,最后从排气口(8)排入大气,在吸气口(7)一侧形成负压从被抽容器抽气,从而低能耗地获得大抽气量和较高的真空。
Description
本发明涉及从密封容器中抽取气体获得真空的方法,具体地说是一种集射真空泵。
在科研和工业生产中经常需要真空来提供实验和生产所需的理想环境条件,这就要用到真空泵。对于要求大抽气量的场合(比如炼钢炉外真空精炼),目前主要使用的是蒸汽喷射泵和容积类机械泵(如罗茨泵、螺杆泵、旋片泵等)。对于蒸汽喷射泵而言,一方面蒸汽的获得要耗用大量能源;另一方面随抽气级数增加,所耗用的蒸汽量逐级加大;同时气流的紊流损失也很大。总之,这种以高耗能换高温,高温换高压,以高压换高速,再以高速的低压抽吸真空的方式能量转换环节多,能源消耗大。对于容积类的机械泵来说,在工作中随真空度的提高,被抽气体逐渐稀薄,容积效率下降,且这种趋势随环境真空度的提高愈加严重。因此,现有的真空技术明显地存在着高能耗和低效率问题。
发明内容
本发明的目的是提供一种以齿轮高速转动形成的“刚性流体”代替柔性的蒸汽,从密封容器中抽取气体获得真空的方法,具体地说是一种集射真空泵。以此实现大抽气量和低能耗目标,解决现有技术在真空抽气上的困难和问题。
本发明为达到上述目标通过以下技术方案实现:集射真空泵主要由泵体、齿轮、轴、轴承及泵盖组成。泵体内腔设有由隔环分割形成的多级引射腔,各引射腔与被凹槽断开形成多级齿列的齿轮配合工作。泵体内设有径向波浪起伏并且在轴向螺旋推进的抽排通道。抽排通道一端为吸气口,另一端为排气口,在小径处与泵体内的引射腔连通并与齿轮接触。被抽容器中的气体经吸气口进入抽排通道后与高速旋转的齿轮接触并相互 作用,在这种高速刚性流体的低压抽吸作用、轮齿的机械推动作用和圆周运动离心力作用等诸多因素的共同作用下,被抽气体在抽排通道内被引射加压形成定向流动,把从吸气口吸入的气体经抽排通道从排气口排入大气,实现抽取真空的目的。
本发明的优点在于:能够以齿轮转动形成的刚性流体代替柔性的蒸汽,使轮齿的机械能直接作用于被抽气体抽真空,作用效果好。除用于抽气做功外,齿轮的动能均保留维持其旋转运动,无转换环节,避免了多级多次转化的能量损失,以此降低抽气能耗。
图1是本发明的结构示意图。图中局部剖视是以二级引射腔轴向中分平面剖切的。泵体在圆周方向上有多条引射通道3;但,为了视图清晰,图1中只绘制了其中的一条。
图2是图1中A-A剖视结构示意图。泵体1的两端均设泵盖,由于此泵盖属常规盖体结构,为方便表达,视图中均省略了泵盖的作图,在此说明。
图3是图1中沿抽排通道径向中分的B-B曲面展开的旋转剖视示意图。为了视图清晰,各引射腔的轮廓虚线在剖面线部分没有画出;而是用代表区域中心的点画线表示一级引射腔5
1和二级引射腔6
1。在泵体1的内腔设有多级引射腔,为了视图清晰,在图3中只画了其中的两条。
图4是图1中沿C-C剖切的旋转剖面示意图。
本发明所述的集射真空泵主要由泵体1、轴13、齿轮2及轴承、泵盖等组成。泵体1的内腔设有隔环4,隔环4将泵体内腔分割为不同的引射腔;同时泵体1内还设有径向波浪起伏、轴向螺旋推进的抽排通道3。抽排通道3的前端为吸气口7,后端为排气口8,中间在小径处与各引射腔逐级相通。经吸气口进入抽排通道3的气体先与一级引射腔5
1连通并与齿轮2的一级齿列5接触,受高速旋转轮齿形成的刚性流体的低压吸 引作用、机械推动作用和离心力作用等诸多因素的共同作用,被抽气体被抽引加压输送至二级引射腔6
1内与二级齿列6接触并相互作用,继续加压引射,以此类推。气体经多级引射后,经排气口8排入大气。
气流的引射加压是这样实现的:抽排通道3内的气体在轮齿的作用下向排气侧流动,由于抽排通道3的断面在压缩区11处变小,流经此处的气体受到压缩,向齿轮2的一级齿列5靠拢,与轮齿的作用加强。在低压吸引作用和轮齿的机械推动作用下,气体的压强增高,流速趋同于轮齿的旋转线速度。当越过压缩区11后,被抽气体受离心力的作用向远离轴心处发散,与泵体1的切分刃12共同作用,使气体与一级引射腔5
1分离,继续向前流动,进入二级引射腔6
1,与齿轮2的二级齿列相互作用,在前级压缩的基础上被抽气体在这里再次被引射加压,以此类推,最后经排气口8排出。
设计多级引射的目的是增大压强比,获得高的真空度。分级引射是通过泵体1内设计的隔环4实现的。隔环4将泵体1的内腔分割成多个引射腔,引射腔为围绕轴芯的回转体空腔,与轴芯线垂直。隔环4与齿轮2的凹槽10配合,二者之间只留很小的间隙,使引射腔之间的气体流通阻力加大,从而在一定程度上起到隔离作用。气流经逐级引射加压,压强比逐级增高。大的压强比一方面有利于从排气口8一侧顺利排气,另一方面有利于吸气口7一侧得到很低的压强,从而获得较高的真空度。
在圆周方向上,泵体1内设有多条相互独立又同时工作的抽排通道3。抽排通道3与各引射腔斜交,在小径处与引射腔分别相通。各抽排通道3的抽气量相叠加,集合形成大的抽气量,以此获得大的抽气速率。
泵体1的两端均设泵盖,由泵盖固定支撑齿轮2的轴13;并使集射真空泵形成密封腔体,隔绝真空和大气。泵盖设在泵体1的小径处,不遮挡设在大径处的吸气口7和排气口8,不影响吸气和排气。
泵体1上设有法兰9,法兰9与泵体1铸为一体。由法兰9与待抽真空的容器连接并实现密封。
Claims (6)
- 集射真空泵,其特征在于:包括内腔由隔环(4)分割成多级引射腔且设有径向波浪起伏、轴向螺旋推进的抽排通道(3)的泵体(1)、开有凹槽(10)将轮齿断开为多级齿列绕轴(13)高速旋转的齿轮(2)及轴承、泵盖组成,抽排通道(3)在小径部分与泵体(1)的内腔连通,通过轮齿各级齿列高速旋转形成的刚性流体的低压抽吸作用、机械推动作用和离心力作用迫使经吸气口(7)进入抽排通道(3)的气体形成定向流动,在压缩区(11)压缩,并在切分线(12)处分离引导至下一级引射腔逐级加压,得到大的压强比,最后从排气口(8)排入大气,在吸入口(7)一侧形成负压从被抽容器抽气,从而获得较高的真空。
- 根据权利要求1所述的集射真空泵,其特征在于齿轮(2)开有凹槽(10),凹槽(10)将轮齿断开,并与隔环(4)相互配合分割泵体(1)为多个独立的引射腔,对气体逐级施加作用进行真空抽气的。
- 根据权利要求1所述的集射真空泵,其特征在于泵体(1)设有隔环(4),隔环(4)将泵体(1)的内腔分割成多个引射腔,这些引射腔之间气流流通阻力大,彼此相对隔离,以此实现逐级加压增大压强比的目的。
- 根据权利要求1所述的集射真空泵,其特征在于抽排通道(3)位于泵体(1)内,其两端分别为吸气口(7)和排气口(8),其径向波浪起伏、轴向螺旋推进,在小径处与引射腔连通,形成多级、多个压气工作单元,被抽气体在此与高速转动的齿轮(2)相互作用,获得能量从排气口(8)排入大气,实现真空抽吸。
- 根据权利要求1所述的集射真空泵,其特征在于泵体(1)在圆周方向上设有多条彼此独立又能同时与齿轮(2)相互作用的抽排通道(3),多条抽排通道(3)的抽气量集合叠加形成大的抽气速率。
- 根据权利要求1所述的集射真空泵,其特征在于抽排通道(3)与各级引射腔在空间呈一定角度斜交,抽排通道(3)在小径处与泵体(1)内腔相通,齿轮(2)在这一区域对被抽气体施加作用引射加压。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811200788.5A CN110966265B (zh) | 2018-09-28 | 2018-09-28 | 集射真空泵 |
CN201811200788.5 | 2018-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020063375A1 true WO2020063375A1 (zh) | 2020-04-02 |
Family
ID=69953309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/105876 WO2020063375A1 (zh) | 2018-09-28 | 2019-09-16 | 集射真空泵 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110966265B (zh) |
WO (1) | WO2020063375A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2660175Y (zh) * | 2003-11-17 | 2004-12-01 | 财团法人工业技术研究院 | 多级式真空泵 |
KR101286187B1 (ko) * | 2011-11-08 | 2013-07-15 | 데이비드 김 | 다단형 건식 진공펌프 |
CN103352102A (zh) * | 2013-07-08 | 2013-10-16 | 党浩然 | 旋转真空除气装置 |
CN104329257A (zh) * | 2014-10-28 | 2015-02-04 | 马德宝真空设备集团有限公司 | 一种螺杆真空泵的螺杆转子冷却装置 |
CN104989642A (zh) * | 2015-08-02 | 2015-10-21 | 衢州市易凡设计有限公司 | 一种多层螺杆轴 |
WO2016110902A1 (ja) * | 2015-01-05 | 2016-07-14 | 株式会社アルバック | スクリュー真空ポンプ |
CN106480257A (zh) * | 2015-08-29 | 2017-03-08 | 党祎贤 | 泵阀真空除气装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950007378B1 (ko) * | 1990-04-06 | 1995-07-10 | 가부시끼 가이샤 히다찌 세이사꾸쇼 | 진공펌프 |
JP4282867B2 (ja) * | 2000-03-15 | 2009-06-24 | ナブテスコ株式会社 | スクリューロータおよびスクリュー機械 |
CN1862020A (zh) * | 2005-05-10 | 2006-11-15 | 北京朗禾科技有限公司 | 爪型干式真空泵 |
CN202718885U (zh) * | 2012-08-14 | 2013-02-06 | 杭州新安江工业泵有限公司 | 串联式水环真空泵 |
-
2018
- 2018-09-28 CN CN201811200788.5A patent/CN110966265B/zh active Active
-
2019
- 2019-09-16 WO PCT/CN2019/105876 patent/WO2020063375A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2660175Y (zh) * | 2003-11-17 | 2004-12-01 | 财团法人工业技术研究院 | 多级式真空泵 |
KR101286187B1 (ko) * | 2011-11-08 | 2013-07-15 | 데이비드 김 | 다단형 건식 진공펌프 |
CN103352102A (zh) * | 2013-07-08 | 2013-10-16 | 党浩然 | 旋转真空除气装置 |
CN104329257A (zh) * | 2014-10-28 | 2015-02-04 | 马德宝真空设备集团有限公司 | 一种螺杆真空泵的螺杆转子冷却装置 |
WO2016110902A1 (ja) * | 2015-01-05 | 2016-07-14 | 株式会社アルバック | スクリュー真空ポンプ |
CN104989642A (zh) * | 2015-08-02 | 2015-10-21 | 衢州市易凡设计有限公司 | 一种多层螺杆轴 |
CN106480257A (zh) * | 2015-08-29 | 2017-03-08 | 党祎贤 | 泵阀真空除气装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110966265B (zh) | 2022-03-22 |
CN110966265A (zh) | 2020-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0011982A1 (en) | Regenerative rotodynamic machines | |
CN114934904A (zh) | 一种从动式气液分离启动装置 | |
WO2020063375A1 (zh) | 集射真空泵 | |
JPS58135396A (ja) | 可動翼型圧縮機 | |
CN107489605B (zh) | 低碳、无油大抽速真空抽气机组 | |
CN105275884B (zh) | 动力式叶泵的增强及其应用 | |
CN101608619B (zh) | 螺旋反爪真空泵 | |
RU2752390C1 (ru) | Пневматическое устройство | |
CN110080999B (zh) | 一种离心鼓风机 | |
US3865506A (en) | Centrifugal compressor | |
CN213953896U (zh) | 一种螺杆式压缩机 | |
CN212250601U (zh) | 一种新型水力模型 | |
CN112434388B (zh) | 一种高压比多级轴流式液力涡轮设计方法 | |
CN104632627A (zh) | 压缩机泵体及具有其的压缩机 | |
CN211692826U (zh) | 双级液环泵叶轮流道密封结构 | |
CN211525077U (zh) | 一种有效降噪的罗茨泵 | |
CN209856098U (zh) | 一种离心泵的新型叶轮组合体 | |
CN217206893U (zh) | 双进口导叶和蜗壳组合式轴向剖分多级离心泵 | |
JPH03115795A (ja) | 遠心圧縮機 | |
CN214788011U (zh) | 一种蜗壳导叶式多级泵 | |
CN116255298B (zh) | 一种双进口容积式透平增压泵 | |
CN110863995A (zh) | 一种壳体带有导向流道的低温潜液泵 | |
CN105201873B (zh) | 一种多级高压离心式压缩机 | |
CN212360290U (zh) | 一种用于潜水泵的叶轮 | |
CN212318298U (zh) | 一种旋涡泵 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19864997 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19864997 Country of ref document: EP Kind code of ref document: A1 |