WO2020062965A1 - 整体钢平台爬升导柱标高实时监控系统及其使用方法 - Google Patents

整体钢平台爬升导柱标高实时监控系统及其使用方法 Download PDF

Info

Publication number
WO2020062965A1
WO2020062965A1 PCT/CN2019/092628 CN2019092628W WO2020062965A1 WO 2020062965 A1 WO2020062965 A1 WO 2020062965A1 CN 2019092628 W CN2019092628 W CN 2019092628W WO 2020062965 A1 WO2020062965 A1 WO 2020062965A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevation
guide post
microcomputer
module
steel platform
Prior art date
Application number
PCT/CN2019/092628
Other languages
English (en)
French (fr)
Inventor
龚剑
杨德生
王小安
秦鹏飞
扶新立
马静
倪冬燕
Original Assignee
上海建工集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海建工集团股份有限公司 filed Critical 上海建工集团股份有限公司
Publication of WO2020062965A1 publication Critical patent/WO2020062965A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G3/00Scaffolds essentially supported by building constructions, e.g. adjustable in height
    • E04G3/28Mobile scaffolds; Scaffolds with mobile platforms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G3/00Scaffolds essentially supported by building constructions, e.g. adjustable in height
    • E04G3/28Mobile scaffolds; Scaffolds with mobile platforms
    • E04G2003/286Mobile scaffolds; Scaffolds with mobile platforms mobile vertically

Definitions

  • the invention relates to a real-time monitoring system for the climbing guide column elevation of an integral steel platform and a method for using the same.
  • the guide column climbing integral steel platform for the core tube construction of super high-rise buildings.
  • the steel guide column When climbing, the steel guide column is supported on the completed reinforced concrete surface.
  • the overall steel platform climbs up the guide column under the action of the oil cylinder, and the steel platform is rigid.
  • the consistent elevation of the guide column is particularly important, and there is a gap in the elevation of the finished surface of the concrete wall of the structural wall. If the guide column is located directly on the concrete without the elevation measurement, it will inevitably cause the difference in the elevation of the guide column.
  • the purpose of the present invention is to provide a real-time monitoring system for the elevation of a guide pillar of an integral steel platform and a method for using the same, which can solve the problem of the difference in the elevation of a guide pillar.
  • the present invention provides a real-time monitoring system for the climbing guide column elevation of the entire steel platform, including:
  • a guide post is provided with a scale line along its height, and a scale value is marked on the side of the scale line, and the scale value reflects the height difference between the position of the scale line and the top or bottom of the guide post;
  • Guide post lifting mechanism used to raise or lower the guide post by hydraulic power
  • a console for wirelessly receiving the relative elevation sent by the microcomputer of the elevation measuring device, and controlling the lifting or lowering of the target guide pillar lifting mechanism through the guide pillar lifting mechanism according to the relative altitude;
  • the elevation measuring device is installed on a fixed support on the overall steel platform.
  • the elevation measuring device includes a microcomputer and an image acquisition module, a horizontal ultrasonic ranging module, a vertical ultrasonic ranging module, and a laser transmitting module respectively connected to the microcomputer.
  • Wireless communication module
  • a wireless communication module serving as a transmitter and receiver for data exchange between the microcomputer and the console;
  • a horizontal ultrasonic ranging module configured to transmit a horizontal ranging ultrasonic wave to a target guide post to measure a horizontal distance between the level measuring device and the target guide post, and transmit the horizontal distance to the microcomputer;
  • a vertical ultrasonic ranging module configured to transmit vertical ranging ultrasonic waves to the table surface of the overall steel platform to measure the vertical distance between the measurement level measuring device and the table surface of the overall steel platform, and transmit the vertical distance to the microcomputer;
  • a laser emitting module configured to emit a laser line parallel to the central axis of the level measuring device according to the control of the microcomputer, and the laser line is projected on a target guide post;
  • the image acquisition module includes an auto-focusing telescope tube.
  • the telescope tube includes an observation window. When the elevation measuring device is working, the observation window faces the target guide post.
  • the image acquisition module collects and projects on the The image information of the laser line on the target guide post of the scale value is transmitted to the microcomputer, and the image information is transmitted to the console through the wireless communication module.
  • the console is configured to compare the relative elevation received from the microcomputer with the set elevation value of the current climb, and control the guide post lifting mechanism to perform the comparison based on the comparison result.
  • the console is configured to compare the relative elevation received from the microcomputer with the set elevation value of the current climb, and control the guide post lifting mechanism to perform the comparison based on the comparison result.
  • the level measuring device further includes a lighting flashlight connected to the microcomputer, wherein,
  • the image acquisition module is further configured to automatically sense the light intensity and send a light intensity signal to the microcomputer;
  • the microcomputer is further configured to control the lighting torch to turn on when the light intensity signal received from the image acquisition module is less than a preset light intensity threshold.
  • the elevation measuring device further includes a bottom rotation mechanism connected to the microcomputer, and is used for adjusting the elevation of a target guide post according to a rotation signal received from the microcomputer, The measuring device rotates at an angle and points to the next target guide post.
  • a height-adjustable mechanism connected to the bottom end of the guide post, including:
  • a waist hole provided on the bottom end of the guide post
  • a detachable base which is provided with a longitudinal chute and a locking groove, the locking groove is distributed at a predetermined interval perpendicular to the longitudinal chute, and the T-bolt passes through the waist-type hole and the longitudinal direction
  • the chute is anchored to the locking groove, and the bottom end of the guide post and the detachable base are fixed by an external nut.
  • a method for using the above-mentioned integrated steel platform climbing guide column elevation real-time monitoring system including:
  • the horizontal ultrasonic ranging module transmits a horizontal ranging ultrasonic wave to the target guide post to measure the horizontal distance between the level measuring device and the target guide post, and transmits the horizontal distance to the microcomputer;
  • the vertical ultrasonic ranging module emits ultrasonic ranging vertically to the steel platform surface to measure the vertical distance l between the measurement level measuring device and the table surface of the overall steel platform, and transmits the vertical distance l to the microcomputer;
  • the microcomputer calculates the corresponding focal length of the telescope barrel of the image acquisition module according to the horizontal distance received from the horizontal ultrasonic ranging module, and controls the focal length adjustment of the telescope barrel according to the calculated corresponding focal distance, so that the image information collected by the image acquisition module is clear. ;
  • the laser emitting module emits a laser line parallel to the center axis of the level measuring device according to the control of the microcomputer, and the laser line is projected on the target guide post;
  • the image acquisition module collects image information of a laser line projected on a target guide with a scale value through an observation window of a telescope barrel, and transmits the acquired image to the microcomputer;
  • the microcomputer calculates the relative elevation H of the top of the target guide post and the overall steel platform at this time according to the scale value h on the guide post and the vertical distance l determined by the vertical ultrasonic ranging module, and communicates the relative elevation through wireless communication.
  • the module is transmitted to the console;
  • the console wirelessly receives the relative elevation H sent by the microcomputer of the elevation measuring device, and controls the lifting or lowering of the target guide pillar lifting mechanism through the guide pillar lifting mechanism according to the relative altitude H.
  • controlling the lifting or lowering of the target guide post lifting mechanism through the guide post lifting mechanism according to the relative elevation includes:
  • the console compares the relative elevation H received from the microcomputer with the set elevation value of the current climb, and controls the guide post lifting mechanism to perform ascent or descent operations based on the comparison result. When it is consistent with the set elevation value, the lifting or lowering operation of the guide post lifting mechanism is automatically stopped.
  • the method further includes:
  • the microcomputer sends a rotation signal to the bottom rotation mechanism, and the bottom rotation mechanism rotates the elevation measuring device according to the rotation signal received from the microcomputer to point to the next target guide post.
  • the detachable base on the bottom end of the guide post and the concrete surface layer are not yet attached, extend the detachable base, and then anchor the T-bolt through the waist hole and the longitudinal chute to the locking groove , And the bottom end of the guide post and the detachable base are fixed by an external nut.
  • the detachable base at the bottom end of the guide post has already abutted against the concrete surface layer, retract the detachable base, and then anchor the T-bolt through the waist hole and the longitudinal chute to the locking groove, and pass The outer nut secures the bottom end of the guide post and the removable base.
  • the present invention is provided with a scale line along a height of a guide post, a guide post lifting mechanism, a console, a microcomputer in an elevation measuring device, an image acquisition module, a horizontal ultrasonic ranging module, and a vertical ultrasonic ranging.
  • the module, laser transmitting module and wireless communication module can efficiently and accurately perform elevation measurement and adjustment on the entire steel platform guide column.
  • FIG. 1 is a schematic diagram of the installation of a real-time monitoring system for the climbing guide column elevation of an integral steel platform according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a real-time monitoring system for a climbing guide column elevation of an integral steel platform according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of an elevation measuring device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of rotation measurement of an elevation measuring device according to an embodiment of the present invention.
  • FIG. 5 is a schematic assembly diagram of a height adjustment mechanism according to an embodiment of the present invention.
  • FIG. 6 is a schematic exploded view of a height adjustment mechanism according to an embodiment of the present invention.
  • FIG. 7 is a plan view of a T-bolt according to an embodiment of the present invention.
  • FIG. 8 is a side view of a T-bolt according to an embodiment of the present invention.
  • FIG. 9 is a first step installation diagram of a height adjustment mechanism according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the second step installation of the height adjustment mechanism according to an embodiment of the present invention.
  • FIG. 11 is a third step installation diagram of a height adjustment mechanism according to an embodiment of the present invention.
  • FIG. 12 is a fourth step installation diagram of the height adjustment mechanism according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of a method for using a real-time monitoring system for a climbing guide column elevation of an integral steel platform according to an embodiment of the present invention.
  • the present invention provides a real-time monitoring system for the elevation of an integral steel platform 5 climbing guide column, including a guide column 1, a guide column lifting mechanism 2, a console 3, and an elevation measuring device 4, wherein:
  • Guide post 1 is a profiled steel member.
  • a scale line is set along its height, and a scale value 6 is marked on the side of the scale line.
  • the scale value 6 reflects the height difference between the position of the scale line and the top or bottom of the guide post;
  • Guide post lifting mechanism 2 for raising or lowering the guide post 1 by hydraulic power
  • the console 3 has an infinite data receiving function, and is used for wirelessly receiving the relative elevation sent by the microcomputer 41 of the elevation measuring device 4 and controlling the lifting or lowering of the target guide pillar lifting mechanism through the guide pillar lifting mechanism 2 according to the relative altitude. ;
  • Elevation measurement device 4 which is a mechanism for measuring elevation data, is mounted on a fixed bracket 7 on an overall steel platform 5.
  • the elevation measurement device 4 includes a microcomputer 41 and an image acquisition module connected to the microcomputer 41 respectively 42.
  • Horizontal ultrasonic ranging module 43, vertical ultrasonic ranging module 44, laser transmitting module 45, and wireless communication module 46 are connected to the microcomputer 41 respectively 42.
  • the wireless communication module 46 serves as a transmitter and receiver for data exchange between the microcomputer 41 and the console 3;
  • the casing 48 of the level measurement device may be a rectangular parallelepiped, in which a rechargeable battery pack 49, an image acquisition module, a horizontal ultrasonic ranging module, a vertical ultrasonic ranging module, a laser transmitting module microcomputer, and a wireless communication module may be integrated inside the casing and charged.
  • the battery pack is used for power supply of the level measuring device;
  • a horizontal ultrasonic ranging module 42 is configured to transmit a horizontal ranging ultrasonic wave 50 to a target guide post to measure a horizontal distance between the level measurement device and the target guide post, and transmit the horizontal distance to the microcomputer;
  • the microcomputer 41 is the brain of the elevation measuring device, and is used for collecting data from the image acquisition module 42, the horizontal ultrasonic ranging module 42, the vertical ultrasonic ranging module 43, the laser transmitting module 45, and the wireless communication module 46 and performing feedback. 41.
  • the obtained image information is clear, and the image information received from the image acquisition module 42 is analyzed to determine the scale value 6 on the guide post 1 of the laser line position, and according to the scale value 6 on the guide post 1 and the vertical ultrasonic measurement
  • the vertical distance measured from the module to calculate the relative elevation of the top of the target guide post and the overall steel platform at this time, and the microcomputer 41 transmits the relative elevation to the console through the wireless communication module;
  • the horizontal ultrasonic ranging module automatically determines the horizontal distance between the current level measurement device and the target guide post, and sends this horizontal distance to the microcomputer, and the microcomputer calculates this data After that, the focal length that the telescope tube of the image acquisition module should take at this time can be calculated, and the telescope tube can be adjusted to make the image information collected by the image acquisition module clear.
  • a vertical ultrasonic ranging module 44 is configured to transmit a vertical ranging ultrasonic wave 51 to the table surface of the overall steel platform 5 to measure the vertical distance between the measurement level measuring device and the table surface of the overall steel platform 5 and transmit the vertical distance to the station.
  • Said microcomputer ;
  • the laser emitting module 45 is configured to emit a laser line 52 parallel to the center axis of the level measuring device 4 according to the control of the microcomputer 41, and the laser line 52 is projected on the target guide post 1;
  • the image acquisition module 42 includes an auto-focusing telescope tube.
  • the telescope tube includes an observation window 55.
  • the observation window 53 faces the target guide column 1.
  • the image acquisition module 42 passes the observation window of the telescope tube. 53 collects image information of the laser line 52 projected on the target guide column 1 with a scale value, and transmits the collected image to the microcomputer 41, and transmits the image information to the console through a wireless communication module.
  • the image acquisition module can clearly observe the guide post, the scale on the guide post, and the laser line projected by the laser emitting device through the observation window.
  • the image information collected by the image acquisition module is transmitted to the microcomputer, and the microcomputer analyzes the image information. , So as to determine the guide column scale value of the laser spot position.
  • a guide post is provided with a scale line along its height, a guide post lifting mechanism, a console, a microcomputer in an elevation measuring device, an image acquisition module, a horizontal ultrasonic ranging module, a vertical ultrasonic ranging module, a laser transmitting module, and a wireless device.
  • the communication module can efficiently and accurately perform the elevation measurement and adjustment of the entire steel platform guide column.
  • the console is used to compare the relative elevation received from the microcomputer with the set elevation value of the current climb, and according to the ratio, The result controls the guide post lifting mechanism to perform lifting or lowering operations, and when the measured value of the relative elevation is consistent with the set elevation value, the lifting operation of the guide post lifting mechanism is automatically stopped.
  • the microcomputer can calculate the relative elevation of the top of the guide post and the overall steel platform through the scale data on the guide post and the vertical distance measured by the vertical ultrasonic ranging module, and the microcomputer passes the relative elevation through the wireless communication module.
  • the console compares the relative elevation with the set elevation value of the current climb, and controls the guide column lifting mechanism to perform the ascent or descent operation. When the measured value of the relative elevation is consistent with the set elevation value, it automatically Stop the job.
  • the elevation measuring device further includes a lighting flashlight 54 connected to the microcomputer, wherein:
  • the image acquisition module 42 is further configured to automatically sense the light intensity and send a light intensity signal to the microcomputer;
  • the microcomputer 41 is further configured to control the lighting torch 54 to be turned on when a light intensity signal received from the image acquisition module 42 is less than a preset light intensity threshold.
  • the elevation measuring device further includes a bottom rotation mechanism 55 connected to the microcomputer 41 for controlling the elevation of a target guide column, According to the rotation signal received from the microcomputer 41, the elevation measuring device is angle-rotated to point to the next target guide post 1.
  • the bottom rotation mechanism is used to rotate the elevation measuring device according to the rotation signal received from the microcomputer after the level adjustment of one target guide post is completed, and point to the next target guide post, which needs to rotate
  • the angle ⁇ is calibrated in advance, so that after the measurement of a target guide post is completed, as shown in FIG. 4, it can be automatically rotated and thrown to the next target guide post.
  • a height-adjustable mechanism 8 connected to the bottom end of the guide pillar, including:
  • a waist-shaped hole 83 provided on the bottom end of the guide post 1;
  • Removable base 84 which is provided with a longitudinal chute 841 and a locking groove 842, the locking grooves are distributed at a predetermined interval perpendicular to the longitudinal chute, and the T-bolts pass through the waist
  • the hole and the longitudinal chute are anchored to the locking groove, and the bottom end of the guide post and the detachable base 84 are fixed by an outer nut 82.
  • the lower part of the guide pillar may be detached from the concrete 9 or has resisted due to the pouring height of the concrete at the lower part of the guide pillar, but the guide pillar is extremely high.
  • the height of the base needs to be adjusted through the height adjustable mechanism at the lower part of the guide post.
  • the adjustable height mechanism is: a detachable base has a longitudinal chute and a horizontal locking groove, a lower part of the guide post has a waist-shaped hole, and a T-bolt can pass through the waist-shaped hole 83 and the longitudinal chute 841 and be anchored to the lock.
  • the groove 842 is fixed by the outer nut 82, so that the bottom end of the guide post and the detachable base are fixed.
  • the T-bolt 81 can slide in the longitudinal chute. After the height adjustment reaches the requirements, the T-bolt is rotated 90 degrees and snaps into the nearest locking groove 842.
  • the bottom end of the guide post may be sleeved with a detachable base 84 so that the waist-shaped hole 83 on the bottom end of the guide post is detachable.
  • the longitudinal chute 841 on the base 84 is aligned;
  • the T-bolt 81 can be inserted into the waist hole 83 and the longitudinal slide groove 841;
  • the outer nut 82 is used to fix the bottom end of the guide post 1 and the detachable base.
  • the present invention also provides another method for using the real-time monitoring system of the climbing guide column elevation of the entire steel platform, including:
  • Step S1 the horizontal ultrasonic ranging module transmits a horizontal ranging ultrasonic wave to the target guide post to measure the horizontal distance between the level measuring device and the target guide post, and transmits the horizontal distance to the microcomputer;
  • step S2 the vertical ultrasonic ranging module transmits ultrasonic ranging vertically to the steel platform surface to measure the vertical distance l between the measurement level measuring device and the table surface of the overall steel platform, and transmits the vertical distance l to the microcomputer;
  • step S3 the microcomputer calculates the corresponding focal length of the telescope barrel of the image acquisition module according to the horizontal distance received from the horizontal ultrasonic ranging module, and controls the focal length adjustment of the telescope barrel according to the calculated corresponding focal distance, so that the collected by the image acquisition module Clear image information;
  • Step S4 The laser emitting module emits a laser line parallel to the center axis of the level measuring device according to the control of the microcomputer, and the laser line is projected on the target guide post;
  • Step S5 The image acquisition module collects image information of the laser line projected on the target guide column with a scale value through the observation window of the telescope barrel, and transmits the acquired image to the microcomputer;
  • step S6 the microcomputer parses the image information received from the image acquisition module to determine the scale value h on the guide post of the laser line position;
  • step S7 the microcomputer calculates the relative height H of the top of the target guide post and the overall steel platform according to the scale value h on the guide post and the vertical distance l determined by the vertical ultrasonic ranging module, and sets the relative elevation Transmitted to the console through the wireless communication module;
  • step S7 the console wirelessly receives the relative altitude H sent by the microcomputer of the elevation measuring device, and controls the lifting or lowering of the target guide pillar lifting mechanism through the guide pillar lifting mechanism according to the relative altitude H. .
  • controlling the lifting or lowering of the target guide column lifting mechanism through the guide column lifting mechanism according to the relative level includes:
  • the console compares the relative elevation H received from the microcomputer with the set elevation value of the current climb, and controls the guide post lifting mechanism to perform ascent or descent operations based on the comparison result. When it is consistent with the set elevation value, the lifting or lowering operation of the guide post lifting mechanism is automatically stopped.
  • the microcomputer can calculate the relative elevation of the top of the guide post and the overall steel platform through the scale data on the guide post and the vertical distance measured by the vertical ultrasonic ranging module, and the microcomputer passes the relative elevation through the wireless communication module.
  • the console compares the relative elevation with the set elevation value of the current climb, and controls the guide column lifting mechanism to perform the ascent or descent operation. When the measured value of the relative elevation is consistent with the set elevation value, it automatically Stop the job.
  • the method further includes:
  • step S8 the microcomputer sends a rotation signal to the bottom rotation mechanism, and the bottom rotation mechanism rotates the elevation measuring device according to the rotation signal received from the microcomputer to point to the next target guide post.
  • the bottom rotation mechanism is used to rotate the elevation measuring device according to the rotation signal received from the microcomputer after the level adjustment of one target guide post is completed, and point to the next target guide post, which needs to rotate
  • the angle ⁇ is calibrated in advance, so that after the measurement of a target guide post is completed, as shown in FIG. 4, it can be automatically rotated and thrown to the next target guide post.
  • the method further includes:
  • the console controls the lifting or lowering operation of the target guide post lifting mechanism, if the detachable base on the bottom end of the guide post and the surface layer of concrete 9 are not yet attached, the detachable base is extended , Then anchor the T-bolt through the waist hole and the longitudinal chute to the locking groove, and fix the bottom end of the guide post and the detachable base with an external nut;

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明提供了一种整体钢平台爬升导柱标高实时监控系统及其使用方法,本发明通过导柱上沿其高度设置有刻度线,导柱提升机构、控制台、标高测定装置中的微电脑、图像采集模块、水平超声测距模块、垂直超声测距模块、激光发射模块、无线通信模块,可以高效而精准的对整体钢平台导柱进行标高测定和调节。

Description

整体钢平台爬升导柱标高实时监控系统及其使用方法 技术领域
本发明涉及一种整体钢平台爬升导柱标高实时监控系统及其使用方法。
背景技术
超高层建筑核心筒施工用导柱爬升式整体钢平台,其爬升时,钢导柱支撑于已完成的钢筋混凝土面层,整体钢平台在油缸作用下沿着导柱向上爬升,钢平台为刚性整体,如果钢导柱标高不一致,则会造成整体钢平台提升困难。因此,导柱的标高一致尤为重要,而结构墙体混凝土浇筑完成面标高有差距,造成如果导柱不进行标高测量直接就位于混凝土上,必然造成导柱标高差异。
发明内容
本发明的目的在于提供一种整体钢平台爬升导柱标高实时监控系统及其使用方法,能够解决导柱标高差异的问题。
为解决上述问题,本发明提供一种整体钢平台爬升导柱标高实时监控系统,包括:
导柱,沿其高度设置有刻度线,在刻度线边标定有刻度值,通过所述刻度值反映刻度线位置距离导柱的顶部或底部的高度差;
导柱提升机构,用于通过液压动力能够提升或降低导柱;
控制台,用于无线接收标高测定装置的微电脑发出的相对标高,并根据所述相对标高通过所述导柱提升机构,控制目标导柱提升机构的提升或降低;
标高测定装置,安装于整体钢平台上的固定的支架上,所述标高测定装置包括微电脑及分别与所述微电脑连接的图像采集模块、水平超声测距模块、垂直超声测距模块、激光发射模块、无线通信模块,其中,
无线通信模块,作为所述微电脑与控制台进行数据交换的发射和接收 器;
水平超声测距模块,用于向目标导柱发射水平向测距超声波,以测量标高测定装置与目标导柱之间的水平距离,并将水平距离传递给所述微电脑;
微电脑,用于收集图像采集模块、水平超声测距模块、垂直超声测距模块、激光发射模块、无线通信模块的数据,并进行反馈,还用于根据从水平超声测距模块接收的水平距离,计算图像采集模块的望远镜筒的对应焦距,根据计算得到的对应焦距控制望远镜筒的焦距调节,使得图像采集模块所采集到的图像信息清晰,及对从所述图像采集模块接收的图像信息进行解析,从而确定激光线位置的导柱上的刻度值,根据导柱上的刻度值以及垂直超声测距模块测定的垂直距离,计算出此时目标导柱的顶端与整体钢平台的相对标高,微电脑将所述相对标高通过无线通信模块传输给控制台;
垂直超声测距模块,用于向整体钢平台的台面发射垂直向测距超声波,以测量测量标高测定装置与整体钢平台的台面之间的垂直距离,并将垂直距离传递给所述微电脑;
激光发射模块,用于根据所述微电脑的控制,发射与标高测定装置的中轴线平行的激光线,所述激光线投射在目标导柱上;
图像采集模块包括自动调焦的望远镜筒,所述望远镜筒包含一个观测窗,在标高测定装置工作时,所述观测窗朝向目标导柱,图像采集模块通过望远镜筒的观测窗采集投射在带有刻度值的目标导柱上的激光线的图像信息,并将采集到的图像传递给所述微电脑,及通过无线通信模块将所述图像信息传递给控制台。
进一步的,在上述系统中,所述控制台,用于将从所述微电脑接收的相对标高与对比本次爬升的设定标高数值进行比对,根据比对结果控制所述导柱提升机构进行升或降作业,当相对标高实测数值与设定标高数值一致时,自动停止所述导柱提升机构的升或降作业。
进一步的,在上述系统中,所述标高测定装置还包括与所述微电脑连接的照明电筒,其中,
所述图像采集模块,还用于自动感知光照强度,并发送光照强度信号至所述微电脑;
所述微电脑,还用于当从所述图像采集模块接收到的光照强度信号小于预设光照强度阈值时,控制所述照明电筒打开。
进一步的,在上述系统中,所述标高测定装置还包括与所述微电脑连接的底部旋转机构,用于在一个目标导柱的标高调控完毕后,根据从所述微电脑接收的旋转信号,对标高测定装置进行角度旋转,指向下一个目标导柱。
进一步的,在上述系统中,还包括连接于所述导柱的底端上的高度可调节机构,包括:
T型螺栓;
设置于导柱的底端上的腰型孔;
可拆卸底座,所述可拆卸底座上设置有纵向滑槽和锁定凹槽,所述锁定凹槽垂直于所述纵向滑槽按预设间隔分布,所述T型螺栓穿过腰型孔和纵向滑槽后锚固于所述锁定凹槽,并通过外螺母将导柱的底端和可拆卸底座进行固定。
根据本发明的另一面,提供一种上述整体钢平台爬升导柱标高实时监控系统的使用方法,包括:
水平超声测距模块向目标导柱发射水平向测距超声波,以测量标高测定装置与目标导柱之间的水平距离,并将水平距离传递给微电脑;
垂直超声测距模块向发射钢平台面垂直向测距超声波,以测量测量标高测定装置与整体钢平台的台面之间的垂直距离l,并将垂直距离l传递给所述微电脑;
所述微电脑根据从水平超声测距模块接收的水平距离,计算图像采集模块的望远镜筒的对应焦距,根据计算得到的对应焦距控制望远镜筒的焦距调节,使得图像采集模块所采集到的图像信息清晰;
激光发射模块根据所述微电脑的控制,发射与标高测定装置的中轴线平行的激光线,所述激光线投射在目标导柱上;
图像采集模块通过望远镜筒的观测窗采集投射在带有刻度值的目标导柱上的激光线的图像信息,并将采集到的图像传递给所述微电脑;
所述微电脑对从所述图像采集模块接收的图像信息进行解析,从而确定激光线位置的导柱上的刻度值h;
所述微电脑根据导柱上的刻度值h以及垂直超声测距模块测定的垂直距离l,计算出此时目标导柱的顶端与整体钢平台的相对标高H,并将所述相对标高通过无线通信模块传输给控制台;
所述控制台通过无线方式,接收所述标高测定装置的微电脑发出的相对标高H,并根据所述相对标高H通过所述导柱提升机构,控制目标导柱提升机构的提升或降低。
进一步的,在上述方法中,根据所述相对标高通过所述导柱提升机构,控制目标导柱提升机构的提升或降低,包括:
所述控制台将从所述微电脑接收的相对标高H与对比本次爬升的设定标高数值进行比对,根据比对结果控制所述导柱提升机构进行升或降作业,当相对标高实测数值与设定标高数值一致时,自动停止所述导柱提升机构的升或降作业。
进一步的,在上述方法中,控制目标导柱提升机构的提升或降低之后,还包括:
所述微电脑向底部旋转机构发出旋转信号,底部旋转机构根据从所述微电脑接收的旋转信号,对标高测定装置进行角度旋转,指向下一个目标导柱。
进一步的,在上述方法中,当所述控制台控制目标导柱提升机构的提升或降低的作业完毕后,
若导柱的底端上的可拆卸底座与混凝土面层尚未贴合,则将所述可拆卸底座进行伸出,然后将T型螺栓穿过腰型孔和纵向滑槽后锚固于锁定凹槽,并通过外螺母将导柱的底端和可拆卸底座进行固定。
进一步的,在上述方法中,当所述控制台控制目标导柱提升机构的提升或降低的作业未完毕,
若导柱的底端的可拆卸底座已经抵住混凝土面层,则将所述可拆卸底座进行回缩,然后将T型螺栓穿过腰型孔和纵向滑槽后锚固于锁定凹槽,并通过外螺母将导柱的底端和可拆卸底座进行固定。
与现有技术相比,本发明通过导柱上沿其高度设置有刻度线,导柱提升机构、控制台、标高测定装置中的微电脑、图像采集模块、水平超声测距模 块、垂直超声测距模块、激光发射模块、无线通信模块,可以高效而精准的对整体钢平台导柱进行标高测定和调节。
附图说明
图1是本发明一实施例的整体钢平台爬升导柱标高实时监控系统的安装示意图;
图2是本发明一实施例的整体钢平台爬升导柱标高实时监控系统的原理示意图;
图3是本发明一实施例的标高测定装置的结构图;
图4是本发明一实施例的标高测定装置的旋转测定示意图;
图5是本发明一实施例的高度调节机构的组合示意图;
图6是本发明一实施例的高度调节机构的拆分示意图;
图7是本发明一实施例的T型螺栓的俯视图;
图8是本发明一实施例的T型螺栓的侧视图;
图9是本发明一实施例的高度调节机构的第一步安装示意图;
图10是本发明一实施例的高度调节机构的第二步安装示意图;
图11是本发明一实施例的高度调节机构的第三步安装示意图;
图12是本发明一实施例的高度调节机构的第四步安装示意图;
图13是本发明一实施例的整体钢平台爬升导柱标高实时监控系统的使用方法流程图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1~4所示,本发明提供一种整体钢平台5爬升导柱标高实时监控系统,包括导柱1、导柱提升机构2、控制台3以及标高测定装置4,其中,
导柱1为型钢构件,沿其高度设置有刻度线,在刻度线边标定有刻度值6,通过所述刻度值6反映刻度线位置距离导柱的顶部或底部的高度差;
导柱提升机构2,用于通过液压动力能够提升或降低导柱1;
控制台3具有无限数据接收功能,用于无线接收标高测定装置4的微电脑41发出的相对标高,并根据所述相对标高通过所述导柱提升机构2,控制目标导柱提升机构的提升或降低;
标高测定装置4,标高测定装置是标高数据的测定机构,安装于整体钢平台5上的固定的支架7上,所述标高测定装置4包括微电脑41及分别与所述微电脑41连接的图像采集模块42、水平超声测距模块43、垂直超声测距模块44、激光发射模块45、无线通信模块46,其中,
无线通信模块46,作为所述微电脑41与控制台3进行数据交换的发射和接收器;
在此,标高测定装置的外壳48可为长方体,其中充电电池组49,图像采集模块、水平超声测距模块、垂直超声测距模块、激光发射模块微电脑以及无线通信模块可集成于外壳内部,充电电池组用于标高测定装置的供电;
水平超声测距模块42,用于向目标导柱发射水平向测距超声波50,以测量标高测定装置与目标导柱之间的水平距离,并将水平距离传递给所述微电脑;
微电脑41是标高测定装置的大脑,用于收集图像采集模块42、水平超声测距模块42、垂直超声测距模块43、激光发射模块45、无线通信模块46的数据,并进行反馈,所述微电脑41,还用于根据从水平超声测距模块42接收的水平距离,计算图像采集模块42的望远镜筒的对应焦距,根据计算得到的对应焦距控制望远镜筒的焦距调节,使得图像采集模块42所采集到的图像信息清晰,及对从所述图像采集模块42接收的图像信息进行解析,从而确定激光线位置的导柱1上的刻度值6,根据导柱1上的刻度值6以及垂直超声测距模块测定的垂直距离,计算出此时目标导柱的顶端与整体钢平台的相对标高,微电脑41将所述相对标高通过无线通信模块传输给控制台;
在此,当标高测定装置对准目标导柱后,水平超声测距模块自动测定当前标高测定装置与目标导柱之间的水平距离,并将此水平距离发送给微电脑,微电脑对此数据进行计算后,可以计算出此时图像采集模块的望远镜筒应该采取的焦距,并控制望远镜筒进行调节,使得图像采集模块所采集到的图像信息清晰;
垂直超声测距模块44,用于向整体钢平台5的台面发射垂直向测距超声波51,以测量测量标高测定装置与整体钢平台5的台面之间的垂直距离,并将垂直距离传递给所述微电脑;
激光发射模块45,用于根据所述微电脑41的控制,发射与标高测定装置4的中轴线平行的激光线52,所述激光线52投射在目标导柱1上;
图像采集模块42包括自动调焦的望远镜筒,所述望远镜筒包含一个观测窗55,在标高测定装置工作时,所述观测窗53朝向目标导柱1,图像采集模块42通过望远镜筒的观测窗53采集投射在带有刻度值的目标导柱1上的激光线52的图像信息,并将采集到的图像传递给所述微电脑41,及通过无线通信模块将所述图像信息传递给控制台。
在此,图像采集模块通过观测窗,可以清晰观测到导柱、导柱上的刻度以及激光发射装置所投射的激光线,图像采集模块采集到的图像信息传递给微电脑,微电脑对图像信息进行解析,从而确定激光点位置的导柱刻度值。
本发明通过导柱上沿其高度设置有刻度线,导柱提升机构、控制台、标高测定装置中的微电脑、图像采集模块、水平超声测距模块、垂直超声测距模块、激光发射模块、无线通信模块,可以高效而精准的对整体钢平台导柱进行标高测定和调节。
本发明的整体钢平台爬升导柱标高实时监控系统一实施例中,所述控制台,用于将从所述微电脑接收的相对标高与对比本次爬升的设定标高数值进行比对,根据比对结果控制所述导柱提升机构进行升或降作业,当相对标高实测数值与设定标高数值一致时,自动停止所述导柱提升机构的升或降作业。
在此,微电脑通过导柱上的刻度值数据以及垂直超声测距模块测定的垂直距离,能够计算出此时导柱的顶端与整体钢平台的相对标高,微电脑将所述相对标高通过无线通信模块传输给控制台,控制台通过将相对标高与对比本次爬升的设定标高数值进行比对,控制导柱提升机构进行升或降作业,当相对标高实测数值与设定标高数值一致时,自动停止作业。
本发明的整体钢平台爬升导柱标高实时监控系统一实施例中,所述标高测定装置还包括与所述微电脑连接的照明电筒54,其中,
所述图像采集模块42,还用于自动感知光照强度,并发送光照强度信号至所述微电脑;
所述微电脑41,还用于当从所述图像采集模块42接收到的光照强度信号小于预设光照强度阈值时,控制所述照明电筒54打开。
本发明的整体钢平台爬升导柱标高实时监控系统一实施例中,所述标高测定装置还包括与所述微电脑41连接的底部旋转机构55,用于在一个目标导柱的标高调控完毕后,根据从所述微电脑41接收的旋转信号,对标高测定装置进行角度旋转,指向下一个目标导柱1。
在此,所述底部旋转机构,用于在一个目标导柱的标高调控完毕后,根据从所述微电脑接收的旋转信号,对标高测定装置进行角度旋转,指向下一个目标导柱,其需要旋转的角度θ通过预先标定,使得其在完成一个目标导柱测定后,如图4所示,可以自动旋转投向下一目标导柱。
如图5~8所示,本发明的整体钢平台爬升导柱标高实时监控系统一实施例中,还包括连接于所述导柱的底端上的高度可调节机构8,包括:
T型螺栓81;
设置于导柱1的底端上的腰型孔83;
可拆卸底座84,所述可拆卸底座上设置有纵向滑槽841和锁定凹槽842,所述锁定凹槽垂直于所述纵向滑槽按预设间隔分布,所述T型螺栓穿过腰型孔和纵向滑槽后锚固于所述锁定凹槽,并通过外螺母82将导柱的底端和可拆卸底座84进行固定。
在此,在导柱高度调节过程中,有可能导柱下部的混凝土由于浇筑高度不同,造成导柱的下端与混凝土9脱开或者已经抵住,但导柱超高,在这种情况下,需要通过导柱下部的高度可调节机构对底座高度进行调节。
所述可调节高度机构为:可拆卸底座上有纵向滑槽以及水平的锁定凹槽,导柱下部有腰型孔,T型螺栓能够穿过腰型孔83和纵向滑槽841后锚固于锁定凹槽842,并通过外螺母82固定,从而将导柱的底端和可拆卸底座进行固定。
T型螺栓81能够在纵向滑槽内滑动,在高度调节达到要求后,将T型螺栓旋转90度,卡入就近的锁定凹槽842内。
具体的,如图9所示,第一步,可将所述导柱的底端与可拆卸底座84套接,以使上的所述导柱的底端上的腰型孔83与可拆卸底座84上的纵向滑槽841对准;
如图10所示,第二步,可将T型螺栓81插入腰型孔83和纵向滑槽841内;
如图11所示,第三步,在高度调节达到要求后,将T型螺栓旋转90度,卡入就近的锁定凹槽842内;
如图12所示,第四步,通过外螺母82固定,从而将导柱1的底端和可拆卸底座进行固定。
如图13所示,本发明还提供另一种整体钢平台爬升导柱标高实时监控系统的使用方法,包括:
步骤S1,水平超声测距模块向目标导柱发射水平向测距超声波,以测量标高测定装置与目标导柱之间的水平距离,并将水平距离传递给所述微电脑;
步骤S2,垂直超声测距模块向发射钢平台面垂直向测距超声波,以测量测量标高测定装置与整体钢平台的台面之间的垂直距离l,并将垂直距离l传递给所述微电脑;
步骤S3,所述微电脑根据从水平超声测距模块接收的水平距离,计算图像采集模块的望远镜筒的对应焦距,根据计算得到的对应焦距控制望远镜筒的焦距调节,使得图像采集模块所采集到的图像信息清晰;
步骤S4,激光发射模块根据所述微电脑的控制,发射与标高测定装置的中轴线平行的激光线,所述激光线投射在目标导柱上;
步骤S5,图像采集模块通过望远镜筒的观测窗采集投射在带有刻度值的目标导柱上的激光线的图像信息,并将采集到的图像传递给所述微电脑;
步骤S6,所述微电脑对从所述图像采集模块接收的图像信息进行解析,从而确定激光线位置的导柱上的刻度值h;
步骤S7,所述微电脑根据导柱上的刻度值h以及垂直超声测距模块测定的垂直距离l,计算出此时目标导柱的顶端与整体钢平台的相对标高H,并将所述相对标高通过无线通信模块传输给控制台;
步骤S7,所述控制台通过无线方式,接收所述标高测定装置的微电脑发出的相对标高H,并根据所述相对标高H通过所述导柱提升机构,控制目标导柱提升机构的提升或降低。
本发明的整体钢平台爬升导柱标高实时监控系统的使用方法一实施例中,根据所述相对标高通过所述导柱提升机构,控制目标导柱提升机构的提升或降低,包括:
所述控制台将从所述微电脑接收的相对标高H与对比本次爬升的设定标高数值进行比对,根据比对结果控制所述导柱提升机构进行升或降作业,当相对标高实测数值与设定标高数值一致时,自动停止所述导柱提升机构的升或降作业。
在此,微电脑通过导柱上的刻度值数据以及垂直超声测距模块测定的垂直距离,能够计算出此时导柱的顶端与整体钢平台的相对标高,微电脑将所述相对标高通过无线通信模块传输给控制台,控制台通过将相对标高与对比本次爬升的设定标高数值进行比对,控制导柱提升机构进行升或降作业,当相对标高实测数值与设定标高数值一致时,自动停止作业。
如图13所示,本发明的整体钢平台爬升导柱标高实时监控系统的使用方法一实施例中,控制目标导柱提升机构的提升或降低之后,还包括:
步骤S8,所述微电脑向底部旋转机构发出旋转信号,底部旋转机构根据从所述微电脑接收的旋转信号,对标高测定装置进行角度旋转,指向下一个目标导柱。
在此,所述底部旋转机构,用于在一个目标导柱的标高调控完毕后,根据从所述微电脑接收的旋转信号,对标高测定装置进行角度旋转,指向下一个目标导柱,其需要旋转的角度θ通过预先标定,使得其在完成一个目标导柱测定后,如图4所示,可以自动旋转投向下一目标导柱。
本发明的整体钢平台爬升导柱标高实时监控系统的使用方法一实施例中,还包括:
当所述控制台控制目标导柱提升机构的提升或降低的作业完毕后,若导柱的底端上的可拆卸底座与混凝土9面层尚未贴合,则将所述可拆卸底座进行伸出,然后将T型螺栓穿过腰型孔和纵向滑槽后锚固于锁定凹槽,并通过 外螺母将导柱的底端和可拆卸底座进行固定;
当所述控制台控制目标导柱提升机构的提升或降低的作业未完毕,但导柱的底端的可拆卸底座已经抵住混凝土9面层,则说明混凝土浇筑超高了,则将所述可拆卸底座进行回缩,然后将T型螺栓穿过腰型孔和纵向滑槽后锚固于锁定凹槽,并通过外螺母将导柱的底端和可拆卸底座进行固定。
在此,当导柱按照图13的流程调节完毕后,若导柱的底端上的可拆卸底座与混凝土面层尚未贴合,则将高度调节机构进行伸出,然后将T型螺母固定;
当导柱未能完成图13调节流程,但导柱已经抵住混凝土面层,则说明混凝土浇筑超高了,需要将高度调节机构进行回缩。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (10)

  1. 一种整体钢平台爬升导柱标高实时监控系统,其特征在于,包括:
    目标导柱,沿其高度设置有刻度线,在刻度线边标定有刻度值,通过所述刻度值反映刻度线位置距离所述目标导柱的顶部或底部的高度差;
    导柱提升机构,用于通过液压动力提升或降低所述目标导柱;
    控制台,用于无线接收标高测定装置的微电脑发出的相对标高,并根据所述相对标高通过所述导柱提升机构,控制所述目标导柱的提升或降低;
    标高测定装置,安装于整体钢平台上的固定的支架上,所述标高测定装置包括微电脑及分别与所述微电脑连接的图像采集模块、水平超声测距模块、垂直超声测距模块、激光发射模块、无线通信模块,其中,无线通信模块,作为所述微电脑与控制台进行数据交换的发射和接收器;
    水平超声测距模块,用于向目标导柱发射水平向测距超声波,以测量标高测定装置与目标导柱之间的水平距离,并将水平距离传递给所述微电脑;
    微电脑,用于收集图像采集模块、水平超声测距模块、垂直超声测距模块、激光发射模块、无线通信模块的数据,并进行反馈,还用于根据从水平超声测距模块接收的水平距离,计算图像采集模块的望远镜筒的对应焦距,根据计算得到的对应焦距控制望远镜筒的焦距调节,使得图像采集模块所采集到的图像信息清晰,及对从所述图像采集模块接收的图像信息进行解析,从而确定激光线位置的目标导柱上的刻度值,根据目标导柱上的刻度值以及垂直超声测距模块测定的垂直距离,计算出此时目标导柱的顶端与整体钢平台的相对标高,微电脑将所述相对标高通过无线通信模块传输给控制台;
    垂直超声测距模块,用于向整体钢平台的台面发射垂直向测距超声波,以测量标高测定装置与整体钢平台的台面之间的垂直距离,并将垂直距离传递给所述微电脑;
    激光发射模块,用于根据所述微电脑的控制,发射与标高测定装置的中轴线平行的激光线,所述激光线投射在目标导柱上;
    图像采集模块包括自动调焦的望远镜筒,所述望远镜筒包含一个观测窗,在标高测定装置工作时,所述观测窗朝向目标导柱,图像采集模块通过望远镜筒的观测窗采集投射在带有刻度值的目标导柱上的激光线的图像信息,并将采 集到的图像传递给所述微电脑,及通过无线通信模块将所述图像信息传递给控制台。
  2. 如权利要求1所述的整体钢平台爬升导柱标高实时监控系统,其特征在于,所述控制台,用于将从所述微电脑接收的相对标高与对比本次爬升的设定标高数值进行比对,根据比对结果控制所述导柱提升机构进行升或降作业,当相对标高实测数值与设定标高数值一致时,自动停止所述导柱提升机构的升或降作业。
  3. 如权利要求1所述的整体钢平台爬升导柱标高实时监控系统,其特征在于,所述标高测定装置还包括与所述微电脑连接的照明电筒,其中,所述图像采集模块,还用于自动感知光照强度,并发送光照强度信号至所述微电脑;
    所述微电脑,还用于当从所述图像采集模块接收到的光照强度信号小于预设光照强度阈值时,控制所述照明电筒打开。
  4. 如权利要求1所述的整体钢平台爬升导柱标高实时监控系统,其特征在于,所述标高测定装置还包括与所述微电脑连接的底部旋转机构,用于在一个目标导柱的标高调控完毕后,根据从所述微电脑接收的旋转信号,对标高测定装置进行角度旋转,指向下一个目标导柱。
  5. 如权利要求1所述的整体钢平台爬升导柱标高实时监控系统,其特征在于,还包括连接于所述目标导柱的底端上的高度可调节机构,包括:
    T型螺栓;
    设置于导柱的底端上的腰型孔;
    可拆卸底座,所述可拆卸底座上设置有纵向滑槽和锁定凹槽,所述锁定凹槽垂直于所述纵向滑槽按预设间隔分布,所述T型螺栓穿过腰型孔和纵向滑槽后锚固于所述锁定凹槽,并通过外螺母将导柱的底端和可拆卸底座进行固定。
  6. 一种如权利要求1~5任一项所述的整体钢平台爬升导柱标高实时监控系统的使用方法,其特征在于,包括:
    水平超声测距模块向目标导柱发射水平向测距超声波,以测量标高测定装置与目标导柱之间的水平距离,并将水平距离传递给微电脑;
    垂直超声测距模块向钢平台面发射垂直向测距超声波,以测量标高测定 装置与整体钢平台的台面之间的垂直距离l,并将垂直距离l传递给所述微电脑;
    所述微电脑根据从水平超声测距模块接收的水平距离,计算图像采集模块的望远镜筒的对应焦距,根据计算得到的对应焦距控制望远镜筒的焦距调节,使得图像采集模块所采集到的图像信息清晰;
    激光发射模块根据所述微电脑的控制,发射与标高测定装置的中轴线平行的激光线,所述激光线投射在目标导柱上;
    图像采集模块通过望远镜筒的观测窗采集投射在带有刻度值的目标导柱上的激光线的图像信息,并将采集到的图像传递给所述微电脑;
    所述微电脑对从所述图像采集模块接收的图像信息进行解析,从而确定激光线位置的目标导柱上的刻度值h;
    所述微电脑根据目标导柱上的刻度值h以及垂直超声测距模块测定的垂直距离l,计算出此时目标导柱的顶端与整体钢平台的相对标高H,并将所述相对标高通过无线通信模块传输给控制台;
    所述控制台通过无线方式,接收所述标高测定装置的微电脑发出的相对标高H,并根据所述相对标高H通过所述导柱提升机构,控制所述目标导柱的提升或降低。
  7. 一种如权利要求6所述的整体钢平台爬升导柱标高实时监控系统的使用方法,其特征在于,根据所述相对标高通过所述导柱提升机构,控制所述目标导柱的提升或降低,包括:
    所述控制台将从所述微电脑接收的相对标高H与对比本次爬升的设定标高数值进行比对,根据比对结果控制所述导柱提升机构进行升或降作业,当相对标高实测数值与设定标高数值一致时,自动停止所述导柱提升机构的升或降作业。
  8. 一种如权利要求6所述的整体钢平台爬升导柱标高实时监控系统的使用方法,其特征在于,控制所述目标导柱的提升或降低之后,还包括:
    所述微电脑向底部旋转机构发出旋转信号,底部旋转机构根据从所述微电脑接收的旋转信号,对标高测定装置进行角度旋转,指向下一个目标导柱。
  9. 一种如权利要求6所述的整体钢平台爬升导柱标高实时监控系统的使用 方法,其特征在于,当所述控制台控制所述目标导柱的提升或降低的作业完毕后,若目标导柱的底端上的可拆卸底座与混凝土面层尚未贴合,则将所述可拆卸底座进行伸出,然后将T型螺栓穿过腰型孔和纵向滑槽后锚固于锁定凹槽,并通过外螺母将导柱的底端和可拆卸底座进行固定。
  10. 一种如权利要求6所述的整体钢平台爬升导柱标高实时监控系统的使用方法,其特征在于,当所述控制台控制所述目标导柱的提升或降低的作业未完毕,若目标导柱的底端的可拆卸底座已经抵住混凝土面层,则将所述可拆卸底座进行回缩,然后将T型螺栓穿过腰型孔和纵向滑槽后锚固于锁定凹槽,并通过外螺母将导柱的底端和可拆卸底座进行固定。
PCT/CN2019/092628 2018-09-28 2019-06-25 整体钢平台爬升导柱标高实时监控系统及其使用方法 WO2020062965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811137179.X 2018-09-28
CN201811137179.XA CN108801235B (zh) 2018-09-28 2018-09-28 整体钢平台爬升导柱标高实时监控系统及其使用方法

Publications (1)

Publication Number Publication Date
WO2020062965A1 true WO2020062965A1 (zh) 2020-04-02

Family

ID=64082267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092628 WO2020062965A1 (zh) 2018-09-28 2019-06-25 整体钢平台爬升导柱标高实时监控系统及其使用方法

Country Status (2)

Country Link
CN (1) CN108801235B (zh)
WO (1) WO2020062965A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801235B (zh) * 2018-09-28 2018-12-28 上海建工集团股份有限公司 整体钢平台爬升导柱标高实时监控系统及其使用方法
CN112461606B (zh) * 2020-11-30 2022-07-05 华南农业大学 一种雾滴采集布场方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100058599A1 (en) * 2008-03-21 2010-03-11 Lee Edgar Sartain True elevation grade tape
US20130276315A1 (en) * 2012-04-20 2013-10-24 Trimble Navigation Limited Layout equipment and layout method
CN103711308A (zh) * 2014-01-17 2014-04-09 上海建工集团股份有限公司 工具式钢柱支撑钢平台爬升系统及其使用方法
CN105203077A (zh) * 2015-10-14 2015-12-30 刘海 一种全智能标高仪、标高系统以及施工标高测量方法
CN206113921U (zh) * 2016-11-01 2017-04-19 水利部交通运输部国家能源局南京水利科学研究院 建筑结构远程多功能监测系统
CN108801235A (zh) * 2018-09-28 2018-11-13 上海建工集团股份有限公司 整体钢平台爬升导柱标高实时监控系统及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100058599A1 (en) * 2008-03-21 2010-03-11 Lee Edgar Sartain True elevation grade tape
US20130276315A1 (en) * 2012-04-20 2013-10-24 Trimble Navigation Limited Layout equipment and layout method
CN103711308A (zh) * 2014-01-17 2014-04-09 上海建工集团股份有限公司 工具式钢柱支撑钢平台爬升系统及其使用方法
CN105203077A (zh) * 2015-10-14 2015-12-30 刘海 一种全智能标高仪、标高系统以及施工标高测量方法
CN206113921U (zh) * 2016-11-01 2017-04-19 水利部交通运输部国家能源局南京水利科学研究院 建筑结构远程多功能监测系统
CN108801235A (zh) * 2018-09-28 2018-11-13 上海建工集团股份有限公司 整体钢平台爬升导柱标高实时监控系统及其使用方法

Also Published As

Publication number Publication date
CN108801235B (zh) 2018-12-28
CN108801235A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2020062965A1 (zh) 整体钢平台爬升导柱标高实时监控系统及其使用方法
EP2400263B1 (de) Verfahren zur Höheneinstellung eines Ständers
CN213336076U (zh) 一种垂直激光高程传递系统
CN112601710A (zh) 电梯的标记定位装置
CN108534680B (zh) 一种高处构件物理尺寸测量装置及其使用方法
CN111721273A (zh) 一种激光垂线测量装置、及激光垂线测量系统
KR20130004646U (ko) 터널 막장면 안전 관리 시스템
US6760974B1 (en) Height determining instrument for poured floors, and method
CN212104220U (zh) 一种桩身垂直度及桩长光学监测装置
CN210981237U (zh) 一种监理用坡度检测装置
CN205482954U (zh) 一种多功能测距仪
CN111021436A (zh) 一种桩身垂直度及桩长光学监测方法及装置
CN114624677A (zh) 一种土木工程用测距装置
CN208075838U (zh) 一种用于建筑施工的检测工具
CN110319799A (zh) 一种桥梁隧道裂缝深度测量仪
KR101613240B1 (ko) 고층 건물의 시설물 설치용 레벨장치
CN204571971U (zh) 一种便捷重力式激光垂直度、孔径检测仪
CN213579343U (zh) 一种激光垂线测量装置、及激光垂线测量系统
CN114777752A (zh) 一种剪力墙模板用垂直度测量仪
CN211060834U (zh) 一种模板拼接位移监测装置
CN210981243U (zh) 一种建筑工程管理用可调节测量工具
CN207936955U (zh) 一种标高竖向传递装置
KR20210096410A (ko) 신축정밀 조정 가능한 거푸집 장치와 레이저 촬영에 기초한 연직도 관리를 이용한 수직 콘크리트 구조물의 시공방법
CN108252221B (zh) 一种螺旋渐变式光学测距监控移动模架装置
CN206459649U (zh) 一种标高抄测装置及抄测体系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868066

Country of ref document: EP

Kind code of ref document: A1