WO2020062720A1 - 有机发光二极管、显示面板和显示装置 - Google Patents

有机发光二极管、显示面板和显示装置 Download PDF

Info

Publication number
WO2020062720A1
WO2020062720A1 PCT/CN2019/071943 CN2019071943W WO2020062720A1 WO 2020062720 A1 WO2020062720 A1 WO 2020062720A1 CN 2019071943 W CN2019071943 W CN 2019071943W WO 2020062720 A1 WO2020062720 A1 WO 2020062720A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
electrode
electron blocking
emitting diode
Prior art date
Application number
PCT/CN2019/071943
Other languages
English (en)
French (fr)
Inventor
李维维
何麟
李梦真
田景文
李田田
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2020062720A1 publication Critical patent/WO2020062720A1/zh
Priority to US16/863,028 priority Critical patent/US11462708B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present application relates to the field of display technology, for example, to an organic light emitting diode, a display panel, and a display device.
  • Organic light-emitting diodes have self-luminous characteristics and do not require a backlight. Therefore, when they are applied to display panels and display devices, the overall thickness of the display panel and display device is thin, which is conducive to the realization of display Lightweight design of panels and display devices. At the same time, organic light emitting diodes have the advantages of high display brightness, wide viewing angle, and fast response speed.
  • the material of the light-emitting layer with excellent performance in the organic light-emitting diode is an electron-transport-type material, but when an electron-transport-type material is used as the material of the light-emitting layer, the life of the organic light-emitting diode is short. .
  • the present application provides an organic light emitting diode, a display panel and a display device to improve the life of the organic light emitting diode.
  • the present application provides an organic light emitting diode.
  • the organic light emitting diode includes:
  • a second electrode the first electrode being disposed opposite the second electrode
  • a light emitting layer between the first electrode and the second electrode A light emitting layer between the first electrode and the second electrode
  • An electron blocking layer the electron blocking layer is located between the light emitting layer and the first electrode, a LUMO energy level of the electron blocking layer is higher than a LUMO energy level of a light emitting host material in the light emitting layer, and The first energy level difference between the LUMO energy level of the electron blocking layer and the LUMO energy level of the light emitting host material in the light emitting layer is expressed as A, and A ⁇ 0.4 eV.
  • the HOMO energy level of the electron blocking layer is higher than the HOMO energy level of the light emitting host material in the light emitting layer, and the HOMO energy level of the electron blocking layer and the HOMO energy level of the light emitting host material in the light emitting layer are higher.
  • the second energy level difference between the energy levels is expressed as B, and B ⁇ 0.2eV.
  • the thickness of the electron blocking layer is expressed as C, and 3 nm ⁇ C ⁇ 20 nm.
  • the material of the electron blocking layer includes an aromatic amine derivative.
  • the organic light emitting diode further includes an intermediate doped layer, the intermediate doped layer is located between the light emitting layer and the electron blocking layer;
  • the material of the intermediate doped layer includes a light emitting host material and an electron blocking material.
  • the light emitting host material in the intermediate doped layer is the same as the light emitting host material in the light emitting layer.
  • the sum of the volume of the light-emitting host material and the volume of the electron blocking material is expressed as S, and the volume of the light-emitting host material is expressed as X, 20% ⁇ X / S ⁇ 80%.
  • the thickness of the intermediate doped layer is expressed as E, and 0.1 nm ⁇ E ⁇ 30 nm.
  • the thickness E of the intermediate doped layer is 5 nm, 10 nm, or 20 nm.
  • the light-emitting host material includes 4,4-N, N-dicarbazole biphenyl, 9,10-dinaphthyl anthracene, 4,4 ', 4 "-N, N', N" -tris ( 3-phenylcarbazole) aniline, 3,5-N, N'-dicarbazolebenzene and 4,4'-N, N'-dicarbazole-2,2'-dimethylbiphenyl
  • 4-4-N, N-dicarbazole biphenyl, 9,10-dinaphthyl anthracene 4,4 ', 4 "-N, N', N" -tris ( 3-phenylcarbazole) aniline, 3,5-N, N'-dicarbazolebenzene and 4,4'-N, N'-dicarbazole-2,2'-dimethylbiphenyl
  • 4-4-N, N-dicarbazole biphenyl, 9,10-dinaphthyl anthracene 4,4
  • the electron blocking material includes 4,4'-cyclohexylbis [N, N-bis (4-methylphenyl) aniline] and 4,4 ', 4 "-tris (carbazole-9-yl) triphenylamine At least one of.
  • first carrier function layer and a second carrier function layer
  • the first carrier function layer is located between the light emitting layer and the second electrode, and the second carrier function layer is located between the first electrode and the electron blocking layer.
  • the first carrier function layer includes an electron injection layer, an electron transport layer, and a hole blocking layer that are stacked in a direction in which the second electrode is directed to the light emitting layer;
  • the second carrier function layer includes a hole injection layer and a hole transport layer that are stacked in a direction in which the first electrode is directed to the electron blocking layer.
  • the present application also provides a display panel including a substrate and a plurality of pixel units arranged in an array on one side of the substrate;
  • the pixel units includes the above-mentioned organic light emitting diode provided in the present application.
  • the present application further provides a display device including the above display panel provided by the present application.
  • FIG. 1 is a schematic structural diagram of an organic light emitting diode according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an energy level of an organic light emitting diode according to an embodiment of the present application
  • FIG. 3 is a comparison diagram of a brightness attenuation curve of an organic light emitting diode provided by an embodiment of the present application and a brightness attenuation curve of an organic light emitting diode provided by a related art;
  • FIG. 4 is a schematic structural diagram of another organic light emitting diode according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of still another organic light emitting diode according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional structure view along G1-G2 in FIG. 6;
  • FIG. 8 is a schematic structural diagram of a display device according to an embodiment of the present application.
  • the material of the light emitting layer of the organic light emitting diode with excellent performance is a material of an electron-transporting type.
  • the organic light emitting diode further includes a first electrode and a second electrode located on both sides of the light emitting layer.
  • the first electrode may be an anode
  • the second electrode is a cathode.
  • the performance of the film layer on the side destroys the interface between adjacent film layers, causing the film layer performance between the light emitting layer and the first electrode in the organic light emitting diode to decline, and causing multiple The interface between adjacent film layers in the film layer is destroyed, which causes the life of the organic light emitting diode to decrease.
  • an embodiment of the present application provides an organic light emitting diode to improve the life of the organic light emitting diode.
  • FIG. 1 is a schematic structural diagram of an organic light emitting diode provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an energy level of an organic light emitting diode provided by an embodiment of the present application.
  • the organic light emitting diode 10 includes: a first electrode 11, a second electrode 12, a light emitting layer 13, and an electron blocking layer 14; the first electrode 11 is disposed opposite to the second electrode 12; Between the one electrode 11 and the second electrode 12; the electron blocking layer 14 is located between the light emitting layer 13 and the first electrode 11; wherein the LUMO energy level 14L of the electron blocking layer 14 is higher than that of the light emitting host material 13h in the light emitting layer 13.
  • the LUMO energy level 130L, and the first energy level difference between the LUMO energy level 14L of the electron blocking layer 14 and the LUMO energy level 130L of the light emitting host material 13h in the light emitting layer 13 is represented as A, where A ⁇ 0.4eV.
  • the first electrode 11 may be an anode; for example, the anode material may be indium tin oxide (ITO).
  • the second electrode 12 may be a cathode; for example, the cathode material may be a metal material, such as aluminum (Al), gold (Au), silver (Ag), or a metal alloy including Ag.
  • the metal material has a lower work function. Conductive material.
  • the light emitting layer 13 may include a light emitting host material 13h and a light emitting guest material 13d, and the light emitting guest material 13d determines the light emitting color of the organic light emitting diode 10.
  • the light-emitting guest material 13d may be 2-tert-butyl-4- (dicyanomethylene) -6- [2- (1,1,7,7-tetramethyljulonidine-9 -Yl) vinyl] -4H-pyran (DCJTB), the corresponding organic light emitting diode 10 is red in color; or, the light-emitting guest material 13d may be N, N'-dimethylquinacridone (DMQA ), N, N'-dibutylquinacridone (DBQA), 5,12-dibutyl-1,3,8,10-tetramethylquinacridone (TMDBQA) or coumarin 545T ( C545T), and the corresponding organic light emitting diode 10 has a green color; or, the light-emitting guest material 13d may be 4,4'-bis (9-ethyl-3-carbazolevinyl) -1,1'-linked Benzene (BCzVBi), 4,4'-bis [4- (d
  • the materials of the first electrode 11, the second electrode 12, and the light-emitting guest material 13 d in this embodiment are merely exemplary descriptions, and are not intended to describe the first electrode 11 and the second electrode in the organic light emitting diode 10 provided in the embodiment of the present application.
  • 12 and the luminescent guest material 13d are defined as materials that can be used.
  • the materials of the first electrode 11, the second electrode 12 and the light-emitting guest material 13 d may be provided according to the actual requirements of the organic light emitting diode 10, which is not limited in the examples of the present application.
  • the light emitting principle of the organic light emitting diode 10 mainly includes four processes of carrier injection, carrier transmission, carrier recombination, and exciton deexcitation light.
  • the carrier injection process when a certain voltage is applied between the first electrode 11 (taking the anode as an example) and the second electrode 12 (taking the cathode as an example) of the organic light emitting diode 10, the electrons of the cathode and the Holes are injected into the LUMO energy level 130L and the HOMO energy level 130H of the light emitting layer 13, respectively.
  • the carrier transport process the injected electrons and holes are transported by the electric field.
  • the carrier recombination process electrons and holes recombine in the light-emitting layer 13 by Coulomb force, and excitons are generated.
  • the exciton deexcitation the exciton releases energy in the process of returning to the ground state.
  • Part of the released energy is absorbed by the light-emitting guest material 13d in the light-emitting layer 13, and the light-emitting guest material 13d changes from a stable ground state to an unstable state. And emit light during the process of returning from the excited state to the ground state.
  • the electron blocking layer 14 is located between the first electrode 11 and the light emitting layer 13.
  • the electron blocking layer 14 is used to block electrons from the light emitting layer 13 to the first electrode 11 side.
  • the relationship between the LUMO energy level 14L of the electron blocking layer 14 and the LUMO energy level 130L of the light emitting layer 13 determines the strength of the electron blocking layer 14 in blocking electrons. Exemplarily, with the LUMO energy level 130L of the light emitting layer 13 as a reference, the higher the LUMO energy level 14L of the electron blocking layer 14 is, the stronger the electron blocking ability of the electron blocking layer 14 is.
  • the LUMO energy level 14L of the electron blocking layer 14 is set higher than the LUMO energy level 130L of the light emitting layer 13, and the first energy of the LUMO energy level 14L of the electron blocking layer 14 and the LUMO energy level 130L of the light emitting layer 13 is set.
  • the level difference is expressed as A, where A ⁇ 0.4eV, using a higher energy level difference between the LUMO energy level 130L of the light-emitting layer 13 and the LUMO energy level 14L of the electron blocking layer 14 can effectively block electrons to the first electrode 11- Side transmission, that is, electrons are confined in the light-emitting layer 13, and the probability of electrons being transmitted from the light-emitting layer 13 to the side of the first electrode 11 is reduced, so that the electrons to the interface between the light-emitting layer 13 and the electron blocking layer 14 can be slowed down.
  • Destruction and can reduce the influence of electrons on the other film layers of the light emitting layer 13 near the first electrode 11, slow down the performance degradation of the film layer itself and the interface between adjacent film layers, and thereby improve the life of the organic light emitting diode 10 .
  • the relative levels of the LUMO and HOMO levels of the multiple film layers in the embodiments of the present application can be understood as follows: the energy level in the ionized state (the lowest energy level is called the ground state, and the other energy levels are called the excited state; the electrons are far away.
  • the state of an atomic nucleus, which is no longer affected by the attraction of the atomic nucleus, is called an ionized state, and the energy level of the ionized state is 0) as the reference energy level.
  • the energy level that is farther away from the reference level is a relatively low level.
  • the HOMO energy level 14H of the electron blocking layer 14 is higher than the HOMO energy level 130H of the light emitting host material 13h in the light emitting layer 13, and the HOMO energy level 14H of the electron blocking layer 14 and the light emission
  • the second energy level difference between the HOMO energy levels 130H of the light-emitting host material 13h in the layer 13 is expressed as B, and B ⁇ 0.2 eV.
  • the arrangement of the electron blocking layer 14 facilitates the transport and injection of holes from the first electrode 11 into the light emitting layer 13, and the closer the HOMO energy level 14H of the electron blocking layer 14 to the HOMO energy level 130H of the light emitting layer 13 is, the more favorable it is for airspace.
  • the hole is transported and implanted into the light emitting layer 13.
  • the energy level difference between the HOMO energy level 14H of the electron blocking layer 14 and the HOMO energy level 130H of the light emitting layer 13 can be made small.
  • the HOMO energy level 130H of the light-emitting layer 13 is understood as the HOMO energy level of the light-emitting host material 13h in the light-emitting layer 13.
  • the thickness of the electron blocking layer 14 is C, where 3 nm ⁇ C ⁇ 20 nm.
  • This thickness range is consistent with the thickness of the electron blocking layer of the organic light emitting diode in the related art. That is, the thickness of the electron blocking layer of the organic light emitting diode provided in this embodiment is equal to the thickness of the electron blocking layer of the organic light emitting diode in the related art, or the difference between the two is equal to or smaller than the preset thickness difference. Exemplarily, the thickness difference between the two is equal to or less than 5 nm.
  • the transmission distance of holes in the electron blocking layer 14 is not changed, and the optical performance of the electron blocking layer 14 is not changed (for example, the optical performance may include absorbance). Therefore, the light emitting diode in the related technology may be directly used
  • the other film layers in the semiconductor layer need not be designed separately, thereby reducing the design difficulty of the overall structure of the light emitting diode.
  • the material of the electron blocking layer 14 includes an aromatic amine derivative.
  • the structure of the aromatic amine derivative may be any one of a plurality of structures (H1) to (H19) shown below.
  • R1 is any one of the following groups (J1)-(J7):
  • R3 is any one of the following groups (J8)-(J10):
  • R2 is any one of the groups (J1) to (J10) as described above.
  • the wavy lines This means that the position is set to be connected to a nitrogen atom.
  • R2 may use the same group as R1, or R2 may use the same group as R3, or R1, R2, and R3 all use different groups. Examples of this application This is not limited.
  • the dangling bonds in the multiple structures (H1)-(H19) shown above may be connected to methyl, triphenylamine, or other groups known to those skilled in the art, which is not limited in the examples of the present application.
  • the above only exemplarily shows the structures of several aromatic amine derivatives, rather than limiting the organic light emitting diode 10 provided in this embodiment.
  • the material of the electron blocking layer may also include materials of other aromatic amine derivative structures known to those skilled in the art according to the actual requirements of the organic light emitting diode 10, which is not limited in the examples of the present application.
  • this embodiment exemplarily shows a comparison table of the light-emitting characteristics between a group of OLEDs provided by related technologies and OLEDs provided by the technical solutions of this application. See Table 1.
  • the device D1 represents the organic light emitting diode provided by the related technology
  • the device D2 represents the organic light emitting diode provided by the technical solution of this application.
  • the similarities between the device D1 and the device D2 include: the material of the first electrode is ITO, and the thickness is 10 nm. Function: 4.3eV; thickness of hole injection layer is 10nm; thickness of hole transport layer is 120nm; thickness of electron blocking layer is 5nm; thickness of light emitting layer is 20nm; thickness of hole blocking layer is 5nm; The thickness is 30 nm; the thickness of the electron injection layer is 1 nm; the material of the second electrode is a metal electrode, and the thickness is 13 nm to 20 nm.
  • the difference between the device D1 and the device D2 is that the material of the electron blocking layer of the device D1 is TPD, and the energy level difference between the LUMO energy level of the light emitting layer and the LUMO energy level of the light emitting layer is 0.3eV.
  • the energy level difference between the HOMO energy levels is 0.4 eV;
  • the material of the electron blocking layer of the device D2 is the material shown in the structure (H19), that is,
  • the energy level difference between the LUMO energy level and the LUMO energy level of the light emitting layer is 0.45 eV, and the energy level difference between the HOMO energy level and the HOMO energy level of the light emitting layer is 0.2 eV.
  • FIG. 3 is a comparison diagram of a brightness decay curve of an organic light emitting diode provided by an embodiment of the present application and a brightness decay curve of an organic light emitting diode provided by a related art, and is used to obtain the lifetime values shown in Table 1.
  • the abscissa represents the light emission time Time, and the unit is hour (h); the ordinate represents the ratio of the brightness corresponding to different light emission moments to the initial brightness L / L0, the unit is 100%, where the initial brightness is 1200 candela per Square meter (cd / cm 2 ); S1 represents the brightness decay curve of device D1, and S2 represents the brightness decay curve of device D2.
  • the lifetime of the device in this embodiment is defined as the corresponding light-emitting time when the brightness of the device decays to 97% of the initial brightness. It can be seen from FIG. 3 that the brightness of the device D1 is attenuated to 97% of the initial brightness, that is, when the ordinate L / L0 is changed from 100% to 97%, the corresponding light emission time is 90 hours; the brightness of the device D2 is attenuated to the original brightness. At 97%, the corresponding emission time is 300 hours, that is, the lifetime values of the devices D1 and D2 shown in Table 1 are obtained.
  • the comparison between the device D1 and the device D2 is only an exemplary description of the organic light emitting diode 10 provided in the embodiment of the present application, and is not a limitation.
  • FIG. 4 is a schematic structural diagram of another organic light emitting diode provided by an embodiment of the present application.
  • the organic light emitting diode 10 further includes an intermediate doped layer 15, which is located between the light emitting layer 13 and the electron blocking layer 14; the intermediate doped layer 15 includes a light emitting host material 13 h and an electron blocking material 140, The light emitting host material 13 h in the intermediate doped layer 15 is the same as the light emitting host material 13 h in the light emitting layer 13.
  • the middle doped layer 15 and the light emitting layer 13 have the same light emitting host material, the HOMO energy level difference between the middle doped layer 15 and the light emitting layer 13 is small, and the middle doped layer 15 can serve as the first electrode 11 and the light emitting layer 13 HOMO level transition layer (also can be understood as the intermediate doped layer 15 as the HOMO level transition layer between the light emitting layer 13 and the electron blocking layer 14), can reduce the HOMO energy between adjacent layers Level difference, improve hole injection ability.
  • the provision of the intermediate doping layer 15 can increase the exciton recombination region (that is, the region where electrons and holes recombine), and prevent the exciton recombination region from being biased to the first electrode 11 side and causing damage to the electron blocking layer 14.
  • the electron blocking material 140 in the intermediate doped layer 15 can block the electrons from being transmitted from the light emitting layer 13 to the side of the first electrode 11, which can effectively prevent excess electrons from reaching the first electrode 11 to form a leakage current, and can prevent electrons from blocking the electrons. 14.
  • the light emitting efficiency of the organic light emitting diode 10 can be effectively improved, and the life of the organic light emitting diode 10 can be further improved.
  • the intermediate doped layer 15 can be co-evaporated or pre-mixed during evaporation.
  • Co-evaporation means that the constituents of the intermediate doped layer 15 are respectively placed in the corresponding crucible for evaporation.
  • the components of the mixed intermediate doped layer 15 are mixed and evaporated in the same crucible.
  • the advantage of using premixed evaporation is that the number of crucibles can be saved.
  • the volume of the light-emitting host material 13h in the intermediate doped layer 15 and the volume of the electron blocking material 140 satisfy the following relationship: the sum of the volume of the light-emitting host material 13h and the volume of the electron blocking material 140 is denoted as S, and the light is emitted.
  • the volume of the host material 13h is X, of which 20% ⁇ X / S ⁇ 80%.
  • ratio The ratio of the volume of the light-emitting host material 13h to the total volume of the material of the intermediate doped layer 15 (that is, the sum of the volume of the light-emitting host material 13h and the volume of the electron blocking material 140) (that is, X / S, hereinafter referred to as "ratio "),
  • ratio The closer the composition of the constituent materials of the intermediate doped layer 15 and the light emitting layer 13 is, the closer the HOMO energy levels of the two are; the volume of the electron blocking material 140 accounts for the total volume of the material of the intermediate doped layer 15
  • the larger the ratio the stronger the ability of the intermediate doped layer 15 to block electrons.
  • the ratio of the light-emitting host material 13h can be selected according to the difference in HOMO energy level between the first electrode 11 and the light-emitting layer 13 in the organic light-emitting diode 10, and the difference between the electron-transporting ability and the hole-injecting ability.
  • the doped layer 15 can buffer the HOMO energy level difference between the first electrode 11 and the light-emitting layer 13, improve the hole injection ability, and can also effectively block electrons from being transmitted to the first electrode 11 side.
  • the embodiment of the present application only exemplarily shows that the ratio X / S of the light emitting host material 13h is 20% ⁇ X / S ⁇ 80%, and is not a limitation on the organic light emitting diode 10 provided in the embodiment of the present application.
  • the proportion of the light-emitting host material 13h in the intermediate doped layer 15 may be set according to the actual needs of the organic light emitting diode 10. For example, the proportion may be 40% ⁇ X / S ⁇ 70% or 30% ⁇ X / S ⁇ 50%.
  • the proportion of the light-emitting host material 13h is greater than 50%, the light-emitting host material 13h is the host material of the intermediate doped layer 15 and the electron blocking material is the guest material of the intermediate doped layer 15;
  • the proportion is less than 50%, the light-emitting host material 13h is a guest material of the intermediate doped layer 15, and the electron blocking material is a host material of the intermediate doped layer 15.
  • a corresponding preparation process may be selected according to different material ratios to prepare the intermediate doped layer 15, which is not specifically limited in the embodiment of the present application.
  • the proportion of the light-emitting host material 13h is 50%.
  • the HOMO energy level of the intermediate doped layer 15 and the HOMO energy level of the light emitting layer 13 are relatively close, and the HOMO energy between the anode 21 and the light emitting layer 13 is well buffered.
  • the middle The doped layer 15 has a strong electron blocking ability, and can effectively block electrons, so that the comprehensive performance of the intermediate doped layer 15 is better.
  • the thickness of the intermediate doped layer 15 is represented as E, where 0.1 nm ⁇ E ⁇ 30 nm.
  • the first electrode 11 and the second electrode 12 of the organic light emitting diode 10 constitute an optical micro-resonant cavity, that is, an optical micro-cavity.
  • the sum of the thicknesses of the first electrode 11, the second electrode 12, and the thickness of each film layer between the first electrode 11 and the second electrode 12 is the cavity length of the optical microcavity.
  • k * ⁇ 2L eff
  • k is the microcavity series
  • n m and d m are the refractive index and thickness of the m-th layer in the microcavity
  • ⁇ 0 is the light emitting angle
  • L eff is the effective optical path
  • ⁇ 1 ( ⁇ ) and ⁇ 2 ( ⁇ ) are the reflection phase shifts of the first electrode 11 and the second electrode 12, respectively.
  • the thickness E of the intermediate doped layer 15 can be adjusted according to the wavelength of light emitted from the light emitting layer 13 of the organic light emitting diode 10, so that the cavity length of the optical microcavity of the organic light emitting diode 10 satisfies the above formula, so that the light emitted by the organic light emitting diode 10 The color requirements of the organic light emitting diode 10 are satisfied.
  • the thickness E of the intermediate doped layer 15 may be set to 5 nm, 10 nm, or 20 nm.
  • the thickness E of the intermediate doped layer 15 is 0.1 nm ⁇ E ⁇ 30 nm, it is possible to ensure that the organic light emitting diode 10 has a smaller thickness, so that when the organic light emitting diode is applied to a display panel, the display panel has a smaller thickness. thickness.
  • the light-emitting host material 13h includes 4,4-N, N-dicarbazole biphenyl, 9,10-dinaphthyl anthracene, 4,4 ', 4 "-N, N', N"- Tris (3-phenylcarbazole) aniline, 3,5-N, N'-dicarbazolebenzene and 4,4'-N, N'-dicarbazole-2,2'-dimethylbiphenyl At least one of
  • the electron blocking material 140 includes 4,4'-cyclohexylbis [N, N-bis (4-methylphenyl) aniline] and 4,4 ', 4 "-tris (carbazole-9-yl) triphenylamine. At least one.
  • the foregoing merely exemplarily lists several kinds of light-emitting host materials 13h and several kinds of electron blocking materials 140 that emit light in blue, and is not a limitation on the organic light-emitting diode 10 provided in the embodiment of the present application.
  • the light emitting host material 13 h and the electron blocking material 140 in the intermediate doped layer 15 may also be provided according to the actual requirements of the organic light emitting diode 10.
  • FIG. 5 is a schematic structural diagram of still another organic light emitting diode according to an embodiment of the present application.
  • the organic light emitting diode 10 may further include a first carrier function layer 16 and a second carrier function layer 17.
  • the first carrier functional layer 16 is located between the light emitting layer 13 and the second electrode 12, and the second carrier functional layer 17 is located between the first electrode 11 and the electron blocking layer 14.
  • the first carrier function layer 16 may be an electronic auxiliary function layer, which is used to improve the efficiency of electron transmission and injection, and to prevent holes from being transmitted from the light emitting layer 13 to the second electrode 12 side.
  • the first carrier function layer 16 may have a multi-layered structure.
  • the first carrier functional layer 16 may include an electron injection layer 163, an electron transport layer 162, and a hole blocking layer 161.
  • the second carrier function layer 17 may be a hole-type auxiliary function layer for improving hole transport and injection efficiency.
  • the second carrier functional layer 17 may also have a multi-layered structure.
  • the second carrier functional layer 17 may include a hole injection layer 171 and a hole transport layer 172.
  • the first carrier function layer 16 and the second carrier function layer 17 may use any one or more materials known to those skilled in the art, which is not limited in the embodiment of the present application.
  • the organic light emitting diode 10 may further include a light extraction layer, and the light extraction layer is located on a light emitting side of the organic light emitting diode 10 for improving light extraction efficiency.
  • the structure of the light extraction layer may be any structure known to those skilled in the art, which is not limited in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • the display panel 20 includes: a substrate 21 and a plurality of pixel units 22 arranged in an array on one side of the substrate 21, wherein at least part of the pixel units 22 include any one of the organic light emitting diodes provided in the above embodiments. Therefore, the display panel 20 also has the beneficial effects of the above-mentioned organic light emitting diodes, which will not be repeated here.
  • the substrate 21 may be an array substrate for driving the pixel unit 22 to emit light.
  • each pixel unit 22 may include a blue sub-pixel 221, a red sub-pixel 222, and a green sub-pixel 223; at the same time, the sub-pixels in each pixel unit 22 are along the column direction Y is arranged in the order of the blue sub-pixels 221, the red sub-pixels 222, and the green sub-pixels 223, which are only exemplary illustrations of the display panel 20 provided in this embodiment, but are not limited.
  • the array arrangement of the pixel units 22 and the number of blue sub-pixels 221, red sub-pixels 222, and green sub-pixels 223 in each pixel unit 22 may be set according to the actual needs of the display panel 20. And the arrangement manner is not limited in the embodiment of the present application.
  • At least one sub-pixel in each pixel unit 22 may adopt the structure of any one of the organic light emitting diodes provided in the above embodiments.
  • the blue sub-pixel 221 may adopt the structure of any one of the organic light-emitting diodes provided in the foregoing embodiment; or the three sub-pixels may adopt the structure of any one of the organic light-emitting diodes provided in the foregoing embodiment.
  • FIG. 7 is a schematic cross-sectional structure view along G1-G2 in FIG. 6.
  • the three sub-pixels (including the blue sub-pixel 221, the red sub-pixel 222, and the green sub-pixel 223) in the pixel unit 22 each include a vertical direction Z (the vertical direction Z is perpendicular to the row direction X). And the direction of the plane in which the column direction Y is located) a first electrode 11, a second carrier functional layer 17, an electron blocking layer 14, an intermediate doped layer 15, a light emitting layer 13, and a first carrier functional layer 16 provided in a stack And second electrode 12.
  • the light-emitting layer 13 in the blue sub-pixel 221, the red sub-pixel 222, and the green sub-pixel 223 includes a light-emitting host material and a light-emitting guest material
  • the light-emitting host material of each sub-pixel may be the same or different, and may be determined according to the display panel.
  • the actual demand setting of 20 is not limited in the embodiment of the present application.
  • the pixel unit 22 having a preset position among the plurality of pixel units 22 may adopt the above-mentioned structure of the organic light emitting diode.
  • the pixel unit 22 at the preset position may be set according to the actual needs of the display panel 20, which is not limited in the embodiment of the present application.
  • the specific type of the display panel 20 is not limited in the embodiment of the present application, and the technical solution proposed in the embodiment of the present application can be applied to any display panel involving electron and hole transport processes.
  • the display panel may be an OLED display panel, a Quantum Dot Light Emitting Diodes (QLED) display panel, or other types of display panels known to those skilled in the art.
  • QLED Quantum Dot Light Emitting Diodes
  • FIG. 8 is a schematic structural diagram of a display device according to an embodiment of the present application.
  • the display device 30 includes the display panel 20 provided in the foregoing embodiment. Therefore, the display device 30 also has the beneficial effects of the display panel 20. Therefore, the display device 30 also includes the organic light emitting diodes.
  • the beneficial effects can be understood by referring to the foregoing, and will not be repeated here.
  • the display device 30 may be a mobile phone, a tablet computer, or other electronic display devices known to those skilled in the art, which is not limited in the embodiment of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种有机发光二极管、显示面板和显示装置,该有机发光二极管包括:第一电极、第二电极、发光层和电子阻挡层;所述第一电极与所述第二电极相对设置;所述发光层位于所述第一电极与所述第二电极之间;所述电子阻挡层位于所述发光层与所述第一电极之间。其中,所述电子阻挡层的LUMO能级高于所述发光层中的发光主体材料的LUMO能级,且所述电子阻挡层的LUMO能级与所述发光层中的发光主体材料的LUMO能级的第一能级差表示为A,其中,A≥0.4eV。

Description

有机发光二极管、显示面板和显示装置
本公开要求在2018年09月30日提交中国专利局、申请号为201811160045.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及显示技术领域,例如涉及一种有机发光二极管、显示面板和显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)具有自发光的特性,不需要背光源,因此将其应用于显示面板和显示装置时,显示面板和显示装置的整体厚度较薄,有利于实现显示面板和显示装置的轻薄化设计。同时,有机发光二极管具有显示亮度高、视角广以及响应速度快等优势。
随着有机发光二极管材料的发展,有机发光二极管中性能优异的发光层的材料为偏向电子传输型的材料,但是将偏向电子传输型的材料作为发光层的材料时,有机发光二极管的寿命较短。
发明内容
本申请提供了一种有机发光二极管、显示面板和显示装置,以提高有机发光二极管的寿命。
本申请提供了一种有机发光二极管,该有机发光二极管包括:
第一电极;
第二电极,所述第一电极与所述第二电极相对设置;
发光层,所述发光层位于所述第一电极与所述第二电极之间;和
电子阻挡层,所述电子阻挡层位于所述发光层与所述第一电极之间,所述电子阻挡层的LUMO能级高于所述发光层中的发光主体材料的LUMO能级,且所述电子阻挡层的LUMO能级与所述发光层中的发光主体材料的LUMO能级的第一能级差表示为A,A≥0.4eV。
进一步地,所述电子阻挡层的HOMO能级高于所述发光层中的发光主体材料的HOMO能级,且所述电子阻挡层的HOMO能级与所述发光层中的发光主体材料的HOMO能级之间的第二能级差表示为B,B≤0.2eV。
进一步地,所述电子阻挡层的厚度表示为C,3nm≤C≤20nm。
进一步地,所述电子阻挡层的材料包括芳族胺衍生物。
进一步地,该有机发光二极管还包括中间掺杂层,所述中间掺杂层位于所述发光层与所述电子阻挡层之间;
所述中间掺杂层的材料包括发光主体材料和电子阻挡材料,所述中间掺杂层中的发光主体材料与所述发光层中的发光主体材料相同。
进一步地,在所述中间掺杂层中,所述发光主体材料的体积与所述电子阻挡材料的体积之和表示为S,所述发光主体材料的体积表示为X,20%≤X/S≤80%。
进一步地,所述发光主体材料的体积与所述电子阻挡材料的体积的比值的取值为:X/S=50%。
进一步地,所述中间掺杂层的厚度表示为E,0.1nm≤E≤30nm。
进一步地,所述中间掺杂层的厚度E的取值为5nm、10nm或20nm。
进一步地,所述发光主体材料包括4,4-N,N-二咔唑联苯、9,10-二萘基蒽、4,4',4”-N,N',N”-三(3-苯基咔唑)苯胺、3,5-N,N'-二咔唑苯和4,4'-N,N'-二咔唑-2,2'- 二甲基联苯中的至少一种;
所述电子阻挡材料包括4,4’-环己基二[N,N-二(4-甲基苯基)苯胺]和4,4',4”-三(咔唑-9-基)三苯胺中的至少一种。
进一步地,还包括第一载流子功能层和第二载流子功能层;
所述第一载流子功能层位于所述发光层与所述第二电极之间,所述第二载流子功能层位于所述第一电极与所述电子阻挡层之间。
进一步地,所述第一载流子功能层包括沿所述第二电极指向所述发光层的方向层叠设置的电子注入层、电子传输层以及空穴阻挡层;
所述第二载流子功能层包括沿所述第一电极指向所述电子阻挡层的方向层叠设置的空穴注入层和空穴传输层。
本申请还提供了一种显示面板,该显示面板包括:基板,以及位于所述基板一侧呈阵列排布的多个像素单元;
其中,至少部分所述像素单元包括本申请提供的上述有机发光二极管。
本申请还提供了一种显示装置,该显示装置包括本申请提供的上述显示面板。
附图说明
图1是本申请一实施例提供的一种有机发光二极管的结构示意图;
图2是本申请一实施例提供的一种有机发光二极管的能级示意图;
图3是本申请一实施例提供的一种有机发光二极管的亮度衰减曲线与相关技术提供的一种有机发光二极管的亮度衰减曲线的对比图;
图4是本申请一实施例提供的另一种有机发光二极管的结构示意图;
图5是本申请一实施例提供的又一种有机发光二极管的结构示意图;
图6是本申请一实施例提供的一种显示面板的结构示意图;
图7是沿图6中G1-G2的剖面结构示意图;
图8是本申请一实施例提供的一种显示装置的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
相关技术中,性能优异的有机发光二极管的发光层材料为偏向电子传输型的材料。有机发光二极管还包括位于发光层两侧的第一电极和第二电极。示例性的,第一电极可为阳极,第二电极为阴极。当给有机发光二极管提供驱动电流时,电子由第二电极注入发光层,空穴由第一电极注入发光层。由于发光层的材料为偏向电子传输型的材料,该发光层的材料利于电子的传输,因此到达发光层的电子的数量较多,有利于提高电子和空穴的复合效率,由此可提升有机发光二极管的电流效率。但是,当发光层中电子的数量多于空穴的数量时,过多的电子无法被复合,无法被复合的电子继续向靠近第一电极的一侧传输,从而影响发光层靠近第一电极一侧的膜层的性能,破坏相邻的膜层之间的界面,导致有机发光二极管中发光层与第一电极之间的膜层性能衰退,以及导致发光层与第一电极之间的多个膜层中相邻膜层之间的界面被破坏,从而导致有机发光二极管的寿命下降。
针对上述问题,本申请实施例提出一种有机发光二极管,以提高有机发光二极管的寿命。
图1是本申请一实施例提供的一种有机发光二极管的结构示意图,图2是本申请一实施例提供的一种有机发光二极管的能级示意图。参照图1和图2,该有机发光二极管10包括:第一电极11、第二电极12、发光层13和电子阻挡层14;第一电极11与第二电极12相对设置;发光层13位于第一电极11与第二电极12之间;电子阻挡层14位于发光层13与第一电极11之间;其中,电子阻挡层14的LUMO能级14L高于发光层13中的发光主体材料13h的LUMO能级130L,且电子阻挡层14的LUMO能级14L与发光层13中的发光主体材料13h的LUMO能级130L的第一能级差表示为A,其中,A≥0.4eV。
在该有机发光二极管10的结构中,第一电极11可为阳极;示例性的,阳极材料可为铟锡氧化物(ITO)。第二电极12可为阴极;示例性的,阴极材料可为金属材料,例如铝(Al)、金(Au)、银(Ag)或包括Ag的金属合金等,该金属材料为功函数较低的导电材料。
在该有机发光二极管10的结构中,发光层13可包括发光主体材料13h和发光客体材料13d,发光客体材料13d决定有机发光二极管10的发光颜色。示例性的,发光客体材料13d可为2-叔丁基-4-(二氰基亚甲基)-6-[2-(1,1,7,7-四甲基久洛尼定-9-基)乙烯基]-4H-吡喃(DCJTB),其对应的有机发光二极管10的发光颜色为红色;或者,发光客体材料13d可为N,N'-二甲基喹吖啶酮(DMQA)、N,N'-二丁基喹吖啶酮(DBQA)、5,12-二丁基-1,3,8,10-四甲基喹吖啶酮(TMDBQA)或香豆素545T(C545T),其对应的有机发光二极管10的发光颜色为绿色;或者,发光客体材料13d可为4,4'-双(9-乙基-3-咔唑乙烯基)-1,1'-联苯(BCzVBi)、4,4'-双[4-(二对甲苯基氨基)苯乙烯基]联苯(DPAVBi)、1,4-双[4-(二对甲苯氨基)苯乙烯基]苯(DPAVB)或3,3'-(1,4-苯基二-2,1-乙烯基)二(9-乙基-9H-咔唑)(BCZVB),其对应的有机发光二极管10的发光颜色为蓝色。
本实施例中的第一电极11、第二电极12以及发光客体材料13d的材料均仅为示例性的说明,而并非对本申请实施例提供的有机发光二极管10中第一电极11、第二电极12和发光客体材料13d可采用的材料的限定。在其他实施方式中,可根据有机发光二极管10的实际需求,设置第一电极11、第二电极12和发光客体材料13d的材料,本申请实施例对此不作限定。
有机发光二极管10的发光原理主要包括载流子注入、载流子传输、载流子复合和激子退激发光四个过程。
在载流子注入过程中,当给有机发光二极管10的第一电极11(以阳极为例)和第二电极12(以阴极为例)之间施加一定的电压时,阴极的电子和阴极的空穴分别注入到发光层13的LUMO能级130L和HOMO能级130H中。在载流子传输过程,注入的电子和空穴在电场的作用下进行传输。在载流子复合过程中,电子和空穴通过库仑力作用在发光层13中复合,产生激子。在激子退激发光过程中,该激子在回到基态的过程中释放能量,释放的能量一部分被发光层13中的发光客体材料13d吸收,发光客体材料13d由稳定的基态变到不稳定的激发态,并且在从激发态回到基态的过程中,发出光线。
电子阻挡层14位于第一电极11与发光层13之间,电子阻挡层14用于阻挡电子由发光层13向第一电极11侧传输。电子阻挡层14的LUMO能级14L与发光层13的LUMO能级130L的关系,决定了电子阻挡层14阻挡电子能力的强弱。示例性的,以发光层13的LUMO能级130L为基准,电子阻挡层14的LUMO能级14L越高,电子阻挡层14的阻挡电子的能力越强。本申请实施例通过设置电子阻挡层14的LUMO能级14L高于发光层13的LUMO能级130L,且将电子阻挡层14的LUMO能级14L与发光层13的LUMO能级130L的第一能级差表示为A,其中,A≥0.4eV,利用发光层13的LUMO能级130L与电子 阻挡层14的LUMO能级14L之间的较高的能级差,可有效阻挡电子向第一电极11一侧的传输,即将电子限制在了发光层13中,降低了电子由发光层13传输至第一电极11一侧的几率,从而可减缓电子对发光层13与电子阻挡层14之间的界面的破坏,以及可降低电子对发光层13靠近第一电极11一侧的其他膜层的影响,减缓膜层自身以及相邻膜层之间的界面的性能衰退,从而可提升有机发光二极管10的寿命。
本申请实施例中多个膜层的LUMO能级和HOMO能级的相对高低可按照如下方式理解:以电离态的能级(能量最低的能级叫做基态,其他能级叫做激发态;电子远离原子核,不再受原子核的吸引力的作用的状态叫做电离态,电离态的能级为0)为基准能级,与该基准能级距离较近的能级为相对较高的能级,与该基准能级距离较远的能级为相对较低的能级。
在一实施例中,继续参照图2,电子阻挡层14的HOMO能级14H高于发光层13中的发光主体材料13h的HOMO能级130H,且将电子阻挡层14的HOMO能级14H与发光层13中的发光主体材料13h的HOMO能级130H之间的第二能级差表示为B,B≤0.2eV。
电子阻挡层14的设置有利于空穴由第一电极11向发光层13中传输并注入,并且电子阻挡层14的HOMO能级14H与发光层13的HOMO能级130H越接近,越有利于空穴向发光层13中的传输和注入。
通过上述电子阻挡层14的HOMO能级14H与发光层13的HOMO能级130H的设置,可使电子阻挡层14的HOMO能级14H与发光层13的HOMO能级130H之间的能级差较小,提高空穴注入能力,即较多的空穴可注入到发光层13中,与较多的电子复合,从而提高电子和空穴的复合效率,降低电子向第一电极11一侧传输的几率,从而可避免多余的电子对发光层13与电子阻挡层14 的界面的破坏,以及可降低电子对发光层13靠近第一电极11一侧的其他膜层的影响,减缓膜层自身以及相邻膜层之间的界面的性能的衰退,从而可提升有机发光二极管10的寿命。
当发光层13包括发光主体材料13h和发光客体材料13d时,上述发光层13的HOMO能级130H理解为发光层13中的发光主体材料13h的HOMO能级。
在一实施例中,继续参照图1,电子阻挡层14的厚度为C,其中,3nm≤C≤20nm。
该厚度范围与相关技术中的有机发光二极管的电子阻挡层的厚度保持一致。即本实施例提供的有机发光二极管的电子阻挡层的厚度与相关技术中的有机发光二极管的电子阻挡层的厚度相等,或者二者之间的差值等于或者小于预置厚度差。示例性的,二者之间的厚度差等于或者小于5nm。
如此设置,可不改变空穴在电子阻挡层14中的传输距离,也不改变电子阻挡层14的光学性能(示例性的,光学性能可包括吸光度),因此,可直接利用相关技术中的发光二极管中的其他膜层,而无需再另外进行设计,由此,可降低发光二极管整体结构的设计难度。
在一实施例中,电子阻挡层14的材料包括芳族胺衍生物。示例性的,芳族胺衍生物的结构可为下列示出的多个结构(H1)-(H19)中的任一种。
Figure PCTCN2019071943-appb-000001
Figure PCTCN2019071943-appb-000002
Figure PCTCN2019071943-appb-000003
Figure PCTCN2019071943-appb-000004
上述示出的(H1)-(H19)结构式的通式为:
Figure PCTCN2019071943-appb-000005
其中N为氮原子,R1、R2和R3代表与氮原子连接的三个基团。
其中,R1为如下基团(J1)-(J7)中的任一种:
Figure PCTCN2019071943-appb-000006
Figure PCTCN2019071943-appb-000007
其中,R3为如下基团(J8)-(J10)中的任一种:
Figure PCTCN2019071943-appb-000008
其中,R2为如上基团(J1)-(J10)中的任一种。上述多个基团(J1)-(J10)中,波浪线
Figure PCTCN2019071943-appb-000009
代表该位置处设置为与氮原子连接。
上述芳族胺衍生物的结构中,R2可与R1采用相同的基团,或者,R2可与R3采用相同的基团,或者,R1、R2以及R3均采用不同的基团,本申请实施例对此不作限定。
上述示出的(H1)-(H19)多个结构中的悬键可连接甲基、三苯胺或本领域技术人员可知的其他基团,本申请实施例对此不作限定。此外,以上仅示例 性的示出了几种芳族胺衍生物的结构,而非对本实施例提供的有机发光二极管10的限定。在其他实施方式中,还可以根据有机发光二极管10的实际需求,设置电子阻挡层的材料包括本领域技术人员可知的其他芳族胺衍生物结构的材料,本申请实施例对此不作限定。
下面,本实施例示例性的示出了一组相关技术提供的OLED与本申请技术方案提供的OLED的发光特性对比表,参见表1。
表1 相关技术提供的OLED与本申请技术方案提供的OLED的发光特性对比表
器件 Op.V(V) Eff(cd/A) CIE(x) CIE(y) Peak(nm) BI LT97(h)
D1 3.85 6.39 0.1435 0.0433 458 148 90
D2 3.90 6.34 0.1448 0.0423 456 150 300
其中,器件D1代表相关技术提供的有机发光二极管,器件D2代表本申请技术方案提供的有机发光二极管,器件D1和器件D2的相同之处包括:第一电极的材料采用ITO,厚度为10nm,功函数4.3eV;空穴注入层的厚度为10nm;空穴传输层的厚度为120nm;电子阻挡层的厚度为5nm;发光层的厚度为20nm;空穴阻挡层的厚度为5nm;电子传输层的厚度为30nm;电子注入层的厚度为1nm;第二电极的材料采用金属电极,厚度为13nm~20nm。器件D1和器件D2的不同之处在于:器件D1的电子阻挡层的材料为TPD,其LUMO能级与发光层的LUMO能级之间的能级差为0.3eV,其HOMO能级与发光层的HOMO能级之间的能级差为0.4eV;器件D2的电子阻挡层的材料为结构(H19)所示的材料,即
Figure PCTCN2019071943-appb-000010
其LUMO能级与发光层的LUMO能级之间的 能级差为0.45eV,其HOMO能级与发光层的HOMO能级之间的能级差为0.2eV。在上述器件D1和器件D2的膜层结构基础上,对两器件的发光特性进行测试,要求亮度均为1200坎德拉每平方米(cd/cm 2),得到如表1所示的测试结果。
其中,Op.V代表工作电压,单位为伏特(V);Eff代表电流效率,单位为坎德拉每安培(cd/A);CIE(x)和CIE(y)代表色坐标;Peak代表有机发光二极管10的发光光谱的峰值位置,单位为纳米(nm);BI代表蓝光因子,可通过电流效率除以色坐标CIE(y)得到,蓝光因子越大,器件性能越好;LT97代表有机发光二极管10的寿命,单位为小时(h),代表在1200坎德拉每平方米(cd/cm 2)下进行恒流测试,得到的器件的寿命值。
图3是本申请一实施例提供的一种有机发光二极管的亮度衰减曲线与相关技术提供的一种有机发光二极管的亮度衰减曲线的对比图,用于得出表1中示出的寿命值。参照图3,横坐标代表发光时间Time,单位为小时(h);纵坐标代表不同的发光时刻对应的亮度与初始亮度的比值L/L0,单位为100%,其中,初始亮度为1200坎德拉每平方米(cd/cm 2);S1代表器件D1的亮度衰减曲线,S2代表器件D2的亮度衰减曲线。本实施例中器件的寿命定义为器件的亮度衰减到初始亮度的97%时,对应的发光时间。由图3可看出,器件D1的亮度衰减到初始亮度的97%,即纵坐标L/L0由100%变化至97%时,对应发光时间为90小时;器件D2的亮度衰减到初始亮度的97%时,对应的发光时间为300小时,即得到表1中示出的器件D1和器件D2的寿命值。
由表1中给出的有机发光二极管的发光特性的对比数据可看出,通过将发光二极管10的结构中的电子阻挡层的材料改换为本申请实施例提出的阻挡电子能力和抗击电子能力较强的材料,器件D1与器件D2在工作电压、电流效率、色坐标、峰值位置和蓝光因子方面的性能均基本保持一致;在寿命方面,器件 寿命由器件D1的90h提高到器件D2的300h。因此,本申请技术方案相对于相关技术而言,在保证有机二极管10的其他发光特性基本不变的前提下,可将寿命由90h提高到300h,寿命提升了2.3倍。
上述器件D1与器件D2的对比仅为对本申请实施例提供的有机发光二极管10的示例性说明,而非限定。
图4是本申请一实施例提供的另一种有机发光二极管的结构示意图。参照图4,该有机发光二极管10还包括中间掺杂层15,中间掺杂层15位于发光层13与电子阻挡层14之间;中间掺杂层15包括发光主体材料13h和电子阻挡材料140,中间掺杂层15中的发光主体材料13h与发光层13中的发光主体材料13h相同。
由于中间掺杂层15与发光层13具有相同的发光主体材料,中间掺杂层15与发光层13之间的HOMO能级差较小,中间掺杂层15可以作为第一电极11和发光层13之间的HOMO能级的过渡层(也可以理解为,中间掺杂层15作为发光层13与电子阻挡层14之间的HOMO能级的过渡层),可降低相邻层之间的HOMO能级差值,提高空穴注入能力。此外,中间掺杂层15的设置可以增大激子复合区(即电子和空穴复合的区域),避免激子复合区偏向第一电极11一侧而对电子阻挡层14造成破坏。中间掺杂层15中的电子阻挡材料140可以阻挡电子由发光层13传输至第一电极11一侧,可有效避免多余电子到达第一电极11从而形成漏电流,同时可避免电子对电子阻挡层14、以及发光层13与第一电极11之间的其他膜层和相邻膜层之间的界面的破坏,从而提升有机发光二极管10的寿命。并且,通过提高空穴注入能力,增加激子复合区以及避免漏电流的形成可以有效提高有机发光二极管10的发光效率,进一步提高有机发光二极管10的寿命。
在一实施例中,中间掺杂层15在蒸镀时可以采用共蒸形式,也可以采用预混形式,共蒸即中间掺杂层15的组成成分分别置于相应的坩埚中蒸镀,预混即中间掺杂层15的组成成分混合于同一坩埚中蒸镀,采用预混蒸镀的优点是可以节省坩埚数量。
在一实施例中,中间掺杂层15中的发光主体材料13h的体积与电子阻挡材料140的体积满足如下关系:发光主体材料13h的体积与电子阻挡材料140的体积之和记为S,发光主体材料13h的体积为X,其中20%≤X/S≤80%。
其中,发光主体材料13h的体积占中间掺杂层15的材料的总体积(即发光主体材料13h的体积与电子阻挡材料140的体积之和)的比例(即X/S,下文中简称“比例”)越大,中间掺杂层15与发光层13的组成材料的组分越接近,二者的HOMO能级越接近;电子阻挡材料140的体积占中间掺杂层15的材料的总体积的比例越大,中间掺杂层15的阻挡电子的能力就越强。因此,可以根据有机发光二极管10中的第一电极11与发光层13之间的HOMO能级的差值,以及电子传输能力和空穴注入能力的差异选择发光主体材料13h的比例,从而使中间掺杂层15可以缓冲第一电极11与发光层13之间的HOMO能级差,提高空穴注入能力,还可以有效地阻挡电子向第一电极11一侧传输。本申请实施例仅示例性的示出了发光主体材料13h的比例X/S为20%≤X/S≤80%,而并非对本申请实施例提供的有机发光二极管10的限定。在其他实施方式中,可根据有机发光二极管10的实际需求,设置中间掺杂层15中发光主体材料13h的比例,示例性的,该比例可为40%≤X/S≤70%或30%≤X/S≤50%。
需要说明的是,当发光主体材料13h的比例大于50%时,发光主体材料13h为中间掺杂层15的主体材料,电子阻挡材料为中间掺杂层15的客体材料;当发光主体材料13h的比例小于50%时,发光主体材料13h为中间掺杂层15的客 体材料,电子阻挡材料为中间掺杂层15的主体材料。可以根据不同的材料比例选择相应的制备工艺来制备中间掺杂层15,本申请实施例并不做具体限定。
在一实施例中,发光主体材料13h的比例为50%。这样设置,一方面保证中间掺杂层15的HOMO能级与发光层13的HOMO能级较为接近,较好地缓冲阳极21与发光层13之间的HOMO能极差,另一方面保证了中间掺杂层15具有较强的电子阻挡能力,可以有效地阻挡电子,从而使得中间掺杂层15的综合性能较好。
在一实施例中,中间掺杂层15的厚度表示为E,其中,0.1nm≤E≤30nm。
在本申请的实施例中,有机发光二极管10的第一电极11和第二电极12构成光学微谐振腔,即光学微腔。第一电极11、第二电极12以及第一电极11与第二电极12之间各个膜层的厚度之和为该光学微腔的腔长。在该光学微腔中,当光线的波长λ满足
Figure PCTCN2019071943-appb-000011
时,光线的出射强度会被增强,其他波长的光线的出射强度将会被减弱。其中,k*λ=2L eff,k为微腔级数,n m和d m分别为微腔中第m层的折射率和厚度,θ 0为发光角度,L eff为有效光程,Φ 1(λ)和Φ 2(λ)分别为第一电极11和第二电极12的反射相移。中间掺杂层15的厚度E可以根据有机发光二极管10的发光层13发出的光线的波长调节,使有机发光二极管10的光学微腔的腔长满足上述公式,从而使有机发光二极管10发出的光线满足有机发光二极管10的色彩要求。示例性的,可以设置中间掺杂层15的厚度E为5nm,10nm或20nm等。
通过设置中间掺杂层15的厚度E为0.1nm≤E≤30nm,可以保证有机发光二极管10具有较小的厚度,从而在将该有机发光二极管应用于显示面板时,保证显示面板具有较小的厚度。
在一实施例中,发光主体材料13h包括4,4-N,N-二咔唑联苯、9,10-二萘基蒽、4,4',4”-N,N',N”-三(3-苯基咔唑)苯胺、3,5-N,N'-二咔唑苯和4,4'-N,N'-二咔唑-2,2'-二甲基联苯中的至少一种;
电子阻挡材料140包括4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]和4,4',4”-三(咔唑-9-基)三苯胺中的至少一种。
上述仅示例性的列举了几种发光颜色为蓝色的发光主体材料13h和几种电子阻挡材料140,并非对本申请实施例提供的有机发光二极管10的限定。在其他实施方式中,还可以根据有机发光二极管10的实际需求,设置中间掺杂层15中的发光主体材料13h和电子阻挡材料140。示例性的,电子阻挡材料还可以采用N,N,-二苯基-N,N,-(1-萘基)-1,1'-联苯-4,4'-二胺(NPB)、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi),本申请实施例对此不作限定。
图5是本申请一实施例提供的又一种有机发光二极管的结构示意图。参照图5,该有机发光二极管10还可包括第一载流子功能层16和第二载流子功能层17。第一载流子功能层16位于发光层13与第二电极12之间,第二载流子功能层17位于第一电极11与电子阻挡层14之间。
其中,第一载流子功能层16可为电子型的辅助功能层,用于提升电子的传输和注入效率,并且阻挡空穴由发光层13向第二电极12一侧传输。第一载流子功能层16可以具有多层结构,示例性的,可以包括电子注入层163、电子传输层162和空穴阻挡层161。第二载流子功能层17可为空穴型的辅助功能层,用于提升空穴的传输和注入效率。第二载流子功能层17也可以具有多层结构,示例性的,可以包括空穴注入层171和空穴传输层172。
第一载流子功能层16和第二载流子功能层17可采用本领域技术人员可知的任意一种或多种材料,本申请实施例对此不作限定。
在一实施例中,该有机发光二极管10还可以包括光取出层,光取出层位于该有机发光二极管10的出光侧,用于提高出光效率。该光取出层的结构可为本领域技术人员可知的任一种结构,本申请实施例对此不作限定。
图6是本申请一实施例提供的一种显示面板的结构示意图。参照图6,该显示面板20包括:基板21,以及位于基板21一侧呈阵列排布的多个像素单元22;其中,至少部分像素单元22包括上述实施方式提供的任一种有机发光二极管。因此,该显示面板20也具有上述有机发光二极管所具有的有益效果,在此不再赘述。
其中,基板21可为阵列基板,用于驱动像素单元22发光。
示例性的,图6中示出了行方向X和列方向Y(图6中示出的行方向X和列方向Y所在的平面即为基板21所在的平面),且示出了呈7列4行排布的像素单元22,每个像素单元22可包括一个蓝色子像素221、一个红色子像素222和一个绿色子像素223;同时,每个像素单元22中的子像素均沿列方向Y按照蓝色子像素221、红色子像素222和绿色子像素223的顺序排列,此均仅为对本实施例提供的显示面板20的示例性说明,而非限定。在其他实施方式中,可根据显示面板20的实际需求,设置像素单元22的阵列排布方式,以及每个像素单元22中蓝色子像素221、红色子像素222和绿色子像素223的个数以及排布方式,本申请实施例对此不作限定。
其中,每个像素单元22中至少一个子像素可采用上述实施方式提供的任一种有机发光二极管的结构。示例性的,蓝色子像素221可采用上述实施方式提供的任一种有机发光二极管的结构;或者,三个子像素均采用上述实施方式提供的任一种有机发光二极管的结构。
示例性的,图7是沿图6中G1-G2的剖面结构示意图。结合图6和图7, 该像素单元22中的三个子像素(包括蓝色子像素221、红色子像素222和绿色子像素223)均包括沿垂直方向Z(垂直方向Z为垂直于行方向X和列方向Y所在的平面的方向)层叠设置的第一电极11、第二载流子功能层17、电子阻挡层14、中间掺杂层15、发光层13、第一载流子功能层16和第二电极12。其中,蓝色子像素221、红色子像素222和绿色子像素223中的发光层13包括发光主体材料和发光客体材料时,每个子像素的发光主体材料可相同,也可不同,可根据显示面板20的实际需求设置,本申请实施例对此不作限定。
在一实施例中,还可以根据显示面板20的显示需求,设置多个像素单元22中的预设位置的像素单元22采用上述有机发光二极管的结构。该预设位置的像素单元22可根据显示面板20的实际需求设置,本申请实施例对此不作限定。
本申请实施例对于显示面板20的具体类型不作限定,本申请实施例提出的技术方案可以应用于任意涉及电子和空穴的传输过程的显示面板。示例性的,显示面板可以为OLED显示面板、量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)显示面板或本领域技术人员可知的其他类型的显示面板。
本申请实施例还提供了一种显示装置。图8是本申请一实施例提供的一种显示装置的结构示意图。参照图8,该显示装置30包括上述实施方式提供的显示面板20,因此该显示装置30也具有上述显示面板20所具有的有益效果,从而,该显示装置30也具有上述有机发光二极管所具有的有益效果,可参照上文理解,在此不再赘述。
示例性的,该显示装置30可为手机、平板电脑或本领域技术人员可知的其他电子显示设备,本申请实施例对此不作限定。
上述仅为本申请的较佳实施例及其所运用的技术原理。在不脱离本申请构 思的情况下,本领域技术人员能够进行各种明显的变化、重新调整、相互结合和替代。而本申请的保护范围由所附的权利要求的保护范围决定。

Claims (14)

  1. 一种有机发光二极管,包括:
    第一电极;
    第二电极,所述第一电极与所述第二电极相对设置;
    发光层,所述发光层位于所述第一电极与所述第二电极之间;和
    电子阻挡层,所述电子阻挡层位于所述发光层与所述第一电极之间,所述电子阻挡层的LUMO能级高于所述发光层中的发光主体材料的LUMO能级,且所述电子阻挡层的LUMO能级与所述发光层中的发光主体材料的LUMO能级的第一能级差表示为A,A≥0.4eV。
  2. 根据权利要求1所述的有机发光二极管,其中,所述电子阻挡层的HOMO能级高于所述发光层中的发光主体材料的HOMO能级,且所述电子阻挡层的HOMO能级与所述发光层中的发光主体材料的HOMO能级之间的第二能级差表示为B,B≤0.2eV。
  3. 根据权利要求1所述的有机发光二极管,其中,所述电子阻挡层的厚度表示为C,3nm≤C≤20nm。
  4. 根据权利要求1所述的有机发光二极管,其中,所述电子阻挡层的材料包括芳族胺衍生物。
  5. 根据权利要求1所述的有机发光二极管,还包括中间掺杂层,所述中间掺杂层位于所述发光层与所述电子阻挡层之间;
    所述中间掺杂层的材料包括发光主体材料和电子阻挡材料,所述中间掺杂层中的发光主体材料与所述发光层中的发光主体材料相同。
  6. 根据权利要求5所述的有机发光二极管,其中,在所述中间掺杂层中,所述发光主体材料的体积与所述电子阻挡材料的体积之和表示为S,所述发光主 体材料的体积表示为X,20%≤X/S≤80%。
  7. 根据权利要求6所述的有机发光二极管,其中,所述发光主体材料的体积与所述电子阻挡材料的体积的比值的取值为:X/S=50%。
  8. 根据权利要求5所述的有机发光二极管,其中,所述中间掺杂层的厚度表示为E,0.1nm≤E≤30nm。
  9. 根据权利要求8所述的有机发光二极管,其中,所述中间掺杂层的厚度E的取值为5nm、10nm或20nm。
  10. 根据权利要求5所述的有机发光二极管,其中,
    所述发光主体材料包括4,4-N,N-二咔唑联苯、9,10-二萘基蒽、4,4',4”-N,N',N”-三(3-苯基咔唑)苯胺、3,5-N,N'-二咔唑苯和4,4'-N,N'-二咔唑-2,2'-二甲基联苯中的至少一种;
    所述电子阻挡材料包括4,4’-环己基二[N,N-二(4-甲基苯基)苯胺]和4,4',4”-三(咔唑-9-基)三苯胺中的至少一种。
  11. 根据权利要求1所述的有机发光二极管,还包括第一载流子功能层和第二载流子功能层;
    所述第一载流子功能层位于所述发光层与所述第二电极之间,所述第二载流子功能层位于所述第一电极与所述电子阻挡层之间。
  12. 根据权利要求11所述的有机发光二极管,其中,所述第一载流子功能层包括沿所述第二电极指向所述发光层的方向层叠设置的电子注入层、电子传输层以及空穴阻挡层;
    所述第二载流子功能层包括沿所述第一电极指向所述电子阻挡层的方向层叠设置的空穴注入层和空穴传输层。
  13. 一种显示面板,包括基板,以及位于所述基板一侧呈阵列排布的多个 像素单元;
    其中,至少部分所述像素单元包括权利要求1-12任一项所述的有机发光二极管。
  14. 一种显示装置,包括权利要求13所述的显示面板。
PCT/CN2019/071943 2018-09-30 2019-01-16 有机发光二极管、显示面板和显示装置 WO2020062720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/863,028 US11462708B2 (en) 2018-09-30 2020-04-30 Organic light emitting diode, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811160045.XA CN109390487A (zh) 2018-09-30 2018-09-30 一种有机发光二极管、显示面板和显示装置
CN201811160045.X 2018-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/863,028 Continuation US11462708B2 (en) 2018-09-30 2020-04-30 Organic light emitting diode, display panel and display device

Publications (1)

Publication Number Publication Date
WO2020062720A1 true WO2020062720A1 (zh) 2020-04-02

Family

ID=65419236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071943 WO2020062720A1 (zh) 2018-09-30 2019-01-16 有机发光二极管、显示面板和显示装置

Country Status (4)

Country Link
US (1) US11462708B2 (zh)
CN (1) CN109390487A (zh)
TW (1) TWI693735B (zh)
WO (1) WO2020062720A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697147B (zh) * 2020-06-11 2022-09-06 云谷(固安)科技有限公司 发光器件及显示面板
CN111864095B (zh) * 2020-07-23 2023-04-28 京东方科技集团股份有限公司 有机发光二极管结构、显示装置
CN112670422B (zh) * 2020-12-04 2022-04-15 昆山国显光电有限公司 显示面板及显示面板的蒸镀方法
CN115050895A (zh) * 2021-03-08 2022-09-13 京东方科技集团股份有限公司 发光器件、发光基板和发光装置
CN113611808B (zh) * 2021-07-30 2023-11-07 京东方科技集团股份有限公司 发光单元及其制备方法、显示面板、显示设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296207A (zh) * 2012-02-29 2013-09-11 海洋王照明科技股份有限公司 太阳能电池器件及其制备方法
CN106531769A (zh) * 2016-12-16 2017-03-22 上海天马有机发光显示技术有限公司 一种有机发光显示面板、电子设备及其制作方法
CN107749442A (zh) * 2017-10-16 2018-03-02 京东方科技集团股份有限公司 Oled器件及其制备方法、显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256838B1 (en) 2001-08-29 2018-12-12 The Trustees of Princeton University Organic light emitting devices having charge carrier blocking layers comprising metalcomplexes
CN101878552B (zh) * 2007-07-05 2015-07-15 巴斯夫欧洲公司 包含卡宾-过渡金属配合物发射体和至少一种选自二甲硅烷基咔唑、二甲硅烷基二苯并呋喃、二甲硅烷基二苯并噻吩、二甲硅烷基二苯并磷杂环戊二烯、二甲硅烷基二苯并噻吩s-氧化物和二甲硅烷基二苯并噻吩s,s-二氧化物的化合物的有机发光二极管
JP6038879B2 (ja) * 2011-04-05 2016-12-07 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子
KR101666781B1 (ko) * 2013-06-28 2016-10-17 엘지디스플레이 주식회사 유기 발광 소자
US11335865B2 (en) * 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
US10998502B2 (en) * 2016-06-28 2021-05-04 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN106848084B (zh) * 2017-03-31 2019-12-17 上海天马有机发光显示技术有限公司 一种oled显示面板、制作方法及含有其的电子设备
CN107146853A (zh) * 2017-05-03 2017-09-08 武汉华星光电技术有限公司 有机发光显示装置
CN109103341B (zh) * 2018-08-23 2020-08-28 京东方科技集团股份有限公司 电致发光器件、照明面板及车用灯具组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296207A (zh) * 2012-02-29 2013-09-11 海洋王照明科技股份有限公司 太阳能电池器件及其制备方法
CN106531769A (zh) * 2016-12-16 2017-03-22 上海天马有机发光显示技术有限公司 一种有机发光显示面板、电子设备及其制作方法
CN107749442A (zh) * 2017-10-16 2018-03-02 京东方科技集团股份有限公司 Oled器件及其制备方法、显示装置

Also Published As

Publication number Publication date
US11462708B2 (en) 2022-10-04
US20200266379A1 (en) 2020-08-20
TWI693735B (zh) 2020-05-11
TW201921757A (zh) 2019-06-01
CN109390487A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2020062720A1 (zh) 有机发光二极管、显示面板和显示装置
US10157966B2 (en) Organic light emitting display device
US20220416190A1 (en) Organic light-emitting device and preparation method therefor, display panel, and display device
WO2020057027A1 (zh) 有机发光二极管和显示面板
KR20180082519A (ko) 유기전계발광소자
CN109119546B (zh) 发光器件以及制造具有该发光器件的显示面板的方法
KR20120042081A (ko) 유기전계발광소자
WO2021227719A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2019196839A1 (zh) 有机电致发光二极管及其制备方法、显示面板和显示装置
US20230056639A1 (en) Organic electroluminescent device, display panel, and display device
TWI650402B (zh) 有機電致發光裝置
US20140326957A1 (en) Organic light emitting display device and method of manufacturing the same
US11374191B2 (en) Organic light emitting diode, display panel and display device
KR20140140966A (ko) 유기 발광 장치
CN109755402B (zh) 一种显示面板和显示装置
WO2015192591A1 (zh) 一种有机电致发光器件、有机电致发光显示装置
US8384073B2 (en) System for displaying images
CN109768176B (zh) 一种有机发光二极管和显示面板
CN111430562B (zh) 发光器件和显示装置
KR102623188B1 (ko) 색안정성 확보를 위해 나노-섬 구조체를 구비하는 유기 발광 소자 및 그 제조방법
KR102595242B1 (ko) 백색 유기 발광 소자
WO2023201651A1 (zh) 有机发光器件、显示装置
CN114303255A (zh) 显示基板及显示装置
CN117769285A (zh) 有机电致发光二极管和显示面板
CN115884613A (zh) 一种有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864774

Country of ref document: EP

Kind code of ref document: A1