WO2020063187A1 - 冷连轧机组的乳化液浓度优化方法 - Google Patents
冷连轧机组的乳化液浓度优化方法 Download PDFInfo
- Publication number
- WO2020063187A1 WO2020063187A1 PCT/CN2019/101118 CN2019101118W WO2020063187A1 WO 2020063187 A1 WO2020063187 A1 WO 2020063187A1 CN 2019101118 W CN2019101118 W CN 2019101118W WO 2020063187 A1 WO2020063187 A1 WO 2020063187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame
- emulsion
- rack
- emulsion concentration
- rolling mill
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0239—Lubricating
- B21B45/0242—Lubricants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/58—Roll-force control; Roll-gap control
- B21B37/62—Roll-force control; Roll-gap control by control of a hydraulic adjusting device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/06—Lubricating, cooling or heating rolls
- B21B27/10—Lubricating, cooling or heating rolls externally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/007—Control for preventing or reducing vibration, chatter or chatter marks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0239—Lubricating
- B21B45/0245—Lubricating devices
- B21B45/0248—Lubricating devices using liquid lubricants, e.g. for sections, for tubes
- B21B45/0251—Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B2001/221—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B2037/002—Mass flow control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/20—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0266—Measuring or controlling thickness of liquid films
Definitions
- the invention belongs to the field of tandem cold rolling, and particularly relates to an emulsion concentration optimization method suitable for a tandem cold rolling unit with vibration suppression as a goal.
- Emulsion concentration plays a vital role in the lubrication state between the roll gaps of the stands of the cold tandem rolling mill.
- the friction coefficient is too small, which may cause the rolling process to cause self-excited vibration of the rolling mill; if the roll gap is under-lubricated, the average oil film thickness between the roll gaps is less than the required minimum value. It is easy to cause the oil film in the roll gap to rupture during the rolling process, which will cause the friction coefficient to increase sharply, which will cause the rolling pressure to change, which will cause the system stiffness to fluctuate periodically.
- the authorization announcement number is CN 103544340, and the authorization announcement date is the Chinese invention patent on March 2, 2016, which discloses a "method for setting the emulsion concentration in the ultra-thin strip rolling of a five-stand cold continuous rolling mill",
- the method for setting the emulsion concentration includes the following steps performed by a computer: 1. Collecting the main equipment of the unit, the characteristics of the strip to be rolled, the main rolling process and process lubrication system parameters; 2. Defining relevant process parameters; 3.
- the setting of the emulsion concentration directly determines the roll gap lubrication state of each stand of the cold continuous rolling unit, and can As the main process control method to suppress rolling mill vibration.
- the technical problem to be solved by the present invention is to provide a method for optimizing the emulsion concentration of a cold tandem rolling mill with the goal of vibration suppression. It changes the previous mode of constant concentration control of each rack emulsion, and uses the concentration of each rack emulsion as an optimization variable to comprehensively and optimally control it; by reasonable proportioning of the concentration of each rack emulsion, it guarantees each rack The state of lubrication between the roll gaps is optimal, thereby achieving the purpose of suppressing the vibration of the rolling mill, improving product quality and production efficiency, and bringing economic benefits to the enterprise.
- the technical solution of the present invention is to provide a method for optimizing the concentration of emulsion in a cold tandem rolling mill with the goal of vibration suppression, characterized in that the method for optimizing the concentration of emulsion includes the following steps:
- step (m) Determine whether the emulsion concentration C i exceeds the feasible range.
- the feasible range is from 0 to the maximum allowed emulsion concentration.
- the allowed emulsion concentration of the device is usually within 10%.
- control system of the tandem cold rolling mill is set according to the optimal emulsion concentration setting value in step (n). Adjust and control the emulsion concentration of each rack separately.
- ⁇ hi is the reduction amount
- ⁇ h i h 0i -h 1i
- h 0i the thickness of each frame inlet
- h 1i the thickness of each frame outlet
- R i ′ is the radius of the i-th frame work roll flattening
- T 0i is the rear tension of each frame
- T 1i is the front tension of each frame
- Pi is the rolling pressure of each frame.
- a i is the coefficient of influence of liquid friction
- b i is the coefficient of influence of dry friction
- B i is the friction coefficient attenuation index.
- T i is the inlet temperature of each rack
- ⁇ h i h 0i -h 1i
- h 0i is the thickness of each rack inlet
- h 1i is the thickness of each rack outlet
- ⁇ is the strip density
- S is the specific heat capacity of the strip
- J is the thermal power equivalent
- K i is the individual machine Strip steel resistance to deformation
- k 0 is the influence factor of the nozzle shape and spray angle, 0.8 ⁇ k 0 ⁇ 1.2, w is the emulsion flow rate, is the distance between racks, the distance between the racks l is divided into m sections, and the temperature in the section is T i , J indicates that v 1i is the exit speed of each rack, h 1i is the exit thickness of each rack, ⁇ is the strip density, S is the specific heat capacity of the strip, T i is the exit temperature of each rack, and T c is the temperature of the emulsion;
- the key rolling process parameters of the strip include at least: the thickness of each stand entrance h 0i ; the thickness of each stand exit h 1i ; strip width B; the speed of each stand entrance v 0i ; the speed of each stand exit v 1i; the inlet temperature T 1; each stand strip deformation resistance K i; each stand rolling pressure P i; each stand after the tension T 0i; before each rack tension T 1i; Effect emulsion concentration coefficient k c ; viscosity compression coefficient ⁇ of the lubricant; strip density ⁇ ; strip specific heat capacity S; emulsion flow w; emulsion temperature T c ; thermal work equivalent J.
- the process parameters involved in the process of optimizing the concentration of the emulsion include at least the critical value of the thickness of the lubricant film of each frame And the friction coefficient at this time is Critical value of under-lubricant film thickness And the friction coefficient at this time is
- the reference value of the vibration judgment index is ⁇ 0i ;
- the reduction rate is
- R i ′ is the flattening radius of the work roll of the i-th frame, and the process value is calculated for the rolling pressure.
- a and b are dynamic viscosity parameters of lubricating oil under atmospheric pressure.
- calculation formula for calculating the oil film thickness between the roll gaps of each frame is as follows:
- h 0i is the thickness of each rack inlet
- h 1i is the thickness of each rack outlet
- k c is the coefficient of influence of the emulsion concentration
- ⁇ is the viscosity compression coefficient of the lubricant
- K i is the deformation resistance of each rack strip.
- ⁇ 0i is the dynamic viscosity of the emulsion between the roll gaps of each frame
- v 0i is the inlet speed of each frame
- v ri is the linear surface speed of the rolls of each frame
- T 0i is the rear tension of each frame
- B is the strip width
- k rg represents a coefficient of longitudinal strength of the lubricant entrained roughness of the work roll and the strip surface, which is in the range 0.09 to 0.15
- K rs represents imprinting ratio, i.e., the surface roughness of the work rolls on the strip is transmitted to the ratio
- K rs value in the range of 0.2 to 0.6
- B L is the attenuation coefficient of the work roll roughness, the rolled number of kilometers rack L i for the work roll change.
- X ⁇ C i ⁇ is an optimization variable, and ⁇ is a distribution coefficient.
- FIG. 1 is a schematic flowchart of an overall technical solution of the present invention
- FIG. 2 is a schematic flowchart of calculating a reference value of a vibration judgment index according to the present invention
- FIG. 3 is a schematic diagram of the calculation process of the outlet temperature of each strip of the present invention.
- step (a) collecting equipment characteristic parameters of the cold tandem rolling mill mainly includes:
- the radius of each work roll of the frame R i ⁇ 210,212,230,230,228 ⁇ mm;
- Raw roughness Ra ir0 of each stand work roll ⁇ 1.0, 1.0, 0.8, 0.8, 1.0 ⁇ um;
- step (b) the key rolling process parameters of the strip are collected, mainly including:
- Entrance thickness h 0i of each rack ⁇ 2.0, 1.14, 0.63, 0.43, 0.28 ⁇ mm;
- Outlet thickness h 1i of each frame ⁇ 1.14, 0.63, 0.43, 0.28, 0.18 ⁇ mm;
- Strip width B 966mm
- the inlet temperature T 1 110 °C;
- Rolling pressure P i of each stand ⁇ 12800, 11300, 10500, 9600, 8800 ⁇ kN;
- Front frame tension T 1i ⁇ 145,208,202,229,56 ⁇ MPa
- Strip density ⁇ 7800kg / m 3 ;
- Emulsion flow w 900m / min
- Emulsion temperature T c 58 ° C
- step (c) collect the process parameters involved in the optimization of the emulsion concentration, mainly including the critical value of the thickness of the lubricant film of each frame. And the friction coefficient at this time is Critical value of under-lubricant film thickness And the friction coefficient at this time is
- the reference value of the vibration judgment index is ⁇ 0i
- the reduction rate is
- the inlet temperature of each rack is T i inlet and outlet temperature is T i
- step (f) calculate the reference value of each frame vibration judgment index ⁇ 0i :
- step (g) the concentration C i of each rack emulsion is set to ⁇ 4.2, 4.2, 4.2, 4.2 ⁇ %.
- step (h) calculate the strip outlet temperature T i of each rack
- step (h1) the first rack outlet temperature T 1 is calculated
- step (h5) the relationship between the j-th stage and the j-1th stage temperature is as follows:
- step (h8) calculate the second rack inlet temperature
- step (h9) the second rack outlet temperature T 2 is calculated
- step (h11) the outlet temperature T i of each rack is obtained as ⁇ 172.76, 178.02, 186.59, 194.35, 206.33 ⁇ ° C.
- ⁇ 0i ⁇ 5.39, 5.46, 5.59, 5.69, 5.84 ⁇ ;
- step (j) calculate the oil film thickness ⁇ i between the roll gaps of each frame, and the calculation formula is as follows:
- k rg represents the coefficient of the strength of the lubricant contained in the longitudinal roughness of the work roll and the strip
- k rg 1.183
- K rs represents the embossing rate, that is, the ratio of the surface roughness of the work roll to the strip
- step (k) calculate the concentration of the emulsion to optimize the objective function comprehensively.
- step (m) it is judged whether the emulsion concentration C i exceeds the range of the feasible range, and if it exceeds, it proceeds to step (n); otherwise, it proceeds to step (g);
- step (n) the optimal emulsion concentration setting value is output Is the value of C i when the F (X) value is the smallest in the feasible region;
- control system of the tandem cold rolling mill unit adjusts and controls the emulsion concentration of each stand according to the optimal emulsion concentration setting value obtained in step (n).
- the technical solution of the present invention changes the mode of constant concentration control of each rack emulsion in the prior art, and uses the concentration of each rack emulsion as an optimization variable to comprehensively and optimally control it to achieve suppression. Purpose of rolling mill vibration.
- the invention can be widely used in the field of controlling the emulsion concentration of the cold continuous rolling mill.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
- Metal Rolling (AREA)
- Feedback Control In General (AREA)
Abstract
一种冷连轧机组以振动抑制为目标的乳化液浓度优化方法,包括定义乳化液浓度优化过程中所涉及的过程参数;给定冷连轧机组以抑制振动为目标的乳化液浓度综合优化目标函数的初始设定值;计算各个机架的咬入角;计算各机架振动判断指标基准值;设定各个机架乳化液浓度;计算各个机架带钢出口温度;计算各机架辊缝间乳化液动力粘度;计算各机架辊缝间油膜厚度;计算乳化液浓度综合优化目标函数;判断不等式 F(X)< F
0
是否成立;判断乳化液浓度是否超出可行域范围和输出最优乳化液浓度设定值。
Description
本发明属于冷连轧轧制领域,尤其涉及一种适合于冷连轧机组以振动抑制为目标的乳化液浓度优化方法。
乳化液浓度作为工艺润滑制度中重要的工艺参数,对冷连轧机组各机架辊缝间的润滑状态起着至关重要的作用。
同时辊缝间的润滑状态,直接影响着轧机振动缺陷的发生。
若辊缝处于过润滑状态,则摩擦系数太小,容易引发轧制过程打滑而造成轧机自激振动;若辊缝处于欠润滑状态,则辊缝间的平均油膜厚度小于所需的最小值,容易致使轧制过程中辊缝中的油膜破裂而引起摩擦系数急剧增大,进而引起轧制压力改变,导致系统刚度发生周期性的波动,同样会引发轧机的自激振动。
以往,现场一般是依赖于轧机速度来抑制振动缺陷的发生,但此操作却制约了冷连轧机组的生产效率的提升,严重影响到企业的经济效益。
授权公告号为CN 103544340 B,授权公告日为2016年3月2日的中国发明专利,公开了一种“五机架冷连轧机组极薄带轧制中乳化液浓度的设定方法”,其乳化液浓度的设定方法,包括以下由计算机执行的步骤:1、收集机组主要设备、待轧制带材特征、主要轧制工艺和工艺润滑制度参数;2、定义相关过程参数;3、计算弯辊力和窜辊量;4为相关搜索过程参数赋值;5、计算浓度过程参数;6、计算最大轧制速度的搜索过程速度;7、计算当前条件下各机架的摩擦系数;8、计算当前条件下各机架的轧制力、轧制功率、打滑因子、热滑伤指数和振动系数;9计算各机架工作辊的热凸度;10、计算出口板形和压靠宽度;11、得到并输出最佳配比浓度。由此可见,该专利内容以提高轧制速度、保证轧制效率、避免打滑、热滑伤以及振动的发生为目的,保证末机架出口板形和工作辊辊端压靠宽度最小。
通过研究发现,在轧制规程、轧辊工艺、乳化液流量与初始温度等工艺参数确定的前提下,乳化液浓度的设定直接决定了冷连轧机组各个机架的辊缝润滑状态,并且可以作为抑制轧机振动的主要工艺控制手段。
但是目前尚未见到通过改变以往各机架乳化液采用恒浓度控制的模式,将各机架乳化液浓度作为优化变量,进而达到抑制轧机振动的技术方案的报道。
发明内容
本发明所要解决的技术问题是提供一种冷连轧机组以振动抑制为目标的乳化液浓度优化方法。其改变以往各机架乳化液采用恒浓度控制的模式,将各机架乳化液浓度作为优化变量,对其进行综合优化控制;通过对各机架乳化液浓度的合理配比,保证各机架辊缝间润滑状态最佳,进而达到抑振轧机振动、提高产品质量与生产效率的目的,为企业带来经济效益。
本发明的技术方案是:提供一种冷连轧机组以振动抑制为目标的乳化液浓度优化方法,其特征是所述的乳化液浓度优化方法包括下列步骤:
(a)收集冷连轧机组的设备特征参数;
(b)收集带材的关键轧制工艺参数;
(c)收集乳化液浓度优化过程中所涉及的过程参数;
(d)给定冷连轧机组以抑制振动为目标的乳化液浓度综合优化目标函数的初始设定值F
0=1.0×10
10;
上述步骤(a)~(d)无先后顺序的限制;
(e)计算各个机架的咬入角;
(f)计算各机架振动判断指标基准值ξ
0i;
(g)设定各个机架乳化液浓度C
i;
(h)计算各个机架带钢出口温度T
i;
(i)计算各机架辊缝间乳化液动力粘度η
0i;
(j)计算各机架辊缝间油膜厚度ξ
i;
(k)计算乳化液浓度综合优化目标函数F(X);
(m)判断乳化液浓度C
i是否超出可行域范围,所述可行域是指0至设备允许的乳化液浓度最大值,设备允许的乳化液浓度通常在10%以内,可将0~10%设为可行域;若超出,则转入步骤(n);否则,转入步骤(g);
其中,所述(f)步骤中计算各机架振动判断指标基准值ξ
0i的计算步骤程如下:
其中,T
0i为各机架后张力,T
1i为各机架前张力,Pi为各机架轧制压力,
可得:
(f3)计算振动判断指标基准值ξ
0i:
其所述(h)步骤中计算各个机架带钢出口温度T
i的计算步骤如下:
(h1)计算第1机架出口温度T
1
(h2)令i=1;
(h3)第i机架出口后第1段带钢温度T
i,1即为T
i,1=T
i;
(h4)令j=2;
(h5)第j段与第j-1段温度之间的关系如下式所示:
式中k
0为喷嘴形状、喷射角度影响系数,0.8<k
0<1.2,w为乳化液流量,为机架间距离,将机架间的距离l平均分成m段,段内温度用T
i,j表示,v
1i为各机架出口速度,h
1i为各机架出口厚度,ρ为带钢密度,S为带钢比热容,T
i为各机架出口温度,T
c为乳化液温度;
(h6)判断不等式j<m?若成立,则令j=j+1,转入步骤(h5);否则,转入步骤(h7);
(h7)通过迭代计算,得到第m段温度T
i,m;
(h9)计算第i+1机架出口温度T
i+1:
(h10)判断不等式i<n?若成立,则令i=i+1,转入步骤(h3);否则,转入步骤(h11);
(h11)得出各个机架出口温度T
i。
具体的,所述冷连轧机组的设备特征参数至少包括:各个机架工作辊半径R
i;各机架轧辊表面线速度v
ri;各机架工作辊原始粗糙度Ra
ir0;工作辊粗糙度衰减系数B
L;机架间距离l;各机架工作辊换辊后的轧制公里数L
i;其中,i=1,2,...,n,代表冷连轧机组的机架序数,n为总机架数。
具体的,所述带材的关键轧制工艺参数至少包括:各机架入口厚度h
0i;各机架出口厚度h
1i;带钢宽度B;各机架入口速度v
0i;各机架出口速度v
1i;入口温度T
1
入;各机架带钢变形抗力K
i;各机架轧制压力P
i;各机架后张力T
0i;各机架前张力T
1i;乳化液浓度影响系数k
c;润滑剂的粘度压缩系数θ;带钢密度ρ;带钢比热容S;乳化液流量w;乳化液温度T
c;热功当量J。
具体的,所述乳化液浓度优化过程中所涉及的过程参数,至少包括:各个机架过润滑油膜厚度临界值为
及此时的摩擦系数为
欠润滑油膜厚度临界值为
及此时的摩擦系数为
振动判断指标基准值为ξ
0i;压下量为Δh
i=h
0i-h
1i;压下率为
各机架入口温度为
出口温度为T
i;将机架间的距离l平均分成m段,段内温度用T
i,j表示,其中,1≤j≤m且T
i
入=T
i-1,m;过润滑判断系数A
+;欠润滑判断系数A
-。
进一步的,在计算所述的各个机架的咬入角α
i时,计算公式如下:
式中,R
i′为第i机架工作辊压扁半径,为轧制压力计算过程值。
进一步的,计算所述各机架辊缝间乳化液动力粘度η
0i时的计算公式如下:
η
0i=b·exp(-a·T
i)
式中,a、b为大气压力下润滑油的动力粘度参数。
进一步的,计算所述的各机架辊缝间油膜厚度的计算公式如下:
式中,h
0i为各机架入口厚度,h
1i为各机架出口厚度,k
c为乳化液浓度影响系数,θ为润滑剂的粘度压缩系数,K
i为各机架带钢变形抗力,η
0i为各机架辊缝间乳化液动力粘度,v
0i为各机架入口速度,v
ri为各机架轧辊表面线速度,T
0i为各机架后张力,B为带钢宽度,k
rg表示工作辊和带钢表面纵向粗糙度夹带润滑剂强度的系数,其值在0.09~0.15的范围内,K
rs表示压印率,即工作辊表面粗糙度传递到带钢上比率,K
rs值在0.2~0.6的范围内,Ra
ir0为各机架工作辊原始粗糙度,B
L为工作辊粗糙度衰减系数,L
i为各机架工作辊换辊后的轧制公里数。
进一步的,计算乳化液浓度综合优化目标函数按照下列公式进行:
式中,X={C
i}为优化变量,λ为分配系数。
在本申请中,只要下一步骤的进行不以前一步骤的结果为条件的,都无需按步骤进行,除非下一步骤的进行依赖于上一步骤的。
与现有技术比较,本发明的优点是:
1.通过对各机架乳化液浓度的合理配比,保证各机架辊缝间润滑状态最佳,从而达到抑振轧机振动、提高产品质量与生产效率的目的;
2.在大量的现场试验跟踪与理论研究的基础上,针对冷连轧机组的设备特征及轧制工艺特点,提出了冷连轧机组以振动抑制为目标的乳化液浓度方法,实现了对冷连轧机组各个机架乳化液浓度的最优配比,达到了抑制轧机振动、提高产品质量与生产效率的目的,给企业带来较大经济效益。
图1是本发明的整体技术方案流程示意图;
图2是本发明振动判断指标基准值计算流程示意图;
图3是本发明各机架带钢出口温度计算流程示意图。
下面结合附图和实施例对本发明做进一步说明。
为了进一步的说明本发明所述相关技术的应用过程,现以某冷轧厂1730冷连轧机组为例,详细地介绍冷连轧机组以振动抑制为目标的乳化液浓度优化方法的应用过程。
首先,按照图1中所示各个步骤,依次进行相关参数的确定、代入相应公式进行计算,然后确定或得到需要的最优乳化液浓度设定值
最后,按照所确定的最优乳化液浓度设定值,来控制各机架的乳化液浓度,对其进行综合优化控制,进而达到抑制轧机振动的目的。
具体的,在步骤(a)中,收集冷连轧机组的设备特征参数,主要包括:
各个机架工作辊半径R
i={210,212,230,230,228}mm;
各机架轧辊表面线速度v
ri={180,320,500,800,1150}m/min;
各机架工作辊原始粗糙度Ra
ir0={1.0,1.0,0.8,0.8,1.0}um;
工作辊粗糙度衰减系数B
L=0.01;
机架间距离l=2700mm;
各机架工作辊换辊后的轧制公里数L
i={100,110,230,180,90}km(其中,i=1,2,...,n,代表冷连轧机组的机架序数,n=5为总机架数,下同);
随后,在步骤(b)中,收集带材的关键轧制工艺参数,主要包括:
各机架入口厚度h
0i={2.0,1.14,0.63,0.43,0.28}mm;
各机架出口厚度h
1i={1.14,0.63,0.43,0.28,0.18}mm;
带钢宽度B=966mm;
各机架入口速度v
0i={110,190,342,552,848}m/min;
各机架出口速度v
1i={190,342,552,848,1214}m/min;
入口温度T
1
入=110℃;
各机架带钢变形抗力K
i={360,400,480,590,650}MPa;
各机架轧制压力P
i={12800,11300,10500,9600,8800}kN;
各机架后张力T
0i={70,145,208,202,229}MPa;
各机架前张力T
1i={145,208,202,229,56}MPa;
乳化液浓度影响系数k
c=0.9;
润滑剂的粘度压缩系数θ=0.034;
带钢密度ρ=7800kg/m
3;
带钢比热容S=0.47kJ/(kg·℃);
乳化液流量w=900m/min;
乳化液温度T
c=58℃;
热功当量J=1;
第i机架工作辊压扁半径R
i′={278.2,279.7,300.5,301.6,295.4};
随后,在步骤(c)中,收集乳化液浓度优化过程中所涉及的过程参数,主要包括各个机架过润滑油膜厚度临界值为
及此时的摩擦系数为
欠润滑油膜厚度临界值为
及此时的摩擦系数为
振动判断指标基准值为ξ
0i,压下量为Δh
i=h
0i-h
1i={0.86,0.51,0.2,0.15,0.1},压下率为
各机架入口温度为T
i
入、出口温度为T
i,并将机架间的距离l=2700mm平均分成m=30段,段内温度用T
i,j(其中,1≤j≤m)表示,且T
i
入=T
i-1,m,过润滑判断系数A
+,欠润滑判断系数A
-;
随后,在步骤(d)中,给定冷连轧机组以抑制振动为目标的乳化液浓度综合优化目标函数的初始设定值F
0=1.0×10
10;
随后,按图2中所示各子步骤,在步骤(f)中,计算各机架振动判断指标基准值ξ
0i:
随后,在步骤(g)中,设定各个机架乳化液浓度C
i={4.2,4.2,4.2,4.2,4.2}%。
然后,按照图3中所示的子步骤,在步骤(h)中,计算各个机架带钢出口温度T
i,
随后,在步骤(h1)中,计算第1机架出口温度T
1,
随后,在步骤(h2)中,令i=1;
随后,在步骤(h3)中,第1机架出口后第1段带钢温度T
1,1即为T
i,1=T
i=172.76℃;
随后,在步骤(h4)中,令j=2;
随后,在步骤(h5)中,第j段与第j-1段温度之间的关系如下式所示:
式中k
0为喷嘴形状、喷射角度影响系数,k
0=1;
随后,在步骤(h6)中,判断不等式j<m?若成立,则令j=j+1,转入步骤(h5),否则,转入步骤(h7)
随后,在步骤(h7)中,最终通过迭代计算,得到第m=30段温度T
1,30=103.32℃;
随后,在步骤(h9)中,计算第2机架出口温度T
2
随后,在步骤(h10)中,判断不等式i<n?若成立,则令i=i+1,转入步骤(h3),否则,转入步骤(h11)
随后,在步骤(h11)中,得出各个机架出口温度T
i={172.76,178.02,186.59,194.35,206.33}℃。
随后,在步骤(i)中,计算各机架辊缝间乳化液动力粘度η
0i,由η
0i=b·exp(-a·T
i)(式中,a、b为大气压力下润滑油的动力粘度参数,a=0.05、b=2.5)得,η
0i={5.39,5.46,5.59,5.69,5.84};
随后,在步骤(j)中,计算各机架辊缝间油膜厚度ξ
i,计算公式如下:
式中,k
rg表示工作辊和带钢表面纵向粗糙度夹带润滑剂强度的系数,k
rg=1.183,K
rs表示压印率,即工作辊表面粗糙度传递到带钢上比率,K
rs=0.576,由此可得ξ
i={0.784,0.963,2.101,2.043,1.326}um;
随后,在步骤(k)中,计算乳化液浓度综合优化目标函数
式中,X={C
i}为优化变量,λ=0.5为分配系数,由此可得F(X)=0.94;
随后,在步骤(m)中,判断乳化液浓度C
i是否超出可行域范围,若超出,则转入步骤(n),否则,转入步骤(g);
最后,在整个轧制过程中,冷连轧机组的控制系统按照(n)步骤中所获得的最优乳化液浓度设定值,对各机架的乳化液浓度分别进行调整和控制。
综上所述,本发明的技术方案,改变了现有技术中各机架乳化液采用恒浓度控制的模式,将各机架乳化液浓度作为优化变量,对其进行综合优化控制,进而达到抑制轧机振动的目的。
本发明可广泛用于冷连轧机组乳化液浓度的控制领域。
Claims (10)
- 一种冷连轧机组的乳化液浓度优化方法,其特征是所述的乳化液浓度优化方法包括下列步骤:(a)收集冷连轧机组的设备特征参数;(b)收集带材的关键轧制工艺参数;(c)收集乳化液浓度优化过程中所涉及的过程参数;(d)给定冷连轧机组以抑制振动为目标的乳化液浓度综合优化目标函数的初始设定值F 0=1.0×10 10;上述步骤(a)~(d)无先后顺序的限制;(e)计算各个机架的咬入角α i;(f)计算各机架振动判断指标基准值ξ 0i;(g)设定各个机架乳化液浓度C i;(h)计算各个机架带钢出口温度T i;(i)计算各机架辊缝间乳化液动力粘度η 0i;(j)计算各机架辊缝间油膜厚度ξ i;(k)计算乳化液浓度综合优化目标函数F(X);(m)判断乳化液浓度C i是否超出可行域范围,所述可行域是指0至设备允许的乳化液浓度最大值;若超出,则转入步骤(n);否则,转入步骤(g);各式中,i代表冷连轧机组的机架序数。
- 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是所述(f)步骤中计算各机架振动判断指标基准值ξ 0i的计算步骤如下:其中,T 0i为各机架后张力,T 1i为各机架前张力,P i为各机架轧制压力,可得:(f3)计算振动判断指标基准值ξ 0i:
- 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是所述(h)步骤中计算各个机架带钢出口温度T i的计算步骤如下:(h1)计算第1机架出口温度T 1(h2)令i=1;(h3)第i机架出口后第1段带钢温度T i,1即为T i,1=T i;(h4)令j=2;(h5)第j段与第j-1段温度之间的关系如下式所示:式中k 0为喷嘴形状、喷射角度影响系数,w为乳化液流量,l为机架间距离,将机架间的距离l平均分成m段,段内温度用T i,j表示,v 1i为各机架出口速度,h 1i为各机架出口厚度,ρ为带钢密度,S为带钢比热容,T i为各机架出口温度,T c为乳化液温度;(h6)判断不等式j<m?若成立,则令j=j+1,转入步骤(h5);否则,转入步骤(h7);(h7)通过迭代计算,得到第m段温度T i,m;(h9)计算第i+1机架出口温度T i+1:(h10)判断不等式i<n?若成立,则令i=i+1,转入步骤(h3);否则,转入步骤(h11);(h11)得出各个机架出口温度T i。
- 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是所述冷连轧机组的设备特征参数至少包括:各个机架工作辊半径R i,各机架轧辊表面线速度v ri,各机架工作辊原始粗糙度Ra ir0,工作辊粗糙度衰减系数B L,机架间距离l,各机架工作辊换辊后的轧制公里数L i。其中,i=1,2,...,n,代表冷连轧机组的机架序数,n为总机架数。
- 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是所述带材的关键轧制工艺参数至少包括:各机架入口厚度h 0i;各机架出口厚度h 1i;带钢宽度B;各机架入口速度v 0i;各机架出口速度v 1i;入口温度T 1 入;各机架带钢变形抗力K i;各机架轧制压力P i;各机架后张力T 0i;各机架前张力T 1i;乳化液浓度影响系数k c;润滑剂的粘度压缩系数θ;带钢密度ρ;带钢比热容S;乳化液流量w;乳化液温度T c;热功当量J。
- 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是在计算所述各机架辊缝间乳化液动力粘度η 0i时,其计算公式如下:η 0i=b·exp(-a·T i)式中,a、b为大气压力下润滑油的动力粘度参数。
- 按照权利要求1所述的冷连轧机组的乳化液浓度优化方法,其特征是在计算 所述的各机架辊缝间油膜厚度时,其计算公式如下:式中,h 0i为各机架入口厚度,h 1i为各机架出口厚度,k c为乳化液浓度影响系数,θ为润滑剂的粘度压缩系数,K i为各机架带钢变形抗力,η 0i为各机架辊缝间乳化液动力粘度,v 0i为各机架入口速度,v ri为各机架轧辊表面线速度,T 0i为各机架后张力,B为带钢宽度,k rg表示工作辊和带钢表面纵向粗糙度夹带润滑剂强度的系数,其值在0.09~0.15的范围内,K rs表示压印率,即工作辊表面粗糙度传递到带钢上比率,Ra ir0为各机架工作辊原始粗糙度,B L为工作辊粗糙度衰减系数,L i为各机架工作辊换辊后的轧制公里数。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19865518.5A EP3815804B1 (en) | 2018-09-29 | 2019-08-16 | Method of emulsion concentration optimization for cold continuous rolling mill set |
US17/261,478 US11779975B2 (en) | 2018-09-29 | 2019-08-16 | Method of emulsion concentration optimization for cold continuous rolling mill set |
JP2021509855A JP7076039B2 (ja) | 2018-09-29 | 2019-08-16 | 冷間連続圧延ミルセットのためのエマルション濃度最適化の方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811144978.X | 2018-09-29 | ||
CN201811144978.XA CN110961464B (zh) | 2018-09-29 | 2018-09-29 | 冷连轧机组以振动抑制为目标的乳化液浓度优化方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020063187A1 true WO2020063187A1 (zh) | 2020-04-02 |
Family
ID=69949860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/101118 WO2020063187A1 (zh) | 2018-09-29 | 2019-08-16 | 冷连轧机组的乳化液浓度优化方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11779975B2 (zh) |
EP (1) | EP3815804B1 (zh) |
JP (1) | JP7076039B2 (zh) |
CN (1) | CN110961464B (zh) |
WO (1) | WO2020063187A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114345932B (zh) * | 2021-12-13 | 2024-07-30 | 首钢京唐钢铁联合有限责任公司 | 一种带钢轧制控制方法、装置、介质及计算机设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011051001A (ja) * | 2009-09-04 | 2011-03-17 | Jfe Steel Corp | 冷間圧延における潤滑油供給方法および冷間圧延機ならびに冷延鋼板の製造方法 |
CN103544340A (zh) | 2013-09-26 | 2014-01-29 | 燕山大学 | 五机架冷连轧机组极薄带轧制中乳化液浓度的设定方法 |
CN104289527A (zh) * | 2013-07-18 | 2015-01-21 | 上海宝钢钢材贸易有限公司 | 双四辊机组汽车板冷轧中乳化液浓度优化设定方法 |
CN107520253A (zh) * | 2017-09-01 | 2017-12-29 | 燕山大学 | 二次冷轧机组以油耗控制为目标的乳化液工艺优化方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4315421A (en) * | 1978-10-03 | 1982-02-16 | National Steel Corporation | Method of controlling the concentration and stability of an emulsion |
JPH05169103A (ja) | 1991-12-19 | 1993-07-09 | Nippon Steel Corp | 鋼帯の冷間圧延方法 |
JP3346298B2 (ja) * | 1998-09-18 | 2002-11-18 | 日本鋼管株式会社 | 冷間圧延機における圧延油供給方法 |
JP4309501B2 (ja) * | 1999-01-13 | 2009-08-05 | 新日本製鐵株式会社 | 冷間タンデム圧延機の圧延方法 |
WO2001066277A1 (fr) * | 2000-03-09 | 2001-09-13 | Nkk Corporation | Procede d'alimentation en huile de laminage, pour laminage a froid |
JP3814240B2 (ja) * | 2002-10-18 | 2006-08-23 | 日新製鋼株式会社 | 圧延油に含まれる油滴の粒径調整方法および粒径調整装置 |
CN104858241B (zh) * | 2014-02-20 | 2017-01-04 | 宝山钢铁股份有限公司 | 一种冷连轧机组极薄带钢轧制的乳化液流量综合优化方法 |
CN105312321A (zh) * | 2014-07-31 | 2016-02-10 | 宝山钢铁股份有限公司 | 一种冷连轧机组的工艺润滑制度优化方法 |
CN106363023B (zh) * | 2015-07-22 | 2017-10-31 | 宝山钢铁股份有限公司 | 一种冷连轧机组乳化液差异化流量设定方法 |
JP2017131964A (ja) * | 2016-01-27 | 2017-08-03 | 明 小豆島 | ステンレス鋼板のタンデムエマルション圧延において高速圧延を可能にする冷間圧延と制御システム |
CN106311754B (zh) * | 2016-09-14 | 2018-07-17 | 燕山大学 | 适用于冷连轧机组的乳化液流量动态综合优化设定方法 |
CN108480403B (zh) * | 2018-03-30 | 2019-10-11 | 燕山大学 | 二次冷轧机组小变形条件下工艺润滑参数优化设定方法 |
-
2018
- 2018-09-29 CN CN201811144978.XA patent/CN110961464B/zh active Active
-
2019
- 2019-08-16 WO PCT/CN2019/101118 patent/WO2020063187A1/zh unknown
- 2019-08-16 JP JP2021509855A patent/JP7076039B2/ja active Active
- 2019-08-16 US US17/261,478 patent/US11779975B2/en active Active
- 2019-08-16 EP EP19865518.5A patent/EP3815804B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011051001A (ja) * | 2009-09-04 | 2011-03-17 | Jfe Steel Corp | 冷間圧延における潤滑油供給方法および冷間圧延機ならびに冷延鋼板の製造方法 |
CN104289527A (zh) * | 2013-07-18 | 2015-01-21 | 上海宝钢钢材贸易有限公司 | 双四辊机组汽车板冷轧中乳化液浓度优化设定方法 |
CN103544340A (zh) | 2013-09-26 | 2014-01-29 | 燕山大学 | 五机架冷连轧机组极薄带轧制中乳化液浓度的设定方法 |
CN107520253A (zh) * | 2017-09-01 | 2017-12-29 | 燕山大学 | 二次冷轧机组以油耗控制为目标的乳化液工艺优化方法 |
Also Published As
Publication number | Publication date |
---|---|
US11779975B2 (en) | 2023-10-10 |
US20210299721A1 (en) | 2021-09-30 |
JP2021534000A (ja) | 2021-12-09 |
CN110961464A (zh) | 2020-04-07 |
CN110961464B (zh) | 2022-06-28 |
JP7076039B2 (ja) | 2022-05-26 |
EP3815804A4 (en) | 2021-09-01 |
EP3815804B1 (en) | 2023-01-04 |
EP3815804A1 (en) | 2021-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106909723B (zh) | 冷轧过程乳化液流量与轧制速度关系曲线优化设定方法 | |
WO2020020191A1 (zh) | 一种抑制冷连轧机组振动的乳化液流量优化方法 | |
WO2020020192A1 (zh) | 一种抑制冷连轧机组振动的张力制度优化方法 | |
CN104785538B (zh) | 一种冷连轧机组极薄带钢轧制的压下规程优化方法 | |
CN109550791B (zh) | 一种冷连轧机组以开腔防治为目标的张力制度优化方法 | |
CN103544340B (zh) | 五机架冷连轧机组极薄带轧制中乳化液浓度的设定方法 | |
CN111495980B (zh) | 冷连轧机组以振动抑制为目标的压下规程设定方法 | |
CN106363023B (zh) | 一种冷连轧机组乳化液差异化流量设定方法 | |
CN104785539B (zh) | 一种用于轧制力调节的张力优化补偿的方法 | |
CN104289525B (zh) | 双机架六辊轧机冷轧中乳化液总流量设定方法 | |
WO2020063187A1 (zh) | 冷连轧机组的乳化液浓度优化方法 | |
CN111036676A (zh) | 一种冷连轧机薄带钢的生产方法 | |
CN108714627B (zh) | Dcr机组大变形下以稳轧为目标的工艺润滑优化方法 | |
CN108480403B (zh) | 二次冷轧机组小变形条件下工艺润滑参数优化设定方法 | |
US1936582A (en) | Process of rolling metals | |
CN108057719B (zh) | 冷连轧过程中以爆辊防治为目标的工艺润滑制度优化方法 | |
CN109590338B (zh) | 用于减小二次冷轧间的轧制最小变形量的参数优化方法 | |
RU2190488C1 (ru) | Способ холодной прокатки полос в непрерывном многоклетьевом стане | |
CN115502220A (zh) | 一种双机架平整机组高温料轧辊表面粗糙度优化设定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19865518 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019865518 Country of ref document: EP Effective date: 20210128 |
|
ENP | Entry into the national phase |
Ref document number: 2021509855 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |