WO2020063187A1 - 冷连轧机组的乳化液浓度优化方法 - Google Patents

冷连轧机组的乳化液浓度优化方法 Download PDF

Info

Publication number
WO2020063187A1
WO2020063187A1 PCT/CN2019/101118 CN2019101118W WO2020063187A1 WO 2020063187 A1 WO2020063187 A1 WO 2020063187A1 CN 2019101118 W CN2019101118 W CN 2019101118W WO 2020063187 A1 WO2020063187 A1 WO 2020063187A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
emulsion
rack
emulsion concentration
rolling mill
Prior art date
Application number
PCT/CN2019/101118
Other languages
English (en)
French (fr)
Inventor
郑涛
王康健
李山青
全基哲
瞿培磊
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP19865518.5A priority Critical patent/EP3815804B1/en
Priority to US17/261,478 priority patent/US11779975B2/en
Priority to JP2021509855A priority patent/JP7076039B2/ja
Publication of WO2020063187A1 publication Critical patent/WO2020063187A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0242Lubricants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/62Roll-force control; Roll-gap control by control of a hydraulic adjusting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/007Control for preventing or reducing vibration, chatter or chatter marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B45/0251Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B2037/002Mass flow control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0266Measuring or controlling thickness of liquid films

Definitions

  • the invention belongs to the field of tandem cold rolling, and particularly relates to an emulsion concentration optimization method suitable for a tandem cold rolling unit with vibration suppression as a goal.
  • Emulsion concentration plays a vital role in the lubrication state between the roll gaps of the stands of the cold tandem rolling mill.
  • the friction coefficient is too small, which may cause the rolling process to cause self-excited vibration of the rolling mill; if the roll gap is under-lubricated, the average oil film thickness between the roll gaps is less than the required minimum value. It is easy to cause the oil film in the roll gap to rupture during the rolling process, which will cause the friction coefficient to increase sharply, which will cause the rolling pressure to change, which will cause the system stiffness to fluctuate periodically.
  • the authorization announcement number is CN 103544340, and the authorization announcement date is the Chinese invention patent on March 2, 2016, which discloses a "method for setting the emulsion concentration in the ultra-thin strip rolling of a five-stand cold continuous rolling mill",
  • the method for setting the emulsion concentration includes the following steps performed by a computer: 1. Collecting the main equipment of the unit, the characteristics of the strip to be rolled, the main rolling process and process lubrication system parameters; 2. Defining relevant process parameters; 3.
  • the setting of the emulsion concentration directly determines the roll gap lubrication state of each stand of the cold continuous rolling unit, and can As the main process control method to suppress rolling mill vibration.
  • the technical problem to be solved by the present invention is to provide a method for optimizing the emulsion concentration of a cold tandem rolling mill with the goal of vibration suppression. It changes the previous mode of constant concentration control of each rack emulsion, and uses the concentration of each rack emulsion as an optimization variable to comprehensively and optimally control it; by reasonable proportioning of the concentration of each rack emulsion, it guarantees each rack The state of lubrication between the roll gaps is optimal, thereby achieving the purpose of suppressing the vibration of the rolling mill, improving product quality and production efficiency, and bringing economic benefits to the enterprise.
  • the technical solution of the present invention is to provide a method for optimizing the concentration of emulsion in a cold tandem rolling mill with the goal of vibration suppression, characterized in that the method for optimizing the concentration of emulsion includes the following steps:
  • step (m) Determine whether the emulsion concentration C i exceeds the feasible range.
  • the feasible range is from 0 to the maximum allowed emulsion concentration.
  • the allowed emulsion concentration of the device is usually within 10%.
  • control system of the tandem cold rolling mill is set according to the optimal emulsion concentration setting value in step (n). Adjust and control the emulsion concentration of each rack separately.
  • ⁇ hi is the reduction amount
  • ⁇ h i h 0i -h 1i
  • h 0i the thickness of each frame inlet
  • h 1i the thickness of each frame outlet
  • R i ′ is the radius of the i-th frame work roll flattening
  • T 0i is the rear tension of each frame
  • T 1i is the front tension of each frame
  • Pi is the rolling pressure of each frame.
  • a i is the coefficient of influence of liquid friction
  • b i is the coefficient of influence of dry friction
  • B i is the friction coefficient attenuation index.
  • T i is the inlet temperature of each rack
  • ⁇ h i h 0i -h 1i
  • h 0i is the thickness of each rack inlet
  • h 1i is the thickness of each rack outlet
  • is the strip density
  • S is the specific heat capacity of the strip
  • J is the thermal power equivalent
  • K i is the individual machine Strip steel resistance to deformation
  • k 0 is the influence factor of the nozzle shape and spray angle, 0.8 ⁇ k 0 ⁇ 1.2, w is the emulsion flow rate, is the distance between racks, the distance between the racks l is divided into m sections, and the temperature in the section is T i , J indicates that v 1i is the exit speed of each rack, h 1i is the exit thickness of each rack, ⁇ is the strip density, S is the specific heat capacity of the strip, T i is the exit temperature of each rack, and T c is the temperature of the emulsion;
  • the key rolling process parameters of the strip include at least: the thickness of each stand entrance h 0i ; the thickness of each stand exit h 1i ; strip width B; the speed of each stand entrance v 0i ; the speed of each stand exit v 1i; the inlet temperature T 1; each stand strip deformation resistance K i; each stand rolling pressure P i; each stand after the tension T 0i; before each rack tension T 1i; Effect emulsion concentration coefficient k c ; viscosity compression coefficient ⁇ of the lubricant; strip density ⁇ ; strip specific heat capacity S; emulsion flow w; emulsion temperature T c ; thermal work equivalent J.
  • the process parameters involved in the process of optimizing the concentration of the emulsion include at least the critical value of the thickness of the lubricant film of each frame And the friction coefficient at this time is Critical value of under-lubricant film thickness And the friction coefficient at this time is
  • the reference value of the vibration judgment index is ⁇ 0i ;
  • the reduction rate is
  • R i ′ is the flattening radius of the work roll of the i-th frame, and the process value is calculated for the rolling pressure.
  • a and b are dynamic viscosity parameters of lubricating oil under atmospheric pressure.
  • calculation formula for calculating the oil film thickness between the roll gaps of each frame is as follows:
  • h 0i is the thickness of each rack inlet
  • h 1i is the thickness of each rack outlet
  • k c is the coefficient of influence of the emulsion concentration
  • is the viscosity compression coefficient of the lubricant
  • K i is the deformation resistance of each rack strip.
  • ⁇ 0i is the dynamic viscosity of the emulsion between the roll gaps of each frame
  • v 0i is the inlet speed of each frame
  • v ri is the linear surface speed of the rolls of each frame
  • T 0i is the rear tension of each frame
  • B is the strip width
  • k rg represents a coefficient of longitudinal strength of the lubricant entrained roughness of the work roll and the strip surface, which is in the range 0.09 to 0.15
  • K rs represents imprinting ratio, i.e., the surface roughness of the work rolls on the strip is transmitted to the ratio
  • K rs value in the range of 0.2 to 0.6
  • B L is the attenuation coefficient of the work roll roughness, the rolled number of kilometers rack L i for the work roll change.
  • X ⁇ C i ⁇ is an optimization variable, and ⁇ is a distribution coefficient.
  • FIG. 1 is a schematic flowchart of an overall technical solution of the present invention
  • FIG. 2 is a schematic flowchart of calculating a reference value of a vibration judgment index according to the present invention
  • FIG. 3 is a schematic diagram of the calculation process of the outlet temperature of each strip of the present invention.
  • step (a) collecting equipment characteristic parameters of the cold tandem rolling mill mainly includes:
  • the radius of each work roll of the frame R i ⁇ 210,212,230,230,228 ⁇ mm;
  • Raw roughness Ra ir0 of each stand work roll ⁇ 1.0, 1.0, 0.8, 0.8, 1.0 ⁇ um;
  • step (b) the key rolling process parameters of the strip are collected, mainly including:
  • Entrance thickness h 0i of each rack ⁇ 2.0, 1.14, 0.63, 0.43, 0.28 ⁇ mm;
  • Outlet thickness h 1i of each frame ⁇ 1.14, 0.63, 0.43, 0.28, 0.18 ⁇ mm;
  • Strip width B 966mm
  • the inlet temperature T 1 110 °C;
  • Rolling pressure P i of each stand ⁇ 12800, 11300, 10500, 9600, 8800 ⁇ kN;
  • Front frame tension T 1i ⁇ 145,208,202,229,56 ⁇ MPa
  • Strip density ⁇ 7800kg / m 3 ;
  • Emulsion flow w 900m / min
  • Emulsion temperature T c 58 ° C
  • step (c) collect the process parameters involved in the optimization of the emulsion concentration, mainly including the critical value of the thickness of the lubricant film of each frame. And the friction coefficient at this time is Critical value of under-lubricant film thickness And the friction coefficient at this time is
  • the reference value of the vibration judgment index is ⁇ 0i
  • the reduction rate is
  • the inlet temperature of each rack is T i inlet and outlet temperature is T i
  • step (f) calculate the reference value of each frame vibration judgment index ⁇ 0i :
  • step (g) the concentration C i of each rack emulsion is set to ⁇ 4.2, 4.2, 4.2, 4.2 ⁇ %.
  • step (h) calculate the strip outlet temperature T i of each rack
  • step (h1) the first rack outlet temperature T 1 is calculated
  • step (h5) the relationship between the j-th stage and the j-1th stage temperature is as follows:
  • step (h8) calculate the second rack inlet temperature
  • step (h9) the second rack outlet temperature T 2 is calculated
  • step (h11) the outlet temperature T i of each rack is obtained as ⁇ 172.76, 178.02, 186.59, 194.35, 206.33 ⁇ ° C.
  • ⁇ 0i ⁇ 5.39, 5.46, 5.59, 5.69, 5.84 ⁇ ;
  • step (j) calculate the oil film thickness ⁇ i between the roll gaps of each frame, and the calculation formula is as follows:
  • k rg represents the coefficient of the strength of the lubricant contained in the longitudinal roughness of the work roll and the strip
  • k rg 1.183
  • K rs represents the embossing rate, that is, the ratio of the surface roughness of the work roll to the strip
  • step (k) calculate the concentration of the emulsion to optimize the objective function comprehensively.
  • step (m) it is judged whether the emulsion concentration C i exceeds the range of the feasible range, and if it exceeds, it proceeds to step (n); otherwise, it proceeds to step (g);
  • step (n) the optimal emulsion concentration setting value is output Is the value of C i when the F (X) value is the smallest in the feasible region;
  • control system of the tandem cold rolling mill unit adjusts and controls the emulsion concentration of each stand according to the optimal emulsion concentration setting value obtained in step (n).
  • the technical solution of the present invention changes the mode of constant concentration control of each rack emulsion in the prior art, and uses the concentration of each rack emulsion as an optimization variable to comprehensively and optimally control it to achieve suppression. Purpose of rolling mill vibration.
  • the invention can be widely used in the field of controlling the emulsion concentration of the cold continuous rolling mill.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)
  • Feedback Control In General (AREA)

Abstract

一种冷连轧机组以振动抑制为目标的乳化液浓度优化方法,包括定义乳化液浓度优化过程中所涉及的过程参数;给定冷连轧机组以抑制振动为目标的乳化液浓度综合优化目标函数的初始设定值;计算各个机架的咬入角;计算各机架振动判断指标基准值;设定各个机架乳化液浓度;计算各个机架带钢出口温度;计算各机架辊缝间乳化液动力粘度;计算各机架辊缝间油膜厚度;计算乳化液浓度综合优化目标函数;判断不等式 F(X)F 0 是否成立;判断乳化液浓度是否超出可行域范围和输出最优乳化液浓度设定值。

Description

冷连轧机组的乳化液浓度优化方法 技术领域
本发明属于冷连轧轧制领域,尤其涉及一种适合于冷连轧机组以振动抑制为目标的乳化液浓度优化方法。
背景技术
乳化液浓度作为工艺润滑制度中重要的工艺参数,对冷连轧机组各机架辊缝间的润滑状态起着至关重要的作用。
同时辊缝间的润滑状态,直接影响着轧机振动缺陷的发生。
若辊缝处于过润滑状态,则摩擦系数太小,容易引发轧制过程打滑而造成轧机自激振动;若辊缝处于欠润滑状态,则辊缝间的平均油膜厚度小于所需的最小值,容易致使轧制过程中辊缝中的油膜破裂而引起摩擦系数急剧增大,进而引起轧制压力改变,导致系统刚度发生周期性的波动,同样会引发轧机的自激振动。
以往,现场一般是依赖于轧机速度来抑制振动缺陷的发生,但此操作却制约了冷连轧机组的生产效率的提升,严重影响到企业的经济效益。
授权公告号为CN 103544340 B,授权公告日为2016年3月2日的中国发明专利,公开了一种“五机架冷连轧机组极薄带轧制中乳化液浓度的设定方法”,其乳化液浓度的设定方法,包括以下由计算机执行的步骤:1、收集机组主要设备、待轧制带材特征、主要轧制工艺和工艺润滑制度参数;2、定义相关过程参数;3、计算弯辊力和窜辊量;4为相关搜索过程参数赋值;5、计算浓度过程参数;6、计算最大轧制速度的搜索过程速度;7、计算当前条件下各机架的摩擦系数;8、计算当前条件下各机架的轧制力、轧制功率、打滑因子、热滑伤指数和振动系数;9计算各机架工作辊的热凸度;10、计算出口板形和压靠宽度;11、得到并输出最佳配比浓度。由此可见,该专利内容以提高轧制速度、保证轧制效率、避免打滑、热滑伤以及振动的发生为目的,保证末机架出口板形和工作辊辊端压靠宽度最小。
通过研究发现,在轧制规程、轧辊工艺、乳化液流量与初始温度等工艺参数确定的前提下,乳化液浓度的设定直接决定了冷连轧机组各个机架的辊缝润滑状态,并且可以作为抑制轧机振动的主要工艺控制手段。
但是目前尚未见到通过改变以往各机架乳化液采用恒浓度控制的模式,将各机架乳化液浓度作为优化变量,进而达到抑制轧机振动的技术方案的报道。
发明内容
本发明所要解决的技术问题是提供一种冷连轧机组以振动抑制为目标的乳化液浓度优化方法。其改变以往各机架乳化液采用恒浓度控制的模式,将各机架乳化液浓度作为优化变量,对其进行综合优化控制;通过对各机架乳化液浓度的合理配比,保证各机架辊缝间润滑状态最佳,进而达到抑振轧机振动、提高产品质量与生产效率的目的,为企业带来经济效益。
本发明的技术方案是:提供一种冷连轧机组以振动抑制为目标的乳化液浓度优化方法,其特征是所述的乳化液浓度优化方法包括下列步骤:
(a)收集冷连轧机组的设备特征参数;
(b)收集带材的关键轧制工艺参数;
(c)收集乳化液浓度优化过程中所涉及的过程参数;
(d)给定冷连轧机组以抑制振动为目标的乳化液浓度综合优化目标函数的初始设定值F 0=1.0×10 10
上述步骤(a)~(d)无先后顺序的限制;
(e)计算各个机架的咬入角;
(f)计算各机架振动判断指标基准值ξ 0i
(g)设定各个机架乳化液浓度C i
(h)计算各个机架带钢出口温度T i
(i)计算各机架辊缝间乳化液动力粘度η 0i
(j)计算各机架辊缝间油膜厚度ξ i
(k)计算乳化液浓度综合优化目标函数F(X);
(1)判断不等式F(X)<F 0是否成立?若成立,则令
Figure PCTCN2019101118-appb-000001
转入步骤(m);否则,直接转入步骤(m);
(m)判断乳化液浓度C i是否超出可行域范围,所述可行域是指0至设备允许的乳化液浓度最大值,设备允许的乳化液浓度通常在10%以内,可将0~10%设为可行域;若超出,则转入步骤(n);否则,转入步骤(g);
(n)输出最优乳化液浓度设定值
Figure PCTCN2019101118-appb-000002
所述
Figure PCTCN2019101118-appb-000003
是在所述可行域内计算得到F(X)值最小时C i的取值;
(o)冷连轧机组的控制系统按照(n)步骤中的最优乳化液浓度设定值
Figure PCTCN2019101118-appb-000004
对各机架的乳化液浓度分别进行调整和控制。
其中,所述(f)步骤中计算各机架振动判断指标基准值ξ 0i的计算步骤程如下:
(f1)计算各个机架过润滑油膜厚度临界值
Figure PCTCN2019101118-appb-000005
假定
Figure PCTCN2019101118-appb-000006
时辊缝刚好处于过润滑状态,其中γ i为各个机架中性角,A +过润滑判断系数;
根据
Figure PCTCN2019101118-appb-000007
其中Δhi为压下量,Δh i=h 0i-h 1i,h 0i为各机架入口厚度,h 1i为各机架出口厚度,R i′为第i机架工作辊压扁半径,以及
Figure PCTCN2019101118-appb-000008
其中,T 0i为各机架后张力,T 1i为各机架前张力,Pi为各机架轧制压力,
可得:
Figure PCTCN2019101118-appb-000009
根据摩擦系数与油膜厚度之间关系
Figure PCTCN2019101118-appb-000010
a i为液体摩擦影响系数,b i为干摩擦影响系数,B i为摩擦系数衰减指数,计算各机架过润滑油膜厚度临界值
Figure PCTCN2019101118-appb-000011
Figure PCTCN2019101118-appb-000012
(f2)计算各个机架欠润滑油膜厚度临界值
Figure PCTCN2019101118-appb-000013
假定
Figure PCTCN2019101118-appb-000014
时辊缝刚好处于欠润滑状态,A -为欠润滑判断系数,可得:
Figure PCTCN2019101118-appb-000015
各机架欠润滑油膜厚度临界值
Figure PCTCN2019101118-appb-000016
Figure PCTCN2019101118-appb-000017
(f3)计算振动判断指标基准值ξ 0i
Figure PCTCN2019101118-appb-000018
其所述(h)步骤中计算各个机架带钢出口温度T i的计算步骤如下:
(h1)计算第1机架出口温度T 1
Figure PCTCN2019101118-appb-000019
T i 为各机架入口温度,
Figure PCTCN2019101118-appb-000020
Δh i=h 0i-h 1i,h 0i为各机架入口厚度,h 1i为各机架出口厚度,ρ为带钢密度,S为带钢比热容,J为热功当量,K i为各机架带钢变形抗力;
(h2)令i=1;
(h3)第i机架出口后第1段带钢温度T i,1即为T i,1=T i
(h4)令j=2;
(h5)第j段与第j-1段温度之间的关系如下式所示:
Figure PCTCN2019101118-appb-000021
式中k 0为喷嘴形状、喷射角度影响系数,0.8<k 0<1.2,w为乳化液流量,为机架间距离,将机架间的距离l平均分成m段,段内温度用T i,j表示,v 1i为各机架出口速度,h 1i为各机架出口厚度,ρ为带钢密度,S为带钢比热容,T i为各机架出口温度,T c为乳化液温度;
(h6)判断不等式j<m?若成立,则令j=j+1,转入步骤(h5);否则,转入步骤(h7);
(h7)通过迭代计算,得到第m段温度T i,m
(h8)计算第i+1机架入口温度
Figure PCTCN2019101118-appb-000022
Figure PCTCN2019101118-appb-000023
(h9)计算第i+1机架出口温度T i+1
Figure PCTCN2019101118-appb-000024
(h10)判断不等式i<n?若成立,则令i=i+1,转入步骤(h3);否则,转入步骤(h11);
(h11)得出各个机架出口温度T i
具体的,所述冷连轧机组的设备特征参数至少包括:各个机架工作辊半径R i;各机架轧辊表面线速度v ri;各机架工作辊原始粗糙度Ra ir0;工作辊粗糙度衰减系数B L;机架间距离l;各机架工作辊换辊后的轧制公里数L i;其中,i=1,2,...,n,代表冷连轧机组的机架序数,n为总机架数。
具体的,所述带材的关键轧制工艺参数至少包括:各机架入口厚度h 0i;各机架出口厚度h 1i;带钢宽度B;各机架入口速度v 0i;各机架出口速度v 1i;入口温度T 1 ;各机架带钢变形抗力K i;各机架轧制压力P i;各机架后张力T 0i;各机架前张力T 1i;乳化液浓度影响系数k c;润滑剂的粘度压缩系数θ;带钢密度ρ;带钢比热容S;乳化液流量w;乳化液温度T c;热功当量J。
具体的,所述乳化液浓度优化过程中所涉及的过程参数,至少包括:各个机架过润滑油膜厚度临界值为
Figure PCTCN2019101118-appb-000025
及此时的摩擦系数为
Figure PCTCN2019101118-appb-000026
欠润滑油膜厚度临界值为
Figure PCTCN2019101118-appb-000027
及此时的摩擦系数为
Figure PCTCN2019101118-appb-000028
振动判断指标基准值为ξ 0i;压下量为Δh i=h 0i-h 1i;压下率为
Figure PCTCN2019101118-appb-000029
各机架入口温度为
Figure PCTCN2019101118-appb-000030
出口温度为T i;将机架间的距离l平均分成m段,段内温度用T i,j表示,其中,1≤j≤m且T i =T i-1,m;过润滑判断系数A +;欠润滑判断系数A -
进一步的,在计算所述的各个机架的咬入角α i时,计算公式如下:
Figure PCTCN2019101118-appb-000031
式中,R i′为第i机架工作辊压扁半径,为轧制压力计算过程值。
进一步的,计算所述各机架辊缝间乳化液动力粘度η 0i时的计算公式如下:
η 0i=b·exp(-a·T i)
式中,a、b为大气压力下润滑油的动力粘度参数。
进一步的,计算所述的各机架辊缝间油膜厚度的计算公式如下:
Figure PCTCN2019101118-appb-000032
式中,h 0i为各机架入口厚度,h 1i为各机架出口厚度,k c为乳化液浓度影响系数,θ为润滑剂的粘度压缩系数,K i为各机架带钢变形抗力,η 0i为各机架辊缝间乳化液动力粘度,v 0i为各机架入口速度,v ri为各机架轧辊表面线速度,T 0i为各机架后张力,B为带钢宽度,k rg表示工作辊和带钢表面纵向粗糙度夹带润滑剂强度的系数,其值在0.09~0.15的范围内,K rs表示压印率,即工作辊表面粗糙度传递到带钢上比率,K rs值在0.2~0.6的范围内,Ra ir0为各机架工作辊原始粗糙度,B L为工作辊粗糙度衰减系数,L i为各机架工作辊换辊后的轧制公里数。
进一步的,计算乳化液浓度综合优化目标函数按照下列公式进行:
Figure PCTCN2019101118-appb-000033
式中,X={C i}为优化变量,λ为分配系数。
在本申请中,只要下一步骤的进行不以前一步骤的结果为条件的,都无需按步骤进行,除非下一步骤的进行依赖于上一步骤的。
与现有技术比较,本发明的优点是:
1.通过对各机架乳化液浓度的合理配比,保证各机架辊缝间润滑状态最佳,从而达到抑振轧机振动、提高产品质量与生产效率的目的;
2.在大量的现场试验跟踪与理论研究的基础上,针对冷连轧机组的设备特征及轧制工艺特点,提出了冷连轧机组以振动抑制为目标的乳化液浓度方法,实现了对冷连轧机组各个机架乳化液浓度的最优配比,达到了抑制轧机振动、提高产品质量与生产效率的目的,给企业带来较大经济效益。
附图说明
图1是本发明的整体技术方案流程示意图;
图2是本发明振动判断指标基准值计算流程示意图;
图3是本发明各机架带钢出口温度计算流程示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
为了进一步的说明本发明所述相关技术的应用过程,现以某冷轧厂1730冷连轧机组为例,详细地介绍冷连轧机组以振动抑制为目标的乳化液浓度优化方法的应用过程。
首先,按照图1中所示各个步骤,依次进行相关参数的确定、代入相应公式进行计算,然后确定或得到需要的最优乳化液浓度设定值
Figure PCTCN2019101118-appb-000034
最后,按照所确定的最优乳化液浓度设定值,来控制各机架的乳化液浓度,对其进行综合优化控制,进而达到抑制轧机振动的目的。
具体的,在步骤(a)中,收集冷连轧机组的设备特征参数,主要包括:
各个机架工作辊半径R i={210,212,230,230,228}mm;
各机架轧辊表面线速度v ri={180,320,500,800,1150}m/min;
各机架工作辊原始粗糙度Ra ir0={1.0,1.0,0.8,0.8,1.0}um;
工作辊粗糙度衰减系数B L=0.01;
机架间距离l=2700mm;
各机架工作辊换辊后的轧制公里数L i={100,110,230,180,90}km(其中,i=1,2,...,n,代表冷连轧机组的机架序数,n=5为总机架数,下同);
随后,在步骤(b)中,收集带材的关键轧制工艺参数,主要包括:
各机架入口厚度h 0i={2.0,1.14,0.63,0.43,0.28}mm;
各机架出口厚度h 1i={1.14,0.63,0.43,0.28,0.18}mm;
带钢宽度B=966mm;
各机架入口速度v 0i={110,190,342,552,848}m/min;
各机架出口速度v 1i={190,342,552,848,1214}m/min;
入口温度T 1 =110℃;
各机架带钢变形抗力K i={360,400,480,590,650}MPa;
各机架轧制压力P i={12800,11300,10500,9600,8800}kN;
各机架后张力T 0i={70,145,208,202,229}MPa;
各机架前张力T 1i={145,208,202,229,56}MPa;
乳化液浓度影响系数k c=0.9;
润滑剂的粘度压缩系数θ=0.034;
带钢密度ρ=7800kg/m 3
带钢比热容S=0.47kJ/(kg·℃);
乳化液流量w=900m/min;
乳化液温度T c=58℃;
热功当量J=1;
第i机架工作辊压扁半径R i′={278.2,279.7,300.5,301.6,295.4};
随后,在步骤(c)中,收集乳化液浓度优化过程中所涉及的过程参数,主要包括各个机架过润滑油膜厚度临界值为
Figure PCTCN2019101118-appb-000035
及此时的摩擦系数为
Figure PCTCN2019101118-appb-000036
欠润滑油膜厚度临界值为
Figure PCTCN2019101118-appb-000037
及此时的摩擦系数为
Figure PCTCN2019101118-appb-000038
振动判断指标基准值为ξ 0i,压下量为Δh i=h 0i-h 1i={0.86,0.51,0.2,0.15,0.1},压下率为
Figure PCTCN2019101118-appb-000039
各机架入口温度为T i 、出口温度为T i,并将机架间的距离l=2700mm平均分成m=30段,段内温度用T i,j(其中,1≤j≤m)表示,且T i =T i-1,m,过润滑判断系数A +,欠润滑判断系数A -
随后,在步骤(d)中,给定冷连轧机组以抑制振动为目标的乳化液浓度综合优化目标函数的初始设定值F 0=1.0×10 10
随后,在步骤(e)中,根据轧制理论,计算各个机架的咬入角α i,计算公式 为
Figure PCTCN2019101118-appb-000040
由此可得α i={0.0556,0.0427,0.0258,0.0223,0.0184};
随后,按图2中所示各子步骤,在步骤(f)中,计算各机架振动判断指标基准值ξ 0i
(f1)计算各个机架过润滑油膜厚度临界值
Figure PCTCN2019101118-appb-000041
假定
Figure PCTCN2019101118-appb-000042
时辊缝刚好处于过润滑状态,根据
Figure PCTCN2019101118-appb-000043
以及各个机架中性角γ i计算公式可得
Figure PCTCN2019101118-appb-000044
根据摩擦系数与油膜厚度之间关系
Figure PCTCN2019101118-appb-000045
(在本实施例中,a i=0.0126,b i=0.1416,B i=-2.4297)计算各机架过润滑油膜厚度临界值
Figure PCTCN2019101118-appb-000046
计算公式为
Figure PCTCN2019101118-appb-000047
由此可得
Figure PCTCN2019101118-appb-000048
(f2)计算各个机架欠润滑油膜厚度临界值
Figure PCTCN2019101118-appb-000049
假定
Figure PCTCN2019101118-appb-000050
时刚好处于欠润滑状态,
Figure PCTCN2019101118-appb-000051
可得
Figure PCTCN2019101118-appb-000052
根据摩擦系数与油膜厚度之间关系
Figure PCTCN2019101118-appb-000053
计算各机架欠润滑油膜厚度临界值
Figure PCTCN2019101118-appb-000054
计算公式为
Figure PCTCN2019101118-appb-000055
由此可得
Figure PCTCN2019101118-appb-000056
随后,在步骤(f3)中,计算振动判断指标基准值ξ 0i
Figure PCTCN2019101118-appb-000057
由此可得ξ 0i={0.554,0.767,1.325,1.213,0.744};
随后,在步骤(g)中,设定各个机架乳化液浓度C i={4.2,4.2,4.2,4.2,4.2}%。
然后,按照图3中所示的子步骤,在步骤(h)中,计算各个机架带钢出口温度T i
随后,在步骤(h1)中,计算第1机架出口温度T 1
Figure PCTCN2019101118-appb-000058
随后,在步骤(h2)中,令i=1;
随后,在步骤(h3)中,第1机架出口后第1段带钢温度T 1,1即为T i,1=T i=172.76℃;
随后,在步骤(h4)中,令j=2;
随后,在步骤(h5)中,第j段与第j-1段温度之间的关系如下式所示:
Figure PCTCN2019101118-appb-000059
式中k 0为喷嘴形状、喷射角度影响系数,k 0=1;
随后,在步骤(h6)中,判断不等式j<m?若成立,则令j=j+1,转入步骤(h5),否则,转入步骤(h7)
随后,在步骤(h7)中,最终通过迭代计算,得到第m=30段温度T 1,30=103.32℃;
随后,在步骤(h8)中,计算第2机架入口温度
Figure PCTCN2019101118-appb-000060
Figure PCTCN2019101118-appb-000061
随后,在步骤(h9)中,计算第2机架出口温度T 2
Figure PCTCN2019101118-appb-000062
随后,在步骤(h10)中,判断不等式i<n?若成立,则令i=i+1,转入步骤(h3),否则,转入步骤(h11)
随后,在步骤(h11)中,得出各个机架出口温度T i={172.76,178.02,186.59,194.35,206.33}℃。
随后,在步骤(i)中,计算各机架辊缝间乳化液动力粘度η 0i,由η 0i=b·exp(-a·T i)(式中,a、b为大气压力下润滑油的动力粘度参数,a=0.05、b=2.5)得,η 0i={5.39,5.46,5.59,5.69,5.84};
随后,在步骤(j)中,计算各机架辊缝间油膜厚度ξ i,计算公式如下:
Figure PCTCN2019101118-appb-000063
式中,k rg表示工作辊和带钢表面纵向粗糙度夹带润滑剂强度的系数,k rg=1.183,K rs表示压印率,即工作辊表面粗糙度传递到带钢上比率,K rs=0.576,由此可得ξ i={0.784,0.963,2.101,2.043,1.326}um;
随后,在步骤(k)中,计算乳化液浓度综合优化目标函数
Figure PCTCN2019101118-appb-000064
式中,X={C i}为优化变量,λ=0.5为分配系数,由此可得F(X)=0.94;
随后,在步骤(1)中,F(X)=0.94<F 0=1×10 10成立,则令
Figure PCTCN2019101118-appb-000065
F 0=F(X)=0.94,转入步骤(m);
随后,在步骤(m)中,判断乳化液浓度C i是否超出可行域范围,若超出,则转入步骤(n),否则,转入步骤(g);
随后,在步骤(n)中,输出最优乳化液浓度设定值
Figure PCTCN2019101118-appb-000066
Figure PCTCN2019101118-appb-000067
是在可行域内计算得到F(X)值最小时C i的取值;
最后,在整个轧制过程中,冷连轧机组的控制系统按照(n)步骤中所获得的最优乳化液浓度设定值,对各机架的乳化液浓度分别进行调整和控制。
综上所述,本发明的技术方案,改变了现有技术中各机架乳化液采用恒浓度控制的模式,将各机架乳化液浓度作为优化变量,对其进行综合优化控制,进而达到抑制轧机振动的目的。
本发明可广泛用于冷连轧机组乳化液浓度的控制领域。

Claims (10)

  1. 一种冷连轧机组的乳化液浓度优化方法,其特征是所述的乳化液浓度优化方法包括下列步骤:
    (a)收集冷连轧机组的设备特征参数;
    (b)收集带材的关键轧制工艺参数;
    (c)收集乳化液浓度优化过程中所涉及的过程参数;
    (d)给定冷连轧机组以抑制振动为目标的乳化液浓度综合优化目标函数的初始设定值F 0=1.0×10 10
    上述步骤(a)~(d)无先后顺序的限制;
    (e)计算各个机架的咬入角α i
    (f)计算各机架振动判断指标基准值ξ 0i
    (g)设定各个机架乳化液浓度C i
    (h)计算各个机架带钢出口温度T i
    (i)计算各机架辊缝间乳化液动力粘度η 0i
    (j)计算各机架辊缝间油膜厚度ξ i
    (k)计算乳化液浓度综合优化目标函数F(X);
    (l)判断不等式F(X)<F 0是否成立?若成立,则令
    Figure PCTCN2019101118-appb-100001
    F 0=F(X),转入步骤(m);否则,直接转入步骤(m);
    (m)判断乳化液浓度C i是否超出可行域范围,所述可行域是指0至设备允许的乳化液浓度最大值;若超出,则转入步骤(n);否则,转入步骤(g);
    (n)输出最优乳化液浓度设定值
    Figure PCTCN2019101118-appb-100002
    所述
    Figure PCTCN2019101118-appb-100003
    是在所述可行域内计算得到F(X)值最小时C i的取值;
    (o)冷连轧机组的控制系统按照(n)步骤中的最优乳化液浓度设定值
    Figure PCTCN2019101118-appb-100004
    对各机架的乳化液浓度分别进行调整和控制;
    各式中,i代表冷连轧机组的机架序数。
  2. 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是所述(f)步骤中计算各机架振动判断指标基准值ξ 0i的计算步骤如下:
    (f1)计算各个机架过润滑油膜厚度临界值
    Figure PCTCN2019101118-appb-100005
    假定
    Figure PCTCN2019101118-appb-100006
    时辊缝刚好处于过润滑状态,其中γ i为各个机架中性角,A +过润滑判断系数;
    根据
    Figure PCTCN2019101118-appb-100007
    其中Δh i为压下量,Δh i=h 0i-h 1i,h 0i为各机架入口厚度,h 1i为各机架出口厚度,R i′为第i机架工作辊压扁半径,
    以及
    Figure PCTCN2019101118-appb-100008
    其中,T 0i为各机架后张力,T 1i为各机架前张力,P i为各机架轧制压力,
    可得:
    Figure PCTCN2019101118-appb-100009
    根据摩擦系数与油膜厚度之间关系
    Figure PCTCN2019101118-appb-100010
    a i为液体摩擦影响系数,b i为干摩擦影响系数,B i为摩擦系数衰减指数,计算各机架过润滑油膜厚度临界值
    Figure PCTCN2019101118-appb-100011
    Figure PCTCN2019101118-appb-100012
    (f2)计算各个机架欠润滑油膜厚度临界值
    Figure PCTCN2019101118-appb-100013
    假定
    Figure PCTCN2019101118-appb-100014
    时辊缝刚好处于欠润滑状态,A -为欠润滑判断系数可得:
    Figure PCTCN2019101118-appb-100015
    各机架欠润滑油膜厚度临界值
    Figure PCTCN2019101118-appb-100016
    Figure PCTCN2019101118-appb-100017
    (f3)计算振动判断指标基准值ξ 0i
    Figure PCTCN2019101118-appb-100018
  3. 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是所述(h)步骤中计算各个机架带钢出口温度T i的计算步骤如下:
    (h1)计算第1机架出口温度T 1
    Figure PCTCN2019101118-appb-100019
    为各机架入口温度,
    Figure PCTCN2019101118-appb-100020
    Δh i=h 0i-h 1i,h 0i为各机架入口厚度,h 1i为各机架出口厚度,ρ为带钢密度,S为带钢比热容,J为热功当量,K i为各机架带钢变形抗力;
    (h2)令i=1;
    (h3)第i机架出口后第1段带钢温度T i,1即为T i,1=T i
    (h4)令j=2;
    (h5)第j段与第j-1段温度之间的关系如下式所示:
    Figure PCTCN2019101118-appb-100021
    式中k 0为喷嘴形状、喷射角度影响系数,w为乳化液流量,l为机架间距离,将机架间的距离l平均分成m段,段内温度用T i,j表示,v 1i为各机架出口速度,h 1i为各机架出口厚度,ρ为带钢密度,S为带钢比热容,T i为各机架出口温度,T c为乳化液温度;
    (h6)判断不等式j<m?若成立,则令j=j+1,转入步骤(h5);否则,转入步骤(h7);
    (h7)通过迭代计算,得到第m段温度T i,m
    (h8)计算第i+1机架入口温度
    Figure PCTCN2019101118-appb-100022
    Figure PCTCN2019101118-appb-100023
    (h9)计算第i+1机架出口温度T i+1
    Figure PCTCN2019101118-appb-100024
    (h10)判断不等式i<n?若成立,则令i=i+1,转入步骤(h3);否则,转入步骤(h11);
    (h11)得出各个机架出口温度T i
  4. 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是所述冷连轧机组的设备特征参数至少包括:
    各个机架工作辊半径R i,各机架轧辊表面线速度v ri,各机架工作辊原始粗糙度Ra ir0,工作辊粗糙度衰减系数B L,机架间距离l,各机架工作辊换辊后的轧制公里数L i。其中,i=1,2,...,n,代表冷连轧机组的机架序数,n为总机架数。
  5. 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是所述带材的关键轧制工艺参数至少包括:
    各机架入口厚度h 0i;各机架出口厚度h 1i;带钢宽度B;各机架入口速度v 0i;各机架出口速度v 1i;入口温度T 1 ;各机架带钢变形抗力K i;各机架轧制压力P i;各机架后张力T 0i;各机架前张力T 1i;乳化液浓度影响系数k c;润滑剂的粘度压缩系数θ;带钢密度ρ;带钢比热容S;乳化液流量w;乳化液温度T c;热功当量J。
  6. 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是所述乳化液浓度优化过程中所涉及的过程参数,至少包括:各个机架过润滑油膜厚度临界值为
    Figure PCTCN2019101118-appb-100025
    及此时的摩擦系数为
    Figure PCTCN2019101118-appb-100026
    欠润滑油膜厚度临界值为
    Figure PCTCN2019101118-appb-100027
    及此时的摩擦系数为
    Figure PCTCN2019101118-appb-100028
    振动判断指标基准值为ξ 0i
    压下量为Δh i=h 0i-h 1i;压下率为
    Figure PCTCN2019101118-appb-100029
    各机架入口温度为
    Figure PCTCN2019101118-appb-100030
    出口温度为T i
    将机架间的距离l平均分成m段,段内温度用T i,j表示,其中,1≤j≤m且T i =T i-1,m;过润滑判断系数A + 欠润滑判断系数A -
  7. 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是在计算所述的各个机架的咬入角α i时,其计算公式如下:
    Figure PCTCN2019101118-appb-100031
    式中,R i′为第i机架工作辊压扁半径,为轧制压力计算过程值。
  8. 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是在计算所述各机架辊缝间乳化液动力粘度η 0i时,其计算公式如下:
    η 0i=b·exp(-a·T i)
    式中,a、b为大气压力下润滑油的动力粘度参数。
  9. 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是在计算 所述的各机架辊缝间油膜厚度时,其计算公式如下:
    Figure PCTCN2019101118-appb-100032
    式中,h 0i为各机架入口厚度,h 1i为各机架出口厚度,k c为乳化液浓度影响系数,θ为润滑剂的粘度压缩系数,K i为各机架带钢变形抗力,η 0i为各机架辊缝间乳化液动力粘度,v 0i为各机架入口速度,v ri为各机架轧辊表面线速度,T 0i为各机架后张力,B为带钢宽度,k rg表示工作辊和带钢表面纵向粗糙度夹带润滑剂强度的系数,其值在0.09~0.15的范围内,K rs表示压印率,即工作辊表面粗糙度传递到带钢上比率,Ra ir0为各机架工作辊原始粗糙度,B L为工作辊粗糙度衰减系数,L i为各机架工作辊换辊后的轧制公里数。
  10. 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是在计算所述的计算乳化液浓度综合优化目标函数时,按照下列公式进行:
    Figure PCTCN2019101118-appb-100033
    式中,X={C i}为优化变量,λ为分配系数。
PCT/CN2019/101118 2018-09-29 2019-08-16 冷连轧机组的乳化液浓度优化方法 WO2020063187A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19865518.5A EP3815804B1 (en) 2018-09-29 2019-08-16 Method of emulsion concentration optimization for cold continuous rolling mill set
US17/261,478 US11779975B2 (en) 2018-09-29 2019-08-16 Method of emulsion concentration optimization for cold continuous rolling mill set
JP2021509855A JP7076039B2 (ja) 2018-09-29 2019-08-16 冷間連続圧延ミルセットのためのエマルション濃度最適化の方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811144978.X 2018-09-29
CN201811144978.XA CN110961464B (zh) 2018-09-29 2018-09-29 冷连轧机组以振动抑制为目标的乳化液浓度优化方法

Publications (1)

Publication Number Publication Date
WO2020063187A1 true WO2020063187A1 (zh) 2020-04-02

Family

ID=69949860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101118 WO2020063187A1 (zh) 2018-09-29 2019-08-16 冷连轧机组的乳化液浓度优化方法

Country Status (5)

Country Link
US (1) US11779975B2 (zh)
EP (1) EP3815804B1 (zh)
JP (1) JP7076039B2 (zh)
CN (1) CN110961464B (zh)
WO (1) WO2020063187A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114345932B (zh) * 2021-12-13 2024-07-30 首钢京唐钢铁联合有限责任公司 一种带钢轧制控制方法、装置、介质及计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051001A (ja) * 2009-09-04 2011-03-17 Jfe Steel Corp 冷間圧延における潤滑油供給方法および冷間圧延機ならびに冷延鋼板の製造方法
CN103544340A (zh) 2013-09-26 2014-01-29 燕山大学 五机架冷连轧机组极薄带轧制中乳化液浓度的设定方法
CN104289527A (zh) * 2013-07-18 2015-01-21 上海宝钢钢材贸易有限公司 双四辊机组汽车板冷轧中乳化液浓度优化设定方法
CN107520253A (zh) * 2017-09-01 2017-12-29 燕山大学 二次冷轧机组以油耗控制为目标的乳化液工艺优化方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315421A (en) * 1978-10-03 1982-02-16 National Steel Corporation Method of controlling the concentration and stability of an emulsion
JPH05169103A (ja) 1991-12-19 1993-07-09 Nippon Steel Corp 鋼帯の冷間圧延方法
JP3346298B2 (ja) * 1998-09-18 2002-11-18 日本鋼管株式会社 冷間圧延機における圧延油供給方法
JP4309501B2 (ja) * 1999-01-13 2009-08-05 新日本製鐵株式会社 冷間タンデム圧延機の圧延方法
WO2001066277A1 (fr) * 2000-03-09 2001-09-13 Nkk Corporation Procede d'alimentation en huile de laminage, pour laminage a froid
JP3814240B2 (ja) * 2002-10-18 2006-08-23 日新製鋼株式会社 圧延油に含まれる油滴の粒径調整方法および粒径調整装置
CN104858241B (zh) * 2014-02-20 2017-01-04 宝山钢铁股份有限公司 一种冷连轧机组极薄带钢轧制的乳化液流量综合优化方法
CN105312321A (zh) * 2014-07-31 2016-02-10 宝山钢铁股份有限公司 一种冷连轧机组的工艺润滑制度优化方法
CN106363023B (zh) * 2015-07-22 2017-10-31 宝山钢铁股份有限公司 一种冷连轧机组乳化液差异化流量设定方法
JP2017131964A (ja) * 2016-01-27 2017-08-03 明 小豆島 ステンレス鋼板のタンデムエマルション圧延において高速圧延を可能にする冷間圧延と制御システム
CN106311754B (zh) * 2016-09-14 2018-07-17 燕山大学 适用于冷连轧机组的乳化液流量动态综合优化设定方法
CN108480403B (zh) * 2018-03-30 2019-10-11 燕山大学 二次冷轧机组小变形条件下工艺润滑参数优化设定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051001A (ja) * 2009-09-04 2011-03-17 Jfe Steel Corp 冷間圧延における潤滑油供給方法および冷間圧延機ならびに冷延鋼板の製造方法
CN104289527A (zh) * 2013-07-18 2015-01-21 上海宝钢钢材贸易有限公司 双四辊机组汽车板冷轧中乳化液浓度优化设定方法
CN103544340A (zh) 2013-09-26 2014-01-29 燕山大学 五机架冷连轧机组极薄带轧制中乳化液浓度的设定方法
CN107520253A (zh) * 2017-09-01 2017-12-29 燕山大学 二次冷轧机组以油耗控制为目标的乳化液工艺优化方法

Also Published As

Publication number Publication date
US11779975B2 (en) 2023-10-10
US20210299721A1 (en) 2021-09-30
JP2021534000A (ja) 2021-12-09
CN110961464A (zh) 2020-04-07
CN110961464B (zh) 2022-06-28
JP7076039B2 (ja) 2022-05-26
EP3815804A4 (en) 2021-09-01
EP3815804B1 (en) 2023-01-04
EP3815804A1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
CN106909723B (zh) 冷轧过程乳化液流量与轧制速度关系曲线优化设定方法
WO2020020191A1 (zh) 一种抑制冷连轧机组振动的乳化液流量优化方法
WO2020020192A1 (zh) 一种抑制冷连轧机组振动的张力制度优化方法
CN104785538B (zh) 一种冷连轧机组极薄带钢轧制的压下规程优化方法
CN109550791B (zh) 一种冷连轧机组以开腔防治为目标的张力制度优化方法
CN103544340B (zh) 五机架冷连轧机组极薄带轧制中乳化液浓度的设定方法
CN111495980B (zh) 冷连轧机组以振动抑制为目标的压下规程设定方法
CN106363023B (zh) 一种冷连轧机组乳化液差异化流量设定方法
CN104785539B (zh) 一种用于轧制力调节的张力优化补偿的方法
CN104289525B (zh) 双机架六辊轧机冷轧中乳化液总流量设定方法
WO2020063187A1 (zh) 冷连轧机组的乳化液浓度优化方法
CN111036676A (zh) 一种冷连轧机薄带钢的生产方法
CN108714627B (zh) Dcr机组大变形下以稳轧为目标的工艺润滑优化方法
CN108480403B (zh) 二次冷轧机组小变形条件下工艺润滑参数优化设定方法
US1936582A (en) Process of rolling metals
CN108057719B (zh) 冷连轧过程中以爆辊防治为目标的工艺润滑制度优化方法
CN109590338B (zh) 用于减小二次冷轧间的轧制最小变形量的参数优化方法
RU2190488C1 (ru) Способ холодной прокатки полос в непрерывном многоклетьевом стане
CN115502220A (zh) 一种双机架平整机组高温料轧辊表面粗糙度优化设定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019865518

Country of ref document: EP

Effective date: 20210128

ENP Entry into the national phase

Ref document number: 2021509855

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE