WO2020062966A1 - 整体钢平台模架竖向结构柱垂直度调控装置及施工方法 - Google Patents

整体钢平台模架竖向结构柱垂直度调控装置及施工方法 Download PDF

Info

Publication number
WO2020062966A1
WO2020062966A1 PCT/CN2019/092631 CN2019092631W WO2020062966A1 WO 2020062966 A1 WO2020062966 A1 WO 2020062966A1 CN 2019092631 W CN2019092631 W CN 2019092631W WO 2020062966 A1 WO2020062966 A1 WO 2020062966A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical
vertical structural
structural column
steel platform
platform formwork
Prior art date
Application number
PCT/CN2019/092631
Other languages
English (en)
French (fr)
Inventor
龚剑
刘星
顾国明
郭海龙
扶新立
王小安
吴联定
潘曦
Original Assignee
上海建工集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海建工集团股份有限公司 filed Critical 上海建工集团股份有限公司
Publication of WO2020062966A1 publication Critical patent/WO2020062966A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G3/00Scaffolds essentially supported by building constructions, e.g. adjustable in height
    • E04G3/28Mobile scaffolds; Scaffolds with mobile platforms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G5/00Component parts or accessories for scaffolds
    • E04G5/06Consoles; Brackets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels

Definitions

  • the invention relates to the technical field of construction equipment of super high-rise buildings, in particular to a verticality regulating device and construction method for a vertical structural column of an integral steel platform formwork.
  • the super high-rise formwork construction technology has gradually evolved from the initial sliding formwork to an overall steel platform formwork that is faster, safer, more civilized, and better integrated.
  • the construction requirements of the ultra-high-rise building structure with various shapes have changed.
  • the overall steel platform formwork has become one of the most important construction tools in contemporary high-rise buildings.
  • most of the overall steel platform formwork has a short service life and has certain defects
  • the overall steel platform formwork is tilted due to unbalanced stacking, asynchronous lifting, or accidental impact, it will affect the construction safety of the overall steel platform formwork, and the formwork is easy to climb during the cylinder frame climbing process. Occurrence of sloshing and unstable movement severely affect the construction progress.
  • the current adjustment method of the overall steel platform formwork is mainly passive adjustment. Once the cylinder frame is blocked from climbing, manually check each cylinder frame and adjust it manually, which requires a lot of manpower and material resources, which is time-consuming and labor-intensive;
  • the formwork is bulky, with double-digit length, width, and height in meters, and weighs hundreds of tons. Therefore, the entire formwork equipment has many sources of risk during disassembly and inspection at high altitude.
  • the existing integral steel platform formwork lacks monitoring measures and adjustment measures for the verticality deviation data of the disassembly position. Therefore, it is imperative to optimize the existing structure of the integral steel platform formwork.
  • the purpose of the present invention is to provide a vertical structural column verticality regulating device and construction method for an integral steel platform formwork.
  • the inclination data of the vertical structural column is accurately measured by an inclination sensor, and then the piston rod expansion and contraction of the oil cylinder of the two-way correction adjustment component is controlled.
  • the narrow space between the horizontal connecting rod and the core tube shear wall indirectly realizes the correction of vertical structural columns, avoids uneven force on the overall steel platform formwork, prevents it from transmitting force in the design direction, and reduces the overall steel Adverse effects of platform formwork.
  • the vertical structural column verticality regulating device of the integral steel platform formwork is arranged on the vertical structure column of each of the corners of the unit formwork of the corner of the rectangular core cylinder. it includes:
  • Two first clamps which are arranged at intervals and nested on the vertical structural columns of the unit mold frame;
  • Two second clamps are respectively sleeved on two horizontal connecting rods which are welded and fixed perpendicularly to the vertical structure column;
  • Two two-way deviation correction adjusting components are respectively disposed on the two horizontal connecting rods, one end of the two-way deviation correction adjusting component is hinged with the first clamp, and the other end is hinged with the second clamp;
  • An inclination sensor which is installed on the top side wall of the vertical structural column and above the horizontal connecting rod;
  • a computer in the central control room, the inclination sensor is connected to the computer signal in the central control room;
  • the bidirectional deviation correction adjustment component includes:
  • each of the connecting members includes two horizontal bars arranged in parallel and spaced apart, connected vertically to a vertical bar between the two horizontal bars, and one end of each of the two horizontal bars is respectively connected to the two first sections;
  • a clamp is articulated, and the other end of the two crossbars are respectively connected with a roller group.
  • the maximum distance L between the connecting shaft of the first clamp and the crossbar to the outer edge of the roller group is greater than the connecting shaft.
  • An oil cylinder one end of the oil cylinder is hinged with the second clamp, and the other end of the oil cylinder is hinged with a vertical rod of the connecting piece;
  • An oil pump which is connected to the oil circuit of the cylinder.
  • the oil pump is connected to a computer signal of the central control room.
  • the first clamp comprises a plate sleeve 1 which is tightly enclosed outside the vertical structural column and has an opening, and two first hinged bases which are vertically fixed to a side wall of the plate sleeve.
  • One open end of the plate sleeve is provided with two lugs which are vertical and respectively provided with bolt holes, one of the two lugs is fastened by a high-strength bolt, and the two first hinged bases are vertically arranged and connected with two
  • each of the first hinged bases is composed of two first ear plates provided in parallel and spaced apart from each other, and the ends of the crossbars of the connecting members are provided with pin holes.
  • the single ear plate is connected with the single ear plate by a pin.
  • the second clamp comprises a plate sleeve 2 surrounding an outer side of the horizontal connecting rod and having an opening, and a second hinged base fixed vertically to the two side walls of the plate sleeve, and the plate sleeve
  • the two open ends are provided with two pieces of lugs 2 which are vertical and respectively provided with bolt holes.
  • the two pieces of lugs 2 are fastened by high-strength bolts, and the second hinged base is disposed near the core cylinder shear wall direction, and the first
  • the two hinged bases are composed of two second ear plates that are arranged in parallel and spaced apart from each other, and the two ends of the oil cylinder are both ear plates with pin holes, and the second ear plates and one end of the oil cylinder
  • the oil cylinder ear plate is pin-connected
  • a third hinge base is provided in the middle of the vertical rod of the connector, and the third hinge base is composed of two third ear plates provided in parallel and spaced apart with a pin hole. Composition, the third lug is connected to the lug pin on the other end of the oil cylinder.
  • a fourth hinge base is provided at an end of the crossbar of the connecting member remote from the first hoop, and the fourth hinge base is composed of two parallel and spaced-apart pins with pin holes.
  • a fourth ear plate, the roller set includes at least two side-by-side rollers and a connecting shaft perpendicular to the two side-by-side rollers, the connecting shaft runs through the fourth ear plate so that at least two of the side-by-side rollers are symmetrically hinged to each other
  • the fourth hinged base is described.
  • it further comprises a data collector connected to the computer signal of the central control room for collecting in-situ inclination data.
  • a plurality of the inclination sensors are connected in series through a tee waterproof device, and then connected to the data collector through a CAN bus. The signal connection enables the inclination data of each vertical structural column collected by the inclination sensor to be transmitted to the computer in the central control room through the data collector.
  • it further comprises a portable mobile terminal that is signally connected to the data collector.
  • it further comprises an uninterruptible power supply connected to the data collector.
  • the present invention also provides a method for constructing the verticality adjusting device of the vertical structural column of the integral steel platform formwork, the steps are as follows:
  • a wire trunking bridge is erected between each of the vertical structural columns and welded on the wire trunking bridge.
  • the CAN bus is put into the U-shaped cable trunking, one end of the CAN bus is connected to a data collector, and the other end is connected to a tee waterproof device in which several inclination sensors are connected in series, so that the inclination
  • the inclination data of each of the vertical structural columns collected by the sensors can be transmitted to a computer in the central control room through the data collector.
  • the verticality adjusting device of the vertical structural column of the integral steel platform formwork of the present invention is arranged on the unit die frame of the corner of the integral steel platform formwork.
  • An inclination sensor is installed on the top of the vertical structural column, and the vertical structure
  • a two-way correction adjustment component is respectively arranged on the horizontal connecting rod of the column vertically fixed in the x and y directions.
  • One end of the two-way correction adjustment component is hinged with the vertical structural column, and the other end is hinged with the horizontal connection rod.
  • Two two-way correction adjustment components are provided.
  • the computer in the central control room receives the measurement data of the inclination sensors on each vertical structural column and judges whether it is skewed
  • the piston rod of the corresponding bidirectional correction adjustment component cylinder is controlled to extend or contract, and the reaction force provided by the support of the core tube shear wall to the connector is used to indirectly push the vertical structural column along x Axis or y-axis direction, so as to achieve the correction of vertical structural columns, the integral steel platform formwork vertical structure column verticality adjustment device through tilting
  • the angle sensor accurately measures the inclination data of the vertical structural column, and then controls the piston rod extension or contraction of the cylinder of the two-way correction adjustment component to indirectly achieve the correction of the vertical structural column in the narrow space between the horizontal connecting rod and the core wall shear wall.
  • the intelligent degree of the vertical structure column verticality control device of the overall steel platform formwork High not only improves the control accuracy, but also reduces the construction difficulty and improves the construction efficiency.
  • the construction personnel are prevented from working at high altitude to further ensure the construction safety.
  • Construction method of verticality adjusting device for vertical structural column of monolithic steel platform formwork of the present invention first, install the monolithic steel platform formwork vertically on four vertical structural columns of unit formwork located at corner of core tube
  • the verticality adjusting device for the structural column is officially operated after the equipment is debugged.
  • the inclination sensor transmits the inclination measurement data on each vertical structural column to the computer in the central control room to monitor the verticality change and offset direction of the vertical structural column in real time.
  • the computer in the central control room judges whether the overall steel platform formwork exceeds the safe operating range of the formwork according to the obtained data information.
  • the computer in the central control room sends a signal or the construction staff starts the oil pump to control the oil cylinder of the two-way correction adjustment component Extension or contraction, the vertical structural column is moved horizontally along the x-axis or y-axis by the connector to correct the deviation, so that the overall steel platform formwork restores the safe operating range;
  • this construction method uses an inclination sensor installed on the vertical structural column to accurately measure Its inclination data can accurately guide the site construction staff to find the cause and position of displacement in time
  • the use of two two-way deviation adjustment components installed on two horizontal connecting rods to rectify the vertical structural column, which is convenient for the construction personnel to master and control the operating status of the overall steel platform formwork, and avoid the overall steel platform formwork being blocked during operation. And a safety accident occurred.
  • FIG. 1 is a schematic structural diagram of a vertical structural column verticality adjusting device for an integral steel platform formwork of the present invention
  • FIG. 2 is an exploded view of the verticality adjusting device of the vertical structural column of the integral steel platform formwork of the present invention
  • Figure 3 is a top view of Figure 1;
  • Figure 4 is a side view of Figure 1;
  • FIG. 5 is a schematic structural diagram of the vertical structural column verticality adjusting device of the integral steel platform formwork of the present invention installed on the integral steel platform formwork;
  • FIG. 6 is a plan view of the vertical structural column verticality adjusting device of the integral steel platform formwork of the present invention installed at the corner of the unit formwork;
  • FIG. 7 is a perspective view of the vertical structural column verticality adjusting device of the integral steel platform formwork of the present invention installed at the corner of the unit formwork.
  • Second clamp 20 plate two 21; lug two 22; second hinged base 24;
  • Bidirectional correction adjustment assembly 30 connecting member 31; cross rod 31a; vertical rod 31b; single ear plate 32; fourth hinged base 33; roller set 34; third hinged base 35; oil cylinder 36; oil cylinder ear plate 37;
  • Inclination sensor 50 steel platform 60; unit mold base 61.
  • the vertical structural column is an important load-bearing component of the overall steel platform formwork.
  • the verticality of the vertical structural column directly affects whether the vertical force of the hundreds of tons of formwork can be smoothly transferred to the reinforced concrete core tube and also reflects the overall
  • the degree of inclination of the steel platform formwork, the vertical regulation device and construction method of the vertical structural column of the integral steel platform formwork of the present invention aim to obtain the inclination data of each vertical structural column through the inclination sensor installed on the vertical structural column and transmit it Go to the computer in the central control room.
  • the computer in the central control room analyzes whether the inclination data exceeds the safe operating range of the mold base, and then controls the cylinder expansion or contraction of the two-way correction adjustment component of the unit mold base installed at the corner of the core cylinder to indirectly push the vertical Move the structural column horizontally along the x-axis or y-axis to correct the deviation, so as to achieve the intelligent adjustment of the verticality of the vertical structural column, so that the overall steel platform formwork restores the safe operating range.
  • this embodiment establishes an xyz rectangular coordinate system with the vertical climbing direction of the integral steel platform formwork as the z-axis.
  • the super high-rise building of this embodiment uses a rectangular core tube arranged in the form of a nine-grid grid for the construction of the core tube as a whole.
  • the steel platform formwork includes a steel platform 60 and nine rectangular unit formwork 61 mounted on the bottom thereof. Each unit formwork 61 is surrounded by a core tube shear wall 1.
  • FIGS. 1 to 7 The vertical structural column verticality adjusting device of the integral steel platform formwork, as shown in FIG.
  • the vertical structural column verticality adjusting device of the integral steel platform formwork in this embodiment is arranged in four rectangular unit molds at the corners of the core cylinder.
  • the frame 61 that is, the 16 vertical structural columns 2 at the corners of the four unit mold frames 61 are respectively equipped with an integral steel platform mold frame vertical structure column verticality adjusting device, as shown in Figs. 2, 3 and As shown in FIG.
  • each connecting member 31 includes two cross bars 31a arranged in parallel and spaced apart, a vertical bar 31b connected vertically between the two cross bars 31a, and one end of each of the two cross bars
  • the connecting shaft of the first clamp 10 and the cross rod 31a to the outer edge of the roller set 34 is the largest.
  • the distance L is greater than the vertical distance D between the above-mentioned connecting shaft and the core cylinder shear wall 1, so that the roller set 34 and the side wall of the core cylinder shear wall 1 abut; the oil cylinder 36, one end of the oil cylinder 36 is hinged with the second clamp 20 , The other end of the oil cylinder 36 and the vertical rod 31b of the connecting member 31 Connection; oil pump (not shown in the figure), the oil pump is connected to the oil circuit of the oil cylinder 36 for powering the oil cylinder 36; please continue to refer to FIG.
  • the computer in the central control room receives the measurement data of the inclination sensor 50 and judges the vertical structure 2
  • the construction crew starts the oil pump to control the piston rod of the oil cylinder 36 to extend or contract, and pushes the vertical structural column 2 to move along the x-axis and y-axis directions through the connecting member 31, thereby realizing the correction of the vertical structural column 2.
  • the computer in the central control room facilitates field operators to view the data and understand the verticality of the vertical structural column 2 of the overall steel platform 60 formwork.
  • the vertical regulation device for the vertical structural column of the integral steel platform formwork of the present invention is arranged on the unit mold frame 61 at the corner of the integral steel platform formwork.
  • An inclination sensor 50 is installed on the top of the vertical structural column 2
  • a structural column 2 is fixed to the horizontal connecting rod 3 in the x- and y-axis directions, and a two-way correction adjustment module 30 is provided on one end.
  • One end of the two-way correction adjustment module 30 is hinged to the vertical structural column 2 and the other end is hinged to the horizontal connecting rod 3.
  • One end of the two two-way deflection adjusting assembly 30 shares two first clamps 10 provided on the vertical structural column 2 to optimize the structure and save the layout space; the computer in the center control room receives the inclination of each vertical structural column 2 The measurement data of the sensor 50 and judge whether it is deflected.
  • the corresponding two-way correction adjustment component 30 is controlled to extend or contract the piston rod of the oil cylinder 36.
  • the core tube shear wall 1 is used to connect
  • the reaction force provided by the support of member 31 indirectly pushes the vertical structural column 2 to move in the x-axis or y-axis direction, thereby realizing the correction of the vertical structural column 2.
  • the vertical steel structural frame of the integral steel platform is vertical.
  • the degree adjusting device accurately measures the inclination data of the vertical structural column 2 through the inclination sensor 50, and then controls the piston rod extension or contraction of the oil cylinder 36 of the two-way correction adjusting assembly 30, and the narrowness between the horizontal connecting rod 3 and the core cylinder shear wall 1
  • the space indirectly realizes the correction of the vertical structural column 2 to avoid uneven force on the overall steel platform formwork and prevent it from transmitting force in accordance with the design direction, thereby reducing the adverse impact on the overall steel platform formwork.
  • the verticality control device of the vertical structure column has a high degree of intelligence, which not only improves the control accuracy, but also reduces the construction difficulty and improves the construction efficiency. In addition, construction workers are prevented from working at height to further ensure construction safety.
  • the oil pump is connected to the computer in the central control room.
  • the computer in the central control room receives the measurement data of the inclination sensor 50 and judges that the vertical structural column 2 is shifted, the computer in the central control room sends a signal to control the oil cylinder 36.
  • the piston rod is extended or contracted, and the vertical structural column 2 is pushed to move along the x-axis and y-axis directions by the connecting member 31, thereby realizing the correction of the vertical structural column 2 with higher intelligence, faster equipment response speed, and saving manpower and material resources. .
  • the first clamp 10 includes a plate cover 11 which is tightly enclosed on the outside of the vertical structural column 2 and has an opening, and two first plates which are vertically fixed to the side wall of the plate cover 11.
  • the hinged base 14 is provided with two lugs 12 at the open end of the plate sleeve 11 and bolt holes respectively.
  • the two lugs 12 are fastened by high-strength bolts, so that the first clamp 10 generates sufficient gripping force. Therefore, it is fastened to the vertical structural column 2 to prevent it from sliding.
  • the two first hinged bases 14 are arranged vertically, corresponding to two horizontal connecting rods 3 arranged along the x and y directions, each of the first hinged bases.
  • the 14 is composed of two first ear plates provided with pin holes in parallel and spaced apart.
  • the end of the cross rod 31a of the connecting member 31 is a single ear plate 32 provided with pin holes, and the pins penetrate the two first ears.
  • the pin holes of the plate and the single lug plate 32 are connected to the pins thereof, and therefore, the connecting member 31 connected to the pin of the first clamp 10 can be flexibly rotated about 180 degrees about its rotation axis.
  • the second clamp 20 includes a plate cover 21 that surrounds the outside of the horizontal connecting rod 3 and has an opening, and a second hinged base 24 that is vertically fixed to a side wall of the plate cover 21.
  • the open end of the plate sleeve 21 is provided with two vertical lugs 22 and bolt holes 22 respectively.
  • the two lugs 22 are fastened by high-strength bolts, so that the second clamp 20 generates sufficient gripping force, thereby tightening.
  • the second hinged base 24 is arranged near the core tube shear wall 1 direction, and the second hinged base 24 is composed of two parallel and spaced-apart pin holes.
  • the middle part of the vertical rod 31b of the connecting member 31 is provided with a third hinged base 35.
  • the third hinged base 35 is composed of two third ear plates arranged in parallel and spaced apart with pin holes, and the pins penetrate the third ear plates. It is connected to the pin hole of the cylinder ear plate 37 on the other end of the cylinder 36.
  • the two coaxial first clamps 10 and the second clamps 20 on the two sides thereof are arranged in isosceles triangles on the three structural members, so that the force of the vertical structural column 2 is more balanced, and the oil cylinder 36
  • the two ends are hinged to the connecting piece 31 and the second clamp 20, respectively. Therefore, when the piston rod of the oil cylinder 36 undergoes an expansion or contraction movement, the connecting piece 31 can be pushed to rotate, thereby indirectly pushing the vertical structural column 2 along the x-axis or y. Movement in the axial direction to achieve fine adjustment of the verticality of the vertical structural column 2.
  • the end of the connecting rod 31 of the cross bar 31a far from the first clamp 10 is provided with a fourth hinge base 33, and the fourth hinge base 33 is provided in parallel and spaced apart with a pin hole.
  • the roller set 34 includes at least two side-by-side rollers and a connecting shaft perpendicular to the two side-by-side rollers.
  • the connecting shaft runs through the fourth ear plate so that at least two side-by-side rollers are symmetrically hinged to the fourth hinge base 33,
  • the roller set 34 at one end of the connecting member 31 rolls along the core tube shear wall 1 and uses the reaction force generated by the core tube shear wall 1 to indirectly push the vertical structural column 2 along x Move in the axis or y direction to achieve the correction of the vertical structural column 2.
  • the narrow space between the horizontal connecting rod 3 and the core tube shear wall 1 is used to indirectly rectify the vertical structural column 2 and reduce the construction. Difficulty, to avoid the safety hazards caused by high-altitude operations.
  • the vertical adjustment device for the vertical structure column of the integral steel platform formwork also includes a data collector connected to a computer signal in the central control room of the central control room for collecting on-site inclination data.
  • a plurality of inclination sensors 50 are connected by a tee
  • the waterproof device is connected in series, and then connected to the data collector through the CAN bus, so that the inclination data of each vertical structural column 2 collected by the inclination sensor 50 can be transmitted to the computer in the central control room through the data collector; the setting of the three-way waterproof device is not only convenient It is connected to the CAN bus, and it is also waterproof.
  • the data collector has a liquid crystal display screen that displays real-time inclination data, so that construction personnel can read the inclination data intuitively and quickly.
  • the overall steel platform formwork vertical structure column verticality adjusting device also includes a portable mobile terminal that is connected to the data collector signal. It can be a microprocessor such as a microcontroller, an editable logic controller, or a notebook computer, desktop computer, tablet computer, etc. Computer or mobile phone.
  • the portable mobile terminal is a remote data processing and display device, which is convenient for managers to view data remotely and understand the operating status of the device.
  • the vertical adjustment device of the vertical structure column of the integral steel platform formwork also includes an uninterruptible power supply connected to the data collector.
  • the other ends of the two bidirectional correction adjustment assemblies 30 are articulated through the second clamp 20 and two horizontal connecting rods 3 in the x and y directions, and the overall steel platform formwork is hoisted to the designated construction position, inclination angle.
  • Both the sensor 50 and the oil cylinder 36 of the two-way deflection adjusting assembly 30 are communicatively connected with the computer in the center control room;
  • S2 Debugging the vertical structural column verticality adjusting device of the overall steel platform formwork, operating the portable mobile terminal on site to read the data of each of the inclination sensors 50 on the vertical structural column 2 without error. After the communication is normal, it will officially run after the commissioning. Monitors the verticality of the overall steel platform formwork.
  • the inclination sensor 50 transmits the inclination measurement data on each vertical structural column 2 to the computer in the central control room of the central control room, and monitors the verticality change and offset direction of the vertical structural column 2 in real time.
  • the computer in the central control room judges whether the overall steel platform formwork exceeds the safe operating range of the mold base based on the obtained data information. When it does not exceed the safe operating range, the overall steel platform formwork continues to run.
  • the computer in the central control room Send the signal to start the oil pump or the construction engineer to start the oil pump, and control the oil cylinder 36 of the two-way correction adjustment assembly 30 at the corresponding position to expand or contract, and push the vertical structural column 2 horizontally along the x-axis or y-axis through the cross rod 31a of the connection member 31 to Correction, so that the overall steel platform formwork restores safe operating range.
  • the specific operation is detailed as follows: As shown in FIG. 6 and FIG. 7, when the vertical structural column 2 is tilted outward, an inclination sensor 50 installed above the vertical structural column 2 monitors the deviation of the vertical structural column 2 in the x and y directions and The computer in the central control room transmitted to the central control room.
  • the computer in the central control room judges whether the overall steel platform formwork exceeds the safe operating range of the formwork based on the obtained data information.
  • the oil pump is started, and the cylinder in the x-axis direction is first 36 for cylinder extension operation, use the support of core tube shear wall 1 to provide reaction force, correct the deviation of vertical structure column 2 in the x-axis direction until it enters the allowable range, and then extend cylinder y-axis 36 for cylinder Operate and correct the deviation of the vertical structural column 2 in the y-axis direction until it enters the allowable range.
  • the verticality of the vertical structural column 2 of the integral steel platform 60 formwork is measured and adjusted by the telescopic operation of the oil cylinder 36.
  • the construction method of the verticality adjusting device for the vertical structural column of the integral steel platform formwork of the present invention is to first install the integral steel platform formwork vertical on the four vertical structural columns 2 of the unit formwork 61 located at the corner of the core cylinder.
  • the verticality adjusting device for the structural column is officially operated after the equipment is debugged.
  • the inclination sensor 50 transmits the inclination measurement data on each vertical structural column 2 to the computer in the central control room, and monitors the verticality change and deviation of the vertical structural column 2 in real time. Move the direction, the computer in the central control room judges whether the overall steel platform formwork exceeds the safe operation range of the formwork according to the obtained data information.
  • the computer in the central control room sends a signal or the construction staff starts the oil pump to control the two-way correction adjustment
  • the oil cylinder 36 of the module 30 is extended or contracted, and the vertical structural column 2 is pushed horizontally along the x-axis or y-axis by the connecting member 31 to rectify the deviation, so that the overall steel platform formwork restores the safe operating range; the construction method utilizes installation on the vertical structure
  • the inclination sensor 50 on the column 2 accurately measures its inclination data, and can accurately guide the site construction staff to find the offset source in time.
  • step S1 after the assembly of the overall steel platform formwork is completed and hoisted to the designated construction position, a wire trunking bridge is erected between each vertical structural column 2, and a U-shaped wire trunk is welded to the wire trunking bridge, and the CAN bus is put.
  • a plurality of inclination sensors 50 are connected in series through a tee waterproof device.
  • One end of the CAN bus is connected to a data collector in the central control room, and the other end is connected to a tee waterproof device in which several inclination sensors 50 are connected in series.
  • the inclination data of each vertical structural column 2 collected by the inclination sensor 50 can be transmitted to a computer in the central control room through a data collector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Abstract

一种整体钢平台模架竖向结构柱(2)垂直度调控装置及施工方法,设置于矩形核心筒角部单元模架,包括:两个第一卡箍(10),间隔设置并套设于竖向结构柱(2);两个第二卡箍(20),分别套设于与竖向结构柱(2)垂直固定的两根水平连接杆(3);两个双向纠偏调节组件(30),分别与第一卡箍(10)、第二卡箍(20)铰接;倾角传感器(50),安装于竖向结构柱(2)顶部;中控室的计算机,其与倾角传感器(50)连接;还包括油缸(36)和油泵。施工方法包括:S1拼装整体平台模架;S2对垂直调控装置进行调试并运行。该装置提高了控制精度,提高了施工效率。

Description

整体钢平台模架竖向结构柱垂直度调控装置及施工方法 技术领域
本发明涉及超高层建筑施工装备技术领域,特别涉及一种整体钢平台模架竖向结构柱垂直度调控装置及施工方法。
背景技术
近年来,超高层模架施工技术由最初的滑模逐步向施工速度更快、安全性更好、文明施工程度更高、整体性更佳的整体钢平台模架发展,与此同时,为适应体型多变的超高层建筑结构的施工需求,整体钢平台模架已成为当代超高层建筑中最为重要的施工利器之一,然而,多数整体钢平台模架投入使用年限较短,尚存在一定缺陷,例如:当整体钢平台模架由于堆载不均衡、顶升不同步、或意外撞击等原因发生倾斜时,将影响整体钢平台模架的施工安全,而且,筒架爬升过程中模架易发生晃动,运动不稳定,严重影响施工进度。
整体钢平台模架的现有调整方式以被动调整为主,一旦筒架出现爬升受阻情况时,通过人工逐一排查各个筒架并加以调整,需动用大量人力物力,费时费力;而且,整体钢平台模架体积庞大,以米为单位达两位数的长宽高,重量达数百吨,因此,整个模架装备在高空拆装及排查过程中存在较多风险源。
综上,现有的整体钢平台模架缺少拆装位置垂直度偏差数据的监控措施以及调整措施,因此,对整体钢平台模架的现有结构进行优化已势在必行。
发明内容
针对现有的整体钢平台模架缺少拆装位置垂直度偏差数据的监控措施以及调整措施,导致高空拆装及排查筒架故障过程中存在较大安全隐患的问题。本发明的目的是提供一种整体钢平台模架竖向结构柱垂直度调控装置及施工方法,通过倾角传感器精确测量竖向结构柱的倾角数据,再控制双向纠偏调节组件油缸的活塞杆伸缩,在水平连接杆与核心筒剪力墙之间的狭窄空间间接实现竖向结构柱的纠偏,避免整体钢平台模架受力不均,防止其未按设计方向进行力传递,从而减少对整体钢平台模架的不利影响。
本发明解决其技术问题所采用的技术方案是:整体钢平台模架竖向结构柱垂直度调控装置设置于矩形核心筒角部的每个所述单元模架角部的竖向结构柱上,它包括:
两个第一卡箍,其间隔设置并套设于所述单元模架的竖向结构柱;
两个第二卡箍,分别套设于与所述竖向结构柱垂直焊接固定的两根水平连接杆;
两个双向纠偏调节组件,分别设置于两根所述水平连接杆上,所述双向纠偏调节组件的一端与所述第一卡箍铰接,其另一端与所述第二卡箍铰接;
一个倾角传感器,其安装于所述竖向结构柱顶部侧壁,且位于所述水平连接杆上方,以及;
中控室的计算机,所述倾角传感器与所述中控室的计算机信号连接;
所述双向纠偏调节组件包括:
连接件,每个所述连接件包括平行且间隔设置的两根横杆,垂直连接于两根所述横杆之间的竖杆,两根所述横杆的一端分别与两个所述第一卡箍铰接,两根所述横杆的另一端分别连接有滚轮组,所述第一卡箍和所述横杆的连接轴至所述滚轮组外边缘的最大距离L大于所述连接轴与核心筒剪力墙之间的垂直距离D,使得所述滚轮组与所述核心筒剪力墙的侧壁相抵;
油缸,所述油缸的一端与所述第二卡箍铰接,所述油缸的另一端与所述连接件的竖杆铰接;
油泵,所述油泵与所述油缸油路连接。
优选的,所述油泵与所述中控室的计算机信号连接。
优选的,所述第一卡箍包括紧密围合于所述竖向结构柱外侧且具有一开口的板套一,及垂直固定于所述板套一侧壁的两个第一铰接底座,所述板套一开口端设有两片垂直且分别设有螺栓孔的凸耳一,两片所述凸耳一通过高强螺栓拧紧,两个所述第一铰接底座垂直设置,并与两根所述水平连接杆相对应,每个所述第一铰接底座由设有销轴孔的平行且间隔设置的两块第一耳板组成,所述连接件横杆端部为设有销轴孔的单耳板,所述第一耳板和所述单耳板销轴连接。
优选的,所述第二卡箍包括围合于所述水平连接杆外侧且具有一开口的板套二,及垂直固定于所述板套二侧壁的一个第二铰接底座,所述板套二开口端 设有两片垂直且分别设有螺栓孔的凸耳二,两片所述凸耳二通过高强螺栓拧紧,所述第二铰接底座靠近核心筒剪力墙方向设置,且所述第二铰接底座由设有销轴孔的平行且间隔设置的两块第二耳板组成,所述油缸的两端均为设有销轴孔的油缸耳板,所述第二耳板和油缸一端的所述油缸耳板销轴连接,所述连接件的竖杆的中部设有第三铰接底座,所述第三铰接底座由设有销轴孔的平行且间隔设置的两块第三耳板组成,所述第三耳板和油缸另一端的所述油缸耳板销轴连接。
优选的,所述连接件的所述横杆的远离所述第一卡箍的端部设有第四铰接底座,所述第四铰接底座由设有销轴孔的平行且间隔设置的两块第四耳板组成,所述滚轮组包括至少两个并排滚轮及垂直于两个并排滚轮的连接轴,所述连接轴贯穿所述第四耳板使得至少两个所述并排滚轮对称铰接于所述第四铰接底座。
优选的,还包括与所述中控室的计算机信号连接的数据采集器,用于现场倾角数据的采集,多个所述倾角传感器通过三通防水器串联,再通过CAN总线与所述数据采集器信号连接,使得所述倾角传感器采集的各个竖向结构柱的倾角数据能够通过所述数据采集器传送至所述中控室的计算机。
优选的,还包括与所述数据采集器信号连接的便携式移动终端。
优选的,还包括与所述数据采集器连接的不间断电源。
另外,本发明还提供了一种整体钢平台模架竖向结构柱垂直度调控装置的施工方法,步骤如下:
S1:在施工现场地面拼装整体钢平台模架,在平放的所述整体钢平台模架角部单元模架的每根竖向结构柱顶部分别安装一个倾角传感器,保证所述倾角传感器的测量准线与所述竖向结构柱的轴线平行,在所述竖向结构柱的中下部安装两个第一卡箍,在与所述竖向结构柱垂直固接的两个水平连接杆各固接一个第二卡箍,在两个所述水平连接杆上各安装一个双向纠偏调节组件,两个所述双向纠偏调节组件的一端通过所述第一卡箍与所述竖向结构柱铰接,两个所述双向纠偏调节组件的另一端分别通过所述第二卡箍与两根所述水平连接杆铰接,吊装所述整体钢平台模架至指定施工位置并安装,将所述倾角传感器及所述双向纠偏调节组件的油缸与所述中控室的计算机通信连接;
S2:对所述整体钢平台模架竖向结构柱垂直度调控装置进行调试并运行, 所述倾角传感器将各个所述竖向结构柱上的倾角测量数据传送至所述中控室的计算机,实时监控所述竖向结构柱的垂直度变化以及偏移方向,所述中控室的计算机根据获得的数据信息判断所述整体钢平台模架是否超出模架的安全运行范围,未超出安全运行范围时,所述整体钢平台模架继续运行,超出安全运行范围时,启动油泵并控制所述双向纠偏调节组件的油缸伸展或收缩,通过连接件的横杆推动所述竖向结构柱水平移动以纠偏,使得所述整体钢平台模架恢复安全运行范围。
优选的,所述步骤S1中,所述整体钢平台模架拼装完成并安装至指定施工位置后,在各个所述竖向结构柱之间架设线槽桥架,并在所述线槽桥架上焊接u型线槽,将CAN总线放入所述u型线槽,所述CAN总线的一端与数据采集器连接,其另一端与串联有若干个倾角传感器的三通防水器连接,使得所述倾角传感器采集的各个所述竖向结构柱的倾角数据能够通过所述数据采集器传送至所述中控室的计算机。
本发明的效果在于:
一、本发明的整体钢平台模架竖向结构柱垂直度调控装置,设置于整体钢平台模架角部的单元模架上,在竖向结构柱的顶部安装倾角传感器,在与竖向结构柱垂直固接的x、y轴方向的水平连接杆上分别设置一个双向纠偏调节组件,双向纠偏调节组件的一端与竖向结构柱铰接,另一端与水平连接杆铰接,两个双向纠偏调节组件的一端共用设置于竖向结构柱上的两个第一卡箍,结构得以优化,节约了布置空间;中控室的计算机接收各个竖向结构柱上倾角传感器的测量数据并判断其是否发生偏斜,当竖向结构柱发生偏斜情况时,控制相应双向纠偏调节组件油缸的活塞杆伸展或收缩,利用核心筒剪力墙对连接件的支撑提供的反作用力,间接推动竖向结构柱沿x轴或y轴方向移动,从而实现竖向结构柱的纠偏,该整体钢平台模架竖向结构柱垂直度调控装置通过倾角传感器精确测量竖向结构柱的倾角数据,再控制双向纠偏调节组件油缸的活塞杆伸展或收缩,在水平连接杆与核心筒剪力墙之间的狭窄空间间接实现竖向结构柱的纠偏,避免整体钢平台模架受力不均,防止其未按设计方向进行力传递,从而减少对整体钢平台模架的不利影响,该整体钢平台模架竖向结构柱垂直度调控装置智能化程度高,不但提高了控制精度,而且降低了施工难度,提高了施工效率,另外,由于避免了施工人员高空作业,进一步保证了施工安全。
二、本发明的整体钢平台模架竖向结构柱垂直度调控装置的施工方法,首先,在位于核心筒角部的单元模架的四个竖向结构柱上安装该整体钢平台模架竖向结构柱垂直度调控装置,设备调试结束后正式运行,倾角传感器将各个竖向结构柱上的倾角测量数据传送至中控室的计算机,实时监控竖向结构柱的垂直度变化以及偏移方向,中控室的计算机根据获得的数据信息判断整体钢平台模架是否超出模架的安全运行范围,超出安全运行范围时,中控室的计算机发送信号或由施工人员启动油泵,控制双向纠偏调节组件的油缸伸展或收缩,通过连接件推动竖向结构柱沿x轴或y轴水平移动以纠偏,使得整体钢平台模架恢复安全运行范围;该施工方法利用安装于竖向结构柱上的倾角传感器准确测量其倾角数据,能够准确引导现场施工人员及时发现偏移原因和位置,并利用安装于两根水平连接杆的两个双向纠偏调节组件实现竖向结构柱的纠偏,便于施工人员掌握和控制整体钢平台模架的运行状态,避免整体钢平台模架在运行过程中受阻而发生安全事故。
附图说明
图1为本发明的整体钢平台模架竖向结构柱垂直度调控装置的结构示意图;
图2为本发明的整体钢平台模架竖向结构柱垂直度调控装置的爆炸图;
图3为图1的俯视图;
图4为图1的侧视图;
图5为本发明的整体钢平台模架竖向结构柱垂直度调控装置安装于整体钢平台模架的结构示意图;
图6为本发明的整体钢平台模架竖向结构柱垂直度调控装置安装于单元模架角部的平面图;
图7为本发明的整体钢平台模架竖向结构柱垂直度调控装置安装于单元模架角部的立体图。
图中标号如下:
核心筒剪力墙1;竖向结构柱2;水平连接杆3;
第一卡箍10;板套一11;凸耳一12;第一铰接底座14;
第二卡箍20;板套二21;凸耳二22;第二铰接底座24;
双向纠偏调节组件30;连接件31;横杆31a;竖杆31b;单耳板32;第四铰接 底座33;滚轮组34;第三铰接底座35;油缸36;油缸耳板37;
倾角传感器50;钢平台60;单元模架61。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。为叙述方便,下文中所述的“上”、“下”与附图的上、下的方向一致,但这不能成为本发明技术方案的限制。
竖向结构柱是整体钢平台模架的重要承重构件,竖向结构柱的垂直度直接影响到数百吨模架的竖向力能否顺利传递到钢筋混凝土核心筒,同时也可反映出整体钢平台模架的倾斜程度,本发明的整体钢平台模架竖向结构柱垂直度调控装置及施工方法旨在通过安装于竖向结构柱的倾角传感器获取各个竖向结构柱的倾角数据并传送至中控室的计算机,中控室的计算机分析各倾角数据是否超出模架的安全运行范围,然后再控制安装于核心筒角部的单元模架的双向纠偏调节组件的油缸伸展或收缩,间接推动竖向结构柱沿x轴或y轴水平移动以纠偏,从而实现竖向结构柱垂直度的智能化调整,使得整体钢平台模架恢复安全运行范围。
为叙述方便,本实施例建立以整体钢平台模架竖向爬升方向为z轴的xyz直角坐标系,本实施例的超高层建筑采用九宫格形式布置的矩形核心筒,用于施工核心筒的整体钢平台模架包括钢平台60及安装于其底部的9个矩形的单元模架61,每个单元模架61均由核心筒剪力墙1包围,下面结合图1至图7说明本发明的整体钢平台模架竖向结构柱垂直度调控装置,如图5所示,本实施例的整体钢平台模架竖向结构柱垂直度调控装置设置于核心筒角部的4个矩形的单元模架61,也就是说,4个单元模架61角部的16个竖向结构柱2上分别安装有一个整体钢平台模架竖向结构柱垂直度调控装置,如图2、图3和图7所示,它包括:两个第一卡箍10,其间隔设置并套设于单元模架61的竖向结构柱2;两个第二卡箍20,分别套设于与竖向结构柱2垂直焊接固定的位于x、y轴方向的两根水平连接杆3;两个双向纠偏调节组件30,分别设置于两根水平连接杆3上,双向纠偏调节组件30的一端与第一卡箍10铰接,其另一端与第二卡箍20铰接;一个倾角传感器50,其安装于竖向结构柱2顶部侧壁,且位于水平连接 杆3上方;以及一中控室的计算机(图中未示出),倾角传感器50与中控室的计算机信号连接;上述双向纠偏调节组件30包括:连接件31,每个连接件31包括平行且间隔设置的两根横杆31a,垂直连接于两根横杆31a之间的竖杆31b,两根横杆31a的一端分别与两个第一卡箍10铰接,两根横杆31a的另一端分别连接有滚轮组34,如图6所示,第一卡箍10和横杆31a的连接轴至滚轮组34外边缘的最大距离L大于上述连接轴与核心筒剪力墙1之间的垂直距离D,使得滚轮组34与核心筒剪力墙1的侧壁相抵;油缸36,油缸36的一端与第二卡箍20铰接,油缸36的另一端与连接件31的竖杆31b铰接;油泵(图中未示出),油泵与油缸36油路连接,用于为油缸36提供动力;请继续参考图6,当中控室的计算机接收倾角传感器50的测量数据并判断竖向结构柱2发生偏移时,施工人员启动油泵控制油缸36的活塞杆伸展或收缩,通过连接件31推动竖向结构柱2沿x轴及y轴方向移动,从而实现竖向结构柱2的纠偏。中控室的计算机便于现场操作人员查看数据、了解整体钢平台60模架竖向结构柱2的垂直度状况。
本发明的整体钢平台模架竖向结构柱垂直度调控装置,设置于整体钢平台模架角部的单元模架61上,在竖向结构柱2的顶部安装倾角传感器50,在与竖向结构柱2垂直固接的x、y轴方向的水平连接杆3上分别设置一个双向纠偏调节组件30,双向纠偏调节组件30的一端与竖向结构柱2铰接,另一端与水平连接杆3铰接,两个双向纠偏调节组件30的一端共用设置于竖向结构柱2上的两个第一卡箍10,结构得以优化,节约了布置空间;中控室的计算机接收各个竖向结构柱2上倾角传感器50的测量数据并判断其是否发生偏斜,当竖向结构柱2发生偏斜情况时,控制相应双向纠偏调节组件30油缸36的活塞杆伸展或收缩,利用核心筒剪力墙1对连接件31的支撑提供的反作用力,间接推动竖向结构柱2沿x轴或y轴方向移动,从而实现竖向结构柱2的纠偏,该整体钢平台模架竖向结构柱垂直度调控装置通过倾角传感器50精确测量竖向结构柱2的倾角数据,再控制双向纠偏调节组件30油缸36的活塞杆伸展或收缩,在水平连接杆3与核心筒剪力墙1之间的狭窄空间间接实现竖向结构柱2的纠偏,避免整体钢平台模架受力不均,防止其未按设计方向进行力传递,从而减少对整体钢平台模架的不利影响,该整体钢平台模架竖向结构柱垂直度调控装置智能化程度高,不但提高了控制精度,而且降低了施工难度,提高了施工效率,另外,由于避 免了施工人员高空作业,进一步保证了施工安全。
更佳的,所述油泵与所述中控室的计算机信号连接,当中控室的计算机接收倾角传感器50的测量数据并判断竖向结构柱2发生偏移时,中控室的计算机发送信号控制油缸36的活塞杆伸展或收缩,通过连接件31推动竖向结构柱2沿x轴及y轴方向移动,从而实现竖向结构柱2的纠偏,智能化程度更高,设备响应速度更快,节省人力物力。
如图2和图3所示,第一卡箍10包括紧密围合于竖向结构柱2外侧且具有一开口的板套一11,及垂直固定于板套一11侧壁的两个第一铰接底座14,板套一11开口端设有两片垂直且分别设有螺栓孔的凸耳一12,两片凸耳一12通过高强螺栓拧紧,使得第一卡箍10产生足够的握紧力,从而紧固于竖向结构柱2,防止其发生滑动,两个第一铰接底座14垂直设置,分别对应于沿x、y轴方向设置的两根水平连接杆3,每个第一铰接底座14由设有销轴孔的平行且间隔设置的两块第一耳板组成,连接件31的横杆31a端部为设有销轴孔的单耳板32,销轴贯穿两块第一耳板和单耳板32的销轴孔使其销轴连接,因此,与第一卡箍10销轴连接的连接件31能够绕其转动轴180度灵活转动。
请继续参考图2和图3,第二卡箍20包括围合于水平连接杆3外侧且具有一开口的板套二21,及垂直固定于板套二21侧壁的一个第二铰接底座24,板套二21开口端设有两片垂直且分别设有螺栓孔的凸耳二22,两片凸耳二22通过高强螺栓拧紧,使得第二卡箍20产生足够的握紧力,从而紧固于水平连接杆3,防止第二卡箍20发生滑动,第二铰接底座24靠近核心筒剪力墙1方向设置,且第二铰接底座24由设有销轴孔的平行且间隔设置的两块第二耳板组成,油缸36的两端均为设有销轴孔的油缸耳板37,销轴贯穿第二耳板和油缸36一端的油缸耳板37的销轴孔使其销轴连接,连接件31的竖杆31b的中部设有第三铰接底座35,第三铰接底座35由设有销轴孔的平行且间隔设置的两块第三耳板组成,销轴贯穿第三耳板和油缸36另一端的油缸耳板37的销轴孔使其销轴连接。因此,同轴的两个第一卡箍10和位于其两侧的第二卡箍20分别呈等腰三角形布置于三根结构杆件上,使得竖向结构柱2的受力更加均衡,油缸36的两端分别与连接件31、第二卡箍20铰接,因此,油缸36的活塞杆发生伸展或收缩运动时,能够推动连接件31转动,进而间接推动竖向结构柱2沿x轴或y轴方向运动,实现竖向结构柱2垂直度的微调。
请继续参考图2和图3,连接件31横杆31a的远离第一卡箍10的端部设有第四铰接底座33,第四铰接底座33由设有销轴孔的平行且间隔设置的两块第四耳板组成,滚轮组34包括至少两个并排滚轮及垂直于两个并排滚轮的连接轴,连接轴贯穿第四耳板使得至少两个并排滚轮对称铰接于第四铰接底座33,当连接件31在油缸36的推动下发生转动,连接件31一端的滚轮组34沿核心筒剪力墙1滚动,利用核心筒剪力墙1产生的反作用力间接推动竖向结构柱2沿x轴或y轴方向移动,进而实现竖向结构柱2的纠偏,采用该结构在水平连接杆3与核心筒剪力墙1之间的狭窄空间间接实现竖向结构柱2的纠偏,降低了施工难度,避免了高空作业而带来的安全隐患。
更佳的,整体钢平台模架竖向结构柱垂直度调控装置还包括与中控室的中控室的计算机信号连接的数据采集器,用于现场倾角数据的采集,多个倾角传感器50通过三通防水器串联,再通过CAN总线与数据采集器信号连接,使得倾角传感器50采集的各个竖向结构柱2的倾角数据能够通过数据采集器传送至中控室的计算机;三通防水器的设置不但便于与CAN总线连接,而且其兼具防水功能;更佳的,数据采集器带有展示实时倾角数据的液晶显示屏,便于施工人员直观、快速地读取倾角数据。
整体钢平台模架竖向结构柱垂直度调控装置还包括与数据采集器信号连接的便携式移动终端,它可以为单片机、可编辑逻辑控制器等微处理器或笔记本电脑、台式电脑、平板电脑等计算机,也可以是手机。便携式移动终端是远程数据处理和显示设备,便于管理人员远程查看数据、了解设备运行状态。
为确保临时断电等因素不至于影响数据采集器的正常工作,该整体钢平台模架竖向结构柱垂直度调控装置还包括与数据采集器连接的不间断电源。
结合图1至图7说明本发明的整体钢平台模架竖向结构柱垂直度调控装置的施工方法,具体步骤如下:
S1:如图1至图7所示,在施工现场地面拼装整体钢平台模架,在平放的整体钢平台模架角部单元模架61的每根竖向结构柱2顶部分别安装一个倾角传感器50,保证倾角传感器50的测量准线与竖向结构柱2的轴线平行,在竖向结构柱2的中下部安装两个第一卡箍10,在与竖向结构柱2垂直固接的两个水平连接杆3各固接一个第二卡箍20,在两个水平连接杆3上各安装一个双向纠偏调节组件30,两个双向纠偏调节组件30的一端通过第一卡箍10与竖向结构柱 2铰接,两个双向纠偏调节组件30的另一端分别通过第二卡箍20与x、y轴方向的两根水平连接杆3铰接,吊装整体钢平台模架至指定施工位置,倾角传感器50及双向纠偏调节组件30的油缸36均与中控室的计算机通信连接;
S2:对整体钢平台模架竖向结构柱垂直度调控装置进行调试,现场操作便携式移动终端读取竖向结构柱2上各倾角传感器50的数据无误,通信正常后,调试结束后正式运行,监测整体钢平台模架的垂直度,倾角传感器50将各个竖向结构柱2上的倾角测量数据传送至中控室的中控室的计算机,实时监控竖向结构柱2的垂直度变化以及偏移方向,中控室的计算机根据获得的数据信息判断整体钢平台模架是否超出模架的安全运行范围,未超出安全运行范围时,整体钢平台模架继续运行,超出安全运行范围时,中控室的计算机发送信号启动油泵或者由施工人员启动油泵,控制对应位置的双向纠偏调节组件30的油缸36伸展或收缩,通过连接件31的横杆31a推动竖向结构柱2沿x轴或y轴水平移动以纠偏,使得整体钢平台模架恢复安全运行范围。具体操作详述如下:如图6和图7所示,当竖向结构柱2向外倾斜时,安装于竖向结构柱2上方的倾角传感器50监测其沿x、y轴方向的偏差大小并传输至中控室的中控室的计算机,中控室的计算机根据获得的数据信息判断整体钢平台模架是否超出模架的安全运行范围,超出安全运行范围时,启动油泵,先对x轴方向的油缸36进行伸缸操作,利用核心筒剪力墙1的支撑提供反作用力,纠正竖向结构柱2沿x轴方向上的偏差,直至进入允许范围,然后,对y轴方向的油缸36进行伸缸操作,纠正竖向结构柱2沿y轴方向上的偏差,直至进入允许范围,如此通过油缸36的伸缩运行实现对整体钢平台60模架的竖向结构柱2的垂直度进行测调作业。
本发明的整体钢平台模架竖向结构柱垂直度调控装置的施工方法,首先,在位于核心筒角部的单元模架61的四个竖向结构柱2上安装该整体钢平台模架竖向结构柱垂直度调控装置,设备调试结束后正式运行,倾角传感器50将各个竖向结构柱2上的倾角测量数据传送至中控室的计算机,实时监控竖向结构柱2的垂直度变化以及偏移方向,中控室的计算机根据获得的数据信息判断整体钢平台模架是否超出模架的安全运行范围,超出安全运行范围时,中控室的计算机发送信号或由施工人员启动油泵,控制双向纠偏调节组件30的油缸36伸展或收缩,通过连接件31推动竖向结构柱2沿x轴或y轴水平移动以纠偏,使得整体钢平台模架恢复安全运行范围;该施工方法利用安装于竖向结构柱2上的 倾角传感器50准确测量其倾角数据,能够准确引导现场施工人员及时发现偏移原因和位置,并利用安装于两根水平连接杆3的两个双向纠偏调节组件30实现竖向结构柱2的纠偏,便于施工人员掌握和控制整体钢平台模架的运行状态,避免整体钢平台模架在运行过程中受阻而发生安全事故。
所述步骤S1中,整体钢平台模架拼装完成并吊装至指定施工位置后,在各个竖向结构柱2之间架设线槽桥架,并在线槽桥架上焊接u型线槽,将CAN总线放入u型线槽,多个倾角传感器50通过三通防水器串联,CAN总线的一端与中控室的数据采集器连接,其另一端与串联有若干个倾角传感器50的三通防水器连接,使得倾角传感器50采集的各个竖向结构柱2的倾角数据能够通过数据采集器传送至中控室的计算机。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求范围。

Claims (10)

  1. 整体钢平台模架竖向结构柱垂直度调控装置,其特征在于:它设置于矩形核心筒角部的每个所述单元模架角部的竖向结构柱上,它包括:
    两个第一卡箍,其间隔设置并套设于所述单元模架的竖向结构柱;
    两个第二卡箍,分别套设于与所述竖向结构柱垂直焊接固定的两根水平连接杆;
    两个双向纠偏调节组件,分别设置于两根所述水平连接杆上,所述双向纠偏调节组件的一端与所述第一卡箍铰接,其另一端与所述第二卡箍铰接;
    一个倾角传感器,其安装于所述竖向结构柱顶部侧壁,且位于所述水平连接杆上方,以及;
    中控室的计算机,所述倾角传感器与所述中控室的计算机信号连接;
    所述双向纠偏调节组件包括:
    连接件,每个所述连接件包括平行且间隔设置的两根横杆,垂直连接于两根所述横杆之间的竖杆,两根所述横杆的一端分别与两个所述第一卡箍铰接,两根所述横杆的另一端分别连接有滚轮组,所述第一卡箍和所述横杆的连接轴至所述滚轮组外边缘的最大距离L大于所述连接轴与核心筒剪力墙之间的垂直距离D,使得所述滚轮组与所述核心筒剪力墙的侧壁相抵;
    油缸,所述油缸的一端与所述第二卡箍铰接,所述油缸的另一端与所述连接件的竖杆铰接;
    油泵,所述油泵与所述油缸油路连接。
  2. 根据权利要求1所述的整体钢平台模架竖向结构柱垂直度调控装置,其特征在于:所述油泵与所述中控室的计算机信号连接。
  3. 根据权利要求1所述的整体钢平台模架竖向结构柱垂直度调控装置,其特征在于:所述第一卡箍包括紧密围合于所述竖向结构柱外侧且具有一开口的板套一,及垂直固定于所述板套一侧壁的两个第一铰接底座,所述板套一开口端设有两片垂直且分别设有螺栓孔的凸耳一,两片所述凸耳一通过高强螺栓拧紧,两个所述第一铰接底座垂直设置,并与两根所述水平连接杆相对应,每个所述第一铰接底座由设有销轴孔的平行且间隔设置的两块第一耳板组成,所述连接 件横杆端部为设有销轴孔的单耳板,所述第一耳板和所述单耳板销轴连接。
  4. 根据权利要求1所述的整体钢平台模架竖向结构柱垂直度调控装置,其特征在于:所述第二卡箍包括围合于所述水平连接杆外侧且具有一开口的板套二,及垂直固定于所述板套二侧壁的一个第二铰接底座,所述板套二开口端设有两片垂直且分别设有螺栓孔的凸耳二,两片所述凸耳二通过高强螺栓拧紧,所述第二铰接底座靠近核心筒剪力墙方向设置,且所述第二铰接底座由设有销轴孔的平行且间隔设置的两块第二耳板组成,所述油缸的两端均为设有销轴孔的油缸耳板,所述第二耳板和油缸一端的所述油缸耳板销轴连接,所述连接件的竖杆的中部设有第三铰接底座,所述第三铰接底座由设有销轴孔的平行且间隔设置的两块第三耳板组成,所述第三耳板和油缸另一端的所述油缸耳板销轴连接。
  5. 根据权利要求1所述的整体钢平台模架竖向结构柱垂直度调控装置,其特征在于:所述连接件的所述横杆的远离所述第一卡箍的端部设有第四铰接底座,所述第四铰接底座由设有销轴孔的平行且间隔设置的两块第四耳板组成,所述滚轮组包括至少两个并排滚轮及垂直于两个并排滚轮的连接轴,所述连接轴贯穿所述第四耳板使得至少两个所述并排滚轮对称铰接于所述第四铰接底座。
  6. 根据权利要求1所述的整体钢平台模架竖向结构柱垂直度调控装置,其特征在于:还包括与所述中控室的计算机信号连接的数据采集器,用于现场倾角数据的采集,多个所述倾角传感器通过三通防水器串联,再通过CAN总线与所述数据采集器信号连接,使得所述倾角传感器采集的各个竖向结构柱的倾角数据能够通过所述数据采集器传送至所述中控室的计算机。
  7. 根据权利要求1所述的整体钢平台模架竖向结构柱垂直度调控装置,其特征在于:还包括与所述数据采集器信号连接的便携式移动终端。
  8. 根据权利要求1所述的整体钢平台模架竖向结构柱垂直度调控装置,其特征在于:还包括与所述数据采集器连接的不间断电源。
  9. 如权利要求1至8任一项所述的整体钢平台模架竖向结构柱垂直度调控装置的施工方法,其特征在于,步骤如下:
    S1:在施工现场地面拼装整体钢平台模架,在平放的所述整体钢平台模架角部单元模架的每根竖向结构柱顶部分别安装一个倾角传感器,保证所述倾角传感器的测量准线与所述竖向结构柱的轴线平行,在所述竖向结构柱的中下部安装两个第一卡箍,在与所述竖向结构柱垂直固接的两个水平连接杆各固接一个第二卡箍,在两个所述水平连接杆上各安装一个双向纠偏调节组件,两个所述双向纠偏调节组件的一端通过所述第一卡箍与所述竖向结构柱铰接,两个所述双向纠偏调节组件的另一端分别通过所述第二卡箍与两根所述水平连接杆铰接,吊装所述整体钢平台模架至指定施工位置并安装,将所述倾角传感器及所述双向纠偏调节组件的油缸与所述中控室的计算机通信连接;
    S2:对所述整体钢平台模架竖向结构柱垂直度调控装置进行调试并运行,所述倾角传感器将各个所述竖向结构柱上的倾角测量数据传送至所述中控室的计算机,实时监控所述竖向结构柱的垂直度变化以及偏移方向,所述中控室的计算机根据获得的数据信息判断所述整体钢平台模架是否超出模架的安全运行范围,未超出安全运行范围时,所述整体钢平台模架继续运行,超出安全运行范围时,启动油泵并控制所述双向纠偏调节组件的油缸伸展或收缩,通过连接件的横杆推动所述竖向结构柱水平移动以纠偏,使得所述整体钢平台模架恢复安全运行范围。
  10. 根据权利要求9所述的施工方法,其特征在于:所述步骤S1中,所述整体钢平台模架拼装完成并安装至指定施工位置后,在各个所述竖向结构柱之间架设线槽桥架,并在所述线槽桥架上焊接u型线槽,将CAN总线放入所述u型线槽,所述CAN总线的一端与数据采集器连接,其另一端与串联有若干个倾角传感器的三通防水器连接,使得所述倾角传感器采集的各个所述竖向结构柱的倾角数据能够通过所述数据采集器传送至所述中控室的计算机。
PCT/CN2019/092631 2018-09-28 2019-06-25 整体钢平台模架竖向结构柱垂直度调控装置及施工方法 WO2020062966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811137400.1 2018-09-28
CN201811137400.1A CN109184172B (zh) 2018-09-28 2018-09-28 整体钢平台模架竖向结构柱垂直度调控装置及施工方法

Publications (1)

Publication Number Publication Date
WO2020062966A1 true WO2020062966A1 (zh) 2020-04-02

Family

ID=64907748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092631 WO2020062966A1 (zh) 2018-09-28 2019-06-25 整体钢平台模架竖向结构柱垂直度调控装置及施工方法

Country Status (2)

Country Link
CN (1) CN109184172B (zh)
WO (1) WO2020062966A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445778A (zh) * 2021-07-15 2021-09-28 上海上百加电梯工程有限公司 一种室外加装电梯调平装置及调平施工方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109184172B (zh) * 2018-09-28 2020-09-04 上海建工集团股份有限公司 整体钢平台模架竖向结构柱垂直度调控装置及施工方法
CN110747896B (zh) * 2019-10-12 2021-09-10 中建三局第一建设工程有限责任公司 用于移动模架的自动导向行走装置及其方法
CN111894289B (zh) * 2020-07-14 2022-07-29 上海建工四建集团有限公司 一种一体式预制墙板调垂装置的使用方法
CN112355988B (zh) * 2020-09-21 2023-11-17 江苏人和环保设备有限公司 一种脉冲褶式滤筒加工定位装置
CN115387635B (zh) * 2022-09-29 2023-07-25 中建八局第一建设有限公司 一种预防混凝土无梁楼盖地下室超载坍塌的系统
CN116592843B (zh) * 2023-07-17 2023-09-26 邹城市科威电力设备制造有限公司 一种预制装配式建筑角度测量装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339571A (ja) * 2001-05-17 2002-11-27 Elephant Chain Block Co Ltd 鉄骨建入直し調整治具
CN106223377A (zh) * 2015-11-11 2016-12-14 中天建设集团有限公司 一种用于逆作法立柱垂直度调整的叠拼式加强型调垂机构
CN106638720A (zh) * 2016-11-16 2017-05-10 上海建工二建集团有限公司 逆作法一柱一桩双联置换式全过程测量系统及方法
CN107326944A (zh) * 2017-07-11 2017-11-07 中铁二局集团有限公司 一种格构柱施工调垂装置及使用方法
CN109184172A (zh) * 2018-09-28 2019-01-11 上海建工集团股份有限公司 整体钢平台模架竖向结构柱垂直度调控装置及施工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1021982C (zh) * 1991-06-26 1993-09-01 黄正轩 房屋倾斜纠偏加固的方法
JP3231939B2 (ja) * 1994-03-23 2001-11-26 日本ビソー株式会社 ワインダのワイヤ抜け止め装置
CN2326666Y (zh) * 1996-08-06 1999-06-30 黄信璁 全天候井型扬升调整平台及墙壁模板构成,支撑架构造
CN2816112Y (zh) * 2005-08-08 2006-09-13 三一重工股份有限公司 铣刨机支腿套定位连接装置
CN101949211B (zh) * 2010-10-29 2012-01-04 中建三局建设工程股份有限公司 低位少支点模块化整体顶升钢平台模架体系
CN207513126U (zh) * 2017-09-18 2018-06-19 天津市东泽天润建筑有限公司 一种脚手架

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339571A (ja) * 2001-05-17 2002-11-27 Elephant Chain Block Co Ltd 鉄骨建入直し調整治具
CN106223377A (zh) * 2015-11-11 2016-12-14 中天建设集团有限公司 一种用于逆作法立柱垂直度调整的叠拼式加强型调垂机构
CN106638720A (zh) * 2016-11-16 2017-05-10 上海建工二建集团有限公司 逆作法一柱一桩双联置换式全过程测量系统及方法
CN107326944A (zh) * 2017-07-11 2017-11-07 中铁二局集团有限公司 一种格构柱施工调垂装置及使用方法
CN109184172A (zh) * 2018-09-28 2019-01-11 上海建工集团股份有限公司 整体钢平台模架竖向结构柱垂直度调控装置及施工方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445778A (zh) * 2021-07-15 2021-09-28 上海上百加电梯工程有限公司 一种室外加装电梯调平装置及调平施工方法
CN113445778B (zh) * 2021-07-15 2022-07-19 上海上百加电梯工程有限公司 一种室外加装电梯调平装置及调平施工方法

Also Published As

Publication number Publication date
CN109184172A (zh) 2019-01-11
CN109184172B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
WO2020062966A1 (zh) 整体钢平台模架竖向结构柱垂直度调控装置及施工方法
CN111719892B (zh) 千斤顶卸载支撑装置的使用方法
CN201158933Y (zh) 一种高层外挑结构维修脚手架装置
CN113463522B (zh) 一种盖梁施工辅助装置及方法
CN103510736A (zh) 混凝土筒仓顶钢结构低空模块化组装整体滑模提升方法
CN211898386U (zh) 管桩垂直度调节装置
KR20110014341A (ko) 안전펜스가 설치된 타워크레인 지지장치
CN210887278U (zh) 一种杯口式混凝土基坑立柱用固定装置
CN212984676U (zh) 一种竖向预制构件自垂直斜支撑装置
CN113090040A (zh) 一种竖向预制构件的安装装置及方法
CN113252375B (zh) 一种高大模板支撑体系的预压监测系统及施工方法
CN216081351U (zh) 一种适用于液压爬模的垂直度测量装置
CN212249325U (zh) 千斤顶卸载支撑装置
KR102229639B1 (ko) Iot 기반 현장관리 복합형 건설용 클라이밍 시스템
CN104153479B (zh) 反力板加载孔施工方法及其施工装置
CN204689525U (zh) 一种便于测量的设备顶升装置
CN210152320U (zh) 一种螺栓球节点式网架胎架
CN114482561A (zh) 钢结构屋面安装方法
CN113636466A (zh) 建筑物拆除用龙门架及拆除方法
CN113006498A (zh) 大跨度球形屋架拔杆提升施工方法
CN108797998B (zh) 用于曲面核心筒施工的整体钢平台模架调垂装置及方法
CN218970753U (zh) 可拆卸式装配建筑支撑装置
CN218061536U (zh) 一种装配式建筑构件安装用校准定位装置
CN216091944U (zh) 一种履带起重机臂架用安全绳装置
CN215857308U (zh) 桥梁斜拉索张拉撑脚装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864829

Country of ref document: EP

Kind code of ref document: A1