WO2020062653A1 - 双光纤结构及其制备方法 - Google Patents

双光纤结构及其制备方法 Download PDF

Info

Publication number
WO2020062653A1
WO2020062653A1 PCT/CN2018/123030 CN2018123030W WO2020062653A1 WO 2020062653 A1 WO2020062653 A1 WO 2020062653A1 CN 2018123030 W CN2018123030 W CN 2018123030W WO 2020062653 A1 WO2020062653 A1 WO 2020062653A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
dual
fiber
distance
fiber structure
Prior art date
Application number
PCT/CN2018/123030
Other languages
English (en)
French (fr)
Inventor
王璐璐
钟成
鲁艺
潘苏婉
曹燚
王立平
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2020062653A1 publication Critical patent/WO2020062653A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61DVETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
    • A61D1/00Surgical instruments for veterinary use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61DVETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
    • A61D7/00Devices or methods for introducing solid, liquid, or gaseous remedies or other materials into or onto the bodies of animals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables

Definitions

  • the present disclosure relates to the technical field of medical experimental equipment, for example, a dual-fiber structure and a preparation method thereof.
  • neuropsychiatric diseases such as epilepsy, schizophrenia, depression, drug addiction, and dementia
  • cardiovascular disease and cancer the worldwide burden of treating neuropsychiatric diseases
  • the increasing incidence of neuropsychiatric diseases has caused a heavy burden on patients and society. Therefore, it is particularly important to study the loop mechanism of neuropsychiatric diseases.
  • Optogenetics is a very important technique for studying the mechanisms of the brain's circuits.
  • the main principle is to use gene technology to express light-sensitive genes (such as excitatory ChR2 or inhibitory NpHR, etc.) in specific types of neural cells, so that the light-sensitive genes form light-sensitive ion channels on the cell membrane. These ion channels are selective for the passage of cations or anions under the stimulation of a specific wavelength of light, which causes the membrane potential on both sides of the cell membrane to change, thereby achieving the purpose of selectively exciting or inhibiting the cell.
  • light-sensitive genes such as excitatory ChR2 or inhibitory NpHR, etc.
  • the use of the expression of the light-sensing gene virus vector can realize the selective regulation of cells, the external information can be written by light stimulation, and the vector photoelectrode array technology can realize the reading of electrophysiological information under specific behaviors, and then accurately analyze specific nerves. Functional characteristics of loops and links to behavioral outputs.
  • the present disclosure provides a dual optical fiber structure and a preparation method thereof, which can solve the problem that two optical fibers cannot be simultaneously implanted in two adjacent brain regions of the same experimental animal in the related art.
  • An embodiment provides a dual-fiber structure including two single-fiber structures and viscose.
  • the single-fiber structure includes an optical fiber head and an optical fiber.
  • a mounting hole is formed on a lower end surface of the optical fiber head, and one end of the optical fiber is fixed.
  • two of the single optical fiber structures are spaced apart, and the lower portions of the two optical fiber heads are bonded by the adhesive, and the direction from the upper end of the optical fiber head to the lower end of the optical fiber, The spacing between the two said single-fiber structures gradually decreases.
  • An embodiment provides a method for preparing an optical fiber structure.
  • the foregoing optical fiber structure is prepared by using the method, and the method includes:
  • FIG. 1 is a schematic structural diagram of a dual-fiber structure according to an embodiment
  • FIG. 2 is a flowchart of a method for manufacturing an optical fiber structure according to an embodiment.
  • this embodiment provides a dual-fiber structure including two single-fiber structures.
  • the single-fiber structure includes an optical fiber head 10 and an optical fiber 20.
  • a mounting hole is formed on a lower end surface of the optical fiber head 10.
  • One end of 20 is fixed in the mounting hole.
  • the optical fiber 20 is set to be implanted in the brain region of the experimental animal.
  • the optical fiber head 10 is left outside the experimental animal and is connected to the light emitting device so that the optical fiber 20 is implanted in the brain region of the experimental animal. Luminescence, light stimulation of specific types of nerve cells.
  • two single optical fiber structures are spaced apart, and the lower portions of the two optical fiber heads 10 are bonded by an adhesive 30, and the direction from the upper end of the optical fiber head 10 to the lower end of the optical fiber 20 is between the two single optical fiber structures.
  • the spacing gradually decreases.
  • the optical fiber head 10 is a ceramic head and has a cylindrical shape. Generally, the optical fiber head 10 has a diameter of 2.5 mm and a diameter of 1.25 mm.
  • the optical fiber 20 is a quartz fiber and generally has a diameter of 200 ⁇ m.
  • the distance between the upper ends of the two optical fiber heads 10 is 5mm-10mm.
  • the experimental equipment can be smoothly connected, and the adhesive 30 can be easily applied between the two optical fiber heads 10. . If the distance is too short, the experimental equipment cannot be connected during the subsequent experiments and the experiment cannot be performed; if the distance is too long, the viscose 30 that is liquid at normal temperature cannot be applied and fixed.
  • the distance between the lower ends of the two optical fibers 20 is determined according to the actual distance between the two brain regions. This embodiment is particularly directed to the case where the distance between the two brain regions is less than 3 mm. At this time, the difficulty of operation can be reduced, and the implantation efficiency can be greatly improved. .
  • the double fiber structure of this embodiment can be used to implant two optical fibers 20 at the same time. However, when the distance between the brain regions is too large, the double fiber structure of this embodiment is used during operation. The stability is not easy to control at this time, so at this time, the two optical fibers are implanted 20 times and two times using a single fiber structure.
  • the length of the optical fiber 20 is 2mm-4mm. In an embodiment, the length of the optical fiber 20 is 3 mm. By setting the length, the distance between the lower ends of the two optical fibers 20 can be ensured to meet requirements, and it is easy to implant.
  • Viscose 30 is epoxy glue. This glue is liquid at normal temperature and solid after heating at high temperature. It can achieve a very good fixing effect, and the fixing effect of other glues is not as good as epoxy glue.
  • This embodiment also provides a method for preparing a dual-fiber structure, including:
  • one end of two pieces of stripped optical fiber 20 are respectively inserted into the mounting holes of two optical fiber heads 10 to obtain two single optical fiber structures;
  • the lower ends of the optical fibers 20 in the two single-fiber structures are arranged obliquely in a direction close to each other, so that the distance between the upper ends of the two optical fiber heads 10 reaches a first preset value, and at the same time at the preset length of the optical fiber 20 Make the distance between the two optical fibers 20 reach a second preset value;
  • an adhesive 30 is applied between the lower portions of the two optical fiber heads 10, and the adhesive 30 is cured.
  • the first preset value is any value from 5mm-10mm determined above
  • the preset length is any value from 2mm-4mm determined above
  • the second preset value is The set value is any value less than 3mm determined above.
  • step S50 the curing process is specifically performed by using a hot air gun at 200 ° C for drying.
  • a tool used for peeling the outer sheath of the optical fiber 20 is an optical fiber clamp.
  • the tool used for intercepting the optical fiber 20 is an optical fiber cleaver.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

一种双光纤结构,光纤结构包括两个单光纤结构及粘胶(30),单光纤结构包括光纤头(10)和光纤(20),光纤头(10)的下端面开设有安装孔,光纤(20)的一端固定于安装孔中;两个单光纤结构间隔设置,且两个光纤头(10)的下部通过粘胶(30)粘接,且由光纤头(10)的上端至光纤(20)的下端方向,两个单光纤结构之间的间距逐渐减小。

Description

双光纤结构及其制备方法
本申请要求申请日为2018年9月25日、申请号201811115529.2为的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及医疗实验设备技术领域,例如涉及一种双光纤结构及其制备方法。
背景技术
相关技术中,全球范围内癫痫、精神分裂症、抑郁症、药物成瘾及老年痴呆症等神经精神疾病的治疗负担占全部疾病的13%左右,超过了心血管疾病和癌症。神经精神疾病发病率的不断增高,给患者和社会造成了沉重的负担,因此对于神经精神疾病的环路机制研究显得尤为重要。
光遗传技术是研究大脑环路机制的一个非常重要的技术。主要原理是采用基因技术将光感基因(例如兴奋性的ChR2或者抑制性的NpHR等)表达在特定类型的神经细胞中,使光感基因在细胞膜上形成光敏感离子通道。这些离子通道在特定波长的光照刺激下会分别对阳离子或者阴离子的通过产生选择性,从而造成细胞膜两边的膜电位发生变化,达到对细胞选择性地兴奋或者抑制的目的。即,利用光感基因病毒载体表达可以实现细胞选择性调控,通过光刺激可以实现外界信息的写入,借助载体光电极阵列技术可以实现特定行为下的电生理信息读取,进而精确解析特定神经环路的功能特征以及与行为输出之间的联系。
在光遗传学中,一般通过在实验动物(例如小鼠)脑内植入石英光纤来实现对特定类型的神经细胞给予光刺激。然而相关技术中用到的成品光纤一般都是单光纤结构,一次只能植入一根光纤,如果想在实验中在一只小鼠的非常靠近的两个脑区同时植入两根光纤则不能实现,这就大大增加了实验研究的局限性和困难度。
发明内容
本公开提供了一种双光纤结构及其制备方法,可以解决相关技术中存在的不能在同一实验动物的邻近的两个脑区同时植入两根光纤的问题。
一实施例提供了一种双光纤结构,包括两个单光纤结构及粘胶,所述单光纤结构包括光纤头和光纤,所述光纤头的下端面开设有安装孔,所述光纤的一端固定于所述安装孔中;两个所述单光纤结构间隔设置,且两个所述光纤头的下部通过所述粘胶粘接,且由所述光纤头的上端至所述光纤的下端方向,两个所述单光纤结构之间的间距逐渐减小。
一实施例提供一种光纤结构的制备方法,上述的光纤结构采用所述方法制备,所述方法包括:
取两段光纤,并将所述光纤的外皮剥掉;
将两段剥掉外皮的所述光纤的一端分别插入两个光纤头的安装孔中,制得两个单光纤结构;
将所述两个单光纤结构中的光纤的下端沿互相靠近的方向倾斜排列,使两个所述光纤头上端之间的间距达到第一预设值,同时在所述光纤的预设长度处使两个所述光纤之间的间距达到第二预设值;
在所述光纤的所述预设长度处对所述光纤进行截断;及
在两个所述光纤头的下部之间涂粘胶,并对粘胶进行固化处理。
附图说明
图1是一实施例提供的双光纤结构的结构示意图;
图2是一实施例提供的光纤结构的制备方法的流程图。
图中:
10-光纤头;20-光纤;30-粘胶。
具体实施方式
如图1所示,本实施例提供一种双光纤结构,该双光纤结构包括两个单光纤结构,单光纤结构包括光纤头10和光纤20,光纤头10的下端面开设有安装孔,光纤20的一端固定于安装孔中,光纤20设置为植入实验动物的脑区,光纤头10留在实验动物体外,设置为与光发射装置连接,以使植入实验动物脑区内的光纤20发光,对特定类型的神经细胞给予光刺激。在本实施例中,两个单光纤结构间隔设置,且两个光纤头10的下部通过粘胶30粘接,且由光纤头10的上端至光纤20的下端方向,两个单光纤结构之间的间距逐渐减小。通过上述结构设置,能够使两根光纤20下端之间的间距与同一实验动物的两个脑区之间的间距相一 致,从而能够将两根光纤20同时植入同一实验动物的两个脑区,打破了实验操作的局限性,降低了实验操作的困难度。
光纤头10为陶瓷头,且外形为圆柱形,一般光纤头10为直径2.5mm及直径1.25mm等。光纤20为石英光纤,一般直径为200μm。
在一实施例中,两个光纤头10上端之间的间距为5mm-10mm,通过该距离的设置,既能顺利接入实验设备,又能便于在两个光纤头10之间涂抹粘胶30。如果距离太短,之后的实验过程中将无法接入实验设备而导致不能进行实验;如果距离太长,常温状态下为液状的粘胶30将无法进行涂抹固定。
两个光纤20下端之间的间距根据实际双脑区的间距而定,本实施例尤其是针对双脑区的间距小于3mm的情况,此时能够降低操作的难度,同时能够大大提高植入效率。对于双脑区的间距大于3mm的情况可以采用本实施例的双光纤结构对两根光纤20同时植入,但是因双脑区间距过大的时候,采用本实施例的双光纤结构在在操作时稳定性不好控制,所以此时采用单光纤结构将两根光纤20分两次植入。
在一实施例中,光纤20长度为2mm-4mm。在一实施例中,光纤20长度为3mm,通过该长度设置,既能够确保两根光纤20的下端之间的间距满足要求,又便于植入。
粘胶30为环氧树脂胶,这种胶水在常温为液态,高温加热后为固态,可以达到非常好的固定作用,其他胶的固定效果均不如环氧树脂胶。
本实施例还提供一种双光纤结构的制备方法,包括:
S10中,取两段光纤20,并将光纤20的外皮剥掉;
S20中,将两段剥掉外皮的光纤20的一端分别插入两个光纤头10的安装孔中,制得两个单光纤结构;
S30中,将两个单光纤结构中的光纤20的下端沿互相靠近的方向倾斜排列,使两个光纤头10上端之间的间距达到第一预设值,同时在光纤20的预设长度处使两个光纤20之间的间距达到第二预设值;
S40中,在光纤20的所述预设长度处进行截断;
S50中,在两个光纤头10的下部之间涂粘胶30,并对粘胶30进行固化处理。
在一实施例中,在步骤S20中,第一预设值即为上述确定的5mm-10mm中的任一值,预设长度即为上述确定的2mm-4mm中的任一值,第二预设值即为上述确定的小于3mm的任一值。
另外,在步骤S50中,固化处理具体为采用200℃的热风枪进行吹干。
在步骤S10中,剥离光纤20的外皮所采用的工具是光纤钳。在步骤S40中,对光纤20进行截取所采用的工具是光纤切割刀。

Claims (8)

  1. 一种双光纤结构,包括两个单光纤结构及粘胶(30),所述单光纤结构包括光纤头(10)和光纤(20),所述光纤头(10)的下端面开设有安装孔,所述光纤(20)的一端固定于所述安装孔中;两个所述单光纤结构间隔设置,且两个所述光纤头(10)的下部通过所述粘胶(30)粘接,且由所述光纤头(10)的上端至所述光纤(20)的下端方向,两个所述单光纤结构之间的间距逐渐减小。
  2. 根据权利要求1所述的双光纤结构,其中,两个所述光纤头(10)上端之间的间距为5mm-10mm。
  3. 根据权利要求1所述的双光纤结构,其中,两个所述光纤(20)下端之间的间距小于3mm。
  4. 根据权利要求1所述的双光纤结构,其中,所述光纤(20)的长度为2mm-4mm。
  5. 根据权利要求4所述的双光纤结构,其中,所述光纤(20)的长度为3mm。
  6. 根据权利要求1所述的双光纤结构,其中,所述粘胶(30)为环氧树脂胶。
  7. 根据权利要求1所述的双光纤结构,其中,所述光纤头(10)为陶瓷头,所述光纤(20)为石英光纤。
  8. 一种双光纤结构的制备方法,如权利要求1-7任一项所述的双光纤结构采用所述方法制备,所述方法包括:
    取两段光纤(20),并将所述光纤(20)的外皮剥掉;
    将两段剥掉外皮的所述光纤(20)的一端分别插入两个光纤头(10)的安装孔中,制得两个单光纤结构;
    将所述两个单光纤结构中的所述光纤(20)的下端沿互相靠近的方向倾斜排列,使两个所述光纤头(10)上端之间的间距达到第一预设值,同时在所述光纤(20)的预设长度处使两个所述光纤(20)之间的间距达到第二预设值;
    在所述光纤(20)的所述预设长度处进行截断;及
    在两个所述光纤头(10)的下部之间涂粘胶(30),并对粘胶(30)进行固化处理。
PCT/CN2018/123030 2018-09-25 2018-12-24 双光纤结构及其制备方法 WO2020062653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811115529.2A CN109106465A (zh) 2018-09-25 2018-09-25 一种双光纤结构及其制备方法
CN201811115529.2 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020062653A1 true WO2020062653A1 (zh) 2020-04-02

Family

ID=64856864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123030 WO2020062653A1 (zh) 2018-09-25 2018-12-24 双光纤结构及其制备方法

Country Status (2)

Country Link
CN (1) CN109106465A (zh)
WO (1) WO2020062653A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116784866B (zh) * 2023-06-13 2023-12-01 华南师范大学 用于脑部研究的植入装置及使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087387A (zh) * 2010-12-03 2011-06-08 福州高意通讯有限公司 一种制作光纤头和多光纤准直器的方法
CN103837927A (zh) * 2014-02-26 2014-06-04 中国科学院自动化研究所 一种近红外脑活动检测发射光纤
CN205581354U (zh) * 2016-04-28 2016-09-14 嘉准传感科技(湖南)有限公司 新型多头光纤
JP2017146354A (ja) * 2016-02-15 2017-08-24 株式会社フジクラ 光デバイス
CN206671608U (zh) * 2017-04-19 2017-11-24 上海葛西光学科技有限公司 一种阵列准直器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3154230B2 (ja) * 1997-07-11 2001-04-09 日本電気硝子株式会社 光ファイバ接続器
CN2532496Y (zh) * 2001-12-27 2003-01-22 福州康顺光通讯有限公司 双面双光纤头
CN1259584C (zh) * 2004-09-09 2006-06-14 莱特尔科技公司 拼装式异膜双光纤头及其制作方法
CN102681119B (zh) * 2008-06-30 2015-01-28 日本电信电话株式会社 光纤缆线以及光纤带
CN101923190A (zh) * 2010-09-16 2010-12-22 深圳市大族激光科技股份有限公司 一种光纤合束器
CN101919686B (zh) * 2010-09-21 2011-12-14 华中科技大学 用于活动动物脑皮层功能观测的多模式成像系统
CN101991406B (zh) * 2010-09-21 2012-11-14 华中科技大学 用于活动小动物脑功能成像的头戴式显微装置
CN202102153U (zh) * 2011-06-08 2012-01-04 深圳日海通讯技术股份有限公司 有源光缆
CN103163590A (zh) * 2011-12-11 2013-06-19 西安金和光学科技有限公司 一种双芯光分路器
CN103513337A (zh) * 2012-06-28 2014-01-15 无锡万润光子技术有限公司 双芯光纤分路器及其制作方法
JPWO2014020730A1 (ja) * 2012-08-01 2016-07-11 日立化成株式会社 光ファイバコネクタ、その製造方法、光ファイバコネクタと光ファイバの接続方法、光ファイバコネクタと光ファイバとの組立体
CN204405899U (zh) * 2014-12-15 2015-06-17 哈尔滨工程大学 一种基于梯度折射率透镜的多芯光纤连接器
CN104749710B (zh) * 2015-03-23 2016-10-05 华为技术有限公司 光纤与芯片对准的封装结构及光纤对准方法
CN205301624U (zh) * 2016-01-20 2016-06-08 上海阳安光电有限公司 可卷绕网状光纤带
JPWO2017145955A1 (ja) * 2016-02-23 2018-12-13 住友電気工業株式会社 間欠連結型光ファイバテープ心線、間欠連結型光ファイバテープ心線の製造方法、光ファイバケーブルおよび光ファイバコード
CN207412159U (zh) * 2017-03-22 2018-05-29 中国人民解放军第三军医大学 基于光遗传学-电生理技术的动物神经功能检测装置
CN206863275U (zh) * 2017-09-22 2018-01-09 武汉驿路通科技股份有限公司 一种阵列波导光栅波分复用器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087387A (zh) * 2010-12-03 2011-06-08 福州高意通讯有限公司 一种制作光纤头和多光纤准直器的方法
CN103837927A (zh) * 2014-02-26 2014-06-04 中国科学院自动化研究所 一种近红外脑活动检测发射光纤
JP2017146354A (ja) * 2016-02-15 2017-08-24 株式会社フジクラ 光デバイス
CN205581354U (zh) * 2016-04-28 2016-09-14 嘉准传感科技(湖南)有限公司 新型多头光纤
CN206671608U (zh) * 2017-04-19 2017-11-24 上海葛西光学科技有限公司 一种阵列准直器

Also Published As

Publication number Publication date
CN109106465A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
Park et al. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids
Pashaie et al. Optogenetic brain interfaces
Zhang et al. Circuit-breakers: optical technologies for probing neural signals and systems
Kim et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations
Yazdan-Shahmorad et al. Targeted cortical reorganization using optogenetics in non-human primates
US20140371564A1 (en) Methods and apparatus for stimulating and recording neural activity
Watson et al. Thalamic projections to the subthalamic nucleus contribute to movement initiation and rescue of parkinsonian symptoms
Ung et al. Fiber-optic implantation for chronic optogenetic stimulation of brain tissue
Welkenhuysen et al. An integrated multi-electrode-optrode array for in vitro optogenetics
WO2020062653A1 (zh) 双光纤结构及其制备方法
Farah et al. Patterned optical activation of retinal ganglion cells
Tripathi et al. The hippocampal to prefrontal cortex circuit in mice: a promising electrophysiological signature in models for psychiatric disorders
Deng et al. Behavioral manipulation by optogenetics in the nonhuman primate
Matveev et al. Implantable devices for optogenetic studies and stimulation of excitable tissue
Ayala et al. Extracellular recording of neuronal activity combined with microiontophoretic application of neuroactive substances in awake mice
CN103462600B (zh) 光电极组件及光电极在体成像系统
Bender et al. Optogenetic entrainment of hippocampal theta oscillations in behaving mice
Mirzapour Delavar et al. Shining light on the sprout of life: optogenetics applications in stem cell research and therapy
Fedotov et al. Quantitative cognitive‐test characterization of reconnectable implantable fiber‐optic neurointerfaces for optogenetic neurostimulation
Kuleshova Optogenetics–New Potentials for Electrophysiology
Ono et al. Optogenetics identification of a neuronal type with a glass optrode in awake mice
Martínez-Garay et al. In utero electroporation methods in the study of cerebral cortical development
Oh et al. Optogenetic Stimulator with µLED-Coupled Optical Fiber on Flexible Substrate via 3D Printed Mount
Stocke et al. A drivable optrode for use in chronic electrophysiology and optogenetic experiments
KR101810763B1 (ko) 나노 파티클의 표면 플라즈몬 공명 현상을 이용한 신경 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935890

Country of ref document: EP

Kind code of ref document: A1