WO2020062083A1 - 控制指令传输方法、基站、终端及存储介质 - Google Patents

控制指令传输方法、基站、终端及存储介质 Download PDF

Info

Publication number
WO2020062083A1
WO2020062083A1 PCT/CN2018/108455 CN2018108455W WO2020062083A1 WO 2020062083 A1 WO2020062083 A1 WO 2020062083A1 CN 2018108455 W CN2018108455 W CN 2018108455W WO 2020062083 A1 WO2020062083 A1 WO 2020062083A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
instruction data
base station
terminal
Prior art date
Application number
PCT/CN2018/108455
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/280,139 priority Critical patent/US11895659B2/en
Priority to CN201880001532.3A priority patent/CN109417799B/zh
Priority to EP18935022.6A priority patent/EP3860248A4/en
Priority to PCT/CN2018/108455 priority patent/WO2020062083A1/zh
Publication of WO2020062083A1 publication Critical patent/WO2020062083A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a control instruction transmission method, a base station, a terminal, and a storage medium.
  • authorized frequency domain resources are usually used for transmission.
  • higher requirements have been placed on wireless communication technologies, driving the continuous evolution of wireless communication technologies.
  • Authorized frequency domain resources have been Cannot meet transmission needs. For this reason, the function of using unlicensed frequency domain resources by monitoring and avoiding mechanism is proposed.
  • the base station and the terminal can perform transmission through unlicensed frequency domain resources, such as sending control instructions.
  • the terminal when a base station wants to send a control instruction to a terminal through an unlicensed frequency domain resource, the terminal is first configured with a preset detection time of the control instruction to be transmitted on the unlicensed frequency domain resource. After that, the base station detects the status of the unlicensed frequency domain resource. When the unlicensed frequency domain resource is idle, the base station successfully occupies the unlicensed frequency domain resource, and then sends the unlicensed frequency domain resource to the terminal at the preset detection time. For a control instruction, the terminal detects the control instruction through the unlicensed frequency domain resource at the preset detection time.
  • the present disclosure provides a control instruction transmission method, a base station, a terminal, and a storage medium, which can solve the problems of related technologies.
  • the technical solution is as follows:
  • a control instruction transmission method which is applied to a base station, and the method includes:
  • the timing starts from a preset detection time, and when the timing duration reaches the preset duration, a control instruction is sent through the second frequency domain resource.
  • the method further includes:
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • a control instruction transmission method which is applied to a base station.
  • the method includes:
  • the control instruction includes first instruction data and second instruction data, and the second instruction data is the same as instruction data transmitted by the first instruction data within a preset time period from the preset detection time.
  • the method further includes:
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • a control instruction transmission method which is applied to a terminal, and the method includes:
  • the first frequency domain resource is switched to the second frequency domain resource, and the first frequency domain resource and the second frequency domain resource are switched.
  • the frequency domain resources are different unlicensed frequency domain resources
  • the second instruction data is the same as the instruction data transmitted by the first instruction data within a preset time period from the preset detection time, and the third instruction data and the first instruction data are transmitted from the The command data transmitted after the preset time period starting from the preset detection time is the same.
  • the method further includes:
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • a base station is provided, where the base station includes:
  • An occupancy module configured to occupy a second frequency domain resource after failing to occupy the first frequency domain resource, where the first frequency domain resource and the second frequency domain resource are different unlicensed frequency domain resources;
  • the sending module is configured to start timing from the preset detection time, and send a control instruction through the second frequency domain resource when the timing duration reaches the preset duration.
  • the base station further includes:
  • a determining module configured to determine, according to the frequency-domain resource switching capability, a duration for the terminal to switch frequency-domain resources as the preset duration.
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • a base station is provided, where the base station includes:
  • An occupancy module configured to occupy a second frequency domain resource after failing to occupy the first frequency domain resource, where the first frequency domain resource and the second frequency domain resource are different unlicensed frequency domain resources;
  • a sending module configured to send a control instruction through the second frequency domain resource at a preset detection time
  • the control instruction includes first instruction data and second instruction data, and the second instruction data is the same as instruction data transmitted by the first instruction data within a preset time period from the preset detection time.
  • the base station further includes:
  • a receiving module configured to receive a frequency domain resource switching capability sent by a terminal
  • a determining module configured to determine, according to the frequency-domain resource switching capability, a duration for the terminal to switch frequency-domain resources as the preset duration.
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • a terminal includes:
  • a switching module configured to switch from the first frequency domain resource to the second frequency domain resource when the control instruction sent by the base station through the first frequency domain resource fails to be detected at a preset detection time; An unlicensed frequency domain resource different from the second frequency domain resource;
  • a detection module configured to detect a control instruction sent by the base station through the second frequency domain resource, and obtain third instruction data and second instruction data;
  • An arranging module that arranges the second instruction data before the third instruction data to obtain the first instruction data
  • the second instruction data is the same as the instruction data transmitted by the first instruction data within a preset time period from the preset detection time, and the third instruction data and the first instruction data are transmitted from the The command data transmitted after the preset time period starting from the preset detection time is the same.
  • the terminal further includes:
  • a determining module configured to determine a frequency domain resource switching capability of the terminal
  • a sending module is configured to send the frequency domain resource switching capability to the base station, and the frequency domain resource switching capability is used to determine the preset duration.
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • a base station is provided, where the base station includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • a base station is provided, where the base station includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the control instruction includes first instruction data and second instruction data, and the second instruction data is the same as instruction data transmitted by the first instruction data within a preset time period from the preset detection time.
  • a terminal includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the first frequency domain resource is switched to the second frequency domain resource, and the first frequency domain resource and the second frequency domain resource are switched.
  • the frequency domain resources are different unlicensed frequency domain resources
  • the second instruction data is the same as the instruction data transmitted by the first instruction data within a preset time period from the preset detection time, and the third instruction data and the first instruction data are transmitted from the The command data transmitted after the preset time period starting from the preset detection time is the same.
  • a computer-readable storage medium stores at least one instruction, and the instruction is loaded and executed by a processor to implement the same as the first aspect. The operations performed in the control command transmission method described above.
  • a computer-readable storage medium stores at least one instruction, and the instruction is loaded and executed by a processor to implement the second aspect. Operations performed in the control instruction transmission method.
  • a computer-readable storage medium stores at least one instruction, and the instruction is loaded and executed by a processor to implement the third aspect. Operations performed in the control instruction transmission method.
  • the method, base station, terminal, and storage medium provided in the embodiments of the present disclosure configure different unlicensed frequency domain resources for the terminal through the base station.
  • the base station fails to occupy the first frequency domain resource, it occupies the second frequency domain resource and detects it from a preset. Timing starts at all times, and when the timing duration reaches a preset duration, a control instruction is sent through the second frequency domain resource.
  • the base station fails to occupy one unlicensed frequency domain resource, it can also send control instructions by occupying another unlicensed frequency domain resource, avoiding the problem that the base station cannot send control instructions due to failure to occupy unlicensed frequency domain resources .
  • the time at which the control instruction is started to be sent is postponed from the preset detection time to the preset time, ensuring that the terminal detects the control instruction after switching the frequency-domain resources, The time at which the control instruction is detected is consistent with the time at which the base station sends the control instruction, so the terminal can detect the complete instruction data and avoid the loss of instruction data.
  • the method, base station, terminal, and storage medium provided in the embodiments of the present disclosure further configure different unlicensed frequency domain resources for the terminal through the base station.
  • the base station fails to occupy the first frequency domain resource, it occupies the second frequency domain resource.
  • a control instruction is sent through the second frequency domain resource, and the control instruction includes the first instruction data and the second instruction data.
  • the base station fails to occupy one unlicensed frequency domain resource, it can also send control instructions by occupying another unlicensed frequency domain resource, avoiding the problem that the base station cannot send control instructions due to failure to occupy unlicensed frequency domain resources .
  • the terminal consumes a preset time when switching frequency-domain resources, only the third instruction data in the first instruction data can be detected, and the second instruction data sent before the third instruction data cannot be detected, so The second instruction data is repeatedly sent to ensure that the terminal can detect the third instruction data and the second instruction data, arrange the second instruction data before the third instruction data, and obtain the complete first instruction data, thereby avoiding the loss of the instruction data.
  • Fig. 1 is a schematic structural diagram of a communication system according to an exemplary embodiment
  • Fig. 2 is a flow chart showing a method for transmitting a control instruction according to an exemplary embodiment
  • Fig. 3 is a flow chart showing a method for transmitting a control instruction according to an exemplary embodiment
  • Fig. 4 is a schematic diagram showing multiple bandwidth parts according to an exemplary embodiment
  • Fig. 5 is a schematic diagram of transmitting instruction data according to an exemplary embodiment
  • Fig. 6 is a flow chart showing a method for transmitting a control instruction according to an exemplary embodiment
  • Fig. 7 is a flow chart showing a method for transmitting a control instruction according to an exemplary embodiment
  • Fig. 8 is a flow chart showing a method for transmitting a control instruction according to an exemplary embodiment
  • Fig. 9 is a schematic diagram of transmitting instruction data according to an exemplary embodiment
  • Fig. 10 is a block diagram of a base station according to an exemplary embodiment
  • Fig. 11 is a block diagram of a base station according to an exemplary embodiment
  • Fig. 12 is a block diagram of a terminal according to an exemplary embodiment
  • Fig. 13 is a block diagram of a base station according to an exemplary embodiment
  • Fig. 14 is a block diagram of a base station according to an exemplary embodiment
  • Fig. 15 is a block diagram showing a terminal according to an exemplary embodiment.
  • the embodiments of the present disclosure provide a control instruction transmission method, a base station, a terminal, and a storage medium.
  • the disclosure is described in detail below with reference to the accompanying drawings.
  • Fig. 1 is a schematic structural diagram of a communication system according to an exemplary embodiment. As shown in Fig. 1, the communication system includes a base station 101 and a terminal 102, and the base station 101 and the terminal 102 are connected through a communication network.
  • the base station 101 may send a control command to the terminal, and the terminal 102 detects the control instruction, thereby implementing the control of the terminal 102 by the base station 101.
  • the base station 101 when the base station 101 sends a control instruction to the terminal 102 through an unlicensed frequency domain resource, if the current unlicensed frequency domain resource is occupied, the base station 101 may send the control instruction through another unlicensed frequency domain resource, and the terminal 102. Switch from the current unlicensed frequency domain resource to another unlicensed frequency domain resource, and detect the control instruction sent by the base station on the other unlicensed frequency domain resource.
  • Fig. 2 is a flowchart illustrating a control instruction transmission method according to an exemplary embodiment, which is applied to a base station. As shown in Fig. 2, the method includes the following steps:
  • step 201 after failing to occupy the first frequency domain resource, the second frequency domain resource is occupied, and the first frequency domain resource and the second frequency domain resource are different unlicensed frequency domain resources.
  • step 202 timing is started from a preset detection time, and when the timing duration reaches the preset duration, a control instruction is sent through a second frequency domain resource.
  • the base station and the terminal may determine the preset duration through negotiation in advance.
  • the base station may use high-level signaling, MAC (CE, Media Access Control, Control Element) signaling, and physical layer signaling. Or other signaling, send the preset duration to the terminal, or the base station may not send the preset duration to the terminal through signaling, but set the preset duration in advance in the transmission protocol.
  • MAC Media Access Control, Control Element
  • a terminal is configured with different unlicensed frequency domain resources for a terminal.
  • a base station fails to occupy a first frequency domain resource, it occupies a second frequency domain resource, and starts counting from a preset detection time.
  • the control instruction is sent through the second frequency domain resource.
  • the time at which the control instruction is started to be sent is postponed from the preset detection time to the preset time, which ensures that when the terminal detects the control instruction after switching frequency-domain resources, The time at which the control instruction is detected is consistent with the time at which the base station sends the control instruction, so the terminal can detect the complete instruction data and avoid the loss of instruction data.
  • the method further includes:
  • a time period for the terminal to switch frequency domain resources is determined as a preset time period.
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • Fig. 3 is a flow chart showing a method for transmitting a control instruction according to an exemplary embodiment.
  • the interaction subject in this embodiment is the base station and the terminal in the embodiment shown in FIG. 1, as shown in FIG. 3, including the following steps:
  • step 301 when the base station determines that the first frequency domain resource is busy, it fails to occupy the first frequency domain resource.
  • the base station pre-configures multiple different unlicensed frequency domain resources for the terminal.
  • the unlicensed frequency domain resource may be a bandwidth part.
  • the bandwidth part refers to one or more consecutive resources in the frequency domain.
  • a base station may configure multiple carriers for a terminal, and each carrier includes multiple bandwidth parts.
  • the bandwidth of each bandwidth part may be 10 MHz (Megahertz), 20 MHz, etc.
  • the bandwidths of different bandwidth parts may be equal or unequal.
  • the terminal first works on a certain frequency domain resource.
  • the base station wants to send a control instruction to the terminal, it can first detect the state of the frequency domain resource.
  • the base station can occupy the frequency domain resource and send a control instruction through the frequency domain resource.
  • the terminal detects a control instruction sent by the base station through the frequency domain resource.
  • the base station fails to occupy the frequency domain resource. At this time, the base station can detect the status of another frequency domain resource again to send control through another frequency domain resource. instruction. Correspondingly, the terminal will detect the control instruction sent by the base station through the currently operating frequency domain resource. When the control instruction fails to be detected, the terminal may switch to another frequency domain resource and detect the control instruction sent on another frequency domain resource.
  • the other systems may include other base stations in the communication system in which the base station is located, or may include other communication systems other than the communication system in which the base station is located, such as a WiFi (Wireless Fidelity, wireless local area network) system.
  • WiFi Wireless Fidelity, wireless local area network
  • the terminal works on the first frequency domain resource and then switches to the second frequency domain resource as an example for description.
  • the first frequency domain resource and the second frequency domain resource are different unlicensed frequency domain resources.
  • the base station sends a control instruction to the terminal through the first frequency domain resource, if the first frequency domain resource is pre-occupied by other systems, the base station will detect that the first frequency domain resource is busy, which will cause the base station to occupy the first frequency domain Resource failed. At this time, the base station can detect the status of other unlicensed frequency domain resources in order to occupy other unlicensed frequency domain resources.
  • step 302 when the base station determines that the second frequency domain resource is in an idle state, it occupies the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are different unlicensed frequency domain resources.
  • the base station may detect the state of the second frequency domain resource, and when it is determined that the second frequency domain resource is in an idle state, occupy the second frequency domain resource.
  • step 303 the base station starts timing from a preset detection time, and sends a control instruction through a second frequency domain resource when the timing duration reaches the preset duration.
  • the preset detection time is a detection time determined in advance by the base station and the terminal, and is used to specify an initial time point of the terminal detection control instruction.
  • the base station After occupying a certain frequency domain resource, the base station sends a control instruction through the frequency domain resource at the preset detection time, and the terminal detects the control instruction sent by the base station through the frequency domain resource at the preset detection time.
  • the base station determines the preset detection time, and sends the preset detection time to the terminal through high-layer signaling, physical layer signaling, or other signaling.
  • the base station occupies the second frequency domain resource after failing to occupy the first frequency domain resource, at the preset detection time, the base station no longer sends control instructions through the first frequency domain resource, but instead passes through the second frequency domain resource. Send control instructions.
  • the terminal detects the control instruction sent by the base station through the first frequency domain resource at a preset detection time, the control instruction cannot be detected, resulting in detection failure.
  • the terminal switches from the first frequency domain resource to the second frequency domain resource, and the switching process takes a certain amount of time, that is, the terminal can start to detect the control instruction after a certain period of time after the preset detection time. The lag will cause the terminal to fail to detect the complete instruction data and cause the instruction data to be lost.
  • the base station does not send the control instruction immediately at a preset detection time, but waits for the terminal to complete the frequency domain resource switching before sending the control instruction.
  • the base station starts timing.
  • the terminal also starts to switch from the first frequency domain resource to the second frequency domain resource.
  • the timing duration gradually increases until the preset duration is reached. The process of the terminal switching from the first frequency domain resource to the second frequency domain resource has been completed.
  • the base station sends the control instruction through the second frequency domain resource, and the terminal can also detect the control instruction sent by the base station through the second frequency domain resource to obtain The complete instruction data in the control instruction.
  • the base station considers that the terminal cannot detect the control instruction at the preset detection time, and can detect the control instruction only after switching from the first frequency domain resource to the second frequency domain resource. Therefore, the time for sending the control instruction is delayed accordingly, so that the base station starts to send control The time of the instruction is the same as the time when the terminal starts to detect the control instruction, so that the terminal can obtain the complete instruction data in the control instruction and avoid the loss of the instruction data.
  • the preset time length is a predefined time length, and the preset time length may be equal to the duration of the terminal switching from the first frequency domain resource to the second frequency domain resource, or may be greater than that of the terminal switching from the first frequency domain resource to the second frequency domain.
  • the duration of the domain resource enables the terminal to detect in time after switching the frequency domain resource to obtain complete instruction data; the preset duration may be 1 symbol (symbol), 3 symbols, or 1 subframe. And the preset duration can be set according to the duration used by a general terminal when switching frequency-domain resources.
  • the terminal determines the frequency domain resource switching capability of the terminal, and sends the frequency domain resource switching capability to the base station, and the frequency domain resource switching capability is used to determine a preset duration.
  • the base station receives the frequency-domain resource switching capability sent by the terminal; and determines, according to the frequency-domain resource switching capability, the time it takes for the terminal to switch frequency-domain resources as a preset duration.
  • step 304 the terminal switches from the first frequency domain resource to the second frequency domain resource when detecting that the control instruction sent by the base station through the first frequency domain resource fails.
  • the base station occupies the second frequency domain resource after failing to occupy the first frequency domain resource, at the preset detection time, the base station no longer sends control instructions through the first frequency domain resource, but instead passes through the second frequency domain resource. Send control instructions.
  • the terminal detects the control instruction sent by the base station through the first frequency domain resource at a preset detection time, the control instruction cannot be detected, resulting in detection failure. At this time, the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • step 305 the terminal detects a control instruction sent by the base station through the second frequency domain resource.
  • the switching process takes a preset time, that is, the terminal can not detect the control instruction after the preset time after the preset detection time, and the terminal cannot The command data sent by the base station within a preset time after the preset detection time is detected.
  • the base station needs to delay the time at which the control instruction starts to be sent from the preset detection time to the preset time, and then the terminal detects the control instruction after switching the frequency domain resource
  • the timing at which the control instruction is detected is consistent with the timing at which the base station sends the control instruction.
  • FIG. 4 is a schematic diagram showing multiple bandwidth sections according to an exemplary embodiment.
  • the base station configures three bandwidth sections for the terminal, and each bandwidth section is configured with a preset detection time.
  • Fig. 5 is a schematic diagram of transmitting instruction data according to an exemplary embodiment. Referring to FIG. 5, the base station configures two bandwidth portions for the terminal. It is assumed that the control instruction includes instruction data of three symbols: instruction data 1, instruction data 2, and instruction data 3, and the preset duration is 1 symbol. The original base station would occupy the bandwidth part 1 and send the instruction data 1, the instruction data 2 and the instruction data 3 through the bandwidth part 1 in sequence at the preset detection time. However, when the base station fails to occupy the bandwidth part 1, it switches to the occupied bandwidth part 2.
  • the base station After one symbol after the preset detection time, the base station sends the instruction data 1, the instruction data 2 and the instruction data 3 in sequence through the bandwidth part 2. After the terminal fails to detect the first frequency domain resource at the preset detection time, the terminal switches to the second frequency domain resource and detects instruction data 1, instruction data 2, and instruction data 3 in the control instruction.
  • the base station configures different unlicensed frequency domain resources for the terminal.
  • the base station fails to occupy the first frequency domain resource, it occupies the second frequency domain resource, starts counting from a preset detection time, and when the timing duration reaches When the preset duration is reached, the control instruction is sent through the second frequency domain resource.
  • the base station fails to occupy one unlicensed frequency domain resource, it can also send control instructions by occupying another unlicensed frequency domain resource, avoiding the problem that the base station cannot send control instructions due to failure to occupy unlicensed frequency domain resources .
  • the time at which the control instruction is started to be sent is postponed from the preset detection time to the preset time, which ensures that when the terminal detects the control instruction after switching frequency-domain resources, The time at which the control instruction is detected is consistent with the time at which the base station sends the control instruction, so the terminal can detect the complete instruction data and avoid the loss of instruction data.
  • Fig. 6 is a flowchart illustrating a method for transmitting a control instruction according to an exemplary embodiment, which is applied to a base station. As shown in Fig. 6, the method includes the following steps:
  • step 601 after failing to occupy the first frequency domain resource, the second frequency domain resource is occupied, and the first frequency domain resource and the second frequency domain resource are different unlicensed frequency domain resources.
  • step 602 a control instruction is sent through a second frequency domain resource at a preset detection time.
  • the control instruction includes first instruction data and second instruction data, and the second instruction data is the same as the instruction data transmitted by the first instruction data within a preset time period from a preset detection time.
  • a terminal is configured with different unlicensed frequency domain resources for a terminal.
  • the base station fails to occupy the first frequency domain resource, the second frequency domain resource is occupied, and the second frequency domain resource is passed at a preset detection time
  • a control instruction is sent, and the control instruction includes first instruction data and second instruction data.
  • the terminal consumes a preset time when switching frequency-domain resources, only the third instruction data in the first instruction data can be detected, and the second instruction data sent before the third instruction data cannot be detected, so The second instruction data is repeatedly sent to ensure that the terminal can detect the third instruction data and the second instruction data, arrange the second instruction data before the third instruction data, and obtain the complete first instruction data, thereby avoiding the loss of the instruction data.
  • the method further includes:
  • a time period for the terminal to switch frequency domain resources is determined as a preset time period.
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • Fig. 7 is a flowchart illustrating a method for transmitting a control instruction according to an exemplary embodiment, which is applied to a terminal. As shown in Fig. 7, the method includes the following steps:
  • step 701 when the control instruction sent by the base station through the first frequency domain resource fails to be detected at a preset detection time, the first frequency domain resource is switched to the second frequency domain resource, and the first frequency domain resource and the second frequency domain resource are switched.
  • the domain resources are different unlicensed frequency domain resources.
  • step 702 the control instruction sent by the base station through the second frequency domain resource is detected to obtain the third instruction data and the second instruction data.
  • the second instruction data is the same as the instruction data transmitted by the first instruction data within a preset time period from the preset detection time, and the third instruction data and the first instruction data are transmitted after the preset time period from the preset detection time.
  • the command data is the same.
  • step 703 the second instruction data is arranged before the third instruction data to obtain the first instruction data.
  • a terminal when a terminal fails to detect a control instruction sent by a base station through a first frequency domain resource at a preset detection time, the terminal switches from the first frequency domain resource to a second frequency domain resource, and then detects that the base station passes the first
  • the control instruction sent by the second frequency domain resource obtains the third instruction data and the second instruction data.
  • the base station considers that the terminal consumes a preset time when switching frequency-domain resources, and can only detect the third instruction data in the first instruction data, but cannot detect the second instruction data sent before the third instruction data, so If the second instruction data is repeatedly sent, the terminal arranges the second instruction data repeatedly sent by the base station before the third instruction data to obtain the complete first instruction data, thereby avoiding the loss of the instruction data.
  • the method further includes:
  • the frequency domain resource switching capability of the terminal is determined, and the frequency domain resource switching capability is sent to the base station.
  • the frequency domain resource switching capability is used to determine a preset duration.
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • Fig. 8 is a flow chart showing a method for transmitting a control instruction according to an exemplary embodiment.
  • the interaction subject is the base station and the terminal in the embodiment shown in Fig. 1.
  • the method includes the following steps:
  • step 801 when the base station determines that the first frequency domain resource is busy, it fails to occupy the first frequency domain resource.
  • step 802 when the base station determines that the second frequency domain resource is in an idle state, it occupies the second frequency domain resource.
  • Steps 801-802 are similar to the above steps 301-302, and are not repeated here.
  • step 803 the base station sends a control instruction through a second frequency domain resource at a preset detection time.
  • the base station occupies the second frequency domain resource after failing to occupy the first frequency domain resource, at the preset detection time, the base station no longer sends control instructions through the first frequency domain resource, but instead passes through the second frequency domain resource. Send control instructions.
  • the terminal detects the control instruction sent by the base station through the first frequency domain resource at a preset detection time, the control instruction cannot be detected, resulting in detection failure.
  • the terminal switches from the first frequency domain resource to the second frequency domain resource, and the switching process takes a certain amount of time, that is, the terminal can start to detect the control instruction after a certain period of time after the preset detection time.
  • the terminal cannot detect the instruction data sent by the base station within a certain period of time after the preset detection time.
  • the control instruction sent to the terminal includes not only the first instruction data but also the second instruction data, and the second instruction data and the first instruction data
  • the command data transmitted within a preset time period starting from the preset detection time is the same, so that the second command data not detected during the process of switching the frequency domain resource by the terminal is repeatedly sent.
  • the preset time length is a predefined time length, and the preset time length may be equal to the duration of the terminal switching from the first frequency domain resource to the second frequency domain resource, or may be greater than that of the terminal switching from the first frequency domain resource to the second frequency domain.
  • the preset duration can be set according to the duration used by a general terminal when switching frequency-domain resources.
  • the base station and the terminal may determine the preset duration through negotiation in advance.
  • the base station may send the preset duration to the terminal through high-level signaling, MAC CE signaling, physical layer signaling, or other signaling.
  • the base station may not send the signal to the terminal through signaling, but may set the preset time length in advance in the transmission protocol.
  • the terminal determines the frequency domain resource switching capability of the terminal, and sends the frequency domain resource switching capability to the base station.
  • the base station receives the frequency domain resource switching capability sent by the terminal, and determines the terminal switching according to the frequency domain resource switching capability.
  • the duration of the frequency domain resource is used as the preset duration.
  • step 804 when the terminal detects that the control instruction sent by the base station through the first frequency domain resource fails at the preset detection time, the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • Step 804 is similar to step 304 described above, and details are not described herein again.
  • step 805 the terminal detects the control instruction sent by the base station through the second frequency domain resource, and obtains the third instruction data and the second instruction data.
  • control instruction includes the first instruction data and the second instruction data
  • the terminal switches from the first frequency domain resource to the second frequency domain resource after a preset detection time, it takes a preset time, so when the terminal detects that the base station passes
  • the control instruction is sent by the second frequency domain resource
  • the third instruction data is detected, and then the second instruction data is detected.
  • the third instruction data is the same as the instruction data transmitted by the first instruction data after a preset time period from a preset detection time.
  • Fig. 9 is a schematic diagram of transmitting instruction data according to an exemplary embodiment.
  • the base station configures two bandwidth portions for the terminal.
  • the control instruction includes instruction data of three symbols: instruction data 1, instruction data 2, and instruction data 3, and the preset duration is 1 symbol.
  • the original base station would occupy the bandwidth part 1 and send the instruction data 1, the instruction data 2 and the instruction data 3 in turn through the bandwidth part 1 at a preset detection time.
  • the base station fails to occupy the bandwidth part 1, it switches to the occupied bandwidth part 2.
  • the base station sends the instruction data 1, the instruction data 2 and the instruction data 3 in sequence through the bandwidth part 2.
  • Resend command data 1 the base station configures two bandwidth portions for the terminal.
  • the control instruction includes instruction data of three symbols: instruction data 1, instruction data 2, and instruction data 3, and the preset duration is 1 symbol.
  • the original base station would occupy the bandwidth part 1 and send the instruction data 1, the instruction data 2 and the instruction data 3 in turn through the bandwidth part 1 at a preset detection time.
  • step 806 the terminal arranges the second instruction data before the third instruction data to obtain the first instruction data.
  • the base station In order to avoid losing the second command data, the base station repeatedly sends the second command data after the first command data. However, in the original control command, the second command data precedes the third command data. Therefore, when the terminal detects the first command data When the three instruction data and the second instruction data are detected later, it needs to be rearranged.
  • the second instruction data is arranged before the third instruction data.
  • the arranged instruction data is the complete first instruction data of the control instruction.
  • the instruction data 2, instruction data 3, and instruction data 1 are sequentially detected, and the obtained instruction data is reordered, that is, the instruction Data 1 is arranged before command data 2 and command data 3 to obtain the arranged command data.
  • the base station and the terminal can predefine a processing rule.
  • the processing rule specifies that after the base station switches the frequency domain resources, after the control command is sent, the control command transmits the command data transmitted within the initial preset time period repeatedly. .
  • the command data sent later by the base station is arranged before the command data sent first to obtain the arranged command data. Then both the base station and the terminal perform control instruction transmission and detection based on the processing rule.
  • a terminal is configured with different unlicensed frequency domain resources for a terminal.
  • the base station fails to occupy the first frequency domain resource, it occupies the second frequency domain resource and passes the second frequency domain at a preset detection time
  • the resource sends a control instruction, and the control instruction includes first instruction data and second instruction data. Ensure that when the base station fails to occupy one unlicensed frequency domain resource, it can also send control instructions by occupying another unlicensed frequency domain resource, avoiding the problem that the base station cannot send control instructions due to failure to occupy unlicensed frequency domain resources .
  • the terminal consumes a preset time when switching frequency-domain resources, only the third instruction data in the first instruction data can be detected, and the second instruction data sent before the third instruction data cannot be detected, so The second instruction data is repeatedly sent to ensure that the terminal can detect the third instruction data and the second instruction data, arrange the second instruction data before the third instruction data, and obtain the complete first instruction data, thereby avoiding the loss of the instruction data.
  • Fig. 10 is a block diagram showing a base station according to an exemplary embodiment.
  • the base station includes an obtaining module 1001 and a sending module 1002.
  • the occupancy module 1001 is configured to occupy a second frequency domain resource after failing to occupy the first frequency domain resource, where the first frequency domain resource and the second frequency domain resource are different unlicensed frequency domain resources;
  • the sending module 1002 is configured to start timing from a preset detection time, and send a control instruction through a second frequency domain resource when the timing duration reaches the preset duration.
  • the base station further includes:
  • a receiving module configured to receive a frequency domain resource switching capability sent by a terminal
  • the determining module is configured to determine, according to a frequency domain resource switching capability, a duration for the terminal to switch frequency domain resources as a preset duration.
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • Fig. 11 is a block diagram of a base station according to an exemplary embodiment.
  • the base station includes an obtaining module 1101 and a sending module 1102.
  • the occupancy module 1101 is configured to occupy a second frequency domain resource after failing to occupy the first frequency domain resource, where the first frequency domain resource and the second frequency domain resource are different unlicensed frequency domain resources;
  • a sending module 1102 configured to send and control instructions through a second frequency domain resource at a preset detection time
  • the control instruction includes first instruction data and second instruction data, and the second instruction data is the same as the instruction data transmitted by the first instruction data within a preset time period from a preset detection time.
  • the base station further includes:
  • a receiving module configured to receive a frequency domain resource switching capability sent by a terminal
  • the determining module is configured to determine, according to a frequency domain resource switching capability, a duration for the terminal to switch frequency domain resources as a preset duration.
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • Fig. 12 is a block diagram showing a terminal according to an exemplary embodiment.
  • the terminal includes a switching module 1201, a detection module 1202, and an alignment module 1203.
  • a switching module 1201 configured to switch from the first frequency domain resource to the second frequency domain resource when the control instruction sent by the base station through the first frequency domain resource fails at a preset detection time, and the first frequency domain resource and the second frequency domain resource
  • the frequency domain resources are different unlicensed frequency domain resources
  • a detection module 1202 is configured to detect a control instruction sent by a base station through a second frequency domain resource, and obtain third instruction data and second instruction data;
  • the second instruction data is the same as the instruction data transmitted by the first instruction data within a preset time period from the preset detection time, and the third instruction data and the first instruction data are transmitted after the preset time period from the preset detection time.
  • the command data is the same.
  • the arranging module 1203 arranges the second instruction data before the third instruction data to obtain the first instruction data.
  • the terminal further includes:
  • a determining module configured to determine a frequency domain resource switching capability of the terminal
  • the sending module is configured to send a frequency domain resource switching capability to the base station, and the frequency domain resource switching capability is used to determine a preset duration.
  • the preset duration is a duration during which the terminal switches from the first frequency domain resource to the second frequency domain resource.
  • the base station and terminal provided in the above embodiments only use the division of the above functional modules as an example to describe the control instruction detection.
  • the above functions may be allocated by different functional modules as required. That is, the internal structure of the terminal and the base station is divided into different functional modules to complete all or part of the functions described above.
  • the base station embodiment and the terminal embodiment and the control instruction detection method embodiment provided by the foregoing embodiments belong to the same concept. For specific implementation processes, refer to the method embodiments, and details are not described herein again.
  • Fig. 13 is a block diagram of a base station according to an exemplary embodiment.
  • the base station includes a processor 1301, a memory 1302 for storing processor-executable instructions, and a transceiver 1303.
  • the processor 1301 is configured to execute the following instructions:
  • the timing starts from the preset detection time, and when the timing duration reaches the preset duration, a control instruction is sent through the second frequency domain resource.
  • a computer-readable storage medium is also provided.
  • the base station can perform the steps performed by the base station in the control instruction detection method in the foregoing embodiment.
  • Fig. 14 is a block diagram showing a base station according to an exemplary embodiment.
  • the base station includes a processor 1401, a memory 1402 for storing processor-executable instructions, and a transceiver 1403.
  • the processor 1401 is configured to execute the following instructions:
  • the control instruction includes first instruction data and second instruction data, and the second instruction data is the same as the instruction data transmitted by the first instruction data within a preset time period from a preset detection time.
  • a computer-readable storage medium is also provided.
  • the base station can perform the steps performed by the base station in the control instruction detection method in the foregoing embodiment.
  • Fig. 15 is a block diagram of a terminal 1500 according to an exemplary embodiment.
  • the terminal 1500 may be a mobile phone, a computer, a digital broadcasting device, a messaging device, a game console, a tablet device, a medical device, a fitness equipment, a personal digital assistant, and the like.
  • the terminal 1500 may include one or more of the following components: a processing component 1502, a memory 1504, a power component 1506, a multimedia component 1508, an audio component 1510, an input / output (I / O) interface 1512, a sensor component 1514, And communication component 1516.
  • the processing component 1502 generally controls overall operations of the terminal 1500, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1502 may include one or more processors 1520 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 1502 may include one or more modules to facilitate the interaction between the processing component 1502 and other components.
  • the processing component 1502 may include a multimedia module to facilitate the interaction between the multimedia component 1508 and the processing component 1502.
  • the power supply component 1506 provides power to various components of the terminal 1500.
  • the power component 1506 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the terminal 1500.
  • the multimedia component 1508 includes a screen that provides an output interface between the terminal 1500 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor can not only sense the boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 1508 includes a front camera and / or a rear camera. When the terminal 1500 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1510 is configured to output and / or input audio signals.
  • the audio component 1510 includes a microphone (MIC).
  • the microphone When the terminal 1500 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 1504 or transmitted via the communication component 1516.
  • the audio component 1510 further includes a speaker for outputting audio signals.
  • the I / O interface 1512 provides an interface between the processing component 1502 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 1514 includes one or more sensors for providing the terminal 1500 with a status assessment of various aspects.
  • the sensor component 1514 can detect the open / close state of the terminal 1500, and the relative positioning of the components, such as the display and keypad of the terminal 1500.
  • the sensor component 1514 can also detect the change in the position of the terminal 1500 or a component of the terminal 1500.
  • the user The presence or absence of contact with the terminal 1500, the orientation or acceleration / deceleration of the terminal 1500, and the temperature change of the terminal 1500.
  • the sensor assembly 1514 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 1514 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1514 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1516 is configured to facilitate wired or wireless communication between the terminal 1500 and other devices.
  • the terminal 1500 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 1516 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 1516 further includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the terminal 1500 may be one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable It is implemented by a gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic components, and is configured to execute the control instruction detection method described above.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable It is implemented by a gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic components, and is configured to execute the control instruction detection method described above.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1504 including instructions, may be provided, which may be executed by the processor 1520 of the terminal 1500 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • the program may be stored in an acquisition machine-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Abstract

本公开是关于一种控制指令传输方法、基站、终端及存储介质,属于通信技术领域。方法包括:在占用第一频域资源失败后,占用第二频域资源,第一频域资源与第二频域资源为不同的非授权频域资源;从预设检测时刻开始计时,当计时时长达到预设时长时,通过第二频域资源发送控制指令。本公开实施例中基站为终端配置不同的非授权频域资源,当基站占用第一频域资源失败后,占用第二频域资源,从预设检测时刻开始计时,当计时时长达到预设时长时,通过第二频域资源发送控制指令。保证了基站在占用某一个非授权频域资源失败时,也能通过占用另外一个非授权频域资源来发送控制指令,避免了由于占用非授权频域资源失败而导致基站无法发送控制指令的问题。

Description

控制指令传输方法、基站、终端及存储介质 技术领域
本公开是关于通信技术领域,具体来说是关于一种控制指令传输方法、基站、终端及存储介质。
背景技术
无线通信系统中通常采用授权频域资源进行传输,然而,随着新一代互联网应用的不断涌现,对于无线通信技术提出了更高的要求,驱使着无线通信技术的不断演进,授权频域资源已经不能满足传输需求。为此,提出了通过监听避让机制来使用非授权频域资源的功能,基站与终端之间可以通过非授权频域资源进行传输,如发送控制指令等。
相关技术中,当基站要通过非授权频域资源向终端发送控制指令时,先为终端配置待传输的控制指令在非授权频域资源上的预设检测时刻。之后,基站检测非授权频域资源的状态,当该非授权频域资源处于空闲状态时,基站占用非授权频域资源成功,则在该预设检测时刻通过非授权频域资源,向终端发送控制指令,终端在该预设检测时刻通过该非授权频域资源,对控制指令进行检测。
发明内容
本公开提供了一种控制指令传输方法、基站、终端及存储介质,可以解决相关技术的问题。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种控制指令传输方法,应用于基站,所述方法包括:
在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
从预设检测时刻开始计时,当计时时长达到预设时长时,通过所述第二频域资源发送控制指令。
在一种可能实现的方式中,所述方法还包括:
接收终端发送的频域资源切换能力;
根据所述频域资源切换能力,确定所述终端切换频域资源所用的时长,作为所述预设时长。
在一种可能实现的方式中,所述预设时长为终端从所述第一频域资源切换至所述第二频域资源的时长。
根据本公开实施例的第二方面,提供了一种控制指令传输方法,应用于基站,所述方法包括:
在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
在预设检测时刻,通过所述第二频域资源发送控制指令;
所述控制指令中包括第一指令数据和第二指令数据,所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同。
在一种可能实现的方式中,所述方法还包括:
接收终端发送的频域资源切换能力;
根据所述频域资源切换能力,确定所述终端切换频域资源所用的时长,作为所述预设时长。
在一种可能实现的方式中,所述预设时长为终端从所述第一频域资源切换至所述第二频域资源的时长。
根据本公开实施例的第三方面,提供了一种控制指令传输方法,应用于终端,所述方法包括:
在预设检测时刻,当检测基站通过第一频域资源发送的控制指令失败时,从所述第一频域资源切换至第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
检测所述基站通过所述第二频域资源发送的控制指令,得到第三指令数据和第二指令数据;
将所述第二指令数据排列在所述第三指令数据之前,得到第一指令数据;
所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同,所述第三指令数据与所述第一指令数据在从所 述预设检测时刻开始的预设时长之后传输的指令数据相同。
在一种可能实现的方式中,所述方法还包括:
确定终端的频域资源切换能力;
向所述基站发送所述频域资源切换能力,所述频域资源切换能力用于确定所述预设时长。
在一种可能实现的方式中,所述预设时长为终端从所述第一频域资源切换至所述第二频域资源的时长。
根据本公开实施例的第四方面,提供了一种基站,所述基站包括:
占用模块,用于在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
发送模块,用于从所述预设检测时刻开始计时,当计时时长达到预设时长时,通过所述第二频域资源发送控制指令。
在一种可能实现的方式中,所述基站还包括:
接收模块,用于接收终端发送的频域资源切换能力;
确定模块,用于根据所述频域资源切换能力,确定所述终端切换频域资源所用的时长,作为所述预设时长。
在一种可能实现的方式中,所述预设时长为终端从所述第一频域资源切换至所述第二频域资源的时长。
根据本公开实施例的第五方面,提供了一种基站,所述基站包括:
占用模块,用于在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
发送模块,用于在预设检测时刻,通过所述第二频域资源发送控制指令;
所述控制指令中包括从第一指令数据和第二指令数据,所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同。
在一种可能实现的方式中,所述基站还包括:
接收模块,用于接收终端发送的频域资源切换能力;
确定模块,用于根据所述频域资源切换能力,确定所述终端切换频域资源所用的时长,作为所述预设时长。
在一种可能实现的方式中,所述预设时长为终端从所述第一频域资源切换至所述第二频域资源的时长。
根据本公开实施例的第六方面,提供了一种终端,所述终端包括:
切换模块,用于在预设检测时刻,当检测基站通过第一频域资源发送的控制指令失败时,从所述第一频域资源切换至第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
检测模块,用于检测所述基站通过所述第二频域资源发送的控制指令,得到第三指令数据和第二指令数据;
排列模块,将所述第二指令数据排列在所述第三指令数据之前,得到第一指令数据;
所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同,所述第三指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长之后传输的指令数据相同。
在一种可能实现的方式中,所述终端还包括:
确定模块,用于确定终端的频域资源切换能力;
发送模块,用于向所述基站发送所述频域资源切换能力,所述频域资源切换能力用于确定所述预设时长。
在一种可能实现的方式中,所述预设时长为终端从所述第一频域资源切换至所述第二频域资源的时长。
根据本公开实施例的第七方面,提供了一种基站,所述基站包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
从所述预设检测时刻开始计时,当计时时长达到预设时长时,通过所述第二频域资源发送控制指令。
根据本公开实施例的第八方面,提供了一种基站,所述基站包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
在预设检测时刻,通过所述第二频域资源发送控制指令;
所述控制指令中包括第一指令数据和第二指令数据,所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同。
根据本公开实施例的第九方面,提供了一种终端,所述终端包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在预设检测时刻,当检测基站通过第一频域资源发送的控制指令失败时,从所述第一频域资源切换至第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
检测所述基站通过所述第二频域资源发送的控制指令,得到第三指令数据和第二指令数据;
将所述第二指令数据排列在所述第三指令数据之前,得到第一指令数据;
所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同,所述第三指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长之后传输的指令数据相同。
根据本公开实施例的第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如第一方面所述的控制指令传输方法中所执行的操作。
根据本公开实施例的第十一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如第二方面所述的控制指令传输方法中所执行的操作。
根据本公开实施例的第十二方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如第三方面所述的控制指令传输方法中所执行的操作。
本公开实施例提供的方法、基站、终端及存储介质,通过基站为终端配置不同的非授权频域资源,当基站占用第一频域资源失败后,占用第二频域资源,从预设检测时刻开始计时,当计时时长达到预设时长时,通过第二频域资源发送控制指令。保证了基站在占用某一个非授权频域资源失败时,也能通过占用另外一个非授权频域资源来发送控制指令,避免了由于占用非授权频域资源失败而导致基站无法发送控制指令的问题。并且,考虑到了终端切换频域资源所耗费的预设时长,将开始发送控制指令的时刻从预设检测时刻向后推迟了预设时长,保证了终端在切换频域资源后检测控制指令时,检测控制指令的时刻与基站发送控制指令的时刻一致,因此终端能够检测得到完整的指令数据,避免了指令数据的丢失。
本公开实施例提供的方法、基站、终端及存储介质,还通过基站为终端配置不同的非授权频域资源,当基站占用第一频域资源失败后,占用第二频域资源,在预设检测时刻,通过第二频域资源发送控制指令,控制指令中包括第一指令数据和第二指令数据。保证了基站在占用某一个非授权频域资源失败时,也能通过占用另外一个非授权频域资源来发送控制指令,避免了由于占用非授权频域资源失败而导致基站无法发送控制指令的问题。并且,考虑到了终端切换频域资源时会耗费预设时长,只能检测到第一指令数据中的第三指令数据,而无法检测到在第三指令数据之前发送的第二指令数据,因此将第二指令数据重复发送,保证终端能够检测到第三指令数据和第二指令数据,将第二指令数据排列在第三指令数据之前,得到完整的第一指令数据,避免了指令数据的丢失。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种通信系统的结构示意图;
图2是根据一示例性实施例示出的一种控制指令传输方法的流程图;
图3是根据一示例性实施例示出的一种控制指令传输方法的流程图;
图4是根据一示例性实施例示出的多个带宽部分的示意图;
图5是根据一示例性实施例示出的一种指令数据的传输示意图;
图6是根据一示例性实施例示出的一种控制指令传输方法的流程图;
图7是根据一示例性实施例示出的一种控制指令传输方法的流程图;
图8是根据一示例性实施例示出的一种控制指令传输方法的流程图;
图9是根据一示例性实施例示出的一种指令数据的传输示意图;
图10是根据一示例性实施例示出的一种基站的框图;
图11是根据一示例性实施例示出的一种基站的框图;
图12是根据一示例性实施例示出的一种终端的框图;
图13是根据一示例性实施例示出的一种基站的框图;
图14是根据一示例性实施例示出的一种基站的框图;
图15是根据一示例性实施例示出的一种终端的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本公开做进一步详细说明。在此,本公开的示意性实施方式及其说明用于解释本公开,但并不作为对本公开的限定。
本公开实施例提供一种控制指令传输方法、基站、终端及存储介质,以下结合附图对本公开进行详细说明。
图1是根据一示例性实施例示出的一种通信系统的结构示意图,如图1所示,该通信系统包括基站101和终端102,基站101与终端102之间通过通信网络连接。
在通信过程中,基站101可以向终端发送控制命令,由终端102检测该控制指令,从而实现基站101对终端102的控制。
并且,当基站101要通过非授权频域资源向终端102发送控制指令时,如果当前的非授权频域资源被占用,基站101可以通过另一个非授权频域资源发 送该控制指令,并由终端102从当前的非授权频域资源切换至另一个非授权频域资源,在另一个非授权频域资源上检测基站发送的控制指令。
图2是根据一示例性实施例示出的一种控制指令传输方法的流程图,应用于基站中,如图2所示,包括以下步骤:
在步骤201中,在占用第一频域资源失败后,占用第二频域资源,第一频域资源与第二频域资源为不同的非授权频域资源。
在步骤202中,从预设检测时刻开始计时,当计时时长达到预设时长时,通过第二频域资源发送控制指令。
在一种可能实现方式中,基站和终端可以提前协商确定该预设时长,如基站可以通过高层信令、MAC CE(Media Access Control Control Element,媒体访问控制控制元素)信令、物理层信令或者其他信令,将该预设时长发送给终端,或,基站可以不通过信令发送给终端,而是在传输协议中提前设定好该预设时长。
本公开实施例提供的方法,通过基站为终端配置不同的非授权频域资源,当基站占用第一频域资源失败后,占用第二频域资源,从预设检测时刻开始计时,当计时时长达到预设时长时,通过第二频域资源发送控制指令。保证了基站在占用某一个非授权频域资源失败时,也能通过占用另外一个非授权频域资源来发送控制指令,避免了由于占用非授权频域资源失败而导致基站无法发送控制指令的问题。
并且,考虑到了终端切换频域资源所耗费的预设时长,将开始发送控制指令的时刻从预设检测时刻向后推迟了预设时长,保证了终端在切换频域资源后检测控制指令时,检测控制指令的时刻与基站发送控制指令的时刻一致,因此终端能够检测得到完整的指令数据,避免了指令数据的丢失。
在一种可能实现方式中,方法还包括:
接收终端发送的频域资源切换能力;
根据频域资源切换能力,确定终端切换频域资源所用的时长,作为预设时长。
在一种可能实现方式中,预设时长为终端从第一频域资源切换至第二频域资源的时长。
图3是根据一示例性实施例示出的一种控制指令传输方法的流程图。本实施例的交互主体为图1所示实施例中的基站和终端,如图3所示,包括以下步骤:
在步骤301中,当基站确定第一频域资源处于繁忙状态,占用第一频域资源失败。
基站为终端预先配置了多个不同的非授权频域资源。其中,非授权频域资源可为带宽部分,带宽部分是指在频域上连续的一段或多段资源,例如基站可以为终端配置多个载波,每个载波中包括多个带宽部分。并且,每个带宽部分的带宽可以为10MHz(兆赫兹)、20MHz等,不同带宽部分的带宽可以相等,也可以不相等。
在通信过程中,针对于多个非授权频域资源,终端先工作在某一频域资源上。当基站要向终端发送控制指令时,可以先检测该频域资源的状态。
如果该频域资源还未被其他系统占用,当前处于空闲状态,则基站可以占用该频域资源,通过该频域资源发送控制指令。相应地,终端会检测基站通过该频域资源发送的控制指令。
如果该频域资源已经被其他系统占用,当前处于繁忙状态,则基站占用该频域资源失败,此时,基站可以再次检测另一频域资源的状态,以便通过另一频域资源来发送控制指令。相应地,终端会检测基站通过当前工作的频域资源发送的控制指令,当检测控制指令失败时,终端可以切换到另一频域资源上,检测另一频域资源上发送的控制指令。
其中,其他系统可以包括该基站所处通信系统中的其他基站,也可以包括该基站所处通信系统以外的其他通信系统,如WiFi(Wireless Fidelity,无线局域网)系统等。
本公开实施例以终端先工作于第一频域资源,后续切换至第二频域资源为例进行说明,第一频域资源与第二频域资源为不同的非授权频域资源。则当基站要通过第一频域资源向终端发送控制指令时,如果第一频域资源被其他系统预先占用,基站会检测到第一频域资源处于繁忙状态,从而导致基站占用第一频域资源失败。此时,基站可以检测其他非授权频域资源的状态,以便占用其他非授权频域资源。
在步骤302中,当基站确定第二频域资源处于空闲状态时,占用第二频域资源。
其中,第一频域资源与第二频域资源为不同的非授权频域资源。
基站可以检测第二频域资源的状态,当确定第二频域资源处于空闲状态时,占用该第二频域资源。
在步骤303中,基站从预设检测时刻开始计时,当计时时长达到预设时长时,通过第二频域资源发送控制指令。
该预设检测时刻为基站与终端预先配置确定的检测时刻,用于规定终端检测控制指令的初始时间点。通常基站在占用某一频域资源后,会在该预设检测时刻通过该频域资源发送控制指令,而终端会在该预设检测时刻,检测基站通过该频域资源发送的控制指令。
在一种可能实现方式中,基站确定预设检测时刻,通过高层信令、物理层信令或者其他信令,将该预设检测时刻发送给终端。
由于基站在占用第一频域资源失败后,又占用了第二频域资源,因此在预设检测时刻,基站不再通过第一频域资源发送控制指令,而是会通过第二频域资源发送控制指令。终端在预设检测时刻检测基站通过第一频域资源发送的控制指令时,无法检测到控制指令,导致检测失败。此时终端才从第一频域资源切换至第二频域资源,而该切换过程需要耗费一定的时长,也即是终端在预设检测时刻之后的一定时长后,才能开始检测控制指令,检测较为滞后,会导致终端无法检测到完整的指令数据,造成指令数据丢失。
为了保证终端可以检测到控制指令中完整的指令数据,基站不会在预设检测时刻立即发送控制指令,而是等待终端切换频域资源完成之后,再发送控制指令。
因此,在预设检测时刻,基站开始计时,此时终端也开始从第一频域资源切换至第二频域资源,随着时间的推移,计时时长逐渐增加,直至达到预设时长时,认为终端从第一频域资源切换至第二频域资源的过程已经完成,此时,基站通过第二频域资源发送控制指令,终端也可以检测基站通过第二频域资源发送的控制指令,得到控制指令中完整的指令数据。
基站考虑到终端在预设检测时刻无法检测控制指令,从第一频域资源切换至第二频域资源之后才可以检测控制指令,因此将发送控制指令的时间相应的延迟,使得基站开始发送控制指令的时刻和终端开始检测控制指令的时刻一致,从而使得终端可以获取控制指令中完整的指令数据,避免了指令数据的丢失。
其中,预设时长为预先定义的时间长度,该预设时长可以等于终端从第一频域资源切换至第二频域资源的时长,也可大于终端从第一频域资源切换至第二频域资源的时长,以使得终端在切换频域资源后还能够及时地进行检测,得到完整的指令数据;该预设时长可以为1个symbol(符号)、3个symbol或者1个子帧等。且该预设时长可以根据一般终端在切换频域资源时所用的时长设置。
在一种可能实现方式中,终端确定终端的频域资源切换能力,向基站发送频域资源切换能力,频域资源切换能力用于确定预设时长。基站接收终端发送的频域资源切换能力;根据频域资源切换能力,确定终端切换频域资源所用的时长,作为预设时长。
在步骤304中,终端当检测基站通过第一频域资源发送的控制指令失败时,从第一频域资源切换至第二频域资源。
由于基站在占用第一频域资源失败后,又占用了第二频域资源,因此在预设检测时刻,基站不再通过第一频域资源发送控制指令,而是会通过第二频域资源发送控制指令。终端在预设检测时刻检测基站通过第一频域资源发送的控制指令时,无法检测到控制指令,导致检测失败。此时终端从第一频域资源切换至第二频域资源。
在步骤305中,终端检测基站通过第二频域资源发送的控制指令。
终端从第一频域资源切换至第二频域资源时,切换过程需要耗费预设时长,也即是终端在预设检测时刻之后的预设时长后,才能开始检测控制指令,则终端将无法检测到基站在预设检测时刻之后的预设时长内发送的指令数据。
因此,为了保证终端可以检测到控制指令中完整的指令数据,基站需要将开始发送控制指令的时刻从预设检测时刻向后推迟预设时长,进而终端在切换频域资源后检测控制指令时,检测控制指令的时刻与基站发送控制指令的时刻一致。
图4是根据一示例性实施例示出多个带宽部分的示意图,参见图4,基站为终端配置了3个带宽部分,且每个带宽部分配置了预设检测时刻。图5是根据一示例性实施例示出的一种指令数据的传输示意图。参见图5,基站为终端配置了2个带宽部分,假设控制指令包括3个symbol的指令数据:指令数据1、指令数据2和指令数据3,且预设时长为1个symbol。原本基站会占用带宽部分1,并在预设检测时刻通过带宽部分1依次发送指令数据1、指令数据2和 指令数据3。但是,当基站占用带宽部分1失败时,切换至占用带宽部分2,在预设检测时刻之后的1个symbol后,基站通过带宽部分2依次发送指令数据1、指令数据2和指令数据3。而终端在预设检测时刻在第一频域资源检测失败后,切换到第二频域资源,并检测到控制指令中的指令数据1、指令数据2和指令数据3。
本公开实施例提供的方法,基站为终端配置不同的非授权频域资源,当基站占用第一频域资源失败后,占用第二频域资源,从预设检测时刻开始计时,当计时时长达到预设时长时,通过第二频域资源发送控制指令。保证了基站在占用某一个非授权频域资源失败时,也能通过占用另外一个非授权频域资源来发送控制指令,避免了由于占用非授权频域资源失败而导致基站无法发送控制指令的问题。
并且,考虑到了终端切换频域资源所耗费的预设时长,将开始发送控制指令的时刻从预设检测时刻向后推迟了预设时长,保证了终端在切换频域资源后检测控制指令时,检测控制指令的时刻与基站发送控制指令的时刻一致,因此终端能够检测得到完整的指令数据,避免了指令数据的丢失。
图6是根据一示例性实施例示出的一种控制指令传输方法的流程图,应用于基站中,如图6所示,包括以下步骤:
在步骤601中,在占用第一频域资源失败后,占用第二频域资源,第一频域资源与第二频域资源为不同的非授权频域资源。
在步骤602中,在预设检测时刻,通过第二频域资源发送控制指令。
控制指令中包括从第一指令数据和第二指令数据,第二指令数据与第一指令数据在从预设检测时刻开始的预设时长内传输的指令数据相同。
本公开实施例提供的方法,通过基站为终端配置不同的非授权频域资源,当基站占用第一频域资源失败,占用第二频域资源,在预设检测时刻,通过第二频域资源发送控制指令,控制指令中包括第一指令数据和第二指令数据。保证了基站在占用某一个非授权频域资源失败时,也能通过占用另外一个非授权频域资源来发送控制指令,避免了由于占用非授权频域资源失败而导致基站无法发送控制指令的问题。
并且,考虑到了终端切换频域资源时会耗费预设时长,只能检测到第一指令数据中的第三指令数据,而无法检测到在第三指令数据之前发送的第二指令 数据,因此将第二指令数据重复发送,保证终端能够检测到第三指令数据和第二指令数据,将第二指令数据排列在第三指令数据之前,得到完整的第一指令数据,避免了指令数据的丢失。
在一种可能实现方式中,方法还包括:
接收终端发送的频域资源切换能力;
根据频域资源切换能力,确定终端切换频域资源所用的时长,作为预设时长。
在一种可能实现方式中,预设时长为终端从第一频域资源切换至第二频域资源的时长。
图7是根据一示例性实施例示出的一种控制指令传输方法的流程图,应用于终端中,如图7所示,包括以下步骤:
在步骤701中,在预设检测时刻,当检测基站通过第一频域资源发送的控制指令失败时,从第一频域资源切换至第二频域资源,第一频域资源与第二频域资源为不同的非授权频域资源。
在步骤702中,检测基站通过第二频域资源发送的控制指令,得到第三指令数据和第二指令数据。
第二指令数据与第一指令数据在从预设检测时刻开始的预设时长内传输的指令数据相同,第三指令数据与第一指令数据在从预设检测时刻开始的预设时长之后传输的指令数据相同。
在步骤703中,将第二指令数据排列在第三指令数据之前,得到第一指令数据。
本公开实施例提供的方法,在预设检测时刻,当终端检测基站通过第一频域资源发送的控制指令失败时,从第一频域资源切换至第二频域资源,进而检测基站通过第二频域资源发送的控制指令,得到第三指令数据和第二指令数据。并且,基站考虑到了终端切换频域资源时会耗费预设时长,只能检测到第一指令数据中的第三指令数据,而无法检测到在第三指令数据之前发送的第二指令数据,因此将第二指令数据重复发送,则终端将基站重复发送的第二指令数据排列在第三指令数据之前,得到完整的第一指令数据,避免了指令数据的丢失。
在一种可能实现方式中,方法还包括:
确定终端的频域资源切换能力,向基站发送频域资源切换能力,频域资源切换能力用于确定预设时长。
在一种可能实现方式中,预设时长为终端从第一频域资源切换至第二频域资源的时长。
图8是根据一示例性实施例示出的一种控制指令传输方法的流程图,交互主体为图1所示实施例中的基站和终端,如图8所示,包括以下步骤:
在步骤801中,当基站确定第一频域资源处于繁忙状态,占用第一频域资源失败。
在步骤802中,当基站确定第二频域资源处于空闲状态时,占用第二频域资源。
步骤801-802与上述步骤301-302类似,在此不再赘述。
在步骤803中,基站在预设检测时刻,通过第二频域资源发送控制指令。
由于基站在占用第一频域资源失败后,又占用了第二频域资源,因此在预设检测时刻,基站不再通过第一频域资源发送控制指令,而是会通过第二频域资源发送控制指令。终端在预设检测时刻检测基站通过第一频域资源发送的控制指令时,无法检测到控制指令,导致检测失败。此时终端才从第一频域资源切换至第二频域资源,而该切换过程需要耗费一定的时长,也即是终端在预设检测时刻之后的一定时长后,才能开始检测控制指令,则终端将无法检测到基站在预设检测时刻之后的一定时长内发送的指令数据。
因此,为了保证终端可以检测到控制指令完整的第一指令数据,在发送给终端的控制指令中不仅包括该第一指令数据,还会包括第二指令数据,第二指令数据与第一指令数据在从预设检测时刻开始的预设时长内传输的指令数据相同,从而将终端切换频域资源的过程中未检测到的第二指令数据重复发送。
其中,预设时长为预先定义的时间长度,该预设时长可以等于终端从第一频域资源切换至第二频域资源的时长,也可大于终端从第一频域资源切换至第二频域资源的时长,以使得终端在切换频域资源后还能够及时地进行检测,得到完整的指令数据;该预设时长可以为1个symbol、3个symbol或者1个子帧等。且该预设时长可以根据一般终端在切换频域资源时所用的时长设置。
在一种可能实现方式中,基站和终端可以提前协商确定该预设时长,如基站可以通过高层信令、MAC CE信令、物理层信令或者其他信令,将该预设时 长发送给终端,或,基站可以不通过信令发送给终端,而是在传输协议中提前设定好该预设时长。
在一种可能实现的方式中,终端确定终端的频域资源切换能力,并向基站发送频域资源切换能力,基站接收终端发送的频域资源切换能力,根据频域资源切换能力,确定终端切换频域资源所用的时长,作为预设时长。
在步骤804中,在预设检测时刻,当终端检测基站通过第一频域资源发送的控制指令失败时,从第一频域资源切换至第二频域资源。
步骤804与上述步骤304类似,在此不再赘述。
在步骤805中,终端检测基站通过第二频域资源发送的控制指令,得到第三指令数据和第二指令数据。
由于控制指令包括第一指令数据和第二指令数据,而终端在预设检测时刻后又从第一频域资源切换至第二频域资源,耗费了预设时长,因此,当终端检测基站通过第二频域资源发送的控制指令时,会检测到第三指令数据,之后检测到第二指令数据。其中,第三指令数据与第一指令数据在从预设检测时刻开始的预设时长之后传输的指令数据相同。
图9是根据一示例性实施例示出的一种指令数据的传输示意图。参见图9,基站为终端配置了2个带宽部分,假设控制指令包括3个symbol的指令数据:指令数据1、指令数据2和指令数据3,且预设时长为1个symbol。原本基站会占用带宽部分1,并在预设检测时刻通过带宽部分1依次发送指令数据1、指令数据2和指令数据3。但是,当基站占用带宽部分1失败时,切换至占用带宽部分2,在预设检测时刻,基站通过带宽部分2依次发送指令数据1、指令数据2和指令数据3,在发送完指令数据3后,重新发送指令数据1。
在步骤806中,终端将第二指令数据排列在第三指令数据之前,得到第一指令数据。
基站为了避免丢失第二指令数据,在第一指令数据之后又重复发送了第二指令数据,但是,在原始的控制指令中第二指令数据位于第三指令数据之前,因此,当终端检测到第三指令数据,之后又检测到第二指令数据时,需要重新排列,将第二指令数据排列在第三指令数据之前,排列后的指令数据即为控制指令完整的第一指令数据。
基于上述图9的举例,终端切换到第二频域资源后,在检测控制指令时,依次检测得到指令数据2、指令数据3和指令数据1,则将获取到的指令数据 重新排序,即将指令数据1排列在指令数据2和指令数据3之前,得到排列后的指令数据。
需要说明的是,基站与终端可以预定义处理规则,该处理规则规定:基站切换频域资源后,在发送的控制指令之后,将该控制指令在最初的预设时长内传输的指令数据重复发送。且终端切换频域资源后,将基站在后发送的指令数据排列在在先发送的指令数据之前,得到排列后的指令数据。则基站与终端双方基于该处理规则进行控制指令的传输和检测。
本公开实施例提供的方法,通过基站为终端配置不同的非授权频域资源,当基站占用第一频域资源失败后,占用第二频域资源,在预设检测时刻,通过第二频域资源发送控制指令,控制指令中包括第一指令数据和第二指令数据。保证了基站在占用某一个非授权频域资源失败时,也能通过占用另外一个非授权频域资源来发送控制指令,避免了由于占用非授权频域资源失败而导致基站无法发送控制指令的问题。并且,考虑到了终端切换频域资源时会耗费预设时长,只能检测到第一指令数据中的第三指令数据,而无法检测到在第三指令数据之前发送的第二指令数据,因此将第二指令数据重复发送,保证终端能够检测到第三指令数据和第二指令数据,将第二指令数据排列在第三指令数据之前,得到完整的第一指令数据,避免了指令数据的丢失。
图10是根据一示例性实施例示出的一种基站的框图。参见图10,该基站包括获取模块1001和发送模块1002。
占用模块1001,用于在占用第一频域资源失败后,占用第二频域资源,第一频域资源与第二频域资源为不同的非授权频域资源;
发送模块1002,用于从预设检测时刻开始计时,当计时时长达到预设时长时,通过第二频域资源发送控制指令。
在一种可能实现的方式中,基站还包括:
接收模块,用于接收终端发送的频域资源切换能力;
确定模块,用于根据频域资源切换能力,确定终端切换频域资源所用的时长,作为预设时长。
在一种可能实现的方式中,预设时长为终端从第一频域资源切换至第二频域资源的时长。
图11是根据一示例性实施例示出的一种基站的框图。参见图11,该基站包括获取模块1101和发送模块1102。
占用模块1101,用于在占用第一频域资源失败后,占用第二频域资源,第一频域资源与第二频域资源为不同的非授权频域资源;
发送模块1102,用于在预设检测时刻,通过第二频域资源发送、控制指令;
控制指令中包括从第一指令数据和第二指令数据,第二指令数据与第一指令数据在从预设检测时刻开始的预设时长内传输的指令数据相同。
在一种可能实现的方式中,基站还包括:
接收模块,用于接收终端发送的频域资源切换能力;
确定模块,用于根据频域资源切换能力,确定终端切换频域资源所用的时长,作为预设时长。
在一种可能实现的方式中,预设时长为终端从第一频域资源切换至第二频域资源的时长。
图12是根据一示例性实施例示出的一种终端的框图。参见图12,该终端包括切换模块1201、检测模块1202和排列模块1203。
切换模块1201,用于在预设检测时刻,当检测基站通过第一频域资源发送的控制指令失败时,从第一频域资源切换至第二频域资源,第一频域资源与第二频域资源为不同的非授权频域资源;
检测模块1202,用于检测基站通过第二频域资源发送的控制指令,得到第三指令数据和第二指令数据;
第二指令数据与第一指令数据在从预设检测时刻开始的预设时长内传输的指令数据相同,第三指令数据与第一指令数据在从预设检测时刻开始的预设时长之后传输的指令数据相同。
排列模块1203,将第二指令数据排列在第三指令数据之前,得到第一指令数据。
在一种可能实现的方式中,终端还包括:
确定模块,用于确定终端的频域资源切换能力;
发送模块,用于向基站发送频域资源切换能力,频域资源切换能力用于确定预设时长。
在一种可能实现的方式中,预设时长为终端从第一频域资源切换至第二频 域资源的时长。
需要说明的是:上述实施例提供的基站和终端在进行控制指令检测时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将终端和基站的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的基站实施例和终端实施例与控制指令检测方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图13是根据一示例性实施例示出的一种基站的框图。参见图13,该基站包括处理器1301、用于存储处理器可执行指令的存储器1302及收发器1303。其中,处理器1301被配置为执行如下指令:
在占用第一频域资源失败后,占用第二频域资源,第一频域资源与第二频域资源为不同的非授权频域资源;
从预设检测时刻开始计时,当计时时长达到预设时长时,通过第二频域资源发送控制指令。
还提供了一种计算机可读存储介质,当计算机可读存储介质中的指令由基站的处理器执行时,使得基站能够执行上述实施例中控制指令检测方法中基站执行的步骤。
图14是根据一示例性实施例示出的一种基站的框图。参见图14,该基站包括处理器1401、用于存储处理器可执行指令的存储器1402及收发器1403。其中,处理器1401被配置为执行如下指令:
在占用第一频域资源失败后,占用第二频域资源,第一频域资源与第二频域资源为不同的非授权频域资源;
在预设检测时刻,通过第二频域资源发送控制指令;
控制指令中包括第一指令数据和第二指令数据,第二指令数据与第一指令数据在从预设检测时刻开始的预设时长内传输的指令数据相同。
还提供了一种计算机可读存储介质,当计算机可读存储介质中的指令由基站的处理器执行时,使得基站能够执行上述实施例中控制指令检测方法中基站执行的步骤。
图15是根据一示例性实施例示出的一种终端1500的框图。参见图15,例如,终端1500可以是移动电话,计算机,数字广播装置,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图15,终端1500可以包括以下一个或多个组件:处理组件1502,存储器1504,电源组件1506,多媒体组件1508,音频组件1510,输入/输出(I/O)的接口1512,传感器组件1514,以及通信组件1516。
处理组件1502通常控制终端1500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1502可以包括一个或多个处理器1520来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1502可以包括一个或多个模块,便于处理组件1502和其他组件之间的交互。例如,处理组件1502可以包括多媒体模块,以方便多媒体组件1508和处理组件1502之间的交互。
存储器1504被配置为存储各种类型的数据以支持在终端1500的操作。这些数据的示例包括用于在终端1500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1506为终端1500的各种组件提供电力。电源组件1506可以包括电源管理系统,一个或多个电源,及其他与为终端1500生成、管理和分配电力相关联的组件。
多媒体组件1508包括在终端1500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1508包括一个前置摄像头和/或后置摄像头。当终端1500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄 像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1510被配置为输出和/或输入音频信号。例如,音频组件1510包括一个麦克风(MIC),当终端1500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1504或经由通信组件1516发送。在一些实施例中,音频组件1510还包括一个扬声器,用于输出音频信号。
I/O接口1512为处理组件1502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1514包括一个或多个传感器,用于为终端1500提供各个方面的状态评估。例如,传感器组件1514可以检测到终端1500的打开/关闭状态,组件的相对定位,例如组件为终端1500的显示器和小键盘,传感器组件1514还可以检测终端1500或终端1500一个组件的位置改变,用户与终端1500接触的存在或不存在,终端1500方位或加速/减速和终端1500的温度变化。传感器组件1514可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1514还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1514还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1516被配置为便于终端1500和其他设备之间有线或无线方式的通信。终端1500可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1516经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件1516还包括近场通信(NFC)模块,以促进短程通信。
在示例性实施例中,终端1500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述控制指令检测方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1504,上述指令可由终端1500的处理器1520执行 以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种获取机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开实施例的一些可选实施例,并不用以限制本公开,凡在本公开实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开实施例的保护范围之内。

Claims (24)

  1. 一种控制指令传输方法,其特征在于,应用于基站,所述方法包括:
    在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
    从预设检测时刻开始计时,当计时时长达到预设时长时,通过所述第二频域资源发送控制指令。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收终端发送的频域资源切换能力;
    根据所述频域资源切换能力,确定所述终端切换频域资源所用的时长,作为所述预设时长。
  3. 根据权利要求1或2所述的方法,其特征在于,所述预设时长为终端从所述第一频域资源切换至所述第二频域资源的时长。
  4. 一种控制指令传输方法,其特征在于,应用于基站,所述方法包括:
    在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
    在预设检测时刻,通过所述第二频域资源发送控制指令;
    所述控制指令中包括第一指令数据和第二指令数据,所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收终端发送的频域资源切换能力;
    根据所述频域资源切换能力,确定所述终端切换频域资源所用的时长,作为所述预设时长。
  6. 根据权利要求4或5所述的方法,其特征在于,所述预设时长为终端从所述第一频域资源切换至所述第二频域资源的时长。
  7. 一种控制指令传输方法,其特征在于,应用于终端,所述方法包括:
    在预设检测时刻,当检测基站通过第一频域资源发送的控制指令失败时,从所述第一频域资源切换至第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
    检测所述基站通过所述第二频域资源发送的控制指令,得到第三指令数据和第二指令数据;
    将所述第二指令数据排列在所述第三指令数据之前,得到第一指令数据;
    所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同,所述第三指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长之后传输的指令数据相同。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    确定终端的频域资源切换能力;
    向所述基站发送所述频域资源切换能力,所述频域资源切换能力用于确定所述预设时长。
  9. 根据权利要求7或8所述的方法,其特征在于,所述预设时长为终端从所述第一频域资源切换至所述第二频域资源的时长。
  10. 一种基站,其特征在于,所述基站包括:
    占用模块,用于在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
    发送模块,用于从预设检测时刻开始计时,当计时时长达到预设时长时,通过所述第二频域资源发送控制指令。
  11. 根据权利要求10所述的基站,其特征在于,所述基站还包括:
    接收模块,用于接收终端发送的频域资源切换能力;
    确定模块,用于根据所述频域资源切换能力,确定所述终端切换频域资源所用的时长,作为所述预设时长。
  12. 根据权利要求10或11所述的基站,其特征在于,所述预设时长为终 端从所述第一频域资源切换至所述第二频域资源的时长。
  13. 一种基站,其特征在于,所述基站包括:
    占用模块,用于在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
    发送模块,用于在预设检测时刻,通过所述第二频域资源发送控制指令;
    所述控制指令中包括第一指令数据和第二指令数据,所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同。
  14. 根据权利要求13所述的基站,其特征在于,所述基站还包括:
    接收模块,用于接收终端发送的频域资源切换能力;
    确定模块,用于根据所述频域资源切换能力,确定所述终端切换频域资源所用的时长,作为所述预设时长。
  15. 根据权利要求13或14所述的基站,其特征在于,所述预设时长为终端从所述第一频域资源切换至所述第二频域资源的时长。
  16. 一种终端,其特征在于,所述终端包括:
    切换模块,用于在预设检测时刻,当检测基站通过第一频域资源发送的控制指令失败时,从所述第一频域资源切换至第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
    检测模块,用于检测所述基站通过所述第二频域资源发送的控制指令,得到第三指令数据和第二指令数据;
    排列模块,用于将所述第二指令数据排列在所述第三指令数据之前,得到第一指令数据;
    所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同,所述第三指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长之后传输的指令数据相同。
  17. 根据权利要求16所述的终端,其特征在于,所述终端还包括:
    确定模块,用于确定终端的频域资源切换能力;
    发送模块,用于向所述基站发送所述频域资源切换能力,所述频域资源切换能力用于确定所述预设时长。
  18. 根据权利要求16或17所述的终端,其特征在于,所述预设时长为终端从所述第一频域资源切换至所述第二频域资源的时长。
  19. 一种基站,其特征在于,所述基站包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
    从预设检测时刻开始计时,当计时时长达到预设时长时,通过所述第二频域资源发送控制指令。
  20. 一种基站,其特征在于,所述基站包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在占用第一频域资源失败后,占用第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
    在预设检测时刻,通过所述第二频域资源发送控制指令;
    所述控制指令中包括第一指令数据和第二指令数据,所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同。
  21. 一种终端,其特征在于,所述终端包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在预设检测时刻,当检测基站通过第一频域资源发送的控制指令失败时,从所述第一频域资源切换至第二频域资源,所述第一频域资源与所述第二频域资源为不同的非授权频域资源;
    检测所述基站通过所述第二频域资源发送的控制指令,得到第三指令数据和第二指令数据;
    将所述第二指令数据排列在所述第三指令数据之前,得到第一指令数据;
    所述第二指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长内传输的指令数据相同,所述第三指令数据与所述第一指令数据在从所述预设检测时刻开始的预设时长之后传输的指令数据相同。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如权利要求1-3任一权利要求所述的控制指令传输方法中所执行的操作。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如权利要求4-6任一权利要求所述的控制指令传输方法中所执行的操作。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如权利要求7-9任一权利要求所述的控制指令传输方法中所执行的操作。
PCT/CN2018/108455 2018-09-28 2018-09-28 控制指令传输方法、基站、终端及存储介质 WO2020062083A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/280,139 US11895659B2 (en) 2018-09-28 2018-09-28 Control instruction transmission method, base station, terminal and storage medium
CN201880001532.3A CN109417799B (zh) 2018-09-28 2018-09-28 控制指令传输方法、基站、终端及存储介质
EP18935022.6A EP3860248A4 (en) 2018-09-28 2018-09-28 CONTROL INSTRUCTION TRANSMISSION METHOD, BASE STATION, TERMINAL AND STORAGE MEDIA
PCT/CN2018/108455 WO2020062083A1 (zh) 2018-09-28 2018-09-28 控制指令传输方法、基站、终端及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108455 WO2020062083A1 (zh) 2018-09-28 2018-09-28 控制指令传输方法、基站、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2020062083A1 true WO2020062083A1 (zh) 2020-04-02

Family

ID=65462477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108455 WO2020062083A1 (zh) 2018-09-28 2018-09-28 控制指令传输方法、基站、终端及存储介质

Country Status (4)

Country Link
US (1) US11895659B2 (zh)
EP (1) EP3860248A4 (zh)
CN (1) CN109417799B (zh)
WO (1) WO2020062083A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046643A1 (en) * 2020-08-07 2022-02-10 Arris Enterprises Llc Seamlessly switching wireless frequency of a connected network device using a mobile application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320853A1 (en) * 2010-02-04 2012-12-20 Pantech Co., Ltd. Method for transmitting data and control information in a wireless communication system, a sending device therefor and a receiving device therefor
CN105991246A (zh) * 2015-02-10 2016-10-05 中国移动通信集团公司 一种数据重传方法及装置
CN106535333A (zh) * 2015-09-11 2017-03-22 电信科学技术研究院 一种物理下行控制信道传输方法及装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105103637B (zh) * 2014-01-26 2019-07-23 华为技术有限公司 设备通信方法及装置
JP6426759B2 (ja) * 2014-05-08 2018-11-21 華為技術有限公司Huawei Technologies Co.,Ltd. リソーススケジューリングの方法、装置、およびシステム
CN105282855B (zh) * 2014-07-03 2020-03-10 中兴通讯股份有限公司 资源抢占方法及站点
CN105356967B (zh) 2014-08-22 2020-08-11 中兴通讯股份有限公司 一种实现数据处理的方法、基站及终端
US10129793B2 (en) * 2014-10-10 2018-11-13 Samsung Electronics Co., Ltd. Method and device for configuring cell in wireless communication system
JP6618084B2 (ja) 2014-11-06 2019-12-11 シャープ株式会社 端末装置、基地局装置および方法
CN105634699B (zh) * 2014-11-07 2020-08-11 中兴通讯股份有限公司 载波选择方法及装置、接入点
CN105592478A (zh) 2014-11-07 2016-05-18 中兴通讯股份有限公司 信号的检测处理方法及装置
US10028279B2 (en) 2014-12-19 2018-07-17 Futurewei Technologies, Inc. Communications in a wireless network for carrier selection and switching
WO2016101284A1 (zh) * 2014-12-27 2016-06-30 华为技术有限公司 使用非授权频谱的方法和设备
KR102658360B1 (ko) * 2015-04-09 2024-04-17 삼성전자주식회사 비면허 대역을 사용하는 셀룰러 네트워크에서의 자원할당 방법 및 그 장치
JP2018152624A (ja) 2015-08-05 2018-09-27 シャープ株式会社 端末装置、基地局装置、および通信方法
CN107026723B (zh) * 2016-02-02 2020-10-09 电信科学技术研究院 一种传输上行控制信息的方法和设备
WO2017135726A1 (ko) 2016-02-05 2017-08-10 삼성전자 주식회사 이동 통신 시스템에서 통신 방법 및 장치
CN109565797A (zh) * 2016-08-12 2019-04-02 华为技术有限公司 上行信号传输方法、终端设备和网络设备
CN107241288B (zh) 2017-06-19 2020-10-16 宇龙计算机通信科技(深圳)有限公司 业务复用场景下指示被占用的资源的方法及装置
CN107948988B (zh) 2017-11-16 2021-02-23 宇龙计算机通信科技(深圳)有限公司 一种资源控制方法及相关设备
US11388747B2 (en) * 2018-04-03 2022-07-12 Idac Holdings, Inc. Methods for channel access management
US11477818B2 (en) * 2018-04-06 2022-10-18 Nokia Technologies Oy Uplink bandwidth part switching on new radio unlicensed
WO2019196034A1 (zh) 2018-04-11 2019-10-17 北京小米移动软件有限公司 非授权小区中的数据传输方法及装置、基站和用户设备
CN112385187A (zh) * 2018-05-14 2021-02-19 诺基亚技术有限公司 用于新无线电带宽部分操作的方法、系统和装置
US11284477B2 (en) * 2018-07-24 2022-03-22 Apple Inc. Downlink control channel signaling for improving UE power consumption
US11310723B2 (en) * 2018-09-26 2022-04-19 Ofinno, Llc Bandwidth part and uplink carrier switching
CN113038634B (zh) * 2019-12-24 2023-02-21 维沃移动通信有限公司 唤醒信号配置方法、唤醒信号处理方法及相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320853A1 (en) * 2010-02-04 2012-12-20 Pantech Co., Ltd. Method for transmitting data and control information in a wireless communication system, a sending device therefor and a receiving device therefor
CN105991246A (zh) * 2015-02-10 2016-10-05 中国移动通信集团公司 一种数据重传方法及装置
CN106535333A (zh) * 2015-09-11 2017-03-22 电信科学技术研究院 一种物理下行控制信道传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Frame structure for NR-U", 3GPP TSG RAN WG1 MEETING #94 R1-1808765, 24 August 2018 (2018-08-24), XP051516138 *
SONY: "High Level Views on NR-U BWP", 3GPP TSG RAN WG1 MEETING 91 R1-1720475, 2 December 2017 (2017-12-02), XP051370027 *

Also Published As

Publication number Publication date
EP3860248A4 (en) 2022-05-18
US11895659B2 (en) 2024-02-06
CN109417799A (zh) 2019-03-01
EP3860248A1 (en) 2021-08-04
US20220007355A1 (en) 2022-01-06
CN109417799B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
CN108496385B (zh) 信息上报方法及装置和基于带宽部分的操作方法及装置
CN109314972B (zh) 带宽部分的切换触发方法及装置、信息配置方法及装置
WO2022041245A1 (zh) 寻呼原因发送方法和装置、寻呼原因获取方法和装置
CN108496390B (zh) 非授权小区中的数据传输方法及装置、基站和用户设备
CN109565753B (zh) 控制波束失败恢复流程的方法及装置
WO2021026824A1 (zh) 非活动定时器的控制方法和装置
WO2019019187A1 (zh) 获取控制信息的方法、装置和系统
CN106792937B (zh) 呼叫请求的处理方法及装置
WO2020082277A1 (zh) 网络参数配置方法、装置及计算机可读存储介质
WO2019126954A1 (zh) 功率余量报告传输方法和装置
WO2019218366A1 (zh) 前导码和调度请求的发送方法及装置
WO2019237360A1 (zh) 确定上下行切换点的方法及装置
CN109417730B (zh) 直连链路通信方法和装置
WO2020232711A1 (zh) 业务切换方法及装置
WO2020087348A1 (zh) 信息反馈方法及装置
WO2019227318A1 (zh) 物理下行控制信道监测配置、监测方法及装置和基站
US20210314996A1 (en) Method and apparatus for configuring and determining transmission block scheduling interval, and base station
WO2020062083A1 (zh) 控制指令传输方法、基站、终端及存储介质
JP2021141561A (ja) デュアルsim携帯電話のページング衝突を対処する方法、装置及び媒体
CN106793150B (zh) 无线链路的建立方法及终端
WO2022088073A1 (zh) 寻呼配置方法和装置、寻呼方法和装置
WO2020082278A1 (zh) 网络参数配置方法、装置及计算机可读存储介质
CN109451803B (zh) 数据传输方法及装置
WO2020118706A1 (zh) 传输配置信息的方法及装置
WO2024011528A1 (zh) 端口切换、端口切换指示方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018935022

Country of ref document: EP

Effective date: 20210428