WO2020062269A1 - 图像传感器、获取图像的方法、视觉系统及存储介质 - Google Patents

图像传感器、获取图像的方法、视觉系统及存储介质 Download PDF

Info

Publication number
WO2020062269A1
WO2020062269A1 PCT/CN2018/109170 CN2018109170W WO2020062269A1 WO 2020062269 A1 WO2020062269 A1 WO 2020062269A1 CN 2018109170 W CN2018109170 W CN 2018109170W WO 2020062269 A1 WO2020062269 A1 WO 2020062269A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
line sensors
sensor
line
acquiring
Prior art date
Application number
PCT/CN2018/109170
Other languages
English (en)
French (fr)
Inventor
阳光
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to CN201880087479.3A priority Critical patent/CN111727601A/zh
Priority to PCT/CN2018/109170 priority patent/WO2020062269A1/zh
Publication of WO2020062269A1 publication Critical patent/WO2020062269A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths

Definitions

  • the present application relates to the field of industrial vision, and in particular, to an image sensor, a method for acquiring an image, a vision system, and a storage medium.
  • machine vision plays an increasingly important role in the field of intelligent manufacturing. It is widely used in industrial fields such as manufacturing and inspection to ensure product quality, control production processes, and sense the environment.
  • machine vision systems convert captured objects into image signals through sensors and transmit them to a dedicated image processing system, which converts them into digital signals based on pixel distribution, brightness, and color information; the image system performs various operations on these signals to The features of the target are extracted, and then the on-site equipment actions are controlled based on the results of the discrimination.
  • the image of the captured target must be clear and have a high dynamic range.
  • a single line sensor is usually used to collect and output image signals. The resolution of an image is controlled by the width of the line sensor, so the resolution of the image is not high.
  • the technical problem mainly solved by the present application is to provide an image sensor, a method for acquiring an image, a vision system, and a storage medium, which can improve the resolution of the image and can also obtain a high dynamic range image.
  • the first technical solution adopted in the present application is to provide an image sensor including: a plurality of line sensors, wherein each line sensor includes a plurality of sensor elements arranged linearly on a straight line, and A preset interval is set between adjacent line sensors.
  • the second technical solution adopted in this application is to provide a method for acquiring an image for any of the above image sensors, including: controlling a plurality of line sensors to acquire a scene with at least two exposure times Image signal; processing the image signal to obtain an image.
  • the third technical solution adopted in the present application is to provide a vision system including any one of the above image sensors; a controller, the controller and the plurality of lines in the image sensor A sensor connection for controlling the plurality of line sensors to acquire an image signal of a scene with at least two exposure times; an image processing device, the image processing device being connected to the plurality of line sensors in the image sensor, for The image signal is processed to obtain an image.
  • a fourth technical solution adopted in the present application is to provide a storage medium storing a computer program, where the computer program is used by a processor to load and execute any one of the foregoing methods for acquiring an image.
  • the beneficial effects of the present application are: different from the prior art, the present application uses multiple line sensors, and the data interval between each line sensor is staggered by a certain period, and the resolution of the image is improved by using the misalignment between signals, and High dynamic range images can also be obtained. This application can effectively improve the resolution of the acquired images, thereby improving the user experience.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for acquiring an image according to the present application
  • FIG. 2 is a schematic structural diagram of an embodiment of a vision system of the present application.
  • FIG. 3 is a schematic structural diagram of an embodiment of a storage medium of the present application.
  • This application provides an image sensor, a method for acquiring an image, a vision system, and a storage medium.
  • a vision system a vision system
  • a storage medium a storage medium
  • FIG. 1 is a schematic flowchart of an embodiment of a method for acquiring an image according to the present application.
  • the method for acquiring an image in this embodiment includes:
  • the exposure time of a plurality of line sensors is controlled, so that at least two line sensors acquire scene information at different exposure times, thereby obtaining an image signal of the scene, wherein each line sensor includes linearly arranged on a straight line.
  • the width of each line sensor is T
  • the interval between each line sensor is T 1 , where T 1 and T satisfy the following conditions:
  • M represents a period
  • M is an integer and M ⁇ 1
  • N is the number of line sensors
  • N is an integer and N ⁇ 2.
  • the image sensor includes a plurality of line sensors, wherein each line sensor includes a plurality of sensor elements arranged linearly on a straight line, and each sensor element can acquire image information.
  • the sensor element may be a CCD (Charge Coupled Device, Charge Coupled Device), which is a photoelectric conversion device that uses the principle of photoelectric conversion to directly convert image information into electrical signals.
  • the CCD is integrated using a high-sensitivity semiconductor material, which can generate a corresponding charge signal according to the light shining on it, and then convert it into a "0" or "1" digital signal through an analog-to-digital converter chip. After the digital signal is compressed and arranged in a program, the digital signal can be saved by a flash memory or a hard disk card and converted into an electronic image signal that can be recognized by a computer.
  • CCD Charge Coupled Device, Charge Coupled Device
  • the sensor element may also be a CMOS (Complementary Metal-Oxide Semiconductor), which is mainly a semiconductor made of two elements, silicon and germanium, which are negatively charged and positively charged on the CMOS.
  • CMOS Complementary Metal-Oxide Semiconductor
  • An electric transistor is used to achieve the function of acquiring images, that is, the current generated by these two complementary effects can be recorded and interpreted as an image by the processing chip.
  • image sensors have been widely used in industrial vision systems.
  • the target object is sometimes moved. Due to the movement of the object, the image will be blurred and the resolution is not high.
  • this embodiment controls and controls the exposure time of multiple line sensors to acquire and output image signals.
  • Each line sensor includes multiple sensor elements arranged linearly on a straight line.
  • Each line sensor The width of T is T, where T ranges from 3 ⁇ m to 6 ⁇ m, and the interval between each line sensor is T 1 , where T 1 and T meet the following conditions:
  • M represents the period
  • M is an integer and M ⁇ 1
  • N is the number of line sensors
  • the relationship between the data of the image information collected by each line sensor can be determined according to the interval T 1 between the line sensors and the width T of the line sensor, and According to different application scenarios, a corresponding algorithm is used to process the image information collected by each line sensor to obtain a high-resolution image.
  • multiple sensor elements in a line sensor can collect information on the same location or the same physical point of the target object. Specifically, for each line sensor, The image information is fused to increase the resolution of the image.
  • the brightness level of the images collected by each sensor is different, and it is necessary to select a high brightness value in a dark image and a low brightness value in a bright image.
  • the data information of the same position or the same physical point collected by each sensor is converted into a brightness value, a high brightness value is selected in a dark image, a low brightness value is selected in a bright image, and the brightness value is converted to gray.
  • Degree value, and then multiple gray value fusion can achieve the effect of data fusion collected by different line sensors, improve the resolution of the image, and get a high dynamic range image.
  • the interpolation algorithm includes a bilinear interpolation algorithm or a cubic spline interpolation algorithm.
  • the lightness and darkness of the images collected by each sensor are different.
  • the data of the over-exposure point or under-exposure point is calculated by the non-over-exposure point or under-exposure point of the adjacent sensor. .
  • At least two line sensors acquire scene information at different exposure times, thereby obtaining an image signal of the scene.
  • the image sensor controls the exposure time of the plurality of line sensors, so that the plurality of line sensors acquire scene information at mutually different exposure times, thereby acquiring image signals of the scene.
  • the image sensor performs interpolation calculation on the data obtained from each line sensor, and performs interpolation calculation with reference to the non-overexposed or underexposed points of the neighboring sensors to achieve the purpose of removing the zero point and the overexposed point.
  • the image sensor processes image signals output from a plurality of line sensors to obtain an image. Specifically, the image sensor performs interpolation calculation on the image signals output by the plurality of line sensors and performs similarity matching to obtain an HDR (High-Dynamic Range) image.
  • HDR High-Dynamic Range
  • the image collected by each line sensor can be combined to perform similarity matching to obtain the final image. The resolution of this image is doubled compared to the image collected by a line sensor.
  • the period M is used to represent the cyclicity of the period, and can be a number such as 1, 2, 3, or 10, which can be specifically designed according to actual conditions.
  • this application uses multiple line sensors, and the interval between data between each line sensor is staggered by a certain period, and the resolution of the image is improved by using the misalignment between the signals.
  • the application can effectively improve the resolution of the acquired images, and at the same time can also obtain images with high dynamic range, thereby improving the user experience.
  • this application further provides an image sensor, which can implement the method for acquiring an image in any of the foregoing embodiments.
  • the image sensor includes a plurality of line sensors, wherein each line sensor includes a plurality of sensor elements arranged linearly on a straight line, and the width of each line sensor is T, and the value of T ranges from 3 ⁇ m to 6 ⁇ m.
  • the interval between the first-line sensors is T 1 , where T 1 and T meet the following conditions:
  • M represents the period
  • M is an integer and M ⁇ 1
  • N is the number of line sensors
  • the image sensor further includes a controller and a processor.
  • the controller is connected to the multiple line sensors and is used to control the exposure time of the multiple line sensors; the processor is used to process the image signals output by the multiple line sensors to obtain image.
  • FIG. 2 is a schematic structural diagram of an embodiment of a vision system of the present application.
  • the vision system 20 of this embodiment includes an image sensor 204, a controller 202, and an image processing device 203 that are coupled to each other.
  • the image sensor 204 includes a plurality of line sensors 201.
  • the controller 202 is connected to a plurality of line sensors 201 in the image sensor 204, and is used to control the plurality of line sensors 201 to obtain image signals of the scene with at least two exposure times; the image processing device 203 and the plurality of line sensors in the image sensor 204 201 is connected to process an image signal to obtain an image.
  • the image sensor 204 includes two line sensors 201, the control ends of the two line sensors 201 are connected to the controller 202, and the image processing device 203 is connected to the two line sensors 201 and the controller 202, respectively.
  • the image sensor 20 may also include three, four, or more line sensors 201, which is not limited in this application.
  • the width of the line sensor 201 is T
  • the illustrated arrow a indicates the width of the line sensor 201
  • the spacing between each line sensor 201 is T 1
  • shown by arrow b represents the interval between each line sensor 201 .
  • the line sensor 201 includes a plurality of sensor elements 2011 linearly arranged on a straight line, and each sensor element 2011 can acquire image information.
  • the sensor element 2011 may be a CCD device (Charge Coupled Device), which is a photoelectric conversion device that uses the principle of photoelectric conversion to directly convert image information into electrical signals.
  • the CCD is integrated using a high-sensitivity semiconductor material. It can generate a corresponding charge signal according to the light irradiated on its surface, which is converted into a "0" or "1" digital signal by an analog-to-digital converter chip. After the digital signal is compressed and arranged in a program, the digital signal can be saved by a flash memory or a hard disk card and converted into an electronic image signal that can be recognized by a computer.
  • the sensor element 2011 may also be a CMOS device (Complementary Metal-Oxide Semiconductor), which is mainly a semiconductor made of two elements, silicon and germanium. A positively-charged transistor is used to achieve the function of acquiring images, that is, the current generated by these two complementary effects can be recorded and interpreted as an image by the processing chip.
  • CMOS device Complementary Metal-Oxide Semiconductor
  • a positively-charged transistor is used to achieve the function of acquiring images, that is, the current generated by these two complementary effects can be recorded and interpreted as an image by the processing chip.
  • the controller 202 controls the exposure times of the plurality of line sensors 201 so that the exposure times of at least two of the line sensors 201 are different. Specifically, it is possible to control the exposure time of one line sensor 201 to be longer and the exposure time of other line sensors 201 to be shorter to collect image information of different exposure time periods.
  • the controller 202 controls the exposure times of the plurality of line sensors 201 so that the exposure times of the plurality of line sensors 201 are different.
  • the image processing device 203 performs interpolation calculation on the image signal output from each line sensor 201 to achieve the purpose of removing the zero point and the overexposure point.
  • the period M is used to represent the cyclicity of the period, and can be a number such as 1, 2, 3, or 10, which can be specifically designed according to actual conditions.
  • the image sensor in this embodiment can be used alone or in combination with other devices.
  • the image sensor in the vision system of the present application uses multiple line sensors, and the interval between the data between each line sensor is staggered by a certain period, and the resolution of the image is improved by using the misalignment between the signals.
  • the application can effectively improve the resolution of the acquired images, and at the same time can also obtain images with high dynamic range, thereby improving the user experience.
  • FIG. 3 is a schematic structural diagram of an embodiment of a storage medium of the present application.
  • the storage medium 3 stores at least one program or instruction 31, and the program or instruction 31 is used to implement any of the foregoing methods for acquiring an image.
  • the device having a storage function includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk.
  • the present application can effectively improve the resolution of the acquired image, and at the same time can also obtain a high dynamic range image, thereby improving the user experience.
  • the disclosed methods and devices may be implemented in other ways.
  • the device implementations described above are only schematic.
  • the division of modules or units is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, which may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium. It includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods in the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开了一种图像传感器、获取图像的方法、视觉系统及存储介质,图像传感器包括多个线传感器,其中,每一线传感器包括线性地布置在一条直线上的多个传感器元件,相邻的线传感器之间设有预设间隔。本申请采用多个线传感器,且每个线传感器之间的数据间隔是错开一定周期,利用信号之间的错位提升了图像的分辨率,同时也可得到高动态范围的图像。本申请能有效提高获取图像的分辨率,进而提升用户体验。

Description

图像传感器、获取图像的方法、视觉系统及存储介质 【技术领域】
本申请涉及工业视觉领域,特别是涉及一种图像传感器、获取图像的方法、视觉系统及存储介质。
【背景技术】
在工业视觉领域,机器视觉在智能制造业领域的作用越来越重要,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。
目前,机器视觉系统是通过传感器将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。为了保证设备动作的准确度,被摄取目标的图像需清晰,且有较高的动态范围。现有技术中,通常采用单线传感器来采集并输出图像信号,图像的分辨率受控于线传感器的宽度,因此图像的分辨率不高。
【发明内容】
本申请主要解决的技术问题是提供一种图像传感器、获取图像的方法、视觉系统及存储介质,能够提高图像的分辨能力,同时也可得到高动态范围的图像。
为解决上述技术问题,本申请采用的第一个技术方案是:提供一种图像传感器,包括:多个线传感器,其中,每一线传感器包括线性地布置在一条直线上的多个传感器元件,相邻的所述线传感器之间设有预设间隔。
为解决上述技术问题,本申请采用的第二个技术方案是:提供一种获取图像的方法,用于上述任一的图像传感器,包括:控制多个线传感器以至少两种曝光时间获取景物的图像信号;处理所述图像信号,得到 图像。
为解决上述技术问题,本申请采用的第三个技术方案是:提供一种视觉系统,包括上述任一的图像传感器;控制器,所述控制器与所述图像传感器中的所述多个线传感器连接,用于控制所述多个线传感器以至少两种曝光时间获取景物的图像信号;图像处理设备,所述图像处理设备与所述图像传感器中的所述多个线传感器连接,用于处理所述图像信号,得到图像。
为解决上述技术问题,本申请采用的第四个技术方案是:提供一种存储介质,存储介质存储有计算机程序,所述计算机程序用于处理器加载并执行上述任一的获取图像的方法。
本申请的有益效果是:区别于现有技术,本申请采用多个线传感器,且每个线传感器之间的数据间隔是错开一定周期,利用信号之间的错位提升了图像的分辨率,同时也可得到高动态范围的图像。本申请能有效提高获取图像的分辨率,进而提升用户体验。
【附图说明】
图1是本申请获取图像的方法一实施方式的流程示意图;
图2是本申请视觉系统一实施方式的结构示意图;
图3是本申请存储介质一实施方式的结构示意图。
【具体实施方式】
本申请提供一种图像传感器、获取图像的方法、视觉系统及存储介质,为使本申请的目的、技术方案和技术效果更加明确、清楚,以下对本申请进一步详细说明,应当理解此处所描述的具体实施条例仅用于解释本申请,并不用于限定本申请。
参阅图1,图1是本申请获取图像的方法一实施方式的流程示意图。本实施方式获取图像的方法包括:
101:控制多个线传感器的曝光时间,使至少两个线传感器以不同的曝光时间采集景物信息,从而获取景物的图像信号。
本实施方式中,控制多个线传感器的曝光时间,使至少两个线传感器以不同的曝光时间采集景物信息,从而获取景物的图像信号,其中,每一线传感器包括线性地布置在一条直线上的多个传感器元件,每一线传感器的宽度为T,每一线传感器之间的间隔为T 1,其中,T 1和T满足以下条件:
Figure PCTCN2018109170-appb-000001
其中,M表示周期,M为整数且M≥1,N为线传感器的个数,N为整数且N≥2。
在本实施方式中,图像传感器包括多个线传感器,其中,每一线传感器包括线性地布置在一条直线上的多个传感器元件,每个传感器元件均可采集图像信息。
在其中的一个实施方式中,传感器元件可以为CCD(Charge CoupledDevice,电荷耦合元件),是一种光电转换式器件,利用光电转换原理把图像信息直接转换成电信号。具体的,CCD是使用高感光度的半导体材料集成,它能够根据照射在其面上的光线产生相应的电荷信号,再通过模数转换器芯片转换成“0”或“1”的数字信号,这种数字信号经过压缩和程序排列后,可由闪速存储器或硬盘卡保存即收光信号转换成计算机能识别的电子图像信号。
在另一个实施方式中,传感器元件也可以是CMOS(Complementary Metal-Oxide Semiconductor,金属氧化物半导体元件),主要是利用硅和锗两种元素所做成的半导体,通过CMOS上带负电和带正电的晶体管来实现获取图像的功能,即,这两个互补效应所产生的电流即可被处理芯片记录和解读成影像。
目前,图像传感器已广泛应用于工业视觉系统,在工业生产中,目标物体有时是移动的,由于物体的移动会导致图像的模糊,分辨率不高。
为了提高获取图像的分辨率,本实施方式通过控制多个线传感器的曝光时间,以采集并输出图像信号,其中,每一线传感器包括线性地布置在一条直线上的多个传感器元件,每一线传感器的宽度为T,其中,T的取值范围为3μm~6μm,每一线传感器之间的间隔为T 1,其中,T 1和 T满足以下条件:
Figure PCTCN2018109170-appb-000002
其中,M表示周期,M为整数且M≥1,N为线传感器的个数,N为整数且N≥2,比如N=2或N=3,具体可根据实际情况设计在此不做具体限定。
由于线传感器之间的间隔T 1满足特定的条件,可以根据线传感器之间的间隔T 1和线传感器的宽度T,确定每个线传感器所采集到的图像信息的数据之间的关系,并根据不同的应用场景采用相应的算法对每个线传感器所采集到的图像信息进行处理,以得到高分辨率的图像。
在其中的一个应用场景中,在采集图像时,线传感器中的多个传感器元件可以采集到目标物体的同一位置的信息或同一物理点的信息,具体地,可以对每个线传感器所采集到的图像信息的数据进行融合,以增加图像的分辨率。
即,将每个传感器采集到的图像的亮暗程度不同,需要在暗图像中选取高亮度值,在亮图像中选取低亮度值。例如,将每个传感器采集到的同一位置的数据信息或同一物理点的信息转换为亮度值,在暗图像中选取高亮度值,在亮图像中选取低亮度值,并将亮度值转换为灰度值,再将多个灰度值融合,即可达到不同线传感器采集到的数据融合的效果,提高图像的分辨率,并得到高动态范围的图像。
在另一个应用场景中,在采集图像时,线传感器中的多个传感器元件采集到目标物体的不同位置的信息或不同物理点的信息,可对采用插值算法对采集到的图像进行处理。其中,插值算法包括双线性插值算法或三次样条插值算法等。
具体地,每个传感器采集到的图像的亮暗程度不同,通过对亮度值的参考进行插值,对于过曝点或欠曝点的数据以邻近的传感器的非过曝点或欠曝点进行计算。
另外,在采集图像时,由于光线的强度的影响,经常会出现欠曝或过曝的问题,影响图像的分辨率。在本实施方式中,通过控制所述多个线传感器的曝光时间,使至少两个线传感器以不同的曝光时间采集景物 信息,从而获取景物的图像信号。具体地,可以控制一个线传感器的曝光时间较长,其他线传感器的曝光时间较短,以采集不同曝光时间段的图像信息。
在另一个实施方式中,图像传感器控制多个线传感器的曝光时间,使多个线传感器以互不相同的曝光时间采集景物信息,从而获取景物的图像信号。图像传感器将每条线传感器得到的数据进行插值计算,以邻近的传感器非过曝点或欠曝点为参考进行插值计算,以达到去零值点和过曝点的目的。
102:处理图像信号,得到图像。
在本实施方式中,图像传感器处理多个线传感器输出的图像信号,得到图像。具体地,图像传感器将多个线传感器输出的图像信号进行插值计算,并进行相似度匹配后,得到HDR(High-Dynamic Range,高动态范围)图像。
在其中的一个实施方式中,图像传感器有两个线传感器且周期M为1,其中,线传感器的宽度为T,线传感器的间隔为T 1,则根据上述T 1和T满足的公式可知T 1=1.5T,可结合每个线传感器采集到的图像,进行相似度匹配得到最终的图像,该图像相对于一条线传感器采集到的图像的分辨率提高了一倍。
在另一个实施方式中,图像传感器有三个线传感器且周期M为1,其中,线传感器的宽度为T,线传感器的间隔为T 1,则根据上述T 1和T满足的公式可知T 1=1.33T,可结合每个线传感器采集到的图像,进行相似度匹配得到最终的图像,该图像相对于一条线传感器采集到的图像的分辨率提高了两倍。
在此,需要说明的是,周期M用于表示周期循环性,可以为1,2,3,也可以为10等数字,具体可根据实际情况设计。
区别于现有技术,本申请采用多个线传感器,且每个线传感器之间的数据间间隔是错开一定周期,利用信号之间的错位提升了图像的分辨率。本申请能有效提高获取图像的分辨率,同时也可得到高动态范围的图像,进而提升用户体验。进一步的,本申请还提供了一种图像传感器, 该图像传感器能够实现上述任一实施方式的获取图像的方法。
具体的,该图像传感器包括多个线传感器,其中,每一线传感器包括线性地布置在一条直线上的多个传感器元件,每一线传感器的宽度为T,T的取值范围为3μm~6μm,每一线传感器之间的间隔为T 1,其中,T 1和T满足以下条件:
Figure PCTCN2018109170-appb-000003
其中,M表示周期,M为整数且M≥1,N为线传感器的个数,N为整数且N≥2,比如,N=2,或N=3,可根据具体情况设计,在此不做具体限定。
在本实施方式中,图像传感器还包括控制器和处理器,控制器与多个线传感器连接,用于控制多个线传感器的曝光时间;处理器用于处理多个线传感器输出的图像信号,得到图像。
在此,以图像传感器包括两个线传感器为例解释说明,参阅图2,图2是本申请视觉系统一实施方式的结构示意图。本实施方式的视觉系统20包括相互耦接的图像传感器204、控制器202以及图像处理设备203。图像传感器204包括多个线传感器201。控制器202与图像传感器204中的多个线传感器201连接,用于控制多个线传感器201以至少两种曝光时间获取景物的图像信号;图像处理设备203与图像传感器204中的多个线传感器201连接,用于处理图像信号,得到图像。具体的,图像传感器204包括两个线传感器201,两个线传感器201的控制端分别与控制器202连接,图像处理设备203分别与两个线传感器201以及控制器202连接。在其他实施方式中,图像传感器20也可以包括3个、4个或者更多个线传感器201,本申请对此不作限定。
其中,线传感器201的宽度为T,图示中箭头a表示线传感器201的宽度,每个线传感器201之间的间隔为T 1,图示中箭头b表示每个线传感器201之间的间隔。其中,T 1和T满足以下条件:
Figure PCTCN2018109170-appb-000004
其中,M表示周期,M为整数且M≥1,N为所述线传感器的个数,N为整数且N≥2。在本实施方式中,周期M为1,图像传感器20包括2 个线传感器,即N=2,则T 1=1.5*T。
在本实施方式中,线传感器201包括线性地布置在一条直线上的多个传感器元件2011,每个传感器元件2011均可采集图像信息。在其中的一个实施方式中,传感器元件2011可以为CCD器件(Charge Coupled Device,电荷耦合元件),是一种光电转换式器件,利用光电转换原理把图像信息直接转换成电信号。具体的,CCD是使用高感光度的半导体材料集成,它能够根据照射在其面上的光线产生相应的电荷信号,在通过模数转换器芯片转换成“0”或“1”的数字信号,这种数字信号经过压缩和程序排列后,可由闪速存储器或硬盘卡保存即收光信号转换成计算机能识别的电子图像信号。
在另一个实施方式中,传感器元件2011也可以是CMOS器件(Complementary Metal-Oxide Semiconductor,金属氧化物半导体元件),主要是利用硅和锗两种元素所做成的半导体,通过CMOS上带负电和带正电的晶体管来实现获取图像的功能,即,这两个互补效应所产生的电流即可被处理芯片记录和解读成影像。
另外,在采集图像时,由于光线的强度的影响,经常会出现欠曝或过曝的问题,影响图像的分辨率。在本实施方式中,控制器202通过控制多个线传感器201的曝光时间,以使至少两个线传感器201的曝光时间不同。具体地,可以控制一条线传感器201的曝光时间较长,其他线传感器201的曝光时间较短,以采集不同曝光时间段的图像信息。
在另一个实施方式中,控制器202控制多个线传感器201的曝光时间,使多个线传感器201的曝光时间均不同。图像处理设备203将每条线传感器201输出的图像信号进行插值计算,以达到去零值点和过曝点的目的。
在本实施方式中,图像传感器20有两个线传感器201且周期M为1,其中,线传感器201的宽度为T,线传感器201的间隔为T 1,则根据上述T 1和T满足的公式可知T 1=1.5*T,图像处理设备203可结合每个线传感器201采集到的图像,进行相似度匹配得到最终的图像,该图像相对于一条线传感器201采集到的图像的分辨率提高了一倍。
在此,需要说明的是,周期M用于表示周期循环性,可以为1,2,3,也可以为10等数字,具体可根据实际情况设计。
本实施方式中的图像传感器可以单独使用,也可以和其他设备配合使用。
区别于现有技术,本申请视觉系统中的图像传感器采用多个线传感器,且每个线传感器之间的数据间间隔是错开一定周期,利用信号之间的错位提升了图像的分辨率。本申请能有效提高获取图像的分辨率,同时也可得到高动态范围的图像,进而提升用户体验。
参阅图3,请参阅图3,图3是本申请存储介质一实施方式的结构示意图。存储介质3中存储有至少一个程序或指令31,程序或指令31用于实现上述任一的获取图像的方法。在一个实施例中,具有存储功能的装置包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
区别于现有技术,本申请能有效提高获取图像的分辨率,同时也可得到高动态范围的图像,进而提升用户体验。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单 元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施方式方法的全部或部分步骤。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利保护范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种图像传感器,其特征在于,包括:
    多个线传感器,其中,每一所述线传感器包括线性地布置在一条直线上的多个传感器元件,相邻的所述线传感器之间设有预设间隔。
  2. 根据权利要求1所述的图像传感器,其特征在于,所述多个线传感器中,至少两个所述线传感器的曝光时间不同。
  3. 根据权利要求1所述的图像传感器,其特征在于,所述多个线传感器的曝光时间均不同。
  4. 根据权利要求1所述的图像传感器,其特征在于,所述每一线传感器的宽度为T,相邻的所述线传感器之间的所述预设间隔为T 1,其中,T 1和T满足以下条件:
    Figure PCTCN2018109170-appb-100001
    其中,M表示周期,M为整数且M≥1,N为所述线传感器的个数,N为整数且N≥2。
  5. 根据权利要求4所述的图像传感器,其特征在于,T的取值范围为3μm~6μm。
  6. 根据权利要求4所述的图像传感器,其特征在于,N=2。
  7. 根据权利要求4所述的图像传感器,其特征在于,N=3。
  8. 一种获取图像的方法,用于权利要求1-7任一所述的图像传感器,其特征在于,包括:
    控制多个线传感器以至少两种曝光时间获取景物的图像信号;
    处理所述图像信号,得到图像。
  9. 根据权利要求8所述的获取图像的方法,其特征在于,所述处理所述图像信号,得到图像,具体包括:将所述多个线传感器输出的图像信号进行相似度匹配后,得到图像。
  10. 根据权利要求8所述的获取图像的方法,其特征在于,所述控制多个线传感器以至少两种曝光时间获取景物的图像信号,具体包括:
    控制所述多个线传感器的曝光时间,使至少两个线传感器以不同的曝光时间采集景物信息,从而获取景物的图像信号。
  11. 根据权利要求8所述的获取图像的方法,其特征在于,所述控制多个线传感器以至少两种曝光时间获取景物的图像信号,具体包括:
    控制多个线传感器的曝光时间,使所述多个线传感器以互不相同的曝光时间采集景物信息,从而获取景物的图像信号。
  12. 根据权利要求8所述的获取图像的方法,其特征在于,所述每一线传感器的宽度为T,相邻的所述线传感器之间的所述预设间隔为T 1,其中,T 1和T满足以下条件:
    Figure PCTCN2018109170-appb-100002
    其中,M表示周期,M为整数且M≥1,N为所述线传感器的个数,N为整数且N≥2。
  13. 根据权利要求12所述的获取图像的方法,其特征在于,N=2或N=3。
  14. 根据权利要求12所述的获取图像的方法,其特征在于,T的取值范围为3μm~6μm。
  15. 一种视觉系统,其特征在于,包括:
    权利要求1-7任一所述图像传感器;
    控制器,所述控制器与所述图像传感器中的所述多个线传感器连接,用于控制所述多个线传感器以至少两种曝光时间获取景物的图像信号;
    图像处理设备,所述图像处理设备与所述图像传感器中的所述多个线传感器连接,用于处理所述图像信号,得到图像。
  16. 一种存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于处理器加载并执行如权利要求8-14的任一步骤。
PCT/CN2018/109170 2018-09-30 2018-09-30 图像传感器、获取图像的方法、视觉系统及存储介质 WO2020062269A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880087479.3A CN111727601A (zh) 2018-09-30 2018-09-30 图像传感器、获取图像的方法、视觉系统及存储介质
PCT/CN2018/109170 WO2020062269A1 (zh) 2018-09-30 2018-09-30 图像传感器、获取图像的方法、视觉系统及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109170 WO2020062269A1 (zh) 2018-09-30 2018-09-30 图像传感器、获取图像的方法、视觉系统及存储介质

Publications (1)

Publication Number Publication Date
WO2020062269A1 true WO2020062269A1 (zh) 2020-04-02

Family

ID=69949570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109170 WO2020062269A1 (zh) 2018-09-30 2018-09-30 图像传感器、获取图像的方法、视觉系统及存储介质

Country Status (2)

Country Link
CN (1) CN111727601A (zh)
WO (1) WO2020062269A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079323B (zh) * 2021-03-31 2022-02-11 中国科学院长春光学精密机械与物理研究所 一种基于二维熵的航天遥感载荷自动曝光方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040174575A1 (en) * 2003-03-03 2004-09-09 Kabushiki Kaisha Toshiba Image reading apparatus and image reading method
CN101309339A (zh) * 2007-05-18 2008-11-19 株式会社Pfu 图像传感器、图像传感器单元和图像读取器
CN102129115A (zh) * 2010-01-15 2011-07-20 佳能株式会社 焦点检测设备
CN103379287A (zh) * 2012-04-13 2013-10-30 株式会社东芝 受光装置、受光方法以及传输系统
CN104954607A (zh) * 2014-03-25 2015-09-30 京瓷办公信息系统株式会社 图像读取装置和图像形成装置
CN105103533A (zh) * 2013-03-27 2015-11-25 东丽工程株式会社 高速摄像方法和高速摄像装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002815A (en) * 1997-07-16 1999-12-14 Kinetic Sciences, Inc. Linear sensor imaging method and apparatus
CN1418001A (zh) * 2001-11-05 2003-05-14 力捷电脑股份有限公司 扫描仪的高分辨率感测方法
US7388692B2 (en) * 2003-09-24 2008-06-17 Murata Kikai Kabushiki Kaisha Color image processing device and color image processing method
CN101057493B (zh) * 2004-11-02 2011-05-25 松下电器产业株式会社 图像传感器
KR101380615B1 (ko) * 2007-06-28 2014-04-14 삼성전자주식회사 영상 동적 범위 향상 방법 및 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040174575A1 (en) * 2003-03-03 2004-09-09 Kabushiki Kaisha Toshiba Image reading apparatus and image reading method
CN101309339A (zh) * 2007-05-18 2008-11-19 株式会社Pfu 图像传感器、图像传感器单元和图像读取器
CN102665024A (zh) * 2007-05-18 2012-09-12 株式会社Pfu 图像传感器、图像传感器单元和图像读取器
CN102129115A (zh) * 2010-01-15 2011-07-20 佳能株式会社 焦点检测设备
CN103379287A (zh) * 2012-04-13 2013-10-30 株式会社东芝 受光装置、受光方法以及传输系统
CN105103533A (zh) * 2013-03-27 2015-11-25 东丽工程株式会社 高速摄像方法和高速摄像装置
CN104954607A (zh) * 2014-03-25 2015-09-30 京瓷办公信息系统株式会社 图像读取装置和图像形成装置

Also Published As

Publication number Publication date
CN111727601A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
US7444075B2 (en) Imaging device, camera, and imaging method
JP2021507637A (ja) マルチカメラ画像処理
TWI823956B (zh) 在相機感測器模組和視覺處理系統之間交換經hdr 組合的串流和相關聯的曝光
TWI696387B (zh) 影像擷取裝置
US10318792B2 (en) Target pickup device and target detection method
WO2018005221A1 (en) Fixed pattern noise mitigation for a thermal imaging system
WO2013114803A1 (ja) 画像処理装置及びその画像処理方法、並びにコンピュータ・プログラム、および画像処理システム
WO2020062269A1 (zh) 图像传感器、获取图像的方法、视觉系统及存储介质
US11575841B2 (en) Information processing apparatus, imaging apparatus, method, and storage medium
CN114998122A (zh) 一种低照度图像增强方法
Gu et al. A fast color tracking system with automatic exposure control
US20150130959A1 (en) Image processing device and exposure control method
CN114331893A (zh) 一种获取图像噪声的方法、介质和电子设备
TWI844554B (zh) 過濾熱影像資料之方法及系統
JP2014127154A (ja) 被写体領域追跡装置、その制御方法及びプログラム
JP2021093694A (ja) 情報処理装置およびその制御方法
WO2013114802A1 (ja) 画像処理装置及びその画像処理方法、並びにコンピュータ・プログラム、および画像処理システム
WO2022097559A1 (ja) 情報処理装置、撮像装置、プログラム、記憶媒体及び方法
JP2018152095A (ja) 画像処理装置、撮像装置及び画像処理プログラム
JP6248662B2 (ja) 画像処理装置、撮像装置及び画像処理プログラム
JP6326841B2 (ja) 画像処理装置、撮像装置及び画像処理プログラム
US20240031683A1 (en) Image capturing apparatus, control method, and storage medium
JP2023026185A (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP2024010644A (ja) 画像処理装置、画像処理方法およびプログラム
JP6314281B1 (ja) 画像処理方法及び前景領域取得方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18934909

Country of ref document: EP

Kind code of ref document: A1