WO2020063056A1 - 无线充电方法、电子设备、无线充电装置和无线充电系统 - Google Patents

无线充电方法、电子设备、无线充电装置和无线充电系统 Download PDF

Info

Publication number
WO2020063056A1
WO2020063056A1 PCT/CN2019/096408 CN2019096408W WO2020063056A1 WO 2020063056 A1 WO2020063056 A1 WO 2020063056A1 CN 2019096408 W CN2019096408 W CN 2019096408W WO 2020063056 A1 WO2020063056 A1 WO 2020063056A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
battery
module
wireless charging
Prior art date
Application number
PCT/CN2019/096408
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19864841.2A priority Critical patent/EP3846275B1/en
Publication of WO2020063056A1 publication Critical patent/WO2020063056A1/zh
Priority to US17/193,535 priority patent/US11824396B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of charging technology, and in particular, to a wireless charging method, an electronic device, a wireless charging device, and a wireless charging system.
  • the wireless charging technology in the related technology usually adopts the architecture shown in FIG. 16.
  • the transmitting terminal stabilizes the output voltage.
  • the specific charging process can be adjusted and controlled through BuckCharge10.
  • the related technology has the problems that the efficiency is relatively low and the heat is high, and it can only be used for low-power charging, for example, the power is 10W. If the power is higher, the heat will be very serious, affecting the user experience.
  • the present application provides a wireless charging method, an electronic device, a wireless charging device, and a wireless charging system, which can ensure that wireless charging can be completed safely, quickly, and efficiently, and realize a wireless fast charging function.
  • the embodiment of the first aspect of the present application proposes a wireless charging method applied to an electronic device.
  • the electronic device receives an electromagnetic signal emitted by a wireless charging device through a wireless receiving module, and converts the electromagnetic signal into a direct current.
  • the method comprises the following steps: after the wireless charging device establishes communication with the electronic device, monitoring the current voltage of the battery of the electronic device; and controlling the control when the current voltage of the battery is greater than a preset fast charging voltage.
  • the voltage and current adjustment module of the electronic device works to step down and increase the direct current converted by the wireless receiving module of the electronic device, and provide the stepped down and increased direct current to the battery;
  • An initial voltage value of the adjustable DC power is sent to the wireless charging device, so that the wireless charging device controls the voltage of the adjustable DC power according to the initial voltage value.
  • the voltage and current adjustment module of the electronic device is controlled to work, and at the same time, the available voltage of the wireless charging device is controlled according to the initial value of the adjustable direct current. Regulate the voltage of the DC power, so that wireless charging can be accurately controlled to ensure that wireless charging can be completed safely, quickly, and efficiently, and to achieve the wireless fast charging function.
  • the determining an initial voltage value of the adjustable DC power comprises: determining the initial voltage value according to a current voltage of the battery, wherein the initial voltage value is a current voltage of the battery Plus N times the loss compensation amount, where N is the conversion multiple of the voltage and current adjustment module.
  • the method further includes: obtaining a current of the battery; and generating the current according to the current of the battery.
  • a step-up adjustment instruction so that the wireless charging device performs step-up adjustment on the adjustable direct current according to the step-up adjustment instruction.
  • the generating the boost adjustment instruction according to the current of the battery includes: a difference between the preset charging current and the current of the battery is greater than or equal to a first preset threshold When the voltage of the adjustable direct current is increased by a first step voltage until the difference between the preset charging current and the current of the battery is less than the first preset threshold.
  • a difference between the preset charging current and the current of the battery is less than the first preset threshold, and the preset charging current and the current of the battery When the difference between them is greater than or equal to a second preset threshold, the voltage of the adjustable DC power is increased by a second step voltage, and the difference between the preset charging current and the current of the battery is less than When the second preset threshold value, the voltage of the adjustable direct current is kept unchanged.
  • the method further includes: monitoring the current voltage of the battery; if the current voltage of the battery is at a preset charging voltage Within the preset range, a step-down adjustment instruction is generated with a third step voltage, so that the wireless charging device adjusts the voltage of the adjustable DC power according to the step-down adjustment instruction.
  • the wireless charging method further includes: monitoring a current of the battery; if the battery's If the current current is less than or equal to the cut-off current, the voltage and current adjustment module is controlled to stop working, and the step-down module of the electronic device is controlled to work, so as to step down the DC power converted by the wireless receiving module and reduce the stepped-down voltage. Direct current is supplied to the battery.
  • a step-down adjustment instruction is generated at the third step voltage according to the current voltage of the battery.
  • the wireless charging method further includes: when the wireless charging device has not established communication with the electronic device, or when the current voltage of the battery is less than or equal to the preset fast charging voltage, The step-down module of the electronic device is controlled to work to step down the DC power converted by the wireless receiving module and provide the step-down DC power to the battery.
  • the wireless charging device when the step-down module is working, the wireless charging device adjusts the voltage of the adjustable DC power according to the preset conventional voltage value.
  • An electronic device provided by the second aspect of the present application includes a battery; a wireless receiving module that receives an electromagnetic signal transmitted by a wireless charging device and converts the electromagnetic signal into direct current; a voltage and current adjustment module, and The voltage and current adjustment module is connected to the wireless receiving module and the battery.
  • the voltage and current adjustment module is configured to step down and step up the DC power, and provide the stepped down and stepped DC power to the DC power.
  • a battery a first communication module, the first communication module is configured to perform wireless communication with the wireless charging device; a first control module, the first control module, the first communication module, and the voltage and current adjustment module Connected, the first control module is configured to monitor the current voltage of the battery after the wireless charging device establishes communication with the first communication module, and when the current voltage of the battery is greater than a preset fast charging voltage
  • the voltage and current adjustment module When controlling the voltage and current adjustment module to work to step down and step up the DC power converted by the wireless receiving module, Determining an initial voltage value of the adjustable direct current, and sending the initial voltage value to the wireless charging device through the first communication module, so that the wireless charging device controls the adjustable voltage according to the initial voltage value The voltage of the direct current.
  • the control module controls the voltage and current adjustment module of the electronic device to work, and at the same time controls the wireless charging device according to the initial value of the adjustable direct current.
  • the adjustable DC voltage can accurately control wireless charging, ensure that wireless charging can be completed safely, quickly and efficiently, and realize the wireless fast charging function.
  • the first control module is further configured to determine the initial voltage value according to a current voltage of the battery, wherein the initial voltage value is N times the current voltage of the battery plus a loss A compensation amount, where N is a conversion multiple of the voltage and current adjustment module.
  • the first control module further obtains a current of the battery, and according to the The current of the battery generates a step-up adjustment instruction, and sends the step-up adjustment instruction to the wireless charging device, so that the wireless charging device performs step-up adjustment on the adjustable direct current according to the step-up adjustment instruction.
  • the first control module is further configured to: when the difference between the preset charging current and the current of the battery is greater than or equal to a first preset threshold, The input voltage increases the voltage of the adjustable direct current until the difference between the preset charging current and the current of the battery is less than the first preset threshold.
  • the first control module is further configured to: a difference between the preset charging current and a current of the battery is less than the first preset threshold, and the preset When the difference between the charging current and the current of the battery is greater than or equal to a second preset threshold, the voltage of the adjustable DC power is increased by a second step voltage, and the preset charging current and the When the difference between the currents of the batteries is less than the second preset threshold, the voltage of the adjustable direct current is kept unchanged.
  • the first control module is further configured to monitor the current voltage of the battery after increasing the voltage of the adjustable DC power by a second step voltage.
  • a step-down adjustment instruction is generated at a third step voltage, and the step-down adjustment instruction is sent to the wireless charging device, so that the wireless charging device is based on The step-down adjustment instruction adjusts the voltage of the adjustable direct current.
  • the electronic device further includes a voltage step-down module connected in parallel with the voltage and current adjustment module, and the voltage step-down module is configured to step down the DC power and reduce the stepped down DC power. Provided to the battery.
  • the first control module is further configured to monitor a current of the battery. If the current current is less than or equal to the cut-off current, the voltage and current adjustment module is controlled to stop working, and the voltage step-down module is controlled to work to step down the DC power converted by the wireless receiving module.
  • the first control module if the current of the battery is greater than the cut-off current, the first control module generates a step-down adjustment instruction at the third step voltage according to the current voltage of the battery.
  • the first control module is further configured to establish no communication between the wireless charging device and the first communication module, or the current voltage of the battery is less than or equal to the preset fast charging.
  • the step-down module is controlled to work to step down the DC power converted by the wireless receiving module.
  • the wireless charging device when the step-down module is working, the wireless charging device adjusts the voltage of the adjustable DC power according to the preset conventional voltage value.
  • the electronic device further includes a load switch connected between the voltage and current adjustment module and the battery, the load switch is connected to the first control module, and the first The control module controls the load switch to be turned off to stop charging when the electronic device fails.
  • the voltage and current adjustment module includes at least one charge pump unit, and the at least one charge pump unit is connected in parallel or in series, wherein each of the charge pump units includes a first switch and an output capacitor.
  • each of the charge pump units includes a first switch and an output capacitor.
  • (M-1) cascade capacitor circuit where M is an integer greater than 1, the first terminal of the first switch is connected to the input terminal of the charge pump unit, and the second terminal of the first switch is connected to the The (M-1) cascade capacitor circuit is connected, the first end of the output capacitor is connected to the output terminal of the charge pump unit and the M cascade capacitor circuit, and the second end of the output capacitor is grounded.
  • each stage of the capacitor circuit includes a capacitor and a switch component, and by controlling the switch component of each stage of the (M-1) capacitor circuit, the capacitors in the (M-1) stage capacitor circuit mutually After being connected in parallel, the output capacitor is connected in parallel or the capacitors in the (M-1) stage capacitor circuit are connected in series with each other and then connected with the output capacitor in series.
  • An embodiment of the third aspect of the present application proposes a wireless charging device, including: a voltage conversion module for converting an input electrical signal to output adjustable DC power; a wireless transmission module, the wireless transmission module Connected to the voltage conversion module, the wireless transmitting module converts the adjustable DC power into electromagnetic signals and transmits them wirelessly; a second communication module, the second communication module communicates with the electronic device A second control module that is connected to the second communication module and the voltage conversion module, and the second control module receives control information sent by the electronic device through the second communication module, And controlling the voltage conversion module according to the control information to make the voltage of the adjustable DC power match the control information; wherein the control information includes an initial voltage value of the adjustable DC power, or The step-up adjustment instruction of the adjustable direct-current power, or the step-down adjustment instruction of the adjustable direct-current power.
  • wireless charging can be accurately controlled, ensuring that wireless charging can be completed safely, quickly, and efficiently, and implementing the wireless fast charging function.
  • An embodiment of the fourth aspect of the present application provides a wireless charging system, including the electronic device and the wireless charging device.
  • the electronic device in the second aspect and the wireless charging device in the third aspect can accurately control wireless charging, and ensure that wireless charging can be completed safely, quickly, and efficiently. Realize wireless fast charge function.
  • An embodiment of the fifth aspect of the present application proposes a non-transitory computer-readable storage medium on which a wireless charging program is stored, and when the program is executed by a processor, the wireless charging method of the foregoing first embodiment is implemented.
  • FIG. 1 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an electronic device according to another embodiment of the present application, in which communication is performed through an antenna;
  • FIG. 4 is a schematic structural diagram of an electronic device according to another embodiment of the present application, in which communication is performed through a receiving coil;
  • FIG. 5 is a schematic structural diagram of an electronic device according to another embodiment of the present application, in which communication is performed through an antenna;
  • FIG. 6 is a schematic structural diagram of an electronic device according to another embodiment of the present application, in which communication is performed through a receiving coil;
  • FIG. 7 is a schematic block diagram of a voltage and current adjustment module in an electronic device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a voltage and current adjustment module in an electronic device according to another embodiment of the present application.
  • FIG. 9 is a circuit schematic diagram of a voltage and current adjustment module in an electronic device according to a specific embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a wireless charging device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a wireless charging device according to an embodiment of the present application, in which communication is performed through a transmitting coil;
  • FIG. 12 is a schematic structural diagram of an electronic device according to an embodiment of the present application, in which communication is performed through an antenna;
  • FIG. 13 is a flowchart of a wireless charging method according to an embodiment of the present application.
  • 15 is a schematic block diagram of a wireless charging system according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a related art wireless charging architecture.
  • the wireless charging method in the embodiments of the present application can be used in a wireless charging architecture with a voltage and current adjustment module.
  • the voltage and current adjustment module can be a charge pump module.
  • a charge pump module is provided in the electronic equipment to realize the step-down and up-current using the charge pump module.
  • the electronic device may be a mobile phone, a tablet computer, a smart watch, and the like.
  • the electronic device 100 may include a battery 101, a wireless receiving module 102, a voltage and current adjustment module 103, a first communication module 104, and a first control module 105.
  • the wireless receiving module 102 receives an electromagnetic signal transmitted by the wireless charging device 200 and converts the electromagnetic signal into a direct current.
  • the wireless charging device 200 transmits an electromagnetic signal according to an adjustable DC voltage.
  • the wireless receiving module 102 can convert the electromagnetic signal emitted by the wireless transmitting module of the wireless charging device 200 into alternating current through the receiving coil 112, and perform operations such as rectifying and / or filtering the alternating current to convert the alternating current into Stable DC power to charge the battery 101.
  • the wireless receiving module 102 includes a rectifying circuit 122.
  • the rectifier circuit 122 is used to convert the AC power received by the receiving coil 112 into DC power.
  • the battery 101 may include a single cell or multiple cells.
  • the multiple cells are in a series relationship.
  • the charging voltage that the battery 101 can withstand is the sum of the charging voltages that can be tolerated by a plurality of cells, which can increase the charging speed and reduce the charging heat.
  • the voltage of the single cell inside is generally between 3.0V and 4.35V.
  • the total voltage of the two cells in series is 6.0V-8.7V. Therefore, compared with a single battery cell, when multiple cells are connected in series, the output voltage of the wireless receiving module 102 can be increased. Compared with a single cell, the same charging speed is achieved.
  • the charging current required for multiple cells is about 1 / S of the charging current required for a single cell (S is the serially connected cells in the electronic device. Number of).
  • the multi-cell battery scheme can reduce the size of the charging current, thereby reducing the amount of heat generated by the electronic device during the charging process.
  • the multi-cell series solution can increase the charging voltage and thus the charging speed.
  • the voltage and current adjustment module 103 is connected to the wireless receiving module 102 and the battery 101, that is, the input terminal of the voltage and current adjustment module 103 is connected to the wireless receiving module 102, the output terminal of the voltage and current adjustment module 103 is connected to the battery 101, and the voltage and current adjustment module 103 It is used to step down and step up the direct current, and provide the stepped down and stepped up direct current to the battery 101.
  • the voltage and current adjustment module 103 can step down and increase the DC power output by the wireless receiving module 102 to obtain a DC power that meets the charging requirements of the battery 101. That is, the voltage value of the DC power output by the voltage and current adjustment module 103 And current value, which meets the charging requirements of the battery 101, and can be directly loaded into the battery 101 to charge the battery 101.
  • the conversion multiple N of the voltage and current adjustment module 103 may be set according to actual conditions. In some examples, the conversion multiple N may be double, triple, quadruple, or the like.
  • the output voltage is 1 / N of the input voltage, and the output current is N times the input current.
  • High-power wireless charging can be achieved through appropriate conversion multiples. For example, a 3x charge pump module is easy to achieve fast charging at high power, and a 2x charge pump module can achieve fast charging of about 12W. In the embodiment of the present application, a 3-fold charge pump module is preferred.
  • the voltage and current adjustment module 103 includes at least one charge pump unit 113.
  • the at least one charge pump unit 113 may be connected in parallel or in series.
  • the voltage and current adjustment module 103 includes a plurality of charge pump units 113, and the plurality of charge pump units 113 may be connected in parallel to increase the charging power.
  • the voltage and current adjustment module 103 includes a plurality of charge pump units 113, and the plurality of charge pump units 113 can be connected in series, thereby increasing the conversion multiple of the voltage and current adjustment module 103, that is, the conversion multiple of the voltage and current adjustment module 103, to achieve more High-voltage charging improves charging efficiency and charging speed.
  • two triple charge pump units 113 connected in series can achieve a conversion factor of nine times. If the voltage of the battery 101 is 4V, the wireless charging device provides high voltage charging of about 36V.
  • the first communication module 104 is configured to perform wireless communication with the wireless charging device 200.
  • the first communication module 104 may implement wireless communication using various methods.
  • the first communication module 104 may communicate using Bluetooth, wifi, or other methods. In such a communication method, as shown in FIGS. 3 and 5, the first communication The module 104 may perform wireless communication with the wireless charging device 200 through a separate antenna 114, or wireless communication with the wireless charging device 200 through the antenna 114 of the shared electronic device 100, and the antenna 114 may be a Bluetooth antenna, a wifi antenna, or other communication methods. antenna.
  • the first communication module 104 may perform communication using a signal coupling manner. As shown in FIGS. 4 and 6, the first communication module 104 may share the receiving coil 112 and modulate the communication signal to the receiving coil 112 for communication.
  • the electronic device 100 in the embodiment of the present application may include a step-down module 106 connected in parallel with the voltage and current adjustment module 103, that is, an input terminal of the step-down module 106 is connected to an output terminal of the rectification circuit 122.
  • the output of the step-down module 106 is connected to the battery 101.
  • the step-down module 106 is configured to step down the direct current and provide the reduced direct current to the battery 101.
  • the step-down module 106 can step down the direct current output from the wireless receiving module 102 to obtain a direct current that meets the charging requirements of the battery 101. That is, the voltage value and current value of the direct current output by the step-down module 106 meet The charging requirements of the battery 101 can be directly loaded into the battery 101 to charge the battery 101.
  • the buck module 106 may be a Buck circuit.
  • the Buck circuit the smaller the difference between the input voltage and the output voltage, the higher the efficiency. For example, when the input voltage of the Buck circuit is 5V and the output voltage of the Buck circuit is 4.2V, the efficiency can reach about 96%. The circuit generates less heat by itself.
  • the first control module 105 may control the entire wireless charging process.
  • the first control module 105 may control the voltage step-down module 106 to be turned off, and control the voltage and current adjustment module 103 to start working in the fast charging scenario, such as the constant current CC phase and the constant voltage CV phase.
  • the adjustment module 103 charges the battery 101.
  • the first control module 105 can also control the voltage and current adjustment module 103 to be turned off, and control the voltage step-down module 106 to start working to charge the battery 101 through the voltage step-down module 106 in the scenarios of pre-charging and trickle charging.
  • the charging circuit of the electronic device 100 may include a receiving coil 112, a rectifier circuit 122, a charge pump module, and a battery. 101 is formed in series in sequence. Among them, the receiving coil 112 receives AC power through electromagnetic induction or electromagnetic resonance. The rectifier circuit 122 converts the AC power received by the receiving coil 112 into DC power, and then the DC power enters the charge pump module for step-down and up-current. The charge pump module charges the battery 101 after the voltage is reduced and increased.
  • wireless charging is realized based on the above-mentioned architecture with a charge pump module. Since the charge pump itself does not require inductance and has a high efficiency, for example, a three-time charge pump has an efficiency of about 95%, it can reduce the heat loss during charging and improve the overall performance. Charging efficiency, especially the efficiency of the rectifier back end, and the charging efficiency is not affected by the difference between the input voltage and the output voltage. It can be used in wireless charging scenarios with high input voltage, optimize charging speed, achieve wireless fast charging, and improve user experience. In addition, the charge pump principle is used to achieve high-voltage wireless charging. By increasing the front-end voltage and reducing the front-end current, the receiving coil current can be greatly reduced. Because the heating of the receiving coil is proportional to the square of the current, the heating of the receiving coil can be made large. Reduced amplitude, optimized coil heating.
  • the charging circuit of the electronic device 100 may be formed by the receiving coil 112, the rectifier circuit 122, the step-down module 106, and the battery 101 in series, where the receiving coil 112 passes
  • the electromagnetic induction or electromagnetic resonance receives AC power
  • the rectifier circuit 122 converts the AC power received by the receiving coil 112 into DC power
  • the DC power enters the step-down module 106 to reduce the voltage.
  • the DC power is charged by the battery 101 after the voltage is reduced by the step-down module 106.
  • the battery 101 can be charged through the Buck circuit during pre-charging and trickle charging, so that the charging efficiency can still be guaranteed and the Buck circuit can be reduced. Self-heating.
  • the charging control at this time can be completed by controlling the step-down module 106, and the control method is optimized, and the control is simple.
  • the electronic device 100 further includes a detection module 107.
  • the detection module 107 is configured to detect the state parameters of the battery 101 and send the state parameters of the battery 101 to the first control module 105. The entire wireless charging process is controlled according to the state parameters of the battery 101.
  • the state parameters of the battery 101 may include the power of the battery, the voltage of the battery, and the charging current.
  • the detection module 107 may include a voltage detection circuit and a current detection circuit.
  • the voltage detection circuit 304 may be configured to sample the voltage of the battery 101 and send the sampled voltage value to the first control module 105.
  • the voltage detection circuit can sample the voltage of the battery 101 in a series voltage division manner.
  • the current detection circuit may be configured to sample the current of the battery 101 and send the sampled current value to the first control module 105.
  • the current detection circuit can sample and detect the current of the battery 101 through a current detection resistor or a galvanometer.
  • the electronic device 100 further includes a load switch K1.
  • the load switch K1 is connected between the voltage and current adjustment module 103 and the battery 101.
  • the load switch K1 is connected to the first control module 105 and the first control module 105.
  • the load switch K1 is controlled to be turned off to stop charging.
  • one end of the load switch K1 may be connected to the output of the voltage and current adjustment module 103, the other end of the load switch K1 is connected to the output of the battery 101 and the step-down module 106, and the control terminal of the load switch K1 is connected to the first The control module 105 is connected.
  • the electronic device 100 fails, for example, when the system of the electronic device 100 runs or crashes, it controls the load switch K1 to be turned off to cut off the charging circuit, thereby protecting charging safety.
  • the load switch K1 may be a load switch with an I2C (Inter-Integrated Circuit) and a watchdog function.
  • the voltage and current adjustment module 103 includes a charge pump unit 113 or a plurality of charge pump units 113 connected in series or in parallel.
  • the input terminal of the charge pump unit 113 is connected to the rectifier circuit 122, and the output terminal of the charge pump unit 113 is connected to the battery 101.
  • the input terminal of each charge pump unit 113 is connected to the rectifier circuit 122, and the output terminal of each charge pump unit 113 is connected to the battery 101.
  • the input terminal of the first charge pump unit 113 is connected to the rectifier circuit 122, and the input terminal of the charge pump unit 113 other than the first charge pump unit 113 is connected to the previous charge pump unit.
  • the output terminal of 113 is connected, and the output terminal of the last charge pump unit 113 is connected to the battery 101.
  • the plurality of charge pump units 113 may adopt the same circuit structure.
  • each charge pump unit 113 may include a first switch Q1, an output capacitor Co, and a (M-1) cascade capacitor circuit 1131, where M is an integer greater than 1, and the first terminal of the first switch Q1 Connected to the input terminal INPUT of the charge pump unit 113, the second terminal of the first switch Q1 is connected to the (M-1) cascade capacitor circuit 1131, and the first terminal of the output capacitor Co is connected to the output terminal OUTPUT of the charge pump unit 113 and The (M-1) cascade capacitor circuit 1131 is connected, and the second terminal of the output capacitor Co is grounded.
  • each stage of the capacitor circuit 1131 may include a capacitor Cd and a switch component 1132.
  • the switch component 1132 of each stage of the (M-1) capacitor circuit 1331 By controlling the switch component 1132 of each stage of the (M-1) capacitor circuit 1331, the (M-1) stage of the capacitor circuit 1131 is controlled.
  • the capacitors Cd in the circuit are connected in parallel with each other and then in parallel with the output capacitor Co, or the capacitors Cd in the (M-1) stage capacitor circuit are connected in series with each other and then in series with the output capacitor Co.
  • the output voltage is 1 / M of the input voltage and the output current is M times the input current.
  • M can be set according to the required conversion multiple of each charge pump unit 113.
  • M may be 3, and a two-stage capacitor circuit 1131 is provided.
  • the switch assembly 1132 may include a first parallel control switch, a second parallel control switch, and a series control switch, wherein the first end of the second capacitor C2 is connected to the previous-stage capacitor circuit 1131 (the current stage is not the first stage) or The input terminal INPUT (the current stage is the first stage) of the charge pump unit 113 is connected; the first terminal of the first parallel control switch is connected to the second terminal of the second capacitor C2, and the second terminal of the first parallel control switch is grounded; The first end of the two parallel control switches is connected to the first end of the second capacitor C2, the first end of the series control switch is connected to the second end of the second capacitor C2, and the second end of the series control switch is connected to the second parallel control switch After the second terminal is connected, it is connected to the capacitor circuit 1131 of the subsequent stage (the current stage is not the (M-1) stage) or the output terminal OUTPUT of the charge pump unit 113 (the current stage is the (M-1) stage).
  • first switch Q1 and the first parallel control switch, the second parallel control switch, and the series control switch in the switch assembly 1132 may be respectively connected to corresponding driving circuits and are turned on under the driving of the corresponding driving circuits. Or shut down.
  • the driving circuit can be controlled by an independent controller or the first control module 105.
  • the driving circuit receives the controller control or the opening control signal sent by the first control module 105, the driving circuit drives the corresponding switch to be turned on, and upon receiving the When the controller controls or the shutdown control signal sent by the first control module 105, the corresponding switch is driven to turn off.
  • the first control module 105 can directly control each charge pump unit 113 so that the output voltage of the charge pump unit 113 is 1 / M of the input voltage and the output current is M times the input current.
  • the first control module 105 may output an enable signal to the controller, and the controller then controls each charge pump unit 113 so that the output voltage of the charge pump unit 113 is 1 / M of the input voltage and the output current is equal to the input current. M times.
  • the working mode of the charge pump unit 113 is as follows:
  • the charge pump unit 113 works in series mode.
  • the first switch Q1 and the series control switch of each stage of the capacitor circuit 1331 in the (M-1) capacitor circuit are turned on.
  • the first parallel control switch and the second parallel control switch of the stage capacitor circuit are turned off, and the capacitor Cd in the (M-1) stage capacitor circuit 1331 is connected in series and then connected in series with the output capacitor Co;
  • the charge pump unit 113 works in parallel mode.
  • the first switch Q1 and the series control switch of each stage of the (M-1) capacitor circuit 1331 are turned off, and each of the (M-1) stage capacitor circuits 1331 is turned off.
  • the first parallel control switch and the second parallel control switch of the stage capacitor circuit are turned on, and the capacitor Cd in the (M-1) stage capacitor circuit 1331 is connected in parallel with each other and then connected in parallel with the output capacitor Co;
  • the charge pump unit 113 switches between the first and second phases, that is, between the series mode and the parallel mode, so that the output voltage is 1 / M of the input voltage and the output current is the input current. M times.
  • each charge pump unit 113 further includes a first capacitor C1, wherein a first terminal of the first capacitor C1 is connected to an input terminal INPUT of the charge pump unit, and a second terminal of the first capacitor C1 is The terminal is grounded.
  • C1 is the input capacitance of the charge pump unit 113 and is used to keep the circuit stable.
  • the first switch Q1, the first parallel control switch, the second parallel control switch, and the series control switch may be switching transistors, for example, triodes, MOS transistors, and the like.
  • the first capacitor C1, the output capacitor Co, and the capacitor Cd may all be ceramic capacitors, such as low-ESR (Equivalent Series Resistance) ceramic capacitors.
  • the driving circuit of the first switch Q1 and the first parallel control switch, the second parallel control switch, and the series control switch may be disposed on an integrated circuit.
  • the first switch Q1 and the first parallel control switch and the second parallel control The on and off of the switch and the series control switch are controlled by the integrated circuit.
  • the first switch Q1, the first parallel control switch, the second parallel control switch, and the series control switch may be provided on another integrated circuit, and the first capacitor C1, the output capacitor Co, and the capacitor Cd may be externally connected to corresponding positions of another integrated circuit. .
  • each charge pump unit 113 may include first to seventh switches Q1 to Q7 and first to third capacitors C1 to C3 and an output capacitor Co.
  • the second switch Q2, the third switch Q3, the fourth switch Q4, and the second capacitor C2 are configured as a first-stage capacitor circuit 1131.
  • the second capacitor C2 is the capacitor Cd in the first-stage capacitor circuit 1131.
  • the second switch Q2, third switch Q3, and fourth switch Q4 are the switch components in the first-stage capacitor circuit 1131, which correspond to the first parallel control switch, the second parallel control switch, and the series control switch, respectively; the fifth switch Q5 and the sixth switch Q6 and the seventh switch Q7 and the third capacitor C3 are configured as a second-stage capacitor circuit 1131.
  • the third capacitor C3 is the capacitor Cd in the second-stage capacitor circuit 1131.
  • Q7 is a switch component in the second-stage capacitor circuit 1131, which corresponds to the first parallel control switch, the second parallel control switch, and the series control switch, respectively.
  • one end of the first switch Q1 is connected to the input terminal INPUT of the charge pump unit 113, the first end of the second capacitor C2 is connected to the second end of the first switch Q1, and the first end of the second switch Q2 is connected to the second The second terminal of the capacitor C2 is connected, the second terminal of the second switch Q2 is grounded, the first terminal of the third switch Q3 is connected to the first terminal of the second capacitor C2, and the first terminal of the fourth switch Q4 is connected to the third switch.
  • the second terminal is connected, the second terminal of the fourth switch Q4 is connected to the second terminal of the second capacitor C2, the first terminal of the third capacitor C3 is connected to the second terminal of the third switch Q3 and the first terminal of the fourth switch Q4 Connected separately, the first terminal of the fifth switch Q5 is connected to the second terminal of the third capacitor C3, the second terminal of the fifth switch Q5 is grounded, and the first terminal of the sixth switch Q6 is connected to the first terminal of the third capacitor C3
  • the first terminal of the seventh switch Q7 is connected to the second terminal of the sixth switch Q6 and connected to the output terminal OUTPUT of the charge pump unit 113, and the second terminal of the seventh switch Q7 is connected to the second terminal of the third capacitor C3.
  • the first terminal of the fourth capacitor C4 is connected to the output terminal OUTPUT of the charge pump unit, and the second terminal of the fourth capacitor C4 is grounded.
  • control terminals of the first to seventh switches Q1 to Q7 may be respectively connected to corresponding driving circuits, and the first to seventh switches Q1 to Q7 may be turned on or off under the driving of the corresponding driving circuits.
  • the driving circuit can be controlled by an independent controller or the first control module 105. When the driving circuit receives the controller control or the opening control signal sent by the first control module 105, the corresponding circuit is driven to be turned on by the driving circuit. When the control or the shutdown control signal sent by the first control module 105 is driven, the corresponding switch is turned off.
  • the working mode of the charge pump unit 113 is as follows:
  • the first switch Q1, the fourth switch Q4, and the seventh switch Q7 are turned on, the second switch Q2, the third switch Q3, the fifth switch Q5, and the sixth switch Q6 are turned off, and the second capacitor C2 and the third
  • the capacitor C3 and the fourth capacitor C4 form a series relationship
  • the first switch Q1, the fourth switch Q4, and the seventh switch Q7 are turned off, the second switch Q2, the third switch Q3, the fifth switch Q5, and the sixth switch Q6 are turned on, and the second capacitor C2, the third The capacitor C3 and the fourth capacitor C4 form a parallel relationship.
  • the charge pump unit 113 can be switched between the first stage and the second stage, that is, the second capacitor C2, the third capacitor C3, and the fourth capacitor C4 are switched between a series relationship and a parallel relationship, so that the output voltage is an input The voltage is 1/3 and the output current is 3 times the input current.
  • the charge pump can improve the charging efficiency, optimize the charging speed, and realize wireless fast charging.
  • the present application also proposes a wireless charging device 200.
  • the wireless charging device 200 includes a voltage conversion module 201, a wireless transmitting module 202, a second communication module 203, and a second control module 204.
  • the voltage conversion module 201 is configured to convert an input electric signal to output adjustable DC power.
  • the input electric signal may be AC power or DC power, that is, the wireless charging device 200 is used to convert the input DC power or AC power into an electromagnetic signal to perform power transmission in a wireless manner.
  • the adjustable DC voltage is adjustable. By adjusting the duty cycle of the voltage conversion module 201, the voltage VTX of the adjustable DC power can be adjusted in real time.
  • the voltage conversion module 201 may be a flyback switching power supply conversion module, configured to convert an input electrical signal, such as AC mains (220V AC), to DC power, and provide it to the wireless transmission module 202.
  • the input electrical signal may be provided by a power supply device.
  • the power supply device may include: a rectifier circuit, a transformer circuit, a control circuit, and a charging interface, etc.
  • the AC power input is converted into a DC power output to be provided to the wireless charging device 200.
  • the voltage conversion module 201 can convert the input DC power into an adjustable DC power.
  • the power supply device may be an adapter, a power bank, or a vehicle power source.
  • the voltage conversion module 201 may convert the input AC power into adjustable DC power.
  • the power supply device may be AC power.
  • the wireless transmission module 202 is connected to the voltage conversion module 201.
  • the voltage conversion module 201 is configured to convert the adjustable DC power provided by the voltage conversion module 201 into an electromagnetic signal and transmit the wireless signal.
  • the wireless transmitting module 202 can convert the adjustable DC power provided by the voltage conversion module 201 into an AC power that can be coupled to the transmitting coil 212, and convert the AC power into an electromagnetic signal for transmission through the transmitting coil 212.
  • the wireless transmitting module 202 includes an inverter circuit 222.
  • the inverter circuit 222 is configured to convert the DC power provided by the voltage conversion module 201 into AC power, and couple the AC power to the transmitting coil 212 to realize power transmission.
  • the inverter circuit may include a plurality of switch tubes, and the inverter circuit 222 is controlled to perform conversion by controlling the on and off of the plurality of switch tubes.
  • the wireless charging device 200 may be a wireless charging base or a device with an energy storage function.
  • the wireless charging device 200 When the wireless charging device 200 is a device having an energy storage function, it further includes an energy storage module (for example, a lithium battery), which can obtain power from an external power supply device and store it. Thus, the energy storage module can provide power to the wireless transmitting module 202.
  • the wireless charging device 200 may obtain power from an external power supply device in a wired or wireless manner.
  • a charging interface for example, a Type-C interface
  • the wireless charging device 200 includes a wireless receiving circuit that can obtain power from a device having a wireless charging function in a wireless manner.
  • the second communication module 203 communicates with the electronic device 100.
  • the communication method of the second communication module 203 matches the communication method of the first communication module 104.
  • the second communication module 203 adopts the corresponding communication method, as shown in the figure.
  • the second communication module 203 may perform wireless communication with the electronic device 100 through a separate antenna 213 or through the antenna 213 of the shared wireless charging device 200, and the antenna 213 may be a Bluetooth antenna, a wifi antenna, or an antenna of another communication method.
  • the second communication module 203 can also communicate using a signal coupling method.
  • the second communication module 203 can share the transmitting and transmitting coil 212. To modulate the communication signal to the transmitting coil 212 for communication.
  • the second control module 204 is connected to the second communication module 203 and the voltage conversion module 201.
  • the second control module 204 is configured to communicate with the electronic device 100 through the second communication module 203.
  • the second control module 204 may receive information such as control information sent by the electronic device, and perform a duty cycle of the voltage conversion module according to the received information. Control to adjust the adjustable DC voltage in real time to ensure that the output of the wireless control device 200 matches the demand of the electronic device 100.
  • the present application also proposes a wireless charging method.
  • the electronic device can be wirelessly charged through a wireless charging device.
  • the wireless charging device converts adjustable DC power into an electromagnetic signal for transmission, and the electronic device receives the electromagnetic signal transmitted by the wireless charging device through a wireless receiving module, and Electromagnetic signals are converted into direct current.
  • the electronic device can collect the battery state parameters (current, voltage, etc.) and charge the battery through the voltage and current adjustment module when the current voltage of the battery is greater than the preset fast charging voltage.
  • the specific charging process can be adjusted by adjusting the input
  • the DC power to the wireless transmitting module in the wireless charging device is realized, thereby achieving wireless fast charging.
  • the wireless charging method according to the embodiment of the present application includes the following steps:
  • the communication between the wireless charging device and the electronic device is established. If the communication is successfully established, it indicates that the fast charging function can be used. At this time, for the electronic device The current voltage of the battery is monitored and the fast charge mode is entered according to the current voltage of the battery. If the communication establishment fails, it means that the fast charging function cannot be used. At this time, the battery of the electronic device is charged through the step-down module.
  • the step-down module of the electronic device is controlled to work to step down the DC power converted by the wireless receiving module and provide the stepped-down DC power to the battery.
  • the voltage and current adjustment module is turned off, the step-down module works, and the DC power converted by the wireless receiving module is provided to the battery after being stepped down by the step-down module.
  • the wireless charging device when the step-down module is working, the wireless charging device adjusts the voltage of the adjustable DC power according to a preset conventional voltage value. At this time, the wireless charging device does not perform step-up.
  • the preset conventional voltage value may be 5V.
  • the second control module of the wireless charging device can directly control the voltage conversion module to adjust the adjustable DC voltage to a preset conventional voltage value and invert.
  • the circuit inverts the adjustable DC power to generate AC power, and the AC power is loaded on the transmitting coil to convert it into electromagnetic signals to realize power transmission.
  • the receiving coil of the electronic device receives the electromagnetic signal emitted by the transmitting coil and converts it into alternating current.
  • the rectifying circuit can rectify the alternating current into direct current.
  • the first control module of the electronic device can control the step-down module, so that the DC power output by the step-down module meets the charging requirements of the battery and can be directly loaded into the battery.
  • the first control module can determine whether the peak or average value of the output voltage and / or output current of the step-down module matches the preset charging voltage and / or preset charging current of the battery. If they do not match, the step-down can be adjusted.
  • Step-down ratio of the compression module may refer to a ratio of an output voltage to an input voltage of the step-down module.
  • “matching the preset charging voltage and / or the preset charging current of the battery” includes: the voltage value and / or the current value of the DC power output by the step-down module and the battery's Set the charging voltage and / or the preset charging current to be equal or to float the preset range.
  • the preset fast charging voltage may be any value between 3V and 3.6V.
  • the preset fast charging voltage may be 3.5V.
  • S3 Determine the initial voltage value of the adjustable DC power and send the initial voltage value to the wireless charging device, so that the wireless charging device controls the voltage of the adjustable DC power according to the initial voltage value, for example, the voltage of the adjustable DC power is controlled at the initial voltage Value around.
  • the step-down module of the electronic device when the current voltage of the battery is less than or equal to a preset fast charging voltage, the step-down module of the electronic device is controlled to work, so as to step down the DC power converted by the wireless receiving module and reduce the voltage. DC power is supplied to the battery.
  • the current voltage of the battery of the electronic device can be monitored. If the current voltage of the battery is less than or equal to the preset fast charging voltage, pre-charging is performed, that is, by The buck module pre-charges the battery of the electronic device. If the current voltage of the battery is greater than the preset fast charging voltage, the wireless fast charging mode is entered, the wireless charging device is boosted to achieve fast charging, and the battery of the electronic device is charged through the voltage and current adjustment module.
  • the wireless charging device adjusts the adjustable DC voltage according to a preset conventional voltage value. At this time, the wireless charging device does not perform step-up, such as a preset conventional voltage.
  • the value can be 5V.
  • the charging process of this embodiment is basically the same as the charging process of "the wireless charging device has not established communication with the electronic device", and will not be described in detail.
  • the wireless fast charging mode is entered to determine the initial voltage value of the adjustable DC power of the wireless charging device, and the adjustable DC power is boosted and adjusted based on the initial voltage value.
  • the step-down module is closed, the voltage and current adjustment module works, and the battery is charged through the voltage and current adjustment module.
  • determining the initial voltage value of the adjustable direct current includes: determining the initial voltage value according to the current voltage of the battery, where the initial voltage value is N times the current voltage of the battery plus a loss compensation amount, and N is the voltage and current. Adjust the conversion factor of the module. For example, for a 3x voltage and current adjustment module, the initial voltage value is three times the current voltage of the battery plus the amount of wear compensation.
  • the amount of loss compensation may include the conversion loss of the inverter circuit, the transmitting coil, the receiving coil, and the rectifier circuit.
  • the specific amount of loss compensation may be obtained by testing the actual wireless charging device and electronic equipment.
  • the first control module of the electronic device may determine whether the current voltage of the battery is greater than a preset fast charge voltage, and if the current voltage of the battery is greater than the preset fast charge voltage, determine an initial value of the adjustable DC power, The initial voltage value of the adjustable DC power is sent to the wireless charging device, and at the same time, the step-down module is controlled to be turned off, and the voltage and current adjustment module is operated.
  • the wireless charging device can receive the initial voltage value of the adjustable DC power sent by the electronic device, and control the voltage conversion module according to the initial voltage value of the adjustable DC power to adjust the voltage of the adjustable DC power to the initial voltage value.
  • the adjustable DC power is converted by inversion to generate AC power.
  • the AC power is loaded on the transmitting coil and converted into electromagnetic signals to realize power transmission.
  • the receiving coil of the electronic device receives the electromagnetic signal emitted by the transmitting coil and converts it into alternating current.
  • the rectifying circuit can rectify the alternating current into direct current. Due to the conversion loss of the inverter circuit, the transmitting coil, the receiving coil, and the rectifying circuit,
  • the voltage is basically maintained at N times the current voltage of the battery, and the DC power is supplied to the battery after the voltage is reduced by the voltage and current adjustment module.
  • the first control module of the electronic device can continue to adjust and adjust the adjustable DC power.
  • the adjustable DC power is gradually increased based on the initial voltage value, so that the DC power output by the voltage and current adjustment module meets the charging requirements of the battery. Load directly into the battery.
  • the method further includes: obtaining a current of the battery; and generating a boost adjustment instruction according to the current of the battery, so that the wireless charging device according to the boost adjustment instruction Boost adjustable DC power.
  • the electronic device can send the step-up adjustment instruction to the wireless charging device.
  • the wireless charging device can raise the voltage of the adjustable DC power according to the step-up adjustment instruction.
  • the inverter circuit converts the adjustable DC power after the step-up adjustment to generate the The adjusted AC power finally adjusts the electromagnetic signal transmitted on the transmitting coil.
  • the receiving coil of the electronic device receives the electromagnetic signal transmitted by the transmitting coil and converts it into alternating current.
  • the rectifying circuit rectifies the alternating current into direct current.
  • the direct current is supplied to the battery after being reduced by the voltage and current adjustment module. It should be understood that the DC power output by the rectifier circuit is also boosted with the boosting of the adjustable DC power, and the boosting amplitude of the DC power is substantially equal to that of the adjustable DC power.
  • generating the boost adjustment instruction according to the current of the battery includes: when the difference between the preset charging current and the current of the battery is greater than or equal to a first preset threshold, in a first step The voltage increases the voltage of the adjustable direct current until the difference between the preset charging current and the current of the battery is less than the first preset threshold.
  • the first The two-step voltage increases the voltage of the adjustable DC power and keeps the voltage of the adjustable DC power constant when the difference between the preset charging current and the current of the battery is less than the second preset threshold.
  • the first preset threshold value ⁇ I1 and the second preset threshold value ⁇ I2 are deviation amounts of the preset charging current ICC.
  • the first preset threshold is greater than the second preset threshold, and the first step voltage is greater than the second step voltage.
  • a preset charging current ICC is determined, the current IBAT of the battery is monitored, and the relationship between the preset charging current ICC and the current IBAT of the battery is judged.
  • the difference between the preset charging current ICC and the battery's current IBAT is greater than or equal to the first preset threshold value ⁇ I1, that is, the current IBAT is less than or equal to ICC- ⁇ I1, it is considered that the battery current does not reach the required current value.
  • the first step voltage ⁇ V1 the voltage of the adjustable DC power in the wireless charging device is increased, thereby realizing the coarse adjustment of the adjustable DC power.
  • the electronic device may send a step-up adjustment instruction (including a step-up instruction and voltage adjustment information) to the wireless charging device, and the wireless charging device may increase the voltage of the adjustable direct current according to the step-up adjustment instruction by the first step voltage ⁇ V1,
  • the wireless transmitting module transmits an electromagnetic signal according to an adjustable direct current that increases the first step voltage ⁇ V1, and finally realizes voltage and / or current adjustment of the battery.
  • the voltage of the adjustable DC power is increased according to the first step voltage ⁇ V1 until the difference between the preset charging current ICC and the current IBAT of the battery is smaller than the first preset threshold ⁇ I1. If the difference between the preset charging current ICC and the battery's current IBAT is less than the first preset threshold ⁇ I1, that is, the current IBAT is greater than ICC- ⁇ I1, the voltage of the adjustable DC power is kept unchanged, and charging continues.
  • the difference between the preset charging current ICC and the battery's current IBAT is greater than or equal to the second preset threshold ⁇ I2. As the battery voltage increases, the battery current will become smaller.
  • the difference between the ICC and the battery's current IBAT is greater than or equal to the second preset threshold ⁇ I2, that is, the current IBAT is less than or equal to ICC- ⁇ I2, and the adjustable direct current in the wireless charging device can be increased by the second step voltage ⁇ V2. Voltage to achieve fine tuning of adjustable DC power.
  • the electronic device may send a step-up adjustment instruction (including a step-up instruction and voltage adjustment information) to the wireless charging device, and the wireless charging device may increase the voltage of the adjustable direct current according to the step-up adjustment instruction by the second step voltage ⁇ V2,
  • the wireless transmitting module transmits an electromagnetic signal according to an adjustable direct current that increases the second step voltage ⁇ V2, and finally realizes voltage and / or current adjustment of the battery.
  • the current voltage VBAT of the battery is also monitored, and the current voltage VBAT of the battery is used to determine whether to enter the constant voltage CV stage. If not, enter the constant voltage CV stage. , Then continue to determine whether the difference between the preset charging current ICC and the battery's current IBAT is greater than or equal to the second preset threshold ⁇ I2, and if the difference between the preset charging current ICC and the battery's current IBAT is greater than or equal to The second preset threshold value ⁇ I2, then continue to increase the adjustable DC voltage by the second step voltage ⁇ V2, if the difference between the preset charging current ICC and the current battery current IBAT is less than the second preset threshold value ⁇ I2 , Then keep the adjustable DC voltage unchanged and continue charging. If it enters the constant voltage CV stage, the adjustable direct current of the wireless charging device is adjusted to step down.
  • the method further includes: monitoring the current voltage of the battery; if the current voltage of the battery is within a preset range of a preset charging voltage Within the third step voltage, a step-down adjustment command is generated, so that the wireless charging device adjusts the voltage of the adjustable DC power according to the step-down adjustment command.
  • the constant voltage CV stage is entered.
  • the current voltage of the battery is within the preset range of the preset charging voltage may mean that the current voltage of the battery is greater than the preset charging
  • the difference between the voltage VCV and the voltage deviation amount ⁇ VBAT is smaller than the sum of the preset charging voltage VCV and the voltage deviation amount ⁇ VBAT.
  • the voltage of the adjustable direct current can be reduced according to the third step voltage ⁇ V3.
  • the electronic device may send a step-down adjustment command (including a step-down command and voltage adjustment information) to the wireless charging device, and the wireless charging device may reduce the voltage of the adjustable direct current according to the step-down adjustment instruction by a third step voltage ⁇ V3
  • the wireless transmitting module transmits the electromagnetic signal according to the adjustable direct current which reduces the third step voltage ⁇ V3, and finally realizes the voltage and / or current adjustment of the battery.
  • the method further includes: monitoring the current of the battery; if the current of the battery is less than or equal to the cut-off current, controlling the voltage and current adjustment module to stop working and controlling the electronics
  • the step-down module of the device works to step down the DC power converted by the wireless receiving module and provide the step-down DC power to the battery.
  • a step-down adjustment instruction is generated in a third step voltage according to the current voltage of the battery.
  • the voltage of the adjustable DC power is decreased according to the third step voltage ⁇ V3, and the current of the battery is monitored. If the current of the battery is greater than the cut-off current, continue to determine whether the current voltage of the battery is within the preset range of the preset charging voltage, and if the current voltage of the battery is within the preset range of the preset charging voltage, continue to press the third step voltage ⁇ V3 reduces the voltage of the adjustable DC power. If the current voltage of the battery is not in the preset range of the preset charging voltage, the voltage of the adjustable DC power is maintained and charging continues.
  • the control voltage and current adjustment module is turned off and the step-down module is controlled to work.
  • the DC power converted by the wireless receiving module is reduced by the step-down module Provided to the battery.
  • the wireless charging device when the step-down module is working, can adjust the adjustable DC voltage according to a preset conventional voltage value. At this time, the wireless charging device does not perform step-up, such as a preset conventional voltage value. It can be 5V. The wireless charging device adjusts the adjustable DC voltage to 5V. At this time, the voltage and / or current of the battery is adjusted by controlling the step-down module.
  • a preset conventional voltage value such as a preset conventional voltage value. It can be 5V.
  • the wireless charging device adjusts the adjustable DC voltage to 5V. At this time, the voltage and / or current of the battery is adjusted by controlling the step-down module.
  • the wireless charging device when the step-down module is working, can also keep the voltage of the adjustable DC power constant, without adjusting the voltage of the adjustable DC power to a preset conventional voltage value.
  • the wireless charging method includes the following steps:
  • S101 The electronic device is placed on the wireless charging device.
  • S102 Determine whether the connection between the electronic device and the wireless charging device is successfully established.
  • step S104 If yes, go to step S104; if no, go to step S103.
  • S103 Perform regular charging through the step-down module until the battery is fully charged (the wireless charging device does not perform step-up).
  • S104 Determine whether the current voltage of the battery is greater than a preset fast charging voltage.
  • step S106 If yes, go to step S106; if no, go to step S105.
  • step S105 Pre-charge the battery through the step-down module, and return to step S104.
  • S108 Determine whether the difference between the preset charging current ICC and the battery's current IBAT is greater than or equal to the first preset threshold value ⁇ I1, that is, whether the current IBAT is less than or equal to ICC- ⁇ I1.
  • step S109 If yes, go to step S109; if no, go to step S110.
  • S111 Determine whether the difference between the preset charging current ICC and the current battery current IBAT is greater than or equal to a second preset threshold value ⁇ I2, that is, whether the current IBAT is less than or equal to ICC- ⁇ I2.
  • step S113 If yes, go to step S113; if no, go to step S112.
  • step S112 Waiting for charging, that is, keeping the voltage VTX of the adjustable DC power unchanged, continue charging, and return to step S111.
  • S114 Determine whether the current voltage of the battery is within the preset range of the preset charging voltage, that is, whether the current voltage of the battery is greater than the difference between the preset charging voltage VCV and the voltage deviation amount ⁇ VBAT and is less than the preset charging voltage VCV and the voltage deviation amount. ⁇ Sum of VBAT.
  • step S115 If yes, go to step S115; if no, go to step S110.
  • step S120 If yes, go to step S120; if no, go to step S118.
  • S118 Determine whether the current voltage of the battery is within the preset range of the preset charging voltage, that is, whether the current voltage of the battery is greater than the difference between the preset charging voltage VCV and the voltage deviation amount ⁇ VBAT and is less than the preset charging voltage VCV and the voltage deviation amount. ⁇ Sum of VBAT.
  • step S116 If yes, go to step S116; if no, go to step S119.
  • the adjustable direct current voltage VTX is adjusted to a preset conventional voltage value.
  • the voltage and current adjustment module such as the charge pump module is turned off, the step-down module is operated, and the final charging stage such as the trickle charging stage is performed until the charging is completed.
  • the wireless charging method in the embodiment of the present application can accurately control the wireless charging process, ensure that wireless charging can be completed safely, quickly, and efficiently, and implement the wireless fast charging function.
  • the present application also proposes an electronic device.
  • the electronic device 100 includes a battery 101, a wireless receiving module 102, a voltage and current adjustment module 103, a first communication module 104, and a first control module 105.
  • the wireless receiving module 102 receives electromagnetic signals transmitted by the wireless charging device 200 and converts the electromagnetic signals into direct current.
  • the wireless charging device 200 converts adjustable DC power into electromagnetic signals for transmission;
  • the voltage and current adjustment module 103 and the wireless receiving module 102 is connected to the battery 101.
  • the voltage and current adjustment module 103 is used for stepping down and raising the direct current, and providing the stepped down and stepped up direct current to the battery 101;
  • the first communication module 104 is used for performing the communication with the wireless charging device 200 Wireless communication;
  • the first control module 105 is connected to the first communication module 104 and the voltage and current adjustment module 103.
  • the first control module 105 is used to establish the current voltage of the battery 101 after the wireless charging device 200 establishes communication with the first communication module 104.
  • the control voltage and current adjustment module 103 works to step down and up the DC power converted by the wireless receiving module 102, and determine the initial voltage of the adjustable DC power The initial voltage value to the wireless charging device 200 through the first communication module 104, so that The charging device 200 is adjustable DC line voltage control according to the initial voltage value.
  • the first control module 105 is further configured to determine an initial voltage value according to the current voltage of the battery 101, where the initial voltage value is N times the current voltage of the battery 101 plus a loss compensation amount, and N is a voltage and current Adjust the conversion factor of the module.
  • the first control module 105 further acquires the current of the battery 101 and generates a boost adjustment according to the current of the battery 101 A command, and sending a boost regulation command to the wireless charging device 200, so that the wireless charging apparatus 200 boosts the adjustable DC power according to the boost regulation command.
  • the first control module 105 is further configured to: when the difference between the preset charging current and the current of the battery is greater than or equal to a first preset threshold, increase by a first step voltage and be adjustable. The voltage of the DC power until the difference between the preset charging current and the current of the battery is less than the first preset threshold.
  • the first control module 105 is further configured to: the difference between the preset charging current and the current of the battery is less than the first preset threshold, and the difference between the preset charging current and the current of the battery is When the difference between them is greater than or equal to the second preset threshold, the voltage of the adjustable DC power is increased by the second step voltage, and when the difference between the preset charging current and the current of the battery is less than the second preset threshold, Keep the adjustable DC voltage constant.
  • the first control module 105 is further configured to monitor the current voltage of the battery after increasing the adjustable DC voltage by the second step voltage. If the current voltage of the battery is at a preset charging voltage Within the preset range, a step-down adjustment instruction is generated with a third step voltage, and the step-down adjustment instruction is sent to the wireless charging device 200, so that the wireless charging device 200 adjusts the adjustable DC voltage according to the step-down adjustment instruction.
  • the electronic device 100 further includes a voltage step-down module 106 connected in parallel with the voltage and current adjustment module 103.
  • the voltage step-down module 106 is configured to step down the direct current and provide the reduced direct current to the battery 101. .
  • the first control module 105 is further configured to monitor the current of the battery 101. If the current of the battery 101 is less than or equal to the cut-off current Then, the control voltage and current adjustment module 103 stops working, and the voltage step-down module 106 is controlled to work to step down the DC power converted by the wireless receiving module 102.
  • the first control module 105 if the current of the battery is greater than the cut-off current, the first control module 105 generates a step-down adjustment instruction at a third step voltage according to the current voltage of the battery.
  • the first control module 105 is further configured to control the voltage drop when the wireless charging device 200 has not established communication with the first communication module 104 or the current voltage of the battery 101 is less than or equal to a preset fast charging voltage.
  • the module 106 operates to step down the DC power converted by the wireless receiving module 102.
  • the wireless charging device 200 when the step-down module 106 is working, the wireless charging device 200 adjusts the adjustable DC voltage according to a preset conventional voltage value.
  • the electronic device 100 further includes a load switch K1 connected between the voltage and current adjustment module 103 and the battery 101.
  • the load switch K1 is connected to the first control module 105.
  • the first control module 105 is connected to the electronic device 100. When a fault occurs, the load switch K1 is turned off to stop charging.
  • the voltage and current adjustment module 103 includes at least one charge pump unit 113, and at least one charge pump unit 113 is connected in parallel or in series, wherein each charge pump unit 113 includes a first A switch Q1, an output capacitor Co and a (M-1) cascade capacitor circuit 1131, M is an integer greater than 1, a first terminal of the first switch Q1 is connected to an input terminal INPUT of the charge pump unit 113, and a first switch Q1 The second terminal is connected to the (M-1) cascade capacitor circuit 1131, and the first terminal of the output capacitor Co is connected to the output terminal OUTPUT of the charge pump unit 113 and the (M-1) cascade capacitor circuit 1131, and the output capacitor The second end of Co is grounded.
  • the capacitor circuit 1131 of each stage may include a capacitor Cd and a switch component 1132.
  • the switch component 1132 of the capacitor circuit of each stage in the (M-1) capacitor circuit 1331 By controlling the switch component 1132 of the capacitor circuit of each stage in the (M-1) capacitor circuit 1331, the capacitor circuit of the (M-1) capacitor circuit 1131
  • the capacitors Cd are connected in parallel with each other and then in parallel with the output capacitor Co, or the capacitors Cd in the (M-1) stage capacitor circuit are connected in series with each other and then in series with the output capacitor Co.
  • the control module controls the voltage and current adjustment module of the electronic device to work, and at the same time controls the wireless according to the initial value of the adjustable DC power
  • the adjustable DC voltage of the charging device can accurately control the wireless charging, ensure that the wireless charging can be completed safely, quickly and efficiently, and realize the wireless fast charging function.
  • the present application also proposes a wireless charging device.
  • the wireless charging device 200 includes: a voltage conversion module 201, a wireless transmitting module 202, a second communication module 203, and a second control module 204.
  • the voltage conversion module 201 is used to convert the input electric signal to output adjustable DC power; the wireless transmission module 202 is connected to the voltage conversion module 201, and the wireless transmission module 202 converts the adjustable DC power into electromagnetic signals and transmits them wirelessly.
  • the second communication module 203 communicates with the electronic device 100; the second control module 204 is connected to the second communication module 203 and the voltage conversion module 201, and the second control module 204 receives the control information sent by the electronic device 100 through the second communication module 203 And control the voltage conversion module 201 according to the control information, so that the voltage of the adjustable DC power matches the control information; wherein the control information includes the initial voltage value of the adjustable DC power, or the step-up regulation instruction of the adjustable DC power, Alternatively, a step-down instruction for adjustable DC power.
  • wireless charging can be accurately controlled, ensuring that wireless charging can be completed safely, quickly, and efficiently, and implementing the wireless fast charging function.
  • the present application also proposes a wireless charging system.
  • the wireless charging system 1000 includes an electronic device 100 and a wireless charging device 200.
  • the electronic device and the wireless charging device of the foregoing embodiments can accurately control wireless charging, ensure that wireless charging can be completed safely, quickly, and efficiently, and implement the wireless fast charging function.
  • the present application also proposes a non-transitory computer-readable storage medium on which a wireless charging program is stored, which is executed by a processor to implement the wireless charging method of the foregoing embodiment.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "a plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • Any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for implementing steps of a custom logic function or process
  • the scope of the preferred embodiments of this application includes additional implementations in which the functions may be performed out of the order shown or discussed, including performing the functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application pertain.
  • Logic and / or steps represented in a flowchart or otherwise described herein, for example, a sequenced list of executable instructions that may be considered to implement a logical function, may be embodied in any computer-readable medium, For use by, or in combination with, an instruction execution system, device, or device (such as a computer-based system, a system that includes a processor, or another system that can fetch and execute instructions from an instruction execution system, device, or device) Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • each part of the application may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic circuits with logic gates for implementing logic functions on data signals Logic circuits, ASICs with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried by the methods in the foregoing embodiments can be implemented by a program instructing related hardware.
  • the program can be stored in a computer-readable storage medium.
  • the program is When executed, one or a combination of the steps of the method embodiment is included.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提出一种无线充电方法、电子设备、无线充电装置和无线充电系统,其中,电子设备通过无线接收模块接收无线充电装置发射的电磁信号,并将电磁信号转换为直流电,方法包括:在无线充电装置与电子设备建立通信之后,对电子设备的电池的当前电压进行监测;当电池的当前电压大于预设快充电压时,控制电子设备的电压电流调整模块进行工作,以对电子设备的无线接收模块转换出的直流电进行降压和升流,并将降压和升流后的直流电提供给电池,并确定可调直流电的初始电压值,根据初始电压值控制可调直流电的电压,从而,对无线充电进行精准控制,保证无线充电安全快速、高效率完成,实现无线快充功能。

Description

无线充电方法、电子设备、无线充电装置和无线充电系统
相关申请的交叉引用
本申请基于申请号为201811154730.1,申请日为2018年9月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及充电技术领域,尤其涉及一种无线充电方法、电子设备、无线充电装置和无线充电系统。
背景技术
相关技术中的无线充电技术通常采用如图16所示的架构,针对该充电架构,发射端稳定输出电压,具体的充电过程通过Buck Charge10进行调节控制即可。但是,相关技术存在的问题在于,效率相对较低,发热较多,只能用于小功率充电例如使用功率为10W,功率再大则发热会很严重,影响用户体验。
发明内容
本申请提供一种无线充电方法、电子设备、无线充电装置和无线充电系统,能够保证无线充电可以安全快速、高效率完成,实现无线快充功能。
本申请第一方面实施例提出了一种无线充电方法,应用于电子设备,所述电子设备通过无线接收模块接收无线充电装置发射的电磁信号,并将所述电磁信号转换为直流电,所述方法包括以下步骤:在所述无线充电装置与所述电子设备建立通信之后,对所述电子设备的电池的当前电压进行监测;当所述电池的当前电压大于预设快充电压时,控制所述电子设备的电压电流调整模块进行工作,以对所述电子设备的无线接收模块转换出的直流电进行降压和升流,并将降压和升流后的直流电提供给所述电池;确定所述可调直流电的初始电压值,并将所述初始电压值发送给所述无线充电装置,以使所述无线充电装置根据所述初始电压值控制所述可调直流电的电压。
根据本申请实施例提出的无线充电方法,当电池的当前电压大于预设快充电压时,控制电子设备的电压电流调整模块进行工作,同时根据可调直流电的初始电压值控制无线充电装置的可调直流电的电压,从而,能够对无线充电进行精准控制,保证无线充电可以安全快速、高效率完成,实现无线快充功能。
根据本申请的一个实施例,所述确定所述可调直流电的初始电压值包括:根据所述电池的当前电压确定所述初始电压值,其中,所述初始电压值为所述电池的当前电压的N倍加上耗损补偿量,所述N为所述电压电流调整模块的转换倍数。
根据本申请的一个实施例,在所述无线充电装置将所述可调直流电的电压调整至所述初始电压值之后,还包括:获取所述电池的当前电流;根据所述电池的当前电流生成升压调节指令,以使所述无线充电装置根据所述升压调节指令对所述可调直流电进行升压调节。
根据本申请的一个实施例,所述根据所述电池的当前电流生成升压调节指令包括:在所述预设充电电流与所述电池的当前电流之间的差值大于等于第一预设阈值时,以第一步进电压提高所述可调直流电的电压,直至所述预设充电电流与所述电池的当前电流之间的差值小于所述第一预设阈值。
根据本申请的一个实施例,在所述预设充电电流与所述电池的当前电流之间的差值小于所述第一预设阈值,且所述预设充电电流与所述电池的当前电流之间的差值大于等于第二预设阈值时,以第二步进电压提高所述可调直流电的电压,以及在所述预设充电电流与所述电池的当前电流之间的差值小于所述第二预设阈值时,保持所述可调直流电的电压不变。
根据本申请的一个实施例,在以第二步进电压提高所述可调直流电的电压之后,还包括:对所述电池的当前电压进行监测;如果所述电池的当前电压处于预设充电电压的预设范围内,则以第三步进电压生成降压调节指令,以使所述无线充电装置根据所述降压调节指令调整所述可调直流电的电压。
根据本申请的一个实施例,在根据所述降压调节指令调整所述可调直流电的电压之后,所述的无线充电方法还包括:对所述电池的当前电流进行监测;如果所述电池的当前电流小于等于截止电流,则控制所述电压电流调整模块停止工作,控制所述电子设备的降压模块进行工作,以对所述无线接收模块转换出的直流电进行降压并将降压后的直流电提供给所述电池。
根据本申请的一个实施例,如果所述电池的当前电流大于所述截止电流,则根据所述电池的当前电压以所述第三步进电压生成降压调节指令。
根据本申请的一个实施例,所述的无线充电方法还包括:在所述无线充电装置与所述电子设备未建立通信,或者所述电池的当前电压小于等于所述预设快充电压时,控制所述电子设备的降压模块进行工作,以对所述无线接收模块转换出的直流电进行降压并将降压后的直流电提供给所述电池。
根据本申请的一个实施例,在所述降压模块进行工作时,所述无线充电装置根据所述预设常规电压值调整所述可调直流电的电压。
本申请第二方面提出的一种电子设备,包括:电池;无线接收模块,所述无线接收模块接收无线充电装置发射的电磁信号,并将所述电磁信号转换为直流电;电压电流调整模块,所述电压电流调整模块与所述无线接收模块和所述电池相连,所述电压电流调整模块用于对所述直流电进行降压和升流,并将降压和升流后的直流电提供给所述电池;第一通信模块,所述第一通信模块用于与所述无线充电装置进行无线通信;第一控制模块,所述第一控制模块与所述第一通信模块和所述电压电流调整模块相连,所述第一控制模块用于在所述无线充电装置与所述第一通信模块建立通信之后,对所述电池的当前电压进行监测,当所述电池的当前电压大于预设快充电压时,控制所述电压电流调整模块进行工作以对所述无线接收模块转换出的直流电进行降压和升流,并确定所述可调直流电的初始电压值,通过所述第一通信模块将所述初始电压值发送给所述无线充电装置,以使所述无线充电装置根据所述初始电压值控制所述可调直流电的电压。
根据本申请实施例提出的电子设备,当电池的当前电压大于预设快充电压时,控制模块控制电子设备的电压电流调整模块进行工作,同时根据可调直流电的初始电压值控制无线充电装置的可调直流电的电压,从而,能够对无线充电进行精准控制,保证无线充电可以安全快速、高效率完成,实现无线快充功能。
根据本申请的一个实施例,所述第一控制模块进一步用于根据所述电池的当前电压确定所述初始电压值,其中,所述初始电压值为所述电池的当前电压的N倍加上耗损补偿量,所述N为所述电压电流调整模块的转换倍数。
根据本申请的一个实施例,在所述无线充电装置将所述可调直流电的电压调整至所述初始电压值之后,所述第一控制模块还获取所述电池的当前电流,并根据所述电池的当前电流生成升压调节指令,以及将升压调节指令发送给所述无线充电装置,以使所述无线充电装置根据所述升压调节指令对所述可调直流电进行升压调节。
根据本申请的一个实施例,所述第一控制模块还用于,在所述预设充电电流与所述电池的当前电流之间的差值大于等于第一预设阈值时,以第一步进电压提高所述可调直流电的电压,直至所述预设充电电流与所述电池的当前电流之间的差值小于所述第一预设阈值。
根据本申请的一个实施例,所述第一控制模块还用于,在所述预设充电电流与所述电池的当前电流之间的差值小于所述第一预设阈值,且所述预设充电电流与所述电池的当前电流之间的差值大于等于第二预设阈值时,以第二步进电压提高所述可调直流电的电压,以及在所述预设充电电流与所述电池的当前电流之间的差值小于所述第二预设阈值时,保持所述可调直流电的电压不变。
根据本申请的一个实施例,所述第一控制模块还用于,以第二步进电压提高所述可调直流电的电压之后,还对所述电池的当前电压进行监测,如果所述电池的当前电压处于预设充电电压的预设范围内,则以第三步进电压生成降压调节指令,并将所述降压调节指令发送给所述无线充电装置,以使所述无线充电装置根据所述降压调节指令调整所述可调直流电的电压。
根据本申请的一个实施例,所述电子设备还包括与所述电压电流调整模块并联连接的降压模块,所述降压模块用于对所述直流电进行降压,并将降压后的直流电提供给所述电池。
根据本申请的一个实施例,在根据所述降压调节指令调整所述可调直流电的电压之后,所述第一控制模块还用于,对所述电池的当前电流进行监测,如果所述电池的当前电流小于等于截止电流,则控制所述电压电流调整模块停止工作,控制所述降压模块进行工作以对所述无线接收模块转换出的直流电进行降压。
根据本申请的一个实施例,如果所述电池的当前电流大于所述截止电流,所述第一控制模块则根据所述电池的当前电压以所述第三步进电压生成降压调节指令。
根据本申请的一个实施例,所述第一控制模块还用于,在所述无线充电装置与所述第一通信模块未建立通信,或者所述电池的当前电压小于等于所述预设快充电压时,控制所述降压模块进行工作以对所述无线接收模块转换出的直流电进行降压。
根据本申请的一个实施例,在所述降压模块进行工作时,所述无线充电装置根据所述预设常规电压值调整所述可调直流电的电压。
根据本申请的一个实施例,所述的电子设备还包括连接在所述电压电流调整模块与所述电池之间的负载开关,所述负载开关与所述第一控制模块相连,所述第一控制模块在所述电子设备出现故障时控制所述负载开关关断以停止充电。
根据本申请的一个实施例,所述电压电流调整模块包括至少一个电荷泵单元,所述至少一个电荷泵单元并联连接或串联连接,其中,每个所述电荷泵单元包括第一开关、输出电容和(M-1)级级联电容电 路,M为大于1的整数,所述第一开关的第一端与所述电荷泵单元的输入端相连,所述第一开关的第二端与所述(M-1)级级联电容电路相连,所述输出电容的第一端与所述电荷泵单元的输出端和所述M级级联电容电路相连,所述输出电容的第二端接地;其中,每级电容电路包括电容和开关组件,通过控制所述(M-1)级电容电路中每级电容电路的开关组件,以使所述(M-1)级电容电路中的电容相互并联后再与所述输出电容并联或使所述(M-1)级电容电路中的电容相互串联后再与所述输出电容串联。
本申请第三方面实施例提出了一种无线充电装置,包括:电压转换模块,所述电压转换模块用于对输入的电信号进行转换以输出可调直流电;无线发射模块,所述无线发射模块与所述电压转换模块相连,所述无线发射模块将所述可调直流电转换所述为电磁信号并通过无线方式进行发射;第二通信模块,所述第二通信模块与所述电子设备进行通信;第二控制模块,所述第二控制模块与所述第二通信模块和所述电压转换模块相连,所述第二控制模块通过所述第二通信模块接收所述电子设备发送的控制信息,并根据所述控制信息对所述电压转换模块进行控制,以使所述可调直流电的电压与所述控制信息相匹配;其中,所述控制信息包括所述可调直流电的初始电压值,或者,所述可调直流电的升压调节指令,或者,所述可调直流电的降压调节指令。
根据本申请实施例提出的无线充电装置,通过与第二方面实施例的电子设备进行通信,能够对无线充电进行精准控制,保证无线充电可以安全快速、高效率完成,实现无线快充功能。
本申请第四方面实施例提出了一种无线充电系统,包括所述的电子设备以及所述的无线充电装置。
根据本申请实施例提出的无线充电系统,通过第二方面实施例的电子设备和第三方面实施例的无线充电装置,能够对无线充电进行精准控制,保证无线充电可以安全快速、高效率完成,实现无线快充功能。
本申请第五方面实施例提出了一种非临时性计算机可读存储介质,其上存储有无线充电程序,该程序被处理器执行时实现前述第一方面实施例的无线充电方法。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的电子设备的方框示意图;
图2是根据本申请一个实施例的电子设备的方框示意图;
图3是根据本申请另一个实施例的电子设备的结构示意图,其中,通过天线进行通信;
图4是根据本申请另一个实施例的电子设备的结构示意图,其中,通过接收线圈进行通信;
图5是根据本申请又一个实施例的电子设备的结构示意图,其中,通过天线进行通信;
图6是根据本申请又一个实施例的电子设备的结构示意图,其中,通过接收线圈进行通信;
图7是根据本申请一个实施例的电子设备中电压电流调整模块的方框示意图;
图8是根据本申请另一个实施例的电子设备中电压电流调整模块的方框示意图;
图9是根据本申请一个具体实施例的电子设备中电压电流调整模块的电路原理图;
图10是根据本申请实施例的无线充电装置的方框示意图;
图11是根据本申请一个实施例的无线充电装置的结构示意图,其中,通过发射线圈进行通信;
图12是根据本申请一个实施例的电子设备的结构示意图,其中,通过天线进行通信;
图13是根据本申请实施例的无线充电方法的流程图;
图14是根据本申请一个具体实施例的无线充电方法的流程图;
图15是根据本申请实施例的无线充电系统的方框示意图;
图16是相关技术的无线充电架构的示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的无线充电方法、电子设备、无线充电装置和无线充电系统。
需要说明的是,本申请实施例的无线充电方法可用于带有电压电流调整模块的无线充电架构中,例如,电压电流调整模块可为电荷泵模块,对于带有电荷泵的无线充电架构,可在电子设备中设置电荷泵模块,以利用电荷泵模块实现降压和升流。其中,电子设备可为手机、平板电脑、智能手表等。
应理解,对于Buck电路,当输入电压与输出电压的差值越大时,转换效率越低,例如某Buck IC当输入电压15V,输出电压4.2V,效率在75%左右,但是同样的Buck IC,输入电压5V,输出电压4.2V, 效率则可以到96%。
对于电压电流调整模块例如电荷泵,其自身的效率较高,例如对于3倍转换电荷泵,效率在95%左右,因此利用电荷泵可提高充电效率,优化充电速度,实现无线快充。
参考图1-4,本申请实施例的电子设备100可包括电池101、无线接收模块102、电压电流调整模块103、第一通信模块104和第一控制模块105。
无线接收模块102接收无线充电装置200发射的电磁信号,并将电磁信号转换为直流电,其中,无线充电装置200根据可调直流电的电压发射电磁信号。在一些实施例中,无线接收模块102可通过接收线圈112将无线充电装置200的无线发射模块发射的电磁信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成稳定的直流电,以给电池101充电。
在一些实施例中,无线接收模块102包括整流电路122。整流电路122用于将接收线圈112接收到的交流电转换为直流电。
根据本申请的一个实施例,电池101可包括单电芯或多电芯。电池101包括多电芯时,该多个电芯之间为串联关系。由此,电池101可承受的充电电压为多个电芯可承受的充电电压之和,可提高充电速度,减少充电发热。
以电子设备为手机为例,电子设备的电池101包括单电芯时,内部的单节电芯的电压一般在3.0V-4.35V之间。而电子设备的电池101包括两节串联的电芯时,串联的两节电芯的总电压为6.0V-8.7V。由此,相比于单电芯,采用多节电芯串联时,无线接收模块102的输出电压可以提高。与单节电芯相比,达到同等的充电速度,多节电芯所需的充电电流约为单节电芯所需的充电电流的1/S(S为电子设备内的相互串联的电芯的数目)。换句话说,在保证同等充电速度(充电功率相同)的前提下,采用多节电芯的方案,可以降低充电电流的大小,从而减少电子设备在充电过程的发热量。另一方面,与单电芯方案相比,在充电电流保持相同的情况下,采用多电芯串联方案,可提高充电电压,从而提高充电速度。
电压电流调整模块103与无线接收模块102和电池101相连,即,电压电流调整模块103的输入端与无线接收模块102相连,电压电流调整模块103的输出端与电池101相连,电压电流调整模块103用于对直流电进行降压和升流,并将降压和升流后的直流电提供给电池101。在一些示例中,电压电流调整模块103可对无线接收模块102输出的直流电进行降压和升流,得到符合电池101的充电需求的直流电,即言,电压电流调整模块103输出的直流电的电压值和电流值,符合电池101的充电需求,可直接加载到电池101,给电池101充电。
在本申请的实施例中,电压电流调整模块103的转换倍数N可根据实际情况进行设置,在一些示例中,转换倍数N可为两倍、三倍、四倍等。对于N倍的电压电流调整模块103,可实现输出电压是输入电压的1/N,输出电流是输入电流的N倍。通过合适的转换倍数,实现大功率无线充电,例如,3倍电荷泵模块容易实现较大功率快充,2倍电荷泵模块则可以实现12W左右的快充。在本申请实施例中,优选3倍电荷泵模块。
电压电流调整模块103包括至少一个电荷泵单元113,至少一个电荷泵单元113可并联连接或串联连接。例如,如图5-6所示,电压电流调整模块103包括多个电荷泵单元113,多个电荷泵单元113可并联连接,从而增大充电功率。又如,电压电流调整模块103包括多个电荷泵单元113,多个电荷泵单元113可串联连接,从而可提高电压电流调整模块103的转换倍数,即电压电流调整模块103的转换倍数,实现更高压充电,提升充电效率和充电速度。例如两个三倍的电荷泵单元113串联可实现九倍的转换倍数,如果电池101的电压为4V,则无线充电装置提供36V左右的高压充电。
第一通信模块104用于与无线充电装置200进行无线通信。第一通信模块104可以使用多种方法实现无线通信,例如,第一通信模块104可使用蓝牙、wifi或其它方式进行通信,在此类通信方式下,如图3和5所示,第一通信模块104可通过单独的天线114与无线充电装置200进行无线通信,或者通过共用电子设备100的天线114与无线充电装置200进行无线通信,而天线114可为蓝牙天线、wifi天线或其它通信方式的天线。又如,第一通信模块104可使用信号耦合的方式进行通信,如图4和6所示,第一通信模块104可以共用接收线圈112,将通信信号调制到接收线圈112上进行通信。
进一步地,参考图2-图6,本申请实施例的电子设备100可包括与电压电流调整模块103并联连接的降压模块106,即降压模块106的输入端与整流电路122的输出端相连,降压模块106的输出端与电池101相连。降压模块106用于对直流电进行降压,并将降压后的直流电提供给电池101。在一些示例中,降压模块106可对无线接收模块102输出的直流电进行降压,得到符合电池101的充电需求的直流电,即言,降压模块106输出的直流电的电压值和电流值,符合电池101的充电需求,可直接加载到电池101,给电池101充电。
在本申请的实施例中,降压模块106的实现形式可以有多种。作为一个示例,降压模块106可以为Buck电路。对于Buck电路,输入电压与输出电压的差值越小,效率越高,例如当Buck电路的输入电压 为5V,且Buck电路的输出电压为4.2V,效率可以到96%左右,还可使Buck电路自身发热减少。
在本申请实施例中,第一控制模块105可对整个无线充电过程进行控制。作为一个示例,第一控制模块105可在快充的场景下,例如恒流CC阶段及恒压CV阶段前期,控制降压模块106关闭,并控制电压电流调整模块103开始工作,以经过电压电流调整模块103给电池101充电。第一控制模块105还可在预充电和涓流充电的场景下,控制电压电流调整模块103关闭,并控制降压模块106开始工作,以经过降压模块106给电池101充电。
具体地,以电压电流调整模块103采用电荷泵模块为例,当降压模块106关闭且电荷泵模块工作时,电子设备100的充电回路可以由接收线圈112、整流电路122、电荷泵模块和电池101依次串联而形成,其中,接收线圈112通过电磁感应或电磁共振接收交流电,整流电路122将接收线圈112接收到的交流电转换为直流电,然后直流电进入电荷泵模块进行降压、升流,直流电经过电荷泵模块降压、升流后给电池101充电。
由此,基于上述具有电荷泵模块的架构实现无线充电,由于电荷泵自身不需要电感,效率较高,例如3倍的电荷泵,效率在95%左右,因而可以减少充电过程热损耗,提高整体充电效率,特别是整流后端的效率,且充电效率不受输入电压与输出电压的差值大小影响,能够用于高输入电压的无线充电场景,优化充电速度,实现无线快充,提高用户体验。另外,采用电荷泵原理实现高压无线充电,通过提高前端电压且降低前端电流的方式,可以大幅度降低接收线圈电流,由于接收线圈的发热与电流平方成正比,因此,可使接收线圈的发热大幅度减少,优化线圈发热。
具体地,当电荷泵模块关闭且降压模块106工作时,电子设备100的充电回路可以由接收线圈112、整流电路122、降压模块106和电池101依次串联而形成,其中,接收线圈112通过电磁感应或电磁共振接收交流电,整流电路122将接收线圈112接收到的交流电转换为直流电,然后直流电进入降压模块106进行降压,直流电经过降压模块106降压后给电池101充电。
由此,通过利用Buck电路输入电压与输出电压差越小、效率越高的特点,可以在预充电和涓流充电时通过Buck电路给电池101充电,从而能够仍然能够保证充电效率,减少Buck电路自身发热。同时,此时的充电控制,可以通过控制降压模块106完成,优化控制方法,控制简单。
进一步地,参考图3-6,电子设备100还包括检测模块107,检测模块107用于检测电池101的状态参数,并将电池101的状态参数发送给第一控制模块105,第一控制模块105根据电池101的状态参数对整个无线充电过程进行控制。
在一些实施例中,电池101的状态参数可包括电池的电量、电池的电压和充电电流。检测模块107可以包括:电压检测电路和电流检测电路。电压检测电路304可用于对电池101的电压进行采样,并将采样后的电压值发送给第一控制模块105。其中,电压检测电路可以通过串联分压的方式对电池101的电压进行采样。电流检测电路可用于对电池101的电流进行采样,并将采样后的电流值发送给第一控制模块105。其中,电流检测电路可以通过检流电阻或检流计对电池101的电流进行采样检测。
参考图3-6的实施例,电子设备100还包括负载开关K1,负载开关K1连接在电压电流调整模块103与电池101之间,负载开关K1与第一控制模块105相连,第一控制模块105在电子设备100出现故障时控制负载开关K1关断以停止充电。
在一些示例,负载开关K1的一端可与电压电流调整模块103的输出端相连,负载开关K1的另一端分别与电池101和降压模块106的输出端相连,负载开关K1的控制端与第一控制模块105相连,第一控制模块105在电子设备100出现故障时,例如电子设备100的系统跑飞或者死机的情况下,控制负载开关K1关断,切断充电回路,从而保护充电安全。例如,负载开关K1可以使用带I2C(Inter-Integrated Circuit,两线式串行总线)并具有watchdog(看门狗)功能的负载开关。
下面结合图7-图9对本申请实施例中的电压电流调整模块103的结构进行描述。电压电流调整模块103包括一个电荷泵单元113或者多个串联或并联的电荷泵单元113。作为一个示例,电荷泵单元113为一个时,电荷泵单元113的输入端与整流电路122相连,电荷泵单元113的输出端与电池101相连。电荷泵单元113为多个且并联时,每个电荷泵单元113的输入端与整流电路122相连,每个电荷泵单元113的输出端与电池101相连。电荷泵单元113为多个且串联时,第一个电荷泵单元113的输入端与整流电路122相连,除第一个电荷泵单元113外的电荷泵单元113的输入端与前一电荷泵单元113的输出端相连,最后一个电荷泵单元113的输出端与电池101相连。多个电荷泵单元113可采用相同的电路结构。
如图7所示,每个电荷泵单元113可包括第一开关Q1、输出电容Co和(M-1)级级联电容电路1131,M为大于1的整数,第一开关Q1的第一端与电荷泵单元113的输入端INPUT相连,第一开关Q1的第二端与(M-1)级级联电容电路1131相连,输出电容Co的第一端与电荷泵单元113的输出端OUTPUT和(M-1)级级联电容电路1131相连,输出电容Co的第二端接地。
参考图8,每级电容电路1131可包括电容Cd和开关组件1132,通过控制(M-1)级电容电路1331 中每级电容电路的开关组件1132,以使(M-1)级电容电路1131中的电容Cd相互并联后再与输出电容Co并联或使(M-1)级电容电路中的电容Cd相互串联后再与输出电容Co串联。
通过控制M级电容电路中的电容Cd和输出电容Co在在串联与并联之间进行切换,以使输出电压为输入电压的1/M,输出电流为输入电流的M倍。
可理解,M可根据每个电荷泵单元113所需的转换倍数设置。作为一个示例,当电荷泵单元113的转换倍数为3时,M可为3,设置2级电容电路1131。
具体地,开关组件1132可包括第一并联控制开关、第二并联控制开关和串联控制开关,其中,第二电容C2的第一端与前一级电容电路1131(当前级不是第一级)或电荷泵单元113的输入端INPUT(当前级为第一级)相连;第一并联控制开关的第一端与第二电容C2的第二端相连,第一并联控制开关的第二端接地;第二并联控制开关的第一端与第二电容C2的第一端相连,串联控制开关的第一端与第二电容C2的第二端相连,串联控制开关的第二端与第二并联控制开关的第二端相连后再与后一级电容电路1131(当前级不是为第(M-1)级)或电荷泵单元113的输出端OUTPUT(当前级为第(M-1)级)相连。
需要说明的是,第一开关Q1以及开关组件1132中的第一并联控制开关、第二并联控制开关和串联控制开关可分别与相应的驱动电路相连,并在相应的驱动电路的驱动下导通或关断。并且,驱动电路可由独立的控制器控制或者由第一控制模块105控制,驱动电路在接收到控制器控制或者第一控制模块105发送的开通控制信号时驱动相应的开关导通,并在接收到控制器控制或者第一控制模块105发送的关断控制信号时驱动相应的开关关断。
可以理解的是,当电压电流调整模块103需要工作时,第一控制模块105可直接控制每个电荷泵单元113,以使电荷泵单元113的输出电压为输入电压的1/M,输出电流为输入电流的M倍。或者,第一控制模块105可输出使能信号到控制器,控制器再控制每个电荷泵单元113,以使电荷泵单元113的输出电压为输入电压的1/M,输出电流为输入电流的M倍。
具体地,电荷泵单元113的工作方式如下:
第一阶段,电荷泵单元113工作在串联模式,第一开关Q1以及(M-1)级电容电路1331中每级电容电路的串联控制开关导通,(M-1)级电容电路1331中每级电容电路的第一并联控制开关和第二并联控制开关关断,(M-1)级电容电路1331中电容Cd依次串联后再与输出电容Co串联连接;
第二阶段,电荷泵单元113工作在并联模式,第一开关Q1以及(M-1)级电容电路1331中每级电容电路的串联控制开关关断,(M-1)级电容电路1331中每级电容电路的第一并联控制开关和第二并联控制开关导通,(M-1)级电容电路1331中电容Cd相互并联后再与输出电容Co并联连接;
由此,电荷泵单元113在第一阶段和第二阶段之间进行切换,即在串联模式与并联模式之间进行切换,从而使输出电压为输入电压的1/M,输出电流为输入电流的M倍。
进一步地,参照图7-图9,每个电荷泵单元113还包括第一电容C1,其中,第一电容C1的第一端与电荷泵单元的输入端INPUT相连,第一电容C1的第二端接地。C1为电荷泵单元113的输入电容,用于保持电路稳定。
作为一个示例,第一开关Q1、第一并联控制开关、第二并联控制开关和串联控制开关可为开关管,例如,三极管、MOS管等。第一电容C1、输出电容Co以及电容Cd均可为陶瓷电容,例如低ESR(Equivalent Series Resistance,等效串联电阻)陶瓷电容。
作为一个示例,第一开关Q1以及第一并联控制开关、第二并联控制开关和串联控制开关的驱动电路可设置在一集成电路上,第一开关Q1以及第一并联控制开关、第二并联控制开关和串联控制开关的导通或关断由该集成电路控制。第一开关Q1以及第一并联控制开关、第二并联控制开关和串联控制开关可设置在另一集成电路上,第一电容C1、输出电容Co以及电容Cd可外挂在另一集成电路的对应位置。
下面以M=3为例进一步说明电荷泵单元113的结构及工作原理。
参考图9所示,每个电荷泵单元113可包括第一开关Q1至第七开关Q7以及第一电容C1至第三电容C3和输出电容Co。其中,第二开关Q2、第三开关Q3和第四开关Q4与第二电容C2构造为第一级电容电路1131,第二电容C2即为第一级电容电路1131中的电容Cd,第二开关Q2、第三开关Q3和第四开关Q4即为第一级电容电路1131中的开关组件,分别对应第一并联控制开关、第二并联控制开关和串联控制开关;第五开关Q5、第六开关Q6和第七开关Q7与第三电容C3构造为第二级电容电路1131,第三电容C3即为第二级电容电路1131中的电容Cd,第五开关Q5、第六开关Q6和第七开关Q7即为第二级电容电路1131中的开关组件,分别对应第一并联控制开关、第二并联控制开关和串联控制开关。
具体地,第一开关Q1的一端与电荷泵单元113的输入端INPUT相连,第二电容C2的第一端与第一开关Q1的第二端相连,第二开关Q2的第一端与第二电容C2的第二端相连,第二开关Q2的第二端接地,第三开关Q3的第一端与第二电容C2的第一端相连,第四开关Q4的第一端与第三开关的第二端相连,第四开关Q4的第二端与第二电容C2的第二端相连,第三电容C3的第一端与第三开关Q3的第二端和第 四开关Q4的第一端分别相连,第五开关Q5的第一端与第三电容C3的第二端相连,第五开关Q5的第二端接地,第六开关Q6的第一端与第三电容C3的第一端相连,第七开关Q7的第一端与第六开关Q6的第二端相连并与电荷泵单元113的输出端OUTPUT相连,第七开关Q7的第二端与第三电容C3的第二端相连,第四电容C4的第一端与电荷泵单元的输出端OUTPUT相连,第四电容C4的第二端接地。
并且,第一开关Q1至第七开关Q7的控制端可分别与相应的驱动电路相连,第一开关Q1至第七开关Q7可在相应的驱动电路的驱动下导通或关断。驱动电路可由独立的控制器控制或者由第一控制模块105控制,驱动电路在接收到控制器控制或者第一控制模块105发送的开通控制信号时驱动相应的开关导通,并在接收到控制器控制或者第一控制模块105发送的关断控制信号时驱动相应的开关关断。
具体地,电荷泵单元113的工作方式如下:
第一阶段,第一开关Q1、第四开关Q4和第七开关Q7导通,第二开关Q2、第三开关Q3、第五开关Q5和第六开关Q6关断,第二电容C2、第三电容C3和第四电容C4形成串联关系;
第二阶段,第一开关Q1、第四开关Q4和第七开关Q7关断,第二开关Q2、第三开关Q3、第五开关Q5和第六开关Q6导通,第二电容C2、第三电容C3和第四电容C4形成并联关系。
电荷泵单元113可在第一阶段和第二阶段之间进行切换,即第二电容C2、第三电容C3和第四电容C4在串联关系与并联关系之间进行切换,从而使输出电压为输入电压的1/3,输出电流为输入电流的3倍。
由此,通过电荷泵可提高充电效率,优化充电速度,实现无线快充。
与图1-9实施例的电子设备100对应,本申请还提出了无线充电装置200。
参考图10-12,无线充电装置200包括电压转换模块201、无线发射模块202、第二通信模块203和第二控制模块204。
其中,电压转换模块201用于对输入的电信号进行转换以输出可调直流电。输入的电信号可为交流电或直流电,也就是说,无线充电装置200用于将输入的直流电或交流电转换成电磁信号,以通过无线的方式进行电力传输。
可调直流电的电压是可调的。通过对电压转换模块201的工作占空比进行调整,可以实时调整可调直流电的电压VTX。作为一个示例,电压转换模块201可为反激式开关电源变换模块,用于将输入的电信号例如交流市电(220V交流电)变换为直流电,并提供给无线发射模块202。
需要说明的是,输入的电信号可由电源提供装置提供,电源提供装置向无线充电装置200提供直流电时,该电源提供设备可包括:整流电路、变压电路、控制电路和充电接口等,可实现将交流电输入转换为直流电输出,以提供给无线充电装置200,电压转换模块201可将输入的直流电转换为可调直流电。例如,电源提供装置可为适配器、充电宝或车载电源等。
或者,电源提供设备直接将交流电提供给无线充电装置200时,电压转换模块201可将输入的交流电转换为可调直流电。电源提供设备可为交流电源。
无线发射模块202与电压转换模块201相连,电压转换模块201用于将电压转换模块201提供的可调直流电转换为电磁信号并通过无线方式进行发射。在一些实施例中,无线发射模块202可将电压转换模块201提供的可调直流电转换为可耦合到发射线圈212的交流电,并通过发射线圈212将该交流电转换成电磁信号进行发射。
在一些实施例中,无线发射模块202包括逆变电路222,逆变电路222用于将电压转换模块201提供的直流电转换为交流电,并将交流电耦合到发射线圈212,实现电能发射。具体地,逆变电路可包括多个开关管,通过控制多个开关管的导通和关断控制逆变电路222进行转换。
在一些实施例中,无线充电装置200可为无线充电底座或具有储能功能的设备等。当无线充电装置200为具有储能功能的设备时,其还包括储能模块(例如,锂电池),可从外部电源提供设备获取电能并进行存储。由此,储能模块可将电能提供给无线发射模块202。应理解,无线充电装置200可通过有线或无线的方式从外部电源提供设备获取电能。有线的方式,例如,通过充电接口(例如,Type-C接口)与外部电源提供设备连接,获取电能。无线的方式,例如,无线充电装置200包括无线接收电路,其可通过无线的方式从具有无线充电功能的设备获取电能。
第二通信模块203与电子设备100进行通信。第二通信模块203通信方式与第一通信模块104的通信方式相匹配,例如,当第一通信模块104可使用蓝牙、wifi或其它方式时,第二通信模块203采用相应的通信方式,如图11所示,第二通信模块203可通过单独的天线213或者通过共用无线充电装置200的天线213与电子设备100进行无线通信,而天线213可为蓝牙天线、wifi天线或其它通信方式的天线。又如,第一通信模块104可使用信号耦合的方式进行通信时,第二通信模块203也可使用信号耦合的方式进行通信,如图12所示,第二通信模块203可以共用发送发射线圈212,将通信信号调制到发射线圈212上进行通信。
第二控制模块204与第二通信模块203和电压转换模块201相连。第二控制模块204用于通过第二通信模块203电子设备100进行通信,第二控制模块204可接收电子设备发送的信息例如控制信息,并根据接收到的信息对电压转换模块的占空比进行控制,从而实时调整可调直流电的电压,保证无线控制装置200的输出和电子设备100的需求相匹配。
由此,本申请实施例通过实时调整可调直流电的电压,保证无线控制装置200的输出和电子设备100的需求相匹配,控制精准、简单。
下面基于上述实施例的无线充电装置和电子设备,本申请还提出了一种无线充电方法。
在本申请实施例中,可通过无线充电装置对电子设备进行无线充电,无线充电装置将可调直流电转换为电磁信号进行发射,电子设备通过无线接收模块接收无线充电装置发射的电磁信号,并将电磁信号转换为直流电。
在充电过程中,电子设备可采集电池的状态参数(电流、电压等),并在电池的当前电压大于预设快充电压时,通过电压电流调整模块给电池充电,具体充电过程可通过调节输入到无线充电装置中无线发射模块的直流电实现,从而实现无线快充。
参考图13所示,本申请实施例的无线充电方法包括以下步骤:
S1:在无线充电装置与电子设备建立通信之后,对电子设备的电池的当前电压进行监测。
作为一个示例,当电子设备放到无线充电装置的无线充电范围内时,进行无线充电装置与电子设备通信的建立,如果通信建立成功,则说明可以使用快充功能,此时,对电子设备的电池的当前电压进行监测,并根据电池的当前电压进入快充模式。如果通信建立失败,则说明不可以使用快充功能,此时,通过降压模块对电子设备的电池进行充电。
具体地,在无线充电装置与电子设备未建立通信时,控制电子设备的降压模块进行工作,以对无线接收模块转换出的直流电进行降压并将降压后的直流电提供给电池。也就是说,在无线充电装置与电子设备未建立通信时,电压电流调整模块关闭,降压模块进行工作,无线接收模块转换出的直流电经过降压模块降压后提供给电池。
在本申请的一个实施例中,在降压模块进行工作时,无线充电装置根据预设常规电压值调整可调直流电的电压,此时无线充电装置不做升压,例如预设常规电压值可为5V。
也就是说,当无线充电装置与电子设备未建立通信时,无线充电装置的第二控制模块可直接对电压变换模块进行控制,以将可调直流电的电压调整至预设常规电压值,逆变电路对可调直流电进行逆变变换以生成交流电,交流电加载到发射线圈上转换为电磁信号,实现电能发射。而电子设备的接收线圈接收发射线圈发射的电磁信号并转换成交流电,整流电路可将交流电整流为直流电,由于逆变电路、发射线圈、接收线圈和整流电路的转换损耗,整流电路输出的直流电的电压略低于预设常规电压值,直流电经过降压模块降压后提供给电池。并且,电子设备的第一控制模块可对降压模块进行控制,使得降压模块输出的直流电,符合电池的充电需求,可直接加载到电池。
具体地,第一控制模块可以判断降压模块的输出电压和/或输出电流的峰值或均值是否与电池的预设充电电压和/或预设充电电流相匹配,如果不匹配,则可以调整降压模块的降压比。其中,降压比可指降压模块的输出电压与输入电压的比值。
应理解,在本申请的一个实施例中,“与电池的预设充电电压和/或预设充电电流相匹配”包括:降压模块输出的直流电的电压值和/或电流值与电池的预设充电电压和/或预设充电电流相等或浮动预设范围。
S2:当电池的当前电压大于预设快充电压时,控制电子设备的电压电流调整模块进行工作,以对电子设备的无线接收模块转换出的直流电进行降压和升流,并将降压和升流后的直流电提供给电池。
其中,预设快充电压可取大于等于3V且小于等于3.6V中的任一值,例如,预设快充电压可取3.5V。
S3:确定可调直流电的初始电压值,并将初始电压值发送给无线充电装置,以使无线充电装置根据初始电压值控制可调直流电的电压,例如,将可调直流电的电压控制在初始电压值附近。
在本申请的一个实施例中,在电池的当前电压小于等于预设快充电压时,控制电子设备的降压模块进行工作,以对无线接收模块转换出的直流电进行降压并将降压后的直流电提供给电池。
也就是说,当无线充电装置与电子设备的通信建立成功时,可对电子设备的电池的当前电压进行监测,如果电池的当前电压小于或等于预设快充电压,则进行预充电,即通过降压模块对电子设备的电池进行预充电。如果电池的当前电压大于预设快充电压,则进入无线快充模式,对无线充电装置进行升压调节以实现快速充电,并通过电压电流调整模块对电子设备的电池进行充电。
在电池的当前电压小于或等于预设快充电压时,电压电流调整模块关闭,降压模块进行工作,无线接收模块转换出的直流电经过降压模块降压后提供给电池。并且,在本申请的一个实施例中,在降压模块进行工作时,无线充电装置根据预设常规电压值调整可调直流电的电压,此时无线充电装置不做升压,例如预设常规电压值可为5V。本实施例的充电过程与“无线充电装置与电子设备未建立通信”的充电过程 基本相同,不再详细赘述。
在电池的当前电压大于预设快充电压,则进入无线快充模式,确定无线充电装置的可调直流电的初始电压值,并在初始电压值的基础上对可调直流电进行升压调节。同时,降压模块关闭,电压电流调整模块进行工作,通过电压电流调整模块对电池进行充电。
在本申请一个实施例中,确定可调直流电的初始电压值包括:根据电池的当前电压确定初始电压值,其中,初始电压值为电池的当前电压的N倍加上耗损补偿量,N为电压电流调整模块的转换倍数。例如,对于3倍电压电流调整模块,初始电压值为电池的当前电压的三倍加上耗损补偿量。
作为一个示例,耗损补偿量可包括逆变电路、发射线圈、接收线圈和整流电路的转换损耗,具体的耗损补偿量可通过对实际的无线充电装置和电子设备进行测试得到。
在本申请实施例中,电子设备的第一控制模块可判断电池的当前电压是否大于预设快充电压,如果电池的当前电压大于预设快充电压,则确定可调直流电的初始电压值,并将可调直流电的初始电压值发送给无线充电装置,同时控制降压模块关闭、电压电流调整模块进行工作。无线充电装置可接收电子设备发送的可调直流电的初始电压值,并根据可调直流电的初始电压值对电压变换模块进行控制,以将可调直流电的电压调整至初始电压值,逆变电路对可调直流电进行逆变变换以生成交流电,交流电加载到发射线圈上转换为电磁信号,实现电能发射。而电子设备的接收线圈接收发射线圈发射的电磁信号并转换成交流电,整流电路可将交流电整流为直流电,由于逆变电路、发射线圈、接收线圈和整流电路的转换损耗,整流电路输出的直流电的电压基本维持在电池的当前电压的N倍,该直流电经过电压电流调整模块降压后提供给电池。
并且,电子设备的第一控制模块还可继续对可调直流电进行升压调节,可调直流电在初始电压值的基础上逐渐增加,使得电压电流调整模块输出的直流电,符合电池的充电需求,可直接加载到电池。
具体地,在无线充电装置将可调直流电的电压调整至初始电压值之后,还包括:获取电池的当前电流;根据电池的当前电流生成升压调节指令,以使无线充电装置根据升压调节指令对可调直流电进行升压调节。
也就是说,在进入无线快充模式之后,在恒流CC阶段,确定预设充电电流ICC,并对电池的当前电流IBAT进行监测,将电池的当前电流IBAT与预设充电电流ICC进行比较,根据比较结果生成升压调节指令。电子设备可将升压调节指令发送给无线充电装置,无线充电装置可按照升压调节指令将可调直流电的电压升高,逆变电路对升压调节后的可调直流电进行逆变变换以生成调节后的交流电,最终调节发射线圈上发射的电磁信号。电子设备的接收线圈接收发射线圈发射的电磁信号并转换成交流电,整流电路将交流电整流为直流电,该直流电经过电压电流调整模块降压后提供给电池。应理解,整流电路输出的直流电也随着可调直流电的升压而升压,且该直流电的升压幅度与可调直流电的升压幅度基本相等。
在本申请的一个实施例中,根据电池的当前电流生成升压调节指令包括:在预设充电电流与电池的当前电流之间的差值大于等于第一预设阈值时,以第一步进电压提高可调直流电的电压,直至预设充电电流与电池的当前电流之间的差值小于第一预设阈值。
并且,在预设充电电流与电池的当前电流之间的差值小于第一预设阈值,且预设充电电流与电池的当前电流之间的差值大于等于第二预设阈值时,以第二步进电压提高可调直流电的电压,以及在预设充电电流与电池的当前电流之间的差值小于第二预设阈值时,保持可调直流电的电压不变。
作为一个示例,第一预设阈值△I1和第二预设阈值△I2为预设充电电流ICC的偏差量。第一预设阈值大于第二预设阈值,第一步进电压大于第二步进电压。
具体来说,在进入恒流CC阶段之后,确定预设充电电流ICC,对电池的当前电流IBAT进行监测,并对预设充电电流ICC与电池的当前电流IBAT的关系进行判断。
如果预设充电电流ICC与电池的当前电流IBAT之间的差值大于等于第一预设阈值△I1,即电流IBAT小于等于ICC-△I1,则认为电池的电流未达到需求的电流值,可按第一步进电压△V1提高无线充电装置中可调直流电的电压,从而实现可调直流电的粗调。例如,电子设备可将升压调节指令(包括升压命令和电压调节信息)发送给无线充电装置,无线充电装置可根据升压调节指令将可调直流电的电压提高第一步进电压△V1,无线发射模块根据提高了第一步进电压△V1的可调直流电发射电磁信号,最终实现电池的电压和/或电流调节。
在按第一步进电压△V1提高可调直流电的电压之后,继续判断预设充电电流ICC与电池的当前电流IBAT之间的差值是否大于等于第一预设阈值△I1,如果是,继续按第一步进电压△V1提高可调直流电的电压,直至预设充电电流ICC与电池的当前电流IBAT之间的差值小于第一预设阈值△I1。如果预设充电电流ICC与电池的当前电流IBAT之间的差值小于第一预设阈值△I1,即电流IBAT大于ICC-△I1,则保持可调直流电的电压不变,继续充电。
接下来,判断预设充电电流ICC与电池的当前电流IBAT之间的差值是否大于等于第二预设阈值△I2, 随着电池电压的提高,电池的电流会变小,如果预设充电电流ICC与电池的当前电流IBAT之间的差值大于等于第二预设阈值△I2,即电流IBAT小于等于ICC-△I2,则可按第二步进电压△V2提高无线充电装置中可调直流电的电压,从而实现可调直流电的细调。例如,电子设备可将升压调节指令(包括升压命令和电压调节信息)发送给无线充电装置,无线充电装置可根据升压调节指令将可调直流电的电压提高第二步进电压△V2,无线发射模块根据提高了第二步进电压△V2的可调直流电发射电磁信号,最终实现电池的电压和/或电流调节。
在按第二步进电压△V2提高可调直流电的电压的同时,还对电池的当前电压VBAT进行监测,并根据电池的当前电压VBAT判断是否进入恒压CV阶段,如果不进入恒压CV阶段,则继续判断预设充电电流ICC与电池的当前电流IBAT之间的差值是否大于等于第二预设阈值△I2,如果预设充电电流ICC与电池的当前电流IBAT之间的差值大于等于第二预设阈值△I2,则继续以第二步进电压△V2提高可调直流电的电压,如果预设充电电流ICC与电池的当前电流IBAT之间的差值小于第二预设阈值△I2,则保持可调直流电的电压不变,继续充电。如果进入恒压CV阶段,则对无线充电装置的可调直流电进行降压调节。
在本申请的一个实施例中,在以第二步进电压提高可调直流电的电压之后,方法还包括:对电池的当前电压进行监测;如果电池的当前电压处于预设充电电压的预设范围内,则以第三步进电压生成降压调节指令,以使无线充电装置根据降压调节指令调整可调直流电的电压。
应理解,当电池的当前电压处于预设充电电压的预设范围内时,进入恒压CV阶段,电池的当前电压处于预设充电电压的预设范围可指,电池的当前电压大于预设充电电压VCV与电压偏差量△VBAT之差且小于预设充电电压VCV与电压偏差量△VBAT之和。而当电池的当前电压未处于预设充电电压的预设范围内时,不进入恒压CV阶段。
具体来说,在进入恒压CV阶段后,可按第三步进电压△V3降低可调直流电的电压。例如,电子设备可将降压调节指令(包括降压命令和电压调节信息)发送给无线充电装置,无线充电装置可根据降压调节指令将可调直流电的电压降低第三步进电压△V3,无线发射模块根据降低了第三步进电压△V3的可调直流电发射电磁信号,最终实现电池的电压和/或电流调节。
进一步地,在根据降压调节指令调整可调直流电的电压之后,方法还包括:对电池的当前电流进行监测;如果电池的当前电流小于等于截止电流,则控制电压电流调整模块停止工作,控制电子设备的降压模块进行工作,以对无线接收模块转换出的直流电进行降压并将降压后的直流电提供给电池。
如果电池的当前电流大于截止电流,则根据电池的当前电压以第三步进电压生成降压调节指令。
具体来说,在进入恒压CV阶段之后,按第三步进电压△V3降低可调直流电的电压,并对电池的当前电流进行监测。如果电池的当前电流大于截止电流,则继续判断电池的当前电压是否处于预设充电电压的预设范围,如果电池的当前电压处于预设充电电压的预设范围,则继续按第三步进电压△V3降低可调直流电的电压,如果电池的当前电压未处于预设充电电压的预设范围,则保持可调直流电的电压不变,继续充电。
如果电池的当前电流小于等于截止电流,则退出快充模式,进入普通模式,即控制电压电流调整模块关闭,并控制降压模块进行工作,无线接收模块转换出的直流电经过降压模块降压后提供给电池。
在本申请的一个实施例中,在降压模块进行工作时,无线充电装置可根据预设常规电压值调整可调直流电的电压,此时无线充电装置不做升压,例如预设常规电压值可为5V,无线充电装置将可调直流电的电压调整至5V。此时,通过控制降压模块对电池的电压和/或电流进行调节。
需要说明的是,在本实施例中,在降压模块进行工作时,无线充电装置也可保持可调直流电的电压不变,而不将可调直流电的电压调整到预设常规电压值。
在本申请的一个具体实施例中,参照图14所示,无线充电方法包括以下步骤:
S101:电子设备放到无线充电装置上。
S102:判断电子设备与无线充电装置是否成功建立连接。
如果是,则执行步骤S104;如果否,则执行步骤S103。
S103:通过降压模块进行常规充电,直至电池充满(无线充电装置不做升压)。
S104:判断电池的当前电压是否大于预设快充电压。
如果是,则执行步骤S106;如果否,则执行步骤S105。
S105:通过降压模块对电池进行预充电,返回步骤S104。
S106:进入无线快充模式,无线充电装置升压,并确定无线充电装置的可调直流电VTX的初始电压值。
S107:进入恒流CC阶段,确定预设充电电流ICC。
S108:判断预设充电电流ICC与电池的当前电流IBAT之间的差值是否大于等于第一预设阈值△I1, 即电流IBAT是否小于等于ICC-△I1。
如果是,则执行步骤S109;如果否,则执行步骤S110。
S109:按第一步进电压△V1提高无线充电装置中可调直流电的电压VTX。
S110:保持可调直流电的电压VTX不变。
S111:判断预设充电电流ICC与电池的当前电流IBAT之间的差值是否大于等于第二预设阈值△I2,即电流IBAT是否小于等于ICC-△I2。
如果是,则执行步骤S113;如果否,则执行步骤S112。
S112:充电等待,即保持可调直流电的电压VTX不变,继续充电,返回步骤S111。
S113:按第二步进电压△V2提高无线充电装置中可调直流电的电压VTX。
S114:判断电池的当前电压是否处于预设充电电压的预设范围内,即电池的当前电压是否大于预设充电电压VCV与电压偏差量△VBAT之差且小于预设充电电压VCV与电压偏差量△VBAT之和。
如果是,则执行步骤S115;如果否,则执行步骤S110。
S115:进入恒压CV阶段。
S116:按第三步进电压△V3降低可调直流电的电压VTX。
S117:判断电池的当前电流IBAT是否小于等于截止电流IBATEND。
如果是,则执行步骤S120;如果否,则执行步骤S118。
S118:判断电池的当前电压是否处于预设充电电压的预设范围内,即电池的当前电压是否大于预设充电电压VCV与电压偏差量△VBAT之差且小于预设充电电压VCV与电压偏差量△VBAT之和。
如果是,则执行步骤S116;如果否,则执行步骤S119。
S119:充电等待,即保持可调直流电的电压VTX不变,继续充电,返回步骤S118。
S120:可调直流电的电压VTX调整到预设常规电压值,电压电流调整模块例如电荷泵模块关闭,降压模块进行工作,进入最后充电阶段例如涓流充电阶段,直至充电结束。
由此,本申请实施例的无线充电方法,能够对无线充电过程进行精准控制,保证无线充电可以安全快速、高效率完成,实现无线快充功能。
为了实现实施例,本申请还提出一种电子设备。
参考图1-6,电子设备100包括电池101、无线接收模块102、电压电流调整模块103、第一通信模块104和第一控制模块105。
其中,无线接收模块102接收无线充电装置200发射的电磁信号,并将电磁信号转换为直流电,其中,无线充电装置200将可调直流电转换为电磁信号进行发射;电压电流调整模块103与无线接收模块102和电池101相连,电压电流调整模块103用于对直流电进行降压和升流,并将降压和升流后的直流电提供给电池101;第一通信模块104用于与无线充电装置200进行无线通信;第一控制模块105与第一通信模块104和电压电流调整模块103相连,第一控制模块105用于在无线充电装置200与第一通信模块104建立通信之后,对电池101的当前电压进行监测,当电池101的当前电压大于预设快充电压时,控制电压电流调整模块103进行工作以对无线接收模块102转换出的直流电进行降压和升流,并确定可调直流电的初始电压值,通过第一通信模块104将初始电压值发送给无线充电装置200,以使无线充电装置200根据初始电压值控制可调直流电的电压。
根据本申请的一个实施例,第一控制模块105进一步用于根据电池101的当前电压确定初始电压值,其中,初始电压值为电池101的当前电压的N倍加上耗损补偿量,N为电压电流调整模块的转换倍数。
根据本申请的一个实施例,在无线充电装置200将可调直流电的电压调整至初始电压值之后,第一控制模块105还获取电池101的当前电流,并根据电池101的当前电流生成升压调节指令,以及将升压调节指令发送给无线充电装置200,以使无线充电装置200根据升压调节指令对可调直流电进行升压调节。
根据本申请的一个实施例,第一控制模块105还用于,在预设充电电流与电池的当前电流之间的差值大于等于第一预设阈值时,以第一步进电压提高可调直流电的电压,直至预设充电电流与电池的当前电流之间的差值小于第一预设阈值。
根据本申请的一个实施例,第一控制模块105还用于,在预设充电电流与电池的当前电流之间的差值小于第一预设阈值,且预设充电电流与电池的当前电流之间的差值大于等于第二预设阈值时,以第二步进电压提高可调直流电的电压,以及在预设充电电流与电池的当前电流之间的差值小于第二预设阈值时,保持可调直流电的电压不变。
根据本申请的一个实施例,第一控制模块105还用于,以第二步进电压提高可调直流电的电压之后,还对电池的当前电压进行监测,如果电池的当前电压处于预设充电电压的预设范围内,则以第三步进电压生成降压调节指令,并将降压调节指令发送给无线充电装置200,以使无线充电装置200根据降压调节 指令调整可调直流电的电压。
根据本申请的一个实施例,电子设备100还包括与电压电流调整模块103并联连接的降压模块106,降压模块106用于对直流电进行降压,并将降压后的直流电提供给电池101。
根据本申请的一个实施例,在根据降压调节指令调整可调直流电的电压之后,第一控制模块105还用于,对电池101的当前电流进行监测,如果电池101的当前电流小于等于截止电流,则控制电压电流调整模块103停止工作,控制降压模块106进行工作以对无线接收模块102转换出的直流电进行降压。
根据本申请的一个实施例,如果电池的当前电流大于截止电流,第一控制模块105则根据电池的当前电压以第三步进电压生成降压调节指令。
根据本申请的一个实施例,第一控制模块105还用于,在无线充电装置200与第一通信模块104未建立通信,或者电池101的当前电压小于等于预设快充电压时,控制降压模块106进行工作以对无线接收模块102转换出的直流电进行降压。
根据本申请的一个实施例,在降压模块106进行工作时,无线充电装置200根据预设常规电压值调整可调直流电的电压。
根据本申请的一个实施例,电子设备100还包括连接在电压电流调整模块103与电池101之间的负载开关K1,负载开关K1与第一控制模块105相连,第一控制模块105在电子设备100出现故障时控制负载开关K1关断以停止充电。
根据本申请的一个实施例,参考图7-图9,电压电流调整模块103包括至少一个电荷泵单元113,至少一个电荷泵单元113并联连接或串联连接,其中,每个电荷泵单元113包括第一开关Q1、输出电容Co和(M-1)级级联电容电路1131,M为大于1的整数,第一开关Q1的第一端与电荷泵单元113的输入端INPUT相连,第一开关Q1的第二端与(M-1)级级联电容电路1131相连,输出电容Co的第一端与电荷泵单元113的输出端OUTPUT和(M-1)级级联电容电路1131相连,输出电容Co的第二端接地。其中,每级电容电路1131可包括电容Cd和开关组件1132,通过控制(M-1)级电容电路1331中每级电容电路的开关组件1132,以使(M-1)级电容电路1131中的电容Cd相互并联后再与输出电容Co并联或使(M-1)级电容电路中的电容Cd相互串联后再与输出电容Co串联。
需要说明的是,前述对无线充电方法实施例的解释说明也适用于该实施例的电子设备,此处不再赘述。
综上,根据本申请实施例提出的电子设备,当电池的当前电压大于预设快充电压时,控制模块控制电子设备的电压电流调整模块进行工作,同时根据可调直流电的初始电压值控制无线充电装置的可调直流电的电压,从而,能够对无线充电进行精准控制,保证无线充电可以安全快速、高效率完成,实现无线快充功能。
与前述实施例的电子设备相对应,本申请还提出了一种无线充电装置。
参考图10-图12,无线充电装置200包括:电压转换模块201、无线发射模块202、第二通信模块203和第二控制模块204。
其中,电压转换模块201用于对输入的电信号进行转换以输出可调直流电;无线发射模块202与电压转换模块201相连,无线发射模块202将可调直流电转换为电磁信号并通过无线方式进行发射;第二通信模块203与电子设备100进行通信;第二控制模块204与第二通信模块203和电压转换模块201相连,第二控制模块204通过第二通信模块203接收电子设备100发送的控制信息,并根据控制信息对电压转换模块201进行控制,以使可调直流电的电压与控制信息相匹配;其中,控制信息包括可调直流电的初始电压值,或者,可调直流电的升压调节指令,或者,可调直流电的降压调节指令。
根据本申请实施例提出的无线充电装置,通过与前述实施例的电子设备进行通信,能够对无线充电进行精准控制,保证无线充电可以安全快速、高效率完成,实现无线快充功能。
本申请还提出一种无线充电系统。参考图15,无线充电系统1000包括电子设备100以及无线充电装置200。
根据本申请实施例提出的无线充电系统,通过前述实施例的电子设备和无线充电装置,能够对无线充电进行精准控制,保证无线充电可以安全快速、高效率完成,实现无线快充功能。
最后,本申请还提出了一种非临时性计算机可读存储介质,其上存储有无线充电程序,该程序被处理器执行时实现前述实施例的无线充电方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或 示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (26)

  1. 一种无线充电方法,应用于电子设备,其特征在于,所述电子设备通过无线接收模块接收无线充电装置发射的电磁信号,并将所述电磁信号转换为直流电,所述方法包括以下步骤:
    在所述无线充电装置与所述电子设备建立通信之后,对所述电子设备的电池的当前电压进行监测;
    当所述电池的当前电压大于预设快充电压时,控制所述电子设备的电压电流调整模块进行工作,以对所述电子设备的无线接收模块转换出的直流电进行降压和升流,并将降压和升流后的直流电提供给所述电池;
    确定所述可调直流电的初始电压值,并将所述初始电压值发送给所述无线充电装置,以使所述无线充电装置根据所述初始电压值控制所述可调直流电的电压。
  2. 根据权利要求1所述的无线充电方法,其特征在于,所述确定所述可调直流电的初始电压值包括:
    根据所述电池的当前电压确定所述初始电压值,其中,所述初始电压值为所述电池的当前电压的N倍加上耗损补偿量,所述N为所述电压电流调整模块的转换倍数。
  3. 根据权利要求1所述的无线充电方法,其特征在于,在所述无线充电装置将所述可调直流电的电压调整至所述初始电压值之后,还包括:
    获取所述电池的当前电流;
    根据所述电池的当前电流生成升压调节指令,以使所述无线充电装置根据所述升压调节指令对所述可调直流电进行升压调节。
  4. 根据权利要求3所述的无线充电方法,其特征在于,所述根据所述电池的当前电流生成升压调节指令包括:
    在所述预设充电电流与所述电池的当前电流之间的差值大于等于第一预设阈值时,以第一步进电压提高所述可调直流电的电压,直至所述预设充电电流与所述电池的当前电流之间的差值小于所述第一预设阈值。
  5. 根据权利要求4所述的无线充电方法,其特征在于,在所述预设充电电流与所述电池的当前电流之间的差值小于所述第一预设阈值,且所述预设充电电流与所述电池的当前电流之间的差值大于等于第二预设阈值时,以第二步进电压提高所述可调直流电的电压,以及在所述预设充电电流与所述电池的当前电流之间的差值小于所述第二预设阈值时,保持所述可调直流电的电压不变。
  6. 根据权利要求5所述的无线充电方法,其特征在于,在以第二步进电压提高所述可调直流电的电压之后,还包括:
    对所述电池的当前电压进行监测;
    如果所述电池的当前电压处于预设充电电压的预设范围内,则以第三步进电压生成降压调节指令,以使所述无线充电装置根据所述降压调节指令调整所述可调直流电的电压。
  7. 根据权利要求6所述的无线充电方法,其特征在于,在根据所述降压调节指令调整所述可调直流电的电压之后,所述方法还包括:
    对所述电池的当前电流进行监测;
    如果所述电池的当前电流小于等于截止电流,则控制所述电压电流调整模块停止工作,控制所述电子设备的降压模块进行工作,以对所述无线接收模块转换出的直流电进行降压并将降压后的直流电提供给所述电池。
  8. 根据权利要求7所述的无线充电方法,其特征在于,如果所述电池的当前电流大于所述截止电流,则根据所述电池的当前电压以所述第三步进电压生成降压调节指令。
  9. 根据权利要求1所述的无线充电方法,其特征在于,还包括:
    在所述无线充电装置与所述电子设备未建立通信,或者所述电池的当前电压小于等于所述预设快充电压时,控制所述电子设备的降压模块进行工作,以对所述无线接收模块转换出的直流电进行降压并将降压后的直流电提供给所述电池。
  10. 根据权利要求8或9所述的无线充电方法,其特征在于,在所述降压模块进行工作时,所述无线充电装置根据所述预设常规电压值调整所述可调直流电的电压。
  11. 一种电子设备,其特征在于,包括:
    电池;
    无线接收模块,所述无线接收模块接收无线充电装置发射的电磁信号,并将所述电磁信号转换为直流电;
    电压电流调整模块,所述电压电流调整模块与所述无线接收模块和所述电池相连,所述电压电流调整模块用于对所述直流电进行降压和升流,并将降压和升流后的直流电提供给所述电池;
    第一通信模块,所述第一通信模块用于与所述无线充电装置进行无线通信;
    第一控制模块,所述第一控制模块与所述第一通信模块和所述电压电流调整模块相连,所述第一控制模块用于在所述无线充电装置与所述第一通信模块建立通信之后,对所述电池的当前电压进行监测,当所述电池的当前电压大于预设快充电压时,控制所述电压电流调整模块进行工作以对所述无线接收模块转换出的直流电进行降压和升流,并确定所述可调直流电的初始电压值,通过所述第一通信模块将所述初始电压值发送给所述无线充电装置,以使所述无线充电装置根据所述初始电压值控制所述可调直流电的电压。
  12. 根据权利要求11所述的电子设备,其特征在于,所述第一控制模块进一步用于根据所述电池的当前电压确定所述初始电压值,其中,
    所述初始电压值为所述电池的当前电压的N倍加上耗损补偿量,所述N为所述电压电流调整模块的转换倍数。
  13. 根据权利要求11所述的电子设备,其特征在于,在所述无线充电装置将所述可调直流电的电压调整至所述初始电压值之后,所述第一控制模块还获取所述电池的当前电流,并根据所述电池的当前电流生成升压调节指令,以及将升压调节指令发送给所述无线充电装置,以使所述无线充电装置根据所述升压调节指令对所述可调直流电进行升压调节。
  14. 根据权利要求13所述的电子设备,其特征在于,所述第一控制模块还用于,在所述预设充电电流与所述电池的当前电流之间的差值大于等于第一预设阈值时,以第一步进电压提高所述可调直流电的电压,直至所述预设充电电流与所述电池的当前电流之间的差值小于所述第一预设阈值。
  15. 根据权利要求14所述的电子设备,其特征在于,所述第一控制模块还用于,在所述预设充电电流与所述电池的当前电流之间的差值小于所述第一预设阈值,且所述预设充电电流与所述电池的当前电流之间的差值大于等于第二预设阈值时,以第二步进电压提高所述可调直流电的电压,以及在所述预设充电电流与所述电池的当前电流之间的差值小于所述第二预设阈值时,保持所述可调直流电的电压不变。
  16. 根据权利要求15所述的电子设备,其特征在于,所述第一控制模块还用于,以第二步进电压提高所述可调直流电的电压之后,还对所述电池的当前电压进行监测,如果所述电池的当前电压处于预设充电电压的预设范围内,则以第三步进电压生成降压调节指令,并将所述降压调节指令发送给所述无线充电装置,以使所述无线充电装置根据所述降压调节指令调整所述可调直流电的电压。
  17. 根据权利要求16所述的电子设备,其特征在于,所述电子设备还包括与所述电压电流调整模块并联连接的降压模块,所述降压模块用于对所述直流电进行降压,并将降压后的直流电提供给所述电池。
  18. 根据权利要求17所述的电子设备,其特征在于,在根据所述降压调节指令调整所述可调直流电的电压之后,所述第一控制模块还用于,对所述电池的当前电流进行监测,如果所述电池的当前电流小于等于截止电流,则控制所述电压电流调整模块停止工作,控制所述降压模块进行工作以对所述无线接收模块转换出的直流电进行降压。
  19. 根据权利要求18所述的电子设备,其特征在于,如果所述电池的当前电流大于所述截止电流,所述第一控制模块则根据所述电池的当前电压以所述第三步进电压生成降压调节指令。
  20. 根据权利要求17所述的电子设备,其特征在于,所述第一控制模块还用于,在所述无线充电装置与所述第一通信模块未建立通信,或者所述电池的当前电压小于等于所述预设快充电压时,控制所述降压模块进行工作以对所述无线接收模块转换出的直流电进行降压。
  21. 根据权利要求18或20所述的电子设备,其特征在于,在所述降压模块进行工作时,所述无线充电装置根据所述预设常规电压值调整所述可调直流电的电压。
  22. 根据权利要求11所述的电子设备,其特征在于,还包括连接在所述电压电流调整模块与所述电池之间的负载开关,所述负载开关与所述第一控制模块相连,所述第一控制模块在所述电子设备出现故障时控制所述负载开关关断以停止充电。
  23. 根据权利要求11所述的电子设备,其特征在于,所述电压电流调整模块包括至少一个电荷泵单元,所述至少一个电荷泵单元并联连接或串联连接,其中,每个所述电荷泵单元包括第一开关、输出电容和(M-1)级级联电容电路,M为大于1的整数,所述第一开关的第一端与所述电荷泵单元的输入端相连,所述第一开关的第二端与所述(M-1)级级联电容电路相连,所述输出电容的第一端与所述电荷泵单元的输出端和所述(M-1)级级联电容电路相连,所述输出电容的第二端接地;
    其中,每级电容电路包括电容和开关组件,通过控制所述M级电容电路中每级电容电路的开关组件,以使所述(M-1)级电容电路中的电容相互并联后再与所述输出电容并联或使所述(M-1)级电容电路中的电容相互串联后再与所述输出电容串联。
  24. 一种无线充电装置,其特征在于,包括:
    电压转换模块,所述电压转换模块用于对输入的电信号进行转换以输出可调直流电;
    无线发射模块,所述无线发射模块与所述电压转换模块相连,所述无线发射模块将所述可调直流电 转换所述为电磁信号并通过无线方式进行发射;
    第二通信模块,所述第二通信模块与所述电子设备进行通信;
    第二控制模块,所述第二控制模块与所述第二通信模块和所述电压转换模块相连,所述第二控制模块通过所述第二通信模块接收所述电子设备发送的控制信息,并根据所述控制信息对所述电压转换模块进行控制,以使所述可调直流电的电压与所述控制信息相匹配;
    其中,所述控制信息包括所述可调直流电的初始电压值,或者,所述可调直流电的升压调节指令,或者,所述可调直流电的降压调节指令。
  25. 一种无线充电系统,其特征在于,包括根据权利要求11-23中任一项所述的电子设备以及如权利要求24所述的无线充电装置。
  26. 一种非临时性计算机可读存储介质,其特征在于,其上存储有无线充电程序,该程序被处理器执行时实现如权利要求1-10中任一所述的无线充电方法。
PCT/CN2019/096408 2018-09-30 2019-07-17 无线充电方法、电子设备、无线充电装置和无线充电系统 WO2020063056A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19864841.2A EP3846275B1 (en) 2018-09-30 2019-07-17 Wireless charging method, electronic device, wireless charging apparatus and wireless charging system
US17/193,535 US11824396B2 (en) 2018-09-30 2021-03-05 Wireless charging method, electronic device and wireless charging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811154730.1 2018-09-30
CN201811154730.1A CN109148990B (zh) 2018-09-30 2018-09-30 无线充电方法、电子设备、无线充电装置和无线充电系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/193,535 Continuation US11824396B2 (en) 2018-09-30 2021-03-05 Wireless charging method, electronic device and wireless charging apparatus

Publications (1)

Publication Number Publication Date
WO2020063056A1 true WO2020063056A1 (zh) 2020-04-02

Family

ID=64813909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096408 WO2020063056A1 (zh) 2018-09-30 2019-07-17 无线充电方法、电子设备、无线充电装置和无线充电系统

Country Status (4)

Country Link
US (1) US11824396B2 (zh)
EP (1) EP3846275B1 (zh)
CN (1) CN109148990B (zh)
WO (1) WO2020063056A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148990B (zh) 2018-09-30 2020-12-01 Oppo广东移动通信有限公司 无线充电方法、电子设备、无线充电装置和无线充电系统
CN109687600B (zh) * 2018-12-20 2021-07-20 美的集团(上海)有限公司 电子装置、无线输电接收电路及通信方法和无线输电系统
CN109742824A (zh) * 2019-02-23 2019-05-10 华为技术有限公司 充电系统和电子设备
CN112186823B (zh) * 2019-07-05 2022-09-30 北京小米移动软件有限公司 无线充电方法、电路及系统
CN110432546A (zh) * 2019-07-31 2019-11-12 深圳瀚星翔科技有限公司 电子烟、模式切换控制方法及装置
CN112311101A (zh) * 2019-08-01 2021-02-02 北京小米移动软件有限公司 无线受电设备、无线充电方法及系统
CN110635546B (zh) * 2019-09-18 2021-11-30 华为数字能源技术有限公司 一种无线充电的电子设备、方法及系统
CN112636403B (zh) * 2019-09-24 2023-11-21 北京小米移动软件有限公司 无线充电控制方法及装置、计算机存储介质
CN111446515B (zh) * 2020-04-02 2022-03-25 联想(北京)有限公司 一种充电方法、装置和电子设备
CN111786428B (zh) * 2020-06-24 2021-08-17 深圳市力博得科技有限公司 一种无线充电基座、无线快充方法及个人护理器具
CN112542868B (zh) * 2020-11-27 2023-05-23 Oppo广东移动通信有限公司 充电控制电路、方法及系统、电子设备
CN112688388B (zh) * 2020-12-18 2023-11-28 Oppo(重庆)智能科技有限公司 充电装置、电子设备与充电方法
CN112865326B (zh) * 2021-03-08 2021-12-07 珠海智融科技有限公司 无线充电功率调节方法、计算机装置及计算机可读存储介质
CN113162193B (zh) * 2021-05-11 2023-01-13 中国煤炭科工集团太原研究院有限公司 矿用蓄电池组的识别方法和系统
CN113533845B (zh) * 2021-07-06 2023-03-31 加特兰微电子科技(上海)有限公司 一种片上射频功率计、芯片、无线电器件和电子设备
CN115706422A (zh) * 2021-08-03 2023-02-17 北京小米移动软件有限公司 充电系统、充电系统的控制方法、装置及电子设备
CN114069768B (zh) * 2021-09-17 2023-03-24 荣耀终端有限公司 充电电路、充电控制方法、装置和电子设备
CN115842382A (zh) * 2021-09-18 2023-03-24 Oppo广东移动通信有限公司 充电电路、方法、设备和计算机可读存储介质
CN115842384A (zh) * 2021-09-18 2023-03-24 Oppo广东移动通信有限公司 无线充电的接收端设备以及无线充电方法
CN113960952B (zh) * 2021-12-22 2022-04-15 四川承天翼航空科技有限公司 无接触电磁控制和执行系统
CN114285123A (zh) * 2021-12-25 2022-04-05 陀螺人工智能(山东)有限公司 一种便于自行走机器人充电的无线充电装置
CN116365722A (zh) * 2021-12-28 2023-06-30 北京小米移动软件有限公司 无线充电装置以及方法
CN117996872A (zh) * 2022-10-27 2024-05-07 北京小米移动软件有限公司 终端设备的充电方法、装置、终端设备和存储介质
CN115765076B (zh) * 2022-11-04 2023-09-01 珠海英集芯半导体有限公司 一种软件模拟电池停充的系统及其方法
CN115912582B (zh) * 2023-03-08 2023-07-14 紫光同芯微电子有限公司 一种无线充电器及其控制方法
CN117542134B (zh) * 2024-01-10 2024-04-05 深圳市每开创新科技有限公司 无源设备的通信方法、装置、电子设备和可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3304688A1 (en) * 2015-06-01 2018-04-11 The University of Hong Kong Fast method for identifying coil misalignment/mutualcoupling in wireless charging systems
CN108233454A (zh) * 2017-07-31 2018-06-29 珠海市魅族科技有限公司 一种无线充电电路、系统、方法及电子设备
CN109148990A (zh) * 2018-09-30 2019-01-04 Oppo广东移动通信有限公司 无线充电方法、电子设备、无线充电装置和无线充电系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102222967B (zh) * 2011-06-17 2013-09-18 武汉中原电子集团有限公司 一种自适应无线充电系统
KR101470364B1 (ko) * 2014-03-24 2014-12-12 (주)대만 로봇청소기의 무선충전 장치 및 그 제어 방법
KR20170016626A (ko) * 2015-08-04 2017-02-14 엘지이노텍 주식회사 무선전력전송 시스템 및 이의 구동 방법.
CN105072785A (zh) * 2015-09-16 2015-11-18 厦门新页科技有限公司 一种远距离智能无线充电系统
EP3229336B1 (en) * 2016-02-05 2020-09-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and adapter
US10090770B2 (en) * 2016-06-16 2018-10-02 Nxp B.V. Isolated power converter with output voltage protection
CN108233453A (zh) * 2017-07-31 2018-06-29 珠海市魅族科技有限公司 一种充电方法、装置及电子设备
CN107947305A (zh) * 2017-12-01 2018-04-20 珠海市魅族科技有限公司 一种无线充电电路、系统、方法及终端设备
CN108199438A (zh) * 2018-01-24 2018-06-22 广东小天才科技有限公司 一种无线充电方法及接收端设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3304688A1 (en) * 2015-06-01 2018-04-11 The University of Hong Kong Fast method for identifying coil misalignment/mutualcoupling in wireless charging systems
CN108233454A (zh) * 2017-07-31 2018-06-29 珠海市魅族科技有限公司 一种无线充电电路、系统、方法及电子设备
CN109148990A (zh) * 2018-09-30 2019-01-04 Oppo广东移动通信有限公司 无线充电方法、电子设备、无线充电装置和无线充电系统

Also Published As

Publication number Publication date
EP3846275A4 (en) 2021-10-20
EP3846275B1 (en) 2023-02-15
CN109148990B (zh) 2020-12-01
US11824396B2 (en) 2023-11-21
CN109148990A (zh) 2019-01-04
EP3846275A1 (en) 2021-07-07
US20210194268A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2020063056A1 (zh) 无线充电方法、电子设备、无线充电装置和无线充电系统
US10461549B2 (en) Mobile terminal, DC-charging power source adaptor, and charging method
CN112640249B (zh) 无线电池充电期间的带内通信
US10097032B2 (en) Mobile terminal and charging method
KR102138091B1 (ko) 어댑터 및 충전 제어 방법
US20190115769A1 (en) Battery Management Circuit, Balancing Circuit, and Device to be Charged
US10044204B2 (en) Power source adaptor for charging directly
US10056779B2 (en) Power source adaptor for charging directly and mobile terminal
US20170040812A1 (en) Mobile terminal, dc-charging power source adaptor, and charging method
US6118254A (en) Battery charge control architecture for constant voltage maximum power operation
CN112585838A (zh) 无线电池充电期间的带外通信
KR20160036986A (ko) 무선 전력 송신기 및 무선 전력 수신기
EP3806279A1 (en) Charging method and charging apparatus
CN101237152A (zh) 电子装置和用于dc电压转换的系统
CN110970957A (zh) 无线充电方法、电子设备、无线充电装置和无线充电系统
US20210313822A1 (en) Wireless charging method and device to be charged
CN113474963A (zh) 待充电设备及充放电控制方法
CN112930637B (zh) 一种无线充电方法、待充电设备、电源设备及存储介质
WO2022166420A1 (zh) 一种充电控制方法、电子设备、无线充电系统
WO2020010969A1 (zh) 整流电路、无线充电装置、电源提供设备及无线充电系统
CN110970956A (zh) 充电方法、电子设备、充电装置和充电系统
US20240072574A1 (en) Wireless charging method and apparatus, and storage medium
CN212784852U (zh) 一种用于基站备用电源的电池管理系统
CN112398209B (zh) 无线充电装置、系统、控制方法、终端设备及存储介质
CN118199225A (zh) 充电控制方法、储能设备和可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019864841

Country of ref document: EP

Effective date: 20210330