WO2020062881A1 - 塔筒段、塔筒、分割方法及风力发电机组 - Google Patents

塔筒段、塔筒、分割方法及风力发电机组 Download PDF

Info

Publication number
WO2020062881A1
WO2020062881A1 PCT/CN2019/086378 CN2019086378W WO2020062881A1 WO 2020062881 A1 WO2020062881 A1 WO 2020062881A1 CN 2019086378 W CN2019086378 W CN 2019086378W WO 2020062881 A1 WO2020062881 A1 WO 2020062881A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting piece
tower
ring
cutting
segment structure
Prior art date
Application number
PCT/CN2019/086378
Other languages
English (en)
French (fr)
Inventor
曹旭东
刘金磊
张紫平
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to EP19867244.6A priority Critical patent/EP3754184B1/en
Priority to US17/041,095 priority patent/US11473562B2/en
Priority to AU2019350925A priority patent/AU2019350925B2/en
Publication of WO2020062881A1 publication Critical patent/WO2020062881A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • E04H12/085Details of flanges for tubular masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/16Cutting rods or tubes transversely
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/24Cutting work characterised by the nature of the cut made; Apparatus therefor to obtain segments other than slices, e.g. cutting pies
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/40Arrangements or methods specially adapted for transporting wind motor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of wind power technology, and in particular, to a tower section, a tower, a division method, and a wind turbine.
  • Tower tube is an important structural form of high-rise structure, and has been widely used in fields such as transmission towers, television towers, and cooling towers. Especially in the field of wind power generation, towers can be used to support upper impellers and generators. As the power of wind turbines increases, the diameter of the impellers becomes larger and larger, the height of the corresponding towers becomes larger and the cross-sectional dimensions become larger and larger.
  • the embodiments of the present application provide a tower section, a tower, a dividing method, and a wind turbine.
  • the connection strength between the connecting piece and the tower section is high, and the damage to the tower section is small, so that the tower section When the sheets are spliced with each other, the connection is simple and the splicing gap between each other is small to ensure the tower's ability to bear the load.
  • a tower section comprising: a ring-shaped body having two opposite end surfaces in its own axis direction.
  • the ring-shaped body is formed by splicing a plurality of tower tubes into sections, two adjacent ones
  • a receiving groove extending in the axial direction is provided between the tower segments, and the receiving groove penetrates the wall portion of the annular body in the thickness direction of the annular body; a connecting piece, and two adjacent tower pieces pass through the connecting piece.
  • the connecting piece includes a first connecting piece and a second connecting piece which can be detachably connected to each other, and each receiving slot is provided with a first connecting piece and a second connecting piece; wherein the first connecting piece is far from the second One side of the connection piece is fixedly connected to the inner ring surface and the outer ring surface of one of the two adjacent tower pieces, and the side of the second connection piece far from the first connection piece is fixedly connected to the adjacent two tower pieces.
  • the inner and outer torus of the other of the sheet is
  • Another aspect of the embodiments of the present application proposes a tower including two or more of the above-mentioned tower sections, and the two or more tower sections are stacked and connected to each other along the axial direction.
  • Another aspect of the embodiments of the present application provides a method for dividing a tower section, which includes the following steps:
  • the ring segment structure is provided with two or more receiving grooves spaced from each other around its own axis.
  • the receiving grooves extend along the axial direction of the ring segment structure and penetrate the ring segment structure in the thickness direction of the ring segment structure.
  • a connecting piece is provided, and the connecting piece includes a first connecting piece and a second connecting piece which can be detachably connected, and a connecting piece is provided in each accommodation slot, and the first connecting piece and the second connecting piece are connected to the ring structure.
  • the inner wall surface and the outer wall surface are fixedly connected;
  • the ring segment structure is divided into pieces, and the ring segment structure is cut along the axial direction of the ring segment structure.
  • Each receiving groove is connected with all the seams to form a dividing groove that runs through the ring segment structure in the axial direction, and each dividing groove receives it correspondingly.
  • the first connecting piece and the second connecting piece provided in the tank are separated from each other to complete the division of the tower section.
  • FIG. 1 Another aspect of the embodiments of the present application proposes a wind turbine, including the tower as described above.
  • the tower section includes an annular body and a connecting member, and two adjacent tower sections of the annular body are provided along the section.
  • the accommodating groove extending in the axial direction, the accommodating groove penetrates the wall portion of the annular body in the thickness direction of the annular body, and the adjacent two tower segments are connected to each other by a connecting member, and the connecting member includes a detachable connection with each other Since the first connection piece and the second connection piece are fixedly connected to the inner ring surface and the outer ring surface of one of two adjacent tower segments, the side of the first connection piece remote from the second connection piece, and the second connection piece The side far from the first connecting piece is fixedly connected to the inner ring surface and the outer ring surface of the other of the two adjacent tower segments, so that each connecting piece and the inner ring surface and the outer ring of the corresponding tower segment The surfaces are connected at the same time, which can ensure the connection strength with the corresponding tower segments, and this setting method
  • FIG. 1 is a schematic structural diagram of a tower tube according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an overall structure of a tower section according to an embodiment of the present application.
  • FIG. 3 is an exploded schematic view of a tower section of an embodiment of the present application.
  • FIG. 4 is an enlarged view of A in FIG. 3; FIG.
  • FIG. 5 is an enlarged view of a portion B in FIG. 3; FIG.
  • FIG. 6 is a schematic flowchart of a method for dividing a tower section according to an embodiment of the present application
  • FIG. 7 is an isometric view of a ring segment structure according to an embodiment of the present application.
  • FIG. 8 is an isometric view of the ring segment structure after being connected to the connecting member
  • FIG. 9 is a schematic structural diagram of an initial state of a connecting member according to an embodiment of the present application.
  • FIG. 10 is an enlarged view at C in FIG. 9; FIG.
  • FIG. 11 is a schematic structural diagram of the first connecting piece and the second connecting piece after being cut;
  • FIG. 12 is an enlarged view at D in FIG. 11.
  • 21-first connecting piece 211-first surface; 212-first arc angle; 213-third surface; 214-third arc angle; 215-first cutting mark; 215a-first cutting section; 216 -The first reserved area; 217-the first area to be cut; c-spacing; e-minimum thickness;
  • 22- second connecting piece 22- second connecting piece; 221- second surface; 222- second arc angle; 223- fourth surface; 224- fourth arc angle; 225- second cutting mark; 225a- second cutting segment; 226 -The second reserved area; 227-the second area to be cut; d-spacing; f-minimum thickness;
  • FIG. 1 is a schematic structural diagram of a tower according to an embodiment of the present application.
  • An embodiment of the present application provides a tower, which includes two or more tower sections 100, and the two or more tower sections 100 are arranged on top of each other and connected to each other along the axial direction X.
  • annular flanges 30 are provided at two axial ends of each tower section 100, and adjacent tower sections 100 are connected by the annular flange 30.
  • Each tower section 100 constituting the tower can adopt different structural forms, as long as it can meet the load bearing requirements of the tower and the height limit requirements of the tower section 100 during transportation.
  • this The tower of the embodiment of the present application may adopt the tower section 100 of the following embodiment.
  • FIG. 2 shows a schematic diagram of the overall structure of the tower section 100 in the embodiment of the present application
  • FIG. 3 shows an exploded diagram of the tower section 100 in the embodiment of the present application.
  • the embodiment of the present application provides a tower section 100.
  • the tower section 100 includes a ring-shaped body 10 and a connecting member 20.
  • the ring-shaped body 10 has two opposite end surfaces 10a in its own axis direction X.
  • the ring-shaped body 10 consists of A plurality of tower segments 11 are spliced together, and an accommodation groove 12 extending in the axial direction X is provided between two adjacent tower segments 11, and the accommodation grooves 12 penetrate the ring in the thickness direction Y of the ring-shaped body 10.
  • Adjacent two tower sections 11 are connected to each other through a connecting member 20.
  • the connecting member 20 includes a first connecting piece 21 and a second connecting piece 22 that can be detachably connected to each other.
  • Each receiving groove 12 is provided with a first Connection piece 21 and second connection piece 22.
  • the side of the first connecting piece 21 remote from the second connecting piece 22 is fixedly connected to the inner ring surface 111 and the outer ring surface 112 of one of two adjacent tower segments 11, and the second connecting piece 22 is far from the first.
  • One side of the connecting piece 21 is fixedly connected to the inner ring surface 111 and the outer ring surface 112 of the other of the two adjacent tower sections 11.
  • connection strength between the connecting member 20 and the tower section 11 is high, and the damage to the tower section 11 is small, so that when the tower sections 11 are spliced to each other ,
  • the connection is simple and the gap between each other is small to ensure the tower's ability to bear the load.
  • the ring-shaped body 10 is a circular ring-shaped tubular structure, and the receiving groove 12 may adopt a different groove-shaped structure, such as a square groove.
  • the receiving groove 12 may be a waist. Round groove.
  • the accommodating groove 12 may be specifically formed by enclosing a first depression and a second depression. The first depression is located on one of the two adjacent tower segments 11 and the second depression is located on the two adjacent tower segments 11.
  • the first recess and the second recess have the same structure and are symmetrically arranged with each other.
  • the ring-shaped body 10 can be provided with ring-shaped flanges 30 on the end surfaces 10 a at both ends in the axial direction of the ring-shaped body 10, so that when applied to the tower, it can be easily connected with the ring-shaped bodies of other tower sections 100.
  • the faces 112 may be connected by fillet welding.
  • the receiving groove 12 is optionally between the two end faces 10a and The two end faces 10a are spaced a predetermined distance b, and the predetermined distance b is greater than zero.
  • the predetermined distance b may be any value between 100 mm and 500 mm, including two end values of 100 mm and 500 mm.
  • the predetermined distance can be selected from any value between 250mm and 450mm, and further can be selected from 400mm. With the above settings, the performance of the tower section 100 can be further optimized.
  • FIG. 4 shows an enlarged view at A in FIG. 3.
  • the first connecting piece 21 has a first surface 211 and a first surface 211 protruding from the inner annular surface 111 of the tower segment 11 to which it is connected.
  • the two ends in the axial direction X and the inner annular surface 111 smoothly transition through the first circular arc angle 212, and the radius of the first circular arc angle 212 is greater than or equal to 150 mm.
  • the first surface of the first connecting piece 21 is made.
  • the inner surface of the tower section 11 connected to 211 can smoothly transition, which can effectively improve the fatigue level of the first connecting section 21.
  • the first connecting piece 21 has a third surface 213 and a third surface protruding from the outer ring surface 112 of the tower segment 11 connected thereto.
  • the two ends of 213 in the axial direction X and the outer annular surface 112 smoothly transition through the third arc angle 214, and the radius of the third arc angle 214 is greater than or equal to 150 mm.
  • the third connecting piece 21 The outer surface of the tower segment 11 to which the surface 213 is connected can smoothly transition, which can further improve the fatigue level of the first connecting piece 21.
  • FIG. 5 shows an enlarged view at a position B in FIG. 3.
  • the second connecting piece 22 has a second surface 221 protruding from the inner ring surface 111 of the tower segment 11 connected to the second surface 22
  • the two ends of 221 in the axial direction X and the inner annular surface 111 smoothly transition through the second arc angle 222, and the radius of the second arc angle 222 is greater than or equal to 150 mm.
  • the second connecting piece 22 The inner surface of the tower segment 11 to which the surface 221 is connected can smoothly transition, and the fatigue level of the second connecting segment 22 can be improved.
  • the second connecting piece 22 has a fourth surface 223 protruding from the outer ring surface 112 of the tower segment 11 to which it is connected.
  • the two ends of the surface 223 in the axial direction X and the outer annular surface 112 smoothly transition through the fourth arc angle 224, and the radius of the fourth arc angle 224 is greater than or equal to 150 mm.
  • the first connecting piece 22 The outer surface of the tower segment 11 connected to the four surfaces 223 and the cylindrical surface 11 can smoothly transition, which can further improve the fatigue level of the second connecting segment.
  • the above-mentioned setting can reliably improve the overall fatigue level of the connector 20, so that the fatigue levels of the two ends of the connector 20 can reach DC80 or higher.
  • the first surface 211 and the third surface 213 of the first connecting piece 21 are oppositely disposed in the thickness direction Y of the annular body, and the first surface 211 and Both ends of the third surface 213 in the axial direction X extend toward each other, so that the minimum thickness e of the first connecting piece 21 in the thickness direction Y of the annular body is equal to the thickness of the wall portion of the annular body, and the first connection is further optimized. Fatigue rating of sheet 21.
  • the second surface 221 and the fourth surface 223 of the second connecting piece 22 are oppositely disposed in the thickness direction Y of the annular body, and both ends of the second surface 221 and the fourth surface 223 in the axial direction X are closer to each other. It extends so that the minimum thickness f of the second connecting piece 22 in the thickness direction Y is equal to the thickness of the wall portion of the annular body, so that the fatigue level of the second connecting piece 22 is more optimized. Furthermore, the overall fatigue level of the connecting member 20 is further optimized.
  • first connecting piece 21 and the second connecting piece 22 may adopt different structural forms, for example, a strip-shaped sheet structure extending along the axis direction X of the ring body. The two may be welded when they are connected.
  • first connection piece 21 and the second connection piece 22 may both be strip flange structures, and the first connection piece 21 and The multiple flange holes on the second connecting piece 22 are arranged one by one along the axis direction X of the ring body.
  • the connecting piece 20 further includes a connection
  • the fasteners 23 of the first connection piece 21 and the second connection piece 22 can facilitate the disassembly and assembly of the tower segments 11 through the fasteners 23 and at the same time ensure the connection strength between adjacent tower segments 11.
  • the tower section 100 provided in the embodiment of the present application, because it includes the ring body 10 and the connecting member 20, and is disposed in the accommodation groove 12 between two adjacent tower sections 11 of the ring body 10.
  • a connecting member 20 is provided, and the receiving groove 12 penetrates the wall portion of the ring-shaped body 10 in the thickness direction Y of the ring-shaped body 10.
  • Two adjacent tower segments 11 are connected to each other through the connecting member 20.
  • the side of the sheet 21 remote from the second connection sheet 22 is fixedly connected to the inner ring surface 111 and the outer ring surface 112 of one of the two adjacent tower sections 11.
  • the second connection sheet 22 is far from the first connection sheet 21.
  • the side is fixedly connected to the inner ring surface 111 and the outer ring surface 112 of the other of the two adjacent tower segments 11, that is, each connecting piece and the inner ring surface 111 and the outer ring surface of the corresponding tower segment 11.
  • the 112 is connected at the same time, which can ensure the connection strength with the corresponding tower segment, and this setting method facilitates the connection of the connection segment with the corresponding tower segment 11 and can reduce the damage to the tower segment 11 and make the tower segment
  • the gap between the tower segments 11 is small to ensure the tower section 100 or the tower having the tower section 100.
  • Ability to withstand load can be provided.
  • the tower provided in the embodiment of the present application includes the tower section 100 of any of the foregoing embodiments, the connection strength between two adjacent tower sections 11 of the tower section 100 is relatively high.
  • the splicing gap between the sheets 11 is small, and the splicing effect is good, so that the tower itself has a better ability to bear the load.
  • the embodiment of the present application further provides a wind turbine, which includes the tower of any of the foregoing embodiments. Since the tower has a better load bearing capacity, the wind turbine has better safety performance and guarantees its own Power generation benefits.
  • FIG. 6 illustrates a schematic flowchart of a method for dividing the tower section 100 according to the embodiment of the present application.
  • the embodiment of the present application further provides a method for dividing the tower section 100, including the following steps:
  • the ring segment structure 40 is provided with two or more receiving grooves 12 spaced from each other around its own axis.
  • the receiving grooves 12 extend along the axis direction M of the ring segment structure 40 and are in the ring segment structure 40.
  • a connecting piece 20 is provided.
  • the connecting piece 20 includes a first connecting piece 21 and a second connecting piece 22 which are detachably connected.
  • a connecting piece 20 is provided in each accommodation slot 12, and the first connecting piece 21 and the second The connecting pieces 22 are fixedly connected to the inner wall surface 41 and the outer wall surface 42 of the ring segment structure 40;
  • the ring segment structure 40 is divided into pieces, and the ring segment structure 40 is cut along the axis direction M of the ring segment structure 40.
  • Each receiving groove 12 is connected to all the seams to form a dividing slot that runs through the ring segment structure 40 in the axial direction M.
  • Each dividing groove separates the first connecting piece 21 and the second connecting piece 22 provided in the corresponding accommodating groove 12 to complete the division of the tower section 100.
  • FIG. 7 illustrates an isometric view of the ring segment structure 40 in the embodiment of the present application.
  • the ring segment structure 40 is a circular ring structure as a whole, and the number of the receiving grooves 12 can be set according to the diameter of the ring segment structure 40, as long as it can meet the height limitation requirements during transportation. can.
  • the length of each receiving groove 12 in the axial direction M of the ring segment structure 40 is shorter than the length of the ring segment structure 40, that is, the distance between the two end surfaces of the receiving groove 12 in the axial direction M of the ring segment structure 40.
  • the predetermined distance between the two end faces of the ring segment structure 40 is the same as the distance between the accommodation groove 12 and the two end faces 10 a of the ring-shaped body 10 in the embodiments shown in FIG. 2 and FIG. 3.
  • FIG. 8 shows an axonometric view of the ring segment structure 40 after being connected to the connecting member 20.
  • the connecting member 20 needs to be placed in the corresponding receiving slot 12 in advance, and The two opposite surfaces of the first connecting piece 21 and the second connecting piece 22 in the thickness direction N of the ring segment structure 40 protrude from the corresponding inner ring surface 111 and outer ring surface 112 of the ring segment structure 40, and then pass through the corners. Welding or the like makes the first connection piece 21 and the second connection piece 22 fixedly connected to the inner wall surface 41 and the outer wall surface 42 of the ring segment structure 40.
  • step S300 the tower form shown in FIG. 2 and FIG. 3 is formed, and the division of the tower section 100 is completed.
  • connection step includes connecting the first connection piece 21 and the second connection piece 22 to each other.
  • FIG. 9 shows a schematic structural diagram of the connecting member 20 in an initial state in the embodiment of the present application
  • FIG. 10 shows an enlarged view at a position C in FIG. 9.
  • the connecting member 20 pre-processing step includes setting a first cutting mark 215 on the first connecting piece 21 and a second connecting piece 22.
  • a second cutting mark 225 is set thereon.
  • the first cutting mark 215 divides the first connecting piece 21 into a first reserved area 216 connected to the ring segment structure 40 and a first to-be-cut area 217 provided away from the ring segment structure 40.
  • the second cutting mark 225 divides the second connecting piece 22 into a second reserved area 226 connected to the ring segment structure 40 and a second to-be-cut area 227 provided away from the ring segment structure 40.
  • the first cutting mark 215 and the second cutting mark 225 are provided to facilitate subsequent cutting of the first connecting piece 21 and the second connecting piece 22, so that the cutting is more accurate, and the fatigue level of the connecting member 20 is improved.
  • the method further includes the step of arranging the first to-be-cut area 217 and the second connecting piece of the first connecting piece 21 in the same accommodation groove 12.
  • the second to-be-cut area 227 of 22 is connected and fixed.
  • the first connecting piece 21 and the second connecting piece 22 can be reduced or avoided during welding with the inner wall surface 41 and the outer wall surface 42 of the ring segment structure 40 due to welding thermal stress. Both ends of the ring segment structure 40 in the axial direction M are deformed.
  • the connection and fixing of the first to-be-cut area 217 and the second to-be-cut area 227 can be performed in different ways.
  • first to-be-cut area 217 and the second to-be-cut area 227 can be oppositely provided with connection holes and fastened by bolts or the like Piece 23 connects and fixes the two.
  • first to-be-cut area 217 and the second to-be-cut area 227 can also be connected to each other by welding, which can also meet the connection requirements between the two.
  • the fixed points between the first to-be-cut area 217 and the second to-be-cut area 227 are not limited to one fixed position. When space permits, two or more fixed points may be used for fixing. .
  • the first cutting mark 215 is composed of two first cutting sections 215a, and the two first cutting sections 215a are both cutting grooves or cutting lines and are formed by the first A connecting piece 21 starts at two end faces in the thickness direction N of the ring segment structure 40 and extends toward each other.
  • the distance c between the end points of the two first cutting segments 215a extending toward each other is equal to the ring segment.
  • the end points of the two first cutting sections 215a extending closer to each other are located on the end faces of the first connecting piece 21 in the axial direction M of the ring structure 40.
  • the second cutting mark 225 is composed of two sections of the second cutting section 225a, and the two sections of the second cutting section 225a are both cutting grooves or cutting lines and are formed by the second connecting piece 22 in the thickness direction N of the ring section structure 40.
  • the two end faces start and extend closer to each other.
  • the distance d between the ends of the two second cutting segments 225a extending close to each other is equal to the thickness of the ring segment structure 40, and the two second cutting segments 225a are close to each other.
  • the end point of the directional extension is located on the corresponding end surface of the second connecting piece 22 in the axial direction M of the ring segment structure.
  • the first connecting piece 21 and the second connecting piece 22 cut according to the first cutting mark 215 and the second cutting mark 225 can be connected to the inner wall surface 41 and the outer wall surface 42 of the ring segment structure 40 when they are connected to each other. It can ensure a smooth transition with the inner wall surface 41 and the outer wall surface 42, avoid stress concentration, and improve the fatigue level of the connecting member 20.
  • FIG. 11 shows a schematic structural diagram of the first connecting piece 21 and the second connecting piece 22 after being cut
  • FIG. 12 shows an enlarged view at D in FIG. 11.
  • the method further includes a cutting step of the connecting member 20, and the cutting step of the connecting member 20 includes cutting the first connecting piece 21 in each of the accommodation slots 12.
  • the first to-be-cut area 217 is cut according to the first cutting mark 215, so that the first to-be-cut area 217 is separated from the first reserved area 216, and includes a second to-be-cut portion that separates the second connecting piece 22 in each accommodation slot 12.
  • the region 227 is cut according to the second cutting mark 225, so that the second region to be cut 227 is separated from the second reserved region 226, and the cuts of the cut first connecting piece 21 and the second connecting piece 22 are smoothed.
  • the cutting method provided in the embodiment of the present application includes a connecting step, before performing step S300, it includes a step of releasing the connection between the first connecting piece 21 and the second connecting piece 22.
  • the cutting method of the tower section 100 provided in the embodiment of the present application can reliably divide the tower section 100 into a plurality of tower sections 11, and the first connecting piece 21 and the second connecting piece of the connecting member 20.
  • the connection strength between 22 and the corresponding tower section 11 is high.
  • the splicing gap formed is small, which can meet the height limit requirements of the tower section 100 during transportation, and
  • This cutting method makes the tower tube segment 100 formed by splicing the tower tube segments 11 high in load bearing capacity, so it is easy to popularize and use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Forests & Forestry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种塔筒段(100)、塔筒、分割方法及风力发电机组,塔筒段(100),包括:环状本体(10),在其自身轴线方向上具有相对的两个端面(10a),环状本体(10)由多个塔筒分片(11)拼接形成,相邻两个塔筒分片(11)之间设置有沿轴线方向延伸的容置槽(12),连接件(20),相邻两个塔筒分片(11)通过连接件(20)相互连接,连接件(20)包括能够相互可拆卸连接的第一连接片(21)及第二连接片(22),其中,第一连接片(21)远离第二连接片(22)的一侧固定连接于相邻两个塔筒分片(11)的一者的内环面(111)及外环面(112),第二连接片(22)远离第一连接片(21)的一侧固定连接于相邻两个塔筒分片(11)的另一者的内环面(111)及外环面(112)。所述塔筒段(100)、塔筒、分割方法及风力发电机组,塔筒分片(11)在相互拼接时,连接简单且相互之间的拼接间隙较小,能够保证塔筒承受载荷的能力。

Description

塔筒段、塔筒、分割方法及风力发电机组
相关申请的交叉引用
本申请要求享有于2018年09月30日提交的名称为“塔筒段、塔筒、分割方法及风力发电机组”的中国专利申请201811159412.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及风电技术领域,特别是涉及一种塔筒段、塔筒、分割方法及风力发电机组。
背景技术
塔筒是高耸结构的重要结构形式,在输电塔、电视塔、冷却塔等领域得到广泛应用。尤其在风力发电领域中,塔筒能够用来支撑上部叶轮及发电机组等部分。随着风力发电机组的功率增加,叶轮直径也越来越大,相应的塔筒的高度也越来越高且截面尺寸也越来越大。
为满足运输限高要求,通常会将大直径的塔筒进行分片,以形成多个塔筒分片进行运输,到达塔筒的安装地点后,再将分片后的塔筒分片进行拼装重新组成塔筒。然而,现有技术中用于连接塔筒分片的连接件设置不合理,导致在与相应的塔筒分片连接时,对塔筒分片的损伤较大,使得塔筒分片在相互拼接时,连接困难且容易出现间隙,进而影响塔筒承受载荷的能力。
因此,亟需一种新的塔筒段、塔筒、分割方法及风力发电机组。
发明内容
本申请实施例提供一种塔筒段、塔筒、分割方法及风力发电机组,连接件与塔筒分片之间的连接强度高,且对塔筒分片的损伤较小,使得塔筒 分片在相互拼接时,连接简单且相互之间的拼接间隙较小,以保证塔筒承受载荷的能力。
本申请实施例一方面提出了一种塔筒段,包括:环状本体,在其自身轴线方向上具有相对的两个端面,环状本体由多个塔筒分片拼接形成,相邻两个塔筒分片之间设置有沿轴线方向延伸的容置槽,容置槽在环状本体的厚度方向上贯穿环状本体的壁部;连接件,相邻两个塔筒分片通过连接件相互连接,连接件包括能够相互可拆卸连接的第一连接片及第二连接片,每个容置槽内均设置有第一连接片及第二连接片;其中,第一连接片远离第二连接片的一侧固定连接于相邻两个塔筒分片的一者的内环面及外环面,第二连接片远离第一连接片的一侧固定连接于相邻两个塔筒分片的另一者的内环面及外环面。
本申请实施例另一方面提出了一种塔筒,包括两个以上上述的塔筒段,两个以上塔筒段沿轴线方向相互层叠设置并相互连接。
本申请实施例又一方面提出了一种塔筒段的分割方法,包括如下步骤:
提供环段结构,环段结构上环绕其自身的轴线彼此间隔设置有两个以上容置槽,容置槽沿环段结构的轴线方向延伸且在环段结构的厚度方向上贯穿环段结构;
设置连接件,连接件包括可拆卸连接的第一连接片及第二连接片,在每个容置槽内均设置连接件,并将第一连接片及第二连接片均与环段结构的内壁面及外壁面固定连接;
将环段结构分片,沿环段结构的轴线方向切割环段结构,每个容置槽均与一切缝连接形成在轴线方向贯穿环段结构的分割槽,每个分割槽将其对应容置槽内设置的第一连接片与第二连接片彼此分离,以完成塔筒段的分割。
本申请实施例再一方面提出了一种风力发电机组,包括如上述的塔筒。
根据本申请实施例提供的塔筒段、塔筒、分割方法及风力发电机组,塔筒段包括环状本体及连接件,环状本体的相邻两个塔筒分片之间设置有 沿其轴线方向延伸的容置槽,容置槽在环状本体的厚度方向上贯穿环状本体的壁部,相邻两个塔筒分片通过连接件相互连接,连接件包括能够相互可拆卸连接的第一连接片及第二连接片,由于第一连接片远离第二连接片的一侧固定连接于相邻两个塔筒分片的一者的内环面及外环面,第二连接片远离第一连接片的一侧固定连接于相邻两个塔筒分片的另一者的内环面及外环面,使得各连接片与相应的塔筒分片的内环面及外环面同时连接,能够保证与相应塔筒分片的连接强度,且该种设置方式能够减小对塔筒分片的损伤,使得塔筒分片在相互拼接时,塔筒分片相互之间的间隙较小,以保证塔筒段或者具有该塔筒段的塔筒承受载荷的能力。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请实施例的塔筒的结构示意图;
图2是本申请实施例的塔筒段的整体结构示意图;
图3是本申请实施例的塔筒段的分解示意图;
图4是图3中A处放大图;
图5是图3中B处放大图;
图6是本申请实施例的塔筒段的分割方法的流程示意图;
图7是本申请实施例的环段结构的轴测图;
图8是环段结构与连接件连接后的轴测图;
图9是本申请实施例的连接件的初始状态下的结构示意图;
图10是图9中C处放大图;
图11是第一连接片及第二连接片裁切后的结构示意图;
图12是图11中D处放大图。
其中:
100-塔筒段;X-轴线方向;Y-厚度方向;
10-环状本体;10a-端面;
11-塔筒分片;111-内环面;112-外环面;
12-容置槽;b-预定距离;
20-连接件;
21-第一连接片;211-第一表面;212-第一圆弧角;213-第三表面;214-第三圆弧角;215-第一切割印记;215a-第一切割段;216-第一保留区;217-第一待裁区;c-间距;e-最小厚度;
22-第二连接片;221-第二表面;222-第二圆弧角;223-第四表面;224-第四圆弧角;225-第二切割印记;225a-第二切割段;226-第二保留区;227-第二待裁区;d-间距;f-最小厚度;
23-紧固件;
30-环向法兰;
40-环段结构;M-轴线方向;N-厚度方向;41-内壁面;42-外壁面。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的塔筒段、塔筒、分割方法及风力发电机组的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接, 或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图12根据本申请实施例的塔筒段、塔筒、分割方法及风力发电机组进行详细描述。
请参阅图1,图1示出了本申请实施例的塔筒的结构示意图。本申请实施例提供一种塔筒,包括两个以上塔筒段100,两个以上塔筒段100沿轴线方向X相互层叠设置并相互连接。为了便于塔筒段100之间的连接,在各塔筒段100轴向上的两端设置有环向法兰30,相邻两个塔筒段100之间通过环向法兰30连接。
组成塔筒的各塔筒段100可以采用不同的结构形式,只要能够满足塔筒的载荷承载要求且满足塔筒段100的运输时的限高要求均可,在一些可选的示例中,本申请实施例的塔筒可以采用如下实施例的塔筒段100。
请一并参阅图2、图3,图2示出了本申请实施例的塔筒段100的整体结构示意图,图3示出了本申请实施例的塔筒段100的分解示意图。
本申请实施例提供一种塔筒段100,塔筒段100包括环状本体10以及连接件20,环状本体10在其自身轴线方向X上具有相对的两个端面10a,环状本体10由多个塔筒分片11拼接形成,相邻两个塔筒分片11之间设置有沿轴线方向X延伸的容置槽12,容置槽12在环状本体10的厚度方向Y上贯穿环状本体10的壁部。相邻两个塔筒分片11通过连接件20相互连接,连接件20包括能够相互可拆卸连接的第一连接片21及第二连接片22,每个容置槽12内均设置有第一连接片21及第二连接片22。其中,第一连接片21远离第二连接片22的一侧固定连接于相邻两个塔筒分片11的一者的内环面111及外环面112,第二连接片22远离第一连接片21的一侧固定连接于相邻两个塔筒分片11的另一者的内环面111及外环面112。
本申请实施例提供的塔筒段100,其连接件20与塔筒分片11之间的连接强度高,且对塔筒分片11的损伤较小,使得塔筒分片11在相互拼接时,连接简单且相互之间的间隙较小,以保证塔筒承受载荷的能力。
具体的,环状本体10为圆环形筒状结构体,容置槽12可以采用不同 槽形结构,例如可以为方槽,在一些可选的实施例中,容置槽12可选为腰圆形槽。容置槽12具体可以由第一凹陷及第二凹陷围合形成,第一凹陷位于相邻两个塔筒分片11的一者上,第二凹陷位于相邻两个塔筒分片11的另一者上,第一凹陷及第二凹陷结构相同且相互对称设置。环形本体10在自身轴向上的两端的端面10a上可以设置环向法兰30,使其在应用至塔筒时,便于与其他塔筒段100的环形本体相互连接。
连接件20的第一连接片21与相应塔筒分片11的内环面111及外环面112之间以及第二连接片22与相应的塔筒分片11的内环面111及外环面112之间可以采用角焊接的方式进行连接。
由于环形本体在轴向上的两个端面10a需要焊接环向法兰30,为避免在环向法兰30处出现应力集中,可选的,容置槽12在两个端面10a之间并与两个端面10a均间隔预定距离b,预定距离b大于0。通过上述设置,能够有效的避免容纳槽内的第一连接片21及第二连接片22在与相应的塔筒分片11连接(如焊接)时产生的应力传递至环向法兰30或者减小传递至环向法兰30的应力,保证该较小的应力不足以使得环向法兰30产生应力集中。
在一些可选的实施例中,预定距离b可选为100mm~500mm之间的任意数值,包括100mm及500mm两个端值,容置槽12与环形本体的两个端面10a之间的预定距离b采用上述数值范围,既能够有效的避免环向法兰30上产生应力集中,同时能够保证相邻两个塔筒分片11之间的连接强度。进一步的,预定距离可选为250mm~450mm之间的任意数值,更进一步可选为400mm,通过上述设置,能够更加优化塔筒段100的性能。
请一并参阅图4,图4示出了图3中A处放大图。作为一种可选的实施方式,在环形本体的厚度方向Y上,第一连接片21具有凸出于其连接的塔筒分片11的内环面111的第一表面211,第一表面211在轴线方向X上的两端与该内环面111通过第一圆弧角212圆滑过渡,第一圆弧角212的半径大于等于150mm,通过上述设置,使得第一连接片21的第一表面211与其连接的塔筒分片11的内表面能够平滑过渡,能够有效的提高第一连接片21的疲劳等级。
可选的,请继续参阅图4,在环形本体的厚度方向Y上,第一连接片21具有凸出于其连接的塔筒分片11的外环面112的第三表面213,第三表面213在轴线方向X上的两端与该外环面112通过第三圆弧角214圆滑过渡,第三圆弧角214的半径大于等于150mm,通过上述设置,使得第一连接片21的第三表面213与其连接的塔筒分片11的外表面能够平滑过渡,能够进一步提高第一连接片21的疲劳等级。
请一并参阅图5,图5示出了图3中B处放大图。作为一种可选的实收方式,在环形本体的厚度方向Y上,第二连接片22具有凸出于其连接的塔筒分片11的内环面111的第二表面221,第二表面221在轴线方向X上的两端与该内环面111通过第二圆弧角222圆滑过渡,第二圆弧角222的半径大于等于150mm,通过上述设置,使得第二连接片22的第二表面221与其连接的塔筒分片11的内表面能够平滑过渡,能够提高第二连接片22的疲劳等级。
可选的,请继续参阅图5,在环形本体的厚度方向Y上,第二连接片22具有凸出于其所连接的塔筒分片11的外环面112的第四表面223,第四表面223在轴线方向X上的两端与该外环面112通过第四圆弧角224圆滑过渡,第四圆弧角224的半径大于等于150mm,通过上述设置,使得第二连接片22的第四表面223与其连接的塔筒分片11的外表面能够平滑过渡,能够进一步提高第二连接片的疲劳等级。
并且,通过上述设置能够可靠的提高连接件20整体的疲劳等级,使得连接件20两个端头的疲劳等级能够达到DC80以上。
请继续参阅图4及图5,在一些可选的实施例中,第一连接片21的第一表面211及第三表面213在环形本体的厚度方向Y上相对设置,并且第一表面211及第三表面213在轴线方向X的两端向靠近彼此的方向延伸,使得第一连接片21在环形本体的厚度方向Y上的最小厚度e等于环形本体的壁部的厚度,进一步优化第一连接片21的疲劳等级。
可选的,第二连接片22的第二表面221及第四表面223在环形本体的厚度方向Y上相对设置,并且第二表面221及第四表面223在轴线方向X的两端向靠近彼此的方向延伸,以使第二连接片22在厚度方向Y上的最 小厚度f等于环形本体的壁部的厚度,使得第二连接片22的疲劳等级更加优化。进而使得连接件20整体的疲劳等级得到进一步优化。
在具体实施时,第一连接片21及第二连接片22可以采用不同的结构形式,例如为沿环形本体的轴线方向X延伸的条形片状结构,二者在连接时可以采用焊接的方式进行连接,当然,为了保证相邻塔筒分片11之间的连接强度,可选的,第一连接片21及第二连接片22可以均为条形法兰结构,第一连接片21及第二连接片22上的多个法兰孔均沿环形本体的轴线方向X一一对应设置,为了满足第一连接片21及第二连接片22之间的连接要求,连接件20进一步包括连接第一连接片21及第二连接片22的紧固件23,通过紧固件23能够便于塔筒分片11之间的拆装,同时保证相邻塔筒分片11之间的连接强度。
由此,本申请实施例提供的塔筒段100,因其包括环状本体10及连接件20,并且环状本体10的相邻两个塔筒分片11之间的容置槽12内设置有连接件20,容置槽12在环状本体10的厚度方向Y上贯穿环状本体10的壁部,相邻两个塔筒分片11通过连接件20相互连接,同时,由于第一连接片21远离第二连接片22的一侧固定连接于相邻两个塔筒分片11的一者的内环面111及外环面112,第二连接片22远离第一连接片21的一侧固定连接于相邻两个塔筒分片11的另一者的内环面111及外环面112,即,各连接片与相应的塔筒分片11的内环面111及外环面112同时连接,能够保证与相应塔筒分片的连接强度,且该种设置方式便于连接片与相应塔筒分片11的连接并能够减小对塔筒分片11的损伤,使得塔筒分片11在相互拼接时,塔筒分片11相互之间的间隙较小,以保证塔筒段100或者具有该塔筒段100的塔筒承受载荷的能力。
而本申请实施例提供的塔筒,因其包括上述任意实施例的塔筒段100,其塔筒段100相邻两个塔筒分片11之间的连接强度较高,同时,塔筒分片11之间的拼接间隙小,拼接效果好,使得塔筒自身具有更好的承受载荷的能力。
本申请实施例还提供一种风力发电机组,该风力发电机组包括上述任意实施例的塔筒,由于塔筒具有较好载荷承受能力,使得风力发电机组具 有更好的安全性能,保证其自身的发电效益。
请一并参阅图6,图6示出了本申请实施例的塔筒段100的分割方法的流程示意图。本申请实施例还提供一种塔筒段100的分割方法,包括如下步骤:
S100、提供环段结构40,环段结构40上环绕其自身的轴线彼此间隔设置有两个以上容置槽12,容置槽12沿环段结构40的轴线方向M延伸且在环段结构40的厚度方向N上贯穿环段结构40;
S200、设置连接件20,连接件20包括可拆卸连接的第一连接片21及第二连接片22,在每个容置槽12内设置连接件20,并将第一连接片21及第二连接片22均与环段结构40的内壁面41及外壁面42固定连接;
S300、将环段结构40分片,沿环段结构40的轴线方向M切割环段结构40,每个容置槽12均与一切缝连接形成在轴线方向M贯穿环段结构40的分割槽,每个分割槽将其对应容置槽12内设置的第一连接片21与第二连接片22彼此分离,完成塔筒段100的分割。
请一并参阅图7,图7示出了本申请实施例的环段结构40的轴测图。在步骤S100中,如图7所示,环段结构40整体为圆环形结构体,容置槽12的数量可以根据环段结构40的直径设定,只要能够满足运输时的限高要求均可。并且,各容置槽12在环段结构40的轴线方向M的长度小于环段结构40的长度,即容置槽12在环段结构40的轴线方向M上的两个端面之间,其距离环段结构40两个端面之间的预定距离同图2、图3所示实施例容置槽12与环状本体10的两个端面10a之间的距离限定,在此就不赘述。
请一并参阅图8,图8示出了环段结构40与连接件20连接后的轴测图,在步骤S200中,需要预先将连接件20放置于对应的容置槽12内,并使得第一连接片21及第二连接片22在环段结构40的厚度方向N上的相对设置的两个表面凸出于环段结构40相应的内环面111及外环面112,进而通过角焊等方式使得第一连接片21及第二连接片22与环段结构40的内壁面41及外壁面42固定连接。将第一连接片21及第二连接片22与环段结构40的内壁面41及外壁面42连接完成后,可以在环段结构40轴线 方向M的两端连接环向法兰30,然后执行步骤S300,形成如图2及图3所示的塔筒形式,完成塔筒段100的分割。
在一些可选的实施例中,在将环段结构40分片之前,进一步包括连接步骤,连接步骤包括将第一连接片21及第二连接片22相互连接。通过上述设置,能够保证第一连接片21及第二连接片22与环段结构40连接后二者的平行度,以便于后期形成的塔筒分片11在对接时尽可能的减小塔筒分片11之间的拼接间隙。
请一并参阅图9及图10,图9示出了本申请实施例的连接件20的初始状态下的结构示意图,图10示出了图9中C处放大图。在一些可选的实施例中,在设置连接件20之前进一步包括连接件20预处理步骤,连接件20预处理步骤包括在第一连接片21设置第一切割印记215以及在第二连接片22上设置第二切割印记225。第一切割印记215将第一连接片21划分成与环段结构40连接的第一保留区216以及远离环段结构40设置的第一待裁区217。第二切割印记225将第二连接片22划分成与环段结构40连接的第二保留区226以及远离环段结构40设置的第二待裁区227。通过设置第一切割印记215及第二切割印记225,便于后续对第一连接片21及第二连接片22的裁切,使得裁切的更加精确,进而提高连接件20的疲劳等级。
可选的,请继续参阅图9及图10,在连接件20预处理步骤中,还包括将位于同一容置槽12内的第一连接片21的第一待裁区217与第二连接片22的第二待裁区227连接固定。能够减小或者避免第一连接片21及第二连接片22在与环段结构40的内壁面41及外壁面42焊接过程中因焊接热应力导致的第一连接片21及第二连接片22在环段结构40的轴线方向M的两个端部发生变形。第一待裁区217及第二待裁区227的连接固定可以采用不同的方式,例如可以在第一待裁区217及第二待裁区227上相对设置有连接孔,通过螺栓等紧固件23将二者进行连接固定,当然,第一待裁区217及第二待裁区227彼此之间也可以通过焊接的方式相互连接,同样能够满足二者之间的连接要求。在具体实施时,第一待裁区217及第二待裁区227之间的固定点位不限于一个位置固定,在空间允许的情况 下,可以采用两个甚至更多个固定点位进行固定。
作为一种可选的实施方式,在连接件20预处理步骤中,第一切割印记215由两段第一切割段215a组成,两段第一切割段215a均为切割槽或者切割线且由第一连接片21在环段结构40的厚度方向N上的两个端面起始并向靠近彼此的方向延伸,两段第一切割段215a向靠近彼此方向延伸的终点之间的间距c等于环段结构40的厚度,两段第一切割段215a向靠近彼此方向延伸的终点位于第一连接片21在环段结构40的轴线方向M上的端面上。
进一步的,第二切割印记225由两段第二切割段225a组成,两段第二切割段225a均为切割槽或者切割线且由第二连接片22在环段结构40的厚度方向N上的两个端面起始并向靠近彼此的方向延伸,两段第二切割段225a向靠近彼此方向延伸的终点之间的间距d等于环段结构40的厚度,两段第二切割段225a向靠近彼此方向延伸的终点位于第二连接片22在环段结构的轴线方向M上相应的端面上。
通过上述设置,能够使得按照第一切割印记215及第二切割印记225裁切后的第一连接片21及第二连接片22在与环段结构40的内壁面41及外壁面42相互连接时,能够保证与内壁面41及外壁面42平滑过渡,避免应力集中,提高连接件20的疲劳等级。
请一并参阅图11及图12,图11示出了第一连接片21及第二连接片22裁切后的结构示意图,图12示出了图11中D处放大图。作为一种可选的实施方式,在将环段结构40分片步骤之前,还进一步包括连接件20裁切步骤,连接件20裁切步骤包括将各容置槽12内第一连接片21的第一待裁区217按照第一切割印记215裁切,以使第一待裁区217与第一保留区216分离,并包括将各容置槽12内第二连接片22的第二待裁区227按照第二切割印记225裁切,以使第二待裁区227与第二保留区226分离,并将切割后的第一连接片21及第二连接片22的切口打磨光滑。通过上述设置,在保证连接件20的疲劳等级要求的基础上,更便于步骤S300的执行。
并且由于本申请实施例提供的切割方法包括连接步骤,因此在执行步 骤S300之前包括解除第一连接片21及第二连接片22之间的连接的步骤。
由此,本申请实施例提供的塔筒段100的切割方法,能够可靠的将塔筒段100分割成多个塔筒分片11,并且连接件20的第一连接片21及第二连接片22与相应的塔筒分片11之间的连接强度高,相邻塔筒分片11在相互拼接时,形成的拼接间隙小,既能够满足塔筒段100的运输时的限高要求,同时该种切割方法使得形成的塔筒分片11拼接后形成的塔筒段100的载荷承载能力高,故易于推广使用。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种塔筒段(100),其中,包括:
    环状本体(10),在其自身轴线方向上具有相对的两个端面(10a),所述环状本体(10)由多个塔筒分片(11)拼接形成,相邻两个所述塔筒分片(11)之间设置有沿所述轴线方向延伸的容置槽(12),所述容置槽(12)在所述环状本体(10)的厚度方向上贯穿所述环状本体(10)的壁部;
    连接件(20),相邻两个所述塔筒分片(11)通过所述连接件(20)相互连接,所述连接件(20)包括能够相互可拆卸连接的第一连接片(21)及第二连接片(22),每个所述容置槽(12)内均设置有所述第一连接片(21)及所述第二连接片(22);
    其中,所述第一连接片(21)远离所述第二连接片(22)的一侧固定连接于相邻两个所述塔筒分片(11)的一者的内环面(111)及外环面(112),所述第二连接片(22)远离所述第一连接片(21)的一侧固定连接于相邻两个所述塔筒分片(11)的另一者的内环面(111)及外环面(112)。
  2. 根据权利要求1所述的塔筒段(100),其中,所述容置槽(12)在两个所述端面(10a)之间且与两个所述端面(10a)均间隔预定距离,所述预定距离大于0。
  3. 根据权利要求2所述的塔筒段(100),其中,所述预定距离为100mm~500mm。
  4. 根据权利要求1至3任意一项所述的塔筒段(100),其中,在所述厚度方向上,所述第一连接片(21)具有凸出于其连接的所述塔筒分片(11)的所述内环面(111)的第一表面(211),所述第一表面(211)在所述轴线方向上的两端与该所述内环面(111)通过第一圆弧角(212)圆滑过渡,所述第一圆弧角(212)的半径大于等于150mm;
    和/或,在所述厚度方向上,所述第二连接片(22)具有凸出于其所述连接的所述塔筒分片(11)的所述内环面(111)的第二表面(221),所 述第二表面(221)在所述轴线方向上的两端与该所述内环面(111)通过第二圆弧角(222)圆滑过渡,所述第二圆弧角(222)的半径大于等于150mm。
  5. 根据权利要求1至3任意一项所述的塔筒段(100),其中,在所述厚度方向上,所述第一连接片(21)具有凸出于其所连接的所述塔筒分片(11)的所述外环面(112)的第三表面(213),所述第三表面(213)在所述轴线方向上的两端与该所述外环面(112)通过第三圆弧角(214)圆滑过渡,所述第三圆弧角(214)的半径大于等于150mm;
    和/或,在所述厚度方向上,所述第二连接片(22)具有凸出于其所连接的所述塔筒分片(11)的所述外环面(112)的第四表面(223),所述第四表面(223)在所述轴线方向上的两端与该所述外环面(112)通过第四圆弧角(224)圆滑过渡,所述第四圆弧角(224)的半径大于等于150mm。
  6. 根据权利要求1至3任意一项所述的塔筒段(100),其中,所述第一连接片(21)在所述厚度方向上具有相对设置的第一表面(211)及第三表面(213),所述第一表面(211)及所述第三表面(213)在所述轴线方向的两端向靠近彼此的方向延伸,以使所述第一连接片(21)在所述厚度方向上的最小厚度等于所述壁部的厚度;
    和/或,所述第二连接片(22)在所述厚度方向上具有相对设置的第二表面(221)及第四表面(223),所述第二表面(221)及所述第四表面(223)在所述轴线方向的两端向靠近彼此的方向延伸,以使所述第二连接片(22)在所述厚度方向上的最小厚度与等于所述壁部的厚度。
  7. 根据权利要求1至3任意一项所述的塔筒段(100),其中,所述第一连接片(21)及所述第二连接片(22)均为条形法兰结构,所述连接件(20)进一步包括连接所述第一连接片(21)及所述第二连接片(22)的紧固件(23)。
  8. 一种塔筒,其中,包括两个以上如权利要求1至7任意一项所述的塔筒段(100),两个以上所述塔筒段(100)沿所述轴线方向相互层叠设置并相互连接。
  9. 一种塔筒段(100)的分割方法,其中,包括如下步骤:
    提供环段结构(40),所述环段结构(40)上环绕其自身的轴线彼此间隔设置有两个以上容置槽(12),所述容置槽(12)沿所述环段结构(40)的轴线方向延伸且在所述环段结构(40)的厚度方向上贯穿所述环段结构(40);
    设置连接件(20),所述连接件(20)包括可拆卸连接的第一连接片(21)及第二连接片(22),在每个所述容置槽(12)内均设置所述连接件(20),并将所述第一连接片(21)及所述第二连接片(22)均与所述环段结构(40)的内壁面(41)及外壁面(42)固定连接;
    将所述环段结构(40)分片,沿所述环段结构(40)的所述轴线方向切割所述环段结构(40),每个所述容置槽(12)均与一切缝连接形成在所述轴线方向贯穿所述环段结构(40)的分割槽,每个所述分割槽将其对应所述容置槽(12)内设置的所述第一连接片(21)与所述第二连接片(22)彼此分离,以完成所述塔筒段(100)的分割。
  10. 根据权利要求9所述的塔筒段(100)的分割方法,其中,在将所述环段结构(40)分片之前,进一步包括连接步骤,所述连接步骤包括将所述第一连接片(21)及所述第二连接片(22)相互连接。
  11. 根据权利要求9所述的塔筒段(100)的分割方法,其中,在设置连接件(20)之前进一步包括连接件(20)预处理步骤,所述连接件(20)预处理步骤包括在所述第一连接片(21)设置第一切割印记(215)以及在所述第二连接片(22)上设置第二切割印记(225);
    所述第一切割印记(215)将所述第一连接片(21)划分成与所述环段结构(40)连接的第一保留区(216)以及远离所述环段结构(40)设置的第一待裁区(217);
    所述第二切割印记(225)将所述第二连接片(22)划分成与所述环段结构(40)连接的第二保留区(226)以及远离所述环段结构(40)设置的第二待裁区(227)。
  12. 根据权利要求11所述的塔筒段(100)的分割方法,其中,在所述连接件(20)预处理步骤中,还包括将位于同一所述容置槽(12)内的 所述第一连接片(21)的所述第一待裁区(217)与所述第二连接片(22)的所述第二待裁区(227)连接固定。
  13. 根据权利要求11所述的塔筒段(100)的分割方法,其中,在所述连接件(20)预处理步骤中,
    所述第一切割印记(215)由两段第一切割段(215a)组成,两段所述第一切割段(215a)均为切割槽或者切割线且由所述第一连接片(21)在所述厚度方向上的两个端面起始并向靠近彼此的方向延伸,两段所述第一切割段(215a)向靠近彼此方向延伸的终点之间的间距等于所述环段结构(40)的厚度;
    和/或,所述第二切割印记(225)由两段第二切割段(225a)组成,两段所述第二切割段(225a)均为切割槽或者切割线且由所述第二连接片(22)在所述厚度方向上的两个端面起始并向靠近彼此的方向延伸,两段所述第二切割段(225a)向靠近彼此方向延伸的终点之间的间距等于所述环段结构(40)的厚度。
  14. 根据权利要求11所述的塔筒段(100)的分割方法,其中,在将所述环段结构(40)分片之前,还进一步包括连接件(20)裁切步骤,
    所述连接件(20)裁切步骤包括将各所述容置槽(12)内所述第一连接片(21)的所述第一待裁区(217)按照所述第一切割印记(215)裁切,以使所述第一待裁区(217)与所述第一保留区(216)分离,并包括将各所述容置槽(12)内所述第二连接片(22)的所述第二待裁区(227)按照所述第二切割印记(225)裁切,以使所述第二待裁区(227)与所述第二保留区(226)分离。
  15. 一种风力发电机组,其中,包括如权利要求8所述的塔筒。
PCT/CN2019/086378 2018-09-30 2019-05-10 塔筒段、塔筒、分割方法及风力发电机组 WO2020062881A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19867244.6A EP3754184B1 (en) 2018-09-30 2019-05-10 Tower segment, tower, segmentation method, and wind turbine
US17/041,095 US11473562B2 (en) 2018-09-30 2019-05-10 Tower segment, tower segmentation method, and wind turbine
AU2019350925A AU2019350925B2 (en) 2018-09-30 2019-05-10 Tower segment, tower, segmentation method, and wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811159412.4A CN109139386B (zh) 2018-09-30 2018-09-30 塔筒段、塔筒、分割方法及风力发电机组
CN201811159412.4 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020062881A1 true WO2020062881A1 (zh) 2020-04-02

Family

ID=64814267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086378 WO2020062881A1 (zh) 2018-09-30 2019-05-10 塔筒段、塔筒、分割方法及风力发电机组

Country Status (5)

Country Link
US (1) US11473562B2 (zh)
EP (1) EP3754184B1 (zh)
CN (1) CN109139386B (zh)
AU (1) AU2019350925B2 (zh)
WO (1) WO2020062881A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111765050A (zh) * 2020-07-02 2020-10-13 格洛科能源科技(上海)有限公司 一种风力发电机塔筒分片间的连接结构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139386B (zh) * 2018-09-30 2019-08-23 北京金风科创风电设备有限公司 塔筒段、塔筒、分割方法及风力发电机组
CN110154274B (zh) * 2019-06-04 2023-05-26 中农绿波河北机械有限公司 退役风电叶片的回收再利用方法及分离装置
CN110682064A (zh) * 2019-11-01 2020-01-14 三一重能有限公司 分片式塔筒结构及其制造方法
CN113458714A (zh) * 2020-03-31 2021-10-01 新疆金风科技股份有限公司 塔筒段的成型方法、塔筒段、塔筒以及风力发电机组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545609A (zh) * 2015-12-29 2016-05-04 北京金风科创风电设备有限公司 风力发电机组的塔筒以及塔筒的构建方法
CN205423080U (zh) * 2016-03-23 2016-08-03 北京金风科创风电设备有限公司 风力发电机组的塔筒及风力发电机组
CN205823552U (zh) * 2016-05-25 2016-12-21 上海电气风电集团有限公司 一种分片式风力发电塔架
CN106762444A (zh) * 2017-01-22 2017-05-31 北京金风科创风电设备有限公司 塔筒片体、塔筒段、塔筒及其制造方法
EP3315694A1 (en) * 2016-10-27 2018-05-02 Siemens Aktiengesellschaft Tower structure
DE202017006845U1 (de) * 2017-02-06 2018-08-01 Hawart Sondermaschinenbau Gmbh Vorrichtung zur Handhabung von Schalensegmenten für einen vertikalen Turmabschnitt des Turmes einer Windenergieanlage
CN109139386A (zh) * 2018-09-30 2019-01-04 北京金风科创风电设备有限公司 塔筒段、塔筒、分割方法及风力发电机组

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1011315C2 (nl) * 1999-02-16 2000-08-17 Janssens & Dieperink B V Werkwijze voor het vervaardigen van een silo.
EP1606514B1 (en) * 2003-03-19 2007-11-07 Vestas Wind System A/S Method of constructing large towers for wind turbines
EP1767729A1 (de) * 2005-09-23 2007-03-28 Sika Technology AG Turmkonstruktion
DK2006471T3 (da) * 2007-06-20 2009-12-14 Siemens Ag Vindmölletårn og fremgangsmåde til opbygning af et vindmölletårn
NZ587002A (en) * 2008-02-06 2012-01-12 Ib Andresen Ind As Tower element with multiple stacked segments
DE102008016828A1 (de) * 2008-04-01 2009-10-15 Wobben, Aloys Verfahren zur Herstellung von Betonfertigteilen
US8056297B2 (en) * 2008-09-25 2011-11-15 General Electric Company Flangeless wind tower
US8234837B2 (en) * 2008-10-06 2012-08-07 Column & Post, Inc. Split columns with locating features
ES2378199B1 (es) * 2009-06-24 2013-06-05 Acciona Windpower S.A. Sistema de unión de una góndola con la torre de hormigón de un aerogenerador.
AU2009349932B2 (en) * 2009-07-13 2015-10-08 Vsl International Ag Telescopic tower assembly and method
US8281547B2 (en) * 2009-09-17 2012-10-09 Ershigs, Inc. Modular tower apparatus and method of manufacture
DE102010005991A1 (de) * 2010-01-27 2011-07-28 Wobben, Aloys, Dipl.-Ing., 26607 Windenergieanlage und Windenergieanlagen-Turmsegment
EP2531674B1 (en) * 2010-02-01 2016-12-14 Conelto ApS A tower construction and a method for erecting the tower construction
ES2399863B1 (es) * 2010-03-08 2014-02-11 Acciona Windpower S.A. Torre de aerogenerador y procedimiento de montaje de la misma
DE102010039796A1 (de) * 2010-06-14 2011-12-15 Max Bögl Bauunternehmung GmbH & Co. KG Turm mit einem Adapterstück sowie Verfahren zur Herstellung eines Turms mit einem Adapterstück
DK2558714T3 (en) * 2010-07-12 2018-11-05 Siemens Ag TOWER CONSTRUCTION
US8209913B2 (en) * 2011-02-01 2012-07-03 Mitsubishi Heavy Industries, Ltd. Tubular structure and wind turbine generator
AU2012201882B8 (en) * 2011-04-01 2015-08-13 Axicom Pty Ltd Standardised Monopole Strengthening
EP2525021B8 (en) * 2011-05-16 2018-11-28 GE Renewable Technologies Wind B.V. Wind turbine tower supporting structure
DE102011077428A1 (de) 2011-06-10 2012-12-13 Aloys Wobben Windenergieanlagen-Turm
EP2617990B1 (en) * 2012-01-17 2015-04-15 ALSTOM Renewable Technologies Anti-ovalization tool for introduction into a wind turbine blade root and method of reducing ovalization of a wind turbine blade root
FR3009318B1 (fr) * 2013-07-30 2015-09-11 Soletanche Freyssinet Procede d'edification d'un ouvrage en elements prefabriques en beton et ouvrage associe
ES2538734B1 (es) * 2013-12-20 2016-05-10 Acciona Windpower, S.A. Procedimiento de montaje de torres de hormigón de sección troncocónica y torre de hormigón montada con dicho procedimiento
WO2015158350A1 (en) * 2014-04-14 2015-10-22 Vestas Wind Systems A/S Tower segment
CN106414998B (zh) * 2014-04-14 2020-01-14 维斯塔斯风力系统有限公司 塔架分段
EP3134643B1 (en) * 2014-04-22 2020-09-23 Vestas Wind Systems A/S Method and tool for assembling tower elements
CA2945861C (en) * 2014-04-22 2019-08-20 Vestas Wind Systems A/S Alignment tool, system and method for the connection of wind turbine tower segments
US10018187B2 (en) * 2014-04-25 2018-07-10 Vestas Wind Systems A/S Tower section production process
WO2016055070A1 (en) * 2014-10-06 2016-04-14 Vestas Wind Systems A/S Hinged tower segments and transport method
FR3029231B1 (fr) * 2014-12-01 2016-12-30 Lafarge Sa Section en beton
DE102015110344A1 (de) 2015-06-26 2016-12-29 Eno Energy Systems Gmbh Teilstück einer Turmsektion, ein Turm und ein Verfahren zum Herstellen eines Teilstücks einer Turmsektion
DE102016106526A1 (de) * 2016-04-08 2017-10-12 Wobben Properties Gmbh Verbindungskörper und Verfahren zum Verbinden von Teilringsegmenten
DE102016114661A1 (de) * 2016-08-08 2018-02-08 Wobben Properties Gmbh Turmsegment, Turmabschnitt, Turm, Windenergieanlage sowie Verfahren zum Herstellen eines Turmsegments und zum Verbinden von Turmsegmenten
US9850674B1 (en) * 2016-10-13 2017-12-26 General Electric Company Vertical joint assembly for wind turbine towers
US10053886B2 (en) * 2016-11-29 2018-08-21 General Electric Company Connection assembly for wind turbine tower
DE102016125062A1 (de) * 2016-12-21 2018-06-21 Wobben Properties Gmbh Windenergieanlagen-Turm und Windenergieanlagen-Turmübergangssegment
EP3339636A1 (de) * 2016-12-22 2018-06-27 Nordex Energy GmbH Stahlturm für eine windenergieanlage sowie ein verfahren zu dessen herstellung
DE102017116873A1 (de) * 2017-07-26 2019-01-31 Wobben Properties Gmbh Windenergieanlagen-Stahlturmringsegment und Verfahren
PT3438381T (pt) * 2017-08-02 2020-07-09 Pacadar Sa Estrutura de suporte para geradores de energia eólica
CN107725281B (zh) * 2017-09-06 2019-10-22 南京航空航天大学 一种分片装配式t型钢内加劲风力机钢筒塔段
CN107654338B (zh) 2017-09-30 2019-09-03 新疆金风科技股份有限公司 塔段、塔架、风力发电机组及塔段的制造方法
CN207513756U (zh) * 2017-10-26 2018-06-19 许继集团有限公司 一种塔筒分段、组合式塔筒及风力发电机组
CN207701296U (zh) * 2017-11-15 2018-08-07 远景能源(江苏)有限公司 塔筒分片连接结构
DE102017127035A1 (de) * 2017-11-16 2019-05-16 Wobben Properties Gmbh Flanschgestell und Montageset zur Vormontage und/oder zum Transport und/oder zur Montage eines Turmsegments für eine Windenergieanlage sowie Verfahren
CN108167125B (zh) * 2017-12-20 2020-02-11 新疆金风科技股份有限公司 连接构件、混凝土塔筒分片及模具、塔筒及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545609A (zh) * 2015-12-29 2016-05-04 北京金风科创风电设备有限公司 风力发电机组的塔筒以及塔筒的构建方法
CN205423080U (zh) * 2016-03-23 2016-08-03 北京金风科创风电设备有限公司 风力发电机组的塔筒及风力发电机组
CN205823552U (zh) * 2016-05-25 2016-12-21 上海电气风电集团有限公司 一种分片式风力发电塔架
EP3315694A1 (en) * 2016-10-27 2018-05-02 Siemens Aktiengesellschaft Tower structure
CN106762444A (zh) * 2017-01-22 2017-05-31 北京金风科创风电设备有限公司 塔筒片体、塔筒段、塔筒及其制造方法
DE202017006845U1 (de) * 2017-02-06 2018-08-01 Hawart Sondermaschinenbau Gmbh Vorrichtung zur Handhabung von Schalensegmenten für einen vertikalen Turmabschnitt des Turmes einer Windenergieanlage
CN109139386A (zh) * 2018-09-30 2019-01-04 北京金风科创风电设备有限公司 塔筒段、塔筒、分割方法及风力发电机组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3754184A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111765050A (zh) * 2020-07-02 2020-10-13 格洛科能源科技(上海)有限公司 一种风力发电机塔筒分片间的连接结构
CN111765050B (zh) * 2020-07-02 2024-05-10 格洛科能源科技(上海)有限公司 一种风力发电机塔筒分片间的连接结构

Also Published As

Publication number Publication date
CN109139386A (zh) 2019-01-04
EP3754184B1 (en) 2024-05-08
US11473562B2 (en) 2022-10-18
EP3754184A4 (en) 2021-08-18
AU2019350925A1 (en) 2020-10-01
US20210108613A1 (en) 2021-04-15
CN109139386B (zh) 2019-08-23
AU2019350925B2 (en) 2021-07-22
EP3754184A1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2020062881A1 (zh) 塔筒段、塔筒、分割方法及风力发电机组
US9404391B2 (en) Diffuser for the exhaust section of a gas turbine and gas turbine with such a diffuser
KR20180019714A (ko) 타워 섹션의 서브섹션, 타워, 및 타워 섹션의 서브섹션의 제조 방법
CN108104151B (zh) 导管架过渡段
US9249784B2 (en) Transition structure for a wind turbine tower
RU2533606C2 (ru) Монолитный удерживающий кронштейн авиационного оборудования
US20130104489A1 (en) Tower construction
KR101403178B1 (ko) 철골구조물 내진 보강용 분절형 비좌굴 가새
US8904738B2 (en) Wind turbine tower supporting structure
WO2019190956A1 (en) Additively manufactured tower structure and method of fabrication
KR20140003834A (ko) 해상 지지구조물 및 이의 시공 방법
US20180068783A1 (en) Reactor including first end plate and second end plate
US20150198142A1 (en) Segmented rotor hub
US20170370283A1 (en) Exhaust frame of a gas turbine engine
US11814856B2 (en) Tower tube section, tower frame and wind power generator set
KR101403142B1 (ko) 철골구조물 내진 보강용 비좌굴 가새
JP6066631B2 (ja) 伝熱管の隙間拡張治具及び振動抑制部材の配設方法
CN212716995U (zh) 连接件、塔架以及风力发电机组
JP5280769B2 (ja) 柱梁接合構造
CN109519333B (zh) 连接件、分片塔架、制造方法、塔架及风力发电机组
EP4345286A1 (en) Hub of wind power generator and wind power generator
JP2005248499A (ja) 二重鋼管型ブレース材
JP2006274839A (ja) 排気ダクトおよびコンバインドサイクル発電プラント
JP6676505B2 (ja) 原子炉炉心支持構造
KR20220105007A (ko) 복합재로 이루어진 마그너스형 로터 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019867244

Country of ref document: EP

Effective date: 20200915

ENP Entry into the national phase

Ref document number: 2019350925

Country of ref document: AU

Date of ref document: 20190510

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 19 867 244.6

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE