WO2020062286A1 - 基站及具有其的车辆 - Google Patents

基站及具有其的车辆 Download PDF

Info

Publication number
WO2020062286A1
WO2020062286A1 PCT/CN2018/109193 CN2018109193W WO2020062286A1 WO 2020062286 A1 WO2020062286 A1 WO 2020062286A1 CN 2018109193 W CN2018109193 W CN 2018109193W WO 2020062286 A1 WO2020062286 A1 WO 2020062286A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
base station
platform
battery
landing
Prior art date
Application number
PCT/CN2018/109193
Other languages
English (en)
French (fr)
Inventor
王昊
张松
王鹏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/109193 priority Critical patent/WO2020062286A1/zh
Priority to EP18935160.4A priority patent/EP3809225A4/en
Priority to CN201880040711.8A priority patent/CN110770129A/zh
Publication of WO2020062286A1 publication Critical patent/WO2020062286A1/zh
Priority to US17/180,478 priority patent/US20210197983A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/007Helicopter portable landing pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/36Other airport installations
    • B64F1/362Installations for supplying conditioned air to parked aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/005Protective coverings for aircraft not in use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations installed for handling aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations installed for handling aircraft
    • B64F1/222Ground or aircraft-carrier-deck installations installed for handling aircraft for storing aircraft, e.g. in hangars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/28Liquid-handling installations specially adapted for fuelling stationary aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/32Ground or aircraft-carrier-deck installations for handling freight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/36Other airport installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/40Maintaining or repairing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/39Battery swapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/70Transport or storage specially adapted for UAVs in containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/80Transport or storage specially adapted for UAVs by vehicles
    • B64U80/86Land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/32UAVs specially adapted for particular uses or applications for imaging, photography or videography for cartography or topography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/40UAVs specially adapted for particular uses or applications for agriculture or forestry operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/60UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons
    • B64U2101/64UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons for parcel delivery or retrieval
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the field of unmanned aerial vehicle management, in particular to a base station and a vehicle having the same.
  • UAV applications have become more and more widespread, and they are often used more frequently in open and unmanned areas, in the wild, in a large amount of farmland or forest.
  • the use of drones in these areas generally requires power source replacement, component maintenance, load replenishment, and data interaction through base stations.
  • Traditional base station operation methods also require manual participation. For example, a pilot needs to control the drone to land on the base station accurately and adjust the position of the drone to wait for further operations, or requires manual operation of the drone in the base station, or After the drone operation is completed, the pilot needs to control the drone's takeoff.
  • These traditional workflows cannot be automated, and the efficiency is low. When the number of drones is large, but the human resources are insufficient, the problem is particularly prominent. The method of operation is no longer sufficient.
  • the existing automated operation methods cannot ensure that the drone accurately falls on the base station, or that the drone cannot be accurately placed on the operation station of the base station, thereby failing to guarantee the operation safety of the drone.
  • the invention provides a base station and a vehicle having the same.
  • the present invention is implemented by the following technical solutions:
  • a base station capable of wirelessly communicating with a drone, the base station including:
  • take-off and landing platform the take-off and landing platform and the operation platform are independent from each other, and the take-off and landing platform is adjacent to the operating platform, or the take-off and landing platform and the operating platform are an integral structure;
  • a transfer mechanism at least partially disposed on the take-off and landing platform to send the drone landing on the take-off and landing platform into the operation platform and / or to store the drone stored on the operation platform Transmitted to the landing platform;
  • a vehicle including a vehicle body, and further including a base station, the base station being disposed on the vehicle body, the base station being capable of wirelessly communicating with a drone, and the base station including:
  • take-off and landing platform the take-off and landing platform and the operation platform are independent from each other, and the take-off and landing platform is adjacent to the operating platform, or the take-off and landing platform and the operating platform are an integral structure;
  • a transfer mechanism at least partially disposed on the take-off and landing platform to send the drone landing on the take-off and landing platform into the operation platform and / or to store the drone stored on the operation platform Transmitted to the landing platform;
  • the drone when it needs to be dispatched or it detects that the drone meets a specific policy (when it is recycled or sent out), it can be operated through the operation platform, landing platform, transmission mechanism, and control.
  • the cooperation between the robots can realize the automatic recovery and delivery of the drone, and during the recovery or delivery process, the power source replacement, parts maintenance, load replenishment, data interaction and data exchange can be performed on the drone through the operating platform.
  • the storage and other processes of the drone ensure that the drone can maintain normal working conditions and can be directly used to perform related tasks in the future.
  • the drone recovery and delivery process does not require manual participation, and the base station has a high degree of intelligence to avoid manual drone operations. Time wasted when performing operations such as power source replacement, component maintenance, load replenishment, data interaction, and drone storage.
  • FIG. 1 is a structural block diagram of an unmanned aerial vehicle system in an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 3 is a schematic state diagram of a base station according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a base station in another state according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another base station according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of cooperation between an operation platform and a landing platform in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of cooperation between another operation platform and a landing platform in another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a specific structure of a base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of the base station shown in FIG. 9 in another direction;
  • FIG. 11 is a schematic diagram of a specific structure of another base station according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of the base station shown in FIG. 11 in another direction;
  • FIG. 13 is a schematic diagram of a specific structure of still another base station according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of the base station shown in FIG. 13 in another direction;
  • 15 is a schematic diagram of a specific structure of still another base station according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a vehicle according to an embodiment of the present invention.
  • 100 base station; 110: controller; 120: operating platform; 121: conveying mechanism; 122: power source supplementary device; 123: intelligent manipulator; 124: component replacement / maintenance device; 125: load supplementary device; 126: storage organization ; 1261: storage rack; 130: take-off and landing platform; 140: transmission mechanism; 150: guide mechanism; 160: first power unit; 161: power component; 162: wire rope; 170: slide rail; 180: electric push rod; 190: Power generation device.
  • wireless communication can be performed between the base station 100 and the drone 200.
  • the drone 200 of this embodiment may include a plant protection drone (for sowing seeds, spraying pesticides, water, etc.), a logistics drone (for delivering goods, express delivery, etc.), an industrial application drone (energy inspection) , Infrastructure exploration, building surveying, etc.), and at least one of aerial drones.
  • the base station 100 may include a controller 110, an operation platform 120, a landing platform 130, and a transmission mechanism 140.
  • the takeoff and landing platform 130 and the operation platform 120 are independent of each other, and the takeoff and landing platform 130 is adjacent to the operation platform 120; optionally, the takeoff and landing platform 130 and the operation platform 120 are an integrated structure.
  • the transfer mechanism 140 is at least partially disposed on the take-off and landing platform 130, and the transfer mechanism 140 can send the drone landing on the take-off and landing platform 130 into the operation platform 120 and / or be stored in the operation platform 120. The drone is transmitted to the landing platform 130.
  • the base station 100 in this embodiment may be used to perform an operation of recovering the drone and / or an operation of releasing the drone.
  • the controller 110 may trigger the base station 100 to perform the operation of recovering the drone and / or the operation of releasing the drone when detecting that the state of the drone 200 satisfies a specific policy or receiving a scheduling instruction. Scheduling the drone 200, such as releasing the drone 200 from the base station 100 housing the drone 200, will be performing related tasks (such as sowing seeds, spraying pesticides or water, transporting goods or express delivery, energy inspection, infrastructure construction Surveying, building surveying, photographing, etc.) are returned to the base station 100 and so on.
  • related tasks such as sowing seeds, spraying pesticides or water, transporting goods or express delivery, energy inspection, infrastructure construction Surveying, building surveying, photographing, etc.
  • the scheduling instruction may be sent by a remote controller, or may be sent by a terminal that is communicatively connected with the controller 110.
  • the scheduling instruction is used to instruct the base station 100 to perform an operation of recovering the drone and / or an operation of releasing the drone.
  • the controller 110 controls the transmission mechanism 140 to send the drone 200 landing on the landing platform 130 into the operation platform. 120, and controls the operation platform 120 to perform a corresponding operation on the drone 200 located in the operation platform 120.
  • the corresponding operation includes at least: storing the drone 200.
  • the controller 110 detects that the state of the drone 200 satisfies a specific policy or receives a scheduling instruction, it sends an instruction for instructing the drone 200 to land to the drone 200 to trigger the drone 200 Landing on the landing platform 130.
  • the controller 110 controls the operation platform 120 to perform corresponding operations.
  • the corresponding operation includes at least: releasing the drone 200 stored in the operation platform 120.
  • the operation platform 120 will be stored in the operation platform 120.
  • the drone 200 in the operation platform 120 is transferred to the transfer mechanism 140.
  • the controller 110 controls the transfer mechanism 140 to transfer the drone 200 to the take-off and landing platform 130. After the drone 200 is transferred to the take-off and landing platform 130, , Can fly out and perform related tasks autonomously.
  • the corresponding operation is related to the status or scheduling instruction of the drone 200.
  • the controller 110 detects that the drone 200 performing the related tasks satisfies: the power source of the drone 200 is insufficient, the parts of the drone 200 are in a fault state, and the load of the drone 200 Quantity is insufficient, the drone 200 meets at least one of the conditions for data interaction with the base station 100, or it receives an instruction to instruct the base station 100 to perform an operation to recycle the drone (that is, to the drone 200 that is performing related tasks) (Recycling), the corresponding operation includes at least: storing the drone 200. Further, the corresponding operation also includes operations such as updating the power source of the drone 200, replacing parts of the drone 200, supplementing the load of the drone 200, and performing data interaction with the drone 200. Of course, the corresponding operation It is not limited to the above operation, and may include other operations.
  • the drone 200 may fly by electric driving, and may also fly by oil driving.
  • the power of the battery of the drone 200 is not greater than a preset first power threshold, and it is determined that the power source of the drone 200 is insufficient.
  • the amount of fuel in the fuel tank of the drone 200 is not greater than a preset first fuel amount threshold, it is determined that the power source of the drone 200 is insufficient.
  • the first power threshold and the first oil threshold can be set as required.
  • the load of the drone 200 is sufficient according to the load type of the drone 200.
  • the load of the drone 200 may include at least one of pesticide, water, and seed species. If it is detected that the dose of the pesticide of the drone 200 is less than or equal to the preset first dose threshold, the water amount of the drone 200 is less than or equal to the preset first water amount threshold, and the seed amount of the drone 200 is less than or equal to When at least one of the preset first seed amount thresholds is determined, the load of the drone 200 is insufficient.
  • the first dose threshold, the first water amount threshold, and the first seed amount threshold can be set as required.
  • the pesticide may include a liquid pesticide and / or a solid pesticide (such as a powder pesticide).
  • the components of the drone 200 may include a positioning device of the drone 200, and may also include other components.
  • the positioning device of the drone 200 as an example, when the drone 200 detects that the positioning device of the drone 200 cannot achieve positioning, it is determined that the positioning device of the drone 200 is in a fault state.
  • the data interaction between the drone 200 and the base station 100 may include two types of links: the drone 200-> base station 100, and the base station 100-> drone 200.
  • the controller 110 satisfies the preset interaction period when the current time is detected from the time when the previous drone 200 and the base station 100 performed data interaction, or when the data information of the drone 200 is detected
  • the amount of data is greater than or equal to a preset data amount threshold, or when it is detected that the firmware of the drone 200 needs to be updated (the firmware version of the drone 200 is lower), it is determined that the drone 200 meets the requirements for data interaction with the base station 100 condition.
  • the data information of the drone 200 includes at least one of the following: image data information captured by a shooting device on the drone 200, flight trajectory information of the drone 200, and historical position data information of the drone 200.
  • the data information of the drone 200 may also include other data information collected by the drone 200 or other data information during the operation of the drone 200.
  • the drone 200 when the drone 200 is recycled, if the drone 200 satisfies multiple specific policies at the same time, it can be sent to the operating platform 120 to perform operations corresponding to each specific policy. For example, when the power source of the drone 200 is insufficient and the parts are faulty, it can be sent to the operating platform 120 to replace the power source and parts.
  • the drone 200 may detect itself, and when the detection result meets a specific policy, a landing request is sent to the base station 100 to enter the operation platform 120 for operation; or the drone 200 may transmit its own data to the base station 100 The base station 100 obtains a detection result according to the data analysis of the drone 200. When the detection result meets a specific policy, a landing notification is sent to the drone 200, so that the drone 200 that has been landed operates the operating platform 120.
  • the controller 110 detects that the drone 200 accommodated in the operation platform 120 satisfies: power source replenishment completion, load replenishment completion, parts replacement / repair completion, and the relationship between the drone 200 and the base station 100 At least one of the data interaction is completed, or a scheduling instruction is received for instructing the base station 100 to perform the operation of releasing the drone (that is, releasing the drone 200 stored in the operation platform 120 to perform related tasks), then the corresponding The operation includes at least releasing the drone 200 stored in the operation platform 120.
  • the completion of the power source replenishment means that the power of the drone 200 battery is greater than the second power threshold, or that the fuel of the drone 200 is greater than the second fuel threshold.
  • the second power threshold and the second fuel threshold may be based on actual conditions. Demand setting.
  • the completion of the load replenishment means that the pesticide dose of the drone 200 is greater than the preset second dose threshold, the amount of water of the drone 200 is greater than the preset second water threshold, and / or the amount of seeds of the drone 200 is greater than the preset The second seed amount threshold.
  • the second medicine dose threshold, the second water quantity threshold, and the second seed quantity threshold can be set according to actual needs. Completion of component replacement / maintenance means that the component is switched from the fault state to the normal working state.
  • the positioning device switches from a position that cannot be positioned or a large position deviation to a position that is within the allowable range.
  • the completion of the data interaction between the drone 200 and the base station 100 means that the base station 100 has downloaded the current data information of the drone 200 (the data information saved during the execution of the relevant task before the drone 200 is recycled to the base station 100)
  • the base station 100 completes the firmware upgrade of the drone 200 and so on.
  • the data information of the drone 200 includes at least one of the following: image data information captured by a shooting device on the drone 200, flight trajectory information of the drone 200, and historical position data information of the drone 200.
  • the data information of the drone 200 may also include other data information collected by the drone 200 or other data information during the operation of the drone 200.
  • the base station 100 may instruct the drone 100 to delete the current data information in the drone 100, so that it is convenient for the drone 200 to perform related tasks after flying out. Enough storage space.
  • the drone 200 will always interact with the base station 100 in the process of performing related tasks, so that the base station 100 can timely obtain the status information such as the position, power, and load of the drone 200. Further, it can be determined whether the base station 100 needs to be triggered to perform the operation of recovering the drone according to the status information fed back by the drone 200. After the drone 200 flies out of the base station 100, it can operate in accordance with a preset program on the drone 200 or according to an operation instruction sent by the base station 100 (the operation instruction is set in the base station 100 in advance and called when needed) The action may also be performed according to the operation instruction of the pilot.
  • the action may include: the drone 200 performs related tasks in a designated area, such as spraying pesticides at a designated spraying place.
  • the drone 200 after the drone 200 flies out of the base station 100, if the drone 200 does not receive the operation instruction sent by the pilot through the remote control or the terminal, the drone 200 acts according to the operation instruction sent by the base station 100 by default; If an operation instruction sent by the pilot through the remote control or terminal is received, the drone 200 will act according to the operation instruction sent by the pilot through the remote control or the terminal, so that the actions and positions of the drone 200 are within the range of the base station 100. Control range.
  • the operation instruction sent by the pilot through the remote control or the terminal has a higher priority than the operation instruction sent by the base station 100 to meet the user's current control requirements for the drone 200.
  • the controller 110 controls the operating platform 120 to perform operations such as updating the power source of the drone 200, replacing parts of the drone 200, supplementing the load of the drone 200, and performing data interaction with the drone 200.
  • the steps may be executed by the operating platform 120 during the process of recovering the drone, or may be executed by the operating platform 120 during the process of releasing the drone.
  • the controller 110 controls the operating platform 120 to update the power source of the drone 200, replace the parts of the drone 200, supplement the load of the drone 200, and perform the operation with the drone 200. Steps such as data interaction need to be performed before the controller 110 controls the operation platform 120 to send the stored drone to the transmission mechanism 140.
  • the controller 110 both detects that the state of the drone 200 satisfies a specific policy and receives a scheduling instruction, the controller 110 controls the operating platform 120 to perform a corresponding operation according to the scheduling instruction, that is, The priority of the scheduling instruction is higher than that of the controller 110 to control the operation of the base station according to the state of the drone 200.
  • the transmission mechanism 140 may be located in the middle of the landing area corresponding to the landing platform 130, or may be located at other positions in the landing area. The purpose is to transfer the drone 200 landing on the take-off and landing platform 130 into the operation platform 120, or transfer the drone 200 in the operation platform 120 to the take-off and landing platform 130 to prepare for take-off.
  • the structure of the conveying mechanism 140 can be designed according to requirements.
  • the conveying mechanism 140 in this embodiment is a conveyor belt, and the conveyor belt may include one, two, or more. It can be understood that, in other embodiments, the transmission mechanism 140 may also be other devices capable of achieving transmission such as a transmission chain, a belt, and a roller.
  • the base station 100 may further include a guide mechanism 150 provided on the landing platform 130 and movably disposed with respect to the transmission mechanism 140, and a first power for driving the guide mechanism 150 to move.
  • the first power device 160 is used to drive the guiding mechanism 150 to move relative to the transmission mechanism 140, so as to position the drone 200 that has landed on the take-off and landing platform 130 to the transmission mechanism 140, so that the transmission mechanism 140 During the exercise, the drone 200 can be moved in a direction from the landing platform 130 to the operation platform 120.
  • the guiding mechanism 150 By providing the guiding mechanism 150, even when there is a large error in the position where the drone operates the drone 200 automatically, the guiding mechanism 150 can still push the drone 200 onto the conveying device 140, and The human machine 200 is transported into the operation platform 120 to realize automatic recovery of the drone 200.
  • the structure of the guiding mechanism 150 can be designed as required.
  • the guiding mechanism 150 may include a guiding plate.
  • the guiding plate of this embodiment cooperates with the drone 200.
  • the drone 200 moves toward the transfer mechanism 140, the drone 200 is pushed to move to the transfer mechanism 140. on.
  • the drone 200 includes a tripod, and the guide plate abuts or connects with the tripod, thereby pushing the drone 200 to move.
  • the conveyor belt includes two, namely a first conveyor belt and a second conveyor belt, and the first conveyor belt and the second conveyor belt are arranged at intervals.
  • the guiding mechanism 150 includes two guiding plates, which are a first guiding plate and a second guiding plate, respectively.
  • the first guiding plate and the second guiding plate are located on both sides of the two conveyor belts.
  • the tripod includes a first tripod and a second tripod.
  • the first power unit 160 drives the first guide plate and / or the second guide plate to move, so that the first guide plate moves.
  • the front plate cooperates with the first tripod, and / or the second guide plate cooperates with the second tripod, pushing the first tripod onto the first conveyor belt, and pushing the second tripod onto the second conveyor belt.
  • the conveyor belt includes one, and the guiding mechanism 150 includes two guiding plates, which are a first guiding plate and a second guiding plate, respectively, a first guiding plate and a second guiding plate.
  • the plates are located on both sides of the conveyor.
  • the tripod includes a first tripod and a second tripod.
  • the base station 100 is further provided with a slide rail 170, and the guide plate cooperates with the slide rail 170.
  • the first power unit 160 drives the guide plate to move, and the guide plate moves along the slide rail 170 to move toward or away from the transfer mechanism 140.
  • the structure of the first power device 160 may be designed according to requirements.
  • the first power device 160 in this embodiment may include a power component 161 and a steel wire rope 162.
  • the steel wire rope 162 is connected to the guide plate.
  • the power component 161 drives the wire rope 162 to move, and drives the guide plate to move toward or away from the transmission mechanism 140.
  • the power component 161 may be an electric rod, a motor, or other power devices.
  • the steel wire rope 162 can be replaced with a rope made of other materials.
  • the landing platform 130 and the operation platform 120 are independent of each other, and the landing platform 130 is adjacent to the operation platform 120.
  • the take-off and landing platform 130 is connected to the operation platform 120, and the take-off and landing platform 130 can switch between the stowed and extended states relative to the operation platform 120; When in the extended state, it is used for landing of the drone 200.
  • the take-off and landing platform 130 when the take-off and landing platform 130 is extended relative to the operation platform 120, it can provide an operating place for the take-off or landing of the drone 200, and when there is no need for take-off or landing of the drone 200, the take-off and landing platform 130 can be provided Store it to avoid taking up space or shaking the landing platform 130 due to external factors.
  • the take-off and landing platform 130 may be rotated relative to the operation platform 120.
  • the take-off and landing platform 130 and the operation platform 120 are in a first relative position relationship
  • the take-off and landing platform 130 In the extended state
  • the landing platform 130 and the operating platform 120 are in a second relative positional relationship
  • the landing platform 130 is in a stowed state. As shown in FIG.
  • the take-off and landing platform 130 and the operation platform 120 may be connected through a rotating shaft, and further may be rotated by a motor to rotate, so as to achieve relative rotation between the take-off and landing platform 130 and the operation platform 120; or, The rotation of the landing platform 130 is achieved by the electric push rod 180.
  • the rotation setting between the operation platform 120 and the take-off and landing platform 130 can also be achieved in other ways.
  • the take-off and landing platform 130 is movably disposed relative to the operation platform 120.
  • the take-off and landing platform 130 moves into the operation platform 120, the take-off and landing platform 130 is in a stowed state; when When the take-off and landing platform 130 is partially moved outside the operation platform 120, the take-off and landing platform 130 is in an extended state.
  • each side of the landing platform 130 in FIG. 8 does not exceed the outermost side of the operating platform 120. At this time, the landing platform 130 is in a stowed state. At the side of the outer end, the landing platform 130 is in an extended state.
  • one-half of the take-off and landing platform 130 may be located outside the operation platform 120, or two-thirds of the take-off and landing platform 130 may be located outside the operation platform 120, although it may also be one-third of the take-off and landing platform 130 One or other proportions are located outside the operation platform 120.
  • the operation platform 120 may include a chute, and the landing and landing platform 130 is provided with a slider that cooperates with the chute to realize the cooperation between the operation platform 120 and the landing and landing platform 130 through the cooperation of the chute and the slider.
  • the movable setting of the sliding groove and the slider can be driven by a motor; or, the moving setting of the landing platform 130 can also be realized by an electric push rod; or alternatively, it can also be realized by the cooperation between the motor and the screw.
  • the moving setting of the landing platform 130 of course, the movable setting between the operating platform 120 and the landing platform 130 can also be realized in other ways.
  • FIG. 7 and 8 illustrate the relative positional relationship between the operation platform 120 and the take-off and landing platform 130 in the present invention.
  • the operation platform 120 and the take-off and landing platform 130 are simplified to a certain extent. In fact, it can exist Other structures.
  • the take-off and landing platform 130 in this embodiment is in an unfolded state with respect to the operation platform 120, and the take-off and landing platform 130 can rotate relative to the operation platform 120 under the action of the electric push rod 180.
  • the take-off and landing platform 130 and the operation platform 120 are an integrated structure.
  • the operation platform 120 in the subsequent embodiments.
  • the operation platform 120 may further include a conveying mechanism 121 for conveying the conveyed
  • the drone 200 in the operation platform 120 enables the operation platform 120 to perform corresponding one or more operations on the drone 200 at a corresponding position, or sends the drone 200 in the operation platform 120 to the transmission mechanism 140 .
  • the transfer mechanism 140 and the transfer mechanism are two independent mechanisms that cooperate with each other; optionally, the transfer mechanism 140 and the transfer mechanism 121 are integrated.
  • the conveying mechanism 121 is adjacent to and independent of the conveying mechanism 140, and the conveying mechanism 121 is located on one side in the conveying direction of the conveying mechanism 140, so that the drone 200 located on the conveying mechanism 140 can be moved from the conveying mechanism 140 Output to this transport mechanism 121.
  • the structure of the conveying mechanism 121 can be designed according to requirements, and it can be extended in various directions, so as to facilitate the operation of conveying the drone 200 to an appropriate position.
  • the conveying mechanism 121 in this embodiment may be a conveyor belt, and the conveyor belt may include one, two, or more. It can be understood that, in other embodiments, the conveying mechanism 121 may also be other devices capable of conveying, such as a conveying chain and rollers.
  • the conveying mechanism 121 for moving the drone 200 to various positions may be a whole, or may be independent conveying mechanisms 121 that are connected to each other and can realize the transfer of the drone 200.
  • the operation platform 120 may further include a structure for performing a corresponding operation on the drone 200.
  • the following describes the example based on the corresponding structure for performing the operation on the drone 200.
  • the operating platform 120 may include a power source supplementing device 122, which is configured to provide the drone 200 (which may be sent during the process of recovering the drone) at the first preset position in the operating platform 120.
  • the drone 200 entering the operation platform 120 and located at the first preset position may also supplement the power source for the drone 200 stored in the operation platform 120 and located at the first preset position during the release of the drone.
  • the drone 200 may be delivered to the first preset position by the conveying mechanism 121, and the first preset position may accommodate one or more unmanned persons. Machine 200.
  • the position can be limited by the locking component located on the conveying mechanism 121 to prevent the drone 200 from moving or shaking during the replenishment process of the power source; or After the human-machine 200 reaches the first preset position, it can also be locked by the locking component on the power source supplementing device 122, and then the power source can be supplemented; or alternatively, it can be different from the conveying mechanism 121 and the power source.
  • Other structures of the supplementary device 122 lock the drone 200.
  • the power source that the power source supplementing device 122 can supplement may be determined according to the power type of the drone 200.
  • the power source supplementary device 122 may include a charging post or a battery replacement device; when the drone 200 uses fuel oil as a power source, the power source supplementary device 122 may include refueling Device.
  • the same drone 200 may also have the function of power and fuel as power sources at the same time, and the power source supplementary device 122 based on this may simultaneously include one or more of a charging pile, a battery replacement device, and a fueling device.
  • the power source supplementing device 122 may further include other devices different from those in the above examples.
  • the power source device may include a charging post, which may be used to charge the built-in battery of the drone 200 that is fed into the first preset position in the operation platform 120; or may be used to charge a slave drone
  • the disassembled battery disassembled from the aircraft 200 is used for charging; or, when the drone 200 includes multiple batteries, the disassembled battery may be charged while charging the built-in battery through the charging pile.
  • the charging pile may include multiple charging interfaces, and the multiple interfaces may include a first interface adapted to the interface on the body of the drone 200 and a second interface adapted to the battery.
  • the first interface can be used to charge the drone 200; when the drone 200 sent to the first preset position has the battery removed At this time, the second interface is used to charge the disassembled battery.
  • the drone 200 includes a plurality of batteries, the built-in, unremoved battery can be charged through the first interface, and the disassembled battery can be charged through the second interface.
  • the multiple batteries may include a main battery and a backup battery, and the detached battery may be a main battery or a backup battery.
  • the controller 110 can obtain the idle status of each of the multiple charging interfaces on the charging pile, so that when the drone 200 has a charging requirement, it can select an idle charging interface for the built-in battery of the drone 200 to be charged or remove the battery. .
  • the controller 110 may obtain the idle state of the first interface.
  • the controller 110 selects the idle first interface as the built-in battery to perform Charging; in another embodiment, the controller 110 may obtain the idle state of the second interface to select the idle second interface to charge the disassembled battery removed from the drone 200.
  • the operating platform 120 may further include a smart manipulator 123.
  • the smart manipulator 123 may be disposed adjacent to or on the charging pile, so that it can be accessed from the Remove the battery from the man-machine 200, and / or install the battery that has been charged on the charging station to the drone 200.
  • the intelligent robot 123 may include a six-degree-of-freedom robot arm.
  • the drone 200 After the drone 200 descends, it can first power off automatically or power off under the control of the base station 100, and then remove the battery through the intelligent manipulator 123 to avoid hardware failure or software failure caused by the forced removal of the battery.
  • the intelligent manipulator 123 can also remove the battery without power failure, especially when the drone 200 has a backup battery and has a hot-swap function, the battery can be removed without power failure, which can also reduce the Damage to human machine 200.
  • the smart manipulator 123 can also remove the battery without power off.
  • the smart manipulator 123 may be arranged adjacent to the charging pile: based on the conveying direction of the conveying mechanism 121, the smart manipulator 123 is located behind the charging pile, so that the smart manipulator 123 can remove the battery before the drone 200 reaches the charging pile; or, the smart manipulator 123 also It can be located in front of the charging pile, so that the drone 200 has the battery installed when it is transported to the next position.
  • the intelligent manipulator 123 and the charging pile may be located opposite to each other on both sides of the conveying mechanism 121, or may be located at other positions.
  • the controller 110 When the controller 110 obtains that the power of multiple drones 200 is lower than the second preset threshold, it controls the charging pile to start and prepares to charge the drones 200 that are lower than the second preset threshold.
  • the second preset threshold may be one of 20%, 30%, and 40% of the total capacitance. Alternatively, each drone 200 sent into the operation platform 120 may also be charged.
  • a plurality of drones 200 that are sent into the operation platform 120 and have a power lower than a second preset threshold may be sequentially transferred by the transport mechanism 121 to a first preset position corresponding to the charging pile. Charging is performed through the idle first interface on the charging pile and the interface on the drone 200 body.
  • Other unmanned aerial vehicles 200 whose electric power is higher than the second preset threshold can be transported to other stations through the transport mechanism 121 to achieve corresponding operations.
  • a plurality of drones 200 that are sent to the operation platform 120 and whose power is lower than the second preset threshold may be sequentially transported to the position of the intelligent robot 123 by the transport mechanism 121 to facilitate the intelligence
  • the robot 123 first disassembles the battery, and then transports the battery to the first preset position through the smart robot 123 and charges it through the second interface.
  • the sorting of the plurality of drones 200 whose power is lower than the second preset threshold may be sorting when the base station 100 controls the drone 200 to land. For example, when multiple drones 200 with charging requirements arrive at the base station 100 at the same time, the base station 100 can obtain the specific power values of the multiple drones 200 according to the signals obtained from each of the drones 200. According to the power value, the plurality of drones 200 are controlled to be sorted, and are sequentially landed on the take-off and landing platform 130 so as to be sequentially transmitted to the operation platform 120. Alternatively, it is also possible to control the landing sequence of the drone 200 in an unordered situation, and instruct the drone 200 to land one by one according to the landing sequence, so that the charging pile can preferentially charge the drone 200 with insufficient power.
  • the controller 110 can also monitor the power of the drone 200 or the battery. When the power is greater than or equal to a first preset threshold When the charging pile is turned off, or the electrical connection between the charging pile and the drone 200, or the charging pile and the battery is disconnected, to avoid damage caused by overcharging.
  • the first preset threshold may be one of 80%, 90%, 95%, and 100% of the total capacity.
  • the controller 110 may monitor the power of the built-in battery of the drone 200 adapted to the first interface, and disconnect the first interface when the built-in battery power exceeds a first preset threshold of the total capacity of the built-in battery. Electrical connection with drone 200. In another embodiment, the controller 110 may detect the power of the disassembled battery adapted to the second interface, and disconnect the power between the second interface and the drone 200 when the disassembled battery exceeds a first preset threshold. connection.
  • the power source device may further include a refueling device for replenishing the amount of fuel to the drone 200 fed to the first preset position in the operation platform 120.
  • the refueling device may include a diesel device, a gasoline device, and the like.
  • the operation process can refer to the above charging pile.
  • the power source device may include a battery replacement device, and the battery replacement device may store a plurality of batteries with sufficient power.
  • the battery in the drone 200 can be removed by the smart manipulator 123, and then a piece of power can be taken from the battery replacement device.
  • batteries are installed to the drone 200.
  • the battery removed from the drone 200 can also be recovered into the battery replacement device through the smart manipulator 123; or the battery replacement device can also include a battery charging interface. Connected to the battery charging interface to charge.
  • the operating platform 120 may further include A component replacement / maintenance device for replacing or repairing a faulty component for the drone 200 located at the second preset position.
  • the component may include a bolt, a propeller, a positioning sensor, a camera, or other components.
  • the operation platform 120 may further include a load supplementing device 125 for performing load supplementation on the drone 200 located at the third preset position.
  • the first preset position, the second preset position, and the third preset position may have coincident positions to achieve a compact setting of the structure in the operation platform 120 and reduce the space occupation of the base station 100.
  • the first preset position, the second preset position, and the third preset position are all coincident, so when supplementing the power source for the drone 200, it may be unmanned.
  • the aircraft 200 can replace the faulty parts, and can also supplement the load for the drone 200.
  • the two positions may overlap, for example, as shown in FIGS.
  • the second preset position and the third preset position Coincidence, so that the load can be replenished while replacing the parts for the drone 200; or the first preset position and the third preset position can be overlapped, then the load can be supplemented at the same time as the power source is replenished; or The first preset position and the second preset position can be overlapped, and then the faulty component can be replaced while the power source is being replenished.
  • other overlapping situations can also be included, which will not be repeated here.
  • the load that can be supplemented by the load supplementing device 125 matches the load type of the drone 200.
  • the load replenishing device 125 may include one or more of a pesticide replenishing device, a water replenishing device, and a seed replenishing device; when the drone 200 is a logistics drone
  • the load replenishing device 125 may include a logistics load replenishing device 125, and may specifically include one or more of a package replenishing device and a cargo replenishing device.
  • the load supplementing device 125 may include other types.
  • the pesticide replenishing device may include one or more of a liquid pesticide replenishing device and a solid pesticide replenishing device.
  • the pesticide replenishing device may include a water tank, a pesticide raw liquid tank, and a mixing tank. The pesticide replenishing device may also extract water from the water tank and the pesticide in the pesticide raw liquid tank into the mixing tank according to a specific ratio. After mixing in the mixing tank, a mixed medicinal solution capable of being replenished to the drone 200 is obtained.
  • the drone 200 sent into the operation platform 120 may be operated after completing one or more operations of power source replenishment, load replenishment, and replacement / repair of faulty components. Transported to the take-off and landing platform 130 to fly out again to perform related tasks; in another embodiment, the drone 200 sent into the operation platform 120 may be temporarily stored, and after receiving instructions, fly from the take-off and landing platform 130 Out execution work.
  • the operation platform 120 may further include a storage mechanism 126, which is configured to store a plurality of drones 200 that are sent into the operation platform.
  • the drone 200 that is sent to the operation platform 120 can be directly transferred to the storage mechanism 126 for storage by the transportation mechanism 121.
  • the take-off and landing platform 130 is movably disposed relative to the operation platform 120, and the current take-off and landing platform 130 is in an extended state.
  • the third preset position for supplementing the load of the drone 200 and the first preset position for supplementing the power source coincide, and the storage mechanism 126 coincides with the first preset position and the third preset position. Area, so that when the drone 200 is stored, the power source and load of the drone 200 can be supplemented.
  • the storage mechanism 126 when the storage mechanism 126 is located at the second preset position for replacing the failed parts for the drone 200, when the drone 200 is stored, the parts replacement / Maintenance operation; or, there may be other positional relationships between the position where the storage mechanism 126 is located and the first preset position, the second preset position, and the third preset position, and details are not described herein again.
  • it may also be in the process of performing power source replenishment, load replenishment, and replacement / repair of faulty parts when the drone 200 receives an instruction to perform work again and is transported from the storage mechanism 126 to the transport mechanism 121.
  • One or more operations may also be in the process of performing power source replenishment, load replenishment, and replacement / repair of faulty parts when the drone 200 receives an instruction to perform work again and is transported from the storage mechanism 126 to the transport mechanism 121.
  • One or more operations may also be in the process of performing power source replenishment, load replenishment, and replacement / repair of faulty parts.
  • the drone 200 that is sent to the operation platform 120 may perform one of power source replenishment, load replenishment, and replacement / repair of faulty parts during the process of the conveyance mechanism 121 conveying to the storage mechanism 126 for storage. Multiple operations. Of course, it is also possible to complete various operations on the drone 200 by the sum of the operations performed in each of the above processes.
  • the storage mechanism 126 can store multiple UAVs 200, and the storage mechanism 126 may have various structures.
  • the storage mechanism 126 may include a plurality of storage racks 1261. As shown in FIGS. 9 to 14, the plurality of storage racks 1261 are disposed along a direction perpendicular to the conveying direction of the conveying mechanism 140. Since the conveying direction of the conveying mechanism 140 is substantially along the landing plane on the landing platform 130, the stacking direction of the plurality of storage racks 1261 is substantially perpendicular to the landing plane on the landing platform 130.
  • the storage mechanism 126 can be movably arranged along the setting direction of the storage rack 1261 to store the drone 200 currently being fed into the operation platform 120 to the free storage rack 1261.
  • an idle storage rack 1261 that is furthest from the landing platform 130 among the plurality of storage racks 1261 in a direction perpendicular to the landing platform 130 may be moved to be substantially flush with the conveying mechanism 121.
  • the first drone 200 to be transported from the conveying mechanism 121 is preferentially stored in an idle storage rack 1261 farthest from the landing platform 130, and then stored before the second drone 200 to be stored arrives.
  • the rack 1261 moves upward, so that the storage rack 1261 that has received the drone 200 is far away from the conveying mechanism 121, and the idle storage rack 1261 that is located below the storage rack 1261 that has received the drone 200 is basically flush with the conveying mechanism 121. Used to store the second drone 200.
  • the storage rack 1261 can store multiple UAVs 200 in turn.
  • each storage rack 1261 is similar to that of a drawer, and includes an extended state and a stored state.
  • the storage rack 1261 when the storage rack 1261 is in the extended state, it can be used as the storage rack 1261 landing platform 130. After the drone 200 has landed on the storage rack 1261, the storage rack 1261 is switched from the extended state to the storage state to store the drone 200.
  • a plurality of storage racks 1261 included in the storage mechanism 126 may be disposed along the conveying direction of the conveying mechanism 140. Since the conveying direction of the conveying mechanism 140 is basically along the landing on the landing platform 130, Therefore, the stacking direction of the plurality of storage racks 1261 is substantially parallel to the landing plane on the landing platform 130.
  • the take-off and landing platform 130 may be a surface on the operation platform 120 that is perpendicular to the conveying direction. After the drone 200 will land on the take-off and landing platform 130 and be positioned to the conveying mechanism 140, it may be transmitted to the conveying mechanism through the conveying mechanism 140.
  • the mechanism 121 limits the position by the transport mechanism 121 and transports the drone 200 to the idle storage rack 1261 in the transport direction along with the transport of the transport mechanism 121.
  • the drone 200 that landed first may be stored on an idle storage rack 1261 farthest from the landing platform 130 to avoid occupying the storage rack 1261 located on the upper floor, which may cause subsequent transportation blockage.
  • the stored drone 200 needs to be output from the storage mechanism 126, the principle of first-in-first-out can be adopted to preferentially call the last stored drone 200.
  • the storage mechanism 126 may be provided between the landing platform 130 and the charging pile, so that the drone 200 sent into the operation platform 120 may be located at The charging pile is stored after being replenished with sufficient power; or, it may be recharged during transportation from the storage mechanism 126 to the landing platform 130.
  • the charging pile is adjacent to the landing platform 130, and the storage mechanism 126 is disposed on a side of the charging pile away from the landing platform 130.
  • it can be the side adjacent to the charging pile away from the landing platform 130, or the other side of the charging pile (the side of the non-charging pile adjacent to the landing platform 130), which is convenient for the intelligent robot 123 to store from the storage mechanism 126.
  • the base station 100 provided based on the present invention may further include a power generating device 190.
  • the power generating device 190 is at least used to power the operation platform 120, the landing platform 130, the controller 110, and the transmission mechanism 140. Of course, it can also supply power to the storage mechanism 126, the transport mechanism 121 charging pile, the load replenishment device 125, the intelligent manipulator 123, and the like.
  • the base station 100 provided by the present invention may further include a guarantee area, where the guarantee area is used for storing items.
  • the item may be a kit related to the drone 200, or it may be a daily item related to the flying hand.
  • the remote controller sends a scheduling instruction to the base station to instruct the base station to perform the operation of releasing the drone, and then upon receiving the scheduling instruction, the base station releases one or more drones, in which the base station can sequentially release Multiple drones can also release two or more drones at the same time.
  • the base station 100 When the base station 100 according to the embodiment of the present invention needs to dispatch the drone 200 or detects that the drone 200 meets a specific policy (when it is recovered or sent out), it can pass between the operation platform 120, the landing platform 130, the transmission mechanism 140, and the controller 110.
  • the cooperation can realize the automatic recovery and delivery of the drone 200, and during the recovery or delivery process, the power source replacement, parts maintenance, load replenishment, data interaction and data exchange for the drone can be performed on the drone 200 through the operation platform 120.
  • the drone 200 performs storage and other processes to ensure that the drone 200 can maintain normal working conditions and can be directly used to perform related tasks.
  • the drone 200's recovery and delivery process does not require manual participation.
  • the base station 100 has a high degree of intelligence and avoids human labor. Time wasted when operating the drone 200 to perform operations such as power source replacement, component maintenance, load replenishment, data interaction, and drone storage.
  • a second embodiment of the present invention provides a vehicle 300.
  • the vehicle may include a vehicle body 301 and a base station 100.
  • the base station is provided on the vehicle body.
  • the structure of the base station is the same as that of the first embodiment. The description of Example 1 is not repeated here.
  • the vehicle 300 may include a carriage 302, the operation platform 120 may be located in the carriage 302, and the landing platform 130 includes at least one compartment door of the carriage 302.
  • the landing platform 130 may be a top-side compartment door of the carriage 302. At this time, the top-side compartment door may also become a part of the operation platform 120.
  • the landing platform 130 may include a rear compartment door of the cabin 302, the rear compartment door being disposed relative to the front of the vehicle.
  • the rear compartment door can be rotated relative to the compartment, so that on the one hand, the operating platform 120 inside the compartment can be protected by the landing platform 130 during the transportation of the vehicle.
  • Landing and takeoff of the drone 200 provide areas.

Abstract

一种基站及具有其的车辆。所述基站(100)能够与无人机(200)无线通信,基站包括:操作平台(120);起降平台(130);传送机构(140),至少部分设置在起降平台上,以将降落在起降平台上的无人机送入操作平台内、和/或将收纳在操作平台的无人机传送到起降平台上;以及控制器(110),用于在无人机状态满足特定策略或者接收到调度指令时,触发基站执行回收无人机的操作和/或放出无人机的操作;并在基站执行回收无人机的操作和/或放出无人机的操作过程中,控制操作平台执行如下操作中的至少一种:更新无人机的动力源、更换无人机的零部件、补充无人机的负载、与无人机进行数据交互和对无人机进行收纳。

Description

基站及具有其的车辆 技术领域
本发明涉及无人机管理领域,尤其涉及一种基站及具有其的车辆。
背景技术
无人机的应用已经越来越广泛,且往往在空旷无人、荒郊野外、大量农田或森林的地区无人机的使用更为频繁。在这些地区使用无人机一般需要通过基站实现动力源更换、零部件维修、负载补充、数据交互等。传统的基站操作方法还需要人工参与进行,例如需要飞手控制无人机准确降落至基站上并调整好无人机的位置等待进一步操作,或者需要人为对基站内的无人机进行操作,或者在无人机操作完成后需要飞手控制无人机起飞,这些传统的工作流程无法实现自动化,效率低下,且在无人机的数量较多,但人力资源不足时,该问题尤为突出,传统的操作方法已经不能满足需求。而现有的自动化的操作方法又无法确保无人机准确落在基站上,或者无法确保无人机准确放置于基站的操作工位上,从而无法保证无人机的操作安全。
发明内容
本发明提供一种基站及具有其的车辆。
具体地,本发明是通过如下技术方案实现的:
根据本发明的第一方面,提供一种基站,所述基站能够与无人机无线通信,所述基站包括:
操作平台;
起降平台,所述起降平台与所述操作平台相互独立,并且所述起降平台邻接于所述操作平台,或者所述起降平台与所述操作平台为一整体结构;
传送机构,至少部分设置在所述起降平台上,以将降落在所述起降平台上的无人机送入所述操作平台内、和/或将收纳在所述操作平台的无人机传送到所述起降平台上;以及
控制器,用于在无人机状态满足特定策略或者接收到调度指令时,触发基站执行回收无人机的操作和/或放出无人机的操作;并在基站执行回收无人机的操作和/或放出无人机的操作过程中,控制所述操作平台执行如下操作中的至少一种:更新无人机的动力源、更换无人机的零部件、补充无人机的负载、与无人机进行数据交互和对无人机进行收纳。
根据本发明的第二方面,提供一种车辆,包括车身,还包括基站,所述基站设 于所述车身上,所述基站能够与无人机无线通信,所述基站包括:
操作平台;
起降平台,所述起降平台与所述操作平台相互独立,并且所述起降平台邻接于所述操作平台,或者所述起降平台与所述操作平台为一整体结构;
传送机构,至少部分设置在所述起降平台上,以将降落在所述起降平台上的无人机送入所述操作平台内、和/或将收纳在所述操作平台的无人机传送到所述起降平台上;以及
控制器,用于在无人机状态满足特定策略或者接收到调度指令时,触发基站执行回收无人机的操作和/或放出无人机的操作;并在基站执行回收无人机的操作和/或放出无人机的操作过程中,控制所述操作平台执行如下操作中的至少一种:更新无人机的动力源、更换无人机的零部件、补充无人机的负载、与无人机进行数据交互和和对无人机进行收纳。
由以上本发明实施例提供的技术方案可见,本发明实施例在需要调度无人机或者检测到无人机满足特定策略(回收或送出时),能够通过操作平台、降落平台、传送机构以及控制器之间的配合,实现无人机的自动回收与送出,并在回收或送出过程中,可通过操作平台对无人机执行动力源更换、零部件维修、负载补充、数据交互和对无人机进行收纳等流程,确保无人机能够维持正常工况,后续能够直接用于执行相关任务,无人机回收和送出过程无需人工参与,基站的智能化程度高,避免由于人工操作无人机执行动力源更换、零部件维修、负载补充、数据交互、无人机收纳等操作时造成的时间浪费。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中的无人机系统的结构框图;
图2是本发明一实施例中的一种基站的结构示意图;
图3是本发明一实施例中的一种基站的状态示意图;
图4是本发明一实施例中的一种基站在另一状态下示意图;
图5是本发明一实施例中的另一种基站的结构示意图;
图6是本发明一实施例中的又一种基站的结构示意图;
图7是本发明一实施例中的一种操作平台与起降平台之间的配合示意图;
图8本发明又一实施例中的另一种操作平台与起降平台之间的配合示意图;
图9本发明一实施例中的一种基站的具体结构示意图;
图10是图9所示基站在另一方向上结构示意图;
图11本发明一实施例中的另一种基站的具体结构示意图;
图12是图11所示基站在另一方向上结构示意图;
图13本发明一实施例中的又一种基站的具体结构示意图;
图14是图13所示基站在另一方向上结构示意图;
图15本发明一实施例中的还一种基站的具体结构示意图;
图16本发明一实施例中的一种车辆的结构示意图。
附图标记:
100:基站;110:控制器;120:操作平台;121:输送机构;122:动力源补充装置;123:智能机械手;124:零部件更换/维修装置;125:负载补充装置;126:仓储机构;1261:仓储架;130:起降平台;140:传送机构;150:导正机构;160:第一动力装置;161:动力部件;162:钢丝绳;170:滑轨;180:电动推杆;190:发电装置。
200:无人机;
300:车辆;301:车身;302:车厢。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的基站和车辆进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
实施例一
本发明实施例中,如图1所示,基站100和无人机200之间能够进行无线通信。本实施例的无人机200可包括植保无人机(用于播撒种子,喷洒农药、水等)、物流无人机(用于运送货物、快递等)、行业应用无人机(能源巡检、基建勘探、建筑测绘等)、以及航拍无人机中的至少一种。
结合图1至图2,基站100可以包括控制器110、操作平台120、起降平台130和传送机构140。可选的,起降平台130与操作平台120相互独立,并且起降平台130 邻接于操作平台120;可选的,起降平台130与操作平台120为一整体结构。在本实施例中,传送机构140至少部分设置在起降平台130上,传送机构140能够将降落在起降平台130上的无人机送入操作平台120内和/或将收纳在操作平台120的无人机传送到起降平台130上。
具体的,本实施例的基站100可用于执行回收无人机的操作和/或放出无人机的操作。在本实施例中,控制器110可以在检测到无人机200的状态满足特定策略或者接收到调度指令时,触发基站100执行回收无人机的操作和/或放出无人机的操作,实现对无人机200的调度,如从收纳无人机200的基站100中放出无人机200、将正在执行相关任务(如播撒种子,喷洒农药或水、运送货物或快递、能源巡检、基建勘探、建筑测绘、拍摄等等)的无人机回收至基站100中等等。其中,调度指令可以由遥控器发送,也可以由与控制器110通信连接的终端发送。在本实施例中,调度指令用于指示基站100执行回收无人机的操作和/或放出无人机的操作。
其中,在执行回收无人机的操作时,无人机200在降落在起降平台130上后,控制器110控制传送机构140将降落在起降平台130上的无人机200送入操作平台120内,并控制操作平台120可对位于该操作平台120内的无人机200执行相应操作,该相应操作至少包括:对无人机200进行收纳。可选的,控制器110在检测到无人机200的状态满足特定策略或者接收到调度指令时,发送用于指示无人机200降落的指令至该无人机200,触发该无人机200降落在起降平台130上。
在执行放出无人机的操作时,控制器110控制操作平台120执行相应操作,该相应操作至少包括:放出该操作平台120中收纳的无人机200,具体的,操作平台120将收纳在该操作平台120内的无人机200输送到传送机构140上,接着,控制器110控制传送机构140将无人机200传送到起降平台130,无人机200在被传送到起降平台130后,可自主飞出并执行相关任务。
可以理解,在本实施例中,相应操作与无人机200的状态或调度指令相关。
例如,在一实施例中,控制器110检测到正在执行相关任务的无人机200满足:无人机200的动力源不足、无人机200的零部件处于故障状态、无人机200的负载量不足、无人机200满足与基站100进行数据交互的条件等中的至少一种,或者接收到用于指示基站100执行回收无人机的操作(即对正在执行相关任务的无人机200进行回收)的调度指令,则该相应操作至少包括:对无人机200进行收纳。进一步地,该相应操作还包括更新无人机200的动力源、更换无人机200的零部件、补充无人机200的负载、与无人机200进行数据交互等操作,当然,该相应操作并不限于上述操作,还可以包括其他操作。
无人机200可以由电动驱动飞行,也可以由油动驱动飞行。可选的,无人机200电池的电量不大于预设的第一电量阈值,确定无人机200的动力源不足。可选的,无 人机200的油箱中的油量不大于预设的第一油量阈值时,确定无人机200的动力源不足。第一电量阈值、第一油量阈值可根据需要设定。
可选的,根据无人机200的负载类型来确定无人机200的负载量是否充足的,可选的,无人机200的负载可包括农药、水和种子种的至少一种。若检测到无人机200的农药的剂量小于或者等于预设的第一药剂量阈值、无人机200的水量小于或者等于预设的第一水量阈值、无人机200的种子量小于或者等于预设的第一种子量阈值中的至少一种时,确定无人机200的负载量不足。其中,第一剂量阈值、第一水量阈值和第一种子量阈值可根据需要设定。可以理解,农药可包括液态农药和/或固态农药(如粉末状农药)。
可选的,无人机200的零部件可以包括无人机200的定位装置,也可以包括其他零部件。以无人机200的定位装置为例,无人机200在检测到无人机200的定位装置无法实现定位,则确定无人机200的定位装置处于故障状态。
无人机200与基站100的数据交互可包括两种链路:无人机200->基站100、基站100->无人机200。可选的,控制器110在检测到当前时刻距离前一次无人机200与基站100进行数据交互的时刻之间的时长满足预设的交互周期条件,或者在检测到无人机200的数据信息的数据量大于或者等于预设数据量阈值,或者在检测到无人机200的固件需要更新(无人机200的固件版本较低)时,确定无人机200满足与基站100进行数据交互的条件。其中,无人机200的数据信息包括如下至少一种:无人机200上拍摄装置拍摄的图像数据信息、无人机200的飞行轨迹信息、无人机200的历史位置数据信息。无人机200的数据信息也可以包括无人机200采集的其他数据信息或者无人机200运行过程中的其他数据信息。
需要说明的是:在针对无人机200进行回收时,若无人机200同时满足多种特定策略时,其可以被送入操作平台120内执行与每一特定策略所对应的操作。例如,当无人机200动力源不足且零部件故障时,可以被送入操作平台120更换动力源和零部件。其中,可以是无人机200自身检测,并且检测结果满足特定策略时,向基站100发送降落请求,以进入操作平台120进行操作;或者,也可以是无人机200将自身数据传输至基站100,由基站100根据无人机200数据分析得到检测结果,当检测结果满足特定策略时,向无人机200发送降落通知,使得被降落的无人机200进行操作平台120进行操作。
在另一实施例中,控制器110检测到操作平台120中收纳的无人机200满足:动力源补充完成、负载补充完成、零部件更换/维修完成、无人机200与基站100之间的数据交互完成等中的至少一种,或者接收到用于指示基站100执行放出无人机的操作(即将操作平台120中收纳的无人机200放出以执行相关任务)的调度指令,则该相应操作至少包括:将操作平台120所收纳的无人机200放出。
其中,动力源补充完成是指无人机200电池的电量大于第二电量阈值,或者,无人机200的油量大于第二油量阈值,第二电量阈值、第二油量阈值可根据实际需求设定。负载补充完成是指无人机200的农药的剂量大于预设的第二药剂量阈值、无人机200的水量大于预设的第二水量阈值和/或无人机200的种子量大于预设的第二种子量阈值。其中,第二药剂量阈值、第二水量阈值和第二种子量阈值可根据实际需求设定。零部件更换/维修完成是指零部件由故障状态切换至正常工作状态,例如,定位装置由无法定位或者定位的位置偏差较大切换至定位的位置偏差在允许范围内。无人机200与基站100之间的数据交互完成是指基站100已下载无人机200的当前数据信息(无人机200在回收至基站100之前,执行相关任务过程中所保存的数据信息),基站100完成对无人机200的固件升级等等。其中,无人机200的数据信息包括如下至少一种:无人机200上拍摄装置拍摄的图像数据信息、无人机200的飞行轨迹信息、无人机200的历史位置数据信息。无人机200的数据信息也可以包括无人机200采集的其他数据信息或者无人机200运行过程中的其他数据信息。另外,基站100在已下载无人机200的当前数据信息后,可指示无人机100将该无人机100中的当前数据信息删除,便于无人机200飞出后执行相关任务过程中具有足够的存储空间。
其中,基站100将无人机200送出后,无人机200在执行相关任务的过程中会一直与基站100进行交互,便于基站100及时获取无人机200的位置、电量、负载等状态信息,进而可根据无人机200反馈的状态信息判断是否需要触发该基站100执行回收无人机的操作。在无人机200从基站100飞出去后,可以按照无人机200上预先设定的程序动作,也可按照基站100发送的操作指令(该操作指令预先设置在基站100中,需要时调用)动作,还可按照飞手的操作指令动作,该动作可以包括:无人机200在指定区域执行相关任务,如,在指定的喷药的地点喷洒农药。本实施例中,无人机200从基站100飞出后,若无人机200未接收到飞手通过遥控器或终端发送操作指令,无人机200则默认按照基站100发送的操作指令动作;若接收到飞手通过遥控器或终端发送的操作指令,无人机200则按照飞手通过遥控器或终端发送的操作指令动作,使得无人机200的动作和位置等均在基站100的可控范围内。本实施例中,对于无人机200而言,飞手通过遥控器或终端发送的操作指令优先级高于基站100发送的操作指令,以满足用户对无人机200当前的操控需求。
可以理解的是,控制器110控制操作平台120执行更新无人机200的动力源、更换无人机200的零部件、补充无人机200的负载、与无人机200进行数据交互等操作的步骤可以在回收无人机的过程中由操作平台120执行,也可以在放出无人机的过程中,由操作平台120执行。其中,在放出无人机过程中,控制器110控制操作平台120执行更新无人机200的动力源、更换无人机200的零部件、补充无人机200的负载、与无人机200进行数据交互等操作的步骤需要在控制器110控制操作平台120将其收纳的无人机送出至传送机构140上的步骤之前执行。
在一些实施例中,若在同一时刻,控制器110既检测到无人机200的状态满足特定策略,又接收到调度指令,则控制器110根据调度指令,控制操作平台120执行相应操作,即调度指令的优先级高于控制器110根据无人机200的状态控制基站工作。
可选的,传送机构140可以位于起降平台130对应的降落区域的中部,也可以位于降落区域的其他位置。其目的在于,将降落在起降平台130上的无人机200传入操作平台120,或者将操作平台120内的无人机200传送到起降平台130,以预备起飞。
传送机构140的结构可根据需要设计,本实施例的传送机构140为传送带,传送带可以包括一条、两条或者更多。可以理解的是,在其他实施例中,传送机构140还可以是传送链、传送带、滚轮等能够实现传送的其它装置。
如图2-图5所示,基站100还可以包括设于起降平台130上、并相对于传送机构140可移动设置的导正机构150、和用于驱动导正机构150移动的第一动力装置160,该第一动力装置160用于驱动导正机构150相对于传送机构140进行移动,以将降落在起降平台130上的无人机200定位至传送机构140上,从而在传送机构140进行运动时,能够将无人机200沿起降平台130至操作平台120的方向运动。通过设置导正机构150,即使在没有飞手操作无人机200自动降落的位置存在较大误差的情况下,仍然能够通过导正机构150将无人机200推送至传送装置140上而将无人机200输送至操作平台120内,实现了无人机200的自动回收。
其中,导正机构150的结构可根据需要设计。在本实施例中,导正机构150可以包括导正板,本实施例的导正板与无人机200配合,导正板朝向传送机构140移动时,推动无人机200移动至传送机构140上。具体的,无人机200包括脚架,导正板与脚架抵接或连接,从而推动无人机200移动。
在一实施例中,结合图2-图5,传送带包括两条,分别为第一传送带和第二传送带,第一传送带和第二传送带间隔设置。导正机构150包括两个导正板,分别为第一导正板和第二导正板,第一导正板和第二导正板位于两条传送带的两侧。脚架包括第一脚架和第二脚架,在无人机200降落至起降平台130,第一动力装置160驱动第一导正板和/或第二导正板移动,使得第一导正板与第一脚架配合,和/或第二导正板与第二脚架配合,将第一脚架推送至第一传送带上,并将第二脚架推送至第二传送带上。
在另一实施例中,参见图6,传送带包括一条,导正机构150包括两个导正板,分别为第一导正板和第二导正板,第一导正板和第二导正板位于传送带的两侧。脚架包括第一脚架和第二脚架,在无人机200降落至起降平台130后,第一动力装置160驱动第一导正板和/或第二导正板移动,使得第一导正板与第一脚架配合,和/或第二导正板与第二脚架配合,将第一脚架和第二脚架推送至传送带上。
进一步的,参见图5、图6,基站100还设有一滑轨170,导正板与滑轨170配合。第一动力装置160驱动导正板移动,导正板沿着滑轨170移动,从而朝向或远 离传送机构140移动。
第一动力装置160的结构可根据需要设计,参见图5,本实施例的第一动力装置160可包括动力部件161和钢丝绳162,钢丝绳162与导正板连接。动力部件161驱动钢丝绳162移动,带动导正板朝向或远离传送机构140移动。其中,动力部件161可以为电动杆,也可以为电机,或者其他动力装置。钢丝绳162可替换成其他材质的绳子。
在一可行的实现方式中,起降平台130与操作平台120相互独立,并且,起降平台130与操作平台120邻接。可选的,参见图7、图8,起降平台130与操作平台120连接,并且该起降平台130能够相对于操作平台120在收纳状态和伸展状态之间的切换;并在起降平台130处于伸展状态时,用于供无人机200降落。以此,当起降平台130相对于操作平台120伸展时,可以为无人机200的起飞或者降落提供操作场所,而当无人机200不存在起飞或者降落需求时,可以将起降平台130进行收纳,避免占用空间,或者由于外部因素造成起降平台130晃动等。
其中,在一实施例中,参见图7,本实施例中起降平台130可以相对于操作平台120转动设置,当起降平台130和操作平台120处于第一相对位置关系时,起降平台130处于伸展状态,当起降平台130和操作平台120处于第二相对位置关系时,起降平台130处于收纳状态。如图7中所示,当起降平台130相对操作平台120转动到基本水平的位置时,起降平台130处于伸展状态,当起降平台130沿反方向转动到与水平面基本垂直的位置时,起降平台130处于收纳状态。
在本实施例中,起降平台130与操作平台120之间可以通过转轴连接,进一步可以通过电机带动转动进行转动,从而实现起降平台130与操作平台120之间的相对转动;或者,也可以通过电动推杆180实现起降平台130的转动。固然还可以通过其他方式实现操作平台120与起降平台130之间的转动设置。
在另一实施例中,参见图8,所述起降平台130相对于所述操作平台120可移动设置,当起降平台130移动至操作平台120内时,起降平台130处于收纳状态;当起降平台130部分移动至操作平台120外时,起降平台130处于伸展状态。
举例而言,图8中起降平台130的各个侧面均未超过操作平台120的最外端侧面,此时起降平台130处于收纳状态,当起降平台130部分移动至超过操作平台120的最外端侧面时,起降平台130处于伸展状态。例如,可以是起降平台130的二分之一位于操作平台120外、或者也可以是起降平台130的三分之二位于操作平台120外,固然还可以是起降平台130的三分之一或者其他比例部分位于操作平台120外。
在本实施例中,操作平台120可以包括滑槽,起降平台130上设有与滑槽配合的滑块,以通过滑槽与滑块的配合,实现操作平台120与起降平台130之间的可移动设置,该滑槽与滑块的配合可以通过电机驱动;或者,还可以通过电动推杆实现起降 平台130的移动设置;再或者,也可以通过电机与丝杠之间的配合实现起降平台130的移动设置;固然还可以通过其他方式实现操作平台120与起降平台130之间的可移动设置。
图7和8中为对本发明中操作平台120和起降平台130之间的相对位置关系进行说明,在一定程度上对操作平台120和起降平台130进行了简化,实际上,固然还可以存在其他结构。
如图9、图10所示,本实施例中的起降平台130相对于操作平台120处于展开状态,且该起降平台130可以在电动推杆180的作用下相对于操作平台120进行转动。
在另一可行的实现方式中,起降平台130与操作平台120为一整体结构,具体可参见后续实施例中对操作平台120的描述。
进一步地,为了使得传送机构140送入操作平台120内的无人机200能够被输送至合适的位置执行操作,该操作平台120还可以包括输送机构121,该输送机构121用于输送被送入操作平台120内的无人机200,使得操作平台120能够在对应位置对无人机200执行对应的一种或者多种操作,或者将操作平台120内的无人机200送到传送机构140上。
可选的,传送机构140与输送机构为相121互配合的两个独立的机构;可选的,传送机构140与输送机构121为一个整体。在本实施例中,该输送机构121与传送机构140邻接并且相互独立,且输送机构121位于传送机构140传送方向的一侧,从而使得位于传送机构140上的无人机200能够从传送机构140输出至该输送机构121。
该输送机构121的结构可根据需要设计,其可以朝向各个方向延伸,以便于将无人机200输送至合适位置执行操作。本实施例的输送机构121可以为传送带,传送带可以包括一条、两条或者更多。可以理解的是,在其他实施例中,输送机构121还可以是输送链、滚轮等能够实现传送的其它装置。用于将无人机200运动至各个位置的输送机构121可以为一整体,或者也可以为相互衔接、能够实现无人机200转运的独立输送机构121。
在上述实施例中,操作平台120还可以包括对无人机200执行对应操作的结构,下述根据无人机200执行操作的对应结构进行示例性说明。
在一实施例中,操作平台120可以包括动力源补充装置122,该动力源补充装置122用于为操作平台120内第一预设位置的无人机200(可以为回收无人机过程中送入操作平台120并位于第一预设位置的无人机200,也可以为放出无人机过程中收纳在操作平台120内并位于第一预设位置的无人机200)补充动力源。对于动力源不足或者没有动力源的无人机200可以是在输送机构121输送下,将无人机200送达该第一预设位置,该第一预设位置可以容纳一台或者多无人机200。
其中,在无人机200抵达第一预设位置后,可以通过位于输送机构121上的锁紧部件进行限位,避免在动力源的补充过程中无人机200移动或者晃动;或者,在无人机200抵达第一预设位置后,也可以通过动力源补充装置122上的锁紧部件先进行锁紧,然后再进行动力源补充;再或者,也可以是区别于输送机构121和动力源补充装置122的其他结构对无人机200进行锁紧。
动力源补充装置122能够补充的动力源可以根据无人机200的动力类型确定。例如,当无人机200采用电力作为动力源时,该动力源补充装置122可以包括充电桩或者电池更换装置;当无人机200采用燃油作为动力源时,该动力源补充装置122可以包括加油装置。固然,同一无人机200也可以同时具备电力和燃油作为动力源的功能,基于此的动力源补充装置122可以同时包括充电桩、电池更换装置和加油装置中的一个或者多个。当无人机200配置有区别于电力和燃油的其他动力源时,动力源补充装置122还可以包括区别于上述举例中的其他装置。
下述针对上述三种示例性说明的动力源补充装置122,对本发明的方案进行详细说明:
在一实施例中,动力源装置可以包括充电桩,该充电桩可以用于为送入操作平台120内第一预设位置的无人机200内置电池进行充电;或者可以用于为从无人机200上拆卸的拆卸电池进行充电;再或者,当无人机200包括多块电池时,可以在通过充电桩对内置电池进行充电的同时为拆卸电池进行充电。
可选的,充电桩可以包括多个充电接口,该多个接口可以包括与无人机200机身上的接口适配的第一接口、和与电池适配的第二接口。当被送入第一预设位置的无人机200内置有电池时,可以采用第一接口为无人机200进行充电;当被送入第一预设位置的无人机200的电池被拆卸时,采用第二接口为已拆卸的电池进行充电。其中,当无人机200包括多块电池时,可以在通过第一接口为内置的、未拆卸电池充电的同时,通过第二接口为已拆卸的电池进行充电。该多块电池可以包括主用电池和备用电池,被拆卸的电池可以为主用电池也可以为备用电池。
具体,控制器110可以获取充电桩上该多个充电接口各自的空闲状态,从而当无人机200存在充电需求时,可以为待充电的无人机200内置电池或者拆卸电池选取空闲的充电接口。在一实施例中,控制器110可以获取第一接口的空闲状态,当内置有电池的无人机200被送入第一预设位置时,控制器110选取空闲的第一接口为内置电池进行充电;在另一实施例中,控制器110可以获取第二接口的空闲状态,以选取空闲的第二接口为从无人机200上拆卸的拆卸电池进行充电。
针对无人机200上电池的拆卸,具体而言,操作平台120还可以包括智能机械手123,该智能机械手123可以邻近充电桩设置或者设置在充电桩上,从而使之能够通过智能机械手123从无人机200上拆卸电池,和/或,将在充电桩上充电完毕的电池 安装到无人机200上。该智能机械手123可以包括六自由度机械臂。
无人机200降落后,可以先自主断电或者在基站100的控制下断电后,再通过智能机械手123拆卸电池,避免引拆卸电池强制断电引发的硬件故障或者软件故障。或者,智能机械手123也可以在未断电的情况下拆卸电池,尤其在无人机200具备备用电池、具有热插拔功能时,可以在未断电的情况下拆卸电池,同样能够减少对无人机200的损伤。当然,在无备用电池时,智能机械手123也可以在未断电的情况下拆卸电池。
智能机械手123邻近充电桩设置可以是:基于输送机构121的输送方向,智能机械手123位于充电桩的后方,以便于智能机械手123在无人机200抵达充电桩之前拆卸电池;或者,智能机械手123也可以位于充电桩的前方,便于无人机200在输送至下一位置时已安装电池。当然,在其他一些实施例中,智能机械手123和充电桩也可以是位于输送机构121的两侧相对设置,或者也可以是位于其他位置。
当控制器110获取到存在多台无人机200电量低于第二预设阈值时,控制充电桩启动,准备为低于第二预设阈值的无人机200进行充电。该第二预设阈值可以是总电容量的20%、30%和40%中一个。或者,也可以对送入操作平台120内的每一无人机200进行充电。
在一实施例中,被送入操作平台120内的、且电量低于第二预设阈值的多台无人机200,可以依次被输送机构121输送到充电桩对应的第一预设位置,通过充电桩上空闲的第一接口与无人机200机身上的接口配合进行充电。其他电量高于第二预设阈值的无人机200则可以通过输送机构121输送到其他工位,实现对应操作。
在另一实施例中,被送入操作平台120内的、且电量低于第二预设阈值的多台无人机200,可以依次被输送机构121输送到智能机械手123的位置,以便于智能机械手123先拆卸电池,然后通过智能机械手123将电池运送到第一预设位置,通过第二接口进行充电。
其中,该多台电量低于第二预设阈值的无人机200的排序可以是在基站100控制无人机200降落时排序。例如,当同时存在多台具有充电需求的无人机200抵达基站100时,基站100可以根据获取到各个无人机200的信号,得到该多台无人机200的具体电量值,以此可以根据电量值,控制该多台无人机200进行排序,依次降落在起降平台130,使之依次被传送至操作平台120内。或者,也可以是在未排序的情况下,控制无人机200的降落顺序,根据降落顺序指示无人机200逐一降落,从而充电桩能够优先为电量不足的无人机200进行充电。
在无人机200的内置电池或者拆卸电池与对应的充电接口配合完成,并处于充电状态时,控制器110还可以监测该无人机200或者电池的电量,当电量大于等于第一预设阈值时,关闭充电桩;或者断开充电桩与无人机200、或者充电桩与电池之间 的电连接,避免过充造成损伤。该第一预设阈值可以是总电容量的80%、90%、95%和100%中一个。
在一实施例中,控制器110可以监测与第一接口适配的无人机200内置电池的电量,当内置电池电量超过内置电池总电容量的第一预设阈值时,断开第一接口与无人机200之间的电连接。在另一实施例中,控制器110可以检测与第二接口适配的拆卸电池的电量,当拆卸电池电量超过第一预设阈值时,断开第二接口与无人机200之间的电连接。
或者,动力源装置还可以包括加油装置,该加油装置用于为送入操作平台120内第一预设位置的无人机200补充油量。该加油装置可以包括柴油装置、汽油装置等。其操作过程可以参考上述充电桩。
或者,该动力源装置可以包括电池更换装置,该电池更换装置可以存储有多块电量充足的电池。当电量低于第二预设阈值的无人机200被送入第一预设位置时,可以通过智能机械手123先将无人机200内的电池拆卸,然后从电池更换装置内拿取一块电量充足的电池安装至无人机200。其中,从无人机200内拆卸电池也可以通过智能机械手123回收到电池更换装置内;或者该电池更换装置也可以包括电池充电接口,从无人机200上拆卸的电池可以通过智能机械手123插接到电池充电接口进行充电。
相类似的,参考在操作平台120内第一预设位置对无人机200动力源进行补充的动力源装置,如图11、图12所示,在一实施例中,操作平台120还可以包括针对位于第二预设位置的无人机200进行故障零部件更换或维修的零部件更换/维修装置,其中,该零部件可以包括螺栓、螺旋桨、定位传感器、摄像头或者其他零部件等。在另一实施例中,操作平台120还可以包括针对位于第三预设位置的无人机200进行负载补充的负载补充装置125。其中,第一预设位置、第二预设位置和第三预设位置中可以存在重合的位置,以实现操作平台120内结构的紧凑设置,减少基站100的空间占用。
例如,如图9、图10中所示,第一预设位置、第二预设位置和第三预设位置均重合,那么在为无人机200进行动力源补充的同时,可以为无人机200更换故障零部件、还可以为无人机200补充负载;或者,也可以是其中的两个位置重合,例如,如图11和12所示,第二预设位置和第三预设位置重合,从而可以在为无人机200更换零部件的同时补充负载;或者还可以是第一预设位置和第三预设位置重合,那么可以在动力源补充的同时进行负载补充;或者,还可以第一预设位置和第二预设位置重合,那么可以在动力源补充的同时进行更换故障零部件。固然还可以包括其他重合的情况,在此不再赘述。
可选的,负载补充装置125所能够补充的负载与无人机200的负载类型匹配。例如,当无人机200为植保无人机200时,负载补充装置125可以包括农药补充装置、 水补充装置、种子补充装置中的一种或者多种;当无人机200为物流无人机200时,负载补充装置125可以包括物流负载补充装置125,具体可以包括包裹补充装置、货物补充装置中一种或者多种。固然,针对无人机200的工况,负载补充装置125固然还可以包括其他类型。
其中,在一实施例中,农药补充装置可以包括液态农药补充装置和固态农药补充装置中的一种或者多种。当农药补充装置同时为无人机200补充液态农药和固态农药时,无人机200可以将液态农药和固态农药进行混合后喷洒,或者也可以是分开喷洒。在另一实施例中,农药补充装置可以包括水箱、农药原液箱和混合箱,该农药补充装置还可以按照特定比例抽取水箱内的水和农药原液箱的农药至混合箱内,农药原液和水在混合箱内混合后得到能够补充至无人机200的混合药液。
基于本发明的方案,在一实施例中,被送入操作平台120内的无人机200可以在完成动力源补充、负载补充、故障零部件更换/维修中一种或者多种操作后,被输送至起降平台130重新飞出而执行相关任务;在另一实施例中,被送入操作平台120内的无人机200可以被暂时收纳,待接收到指令后再从起降平台130飞出执行工作。
可选的,如图9-12所示,操作平台120还可以包括仓储机构126,该仓储机构126用于收纳被送入操作平台内的多台无人机200。其中,被送入操作平台120的无人机200可以通过输送机构121直接输送到仓储机构126进行仓储。
可选的,如图13、图14所示,本实施例中,起降平台130相对于操作平台120可移动设置,且当前起降平台130处于伸展状态。本实施例中,为无人机200补充负载的第三预设位置、和为补充动力源的第一预设位置重合,且仓储机构126的位于第一预设位置和第三预设位置重合的区域,从而可以在无人机200被仓储时,补充无人机200的动力源和负载。
当然,在其他实施例中,仓储机构126的位于为无人机200更换故障零部件的第二预设位置时,可以在无人机200被仓储时,针对无人机200执行零部件更换/维修操作;或者,仓储机构126所处位置和第一预设位置、第二预设位置和第三预设位置之间还可能存在其他位置关系,在此不再展开赘述。
可选的,也可以是在无人机200接收到再次执行工作的指令,从仓储机构126被输送至输送机构121的过程中,针对执行动力源补充、负载补充、故障零部件更换/维修中一种或者多种操作。
可选的,被送入操作平台120的无人机200可以在输送机构121输送至仓储机构126进行仓储的过程中,针对执行动力源补充、负载补充、故障零部件更换/维修中一种或者多种操作。当然,也可能是通过上述每一过程中所执行的操作之和,完成对无人机200的各项操作。
本实施例中,仓储机构126可仓储多台无人机200,仓储机构126可能存在多 种结构。
在一实施例中,仓储机构126可以包括多个仓储架1261,如图9-图14所示,该多个仓储架1261沿与传送机构140传送方向垂直的方向设置。由于传送机构140的传送方向基本沿起降平台130上的降落平面,所以,多个仓储架1261的堆叠方向基本与起降平台130上的降落平面垂直。
其中,该仓储机构126能够沿仓储架1261的而设置方向可移动设置,以将当前被送入操作平台120内的无人机200收纳至空闲的仓储架1261。例如,可以将沿垂直于起降平台130的方向,将多个仓储架1261中离起降平台130最远的空闲仓储架1261移动至与输送机构121基本平齐。输送机构121输送过来的第一台待收纳的无人机200优先被收纳至离起降平台130最远的空闲仓储架1261、然后在待收纳的第二台无人机200抵达之前,将仓储架1261向上运动,使得已收纳有无人机200的仓储架1261远离输送机构121,而位于该已收纳有无人机200的仓储架1261下方的空闲仓储架1261基本与输送机构121平齐,用于收纳第二台无人机200。依次类推,仓储架1261可以依次仓储多台无人机200。
在一实施例中,如图13所示,每个仓储架1261的结构类似于抽屉,包括伸出状态和收纳状态。本实施例中,当仓储架1261处于伸出状态时,可以作为仓储架1261起降平台130使用。无人机200降落在仓储架1261后,仓储架1261由伸出状态切换至收纳状态,对无人机200进行收纳。
在另一实施例中,如图15所示,仓储机构126所包括的多个仓储架1261可以沿传送机构140的传送方向设置,由于传送机构140的传送方向基本沿起降平台130上的降落平面,所以,多个仓储架1261的堆叠方向基本与起降平台130上的降落平面平行。
其中,起降平台130可以为操作平台120上与传送方向垂直的一侧表面,当无人机200将落在起降平台130并被定位至传送机构140后,可以通过传送机构140传输至输送机构121,通过输送机构121进行限位并随着输送机构121的输送,将无人机200沿传送方向运送至空闲的仓储架1261。
可选的,可以将先降落的无人机200存储在离起降平台130最远的空闲仓储架1261上,避免占用位于上层的仓储架1261,导致后续运输阻塞。其中,当被仓储的无人机200需要从仓储机构126输出时,可以采用先进后出的原则,优先调用最后被收纳的无人机200。
可选的,在一实施例中,如图11-图14所示,仓储机构126可以设于起降平台130和充电桩之间,从而被送入操作平台120内的无人机200可以在充电桩的位置补充足够电力后再进行收纳;或者,也可以是在从仓储机构126中运输至起降平台130的过程中再进行电力补充。
在另一实施例中,如图9、图10所示,充电桩与起降平台130邻接,且仓储机构126设于充电桩远离起降平台130的一侧。其中,可以是邻接充电桩远离起降平台130的一侧,也可以是充电桩的其他侧(非充电桩邻接起降平台130的一侧),便于智能机械手123从仓储机构126内所仓储的无人机200上拆卸电池,放入充电桩进行充电;或者,将充电桩上充好的电池安装至仓储机构126内所仓储的无人机200上。
基于本发明提供的基站100,还可以包括发电装置190,该发电装置190至少用于为操作平台120、起降平台130、控制器110和传送机构140进行供电。固然,其还可以为仓储机构126、输送机构121充电桩、负载补充装置125、智能机械手123等进行供电。
基于本发明提供的基站100,还可以包括保障区,该保障区用于存储物品。该物品可以是与无人机200相关的工具包,或者也可以是与飞手相关的日常用品。
在一具体应用场景中,遥控器发送调度指令至基站,用于指示基站执行放出无人机的操作,则基站在接收到调度指令,放出一台或多台无人机,其中基站可依次放出多台无人机,也可以同时放出两台或两台以上的无人机。
本发明实施例的基站100,在需要调度无人200或者检测到无人机200满足特定策略(回收或送出时),能够通过操作平台120、降落平台130、传送机构140以及控制器110之间的配合,实现无人机200的自动回收与送出,并在回收或送出过程中,可通过操作平台120对无人机200执行动力源更换、零部件维修、负载补充、数据交互和对无人机200进行收纳等流程,确保无人机200能够维持正常工况,后续能够直接用于执行相关任务,无人机200回收和送出过程无需人工参与,基站100的智能化程度高,避免由于人工操作无人机200执行动力源更换、零部件维修、负载补充、数据交互、无人机收纳等操作时造成的时间浪费。
实施例二
参见图16,本发明实施例二提供一种车辆300,该车辆可以包括车身301和基站100,其中,基站设于车身上,基站的结构与上述实施例一的基站相同,具体可参见上述实施例一的描述,此处不再赘述。
在本实施例中,该车辆300可以包括车厢302,操作平台120可以位于车厢302内,起降平台130包括车厢302的至少一侧厢门。
在一实施例中,起降平台130可以为车厢302的顶侧厢门,此时顶侧厢门亦可以成为操作平台120的一部分。
在另一实施例中,起降平台130可以包括车厢302的后侧厢门,该后侧厢门相对于车辆的车头设置。后侧厢门能够相对于车厢转动,从而一方面可以在车辆运输过程中,通过起降平台130对车厢内部的操作平台120进行保护,另一方面,当后侧厢 门敞开时,可以为从无人机200的降落和起飞提供区域。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的基站和具有其的车辆进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (73)

  1. 一种基站,其特征在于,所述基站能够与无人机无线通信,所述基站包括:
    操作平台;
    起降平台,所述起降平台与所述操作平台相互独立,并且所述起降平台邻接于所述操作平台,或者所述起降平台与所述操作平台为一整体结构;
    传送机构,至少部分设置在所述起降平台上,以将降落在所述起降平台上的无人机送入所述操作平台内、和/或将收纳在所述操作平台的无人机传送到所述起降平台上;以及
    控制器,用于在无人机状态满足特定策略或者接收到调度指令时,触发基站执行回收无人机的操作和/或放出无人机的操作;并在基站执行回收无人机的操作和/或放出无人机的操作过程中,控制所述操作平台执行如下操作中的至少一种:更新无人机的动力源、更换无人机的零部件、补充无人机的负载、与无人机进行数据交互和对无人机进行收纳。
  2. 根据权利要求1所述的基站,其特征在于,还包括设于所述起降平台上、并相对于所述传送机构可移动设置的导正机构和用于驱动所述导正机构移动的第一动力装置,所述第一动力装置用于驱动所述导正机构相对所述传送机构移动,以将降落在所述起降平台上的无人机定位至所述传送机构上。
  3. 根据权利要求1所述的基站,其特征在于,所述起降平台与所述操作平台连接,且能够相对于所述操作平台在收纳状态和伸展状态之间切换;其中,所述起降平台处于伸展状态时,用于供无人机降落。
  4. 根据权利要求3所述的基站,其特征在于,所述起降平台相对于所述操作平台转动设置;其中:
    当所述起降平台和所述操作平台处于第一相对位置关系时,所述起降平台处于伸展状态;
    当所述起降平台和所述操作平台处于第二相对位置关系时,所述起降平台处于收纳状态。
  5. 根据权利要求3所述的基站,其特征在于,所述起降平台相对于所述操作平台可移动设置;其中:
    当所述起降平台移动至所述操作平台内时,所述起降平台处于收纳状态;
    当所述起降平台部分移动至所述操作平台外时,所述起降平台处于伸展状态。
  6. 根据权利要求1所述的基站,其特征在于,所述操作平台包括输送机构,用于输送被送入所述操作平台内的无人机,使得所述操作平台能够在对应位置对所述无人机执行对应的一种或者多种操作。
  7. 根据权利要求6所述的基站,其特征在于,所述输送机构和所述传送机构为一体结构;或者
    所述输送机构与所述传送机构相互独立且邻接。
  8. 根据权利要求1所述的基站,其特征在于,所述操作平台包括动力源补充装置,用于为送入所述操作平台内第一预设位置的无人机补充动力源。
  9. 根据权利要求8所述的基站,其特征在于,所述动力源补充装置包括充电桩,所述充电桩用于为送入所述操作平台内第一预设位置的无人机内置电池进行充电;和/或
    所述充电桩用于为从无人机拆卸的拆卸电池进行充电。
  10. 根据权利要求9所述的基站,其特征在于,所述控制器还用于监测所述内置电池和/或所述拆卸电池的电量,以在内置电池和/或所述拆卸电池的电量大于或者等于第一预设阈值时,关闭所述充电桩,或者断开所述充电桩与所述内置电池和/或所述拆卸电池之间的电连接。
  11. 根据权利要求9所述的基站,其特征在于,所述控制器还用于监测无人机内置电池和/或所述拆卸电池的电量,以在电量低于第二预设阈值时,控制所述充电桩启动。
  12. 根据权利要求9所述的基站,其特征在于,所述充电桩包括多个充电接口,所述控制器用于根据各个充电接口的空闲状态,为待充电的所述内置电池和/或所述拆卸电池选取空闲的充电接口。
  13. 根据权利要求8所述的基站,其特征在于,所述动力源补充装置包括加油装置,用于为送入所述操作平台内第一预设位置的无人机补充油量。
  14. 根据权利要求8所述的基站,其特征在于,所述动力源补充装置包括电池更换装置,用于为送入所述操作平台内第一预设位置的无人机更换电池。
  15. 根据权利要求9所述的基站,其特征在于,所述操作平台还包括仓储机构,所述仓储机构用于收纳被送入所述操作平台的多台无人机;
    所述第一预设位置为所述仓储机构的位置。
  16. 根据权利要求15所述的基站,其特征在于,所述仓储机构包括多个仓储架,所述多个仓储架沿与所述传送机构的传送方向垂直的方向设置;
    所述仓储机构能够沿所述仓储架的设置方向可移动设置,以将当前送入所述操作平台内的无人机收纳至空闲的仓储架。
  17. 根据权利要求15所述的基站,其特征在于,所述仓储机构包括多个仓储架,所述多个仓储架沿所述传送机构的传送方向设置;
    所述起降平台为所述操作平台上与所述传送方向垂直的一侧表面,所述传送机构限位无人机并能够将无人机送入空闲的仓储架。
  18. 根据权利要求15所述的基站,其特征在于,所述仓储机构设于所述起降平台和所述充电桩之间;或者,
    所述充电桩邻接所述起降平台,所述仓储机构设于所述充电桩远离所述起降平台的一侧。
  19. 根据权利要求18所述的基站,其特征在于,所述操作平台还包括智能机械手, 所述智能机械手邻近所述充电桩设置或者设于所述充电桩上;
    所述智能机械手用于将所述仓储机构收纳的无人机电池拆卸下来并放入所述充电桩上,和/或,用于从所述充电桩拿取充电完毕的电池并安装至所述仓储机构收纳的无人机上。
  20. 根据权利要求15所述的基站,其特征在于,所述操作平台包括负载补充装置,所述负载补充装置邻近所述仓储机构设置或者设于所述仓储机构上;
    当所述基站处于启动状态、且被送入所述操作平台的无人机处于第一预设位置时,所述负载补充装置用于为所述无人机补充负载。
  21. 根据权利要求20所述的基站,其特征在于,所述负载补充装置包括下述至少一种:
    农药补充装置、水补充装置、种子补充装置、物流负载补充装置。
  22. 根据权利要求21所述的基站,其特征在于,所述农药补充装置包括下述至少一种:
    液态农药补充装置、固态农药补充装置。
  23. 根据权利要求21所述的基站,其特征在于,所述农药补充装置包括水箱、农药原液箱和混合箱;
    所述农药补充装置还用于按照特定比例抽取所述水箱内的水和所述农药原液箱内的农药至所述混合箱,以得到补充至无人机的药液。
  24. 根据权利要求1所述的基站,其特征在于,所述无人机状态满足特定策略包括如下至少一种:
    所述无人机的动力源不足;
    所述无人机的零部件处于故障状态;
    所述无人机的负载量不足;
    所述无人机满足与基站进行数据交互的条件。
  25. 根据权利要求24所述的基站,其特征在于,所述无人机的动力源不足,包括:
    所述无人机电池的电量小于或者等于预设的第一电量阈值,或
    所述无人机的油量小于或者等于预设的第一油量阈值。
  26. 根据权利要求24所述的基站,其特征在于,所述无人机的负载量不足包括如下至少一种:
    所述无人机的农药的剂量小于或者等于预设的第一药剂量阈值;
    所述无人机的水量小于或者等于预设的第一水量阈值;
    所述无人机的种子量小于或者等于预设的第一种子量阈值。
  27. 根据权利要求26所述的基站,其特征在于,所述农药包括如下至少一种:
    液态农药、固态农药。
  28. 根据权利要求24所述的基站,其特征在于,所述无人机满足与基站进行数据交互的条件,包括:
    当前时刻距离前一次无人机与基站进行数据交互的时刻之间的时长满足预设的交互周期条件;或者,
    所述无人机的数据信息的数据量大于或者等于预设数据量阈值,其中,所述无人机的数据信息包括如下至少一种:
    所述无人机上拍摄装置拍摄的图像数据信息、所述无人机的飞行轨迹信息、所述无人机的历史位置数据信息。
  29. 根据权利要求1所述的基站,其特征在于,所述无人机状态满足特定策略包括如下至少一种:
    动力源补充完成、负载补充完成、零部件维修完成及无人机与基站之间的数据交互完成。
  30. 根据权利要求29所述的基站,其特征在于,动力源补充完成包括:
    无人机电池的电量大于第二电量阈值,或,
    无人机的油量大于第二油量阈值。
  31. 根据权利要求29所述的基站,其特征在于,负载补充完成包括如下至少一种:
    无人机的农药的剂量大于预设的第二药剂量阈值;
    无人机的水量大于预设的第二水量阈值;
    无人机的种子量大于预设的第二种子量阈值。
  32. 根据权利要求29所述的基站,其特征在于,零部件更换/维修完成包括:
    零部件由故障状态切换至正常工作状态。
  33. 根据权利要求29所述的基站,其特征在于,无人机与基站之间的数据交互完成包括如下至少一种:
    基站已下载所述无人机的当前数据信息;
    基站完成了对无人机的固件升级;
    其中,所述无人机的数据信息包括如下至少一种:
    所述无人机上拍摄装置拍摄的图像数据信息、所述无人机的飞行轨迹信息、所述无人机的历史位置数据信息。
  34. 根据权利要求1所述的基站,其特征在于,还包括发电装置,所述发电装置至少用于为所述操作平台、所述起降平台、所述控制器、所述传送机构进行供电。
  35. 根据权利要求1所述的基站,其特征在于,还包括保障区,用于存储物品。
  36. 一种车辆,包括车身,其特征在于,还包括基站,所述基站设于所述车身上;所述基站能够与无人机无线通信,所述基站包括:
    操作平台;
    起降平台,所述起降平台与所述操作平台相互独立,并且所述起降平台邻接于所述操作平台,或者所述起降平台与所述操作平台为一整体结构;
    传送机构,至少部分设置在所述起降平台上,以将降落在所述起降平台上的无人机送入所述操作平台内、和/或将收纳在所述操作平台的无人机传送到所述起降平台 上;以及
    控制器,用于在无人机状态满足特定策略或者接收到调度指令时,触发基站执行回收无人机的操作和/或放出无人机的操作,并在基站执行回收无人机的操作和/或放出无人机的操作过程中,控制所述操作平台执行如下操作中的至少一种:更新无人机的动力源、更换无人机的零部件、补充无人机的负载、与无人机进行数据交互和对无人机进行收纳。
  37. 根据权利要求36所述的车辆,其特征在于,还包括设于所述起降平台上、并相对于所述传送机构可移动设置的导正机构和用于驱动所述导正机构移动的第一动力装置,所述第一动力装置用于驱动所述导正机构相对所述传送机构移动,以将降落在所述起降平台上的无人机定位至所述传送机构上。
  38. 根据权利要求36所述的车辆,其特征在于,所述起降平台与所述操作平台连接,且能够相对于所述操作平台在收纳状态和伸展状态之间切换;其中,所述起降平台处于伸展状态时,用于供无人机降落。
  39. 根据权利要求38所述的车辆,其特征在于,所述起降平台相对于所述操作平台转动设置;其中:
    当所述起降平台和所述操作平台处于第一相对位置关系时,所述起降平台处于伸展状态;
    当所述起降平台和所述操作平台处于第二相对位置关系时,所述起降平台处于收纳状态。
  40. 根据权利要求38所述的车辆,其特征在于,所述起降平台相对于所述操作平台可移动设置;其中:
    当所述起降平台移动至所述操作平台内时,所述起降平台处于收纳状态;
    当所述起降平台部分移动至所述操作平台外时,所述起降平台处于伸展状态。
  41. 根据权利要求36所述的车辆,其特征在于,所述操作平台包括输送机构,用于输送被送入所述操作平台内的无人机,使得所述操作平台能够在对应位置对所述无人机执行对应的一种或者多种操作。
  42. 根据权利要求41所述的车辆,其特征在于,所述输送机构和所述传送机构为一体结构;或者
    所述输送机构与所述传送机构相互独立且邻接。
  43. 根据权利要求36所述的车辆,其特征在于,所述操作平台包括动力源补充装置,用于为送入所述操作平台内第一预设位置的无人机补充动力源。
  44. 根据权利要求43所述的车辆,其特征在于,所述动力源补充装置包括充电桩,所述充电桩用于为送入所述操作平台内第一预设位置的无人机内置电池进行充电;和/或
    所述充电桩用于为从无人机拆卸的拆卸电池进行充电。
  45. 根据权利要求44所述的车辆,其特征在于,所述控制器还用于监测所述内置 电池和/或所述拆卸电池的电量,以在内置电池和/或所述拆卸电池的电量大于或者等于第一预设阈值时,关闭所述充电桩,或者断开所述充电桩与所述内置电池和/或所述拆卸电池之间的电连接。
  46. 根据权利要求44所述的车辆,其特征在于,所述控制器还用于监测无人机内置电池和/或所述拆卸电池的电量,以在电量低于第二预设阈值时,控制所述充电桩启动。
  47. 根据权利要求44所述的车辆,其特征在于,所述充电桩包括多个充电接口,所述控制器用于根据各个充电接口的空闲状态,为待充电的所述内置电池和/或所述拆卸电池选取空闲的充电接口。
  48. 根据权利要求43所述的车辆,其特征在于,所述动力源补充装置包括加油装置,用于为送入所述操作平台内第一预设位置的无人机补充油量。
  49. 根据权利要求43所述的车辆,其特征在于,所述动力源补充装置包括电池更换装置,用于为送入所述操作平台内第一预设位置的无人机更换电池。
  50. 根据权利要求44所述的车辆,其特征在于,所述操作平台还包括仓储机构,所述仓储机构用于收纳被送入所述操作平台的多台无人机;
    所述第一预设位置为所述仓储机构的位置。
  51. 根据权利要求50所述的车辆,其特征在于,所述仓储机构包括多个仓储架,所述多个仓储架沿与所述传送机构的传送方向垂直的方向设置;
    所述仓储机构能够沿所述仓储架的设置方向可移动设置,以将当前送入所述操作平台内的无人机收纳至空闲的仓储架。
  52. 根据权利要求50所述的车辆,其特征在于,所述仓储机构包括多个仓储架,所述多个仓储架沿所述传送机构的传送方向设置;
    所述起降平台为所述操作平台上与所述传送方向垂直的一侧表面,所述传送机构限位无人机并能够将无人机送入空闲的仓储架。
  53. 根据权利要求50所述的车辆,其特征在于,所述仓储机构设于所述起降平台和所述充电桩之间;或者,
    所述充电桩邻接所述起降平台,所述仓储机构设于所述充电桩远离所述起降平台的一侧。
  54. 根据权利要求53所述的车辆,其特征在于,所述操作平台还包括智能机械手,所述智能机械手邻近所述充电桩设置或者设于所述充电桩上;
    所述智能机械手用于将所述仓储机构收纳的无人机电池拆卸下来并放入所述充电桩上,和/或,用于从所述充电桩拿取充电完毕的电池并安装至所述仓储机构收纳的无人机上。
  55. 根据权利要求50所述的车辆,其特征在于,所述操作平台包括负载补充装置,所述负载补充装置邻近所述仓储机构设置或者设于所述仓储机构上;
    当所述基站处于启动状态、且被送入所述操作平台的无人机处于第一预设位置时, 所述负载补充装置用于为所述无人机补充负载。
  56. 根据权利要求55所述的车辆,其特征在于,所述负载补充装置包括下述至少一种:
    农药补充装置、水补充装置、种子补充装置、物流负载补充装置。
  57. 根据权利要求56所述的车辆,其特征在于,所述农药补充装置包括下述至少一种:
    液态农药补充装置、固态农药补充装置。
  58. 根据权利要求57所述的车辆,其特征在于,所述农药补充装置包括水箱、农药原液箱和混合箱;
    所述农药补充装置还用于按照特定比例抽取所述水箱内的水和所述农药原液箱内的农药至所述混合箱,以得到补充至无人机的药液。
  59. 根据权利要求36所述的车辆,其特征在于,所述无人机状态满足特定策略包括如下至少一种:
    所述无人机的动力源不足;
    所述无人机的零部件处于故障状态;
    所述无人机的负载量不足;
    所述无人机满足与基站进行数据交互的条件。
  60. 根据权利要求59所述的车辆,其特征在于,所述无人机的动力源不足,包括:
    所述无人机电池的电量小于或者等于预设的第一电量阈值,或
    所述无人机的油量小于或者等于预设的第一油量阈值。
  61. 根据权利要求59所述的车辆,其特征在于,所述无人机的负载量不足包括如下至少一种:
    所述无人机的农药的剂量小于或者等于预设的第一药剂量阈值;
    所述无人机的水量小于或者等于预设的第一水量阈值;
    所述无人机的种子量小于或者等于预设的第一种子量阈值。
  62. 根据权利要求61所述的车辆,其特征在于,所述农药包括如下至少一种:
    液态农药、固态农药。
  63. 根据权利要求59所述的车辆,其特征在于,所述无人机满足与基站进行数据交互的条件,包括:
    当前时刻距离前一次无人机与基站进行数据交互的时刻之间的时长满足预设的交互周期条件;或者,
    所述无人机的数据信息的数据量大于或者等于预设数据量阈值,其中,所述无人机的数据信息包括如下至少一种:
    所述无人机上拍摄装置拍摄的图像数据信息、所述无人机的飞行轨迹信息、所述无人机的历史位置数据信息。
  64. 根据权利要求36所述的车辆,其特征在于,所述无人机状态满足特定策略包 括如下至少一种:
    动力源补充完成、负载补充完成、零部件维修完成及无人机与基站之间的数据交互完成。
  65. 根据权利要求64所述的车辆,其特征在于,动力源补充完成包括:
    无人机电池的电量大于第二电量阈值,或,
    无人机的油量大于第二油量阈值。
  66. 根据权利要求64所述的车辆,其特征在于,负载补充完成包括如下至少一种:
    无人机的农药的剂量大于预设的第二药剂量阈值;
    无人机的水量大于预设的第二水量阈值;
    无人机的种子量大于预设的第二种子量阈值。
  67. 根据权利要求64所述的车辆,其特征在于,零部件更换/维修完成包括:
    零部件由故障状态切换至正常工作状态。
  68. 根据权利要求64所述的车辆,其特征在于,无人机与基站之间的数据交互完成包括如下至少一种:
    基站已下载所述无人机的当前数据信息;
    基站完成了对无人机的固件升级;
    其中,所述无人机的数据信息包括如下至少一种:
    所述无人机上拍摄装置拍摄的图像数据信息、所述无人机的飞行轨迹信息、所述无人机的历史位置数据信息。
  69. 根据权利要求36所述的车辆,其特征在于,所述基站还包括发电装置,所述发电装置至少用于为所述操作平台、所述起降平台、所述控制器、所述传送机构进行供电。
  70. 根据权利要求36所述的车辆,其特征在于,所述基站还包括保障区,用于存储物品。
  71. 根据权利要求36所述的车辆,其特征在于,所述车辆包括车厢,所述操作平台位于所述车厢内,所述起降平台包括所述车厢的至少一侧厢门。
  72. 根据权利要求71所述的车辆,其特征在于,所述起降平台包括所述车厢的顶侧厢门。
  73. 根据权利要求72所述的车辆,其特征在于,所述起降平台包括所述车厢的后侧厢门,所述后侧厢门相对所述车辆的车头设置。
PCT/CN2018/109193 2018-09-30 2018-09-30 基站及具有其的车辆 WO2020062286A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/109193 WO2020062286A1 (zh) 2018-09-30 2018-09-30 基站及具有其的车辆
EP18935160.4A EP3809225A4 (en) 2018-09-30 2018-09-30 BASE STATION AND VEHICLE EQUIPPED WITH IT
CN201880040711.8A CN110770129A (zh) 2018-09-30 2018-09-30 基站及具有其的车辆
US17/180,478 US20210197983A1 (en) 2018-09-30 2021-02-19 Base station and vehicle thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109193 WO2020062286A1 (zh) 2018-09-30 2018-09-30 基站及具有其的车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/180,478 Continuation US20210197983A1 (en) 2018-09-30 2021-02-19 Base station and vehicle thereof

Publications (1)

Publication Number Publication Date
WO2020062286A1 true WO2020062286A1 (zh) 2020-04-02

Family

ID=69328801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109193 WO2020062286A1 (zh) 2018-09-30 2018-09-30 基站及具有其的车辆

Country Status (4)

Country Link
US (1) US20210197983A1 (zh)
EP (1) EP3809225A4 (zh)
CN (1) CN110770129A (zh)
WO (1) WO2020062286A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113086231A (zh) * 2021-03-31 2021-07-09 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 一种基于纳米农药无人机喷洒的装载平台的控制方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017008173T5 (de) * 2017-11-29 2020-07-09 Ford Global Technologies, Llc UAV-Landesysteme und -verfahren
US11636771B2 (en) * 2019-09-08 2023-04-25 Deere & Company Stackable housing containers and related systems
FR3107862B1 (fr) * 2020-03-05 2022-02-11 Solystic Installation logistique comprenant une flotte de véhicules de type robots navettes guidés automatiquement à distance pour le transport d’objets
CN112711265B (zh) * 2020-04-08 2022-01-07 江苏方天电力技术有限公司 移动式多无人机智能巡检成套装备及巡检方法
US11958629B2 (en) * 2020-07-31 2024-04-16 Zipline International Inc. Elevated station for unmanned aerial vehicles
KR20220049275A (ko) * 2020-10-14 2022-04-21 현대자동차주식회사 모빌리티 허브
US11611937B1 (en) 2021-01-19 2023-03-21 T-Mobile Innovations Llc Network-assisted charging prioritization for cellular unmanned aerial vehicles
CN115214902A (zh) * 2021-04-20 2022-10-21 苏州臻迪智能科技有限公司 飞行器机库及其控制方法
CN113120252A (zh) * 2021-05-21 2021-07-16 苏州臻迪智能科技有限公司 无人机停放系统及无人机停放方法
CN114506257A (zh) * 2021-09-03 2022-05-17 博泰车联网科技(上海)股份有限公司 自主移动充电管理车辆
CN113815892B (zh) * 2021-10-28 2023-08-22 四川安信科创科技有限公司 一种森林火灾探测无人机的维护保养系统及方法
CN114044158A (zh) * 2021-11-29 2022-02-15 浙江图盛输变电工程有限公司温州科技分公司 基于人工智能图像识别的无人机自动驾驶系统
CN114148540A (zh) * 2021-12-20 2022-03-08 国网河南省电力公司洛阳供电公司 高压电线无人机检修平台
WO2023172224A1 (en) * 2022-03-07 2023-09-14 Met İleri̇ Teknoloji̇ Si̇stemleri̇ Mühendi̇sli̇k İmalat İthalat Ve İhracat Ti̇caret Li̇mi̇ted Şi̇rketi̇ An unmanned aerial vehicle maintenance station
US20230347766A1 (en) * 2022-04-27 2023-11-02 Skydio, Inc. Base Stations For Unmanned Aerial Vehicles (UAVs)
CN115339644B (zh) * 2022-09-06 2023-09-29 国网黑龙江省电力有限公司信息通信公司 一种通信电力无人机检修平台
CN115783334B (zh) * 2022-12-05 2023-05-26 众芯汉创(北京)科技有限公司 一种移动式无人机作业航母装备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106101511A (zh) * 2016-08-10 2016-11-09 南京奇蛙智能科技有限公司 一种全自动无人机系统
CN106227246A (zh) * 2016-09-18 2016-12-14 成都天麒科技有限公司 一种植保无人机自动作业基站
CN106292746A (zh) * 2016-08-12 2017-01-04 南宁远卓新能源科技有限公司 一种用于植保无人机综合作业的挂车及无人机喷洒量控制方法
US20170050749A1 (en) * 2015-08-17 2017-02-23 Skyyfish, LLC Autonomous system for unmanned aerial vehicle landing, charging and takeoff
CN107672817A (zh) * 2017-09-21 2018-02-09 内蒙古工业大学 一种移动式车载无人机的智能起降系统
CN108146648A (zh) * 2018-01-27 2018-06-12 深圳供电局有限公司 一种无人值守的无人机基站

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583078B (zh) * 2013-08-23 2016-12-28 韩国航空宇宙研究所 用于充电及容载垂直起降无人飞行机的设备及其方法
WO2015195175A2 (en) * 2014-03-21 2015-12-23 Borko Brandon System for automatic takeoff and landing by interception of small uavs
WO2016059555A1 (en) * 2014-10-13 2016-04-21 Systems Engineering Associates Corporation Systems and methods for deployment and operation of vertical take-off and landing (vtol) unmanned aerial vehicles
US9776717B2 (en) * 2015-10-02 2017-10-03 The Boeing Company Aerial agricultural management system
KR101765038B1 (ko) * 2016-01-09 2017-08-03 김성호 무인항공기의 배터리 자동교환시스템
US9957048B2 (en) * 2016-04-29 2018-05-01 United Parcel Service Of America, Inc. Unmanned aerial vehicle including a removable power source
US9718564B1 (en) * 2017-03-16 2017-08-01 Amazon Technologies, Inc. Ground-based mobile maintenance facilities for unmanned aerial vehicles
CN108082027B (zh) * 2017-12-08 2024-01-16 超农力(浙江)智能科技有限公司 一种无人机车载续航系统
CN209080184U (zh) * 2018-09-30 2019-07-09 深圳市大疆创新科技有限公司 基站及具有其的车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170050749A1 (en) * 2015-08-17 2017-02-23 Skyyfish, LLC Autonomous system for unmanned aerial vehicle landing, charging and takeoff
CN106101511A (zh) * 2016-08-10 2016-11-09 南京奇蛙智能科技有限公司 一种全自动无人机系统
CN106292746A (zh) * 2016-08-12 2017-01-04 南宁远卓新能源科技有限公司 一种用于植保无人机综合作业的挂车及无人机喷洒量控制方法
CN106227246A (zh) * 2016-09-18 2016-12-14 成都天麒科技有限公司 一种植保无人机自动作业基站
CN107672817A (zh) * 2017-09-21 2018-02-09 内蒙古工业大学 一种移动式车载无人机的智能起降系统
CN108146648A (zh) * 2018-01-27 2018-06-12 深圳供电局有限公司 一种无人值守的无人机基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809225A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113086231A (zh) * 2021-03-31 2021-07-09 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 一种基于纳米农药无人机喷洒的装载平台的控制方法

Also Published As

Publication number Publication date
CN110770129A (zh) 2020-02-07
EP3809225A1 (en) 2021-04-21
EP3809225A4 (en) 2021-06-23
US20210197983A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2020062286A1 (zh) 基站及具有其的车辆
RU2756702C2 (ru) Система и способ доставки грузов
US20230166865A1 (en) Uav retrieval and deployment system and method therefor
JP6180765B2 (ja) 輸送手段ベースステーション
US9969285B2 (en) Methods and apparatus for reconfigurable power exchange for multiple UAV types
Michini et al. Automated battery swap and recharge to enable persistent UAV missions
US20210214102A1 (en) Base station and unmanned aerial vehicle control method, and unmanned aerial vehicle system
CN107021240B (zh) 无人机地面管理系统
US10647402B2 (en) Gas-filled carrier aircrafts and methods of dispersing unmanned aircraft systems in delivering products
CN206217861U (zh) 无人机电池的更换系统及无人机
CN104743121B (zh) 用于无人机的载货舱组件及具有其的无人机
CN110032121A (zh) 一种无人机机场系统
CN107705059B (zh) 一种基于激光云台指引的智能引导系统及方法
CN109178744A (zh) 无人机投递终端站及无人机投递系统
CN110834724A (zh) 一种无人机、配送无人机分布式分时控制系统及控制方法
CN107992061B (zh) 一种智慧实验室机器人运载方法与系统
CN113548192A (zh) 一种用于多旋翼无人机自动装卸货及换电无人站的装置
CN209080184U (zh) 基站及具有其的车辆
CN113043903B (zh) 无人机电池更换装置、无人机及系统
CN108275275A (zh) 无人机投放机构、无人机和基于无人机的投递方法
CN209471363U (zh) 一种无人机机场系统
CN206797766U (zh) 无人机地面管理系统
CN214690252U (zh) 一种无人机节点装载充电停放平台
CN108298103B (zh) 机内智能折叠翼无人机转运系统
CN209506748U (zh) 无人机投递终端站及无人机投递系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018935160

Country of ref document: EP

Effective date: 20210114

NENP Non-entry into the national phase

Ref country code: DE