WO2020061943A1 - 一种数据传输方法、终端设备及网络设备 - Google Patents

一种数据传输方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2020061943A1
WO2020061943A1 PCT/CN2018/108071 CN2018108071W WO2020061943A1 WO 2020061943 A1 WO2020061943 A1 WO 2020061943A1 CN 2018108071 W CN2018108071 W CN 2018108071W WO 2020061943 A1 WO2020061943 A1 WO 2020061943A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
target network
data
source network
source
Prior art date
Application number
PCT/CN2018/108071
Other languages
English (en)
French (fr)
Inventor
尤心
卢前溪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18934638.0A priority Critical patent/EP3820196B1/en
Priority to PCT/CN2018/108071 priority patent/WO2020061943A1/zh
Priority to JP2021513400A priority patent/JP7431219B2/ja
Priority to CN201880095879.9A priority patent/CN112470518A/zh
Priority to CN202110408899.0A priority patent/CN113115390A/zh
Priority to AU2018442732A priority patent/AU2018442732A1/en
Priority to KR1020217006184A priority patent/KR102592535B1/ko
Priority to TW108135352A priority patent/TW202027471A/zh
Publication of WO2020061943A1 publication Critical patent/WO2020061943A1/zh
Priority to US17/183,244 priority patent/US11516726B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off

Definitions

  • the present invention relates to the field of information processing technologies, and in particular, to a data transmission method, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • the handover may fail during the handover process.
  • the terminal device stopped the data transmission with the source network device after receiving the handover command from the source network device, and the source network device will transfer the received data.
  • the status report is sent to the target network device.
  • how to control the data transmission between the source network device and the target network device is a problem to be solved.
  • embodiments of the present invention provide a data transmission method, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • an embodiment of the present invention provides a data transmission method, which is applied to a source network device and includes:
  • an embodiment of the present invention provides a data transmission method, which is applied to a source network device and includes:
  • an embodiment of the present invention provides a data transmission method, which is applied to a target network device and includes:
  • the terminal device When it is determined that the terminal device is successfully switched to the target network device, it receives data forwarded by the source network device.
  • an embodiment of the present invention provides a data transmission method, which is applied to a target network device and includes:
  • Target network device is one of at least one target network device configured by a network side for a terminal device.
  • an embodiment of the present invention provides a source network device, including:
  • a first processing unit when it is determined that the terminal device is successfully switched to the target network device, forwarding data to the target network device through the first communication unit;
  • the first communication unit is configured to send data to a target network device.
  • an embodiment of the present invention provides a source network device, including:
  • the second communication unit forwards data to at least one target network device.
  • an embodiment of the present invention provides a target network device, including:
  • a third processing unit when it is determined that the terminal device is successfully switched to the target network device, receiving the data forwarded by the source network device through the third communication unit;
  • the third communication unit receives data from the source network device.
  • an embodiment of the present invention provides a target network device, including:
  • the fourth communication unit receives data forwarded by the source network device; wherein the target network device is one of at least one target network device configured for the terminal device on the network side.
  • an embodiment of the present invention provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the fourth aspect or the implementations thereof.
  • a chip is provided for implementing any one of the foregoing first to fourth aspects or a method in each implementation manner thereof.
  • the chip includes a processor for invoking and running a computer program from a memory, so that a device installed with the chip executes any one of the first aspect to the second aspect described above or implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, which causes a computer to execute the method in any one of the first to fourth aspects described above or in its implementations.
  • a computer program product including computer program instructions that cause a computer to execute a method in any one of the first to fourth aspects described above or in various implementations thereof.
  • a computer program which, when run on a computer, causes the computer to execute the method in any one of the first to fourth aspects described above or in its implementations.
  • the technical solution of the embodiment of the present invention enables data transmission from the source network device to the target network device after the terminal device is successfully connected to the target network device; thus, this solution proposes a new scenario in which data is sent by the source network device , So that this solution is suitable for more switching scenarios.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture according to an embodiment of the present application.
  • FIG. 2 is a first schematic flowchart of a data transmission method according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a handover processing scenario according to an embodiment of the present invention.
  • FIG. 4 is a second schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 5 is a third schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 6 is a fourth flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a first schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 9 is a second schematic diagram of a structure of a network device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram 2 of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE Frequency Division Duplex Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Global Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a network device (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a network device (NodeB, NB) in a WCDMA system, or may be an evolution in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • Type network equipment (Evolutional NodeB, eNB or eNodeB), or a wireless controller in a Cloud Radio Access Network (CRAN), or the network equipment may be a mobile switching center, relay station, access point, Vehicle-mounted devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • Evolutional NodeB, eNB or eNodeB or a wireless controller in a Cloud Radio Access Network (CRAN)
  • the network equipment may be a mobile switching center, relay station, access point, Vehicle-mounted devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) devices.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS personal communications systems
  • GPS Global Positioning System
  • a terminal device can refer to an access terminal, user equipment (terminal equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent Or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • terminal devices 120 may perform terminal direct device (D2D) communication.
  • D2D terminal direct device
  • the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and are not described herein again
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • An embodiment of the present invention provides a data transmission method, which is applied to a source network device, as shown in FIG. 2, and includes:
  • Step 201 When it is determined that the terminal device is successfully switched to the target network device, data is forwarded to the target network device.
  • a terminal device acquires at least one target network device, and then selects one target network device from the at least one target network device, and initiates a handover connection to the selected target network device.
  • the terminal device can maintain the connection with the source network device, or disconnect from the source network device; the other is that the source network device determines at least one network device that the terminal device can access, and then Select the target network device from the network devices and send the selected target network device to the terminal device, so that the terminal device can initiate a connection to the target network device.
  • the source network device can also maintain the connection with the terminal device, and of course, it can also be disconnected. Connection with terminal equipment.
  • the method further includes:
  • the method for receiving the identification information of the target network device may be: when the source network device and the terminal device remain connected, the identification information of the target network device that is successfully switched from the terminal device may be received; or, the target may be received Identification information sent by network equipment;
  • the source network device When the source network device is disconnected from the terminal device, it can receive the identification information sent by the target network device.
  • the target network device may carry the identification information through network signaling or instruction information.
  • the forwarding data to the target network device includes forwarding uplink data and / or downlink data to the target network device.
  • the source network device can obtain information about the corresponding target network device from at least one target network device.
  • Figure 3 including:
  • the handover preparation phase includes steps 1-6 in the figure: the source network device sends measurement control to the terminal device; after the terminal device performs measurements for multiple network devices or cells, it sends a measurement report to the source network device; the source network device according to the measurement report (Or combined with RRM information) to make a handover decision; the source network device sends a handover request to the target network device to prepare the target network device for handover; the target network device performs handover admission control based on the handover request; when the target network device determines to perform handover, The network device sends a handover request confirmation.
  • the target network device generates RRC information, sends the RRC connection reconfiguration information to the source network device, and the source network device sends the RRC connection reconfiguration information to the terminal device.
  • the terminal device After receiving the RRC connection reconfiguration information, the terminal device performs handover processing according to the connection reconfiguration information; then the source network device sends forward data to the target network device; the terminal device synchronizes with the target network device, and then receives the target network device for UL allocation, sending RRC connection reconfiguration completion information to the target network device.
  • the target network device sends a path switching request to the MME to notify the MME terminal device to change the cell; the MME sends a bearer adjustment request to the serving gateway, and the MME performs the downlink path switching process.
  • the serving gateway finishes processing, it sends a bearer adjustment completion process to the MME, and the MME sends a confirmation message of the path switching request to the target network device; the target network device notifies the source network device of the terminal device context release and the source network device releases the resources.
  • the forwarding data to the target network device further includes at least one of the following:
  • the information forwarded by the source network device to the target network device may include SN status transmission information; the SN status information includes the uplink packet data convergence protocol (PDCP, Packet Data Convergence Protocol) SN reception status, and downlink PDCP SN transmission Status and more.
  • the uplink PDCP SN reception status includes at least the first lost uplink SDU of the PDCP SN, and may also include a bitmap of the out-of-order reception status of the uplink SDU; the downlink PDCP SN transmission status may include the next PDCP SN, down A PDCP SN is a new SDU to be allocated by the target network device.
  • other information is no longer exhaustive here.
  • a scenario of this embodiment includes a situation in which a terminal device maintains a connection state with a source network device during a handover.
  • the target network device may be an auxiliary node SN
  • the source network device is Master node MN.
  • the SN is called SCG
  • the new radio (NR) is SN, which refers to the same concept, that is, the second service network device in the DC scenario.
  • the connection status of the terminal device may be: the terminal device remains connected to the source network device and fails to connect to the target network device; the terminal device is disconnected from the source network device and successfully connected to the target network device; the terminal device and the auxiliary cell Group (SCG) connection failed, SCG changed connection failed.
  • SCG auxiliary cell Group
  • the terminal device fails to connect to one SCG; in a scenario where multiple target cells are configured, the terminal device fails to connect to one target cell.
  • exhaustion is no longer performed.
  • the terminal device in this embodiment may also retain the connection with the source network device; wherein the terminal The device retains the first protocol stack and the first related key with the source network device, and maintains the second protocol stack and the second related key with the first target network device; wherein the first related key and The second correlation key is different.
  • the second correlation key may be generated from the first correlation key.
  • the first protocol stack and the second protocol stack may be the same or different, or at least partially different.
  • it may be a terminal device and a source network device, and a terminal device and a first target network device. Maintain different service data application protocols (SDAP, Service Data Adaptation Protocol), different packet data convergence protocols (PDCP, Packet Data Convergence Protocol), different radio link layer control protocols (RLC, Radio Link Control), different Media access control (MAC) entities, different low-layer entities; when targeting 4G systems, different packet data aggregations can be maintained for terminal equipment and source network equipment, and between terminal equipment and first target network equipment Protocol (PDCP, Packet Data Convergence Protocol), different radio link layer control protocols (RLC, Radio Link Control), different media access control (MAC) entities, different low layer (Low layer) entities.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media access control
  • the PDCP of the first protocol stack and the second protocol stack must be different. At least one of SDAP, RLC, MAC, and physical layer may be the same or different. Alternatively, the first protocol stack and the second protocol stack may share at least one of SDAP, RLC, MAC, and physical layer, or may have SDAP, RLC, MAC, and physical layer, respectively.
  • the source network device may configure multiple target network devices for the terminal device. At this time, when it is determined that the terminal device successfully switches to the target network device, the data is forwarded to the target network device. Before, the method further includes: sending a handover command to the terminal device; wherein the handover command is used to indicate to the terminal device at least one target network device. That is, when the source network device configures multiple target network devices for the terminal device, the terminal device will accordingly select one of them as the target network device for the current initiating connection. At this time, the connection with the source network device can be maintained. Or disconnect.
  • the handover command includes a reconfiguration message of at least one target network device.
  • the source network device can choose to send reconfiguration messages of multiple target network devices to the terminal device at one time, or send reconfiguration messages of only one target network device at a time but send it multiple times, such as the source after failing to switch to a target network device.
  • the network device sends another reconfiguration message of the new target network device, which is not described again.
  • An embodiment of the present invention provides a data transmission method, which is applied to a source network device, as shown in FIG. 4, and includes:
  • Step 401 Forward data to at least one target network device.
  • this embodiment is no longer limited to sending data when a terminal device is required to establish a connection with a target network device, but directly sends data to multiple target network devices.
  • the applicable scenario of this embodiment is that the terminal device acquires at least one target network device, and then selects one target network device from the at least one target network device and initiates a handover connection to the selected target network device. At this time, the terminal device can maintain the connection with the source. The network device can also be disconnected from the source network device.
  • the forwarding data to the target network device includes forwarding uplink data and / or downlink data to the target network device.
  • the source network device can obtain the corresponding target network device information from at least one target network device.
  • Figure 3 including:
  • the handover preparation phase includes steps 1-6 in the figure: the source network device sends measurement control to the terminal device; after the terminal device performs measurements for multiple network devices or cells, it sends a measurement report to the source network device; the source network device according to the measurement report (Or combined with RRM information) to make a handover decision; the source network device sends a handover request to the target network device to prepare the target network device for handover; the target network device performs handover admission control based on the handover request; when the target network device determines to perform handover, The network device sends a handover request confirmation.
  • the target network device generates RRC information, sends the RRC connection reconfiguration information to the source network device, and the source network device sends the RRC connection reconfiguration information to the terminal device.
  • the terminal device After receiving the RRC connection reconfiguration information, the terminal device performs handover processing according to the connection reconfiguration information; then the source network device sends forward data to the target network device; the terminal device synchronizes with the target network device, and then receives the target network device for UL allocation, sending RRC connection reconfiguration completion information to the target network device.
  • the target network device sends a path switching request to the MME to notify the MME terminal device to change the cell; the MME sends a bearer adjustment request to the serving gateway, and the MME performs the downlink path switching process.
  • the serving gateway finishes processing, it sends a bearer adjustment completion process to the MME, and the MME sends a confirmation message of the path switching request to the target network device; the target network device notifies the source network device of the terminal device context release and the source network device releases the resources.
  • the forwarding data to the target network device further includes at least one of the following:
  • the information forwarded by the source network device to the target network device may include SN status transmission information; the SN status information includes the uplink packet data convergence protocol (PDCP, Packet Data Convergence Protocol) SN reception status, and downlink PDCP SN transmission Status and more.
  • the uplink PDCP SN reception status includes at least the first lost uplink SDU of the PDCP SN, and may also include a bitmap of the out-of-order reception status of the uplink SDU; the downlink PDCP SN transmission status may include the next PDCP A PDCP SN is a new SDU to be allocated by the target network device.
  • other information is no longer exhaustive here.
  • the target network device may be a secondary node SN, and the source network device is a primary node MN.
  • the SN is called SCG
  • the new radio (NR) is SN, which refers to the same concept, that is, the second service network device in the DC scenario.
  • the connection status of the terminal device may be: the terminal device remains connected to the source network device and fails to connect to the target network device; the terminal device is disconnected from the source network device and successfully connected to the target network device; the terminal device and the auxiliary cell Group (SCG) connection failed, SCG changed connection failed.
  • SCG auxiliary cell Group
  • the terminal device fails to connect to one SCG; in a scenario where multiple target cells are configured, the terminal device fails to connect to one target cell.
  • exhaustion is no longer performed.
  • the source network device may configure multiple target network devices for the terminal device.
  • the method further includes:
  • the terminal device when the source network device configures multiple target network devices for the terminal device, the terminal device will accordingly select one of them as the target network device for the current initiating connection. At this time, the connection with the source network device can be maintained. Or disconnect.
  • the handover command includes a reconfiguration message of at least one target network device.
  • the source network device can choose to send reconfiguration messages of multiple target network devices to the terminal device at one time, or send reconfiguration messages of only one target network device at a time but send it multiple times, such as the source after failing to switch to a target network device.
  • the network device sends another reconfiguration message of the new target network device, which is not described again.
  • the source network device can directly transmit data to at least one target network device of the terminal device; in this way, this solution makes a new scenario in which data is sent by the source network device, thereby making this solution suitable for More handover scenarios, and because the source network device can directly send data to the target network device, this solution can reduce the process of obtaining relevant data of the terminal device after the handover is completed, thereby further improving the handover efficiency.
  • An embodiment of the present invention provides a data transmission method, which is applied to a target network device. As shown in FIG. 5, the method includes:
  • Step 501 When it is determined that the terminal device is successfully switched to the target network device, receive the data forwarded by the source network device.
  • a terminal device acquires at least one target network device, and then selects one target network device from the at least one target network device, and initiates a handover connection to the selected target network device.
  • the terminal device can maintain the connection with the source network device, or disconnect from the source network device; the other is that the source network device determines at least one network device that the terminal device can access, and then Select the target network device from the network devices and send the selected target network device to the terminal device, so that the terminal device can initiate a connection to the target network device.
  • the source network device can also maintain the connection with the terminal device, and of course, it can also disconnect Connection with terminal equipment.
  • the method further includes:
  • the method for receiving the identification information of the target network device may be: when the source network device and the terminal device remain connected, the identification information of the target network device that is successfully switched from the terminal device may be received; or, the target may be received Identification information sent by network equipment;
  • the source network device When the source network device is disconnected from the terminal device, it can receive the identification information sent by the target network device.
  • the target network device may carry the identification information through network signaling or instruction information.
  • the data forwarded by the receiving source network device includes:
  • the source network device can obtain information about the corresponding target network device from at least one target network device.
  • Figure 3 including:
  • the handover preparation phase includes steps 1-6 in the figure: the source network device sends measurement control to the terminal device; after the terminal device performs measurements for multiple network devices or cells, it sends a measurement report to the source network device; the source network device according to the measurement report (Or combined with RRM information) to make a handover decision; the source network device sends a handover request to the target network device to prepare the target network device for handover; the target network device performs handover admission control based on the handover request; when the target network device determines to perform handover, The network device sends a handover request confirmation.
  • the target network device generates RRC information, sends the RRC connection reconfiguration information to the source network device, and the source network device sends the RRC connection reconfiguration information to the terminal device.
  • the terminal device After receiving the RRC connection reconfiguration information, the terminal device performs handover processing according to the connection reconfiguration information; then the source network device sends forward data to the target network device; the terminal device synchronizes with the target network device, and then receives the target network device for UL allocation, sending RRC connection reconfiguration completion information to the target network device.
  • the target network device sends a path switching request to the MME to notify the MME terminal device to change the cell; the MME sends a bearer adjustment request to the serving gateway, and the MME performs the downlink path switching process.
  • the serving gateway finishes processing, it sends a bearer adjustment completion process to the MME, and the MME sends a confirmation message of the path switching request to the target network device; the target network device notifies the source network device of the terminal device context release and the source network device releases the resources.
  • the data forwarded by the receiving source network device further includes at least one of the following:
  • the information forwarded by the source network device to the target network device may include SN status transmission information; the SN status information includes the uplink packet data convergence protocol (PDCP, Packet Data Convergence Protocol) SN reception status, and downlink PDCP SN transmission Status and more.
  • the uplink PDCP SN reception status includes at least the first lost uplink SDU of the PDCP SN, and may also include a bitmap of the out-of-order reception status of the uplink SDU; the downlink PDCP SN transmission status may include the next PDCP A PDCP SN is a new SDU to be allocated by the target network device.
  • other information is no longer exhaustive here.
  • a scenario of this embodiment includes a situation in which a terminal device maintains a connection state with a source network device during a handover.
  • the target network device may be an auxiliary node SN
  • the source network device is Master node MN.
  • the SN is called SCG
  • the new radio (NR) is SN, which refers to the same concept, that is, the second service network device in the DC scenario.
  • the connection status of the terminal device may be: the terminal device remains connected to the source network device and fails to connect to the target network device; the terminal device is disconnected from the source network device and successfully connected to the target network device; the terminal device and the auxiliary cell Group (SCG) connection failed, SCG changed connection failed.
  • SCG auxiliary cell Group
  • the terminal device fails to connect to one SCG; in a scenario where multiple target cells are configured, the terminal device fails to connect to one target cell.
  • exhaustion is no longer performed.
  • the terminal device in this embodiment may also retain the connection with the source network device; wherein the terminal The device retains the first protocol stack and the first related key with the source network device, and maintains the second protocol stack and the second related key with the first target network device; wherein the first related key and The second correlation key is different.
  • the second correlation key may be generated from the first correlation key.
  • the first protocol stack and the second protocol stack may be the same or different, or at least partially different.
  • it may be a terminal device and a source network device, and a terminal device and a first target network device. Maintain different service data application protocols (SDAP, Service Data Adaptation Protocol), different packet data convergence protocols (PDCP, Packet Data Convergence Protocol), different radio link layer control protocols (RLC, Radio Link Control), different Media access control (MAC) entities, different low-layer entities; when targeting 4G systems, different packet data aggregations can be maintained for terminal equipment and source network equipment, and between terminal equipment and first target network equipment Protocol (PDCP, Packet Data Convergence Protocol), different radio link layer control protocols (RLC, Radio Link Control), different media access control (MAC) entities, different low layer (Low layer) entities.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media access control
  • the PDCP of the first protocol stack and the second protocol stack must be different. At least one of SDAP, RLC, MAC, and physical layer may be the same or different. Alternatively, the first protocol stack and the second protocol stack may share at least one of SDAP, RLC, MAC, and physical layer, or may have SDAP, RLC, MAC, and physical layer, respectively.
  • the source network device may configure multiple target network devices for the terminal device. At this time, when it is determined that the terminal device successfully switches to the target network device, the data is forwarded to the target network device. Before, the method further includes: sending a handover command to the terminal device; wherein the handover command is used to indicate to the terminal device at least one target network device. That is, when the source network device configures multiple target network devices for the terminal device, the terminal device will accordingly select one of them as the target network device for the current initiating connection. At this time, the connection with the source network device can be maintained. Or disconnect.
  • the handover command includes a reconfiguration message of at least one target network device.
  • the source network device can choose to send reconfiguration messages of multiple target network devices to the terminal device at one time, or send reconfiguration messages of only one target network device at a time but send it multiple times, such as the source after failing to switch to a target network device.
  • the network device sends another reconfiguration message of the new target network device, which is not described again.
  • An embodiment of the present invention provides a data transmission method, which is applied to a target network device. As shown in FIG. 6, the method includes:
  • Step 601 Receive data forwarded by a source network device; wherein the target network device is one of at least one target network device configured by a network side for a terminal device.
  • the terminal device is no longer required to send data when the connection between the terminal device and the target network device is successfully established, but directly sends data to multiple target network devices.
  • the applicable scenario of this embodiment is that the terminal device acquires at least one target network device, and then selects one target network device from the at least one target network device and initiates a handover connection to the selected target network device. At this time, the terminal device can maintain the connection with the source The network device can also be disconnected from the source network device.
  • the receiving data forwarded by the source network device includes: receiving uplink data and / or downlink data forwarded by the source network device.
  • the source network device can obtain information about the corresponding target network device from at least one target network device.
  • Figure 3 including:
  • the handover preparation phase includes steps 1-6 in the figure: the source network device sends measurement control to the terminal device; after the terminal device performs measurements for multiple network devices or cells, it sends a measurement report to the source network device; the source network device according to the measurement report (Or combined with RRM information) to make a handover decision; the source network device sends a handover request to the target network device to prepare the target network device for handover; the target network device performs handover admission control based on the handover request; when the target network device determines to perform handover, The network device sends a handover request confirmation.
  • the target network device generates RRC information, sends the RRC connection reconfiguration information to the source network device, and the source network device sends the RRC connection reconfiguration information to the terminal device.
  • the terminal device After receiving the RRC connection reconfiguration information, the terminal device performs handover processing according to the connection reconfiguration information; then the source network device sends forward data to the target network device; the terminal device synchronizes with the target network device, and then receives the target network device for UL allocation, sending RRC connection reconfiguration completion information to the target network device.
  • the target network device sends a path switch request to the MME to notify the MME terminal device to change the cell; the MME sends a bearer adjustment request to the serving gateway, and the MME performs the downlink path switching After the serving gateway finishes processing, it sends a bearer adjustment completion process to the MME, and the MME sends a confirmation message of the path switching request to the target network device; the target network device notifies the source network device of the terminal device context release and the source network device releases the resources.
  • the data forwarded by the receiving source network device further includes at least one of the following:
  • the information forwarded by the source network device to the target network device may include SN status transmission information; the SN status information includes the uplink packet data convergence protocol (PDCP, Packet Data Convergence Protocol) SN reception status, and downlink PDCP SN transmission Status and more.
  • the uplink PDCP SN reception status includes at least the first lost uplink SDU of the PDCP SN, and may also include a bitmap of the out-of-order reception status of the uplink SDU; the downlink PDCP SN transmission status may include the next PDCP A PDCP SN is a new SDU to be allocated by the target network device.
  • other information is no longer exhaustive here.
  • the target network device may be a secondary node SN, and the source network device is a primary node MN.
  • the SN is called SCG
  • the new radio (NR) is SN, which refers to the same concept, that is, the second service network device in the DC scenario.
  • the connection status of the terminal device may be: the terminal device remains connected to the source network device and fails to connect to the target network device; the terminal device is disconnected from the source network device and successfully connected to the target network device; the terminal device and the auxiliary cell Group (SCG) connection failed, SCG changed connection failed.
  • SCG auxiliary cell Group
  • the terminal device fails to connect to one SCG; in a scenario where multiple target cells are configured, the terminal device fails to connect to one target cell.
  • exhaustion is no longer performed.
  • the source network device may configure multiple target network devices for the terminal device.
  • the method further includes:
  • the target network device when the target network device is connected to the terminal device, it starts to receive data from the source network device; and when it is determined that the connection between the target network device and the terminal device is successful or failed, it is determined whether to keep the source network Data from the device. In this way, it is possible to ensure the switching efficiency without increasing the storage load of the network equipment.
  • the source network device can directly transmit data to at least one target network device of the terminal device; in this way, this solution makes a new scenario in which data is sent by the source network device, thereby making this solution suitable for More handover scenarios, and because the source network device can directly send data to the target network device, this solution can reduce the process of obtaining relevant data of the terminal device after the handover is completed, thereby further improving the handover efficiency.
  • An embodiment of the present invention provides a source network device, as shown in FIG. 7, including:
  • the first processing unit 71 when it is determined that the terminal device successfully switches to the target network device, forwards data to the target network device through the first communication unit;
  • the first communication unit 72 is configured to send data to a target network device.
  • a terminal device acquires at least one target network device, and then selects one target network device from the at least one target network device, and initiates a handover connection to the selected target network device.
  • the terminal device can maintain the connection with the source network device, or disconnect from the source network device; the other is that the source network device determines at least one network device that the terminal device can access, and then Select the target network device from the network devices and send the selected target network device to the terminal device, so that the terminal device can initiate a connection to the target network device.
  • the source network device can also maintain the connection with the terminal device, and of course, it can also be disconnected. Connection with terminal equipment.
  • the first communication unit 72 receives the identification information of the target network device.
  • the method for receiving the identification information of the target network device may be: when the source network device and the terminal device remain connected, the identification information of the target network device that is successfully switched from the terminal device may be received; or, the target may be received Identification information sent by network equipment;
  • the source network device When the source network device is disconnected from the terminal device, it can receive the identification information sent by the target network device.
  • the target network device may carry the identification information through network signaling or instruction information.
  • the forwarding data to the target network device includes forwarding uplink data and / or downlink data to the target network device.
  • the source network device can obtain information about the corresponding target network device from at least one target network device.
  • Figure 3 including:
  • the handover preparation phase includes steps 1-6 in the figure: the source network device sends measurement control to the terminal device; after the terminal device performs measurements for multiple network devices or cells, it sends a measurement report to the source network device; the source network device according to the measurement report (Or combined with RRM information) to make a handover decision; the source network device sends a handover request to the target network device to prepare the target network device for handover; the target network device performs handover admission control based on the handover request; when the target network device determines to perform handover, The network device sends a handover request confirmation.
  • the target network device generates RRC information, sends the RRC connection reconfiguration information to the source network device, and the source network device sends the RRC connection reconfiguration information to the terminal device.
  • the terminal device After receiving the RRC connection reconfiguration information, the terminal device performs handover processing according to the connection reconfiguration information; then the source network device sends forward data to the target network device; the terminal device synchronizes with the target network device, and then receives the target network device for UL allocation, sending RRC connection reconfiguration completion information to the target network device.
  • the target network device sends a path switching request to the MME to notify the MME terminal device to change the cell; the MME sends a bearer adjustment request to the serving gateway, and the MME performs the downlink path switching process.
  • the serving gateway finishes processing, it sends a bearer adjustment completion process to the MME, and the MME sends a confirmation message of the path switching request to the target network device; the target network device notifies the source network device of the terminal device context release and the source network device releases the resources.
  • the first communication unit 72 executes at least one of the following:
  • the information forwarded by the source network device to the target network device may include SN status transmission information; the SN status information includes the uplink packet data convergence protocol (PDCP, Packet Data Convergence Protocol) SN reception status, and downlink PDCP SN transmission Status and more.
  • the uplink PDCP SN reception status includes at least the first lost uplink SDU of the PDCP SN, and may also include a bitmap of the out-of-order reception status of the uplink SDU; the downlink PDCP SN transmission status may include the next PDCP A PDCP SN is a new SDU to be allocated by the target network device.
  • other information is no longer exhaustive here.
  • a scenario of this embodiment includes a situation in which a terminal device maintains a connection state with a source network device during a handover.
  • the target network device may be an auxiliary node SN
  • the source network device is Master node MN.
  • the SN is called SCG
  • the new radio (NR) is SN, which refers to the same concept, that is, the second service network device in the DC scenario.
  • the connection status of the terminal device may be: the terminal device remains connected to the source network device and fails to connect to the target network device; the terminal device is disconnected from the source network device and successfully connected to the target network device; the terminal device and the auxiliary cell Group (SCG) connection failed, SCG changed connection failed.
  • SCG auxiliary cell Group
  • the terminal device fails to connect to one SCG; in a scenario where multiple target cells are configured, the terminal device fails to connect to one target cell.
  • exhaustion is no longer performed.
  • the terminal device in this embodiment may also retain the connection with the source network device; wherein the terminal The device retains the first protocol stack and the first related key with the source network device, and maintains the second protocol stack and the second related key with the first target network device; wherein the first related key and The second correlation key is different.
  • the second correlation key may be generated from the first correlation key.
  • the first protocol stack and the second protocol stack may be the same or different, or at least partially different.
  • it may be a terminal device and a source network device, and a terminal device and a first target network device. Maintain different service data application protocols (SDAP, Service Data Adaptation Protocol), different packet data convergence protocols (PDCP, Packet Data Convergence Protocol), different radio link layer control protocols (RLC, Radio Link Control), different Media access control (MAC) entities, different low-layer entities; when targeting 4G systems, different packet data aggregations can be maintained for terminal equipment and source network equipment, and between terminal equipment and first target network equipment Protocol (PDCP, Packet Data Convergence Protocol), different radio link layer control protocols (RLC, Radio Link Control), different media access control (MAC) entities, different low layer (Low layer) entities.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media access control
  • the PDCP of the first protocol stack and the second protocol stack must be different. At least one of SDAP, RLC, MAC, and physical layer may be the same or different. Alternatively, the first protocol stack and the second protocol stack may share at least one of SDAP, RLC, MAC, and physical layer, or may have SDAP, RLC, MAC, and physical layer, respectively.
  • the source network device may configure multiple target network devices for the terminal device. At this time, when it is determined that the terminal device successfully switches to the target network device, the data is forwarded to the target network device. Before, the method further includes: sending a handover command to the terminal device; wherein the handover command is used to indicate to the terminal device at least one target network device. That is, when the source network device configures multiple target network devices for the terminal device, the terminal device will accordingly select one of them as the target network device for the current initiating connection. At this time, the connection with the source network device can be maintained. Or disconnect.
  • the handover command includes a reconfiguration message of at least one target network device.
  • the source network device can choose to send reconfiguration messages of multiple target network devices to the terminal device at one time, or send reconfiguration messages of only one target network device at a time but send it multiple times, such as the source after failing to switch to a target network device.
  • the network device sends another reconfiguration message of the new target network device, which is not described again.
  • An embodiment of the present invention provides a source network device, including:
  • the second communication unit forwards data to at least one target network device.
  • the terminal device is no longer required to send data when the connection between the terminal device and the target network device is successfully established, but directly sends data to multiple target network devices.
  • the applicable scenario of this embodiment is that the terminal device acquires at least one target network device, and then selects one target network device from the at least one target network device and initiates a handover connection to the selected target network device. At this time, the terminal device can maintain the connection with the source The network device can also be disconnected from the source network device.
  • the second communication unit forwards uplink data and / or downlink data to the target network device.
  • the source network device can obtain information about the corresponding target network device from at least one target network device.
  • Figure 3 including:
  • the handover preparation phase includes steps 1-6 in the figure: the source network device sends measurement control to the terminal device; after the terminal device performs measurements for multiple network devices or cells, it sends a measurement report to the source network device; the source network device according to the measurement report (Or combined with RRM information) to make a handover decision; the source network device sends a handover request to the target network device to prepare the target network device for handover; the target network device performs handover admission control based on the handover request; when the target network device determines to perform handover, The network device sends a handover request confirmation.
  • the target network device generates RRC information, sends the RRC connection reconfiguration information to the source network device, and the source network device sends the RRC connection reconfiguration information to the terminal device.
  • the terminal device After receiving the RRC connection reconfiguration information, the terminal device performs handover processing according to the connection reconfiguration information; then the source network device sends forward data to the target network device; the terminal device synchronizes with the target network device, and then receives the target network device for UL allocation, sending RRC connection reconfiguration completion information to the target network device.
  • the target network device sends a path switching request to the MME to notify the MME terminal device to change the cell; the MME sends a bearer adjustment request to the serving gateway, and the MME performs the downlink path switching process.
  • the serving gateway finishes processing, it sends a bearer adjustment completion process to the MME, and the MME sends a confirmation message of the path switching request to the target network device; the target network device notifies the source network device of the terminal device context release and the source network device releases the resources.
  • the second communication unit further performs at least one of the following:
  • the information forwarded by the source network device to the target network device may include SN status transmission information; the SN status information includes the uplink packet data convergence protocol (PDCP, Packet Data Convergence Protocol) SN reception status, and downlink PDCP SN transmission Status and more.
  • the uplink PDCP SN reception status includes at least the first lost uplink SDU of the PDCP SN, and may also include a bitmap of the out-of-order reception status of the uplink SDU; the downlink PDCP SN transmission status may include the next PDCP A PDCP SN is a new SDU to be allocated by the target network device.
  • other information is no longer exhaustive here.
  • the target network device may be a secondary node SN, and the source network device is a primary node MN.
  • the SN is called SCG
  • the new radio (NR) is SN, which refers to the same concept, that is, the second service network device in the DC scenario.
  • the connection status of the terminal device may be: the terminal device remains connected to the source network device and fails to connect to the target network device; the terminal device is disconnected from the source network device and successfully connected to the target network device; the terminal device and the auxiliary cell Group (SCG) connection failed, SCG changed connection failed.
  • SCG auxiliary cell Group
  • the terminal device fails to connect to one SCG; in a scenario where multiple target cells are configured, the terminal device fails to connect to one target cell.
  • exhaustion is no longer performed.
  • the source network device may configure multiple target network devices for the terminal device.
  • the second communication unit sends a switching command to the terminal device. ; Wherein the switching command is used to indicate to the terminal device the at least one target network device.
  • the terminal device when the source network device configures multiple target network devices for the terminal device, the terminal device will accordingly select one of them as the target network device for the current initiating connection. At this time, the connection with the source network device can be maintained. Or disconnect.
  • the handover command includes a reconfiguration message of at least one target network device.
  • the source network device can choose to send reconfiguration messages of multiple target network devices to the terminal device at one time, or send reconfiguration messages of only one target network device at a time but send it multiple times, such as the source after failing to switch to a target network device.
  • the network device sends another reconfiguration message of the new target network device, which is not described again.
  • the source network device can directly transmit data to at least one target network device of the terminal device; in this way, this solution makes a new scenario in which data is sent by the source network device, thereby making this solution suitable for More handover scenarios, and because the source network device can directly send data to the target network device, this solution can reduce the process of obtaining relevant data of the terminal device after the handover is completed, thereby further improving the handover efficiency.
  • An embodiment of the present invention provides a target network device, as shown in FIG. 8, including:
  • the third processing unit 81 when it is determined that the terminal device successfully switches to the target network device, receives the data forwarded by the source network device through the third communication unit;
  • the third communication unit 82 receives data sent by the source network device.
  • a terminal device acquires at least one target network device, and then selects one target network device from the at least one target network device, and initiates a handover connection to the selected target network device.
  • the terminal device can maintain the connection with the source network device, or disconnect from the source network device; the other is that the source network device determines at least one network device that the terminal device can access, and then Select the target network device from the network devices and send the selected target network device to the terminal device, so that the terminal device can initiate a connection to the target network device.
  • the source network device can also maintain the connection with the terminal device, and of course, it can also be disconnected. Connection with terminal equipment.
  • the third communication unit 82 sends the identification information of the target network device to the source network device.
  • the method for receiving the identification information of the target network device may be: when the source network device and the terminal device remain connected, the identification information of the target network device that is successfully switched from the terminal device may be received; or, the target may be received Identification information sent by network equipment;
  • the source network device When the source network device is disconnected from the terminal device, it can receive the identification information sent by the target network device.
  • the target network device may carry the identification information through network signaling or instruction information.
  • the data forwarded by the receiving source network device includes:
  • the source network device can obtain information about the corresponding target network device from at least one target network device.
  • Figure 3 including:
  • the handover preparation phase includes steps 1-6 in the figure: the source network device sends measurement control to the terminal device; after the terminal device performs measurements for multiple network devices or cells, it sends a measurement report to the source network device; the source network device according to the measurement report (Or combined with RRM information) to make a handover decision; the source network device sends a handover request to the target network device to prepare the target network device for handover; the target network device performs handover admission control based on the handover request; when the target network device determines to perform handover, The network device sends a handover request confirmation.
  • the target network device generates RRC information, sends the RRC connection reconfiguration information to the source network device, and the source network device sends the RRC connection reconfiguration information to the terminal device.
  • the terminal device After receiving the RRC connection reconfiguration information, the terminal device performs handover processing according to the connection reconfiguration information; then the source network device sends forward data to the target network device; the terminal device synchronizes with the target network device, and then receives the target network device for UL allocation, sending RRC connection reconfiguration completion information to the target network device.
  • the target network device sends a path switching request to the MME to notify the MME terminal device to change the cell; the MME sends a bearer adjustment request to the serving gateway, and the MME performs the downlink path switching process.
  • the serving gateway finishes processing, it sends a bearer adjustment completion process to the MME, and the MME sends a confirmation message of the path switching request to the target network device; the target network device notifies the source network device of the terminal device context release and the source network device releases the resources.
  • the third communication unit 82 further performs at least one of the following:
  • the information forwarded by the source network device to the target network device may include SN status transmission information; the SN status information includes the uplink packet data convergence protocol (PDCP, Packet Data Convergence Protocol) SN reception status, and downlink PDCP SN transmission Status and more.
  • the uplink PDCP SN reception status includes at least the first lost uplink SDU of the PDCP SN, and may also include a bitmap of the out-of-order reception status of the uplink SDU; the downlink PDCP SN transmission status may include the next PDCP A PDCP SN is a new SDU to be allocated by the target network device.
  • other information is no longer exhaustive here.
  • a scenario of this embodiment includes a situation in which a terminal device maintains a connection state with a source network device during a handover.
  • the target network device may be an auxiliary node SN
  • the source network device is Master node MN.
  • the SN is called SCG
  • the new radio (NR) is SN, which refers to the same concept, that is, the second service network device in the DC scenario.
  • the connection status of the terminal device may be: the terminal device remains connected to the source network device and fails to connect to the target network device; the terminal device is disconnected from the source network device and successfully connected to the target network device; the terminal device and the auxiliary cell Group (SCG) connection failed, SCG changed connection failed.
  • SCG auxiliary cell Group
  • the terminal device fails to connect to one SCG; in a scenario where multiple target cells are configured, the terminal device fails to connect to one target cell.
  • exhaustion is no longer performed.
  • the terminal device in this embodiment may also retain the connection with the source network device; wherein the terminal The device retains the first protocol stack and the first related key with the source network device, and maintains the second protocol stack and the second related key with the first target network device; wherein the first related key and The second correlation key is different.
  • the second correlation key may be generated from the first correlation key.
  • the first protocol stack and the second protocol stack may be the same or different, or at least partially different.
  • it may be a terminal device and a source network device, and a terminal device and a first target network device. Maintain different service data application protocols (SDAP, Service Data Adaptation Protocol), different packet data convergence protocols (PDCP, Packet Data Convergence Protocol), different radio link layer control protocols (RLC, Radio Link Control), different Media access control (MAC) entities, different low-layer entities; when targeting 4G systems, different packet data aggregations can be maintained for terminal equipment and source network equipment, and between terminal equipment and first target network equipment Protocol (PDCP, Packet Data Convergence Protocol), different radio link layer control protocols (RLC, Radio Link Control), different media access control (MAC) entities, different low layer (Low layer) entities.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media access control
  • the PDCP of the first protocol stack and the second protocol stack must be different. At least one of SDAP, RLC, MAC, and physical layer may be the same or different. Alternatively, the first protocol stack and the second protocol stack may share at least one of SDAP, RLC, MAC, and physical layer, or may have SDAP, RLC, MAC, and physical layer, respectively.
  • the source network device may configure multiple target network devices for the terminal device.
  • the data is forwarded to the target network device.
  • the third communication unit 82 sends a handover command to the terminal device; wherein the handover command is used to indicate to the terminal device at least one target network device. That is, when the source network device configures multiple target network devices for the terminal device, the terminal device will accordingly select one of them as the target network device for the current initiating connection. At this time, the connection with the source network device can be maintained. Or disconnect.
  • the handover command includes a reconfiguration message of at least one target network device.
  • the source network device can choose to send reconfiguration messages of multiple target network devices to the terminal device at one time, or send reconfiguration messages of only one target network device at a time but send it multiple times, such as the source after failing to switch to a target network device.
  • the network device sends another reconfiguration message of the new target network device, which is not described again.
  • An embodiment of the present invention provides a target network device, as shown in FIG. 9, including:
  • the fourth communication unit 91 receives data forwarded by the source network device; wherein the target network device is one of at least one target network device configured by the network side for the terminal device.
  • the terminal device is no longer required to send data when the connection between the terminal device and the target network device is successfully established, but directly sends data to multiple target network devices.
  • the applicable scenario of this embodiment is that the terminal device acquires at least one target network device, and then selects one target network device from the at least one target network device and initiates a handover connection to the selected target network device. At this time, the terminal device can maintain the connection with the source The network device can also be disconnected from the source network device.
  • the fourth communication unit 91 receives uplink data and / or downlink data forwarded by the source network device.
  • the source network device can obtain information about the corresponding target network device from at least one target network device.
  • Figure 3 including:
  • the handover preparation phase includes steps 1-6 in the figure: the source network device sends measurement control to the terminal device; after the terminal device performs measurements for multiple network devices or cells, it sends a measurement report to the source network device; the source network device according to the measurement report (Or combined with RRM information) to make a handover decision; the source network device sends a handover request to the target network device to prepare the target network device for handover; the target network device performs handover admission control based on the handover request; when the target network device determines to perform handover, The network device sends a handover request confirmation.
  • the target network device generates RRC information, sends the RRC connection reconfiguration information to the source network device, and the source network device sends the RRC connection reconfiguration information to the terminal device.
  • the terminal device After receiving the RRC connection reconfiguration information, the terminal device performs handover processing according to the connection reconfiguration information; then the source network device sends forward data to the target network device; the terminal device synchronizes with the target network device, and then receives the target network device for UL allocation, sending RRC connection reconfiguration completion information to the target network device.
  • the target network device sends a path switching request to the MME to notify the MME terminal device to change the cell; the MME sends a bearer adjustment request to the serving gateway, and the MME performs the downlink path switching process.
  • the serving gateway finishes processing, it sends a bearer adjustment completion process to the MME, and the MME sends a confirmation message of the path switching request to the target network device; the target network device notifies the source network device of the terminal device context release and the source network device releases the resources.
  • the fourth communication unit 91 further executes at least one of the following:
  • the information forwarded by the source network device to the target network device may include SN status transmission information; the SN status information includes the uplink packet data convergence protocol (PDCP, Packet Data Convergence Protocol) SN reception status, and downlink PDCP SN transmission Status and more.
  • the uplink PDCP SN reception status includes at least the first lost uplink SDU of the PDCP SN, and may also include a bitmap of the out-of-order reception status of the uplink SDU; the downlink PDCP SN transmission status may include the next PDCP A PDCP SN is a new SDU to be allocated by the target network device.
  • other information is no longer exhaustive here.
  • the target network device may be a secondary node SN, and the source network device is a primary node MN.
  • the SN is called SCG
  • the new radio (NR) is SN, which refers to the same concept, that is, the second service network device in the DC scenario.
  • the connection status of the terminal device may be: the terminal device remains connected to the source network device and fails to connect to the target network device; the terminal device is disconnected from the source network device and successfully connected to the target network device; the terminal device and the auxiliary cell Group (SCG) connection failed, SCG changed connection failed.
  • SCG auxiliary cell Group
  • the terminal device fails to connect to one SCG; in a scenario where multiple target cells are configured, the terminal device fails to connect to one target cell.
  • exhaustion is no longer performed.
  • the target network device further includes: a fourth processing unit 92,
  • the target network device when the target network device is connected to the terminal device, it starts to receive data from the source network device; and when it is determined that the connection between the target network device and the terminal device is successful or failed, it is determined whether to keep the source network Data from the device. In this way, it is possible to ensure the switching efficiency without increasing the storage load of the network equipment.
  • the source network device can directly transmit data to at least one target network device of the terminal device; in this way, this solution makes a new scenario in which data is sent by the source network device, thereby making this solution suitable for More handover scenarios, and because the source network device can directly send data to the target network device, this solution can reduce the process of obtaining relevant data of the terminal device after the handover is completed, thereby further improving the handover efficiency.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 according to an embodiment of the present application.
  • the communication device may be a terminal device or a network device described in this embodiment.
  • the communication device 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1000 may further include a memory 1020.
  • the processor 1010 may call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the communication device 1000 may further include a transceiver 1030, and the processor 1010 may control the transceiver 1030 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 1010 may control the transceiver 1030 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1000 may specifically be a network device according to an embodiment of the present application, and the communication device 1000 may implement a corresponding process implemented by a network device in each method of the embodiments of the present application. For brevity, details are not described herein again. .
  • the communication device 1000 may specifically be a terminal device or a network device in the embodiment of the present application, and the communication device 1000 may implement a corresponding process implemented by a mobile terminal / terminal device in each method in the embodiments of the present application. Concise, I won't repeat them here.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 1100 may further include a memory 1120.
  • the processor 1110 may call and run a computer program from the memory 1120 to implement the method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the chip 1100 may further include an input interface 1130.
  • the processor 1110 may control the input interface 1130 to communicate with other devices or chips. Specifically, the processor 1110 may obtain information or data sent by other devices or chips.
  • the chip 1100 may further include an output interface 1140.
  • the processor 1110 may control the output interface 1140 to communicate with other devices or chips. Specifically, the processor 1110 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the terminal device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 12 is a schematic block diagram of a communication system 1200 according to an embodiment of the present application. As shown in FIG. 12, the communication system 1200 includes a terminal device 1210 and a network device 1220.
  • the terminal device 1210 may be used to implement the corresponding function implemented by the terminal device in the foregoing method
  • the network device 1220 may be used to implement the corresponding function implemented by the network device in the foregoing method.
  • details are not described herein again. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. No longer.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiment of the present application, for the sake of brevity , Will not repeat them here.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, For brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer executes each method in the embodiment of the application by the mobile terminal / terminal device. The corresponding processes are not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种数据传输方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,包括:当确定终端设备成功切换至目标网络设备时,向所述目标网络设备转发数据。

Description

一种数据传输方法、终端设备及网络设备 技术领域
本发明涉及信息处理技术领域,尤其涉及一种数据传输方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
在移动通信处理中,切换过程中可能会切换失败,在现有的切换中,终端设备收到源网络设备的切换命令就和源网络设备停止数据传输了,源网络设备会把收到的数据的状态报告发给目标网络设备。但是,当存在更多的切换场景的时候,如何控制源网络设备与目标网络设备的数据传输则是需要解决的问题。
发明内容
为解决上述技术问题,本发明实施例提供了一种数据传输方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,本发明实施例提供了一种数据传输方法,应用于源网络设备,包括:
当确定终端设备成功切换至目标网络设备时,向所述目标网络设备转发数据。
第二方面,本发明实施例提供了一种数据传输方法,应用于源网络设备,包括:
向至少一个目标网络设备转发数据。
第三方面,本发明实施例提供了一种数据传输方法,应用于目标网络设备,包括:
当确定终端设备成功切换至目标网络设备时,接收源网络设备转发的数据。
第四方面,本发明实施例提供了一种数据传输方法,应用于目标网络设备,包括:
接收源网络设备转发的数据;其中,所述目标网络设备为网络侧为终端设备配置的至少一个目标网络设备中之一。
第五方面,本发明实施例提供了一种源网络设备,包括:
第一处理单元,当确定终端设备成功切换至目标网络设备时,通过第一通信单元向所述目标网络设备转发数据;
第一通信单元,用于向目标网络设备发送数据。
第六方面,本发明实施例提供了一种源网络设备,包括:
第二通信单元,向至少一个目标网络设备转发数据。
第七方面,本发明实施例提供了一种目标网络设备,包括:
第三处理单元,当确定终端设备成功切换至目标网络设备时,通过第三通信单元接收源网络设备转发的数据;
第三通信单元,接收源网络设备发来的数据。
第八方面,本发明实施例提供了一种目标网络设备,包括:
第四通信单元,接收源网络设备转发的数据;其中,所述目标网络设备为网络侧为终端设备配置的至少一个目标网络设备中之一。
第九方面,本发明实施例提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第四方面或其各实现方式中的方法。
第十方面,提供了一种芯片,用于实现上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
本发明实施例的技术方案,能够在终端设备与目标网络设备连接成功之后,由源网络设备向目标网络设备进行数据传输;如此,使得本方案提出一种新的由源网络设备发送数据的场景,从而使得本方案适应于更多的切换场景。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图一;
图2是本申请实施例提供的一种数据传输方法流程示意图一;
图3为本发明实施例提供的一种切换处理场景示意图;
图4是本申请实施例提供的一种数据传输方法流程示意图二;
图5是本申请实施例提供的一种数据传输方法流程示意图三;
图6是本申请实施例提供的一种数据传输方法流程示意图四;
图7是本申请实施例提供的一种终端设备组成结构示意图;
图8为本发明实施例提供的一种网络设备组成结构示意图一;
图9为本发明实施例提供的一种网络设备组成结构示意图二;
图10为本发明实施例提供的一种通信设备组成结构示意图;
图11是本申请实施例提供的一种芯片的示意性框图;
图12是本申请实施例提供的一种通信系统架构的示意性图二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Freq终端设备ncy Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的网络设备(Base Transceiver Station,BTS),也可以是WCDMA系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,终端设备)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网 络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
实施例一、
本发明实施例提供了一种数据传输方法,应用于源网络设备,如图2所示,包括:
步骤201:当确定终端设备成功切换至目标网络设备时,向所述目标网络设备转发数据。
本实施例可以适用的场景为以下几种:一种是终端设备获取至少一个目标网络设备,然后从至少一个目标网络设备中选取一个目标网络设备,向选取的目标网络设备发起切换连接,此时,终端设备可以保持与源网络设备的连接,也可以断开与源网络设备的连接;再一种是,源网络设备确定终端设备能够接入的至少一个网络设备,然后为终端设备从至少一个网络设备中选取目标网络设备,并发送选取的目标网络设备至终端设备,使得终端设备能够向目标网络设备发起连接,此时,源网络设备也可以保持与终端设备的连接,当然也可以断开与终端设备的连接。
在向目标网络设备转发数据之前,或者,在确定终端设备成功切换至目标网络设备时,所述方法还包括:
接收所述目标网络设备的标识信息。
其中,接收目标网络设备的标识信息的方式,可以为,当源网络设备与终端设备保持连接的时候,可以接收终端设备发来的切换成功的目标网络设备的标识信息;或者,接收所述目标网络设备发来的标识信息;
当源网络设备与终端设备断开连接的时候,可以为接收目标网络设备发来的标识信息。其中,目标网络设备可以通过网络信令或者指示信息携带所述标识信息。
所述向所述目标网络设备转发数据,包括:向所述目标网络设备转发上行数据和/或下行数据。
转发数据的处理可以参见以下处理流程,源网络设备可以从至少一个目标网络设备获取相应的目标网络设备的信息。关于切换并获取相关信息的流程,可以参见图3所示,包括:
切换准备阶段,包含图中步骤1-6:源网络设备向终端设备发送测量控制;终端设备进行针对多个网络设备或小区的测量之后,向源网络设备发送测量报告;源网络设备根据测量报告(或者结合RRM信息)进行切换决策;源网络设备向目标网络设备发送切换请求以使得目标网络设备准备进行切换;目标网络设备根据切换请求进行切换许可控制;目标网络设备确定进行切换时,向源网络设备发送切换请求确认。
然后进行执行切换阶段,包含图中步骤7-11,具体的:目标网络设备生成RRC信息,将RRC连接重配置信息发送至源网络设备,由源网络设备通过RRC连接重配置信息发送至终端设备;终端设备接收到RRC连接重配置信息后,根据连接重配置信息执行切换处理;然后源网络设备发送向所述目标网络设备转发数据;终端设备与目标网络设备进行同步,然后接收目标网络设备进行UL分配,向目标网络设备发送RRC连接重配置完成信息。
最后进入切换完成阶段,包含图中12-18,具体的:目标网络设备向MME发送路径切换请求,以通知MME终端设备改变小区;MME向服务网关发送调整承载请求,由MME进行切换下行路径处理;服务网关完成处理后,向MME发送承载调整完成处理,并由MME向目标网络设备发送路径切换请求的确认消息;目标网络设备向源网络设备通知终端设备上下文释放由源网络设备释放资源。
其中,所述向所述目标网络设备转发数据,还包括以下至少之一:
向所述目标网络设备发送数据状态报告;向所述目标网络设备发送源网络设备侧的数据包的序列号SN;向所述目标网络设备发送数据无线承载DRB配置。
具体来说,源网络设备向目标网络设备转发的信息,可以包含SN状态传输信息;通过SN状态信息包含有上行分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)SN接收状态,以及下行PDCP SN传输状态等等。进一步地,上行PDCP SN接收状态至少包含PDCP SN的第一个丢失的上行SDU,还可以包括有上行SDU的乱序接收状态的比特图;下行PDCP SN传输状态可以包含有下一个PDCP SN,下一个PDCP SN为目标网络设备即将分配的新的SDU。此外,其他信息这里不再进行穷举。
进一步需要说明的是,本实施例的一种场景中,包含有终端设备在切换时,保持与源网络设备连接状态的情况,此时目标网络设备可以为辅助节点SN,所述源网络设备为主节点MN。此处需注意,长期演进(LTE)系统中,SN称为SCG,在新无线(NR)则为SN,指的是一样的概念,就是DC场景下的第二服务网络设备。具体来说,终端设备的连接状态可以为:终端设备与源网络设备保持连接、与目标网络设备连接失败;终端设备与源网络设备断开连接、与目标网络设备连接成功;终端设备与辅助小区组(SCG)连接失败、SCG改变连接失败。当然,还可以有,在配置了多个SCG场景中,终端设备与一个SCG连接失败;配置了多个目标小区的场景中,终端设备与一个目标小区连接失败。还可能会存在其他的适用场景,只是本实施例中不再进行穷举。
另外,上述场景中,当向第一目标网络设备发起连接的同时,保持源网络设备的连接的时候,本实施例中终端设备还可以保留与源网络设备之间的连接;其中,所述终端设备保留与源网络设备的第一协议栈以及第一相关密钥、并且维护与第一目标网络设备之间的第二协议栈以及第二相关密钥;其中,所述第一相关密钥与第二相关密钥不同。第二相关密钥可以由第一相关密钥生成。
其中,第一协议栈与第二协议栈可以相同也可以不同,或者至少部分不同,比如,当针对5G系统的时候,可以为终端设备与源网络设备、以及终端设备与第一目标网络设备之间维护不同的服务数据应用协议(SDAP,Service Data Adaptation Protocol)、不同的分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)、不同的无线链路层控制协议(RLC,Radio Link Control)、不同的媒体访问控制(MAC)实体、不同的低层(Low layer)实体;当针对4G系统的时候,可以为终端设备与源网络设备、以及终端设备与第一目标网络设备之间维护不同的分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)、不同的无线链路层控制协议(RLC,Radio Link Control)、不同的媒体访问控制(MAC)实体、不同的低层(Low layer)实体。另外,本实施例提供的方案中,为了保证使用不同密钥,第一协议栈以及第二协议栈的PDCP一定是不同的。SDAP、RLC、MAC以及物理层中至少之一,则可以相同也可以不同。或者,所述第一协议栈以及第二协议栈可以共用SDAP、RLC、MAC以及物理层中至少之一,或者可以分别拥有SDAP、RLC、MAC以及物理层。
本实施例的另一种场景中,可能源网络设备会为终端设备配置多个目标网络设备,此时,所述当确定终端设备成功切换至目标网络设备时,向所述目标网络设备转发数据之前,所述方法还包括:向终端设备发送切换命令;其中,所述切换命令用于向终端设备指示至少一个目标网络设备。也就是说,源网络设备为终端设备配置了多个目标网络设备的时候,相应的,所述终端设备会从中选取一个作为当前发起连接的目标网络设备,此时,可以与源网络设备保持连接或断开连接。
所述切换命令中包含有至少一个目标网络设备的重配消息。源网络设备可以选择一次性把多个目标网络设备的重配消息发给终端设备、或者一次只发一个目标网络设备的重配消息但是通过多次发送,比如切换至一个目标网络设备失败后源网络设备再发送另一个新的目标网络设备的重配消息,不再进行赘述。
可见,通过采用上述方案,能够在终端设备与目标网络设备连接成功之后,由源网络设备向目标网络设备进行数据传输;如此,使得本方案提出一种新的由源网络设备发送数据的场景,从而使得本方案适应于更多的切换场景。
实施例二、
本发明实施例提供了一种数据传输方法,应用于源网络设备,如图4所示,包括:
步骤401:向至少一个目标网络设备转发数据。
与实施例一不同在于,本实施例不再限定需要终端设备与目标网络设备建立连接成功的时候再发送数据,而是直接向多个目标网络设备发送数据。
本实施例可以适用的场景为终端设备获取至少一个目标网络设备,然后从至少一个目标网络设备中选取一个目标网络设备,向选取的目标网络设备发起切换连接,此时,终端设备可以保持与源网络设备的连接,也可以断开与源网络设备的连接。
所述向所述目标网络设备转发数据,包括:向所述目标网络设备转发上行数据和/或下行数据。
转发数据的处理可以参见以下处理流程,源网络设备可以从至少一个目标网络设备获取相应的 目标网络设备的信息。关于切换并获取相关信息的流程,可以参见图3所示,包括:
切换准备阶段,包含图中步骤1-6:源网络设备向终端设备发送测量控制;终端设备进行针对多个网络设备或小区的测量之后,向源网络设备发送测量报告;源网络设备根据测量报告(或者结合RRM信息)进行切换决策;源网络设备向目标网络设备发送切换请求以使得目标网络设备准备进行切换;目标网络设备根据切换请求进行切换许可控制;目标网络设备确定进行切换时,向源网络设备发送切换请求确认。
然后进行执行切换阶段,包含图中步骤7-11,具体的:目标网络设备生成RRC信息,将RRC连接重配置信息发送至源网络设备,由源网络设备通过RRC连接重配置信息发送至终端设备;终端设备接收到RRC连接重配置信息后,根据连接重配置信息执行切换处理;然后源网络设备发送向所述目标网络设备转发数据;终端设备与目标网络设备进行同步,然后接收目标网络设备进行UL分配,向目标网络设备发送RRC连接重配置完成信息。
最后进入切换完成阶段,包含图中12-18,具体的:目标网络设备向MME发送路径切换请求,以通知MME终端设备改变小区;MME向服务网关发送调整承载请求,由MME进行切换下行路径处理;服务网关完成处理后,向MME发送承载调整完成处理,并由MME向目标网络设备发送路径切换请求的确认消息;目标网络设备向源网络设备通知终端设备上下文释放由源网络设备释放资源。
其中,所述向所述目标网络设备转发数据,还包括以下至少之一:
向所述目标网络设备发送数据状态报告;向所述目标网络设备发送源网络设备侧的数据包的序列号SN;向所述目标网络设备发送数据无线承载DRB配置。
具体来说,源网络设备向目标网络设备转发的信息,可以包含SN状态传输信息;通过SN状态信息包含有上行分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)SN接收状态,以及下行PDCP SN传输状态等等。进一步地,上行PDCP SN接收状态至少包含PDCP SN的第一个丢失的上行SDU,还可以包括有上行SDU的乱序接收状态的比特图;下行PDCP SN传输状态可以包含有下一个PDCP SN,下一个PDCP SN为目标网络设备即将分配的新的SDU。此外,其他信息这里不再进行穷举。
进一步需要说明的是,目标网络设备可以为辅助节点SN,所述源网络设备为主节点MN。此处需注意,长期演进(LTE)系统中,SN称为SCG,在新无线(NR)则为SN,指的是一样的概念,就是DC场景下的第二服务网络设备。具体来说,终端设备的连接状态可以为:终端设备与源网络设备保持连接、与目标网络设备连接失败;终端设备与源网络设备断开连接、与目标网络设备连接成功;终端设备与辅助小区组(SCG)连接失败、SCG改变连接失败。当然,还可以有,在配置了多个SCG场景中,终端设备与一个SCG连接失败;配置了多个目标小区的场景中,终端设备与一个目标小区连接失败。还可能会存在其他的适用场景,只是本实施例中不再进行穷举。
本实施例的场景中,可能源网络设备会为终端设备配置多个目标网络设备,此时,所述向至少一个目标网络设备转发数据之前,所述方法还包括:
向终端设备发送切换命令;其中,所述切换命令用于向终端设备指示所述至少一个目标网络设备。
也就是说,源网络设备为终端设备配置了多个目标网络设备的时候,相应的,所述终端设备会从中选取一个作为当前发起连接的目标网络设备,此时,可以与源网络设备保持连接或断开连接。
所述切换命令中包含有至少一个目标网络设备的重配消息。源网络设备可以选择一次性把多个目标网络设备的重配消息发给终端设备、或者一次只发一个目标网络设备的重配消息但是通过多次发送,比如切换至一个目标网络设备失败后源网络设备再发送另一个新的目标网络设备的重配消息,不再进行赘述。
可见,通过采用上述方案,能够源网络设备直接向终端设备的至少一个目标网络设备进行数据传输;如此,使得本方案提出一种新的由源网络设备发送数据的场景,从而使得本方案适应于更多的切换场景,并且,由于源网络设备能够直接向目标网络设备发送数据,使得本方案能够在切换完成后减少了获取终端设备的相关数据的流程,从而进一步提升了切换效率。
实施例三、
本发明实施例提供了一种数据传输方法,应用于目标网络设备,如图5所示,包括:
步骤501:当确定终端设备成功切换至目标网络设备时,接收源网络设备转发的数据。
本实施例可以适用的场景为以下几种:一种是终端设备获取至少一个目标网络设备,然后从至少一个目标网络设备中选取一个目标网络设备,向选取的目标网络设备发起切换连接,此时,终端 设备可以保持与源网络设备的连接,也可以断开与源网络设备的连接;再一种是,源网络设备确定终端设备能够接入的至少一个网络设备,然后为终端设备从至少一个网络设备中选取目标网络设备,并发送选取的目标网络设备至终端设备,使得终端设备能够向目标网络设备发起连接,此时,源网络设备也可以保持与终端设备的连接,当然也可以断开与终端设备的连接。
在向目标网络设备转发数据之前,或者,在确定终端设备成功切换至目标网络设备时,所述方法还包括:
向源网络设备发送所述目标网络设备的标识信息。
其中,接收目标网络设备的标识信息的方式,可以为,当源网络设备与终端设备保持连接的时候,可以接收终端设备发来的切换成功的目标网络设备的标识信息;或者,接收所述目标网络设备发来的标识信息;
当源网络设备与终端设备断开连接的时候,可以为接收目标网络设备发来的标识信息。其中,目标网络设备可以通过网络信令或者指示信息携带所述标识信息。
所述接收源网络设备转发的数据,包括:
接收所述源网络设备转发的上行数据和/或下行数据。
转发数据的处理可以参见以下处理流程,源网络设备可以从至少一个目标网络设备获取相应的目标网络设备的信息。关于切换并获取相关信息的流程,可以参见图3所示,包括:
切换准备阶段,包含图中步骤1-6:源网络设备向终端设备发送测量控制;终端设备进行针对多个网络设备或小区的测量之后,向源网络设备发送测量报告;源网络设备根据测量报告(或者结合RRM信息)进行切换决策;源网络设备向目标网络设备发送切换请求以使得目标网络设备准备进行切换;目标网络设备根据切换请求进行切换许可控制;目标网络设备确定进行切换时,向源网络设备发送切换请求确认。
然后进行执行切换阶段,包含图中步骤7-11,具体的:目标网络设备生成RRC信息,将RRC连接重配置信息发送至源网络设备,由源网络设备通过RRC连接重配置信息发送至终端设备;终端设备接收到RRC连接重配置信息后,根据连接重配置信息执行切换处理;然后源网络设备发送向所述目标网络设备转发数据;终端设备与目标网络设备进行同步,然后接收目标网络设备进行UL分配,向目标网络设备发送RRC连接重配置完成信息。
最后进入切换完成阶段,包含图中12-18,具体的:目标网络设备向MME发送路径切换请求,以通知MME终端设备改变小区;MME向服务网关发送调整承载请求,由MME进行切换下行路径处理;服务网关完成处理后,向MME发送承载调整完成处理,并由MME向目标网络设备发送路径切换请求的确认消息;目标网络设备向源网络设备通知终端设备上下文释放由源网络设备释放资源。
其中,所述接收源网络设备转发的数据,还包括以下至少之一:
接收所述源网络设备转发的数据状态报告;
接收所述源网络设备转发的源网络设备侧的数据包的序列号SN;
接收所述源网络设备转发的数据无线承载DRB配置。
具体来说,源网络设备向目标网络设备转发的信息,可以包含SN状态传输信息;通过SN状态信息包含有上行分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)SN接收状态,以及下行PDCP SN传输状态等等。进一步地,上行PDCP SN接收状态至少包含PDCP SN的第一个丢失的上行SDU,还可以包括有上行SDU的乱序接收状态的比特图;下行PDCP SN传输状态可以包含有下一个PDCP SN,下一个PDCP SN为目标网络设备即将分配的新的SDU。此外,其他信息这里不再进行穷举。
进一步需要说明的是,本实施例的一种场景中,包含有终端设备在切换时,保持与源网络设备连接状态的情况,此时目标网络设备可以为辅助节点SN,所述源网络设备为主节点MN。此处需注意,长期演进(LTE)系统中,SN称为SCG,在新无线(NR)则为SN,指的是一样的概念,就是DC场景下的第二服务网络设备。具体来说,终端设备的连接状态可以为:终端设备与源网络设备保持连接、与目标网络设备连接失败;终端设备与源网络设备断开连接、与目标网络设备连接成功;终端设备与辅助小区组(SCG)连接失败、SCG改变连接失败。当然,还可以有,在配置了多个SCG场景中,终端设备与一个SCG连接失败;配置了多个目标小区的场景中,终端设备与一个目标小区连接失败。还可能会存在其他的适用场景,只是本实施例中不再进行穷举。
另外,上述场景中,当向第一目标网络设备发起连接的同时,保持源网络设备的连接的时候,本实施例中终端设备还可以保留与源网络设备之间的连接;其中,所述终端设备保留与源网络设备 的第一协议栈以及第一相关密钥、并且维护与第一目标网络设备之间的第二协议栈以及第二相关密钥;其中,所述第一相关密钥与第二相关密钥不同。第二相关密钥可以由第一相关密钥生成。
其中,第一协议栈与第二协议栈可以相同也可以不同,或者至少部分不同,比如,当针对5G系统的时候,可以为终端设备与源网络设备、以及终端设备与第一目标网络设备之间维护不同的服务数据应用协议(SDAP,Service Data Adaptation Protocol)、不同的分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)、不同的无线链路层控制协议(RLC,Radio Link Control)、不同的媒体访问控制(MAC)实体、不同的低层(Low layer)实体;当针对4G系统的时候,可以为终端设备与源网络设备、以及终端设备与第一目标网络设备之间维护不同的分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)、不同的无线链路层控制协议(RLC,Radio Link Control)、不同的媒体访问控制(MAC)实体、不同的低层(Low layer)实体。另外,本实施例提供的方案中,为了保证使用不同密钥,第一协议栈以及第二协议栈的PDCP一定是不同的。SDAP、RLC、MAC以及物理层中至少之一,则可以相同也可以不同。或者,所述第一协议栈以及第二协议栈可以共用SDAP、RLC、MAC以及物理层中至少之一,或者可以分别拥有SDAP、RLC、MAC以及物理层。
本实施例的另一种场景中,可能源网络设备会为终端设备配置多个目标网络设备,此时,所述当确定终端设备成功切换至目标网络设备时,向所述目标网络设备转发数据之前,所述方法还包括:向终端设备发送切换命令;其中,所述切换命令用于向终端设备指示至少一个目标网络设备。也就是说,源网络设备为终端设备配置了多个目标网络设备的时候,相应的,所述终端设备会从中选取一个作为当前发起连接的目标网络设备,此时,可以与源网络设备保持连接或断开连接。
所述切换命令中包含有至少一个目标网络设备的重配消息。源网络设备可以选择一次性把多个目标网络设备的重配消息发给终端设备、或者一次只发一个目标网络设备的重配消息但是通过多次发送,比如切换至一个目标网络设备失败后源网络设备再发送另一个新的目标网络设备的重配消息,不再进行赘述。
可见,通过采用上述方案,能够在终端设备与目标网络设备连接成功之后,由源网络设备向目标网络设备进行数据传输;如此,使得本方案提出一种新的由源网络设备发送数据的场景,从而使得本方案适应于更多的切换场景。
实施例四、
本发明实施例提供了一种数据传输方法,应用于目标网络设备,如图6所示,包括:
步骤601:接收源网络设备转发的数据;其中,所述目标网络设备为网络侧为终端设备配置的至少一个目标网络设备中之一。
与实施例三不同在于,本实施例不再限定需要终端设备与目标网络设备建立连接成功的时候再发送数据,而是直接向多个目标网络设备发送数据。
本实施例可以适用的场景为终端设备获取至少一个目标网络设备,然后从至少一个目标网络设备中选取一个目标网络设备,向选取的目标网络设备发起切换连接,此时,终端设备可以保持与源网络设备的连接,也可以断开与源网络设备的连接。
所述接收源网络设备转发的数据,包括:接收源网络设备转发的上行数据和/或下行数据。
转发数据的处理可以参见以下处理流程,源网络设备可以从至少一个目标网络设备获取相应的目标网络设备的信息。关于切换并获取相关信息的流程,可以参见图3所示,包括:
切换准备阶段,包含图中步骤1-6:源网络设备向终端设备发送测量控制;终端设备进行针对多个网络设备或小区的测量之后,向源网络设备发送测量报告;源网络设备根据测量报告(或者结合RRM信息)进行切换决策;源网络设备向目标网络设备发送切换请求以使得目标网络设备准备进行切换;目标网络设备根据切换请求进行切换许可控制;目标网络设备确定进行切换时,向源网络设备发送切换请求确认。
然后进行执行切换阶段,包含图中步骤7-11,具体的:目标网络设备生成RRC信息,将RRC连接重配置信息发送至源网络设备,由源网络设备通过RRC连接重配置信息发送至终端设备;终端设备接收到RRC连接重配置信息后,根据连接重配置信息执行切换处理;然后源网络设备发送向所述目标网络设备转发数据;终端设备与目标网络设备进行同步,然后接收目标网络设备进行UL分配,向目标网络设备发送RRC连接重配置完成信息。
最后进入切换完成阶段,包含图中12-18,具体的:目标网络设备向MME发送路径切换请求,以通知MME终端设备改变小区;MME向服务网关发送调整承载请求,由MME进行切换下行路径处理;服务网关完成处理后,向MME发送承载调整完成处理,并由MME向目标网络设备发送路径切换请求的确认消息;目标网络设备向源网络设备通知终端设备上下文释放由源网络设备释放资 源。
其中,所述接收源网络设备转发的数据,还包括以下至少之一:
接收源网络设备转发的数据状态报告;
接收源网络设备转发的源网络设备侧的数据包的序列号SN;
接收源网络设备转发的数据无线承载DRB配置。
具体来说,源网络设备向目标网络设备转发的信息,可以包含SN状态传输信息;通过SN状态信息包含有上行分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)SN接收状态,以及下行PDCP SN传输状态等等。进一步地,上行PDCP SN接收状态至少包含PDCP SN的第一个丢失的上行SDU,还可以包括有上行SDU的乱序接收状态的比特图;下行PDCP SN传输状态可以包含有下一个PDCP SN,下一个PDCP SN为目标网络设备即将分配的新的SDU。此外,其他信息这里不再进行穷举。
进一步需要说明的是,目标网络设备可以为辅助节点SN,所述源网络设备为主节点MN。此处需注意,长期演进(LTE)系统中,SN称为SCG,在新无线(NR)则为SN,指的是一样的概念,就是DC场景下的第二服务网络设备。具体来说,终端设备的连接状态可以为:终端设备与源网络设备保持连接、与目标网络设备连接失败;终端设备与源网络设备断开连接、与目标网络设备连接成功;终端设备与辅助小区组(SCG)连接失败、SCG改变连接失败。当然,还可以有,在配置了多个SCG场景中,终端设备与一个SCG连接失败;配置了多个目标小区的场景中,终端设备与一个目标小区连接失败。还可能会存在其他的适用场景,只是本实施例中不再进行穷举。
本实施例的场景中,可能源网络设备会为终端设备配置多个目标网络设备,此时,所述接收源网络设备转发的数据之后,所述方法还包括:
当所述目标网络设备与终端设备连接成功时,保留所述源网络设备发来的数据;
当所述目标网络设备与终端设备连接失败时,删除所述源网络设备发来的数据。
也就是说,在目标网络设备与终端设备进行连接的时候,就开始接收源网络设备发来的数据;而当确定目标网络设备与终端设备建立连接成功或失败的时候,再确定是否保留源网络设备发来的数据。如此,可以在保证切换效率的同时,不会增加网络设备的存储负荷。
可见,通过采用上述方案,能够源网络设备直接向终端设备的至少一个目标网络设备进行数据传输;如此,使得本方案提出一种新的由源网络设备发送数据的场景,从而使得本方案适应于更多的切换场景,并且,由于源网络设备能够直接向目标网络设备发送数据,使得本方案能够在切换完成后减少了获取终端设备的相关数据的流程,从而进一步提升了切换效率。
实施例五、
本发明实施例提供了一种源网络设备,如图7所示,包括:
第一处理单元71,当确定终端设备成功切换至目标网络设备时,通过第一通信单元向所述目标网络设备转发数据;
第一通信单元72,用于向目标网络设备发送数据。
本实施例可以适用的场景为以下几种:一种是终端设备获取至少一个目标网络设备,然后从至少一个目标网络设备中选取一个目标网络设备,向选取的目标网络设备发起切换连接,此时,终端设备可以保持与源网络设备的连接,也可以断开与源网络设备的连接;再一种是,源网络设备确定终端设备能够接入的至少一个网络设备,然后为终端设备从至少一个网络设备中选取目标网络设备,并发送选取的目标网络设备至终端设备,使得终端设备能够向目标网络设备发起连接,此时,源网络设备也可以保持与终端设备的连接,当然也可以断开与终端设备的连接。
在向目标网络设备转发数据之前,或者,在确定终端设备成功切换至目标网络设备时,第一通信单元72,接收所述目标网络设备的标识信息。
其中,接收目标网络设备的标识信息的方式,可以为,当源网络设备与终端设备保持连接的时候,可以接收终端设备发来的切换成功的目标网络设备的标识信息;或者,接收所述目标网络设备发来的标识信息;
当源网络设备与终端设备断开连接的时候,可以为接收目标网络设备发来的标识信息。其中,目标网络设备可以通过网络信令或者指示信息携带所述标识信息。
所述向所述目标网络设备转发数据,包括:向所述目标网络设备转发上行数据和/或下行数据。
转发数据的处理可以参见以下处理流程,源网络设备可以从至少一个目标网络设备获取相应的目标网络设备的信息。关于切换并获取相关信息的流程,可以参见图3所示,包括:
切换准备阶段,包含图中步骤1-6:源网络设备向终端设备发送测量控制;终端设备进行针对多 个网络设备或小区的测量之后,向源网络设备发送测量报告;源网络设备根据测量报告(或者结合RRM信息)进行切换决策;源网络设备向目标网络设备发送切换请求以使得目标网络设备准备进行切换;目标网络设备根据切换请求进行切换许可控制;目标网络设备确定进行切换时,向源网络设备发送切换请求确认。
然后进行执行切换阶段,包含图中步骤7-11,具体的:目标网络设备生成RRC信息,将RRC连接重配置信息发送至源网络设备,由源网络设备通过RRC连接重配置信息发送至终端设备;终端设备接收到RRC连接重配置信息后,根据连接重配置信息执行切换处理;然后源网络设备发送向所述目标网络设备转发数据;终端设备与目标网络设备进行同步,然后接收目标网络设备进行UL分配,向目标网络设备发送RRC连接重配置完成信息。
最后进入切换完成阶段,包含图中12-18,具体的:目标网络设备向MME发送路径切换请求,以通知MME终端设备改变小区;MME向服务网关发送调整承载请求,由MME进行切换下行路径处理;服务网关完成处理后,向MME发送承载调整完成处理,并由MME向目标网络设备发送路径切换请求的确认消息;目标网络设备向源网络设备通知终端设备上下文释放由源网络设备释放资源。
其中,所述第一通信单元72,执行以下至少之一:
向所述目标网络设备发送数据状态报告;向所述目标网络设备发送源网络设备侧的数据包的序列号SN;向所述目标网络设备发送数据无线承载DRB配置。
具体来说,源网络设备向目标网络设备转发的信息,可以包含SN状态传输信息;通过SN状态信息包含有上行分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)SN接收状态,以及下行PDCP SN传输状态等等。进一步地,上行PDCP SN接收状态至少包含PDCP SN的第一个丢失的上行SDU,还可以包括有上行SDU的乱序接收状态的比特图;下行PDCP SN传输状态可以包含有下一个PDCP SN,下一个PDCP SN为目标网络设备即将分配的新的SDU。此外,其他信息这里不再进行穷举。
进一步需要说明的是,本实施例的一种场景中,包含有终端设备在切换时,保持与源网络设备连接状态的情况,此时目标网络设备可以为辅助节点SN,所述源网络设备为主节点MN。此处需注意,长期演进(LTE)系统中,SN称为SCG,在新无线(NR)则为SN,指的是一样的概念,就是DC场景下的第二服务网络设备。具体来说,终端设备的连接状态可以为:终端设备与源网络设备保持连接、与目标网络设备连接失败;终端设备与源网络设备断开连接、与目标网络设备连接成功;终端设备与辅助小区组(SCG)连接失败、SCG改变连接失败。当然,还可以有,在配置了多个SCG场景中,终端设备与一个SCG连接失败;配置了多个目标小区的场景中,终端设备与一个目标小区连接失败。还可能会存在其他的适用场景,只是本实施例中不再进行穷举。
另外,上述场景中,当向第一目标网络设备发起连接的同时,保持源网络设备的连接的时候,本实施例中终端设备还可以保留与源网络设备之间的连接;其中,所述终端设备保留与源网络设备的第一协议栈以及第一相关密钥、并且维护与第一目标网络设备之间的第二协议栈以及第二相关密钥;其中,所述第一相关密钥与第二相关密钥不同。第二相关密钥可以由第一相关密钥生成。
其中,第一协议栈与第二协议栈可以相同也可以不同,或者至少部分不同,比如,当针对5G系统的时候,可以为终端设备与源网络设备、以及终端设备与第一目标网络设备之间维护不同的服务数据应用协议(SDAP,Service Data Adaptation Protocol)、不同的分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)、不同的无线链路层控制协议(RLC,Radio Link Control)、不同的媒体访问控制(MAC)实体、不同的低层(Low layer)实体;当针对4G系统的时候,可以为终端设备与源网络设备、以及终端设备与第一目标网络设备之间维护不同的分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)、不同的无线链路层控制协议(RLC,Radio Link Control)、不同的媒体访问控制(MAC)实体、不同的低层(Low layer)实体。另外,本实施例提供的方案中,为了保证使用不同密钥,第一协议栈以及第二协议栈的PDCP一定是不同的。SDAP、RLC、MAC以及物理层中至少之一,则可以相同也可以不同。或者,所述第一协议栈以及第二协议栈可以共用SDAP、RLC、MAC以及物理层中至少之一,或者可以分别拥有SDAP、RLC、MAC以及物理层。
本实施例的另一种场景中,可能源网络设备会为终端设备配置多个目标网络设备,此时,所述当确定终端设备成功切换至目标网络设备时,向所述目标网络设备转发数据之前,所述方法还包括:向终端设备发送切换命令;其中,所述切换命令用于向终端设备指示至少一个目标网络设备。也就是说,源网络设备为终端设备配置了多个目标网络设备的时候,相应的,所述终端设备会从中选取一个作为当前发起连接的目标网络设备,此时,可以与源网络设备保持连接或断开连接。
所述切换命令中包含有至少一个目标网络设备的重配消息。源网络设备可以选择一次性把多个目标网络设备的重配消息发给终端设备、或者一次只发一个目标网络设备的重配消息但是通过多次发送,比如切换至一个目标网络设备失败后源网络设备再发送另一个新的目标网络设备的重配消息,不再进行赘述。
可见,通过采用上述方案,能够在终端设备与目标网络设备连接成功之后,由源网络设备向目标网络设备进行数据传输;如此,使得本方案提出一种新的由源网络设备发送数据的场景,从而使得本方案适应于更多的切换场景。
实施例六、
本发明实施例提供了一种源网络设备,包括:
第二通信单元,向至少一个目标网络设备转发数据。
本实施例不再限定需要终端设备与目标网络设备建立连接成功的时候再发送数据,而是直接向多个目标网络设备发送数据。
本实施例可以适用的场景为终端设备获取至少一个目标网络设备,然后从至少一个目标网络设备中选取一个目标网络设备,向选取的目标网络设备发起切换连接,此时,终端设备可以保持与源网络设备的连接,也可以断开与源网络设备的连接。
所述第二通信单元,向所述目标网络设备转发上行数据和/或下行数据。
转发数据的处理可以参见以下处理流程,源网络设备可以从至少一个目标网络设备获取相应的目标网络设备的信息。关于切换并获取相关信息的流程,可以参见图3所示,包括:
切换准备阶段,包含图中步骤1-6:源网络设备向终端设备发送测量控制;终端设备进行针对多个网络设备或小区的测量之后,向源网络设备发送测量报告;源网络设备根据测量报告(或者结合RRM信息)进行切换决策;源网络设备向目标网络设备发送切换请求以使得目标网络设备准备进行切换;目标网络设备根据切换请求进行切换许可控制;目标网络设备确定进行切换时,向源网络设备发送切换请求确认。
然后进行执行切换阶段,包含图中步骤7-11,具体的:目标网络设备生成RRC信息,将RRC连接重配置信息发送至源网络设备,由源网络设备通过RRC连接重配置信息发送至终端设备;终端设备接收到RRC连接重配置信息后,根据连接重配置信息执行切换处理;然后源网络设备发送向所述目标网络设备转发数据;终端设备与目标网络设备进行同步,然后接收目标网络设备进行UL分配,向目标网络设备发送RRC连接重配置完成信息。
最后进入切换完成阶段,包含图中12-18,具体的:目标网络设备向MME发送路径切换请求,以通知MME终端设备改变小区;MME向服务网关发送调整承载请求,由MME进行切换下行路径处理;服务网关完成处理后,向MME发送承载调整完成处理,并由MME向目标网络设备发送路径切换请求的确认消息;目标网络设备向源网络设备通知终端设备上下文释放由源网络设备释放资源。
其中,所述第二通信单元,还执行以下至少之一:
向所述目标网络设备发送数据状态报告;向所述目标网络设备发送源网络设备侧的数据包的序列号SN;向所述目标网络设备发送数据无线承载DRB配置。
具体来说,源网络设备向目标网络设备转发的信息,可以包含SN状态传输信息;通过SN状态信息包含有上行分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)SN接收状态,以及下行PDCP SN传输状态等等。进一步地,上行PDCP SN接收状态至少包含PDCP SN的第一个丢失的上行SDU,还可以包括有上行SDU的乱序接收状态的比特图;下行PDCP SN传输状态可以包含有下一个PDCP SN,下一个PDCP SN为目标网络设备即将分配的新的SDU。此外,其他信息这里不再进行穷举。
进一步需要说明的是,目标网络设备可以为辅助节点SN,所述源网络设备为主节点MN。此处需注意,长期演进(LTE)系统中,SN称为SCG,在新无线(NR)则为SN,指的是一样的概念,就是DC场景下的第二服务网络设备。具体来说,终端设备的连接状态可以为:终端设备与源网络设备保持连接、与目标网络设备连接失败;终端设备与源网络设备断开连接、与目标网络设备连接成功;终端设备与辅助小区组(SCG)连接失败、SCG改变连接失败。当然,还可以有,在配置了多个SCG场景中,终端设备与一个SCG连接失败;配置了多个目标小区的场景中,终端设备与一个目标小区连接失败。还可能会存在其他的适用场景,只是本实施例中不再进行穷举。
本实施例的场景中,可能源网络设备会为终端设备配置多个目标网络设备,此时,所述向至少一个目标网络设备转发数据之前,所述第二通信单元,向终端设备发送切换命令;其中,所述切换 命令用于向终端设备指示所述至少一个目标网络设备。
也就是说,源网络设备为终端设备配置了多个目标网络设备的时候,相应的,所述终端设备会从中选取一个作为当前发起连接的目标网络设备,此时,可以与源网络设备保持连接或断开连接。
所述切换命令中包含有至少一个目标网络设备的重配消息。源网络设备可以选择一次性把多个目标网络设备的重配消息发给终端设备、或者一次只发一个目标网络设备的重配消息但是通过多次发送,比如切换至一个目标网络设备失败后源网络设备再发送另一个新的目标网络设备的重配消息,不再进行赘述。
可见,通过采用上述方案,能够源网络设备直接向终端设备的至少一个目标网络设备进行数据传输;如此,使得本方案提出一种新的由源网络设备发送数据的场景,从而使得本方案适应于更多的切换场景,并且,由于源网络设备能够直接向目标网络设备发送数据,使得本方案能够在切换完成后减少了获取终端设备的相关数据的流程,从而进一步提升了切换效率。
实施例七、
本发明实施例提供了一种目标网络设备,如图8所示,包括:
第三处理单元81,当确定终端设备成功切换至目标网络设备时,通过第三通信单元接收源网络设备转发的数据;
第三通信单元82,接收源网络设备发来的数据。
本实施例可以适用的场景为以下几种:一种是终端设备获取至少一个目标网络设备,然后从至少一个目标网络设备中选取一个目标网络设备,向选取的目标网络设备发起切换连接,此时,终端设备可以保持与源网络设备的连接,也可以断开与源网络设备的连接;再一种是,源网络设备确定终端设备能够接入的至少一个网络设备,然后为终端设备从至少一个网络设备中选取目标网络设备,并发送选取的目标网络设备至终端设备,使得终端设备能够向目标网络设备发起连接,此时,源网络设备也可以保持与终端设备的连接,当然也可以断开与终端设备的连接。
在向目标网络设备转发数据之前,或者,在确定终端设备成功切换至目标网络设备时,第三通信单元82,向源网络设备发送所述目标网络设备的标识信息。
其中,接收目标网络设备的标识信息的方式,可以为,当源网络设备与终端设备保持连接的时候,可以接收终端设备发来的切换成功的目标网络设备的标识信息;或者,接收所述目标网络设备发来的标识信息;
当源网络设备与终端设备断开连接的时候,可以为接收目标网络设备发来的标识信息。其中,目标网络设备可以通过网络信令或者指示信息携带所述标识信息。
所述接收源网络设备转发的数据,包括:
接收所述源网络设备转发的上行数据和/或下行数据。
转发数据的处理可以参见以下处理流程,源网络设备可以从至少一个目标网络设备获取相应的目标网络设备的信息。关于切换并获取相关信息的流程,可以参见图3所示,包括:
切换准备阶段,包含图中步骤1-6:源网络设备向终端设备发送测量控制;终端设备进行针对多个网络设备或小区的测量之后,向源网络设备发送测量报告;源网络设备根据测量报告(或者结合RRM信息)进行切换决策;源网络设备向目标网络设备发送切换请求以使得目标网络设备准备进行切换;目标网络设备根据切换请求进行切换许可控制;目标网络设备确定进行切换时,向源网络设备发送切换请求确认。
然后进行执行切换阶段,包含图中步骤7-11,具体的:目标网络设备生成RRC信息,将RRC连接重配置信息发送至源网络设备,由源网络设备通过RRC连接重配置信息发送至终端设备;终端设备接收到RRC连接重配置信息后,根据连接重配置信息执行切换处理;然后源网络设备发送向所述目标网络设备转发数据;终端设备与目标网络设备进行同步,然后接收目标网络设备进行UL分配,向目标网络设备发送RRC连接重配置完成信息。
最后进入切换完成阶段,包含图中12-18,具体的:目标网络设备向MME发送路径切换请求,以通知MME终端设备改变小区;MME向服务网关发送调整承载请求,由MME进行切换下行路径处理;服务网关完成处理后,向MME发送承载调整完成处理,并由MME向目标网络设备发送路径切换请求的确认消息;目标网络设备向源网络设备通知终端设备上下文释放由源网络设备释放资源。
其中,所述第三通信单元82,还执行以下至少之一:
接收所述源网络设备转发的数据状态报告;
接收所述源网络设备转发的源网络设备侧的数据包的序列号SN;
接收所述源网络设备转发的数据无线承载DRB配置。
具体来说,源网络设备向目标网络设备转发的信息,可以包含SN状态传输信息;通过SN状态信息包含有上行分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)SN接收状态,以及下行PDCP SN传输状态等等。进一步地,上行PDCP SN接收状态至少包含PDCP SN的第一个丢失的上行SDU,还可以包括有上行SDU的乱序接收状态的比特图;下行PDCP SN传输状态可以包含有下一个PDCP SN,下一个PDCP SN为目标网络设备即将分配的新的SDU。此外,其他信息这里不再进行穷举。
进一步需要说明的是,本实施例的一种场景中,包含有终端设备在切换时,保持与源网络设备连接状态的情况,此时目标网络设备可以为辅助节点SN,所述源网络设备为主节点MN。此处需注意,长期演进(LTE)系统中,SN称为SCG,在新无线(NR)则为SN,指的是一样的概念,就是DC场景下的第二服务网络设备。具体来说,终端设备的连接状态可以为:终端设备与源网络设备保持连接、与目标网络设备连接失败;终端设备与源网络设备断开连接、与目标网络设备连接成功;终端设备与辅助小区组(SCG)连接失败、SCG改变连接失败。当然,还可以有,在配置了多个SCG场景中,终端设备与一个SCG连接失败;配置了多个目标小区的场景中,终端设备与一个目标小区连接失败。还可能会存在其他的适用场景,只是本实施例中不再进行穷举。
另外,上述场景中,当向第一目标网络设备发起连接的同时,保持源网络设备的连接的时候,本实施例中终端设备还可以保留与源网络设备之间的连接;其中,所述终端设备保留与源网络设备的第一协议栈以及第一相关密钥、并且维护与第一目标网络设备之间的第二协议栈以及第二相关密钥;其中,所述第一相关密钥与第二相关密钥不同。第二相关密钥可以由第一相关密钥生成。
其中,第一协议栈与第二协议栈可以相同也可以不同,或者至少部分不同,比如,当针对5G系统的时候,可以为终端设备与源网络设备、以及终端设备与第一目标网络设备之间维护不同的服务数据应用协议(SDAP,Service Data Adaptation Protocol)、不同的分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)、不同的无线链路层控制协议(RLC,Radio Link Control)、不同的媒体访问控制(MAC)实体、不同的低层(Low layer)实体;当针对4G系统的时候,可以为终端设备与源网络设备、以及终端设备与第一目标网络设备之间维护不同的分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)、不同的无线链路层控制协议(RLC,Radio Link Control)、不同的媒体访问控制(MAC)实体、不同的低层(Low layer)实体。另外,本实施例提供的方案中,为了保证使用不同密钥,第一协议栈以及第二协议栈的PDCP一定是不同的。SDAP、RLC、MAC以及物理层中至少之一,则可以相同也可以不同。或者,所述第一协议栈以及第二协议栈可以共用SDAP、RLC、MAC以及物理层中至少之一,或者可以分别拥有SDAP、RLC、MAC以及物理层。
本实施例的另一种场景中,可能源网络设备会为终端设备配置多个目标网络设备,此时,所述当确定终端设备成功切换至目标网络设备时,向所述目标网络设备转发数据之前,所述第三通信单元82,向终端设备发送切换命令;其中,所述切换命令用于向终端设备指示至少一个目标网络设备。也就是说,源网络设备为终端设备配置了多个目标网络设备的时候,相应的,所述终端设备会从中选取一个作为当前发起连接的目标网络设备,此时,可以与源网络设备保持连接或断开连接。
所述切换命令中包含有至少一个目标网络设备的重配消息。源网络设备可以选择一次性把多个目标网络设备的重配消息发给终端设备、或者一次只发一个目标网络设备的重配消息但是通过多次发送,比如切换至一个目标网络设备失败后源网络设备再发送另一个新的目标网络设备的重配消息,不再进行赘述。
可见,通过采用上述方案,能够在终端设备与目标网络设备连接成功之后,由源网络设备向目标网络设备进行数据传输;如此,使得本方案提出一种新的由源网络设备发送数据的场景,从而使得本方案适应于更多的切换场景。
实施例八、
本发明实施例提供了一种目标网络设备,如图9所示,包括:
第四通信单元91,接收源网络设备转发的数据;其中,所述目标网络设备为网络侧为终端设备配置的至少一个目标网络设备中之一。
与实施例三不同在于,本实施例不再限定需要终端设备与目标网络设备建立连接成功的时候再发送数据,而是直接向多个目标网络设备发送数据。
本实施例可以适用的场景为终端设备获取至少一个目标网络设备,然后从至少一个目标网络设备中选取一个目标网络设备,向选取的目标网络设备发起切换连接,此时,终端设备可以保持与源网络设备的连接,也可以断开与源网络设备的连接。
所述第四通信单元91,接收源网络设备转发的上行数据和/或下行数据。
转发数据的处理可以参见以下处理流程,源网络设备可以从至少一个目标网络设备获取相应的目标网络设备的信息。关于切换并获取相关信息的流程,可以参见图3所示,包括:
切换准备阶段,包含图中步骤1-6:源网络设备向终端设备发送测量控制;终端设备进行针对多个网络设备或小区的测量之后,向源网络设备发送测量报告;源网络设备根据测量报告(或者结合RRM信息)进行切换决策;源网络设备向目标网络设备发送切换请求以使得目标网络设备准备进行切换;目标网络设备根据切换请求进行切换许可控制;目标网络设备确定进行切换时,向源网络设备发送切换请求确认。
然后进行执行切换阶段,包含图中步骤7-11,具体的:目标网络设备生成RRC信息,将RRC连接重配置信息发送至源网络设备,由源网络设备通过RRC连接重配置信息发送至终端设备;终端设备接收到RRC连接重配置信息后,根据连接重配置信息执行切换处理;然后源网络设备发送向所述目标网络设备转发数据;终端设备与目标网络设备进行同步,然后接收目标网络设备进行UL分配,向目标网络设备发送RRC连接重配置完成信息。
最后进入切换完成阶段,包含图中12-18,具体的:目标网络设备向MME发送路径切换请求,以通知MME终端设备改变小区;MME向服务网关发送调整承载请求,由MME进行切换下行路径处理;服务网关完成处理后,向MME发送承载调整完成处理,并由MME向目标网络设备发送路径切换请求的确认消息;目标网络设备向源网络设备通知终端设备上下文释放由源网络设备释放资源。
其中,所述第四通信单元91,还执行以下至少之一:
接收源网络设备转发的数据状态报告;
接收源网络设备转发的源网络设备侧的数据包的序列号SN;
接收源网络设备转发的数据无线承载DRB配置。
具体来说,源网络设备向目标网络设备转发的信息,可以包含SN状态传输信息;通过SN状态信息包含有上行分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)SN接收状态,以及下行PDCP SN传输状态等等。进一步地,上行PDCP SN接收状态至少包含PDCP SN的第一个丢失的上行SDU,还可以包括有上行SDU的乱序接收状态的比特图;下行PDCP SN传输状态可以包含有下一个PDCP SN,下一个PDCP SN为目标网络设备即将分配的新的SDU。此外,其他信息这里不再进行穷举。
进一步需要说明的是,目标网络设备可以为辅助节点SN,所述源网络设备为主节点MN。此处需注意,长期演进(LTE)系统中,SN称为SCG,在新无线(NR)则为SN,指的是一样的概念,就是DC场景下的第二服务网络设备。具体来说,终端设备的连接状态可以为:终端设备与源网络设备保持连接、与目标网络设备连接失败;终端设备与源网络设备断开连接、与目标网络设备连接成功;终端设备与辅助小区组(SCG)连接失败、SCG改变连接失败。当然,还可以有,在配置了多个SCG场景中,终端设备与一个SCG连接失败;配置了多个目标小区的场景中,终端设备与一个目标小区连接失败。还可能会存在其他的适用场景,只是本实施例中不再进行穷举。
本实施例的场景中,所述目标网络设备还包括:第四处理单元92,
当所述目标网络设备与终端设备连接成功时,保留所述源网络设备发来的数据;
当所述目标网络设备与终端设备连接失败时,删除所述源网络设备发来的数据。
也就是说,在目标网络设备与终端设备进行连接的时候,就开始接收源网络设备发来的数据;而当确定目标网络设备与终端设备建立连接成功或失败的时候,再确定是否保留源网络设备发来的数据。如此,可以在保证切换效率的同时,不会增加网络设备的存储负荷。
可见,通过采用上述方案,能够源网络设备直接向终端设备的至少一个目标网络设备进行数据传输;如此,使得本方案提出一种新的由源网络设备发送数据的场景,从而使得本方案适应于更多的切换场景,并且,由于源网络设备能够直接向目标网络设备发送数据,使得本方案能够在切换完成后减少了获取终端设备的相关数据的流程,从而进一步提升了切换效率。
图10是本申请实施例提供的一种通信设备1000示意性结构图,通信设备可以为本实施例前述的终端设备或者网络设备。图10所示的通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图10所示,通信设备1000还可以包括收发器1030,处理器1010可以控制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1000具体可为本申请实施例的网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1000具体可为本申请实施例的终端设备、或者网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统1200的示意性框图。如图12所示,该通信系统1200包括终端设备1210和网络设备1220。
其中,该终端设备1210可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1220可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意, 本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (45)

  1. 一种数据传输方法,应用于源网络设备,包括:
    当确定终端设备成功切换至目标网络设备时,向所述目标网络设备转发数据。
  2. 根据权利要求1所述的方法,其中,所述确定终端设备成功切换至目标网络设备时,所述方法还包括:
    接收所述目标网络设备的标识信息。
  3. 根据权利要求2所述的方法,其中,所述接收所述目标网络设备的标识信息,包括:
    接收终端设备发来的切换成功的目标网络设备的标识信息;
    或者,
    接收所述目标网络设备发来的标识信息。
  4. 根据权利要求1-3任一项所述的方法,其中,所述向所述目标网络设备转发数据,包括:
    向所述目标网络设备转发上行数据和/或下行数据。
  5. 根据权利要求4所述的方法,其中,所述向所述目标网络设备转发数据,还包括以下至少之一:
    向所述目标网络设备发送数据状态报告;
    向所述目标网络设备发送源网络设备侧的数据包的序列号SN;
    向所述目标网络设备发送数据无线承载DRB配置。
  6. 根据权利要求1-5任一项所述的方法,其中,所述当确定终端设备成功切换至目标网络设备时,向所述目标网络设备转发数据之前,所述方法还包括:
    向终端设备发送切换命令;其中,所述切换命令用于向终端设备指示至少一个目标网络设备。
  7. 根据权利要求6所述的方法,其中,所述切换命令中包含有至少一个目标网络设备的重配消息。
  8. 一种数据传输方法,应用于源网络设备,包括:
    向至少一个目标网络设备转发数据。
  9. 根据权利要求8所述的方法,其中,所述向至少一个目标网络设备转发数据之前,所述方法还包括:
    向终端设备发送切换命令;其中,所述切换命令用于向终端设备指示所述至少一个目标网络设备。
  10. 根据权利要求9所述的方法,其中,所述切换命令中包含有针对至少一个目标网络设备的重配消息。
  11. 根据权利要求8-10任一项所述的方法,其中,所述向至少一个目标网络设备转发数据,包括:
    向所述至少一个目标网络设备转发上行数据和/或下行数据。
  12. 根据权利要求11所述的方法,其中,所述向至少一个目标网络设备转发数据,还包括以下至少之一:
    向所述至少一个目标网络设备发送数据状态报告;
    向所述至少一个目标网络设备发送源网络设备侧的数据包的序列号SN;
    向所述至少一个目标网络设备发送数据无线承载DRB配置。
  13. 一种数据传输方法,应用于目标网络设备,包括:
    当确定终端设备成功切换至目标网络设备时,接收源网络设备转发的数据。
  14. 根据权利要求13所述的方法,其中,所述确定终端设备成功切换至目标网络设备时,所述方法还包括:
    向源网络设备发送所述目标网络设备的标识信息。
  15. 根据权利要求13或14所述的方法,其中,所述接收源网络设备转发的数据,包括:
    接收所述源网络设备转发的上行数据和/或下行数据。
  16. 根据权利要求15所述的方法,其中,所述接收源网络设备转发的数据,还包括以下至少之一:
    接收所述源网络设备转发的数据状态报告;
    接收所述源网络设备转发的源网络设备侧的数据包的序列号SN;
    接收所述源网络设备转发的数据无线承载DRB配置。
  17. 一种数据传输方法,应用于目标网络设备,包括:
    接收源网络设备转发的数据;其中,所述目标网络设备为网络侧为终端设备配置的至少一个目标网络设备中之一。
  18. 根据权利要求17所述的方法,其中,所述接收源网络设备转发的数据之后,所述方法还包括:
    当所述目标网络设备与终端设备连接成功时,保留所述源网络设备发来的数据;
    当所述目标网络设备与终端设备连接失败时,删除所述源网络设备发来的数据。
  19. 根据权利要求17或18所述的方法,其中,所述接收源网络设备转发的数据,包括:
    接收源网络设备转发的上行数据和/或下行数据。
  20. 根据权利要求19所述的方法,其中,所述接收源网络设备转发的数据,还包括以下至少之一:
    接收源网络设备转发的数据状态报告;
    接收源网络设备转发的源网络设备侧的数据包的序列号SN;
    接收源网络设备转发的数据无线承载DRB配置。
  21. 一种源网络设备,包括:
    第一处理单元,当确定终端设备成功切换至目标网络设备时,通过第一通信单元向所述目标网络设备转发数据;
    第一通信单元,用于向目标网络设备发送数据。
  22. 根据权利要求21所述的源网络设备,其中,所述第一通信单元,接收所述目标网络设备的标识信息。
  23. 根据权利要求22所述的源网络设备,其中,所述第一通信单元,接收终端设备发来的切换成功的目标网络设备的标识信息;
    或者,
    接收所述目标网络设备发来的标识信息。
  24. 根据权利要求21-23任一项所述的源网络设备,其中,所述第一通信单元,向所述目标网络设备转发上行数据和/或下行数据。
  25. 根据权利要求24所述的源网络设备,其中,所述第一通信单元,还执行以下至少之一:
    向所述目标网络设备发送数据状态报告;
    向所述目标网络设备发送源网络设备侧的数据包的序列号SN;
    向所述目标网络设备发送数据无线承载DRB配置。
  26. 根据权利要求21-25任一项所述的源网络设备,其中,所述第一通信单元,向终端设备发送切换命令;其中,所述切换命令用于向终端设备指示至少一个目标网络设备。
  27. 根据权利要求26所述的源网络设备,其中,所述切换命令中包含有至少一个目标网络设备的重配消息。
  28. 一种源网络设备,包括:
    第二通信单元,向至少一个目标网络设备转发数据。
  29. 根据权利要求28所述的源网络设备,其中,所述第二通信单元,向终端设备发送切换命令;其中,所述切换命令用于向终端设备指示所述至少一个目标网络设备。
  30. 根据权利要求29所述的源网络设备,其中,所述切换命令中包含有针对至少一个目标网络设备的重配消息。
  31. 根据权利要求28-30任一项所述的源网络设备,其中,所述第二通信单元,向所述至少一个目标网络设备转发上行数据和/或下行数据。
  32. 根据权利要求31所述的源网络设备,其中,所述第二通信单元,还执行以下至少之一:
    向所述至少一个目标网络设备发送数据状态报告;
    向所述至少一个目标网络设备发送源网络设备侧的数据包的序列号SN;
    向所述至少一个目标网络设备发送数据无线承载DRB配置。
  33. 一种目标网络设备,包括:
    第三处理单元,当确定终端设备成功切换至目标网络设备时,通过第三通信单元接收源网络设备转发的数据;
    第三通信单元,接收源网络设备发来的数据。
  34. 根据权利要求33所述的目标网络设备,其中,所述第三通信单元,向源网络设备发送所述目标网络设备的标识信息。
  35. 根据权利要求33或34所述的目标网络设备,其中,所述第三通信单元,接收所述源网络设备转发的上行数据和/或下行数据。
  36. 根据权利要求35所述的目标网络设备,其中,所述第三通信单元,还执行以下至少之一:
    接收所述源网络设备转发的数据状态报告;
    接收所述源网络设备转发的源网络设备侧的数据包的序列号SN;
    接收所述源网络设备转发的数据无线承载DRB配置。
  37. 一种目标网络设备,包括:
    第四通信单元,接收源网络设备转发的数据;其中,所述目标网络设备为网络侧为终端设备配置的至少一个目标网络设备中之一。
  38. 根据权利要求37所述的目标网络设备,其中,所述目标网络设备还包括:
    第四处理单元,
    当所述目标网络设备与终端设备连接成功时,保留所述源网络设备发来的数据;
    当所述目标网络设备与终端设备连接失败时,删除所述源网络设备发来的数据。
  39. 根据权利要求37或38所述的目标网络设备,其中,所述第四通信单元,接收源网络设备转发的上行数据和/或下行数据。
  40. 根据权利要求39所述的目标网络设备,其中,所述第四通信单元,还执行以下至少之一:
    接收源网络设备转发的数据状态报告;
    接收源网络设备转发的源网络设备侧的数据包的序列号SN;
    接收源网络设备转发的数据无线承载DRB配置。
  41. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-20任一项所述方法的步骤。
  42. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-20中任一项所述的方法。
  43. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-20任一项所述方法的步骤。
  44. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-20中任一项所述的方法。
  45. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-20中任一项所述的方法。
PCT/CN2018/108071 2018-09-27 2018-09-27 一种数据传输方法、终端设备及网络设备 WO2020061943A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP18934638.0A EP3820196B1 (en) 2018-09-27 2018-09-27 Data transmission method and network devices
PCT/CN2018/108071 WO2020061943A1 (zh) 2018-09-27 2018-09-27 一种数据传输方法、终端设备及网络设备
JP2021513400A JP7431219B2 (ja) 2018-09-27 2018-09-27 データ伝送方法、端末装置及びネットワーク装置
CN201880095879.9A CN112470518A (zh) 2018-09-27 2018-09-27 一种数据传输方法、终端设备及网络设备
CN202110408899.0A CN113115390A (zh) 2018-09-27 2018-09-27 一种数据传输方法、终端设备及网络设备
AU2018442732A AU2018442732A1 (en) 2018-09-27 2018-09-27 Data transmission method, terminal device and network device
KR1020217006184A KR102592535B1 (ko) 2018-09-27 2018-09-27 데이터 전송 방법, 네트워크 장치 및 컴퓨터 판독 가능 저장 매체
TW108135352A TW202027471A (zh) 2018-09-27 2019-09-27 一種資料傳輸方法及網路設備
US17/183,244 US11516726B2 (en) 2018-09-27 2021-02-23 Data transmission method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108071 WO2020061943A1 (zh) 2018-09-27 2018-09-27 一种数据传输方法、终端设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/183,244 Continuation US11516726B2 (en) 2018-09-27 2021-02-23 Data transmission method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2020061943A1 true WO2020061943A1 (zh) 2020-04-02

Family

ID=69950912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108071 WO2020061943A1 (zh) 2018-09-27 2018-09-27 一种数据传输方法、终端设备及网络设备

Country Status (8)

Country Link
US (1) US11516726B2 (zh)
EP (1) EP3820196B1 (zh)
JP (1) JP7431219B2 (zh)
KR (1) KR102592535B1 (zh)
CN (2) CN113115390A (zh)
AU (1) AU2018442732A1 (zh)
TW (1) TW202027471A (zh)
WO (1) WO2020061943A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061931A1 (zh) * 2018-09-27 2020-04-02 Oppo广东移动通信有限公司 一种切换上报的方法、终端设备及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100091734A1 (en) * 2007-11-29 2010-04-15 Electronics And Telecommunications Research Institute Packet forwarding method in the case of the handover between base stations
CN102300279A (zh) * 2011-08-03 2011-12-28 北京交通大学 高速移动环境下基于载波聚合的切换方法
CN104469873A (zh) * 2013-09-25 2015-03-25 中兴通讯股份有限公司 小区切换方法及装置
CN106604335A (zh) * 2016-12-21 2017-04-26 西南交通大学 一种小区切换的方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0616682D0 (en) * 2006-08-22 2006-10-04 Nec Corp Mobile telecommunications
CN101374325B (zh) * 2007-08-23 2012-04-04 电信科学技术研究院 一种移动终端实现小区切换的方法和系统
US8320827B2 (en) * 2009-06-17 2012-11-27 Interdigital Patent Holdings, Inc. Method and apparatus for performing handover with a relay node
GB2472789A (en) * 2009-08-17 2011-02-23 Nec Corp In a lte-advanced network a target enb sends a source enb information to indicate to the ue which of multiple component carriers is to be used for initail acc
KR20110068810A (ko) * 2009-12-15 2011-06-22 한국전자통신연구원 무선통신 시스템에서의 핸드오버 수행 방법
KR101315853B1 (ko) * 2009-12-21 2013-10-08 한국전자통신연구원 소스 기지국 시스템에서 핸드오버 처리 방법 및 소스 기지국 시스템
KR101818770B1 (ko) * 2011-07-26 2018-01-16 아주대학교산학협력단 통신 시스템에서 이동 단말의 고속 핸드오버 방법 및 이를 위한 시스템
US20140038605A1 (en) * 2012-07-31 2014-02-06 Firouz Behnamfar Devices and methods for cellular communication
GB2512377A (en) * 2013-03-28 2014-10-01 Nec Corp Communication System
JP6198940B2 (ja) * 2013-06-03 2017-09-20 華為技術有限公司Huawei Technologies Co.,Ltd. デフォルト・ベアラなしのハンドオーバのための方法および装置
KR102207843B1 (ko) * 2013-08-01 2021-01-27 한국전자통신연구원 기지국간 협력을 통한 핸드오버 방법 및 그 장치
US20150109927A1 (en) * 2013-10-18 2015-04-23 Qualcomm Incorporated Base station to access point interface for data bearer routing
WO2016053426A1 (en) * 2014-10-01 2016-04-07 Intel IP Corporation Mobile communication in macro-cell assisted small cell networks
US10772021B2 (en) * 2014-12-05 2020-09-08 Qualcomm Incorporated Low latency and/or enhanced component carrier discovery for services and handover
CN105228200B (zh) * 2015-10-08 2019-04-16 西南交通大学 一种网络辅助ue控制的快速小区切换方法及装置
KR102612279B1 (ko) * 2015-11-03 2023-12-11 한국전자통신연구원 이동 통신 시스템에서 동기화된 핸드오버 방법 및 그 장치
KR102419981B1 (ko) * 2016-02-19 2022-07-12 삼성전자 주식회사 무선 통신 네트워크에서 핸드오버시 데이터 전송 중단 시간을 최소화하는 방법 및 장치
KR101954515B1 (ko) * 2016-04-01 2019-03-07 주식회사 케이티 핸드오버 제어 방법 및 그 장치
US10945168B2 (en) * 2016-04-20 2021-03-09 Electronics And Telecommunications Research Institute Handover method
KR102294454B1 (ko) * 2016-09-09 2021-08-26 한국전자통신연구원 핸드오버 방법
WO2017183897A1 (ko) * 2016-04-20 2017-10-26 한국전자통신연구원 핸드오버 방법
KR102289949B1 (ko) * 2016-04-20 2021-08-13 한국전자통신연구원 핸드오버 방법
CN106941701B (zh) * 2017-04-18 2020-11-10 宇龙计算机通信科技(深圳)有限公司 终端化小区的小区切换方法及相关装置
CN110999390B (zh) * 2017-06-15 2022-11-01 Lg电子株式会社 在无线通信系统中执行切换过程的方法及其装置
AU2018403582A1 (en) * 2018-01-16 2020-08-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Handover method and apparatus, and computer storage medium
WO2020087368A1 (en) * 2018-10-31 2020-05-07 Mediatek Singapore Pte. Ltd. Apparatus and mechanism of reordering with dual protocol to reduce mobility interruption in wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100091734A1 (en) * 2007-11-29 2010-04-15 Electronics And Telecommunications Research Institute Packet forwarding method in the case of the handover between base stations
CN102300279A (zh) * 2011-08-03 2011-12-28 北京交通大学 高速移动环境下基于载波聚合的切换方法
CN104469873A (zh) * 2013-09-25 2015-03-25 中兴通讯股份有限公司 小区切换方法及装置
CN106604335A (zh) * 2016-12-21 2017-04-26 西南交通大学 一种小区切换的方法

Also Published As

Publication number Publication date
JP7431219B2 (ja) 2024-02-14
AU2018442732A1 (en) 2021-03-18
EP3820196A4 (en) 2021-07-14
KR20210048500A (ko) 2021-05-03
EP3820196A1 (en) 2021-05-12
TW202027471A (zh) 2020-07-16
CN113115390A (zh) 2021-07-13
CN112470518A (zh) 2021-03-09
KR102592535B1 (ko) 2023-10-23
US20210176695A1 (en) 2021-06-10
EP3820196B1 (en) 2022-07-06
JP2022501888A (ja) 2022-01-06
US11516726B2 (en) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2020164016A1 (zh) 小区切换的方法和设备
WO2020061931A1 (zh) 一种切换上报的方法、终端设备及网络设备
WO2020191683A1 (zh) 一种测量间隔配置方法及装置、终端、网络设备
WO2019242712A1 (zh) 一种能力交互方法及相关设备
US11805563B2 (en) Wireless communication method and base station
US11611925B2 (en) Switching processing method, terminal device and network device
WO2020073258A1 (zh) 一种同步指示方法、终端设备及网络设备
WO2020000174A1 (zh) 一种核心网选择方法及装置、终端设备、网络设备
WO2020113520A1 (zh) 用于建立连接的方法、网络设备和终端设备
WO2020010619A1 (zh) 数据传输方法、终端设备和网络设备
WO2020024301A1 (zh) 一种保证数传输可靠性的方法及装置、网络设备
WO2020061943A1 (zh) 一种数据传输方法、终端设备及网络设备
US20200344830A1 (en) Bearer configuration method and apparatus, and network device
WO2020061962A1 (zh) 一种切换定时方法、终端设备及网络设备
WO2020082327A1 (zh) 一种切换过程中的信令交互方法及装置、网络设备
WO2020155157A1 (zh) 切换过程中安全信息的处理方法及装置、网络设备、终端
WO2020029275A1 (zh) 一种无线通信方法、终端设备和网络设备
CN111989951B (zh) 一种数据转发方法及装置、网络设备
WO2020061947A1 (zh) 一种基于定时器的处理方法、终端设备及网络设备
WO2020042976A1 (zh) 一种ui显示方法、装置、终端设备及存储介质
WO2020223898A1 (zh) 一种信息传输方法及装置、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018934638

Country of ref document: EP

Effective date: 20210208

ENP Entry into the national phase

Ref document number: 2021513400

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018442732

Country of ref document: AU

Date of ref document: 20180927

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE