WO2020061753A1 - 无线通信的方法和终端设备 - Google Patents

无线通信的方法和终端设备 Download PDF

Info

Publication number
WO2020061753A1
WO2020061753A1 PCT/CN2018/107367 CN2018107367W WO2020061753A1 WO 2020061753 A1 WO2020061753 A1 WO 2020061753A1 CN 2018107367 W CN2018107367 W CN 2018107367W WO 2020061753 A1 WO2020061753 A1 WO 2020061753A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
terminal device
uplink
maximum
ratio
Prior art date
Application number
PCT/CN2018/107367
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020217009792A priority Critical patent/KR102685484B1/ko
Priority to BR112021005623-8A priority patent/BR112021005623A2/pt
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to MX2021003562A priority patent/MX2021003562A/es
Priority to CN201880098046.8A priority patent/CN112771932A/zh
Priority to CN202110604028.6A priority patent/CN113316241B/zh
Priority to SG11202103060QA priority patent/SG11202103060QA/en
Priority to AU2018443808A priority patent/AU2018443808B2/en
Priority to JP2021517049A priority patent/JP7330267B2/ja
Priority to PCT/CN2018/107367 priority patent/WO2020061753A1/zh
Priority to CA3114120A priority patent/CA3114120C/en
Priority to EP23154030.3A priority patent/EP4192126A1/en
Priority to EP18934740.4A priority patent/EP3846547B1/en
Publication of WO2020061753A1 publication Critical patent/WO2020061753A1/zh
Priority to US17/211,762 priority patent/US11147013B2/en
Priority to US17/487,897 priority patent/US11706708B2/en
Priority to US18/208,012 priority patent/US12041539B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to a method and a terminal device for wireless communication.
  • SAR Specific Absorption Rate
  • LTE and NR standards of terminal devices can work simultaneously, while the LTE standard
  • the working frequency band of the NR system is usually different, and the contribution to the SAR of the terminal device is asymmetric. In this case, how to prevent the SAR of the terminal device from exceeding the SAR standard is an urgent problem.
  • the embodiments of the present application provide a wireless communication method and a terminal device, which are beneficial to avoiding excessive SAR of the terminal device.
  • a wireless communication method including: if an uplink share of the second network is greater than a maximum uplink share of the second network, the terminal device reduces the first network and the The total transmission power of the second network and / or the uplink ratio of the second network, so that the specific absorption ratio SAR of the electromagnetic wave of the terminal device is less than or equal to a preset value.
  • the uplink proportion of the second network is scheduled by a network device in the second network, or is determined autonomously by the terminal device.
  • the method further includes:
  • the terminal device reports the maximum uplink share of the second network to a network device of the second network.
  • the correspondence relationship includes multiple first correspondence relationships, and each first correspondence relationship corresponds to a specific maximum transmission power of the first network and a maximum transmission power of the second network,
  • the method further includes:
  • the terminal device determines the plurality of first correspondence relationships.
  • the determining, by the terminal device, the multiple first correspondence relationships includes:
  • the first network transmits a signal at a specific maximum transmit power and the second network transmits a signal at a specific maximum transmit power, adjusting an uplink ratio of the second network to determine that the SAR reaches the preset value
  • the target uplink share of the second network as the maximum uplink share of the second network corresponding to the first uplink-downlink ratio, wherein the first uplink-downlink ratio is the current of the first network Up and down match.
  • the specific maximum transmission power of the first network is 23 dBmW dBm or 26 dBm
  • the specific maximum transmission power of the second network is 23 dBm or 26 dBm.
  • the reducing, by the terminal device, the total transmit power of the first network and the second network includes:
  • the terminal device reduces a power value or a power level of the total transmission power.
  • the reducing, by the terminal device, the total transmit power of the first network and the second network includes:
  • the terminal device When the terminal device reduces the total transmission power, it preferentially reduces the transmission power of the second network.
  • the reducing, by the terminal device, the total transmit power of the first network and the second network includes:
  • the terminal device disconnects from the second network, and only retains the connection with the second network.
  • the disconnecting the terminal device from the second network includes:
  • the terminal device disconnects from the second network.
  • the first threshold is 50%.
  • the first network is a long-term evolution LTE network
  • the second network is a new wireless NR network.
  • a terminal device for performing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the terminal device includes a unit for performing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a terminal device includes a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, and execute the method in the above-mentioned first aspect or its implementations.
  • a chip is provided for implementing the above-mentioned first aspect or a method in each implementation manner thereof.
  • the chip includes a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the method as in the above-mentioned first aspect or its implementations.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in the above-mentioned first aspect or its implementations.
  • a computer program product including computer program instructions that cause a computer to execute the method in the above-mentioned first aspect or its implementations.
  • a computer program that, when run on a computer, causes the computer to execute the method in the first aspect or its implementations.
  • a terminal device supporting multiple standards can reduce the total transmit power or the uplink share of the secondary network when the uplink share of the secondary network is greater than the maximum uplink share of the secondary network, so that the terminal device The SAR is lower than the preset value, which is helpful to avoid the SAR over-standard problem of the terminal equipment.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a wireless communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a communication device according to another embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a chip according to an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • the terminal device 110 is connected to the first network device 130 in the first communication system and the second network device 120 in the second communication system.
  • the first network device 130 is a long-term evolution (Long Term Evolution , LTE)
  • the second network device 120 is a network device under New Radio (NR).
  • LTE Long Term Evolution
  • NR New Radio
  • the first network device 130 and the second network device 120 may include multiple cells.
  • FIG. 1 is an example of a scenario according to an embodiment of the present invention, and the embodiment of the present invention is not limited to that shown in FIG. 1.
  • the communication system adapted in the embodiment of the present invention may include at least multiple network devices under the first communication system and / or multiple network devices under the second communication system.
  • the first communication system and the second communication system in the embodiment of the present invention are different, but the specific types of the first communication system and the second communication system are not limited.
  • the first communication system and the second communication system may be various communication systems, such as a Global System for Mobile (GSM) system, a Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Time Division Duplex (TDD) ), Universal Mobile Telecommunication System (UMTS), etc.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the network device in this embodiment of the present application may refer to any entity on the network side for sending or receiving signals.
  • it can be user equipment of machine type communication (MTC), base station (Base Transceiver Station (BTS) in GSM or CDMA), base station (NodeB) in WCDMA, evolutionary node (B) in LTE, eNB or eNodeB ), Base station equipment in 5G networks, etc.
  • the terminal device 110 may be any terminal device. Specifically, a terminal device may communicate with one or more core networks (Radio Access Network, RAN) through a radio access network (RAN), and may also be referred to as an access terminal, a user equipment (UE), and a user. Unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device. For example, it can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and a wireless communication function. Handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and terminal devices in 5G networks.
  • RAN Radio Access Network
  • RAN radio access network
  • UE user equipment
  • Unit user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent,
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • a dual connection (DC) scenario may include (LTE, NR, DC, EN-DC), (NR, LTE, DC, NE-DC), (5GC, LTE, NR, DC, 5GC-EN-DC), NR DC.
  • EN-DC uses Long Term Evolution (LTE) nodes as the master node (Master Node, MN), and NR nodes as slave nodes (Slave Node, SN) to connect Evolved Packet Core (EPC) core network.
  • LTE Long Term Evolution
  • MN Master Node
  • NR nodes slave nodes
  • EPC Evolved Packet Core
  • the NE-DC the NR serves as the MN
  • the evolved long term evolution (eLTE) serves as the SN, and connects to the fifth generation core network (5-Generation Core, 5GC).
  • 5GC-EN-DC eLTE acts as the MN and NR acts as the SN to connect to the 5GC.
  • NR DC NR is used as M
  • the terminal device may be connected to multiple different networks at the same time.
  • the terminal device in the EN-DC scenario, the terminal device is connected to the eLTE network and the NR network at the same time.
  • the terminal device in this scenario may be called an EN-DC terminal. Or NE-DC terminal.
  • FIG. 2 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • the method 200 may be performed by a terminal device that is connected to a first network and a second network at the same time. As shown in FIG. 2, The method 200 includes the following:
  • the terminal device reduces the total transmit power of the first network and the second network and / or the The uplink ratio of the two networks is such that the specific absorption ratio SAR of the electromagnetic wave of the terminal device is less than or equal to a preset value.
  • the first network is a primary network and the second network is a secondary network, that is, a connection between a terminal device and the first network is a primary connection, and a connection between the terminal device and the second network Supplementary connection.
  • the first network may be an LTE network
  • the second network may be an NR network
  • the terminal device may be referred to as an EN-DC terminal; or, the first network may be an NR network.
  • the second network may be an LTE network.
  • the terminal device may be referred to as an NE-DC terminal.
  • the first network is an LTE network and the second network is an NR network. It is not limited to this.
  • the preset value of the SAR may be a value prescribed by the standard, and the SAR may be preset on the terminal device, and is used to indicate a requirement of the electromagnetic radiation intensity of the terminal device.
  • the LTE network and the NR network correspond to different frequency bands and can transmit signals through different antennas. Therefore, the SAR brought by the LTE network and the NR network are different.
  • the SAR of the terminal device is the SAR of the first network and the second network. In sum, SAR is affected by transmit power and uplink ratio. Generally speaking, the larger the transmit power, the larger the SAR, the larger the uplink ratio, and the larger the SAR. Therefore, the terminal can be adjusted by adjusting the transmit power or uplink ratio.
  • the SAR of the device is the SAR of the first network and the second network. In sum, SAR is affected by transmit power and uplink ratio. Generally speaking, the larger the transmit power, the larger the SAR, the larger the uplink ratio, and the larger the SAR. Therefore, the terminal can be adjusted by adjusting the transmit power or uplink ratio. The SAR of the device.
  • the uplink ratio of the NR network may be considered as a proportion of time domain resources in a time unit that can be used for uplink transmission.
  • a time unit may be one or more
  • Each subframe may also be one or more time slots, or may be one or more micro time slots, etc., which is not limited in this embodiment of the present application. Assume that there are 10 time slots in a subframe. If 3 of the 10 time slots can be used for uplink transmission and 7 time slots can be used for downlink transmission, the uplink ratio can be 30%.
  • the uplink-downlink ratio of the NR network (that is, the ratio of resources used for uplink transmission and resources used for downlink transmission in a time unit) may also be used to determine whether power adjustment is required. In order to reduce the SAR of the terminal device, this embodiment of the present application does not limit this.
  • the uplink-downlink ratio of the LTE network can be understood as the ratio of the resources used for uplink transmission and the resources used for downlink transmission in a time unit.
  • the uplink-downlink ratio of the LTE network is also It can be characterized by the uplink proportion of the LTE network, which is not limited in the embodiment of the present application.
  • the uplink-downlink ratio of the LTE network and the uplink share of the NR network are taken as examples to describe the embodiment of the present application.
  • the uplink and downlink ratio of the LTE network is usually configured statically or semi-statically, for example, 60%, 50%, 40%, 30%, 25%, or 10%, etc. Therefore, the SAR of the LTE network is It is mainly affected by the transmission power, and the uplink proportion of the NR network is usually semi-static or dynamically configured, that is, the uplink and downlink ratio of the terminal device on the LTE network side is usually constant, while the uplink of the NR network side The ratio can be dynamically adjusted, and the window length of the uplink ratio can be any value. Therefore, the SAR value of the NR network is affected by the transmission power and the uplink ratio.
  • the LTE network can support multiple uplink and downlink configurations, for example, 60%, 50%, 40%, 30%, 25%, or 10%.
  • the terminal device can determine each uplink and downlink configuration.
  • the maximum uplink ratio (maxUplinkDutyCycle) of the corresponding NR network Specifically, when the uplink-downlink ratio of the LTE network is the first uplink-downlink ratio, the terminal device controls both the LTE network and the NR network to transmit signals at the maximum transmit power.
  • the terminal device can determine the maximum uplink share of the NR network when the uplink and downlink ratios of the LTE network are other ratios, thereby obtaining the corresponding relationship.
  • the LTE network and the NR network there may be multiple maximum transmission powers of the LTE network and the NR network, such as 26 decibel milliwatts (dBm) or 23 dBm, and the corresponding relationship may correspond to a specific maximum transmission power of the LTE network.
  • the specific maximum transmission power of the NR network that is, there may be a variety of this correspondence relationship, respectively corresponding to the combination of the maximum transmission power of different LTE networks and the maximum transmission power of the NR network.
  • the terminal device may determine the corresponding relationship when the maximum transmission power of the LTE network and the maximum transmission power of the NR network are both 23 dBm, or may determine that the maximum transmission power of the LTE network is 26 dBm and the maximum transmission power of the NR network The corresponding relationship is 23dBm.
  • the terminal device When accessing the LTE network, the terminal device can learn the uplink configuration information of the LTE network according to the system broadcast message of the LTE network, including the uplink and downlink ratio of the LTE network, and then the terminal device can combine the uplink and downlink ratio according to the uplink and downlink ratio. Correspondence, determine the maximum ratio of the NR network. Further, the terminal device reports the maximum uplink ratio of the NR network to the network device of the NR network, so that the network device of the NR network determines the uplink and downlink scheduling of the terminal device on the NR network. .
  • the terminal device may also send the corresponding relationship to the network device of the NR network.
  • the terminal device may upload the uplink and downlink of the LTE network.
  • the line ratio is sent to the network device of the NR network, so that the network device of the NR network can determine the maximum proportion of the NR network according to the uplink and downlink ratio of the LTE network and the corresponding relationship.
  • the network equipment of the NR network can control that the uplink ratio of the NR network is less than or equal to the maximum ratio to avoid the SAR of the terminal device exceeding the standard.
  • the maximum ratio of the NR network corresponds to the current uplink and downlink timeslot ratio of the LTE network.
  • the maximum ratio of the NR network corresponds to the current uplink and downlink timeslot ratio of the LTE network.
  • the maximum ratio of the NR network corresponds to the current uplink and downlink timeslot ratio of the LTE network.
  • the terminal device has a risk of exceeding the SAR. Therefore, the terminal device can reduce the total transmission power of the LTE network and the NR network or reduce the uplink ratio of the NR network.
  • the terminal device may not send uplink data in a time unit capable of uplink transmission.
  • the uplink proportion of the second network is scheduled by a network device in the second network, or is determined autonomously by the terminal device.
  • the uplink transmission of the terminal device may be an uplink transmission based on a network device schedule, or an uplink transmission initiated by the terminal device autonomously.
  • the terminal device preferentially reduces the transmission power of the NR network.
  • the terminal device may preferentially reduce the transmission power of the LTE network to reduce the SAR of the terminal device.
  • the degree of reduction of the transmission power of the NR network is greater than a certain threshold, for example, the transmission power of the NR network is reduced by 3 dB. In this case, it can be considered that the signal of the NR network is weak enough to be insufficient. Supports the communication connection on the NR network side of the terminal device. Therefore, the terminal device can disconnect the connection with the NR network and only retain the connection with the LTE network.
  • the uplink ratio of the second network is greater than a certain threshold, for example, 50%, in this case, even if the transmission power of the NR network is reduced, the SAR of the terminal device may be considered There is also a risk of exceeding the standard, so the terminal device can choose to disconnect from the NR network and only retain the connection to the LTE network.
  • a certain threshold for example, 50%
  • the terminal device may choose not to use or reduce the use of the secondary network for data transmission, so as to reduce the secondary network's contribution to the terminal device's SAR .
  • FIG. 3 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 300 establishes a connection with a first network and a second network at the same time.
  • the terminal device 300 includes:
  • a processing module 310 configured to reduce the total transmit power of the first network and the second network and / or if the uplink share of the second network is greater than the maximum uplink share of the second network
  • the uplink ratio of the second network is such that the specific absorption ratio SAR of the electromagnetic wave of the terminal device is less than or equal to a preset value.
  • the uplink proportion of the second network is scheduled by a network device in the second network, or is determined autonomously by the terminal device.
  • the terminal device 300 further includes:
  • An obtaining module configured to obtain a current uplink and downlink ratio of the first network
  • a determining module configured to determine the second network's base on the current uplink-downlink ratio of the first network, the correspondence between the uplink-downlink ratio of the first network and the maximum uplink share of the second network; Maximum uplink share
  • the communication module is configured to report a maximum uplink share of the second network to a network device of the second network.
  • the correspondence relationship includes a plurality of first correspondence relationships, and each first correspondence relationship corresponds to a specific maximum transmission power of the first network and a maximum transmission power of the second network ,
  • the determining module is specifically configured to:
  • the determining module is further configured to determine the multiple first correspondences.
  • the determining module is specifically configured to:
  • the first network transmits a signal at a specific maximum transmit power and the second network transmits a signal at a specific maximum transmit power, adjusting an uplink ratio of the second network to determine that the SAR reaches the preset value
  • the target uplink share of the second network as the maximum uplink share of the second network corresponding to the first uplink-downlink ratio, wherein the first uplink-downlink ratio is the current of the first network Up and down match.
  • the specific maximum transmission power of the first network is 23 dBmW dBm or 26 dBm
  • the specific maximum transmission power of the second network is 23 dBm or 26 dBm.
  • the processing module 310 is specifically configured to:
  • the processing module 310 is specifically configured to:
  • the transmission power of the second network is preferentially reduced.
  • the processing module 310 is further configured to:
  • the processing module 310 is specifically configured to:
  • the connection to the second network is disconnected.
  • the first threshold is 50%.
  • the first network is a long-term evolution LTE network
  • the second network is a new wireless NR network.
  • FIG. 4 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 4 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a terminal device in the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the terminal device in each method in the embodiments of the present application. .
  • FIG. 5 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 5 includes a processor 710, and the processor 710 may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by the other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • the chip can be applied to the terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the sending nodes in the methods of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. No longer.
  • the computer-readable storage medium may be applied to the mobile terminal / terminal device in the embodiment of the present application, and the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application For the sake of brevity, I won't repeat them here.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, For brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer executes each method in the embodiment of the application by the mobile terminal / terminal device. The corresponding processes are not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

一种无线通信的方法和终端设备,能够避免终端设备的SAR超标,该方法包括:若所述第二网络的上行占比大于所述第二网络的最大上行占比,所述终端设备降低所述第一网络和所述第二网络的总发射功率和/或所述第二网络的上行占比,以使所述终端设备的电磁波特定吸收比值SAR小于或等于预设值。

Description

无线通信的方法和终端设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和终端设备。
背景技术
电磁波特定吸收比值(Specific Absorption Rate,SAR)用于衡量终端设备对人体的电磁辐射强度,终端设备的SAR通常不能超过规定的指标要求。
对于同时支持多种制式的终端设备,例如支持长期演进(Long Term Evolution,LTE)制式和新无线(New Radio,NR)制式,终端设备的LTE制式和NR制式可以同时处于工作状态,而LTE制式和NR制式的工作频段通常不同,对终端设备的SAR的贡献具有不对称性,此情况下,如何避免终端设备的SAR超标是一项急需解决的问题。
发明内容
本申请实施例提供一种无线通信的方法和终端设备,有利于避免终端设备的SAR超标。
第一方面,提供了一种无线通信的方法,包括:若所述第二网络的上行占比大于所述第二网络的最大上行占比,所述终端设备降低所述第一网络和所述第二网络的总发射功率和/或所述第二网络的上行占比,以使所述终端设备的电磁波特定吸收比值SAR小于或等于预设值。
在一种可能的实现方式中,所述第二网络的上行占比是所述第二网络中的网络设备调度的,或者由所述终端设备自主确定的。
在一种可能的实现方式中,所述方法还包括:
所述终端设备获取所述第一网络的当前上下行配比;
所述终端设备根据所述第一网络的当前上下行配比,所述第一网络的上下行配比和所述第二网络的最大上行占比的对应关系,确定所述第二网络的最大上行占比;
所述终端设备向所述第二网络的网络设备上报所述第二网络的最大上行占比。
在一种可能的实现方式中,所述对应关系包括多个第一对应关系,每个第一对应关系对应特定的所述第一网络的最大发射功率和所述第二网络的最大发射功率,
所述终端设备根据所述第一网络的当前上下行配比,所述第一网络的上下行配比和所述第二网络的最大上行占比的对应关系,确定所述第二网络的最大上行占比,包括:
所述终端设备根据所述第一网络的最大发射功率和第二网络的最大发射功率,所述第一网络的当前上下行配比,结合所述多个第一对应关系,确定所述第二网络的最大上行占比。
在一种可能的实现方式中,所述方法还包括:
所述终端设备确定所述多个第一对应关系。
在一种可能的实现方式中,所述终端设备确定所述多个第一对应关系,包括:
在所述第一网络以特定最大发射功率发射信号,且所述第二网络以特定最大发射功率发射信号时,调整所述第二网络的上行占比,确定在所述SAR达到所述预设值时所述第二网络的目标上行占比;
将所述第二网络的目标上行占比确定为第一上下行配比对应的所述第二网络的最大上行占比,其中,所述第一上下行配比为所述第一网络的当前上下行配比。
在一种可能的实现方式中,所述第一网络的特定最大发射功率为23分贝毫瓦dBm或26dBm,所述第二网络的特定最大发射功率为23dBm或26dBm。
在一种可能的实现方式中,所述终端设备降低所述第一网络和所述第二网络的总发射功率,包括:
所述终端设备降低所述总发射功率的功率值或功率等级。
在一种可能的实现方式中,所述终端设备降低所述第一网络和所述第二网络的总发射功率,包括:
所述终端设备在降低所述总发射功率时,优先降低所述第二网络的发射功率。
在一种可能的实现方式中,所述终端设备降低所述第一网络和所述第二网络的总发射功率,包括:
所述终端设备断开与所述第二网络的连接,只保留与所述第二网络的连接。
在一种可能的实现方式中,所述终端设备断开与所述第二网络的连接,包括:
在所述第二网络的上行占比大于第一阈值时,所述终端设备断开与所述第二网络的连接。
在一种可能的实现方式中,所述第一阈值为50%。
在一种可能的实现方式中,所述第一网络为长期演进LTE网络,所述第二网络为新无线NR网络。
第二方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第三方面,提供了一种终端设备,该终端设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
基于上述技术方案,支持多种制式的终端设备可以在辅网络的上行占比大于该辅网络的最大上行占比的情况下,降低总发射功率或辅网络的上行占比,以使该终端设备的SAR低于预设值,有利于避免终端设备的SAR超标问题。
附图说明
图1是本申请实施例提供的一种应用场景的示意性图。
图2是本申请实施例提供的一种无线通信的方法的示意性图。
图3是本申请实施例提供的一种终端设备的示意性框图。
图4是本申请另一实施例提供的一种通信设备的示意性框图。
图5是本申请实施例提供的一种芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,图1是本发明实施例的应用场景的示意图。
如图1所示,终端设备110与第一通信系统下的第一网络设备130和第二通信系统下的第二网络设备120相连,例如,该第一网络设备130为长期演进(Long Term Evolution,LTE)下的网络设备,该第二网络设备120为新空口(New Radio,NR)下的网络设备。
其中,该第一网络设备130和该第二网络设备120下可以包括多个小区。
应理解,图1是本发明实施例场景的示例,本发明实施例不限于图1所示。
例如,本发明实施例适应的通信系统可以包括至少该第一通信系统下的多个网络设备和/或该第二通信系统下的多个网络设备。
又例如,本发明实施例中的第一通信系统和第二通信系统不同,但对第 一通信系统和该第二通信系统的具体类别不作限定。例如,该第一通信系统和该第二通信系统可以是各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
本申请实施例中的网络设备可以指网络侧的任一种用来发送或接收信号的实体。例如,可以是机器类通信(MTC)的用户设备、GSM或CDMA中的基站(Base Transceiver Station,BTS)、WCDMA中的基站(NodeB)、LTE中的演进型基站(Evolutional Node B,eNB或eNodeB)、5G网络中的基站设备等。
终端设备110可以是任意终端设备。具体地,终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信,也可称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G网络中的终端设备等。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在新无线(New Radio,NR)通信系统中,双连接(Dual Connection,DC)场景可以包括(LTE NR DC,EN-DC),(NR eLTE DC,NE-DC),(5GC eLTE  NR DC,5GC-EN-DC),NR DC,其中,EN-DC是以长期演进(Long Term Evolution,LTE)节点作为主节点(Master Node,MN),NR节点作为辅节点(Slave Node,SN),连接分组核心演进(Evolved Packet Core,EPC)核心网。NE-DC中NR作为MN,演进的长期演进(Evolved Long Term Evolution,eLTE)作为SN,连接第五代移动通信技术核心网(5-Generation Core,5GC)。5GC-EN-DC中,eLTE作为MN,NR作为SN,连接5GC。NR DC中,NR作为MN,NR作为SN,连接5GC。
在本申请实施例中,终端设备可以同时连接多种不同的网络,例如,在EN-DC场景下,终端设备同时连接eLTE网络和NR网络,此场景下的终端设备可以称为EN-DC终端或NE-DC终端。
图2为本申请实施例提供的一种无线通信的方法的示意性流程图,该方法200可以由终端设备执行,该终端设备同时连接第一网络和第二网络,如图2所示,该方法200包括如下内容:
S210,若所述第二网络的上行占比大于所述第二网络的最大上行占比,所述终端设备降低所述第一网络和所述第二网络的总发射功率和/或所述第二网络的上行占比,以使所述终端设备的电磁波特定吸收比值SAR小于或等于预设值。
可选地,在本申请实施例中,该第一网络为主网络,该第二网络为辅网络,即终端设备和该第一网络的连接为主连接,该终端设备和第二网络的连接为辅连接。
作为示例而非限定,该第一网络可以为LTE网络,该第二网络可以为NR网络,此情况下,该终端设备可称为EN-DC终端;或者,该第一网络可以为NR网络,该第二网络可以为LTE网络,此情况下,该终端设备可以称为NE-DC终端,以下,以第一网络为LTE网络,第二网络为NR网络为例进行说,但本申请实施例并不限于此。
可选地,在本申请实施例中,该SAR的预设值可以是标准规定的值,该SAR可以预设在该终端设备上,用于指示终端设备的电磁辐射强度的要求。
一般来说,LTE网络和NR网络对应不同的频段,可以通过不同的天线发射信号,因此,LTE网络和NR网络带来的SAR不同,终端设备的SAR为该第一网络和第二网络的SAR之和,SAR受发射功率和上行占比的影响, 通常来说,发射功率越大,SAR越大,上行占比越大,SAR越大,因此,通过调整发射功率或上行占比可以调整终端设备的SAR。
需要说明的是,在本申请实施例中,该NR网络的上行占比可以认为是一个时间单元中能够用于上行传输的时域资源的比例,可选地,一个时间单元可以为一个或多个子帧,也可以为一个或多个时隙,或者也可以为一个或多个微时隙等,本申请实施例对此并不限定。假设一个子帧中有10个时隙,若该10个时隙中有3个时隙可以用于上行传输,有7个时隙可以用于下行传输,则上行占比可以为30%。
应理解,在本申请实施例中,也可以采用NR网络的上下行配比(即一个时间单元中用于上行传输的资源和用于下行传输的资源的比值)来确定是否需要进行功率调整,以降低终端设备的SAR,本申请实施例对此不作限定。
还应理解,在本申请实施例中,LTE网络的上下行配比可以理解为一个时间单元中用于上行传输的资源和用于下行传输的资源的比值,该LTE网络的上下行配比也可以采用LTE网络的上行占比来表征,本申请实施例对此不作限定。以下,以LTE网络的上下行配比,NR网络的上行占比为例,说明本申请实施例。
在本申请实施例中,LTE网络的上下行配比通常是静态或半静态配置的,例如,60%,50%,40%,30%,25%或10%等,因此,LTE网络的SAR主要受发射功率的影响,而NR网络的上行占比通常是半静态或动态配置的,也就是说,终端设备在LTE网络侧的上下行配比通常是不变的,而NR网络侧的上行占比可以动态调整,上行占比的窗口长度可以为任意值,因此,NR网络的SAR值受发射功率和上行占比的影响。
在本申请实施例中,LTE网络可以支持多种上下行配比,例如,60%,50%,40%,30%,25%或10%等,该终端设备可以确定每种上下行配比对应的NR网络的最大上行占比(maxUplinkDutyCycle),具体地,在LTE网络的上下行配比为第一上下行配比时,该终端设备控制LTE网络和NR网络都以最大发射功率发射信号,然后调整该NR网络的上行占比,测量该终端设备的SAR,确定SAR达到预设值时NR网络的上行占比,记为目标上行占比,进一步可以确定该LTE网络的第一上下行配比对应NR网络的最大上行占比为该目标上行占比。按照上述步骤,该终端设备可以确定在LTE网络的上下行配比为其他配比时对应的NR网络的最大上行占比,从而得到该对 应关系。
可选地,在本申请实施例中,LTE网络和NR网络的最大发射功率可以有多种,例如26分贝毫瓦(dBm)或23dBm等,该对应关系可以对应LTE网络的特定的最大发射功率和NR网络的特定的最大发射功率,也就是说,可以有多种该对应关系,分别对应不同的LTE网络的最大发射功率和NR网络的最大发射功率的组合。
例如,该终端设备可以确定LTE网络的最大发射功率和NR网络的最大发射功率都为23dBm时的该对应关系,或者也可以确定该LTE网络的最大发射功率为26dBm和该NR网络的最大发射功率为23dBm时的对应关系。
在接入LTE网络时,终端设备可以根据LTE网络的系统广播消息获知LTE网络的上行配置信息,其中,包括LTE网络的上下行配比,然后该终端设备可以根据该上下行配比,结合该对应关系,确定NR网络的最大占比,进一步地,该终端设备向NR网络的网络设备上报该NR网络的最大上行占比,以便于NR网络的网络设备确定终端设备在NR网络的上下行调度。
可选地,在一些实施例中,该终端设备也可以将该对应关系发送给NR网络的网络设备,在终端设备获知该LTE网络的上下行配比后,该终端设备可以将LTE网络的上下行配比发送给该NR网络的网络设备,从而该NR网络的网络设备可以根据该LTE网络的上下行配比和该对应关系,确定该NR网络的最大占比,进一步地,在进行上下行调度时,该NR网络的网络设备可以控制NR网络的上行占比小于或等于该最大占比,以避免终端设备的SAR超标。
可选地,在本申请实施例中,当NR网络的上行占比大于该NR网络的最大占比时,其中,该NR网络的最大占比为该LTE网络的当前上下行时隙配比对应的NR网络的最大占比,此情况下,该终端设备有SAR超标的风险,因此,该终端设备可以降低LTE网络和NR网络的总发射功率或者降低NR网络的上行占比,可选地,该终端设备也可以在能够进行上行传输的时间单元上不发送上行数据。
可选地,在本申请实施例中,所述第二网络的上行占比是所述第二网络中的网络设备调度的,或者由所述终端设备自主确定的。
即该终端设备的上行传输可以是基于网络设备调度的上行传输,或者也可以终端设备自主发起的上行传输。
作为一个实施例,若终端设备与该LTE网络的连接是主连接,该终端设备优先降低NR网络的发射功率。或者,作为另一实施例,若该终端设备与NR网络的连接是主连接,该终端设备可以优先降低LTE网络的发射功率,以降低终端设备的SAR。
可选地,作为一个实施例,若该NR网络的发射功率的降低程度大于一定阈值,例如,将该NR网络的发射功率降低了3dB,此情况下,可以认为NR网络的信号较弱不足以支持终端设备的NR网络侧的通信连接,因此,该终端设备可以断开与NR网络的连接,只保留与LTE网络的连接。
可选地,作为另一实施例,若该第二网络的上行占比大于某个阈值,例如,50%,此情况下,即使可以认为即使降低该NR网络的发射功率,该终端设备的SAR也存在超标的风险,因此,该终端设备可以选择断开与NR网络的连接,只保留与LTE网络的连接。
也就是说,在本申请实施例中,在终端设备的SAR有超标的风险时,该终端设备可以选择不使用或减少使用辅网络进行数据传输,以降低辅网络对终端设备的SAR的贡献量。
以上,结合图2,详细描述了本申请的方法实施例,下文结合图3,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图3是本申请实施例提供的一种终端设备的示意性框图,该终端设备300同时与第一网络和第二网络建立连接,如图3所示,该终端设备300包括:
处理模块310,用于在所述第二网络的上行占比大于所述第二网络的最大上行占比的情况下,降低所述第一网络和所述第二网络的总发射功率和/或所述第二网络的上行占比,以使所述终端设备的电磁波特定吸收比值SAR小于或等于预设值。
可选地,在一些实施例中,所述第二网络的上行占比是所述第二网络中的网络设备调度的,或者由所述终端设备自主确定的。
可选地,在一些实施例中,所述终端设备300还包括:
获取模块,用于获取所述第一网络的当前上下行配比;
确定模块,用于根据所述第一网络的当前上下行配比,所述第一网络的上下行配比和所述第二网络的最大上行占比的对应关系,确定所述第二网络 的最大上行占比;
通信模块,用于向所述第二网络的网络设备上报所述第二网络的最大上行占比。
可选地,在一些实施例中,所述对应关系包括多个第一对应关系,每个第一对应关系对应特定的所述第一网络的最大发射功率和所述第二网络的最大发射功率,
所述确定模块具体用于:
根据所述第一网络的最大发射功率和第二网络的最大发射功率,所述第一网络的当前上下行配比,结合所述多个第一对应关系,确定所述第二网络的最大上行占比。
可选地,在一些实施例中,所述确定模块还用于:确定所述多个第一对应关系。
可选地,在一些实施例中,所述确定模块具体用于:
在所述第一网络以特定最大发射功率发射信号,且所述第二网络以特定最大发射功率发射信号时,调整所述第二网络的上行占比,确定在所述SAR达到所述预设值时所述第二网络的目标上行占比;
将所述第二网络的目标上行占比确定为第一上下行配比对应的所述第二网络的最大上行占比,其中,所述第一上下行配比为所述第一网络的当前上下行配比。
可选地,在一些实施例中,所述第一网络的特定最大发射功率为23分贝毫瓦dBm或26dBm,所述第二网络的特定最大发射功率为23dBm或26dBm。
可选地,在一些实施例中,所述处理模块310具体用于:
降低所述总发射功率的功率值或功率等级。
可选地,在一些实施例中,所述处理模块310具体用于:
在降低所述总发射功率时,优先降低所述第二网络的发射功率。
可选地,在一些实施例中,所述处理模块310还用于:
断开与所述第二网络的连接,只保留与所述第二网络的连接。
可选地,在一些实施例中,所述处理模块310具体用于:
在所述第二网络的上行占比大于第一阈值时,断开与所述第二网络的连接。
可选地,在一些实施例中,所述第一阈值为50%。
可选地,在一些实施例中,所述第一网络为长期演进LTE网络,所述第二网络为新无线NR网络。
图4是本申请实施例提供的一种通信设备600示意性结构图。图4所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图4所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图4所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图5是本申请实施例的芯片的示意性结构图。图5所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图5所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以 控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由发送节点实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR  SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算 机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (31)

  1. 一种无线通信的方法,其特征在于,应用于终端设备,所述终端设备同时与第一网络和第二网络建立连接,所述方法包括:
    若所述第二网络的上行占比大于所述第二网络的最大上行占比,所述终端设备降低所述第一网络和所述第二网络的总发射功率和/或所述第二网络的上行占比,以使所述终端设备的电磁波特定吸收比值SAR小于或等于预设值。
  2. 根据权利要求1所述的方法,其特征在于,所述第二网络的上行占比是所述第二网络中的网络设备调度的,或者由所述终端设备自主确定的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备获取所述第一网络的当前上下行配比;
    所述终端设备根据所述第一网络的当前上下行配比,所述第一网络的上下行配比和所述第二网络的最大上行占比的对应关系,确定所述第二网络的最大上行占比;
    所述终端设备向所述第二网络的网络设备上报所述第二网络的最大上行占比。
  4. 根据权利要求3所述的方法,其特征在于,所述对应关系包括多个第一对应关系,每个第一对应关系对应特定的所述第一网络的最大发射功率和所述第二网络的最大发射功率,
    所述终端设备根据所述第一网络的当前上下行配比,所述第一网络的上下行配比和所述第二网络的最大上行占比的对应关系,确定所述第二网络的最大上行占比,包括:
    所述终端设备根据所述第一网络的最大发射功率和第二网络的最大发射功率,所述第一网络的当前上下行配比,结合所述多个第一对应关系,确定所述第二网络的最大上行占比。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述多个第一对应关系。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备确定所述多个第一对应关系,包括:
    在所述第一网络以特定最大发射功率发射信号,且所述第二网络以特定最大发射功率发射信号时,调整所述第二网络的上行占比,确定在所述SAR 达到所述预设值时所述第二网络的目标上行占比;
    将所述第二网络的目标上行占比确定为第一上下行配比对应的所述第二网络的最大上行占比,其中,所述第一上下行配比为所述第一网络的当前上下行配比。
  7. 根据权利要求6所述的方法,其特征在于,所述第一网络的特定最大发射功率为23分贝毫瓦dBm或26dBm,所述第二网络的特定最大发射功率为23dBm或26dBm。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述终端设备降低所述第一网络和所述第二网络的总发射功率,包括:
    所述终端设备降低所述总发射功率的功率值或功率等级。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述终端设备降低所述第一网络和所述第二网络的总发射功率,包括:
    所述终端设备在降低所述总发射功率时,优先降低所述第二网络的发射功率。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述终端设备降低所述第一网络和所述第二网络的总发射功率,包括:
    所述终端设备断开与所述第二网络的连接,只保留与所述第二网络的连接。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备断开与所述第二网络的连接,包括:
    在所述第二网络的上行占比大于第一阈值时,所述终端设备断开与所述第二网络的连接。
  12. 根据权利要求11所述的方法,其特征在于,所述第一阈值为50%。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一网络为长期演进LTE网络,所述第二网络为新无线NR网络。
  14. 一种终端设备,其特征在于,所述终端设备同时与第一网络和第二网络建立连接,所述终端设备包括:
    处理模块,用于在所述第二网络的上行占比大于所述第二网络的最大上行占比的情况下,降低所述第一网络和所述第二网络的总发射功率和/或所述第二网络的上行占比,以使所述终端设备的电磁波特定吸收比值SAR小于或等于预设值。
  15. 根据权利要求14所述的终端设备,其特征在于,所述第二网络的上行占比是所述第二网络中的网络设备调度的,或者由所述终端设备自主确定的。
  16. 根据权利要求14或15所述的终端设备,其特征在于,所述终端设备还包括:
    获取模块,用于获取所述第一网络的当前上下行配比;
    确定模块,用于根据所述第一网络的当前上下行配比,所述第一网络的上下行配比和所述第二网络的最大上行占比的对应关系,确定所述第二网络的最大上行占比;
    通信模块,用于向所述第二网络的网络设备上报所述第二网络的最大上行占比。
  17. 根据权利要求16所述的终端设备,其特征在于,所述对应关系包括多个第一对应关系,每个第一对应关系对应特定的所述第一网络的最大发射功率和所述第二网络的最大发射功率,
    所述确定模块具体用于:
    根据所述第一网络的最大发射功率和第二网络的最大发射功率,所述第一网络的当前上下行配比,结合所述多个第一对应关系,确定所述第二网络的最大上行占比。
  18. 根据权利要求17所述的终端设备,其特征在于,所述确定模块还用于:
    确定所述多个第一对应关系。
  19. 根据权利要求18所述的终端设备,其特征在于,所述确定模块具体用于:
    在所述第一网络以特定最大发射功率发射信号,且所述第二网络以特定最大发射功率发射信号时,调整所述第二网络的上行占比,确定在所述SAR达到所述预设值时所述第二网络的目标上行占比;
    将所述第二网络的目标上行占比确定为第一上下行配比对应的所述第二网络的最大上行占比,其中,所述第一上下行配比为所述第一网络的当前上下行配比。
  20. 根据权利要求19所述的终端设备,其特征在于,所述第一网络的特定最大发射功率为23分贝毫瓦dBm或26dBm,所述第二网络的特定最大 发射功率为23dBm或26dBm。
  21. 根据权利要求14至20中任一项所述的终端设备,其特征在于,所述处理模块具体用于:
    降低所述总发射功率的功率值或功率等级。
  22. 根据权利要求14至21中任一项所述的终端设备,其特征在于,所述处理模块具体用于:
    在降低所述总发射功率时,优先降低所述第二网络的发射功率。
  23. 根据权利要求14至22中任一项所述的终端设备,其特征在于,所述处理模块还用于:
    断开与所述第二网络的连接,只保留与所述第二网络的连接。
  24. 根据权利要求23所述的终端设备,其特征在于,所述处理模块具体用于:
    在所述第二网络的上行占比大于第一阈值时,断开与所述第二网络的连接。
  25. 根据权利要求24所述的终端设备,其特征在于,所述第一阈值为50%。
  26. 根据权利要求14至25中任一项所述的终端设备,其特征在于,所述第一网络为长期演进LTE网络,所述第二网络为新无线NR网络。
  27. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法。
  28. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法。
  31. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
PCT/CN2018/107367 2018-09-25 2018-09-25 无线通信的方法和终端设备 WO2020061753A1 (zh)

Priority Applications (15)

Application Number Priority Date Filing Date Title
PCT/CN2018/107367 WO2020061753A1 (zh) 2018-09-25 2018-09-25 无线通信的方法和终端设备
JP2021517049A JP7330267B2 (ja) 2018-09-25 2018-09-25 無線通信方法及び端末デバイス
MX2021003562A MX2021003562A (es) 2018-09-25 2018-09-25 Metodo y dispositivo terminal de comunicacion inalambrica.
BR112021005623-8A BR112021005623A2 (pt) 2018-09-25 2018-09-25 método de comunicação sem fio e dispositivo terminal
CN202110604028.6A CN113316241B (zh) 2018-09-25 2018-09-25 无线通信的方法和终端设备
SG11202103060QA SG11202103060QA (en) 2018-09-25 2018-09-25 Wireless communication method and terminal device
CA3114120A CA3114120C (en) 2018-09-25 2018-09-25 Wireless communication method and terminal device
KR1020217009792A KR102685484B1 (ko) 2018-09-25 2018-09-25 무선 통신 방법, 단말기 디바이스, 칩, 컴퓨터 판독 가능한 저장 매체, 컴퓨터 프로그램 제품 및 컴퓨터 프로그램
CN201880098046.8A CN112771932A (zh) 2018-09-25 2018-09-25 无线通信的方法和终端设备
AU2018443808A AU2018443808B2 (en) 2018-09-25 2018-09-25 Wireless communication method and terminal device
EP23154030.3A EP4192126A1 (en) 2018-09-25 2018-09-25 Wireless communication method and terminal device
EP18934740.4A EP3846547B1 (en) 2018-09-25 2018-09-25 Wireless communication method and terminal device
US17/211,762 US11147013B2 (en) 2018-09-25 2021-03-24 Wireless communication method and terminal device
US17/487,897 US11706708B2 (en) 2018-09-25 2021-09-28 Wireless communication method and terminal device
US18/208,012 US12041539B2 (en) 2018-09-25 2023-06-09 Wireless communication method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107367 WO2020061753A1 (zh) 2018-09-25 2018-09-25 无线通信的方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/211,762 Continuation US11147013B2 (en) 2018-09-25 2021-03-24 Wireless communication method and terminal device

Publications (1)

Publication Number Publication Date
WO2020061753A1 true WO2020061753A1 (zh) 2020-04-02

Family

ID=69950282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107367 WO2020061753A1 (zh) 2018-09-25 2018-09-25 无线通信的方法和终端设备

Country Status (11)

Country Link
US (3) US11147013B2 (zh)
EP (2) EP3846547B1 (zh)
JP (1) JP7330267B2 (zh)
KR (1) KR102685484B1 (zh)
CN (2) CN113316241B (zh)
AU (1) AU2018443808B2 (zh)
BR (1) BR112021005623A2 (zh)
CA (1) CA3114120C (zh)
MX (1) MX2021003562A (zh)
SG (1) SG11202103060QA (zh)
WO (1) WO2020061753A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4192157A4 (en) * 2020-08-07 2023-10-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. POWER REGULATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
JP2023174443A (ja) * 2022-05-26 2023-12-07 北京小米移動軟件有限公司 送信電力制御方法及び装置、電子機器、読み取り可能な記憶媒体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061753A1 (zh) 2018-09-25 2020-04-02 Oppo广东移动通信有限公司 无线通信的方法和终端设备
JP7386601B2 (ja) * 2018-10-18 2023-11-27 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム
WO2020199221A1 (zh) * 2019-04-04 2020-10-08 Oppo广东移动通信有限公司 一种资源配置方法、网络设备、终端设备
EP3965480A4 (en) * 2019-04-30 2022-04-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. UPLINK RADIATION LIMITATION METHOD AND RELEVANT PRODUCT
US11924819B2 (en) * 2019-05-24 2024-03-05 Qualcomm Incorporated Power limits based on signal type for managing maximum permissible exposure
US20210013960A1 (en) * 2019-07-12 2021-01-14 Qualcomm Incorporated Monitored condition response in a wireless communication device via one or more relay devices
WO2022255664A1 (ko) * 2021-06-03 2022-12-08 삼성전자 주식회사 랜덤 억세스 절차를 수행하는 전자 장치 및 그 동작 방법
CN113873592B (zh) * 2021-09-29 2023-01-06 联想(北京)有限公司 一种信息处理方法、装置、设备及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125615A (zh) * 2014-08-07 2014-10-29 华为技术有限公司 双频自适应并发的处理方法和装置
CN104937849A (zh) * 2013-01-16 2015-09-23 高通股份有限公司 用于缓解双收发机无线通信设备中的电压跌落的装置和方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105690B1 (ko) * 2008-03-03 2012-01-17 닛본 덴끼 가부시끼가이샤 무선 기지국 및 송신 전력 결정 방법
US8155598B2 (en) 2009-01-09 2012-04-10 Sony Corporation System and method for power control in MIMO systems
EP2524435A4 (en) 2010-01-14 2017-08-09 Nokia Technologies Oy Systems, methods, and apparatuses for modem coordination
RU2523688C2 (ru) 2010-04-09 2014-07-20 Телефонактиеболагет Л М Эрикссон (Пабл) Способ и устройство в беспроводной сети для определения целевого значения принимаемой мощности восходящей линии связи
US20120021707A1 (en) 2010-07-26 2012-01-26 Qualcomm Incorporated Apparatus and method for adjustment of transmitter power in a system
US9749878B2 (en) * 2013-07-31 2017-08-29 Blackberry Limited System and method for managing communications for two networks in a communication device
EP2854460B1 (en) 2013-09-27 2017-04-05 Sun Patent Trust Power control and power headroom reporting for dual connectivity
WO2015074276A1 (zh) * 2013-11-25 2015-05-28 华为技术有限公司 一种确定动态上下行比例配置参数的方法、系统和设备
KR20170106695A (ko) 2016-03-14 2017-09-22 주식회사 싱귤라 Rf 중계기 시스템의 전파 전력 제어 장치 및 방법
KR102635791B1 (ko) * 2016-12-21 2024-02-08 인텔 코포레이션 무선 통신 기술, 장치 및 방법
CN108271199B (zh) * 2016-12-31 2021-10-29 中国移动通信集团四川有限公司 调整小区上下行资源配比的方法及装置
US10439789B2 (en) * 2017-05-08 2019-10-08 Skyworks Solutions, Inc. Radio frequency communication systems with dynamic waveform control and power boost
CN108419297B (zh) * 2018-01-19 2020-11-27 京信通信系统(中国)有限公司 无线通信方法及无线接入设备、网络规划设备、终端设备
US20200170030A1 (en) * 2018-04-13 2020-05-28 Ntt Docomo, Inc. User apparatus and base station apparatus
US11246106B2 (en) * 2018-04-26 2022-02-08 Lg Electronics Inc. Electronic device for performing power control
WO2020032866A1 (en) * 2018-08-10 2020-02-13 Telefonaktiebolaget L M Ericsson (Publ) Power headroom report (phr) reporting determination
WO2020061753A1 (zh) 2018-09-25 2020-04-02 Oppo广东移动通信有限公司 无线通信的方法和终端设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104937849A (zh) * 2013-01-16 2015-09-23 高通股份有限公司 用于缓解双收发机无线通信设备中的电压跌落的装置和方法
CN104125615A (zh) * 2014-08-07 2014-10-29 华为技术有限公司 双频自适应并发的处理方法和装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Discussion on solutions to satisfy SAR requirements for NR HPUE", 3GPP TSG-RAN WG4 MEETING #86BIS, R4-1804016, 20 April 2018 (2018-04-20), XP051430932 *
"New WID on Power Class 2 UE for EN-DC (1 LTE band +1 NR band)", 3GPP TSG-RAN WG4 MEETING #88, R4-1809888, 24 August 2018 (2018-08-24), XP051578922 *
ERICSSON: "Configured output power for EN-DC", TSG-RAN WORKING GROUP 4 (RADIO) MEETING #87, R4-1806725, 25 May 2018 (2018-05-25), XP051446377 *
ERICSSON: "Power sharing for EN-DC (MR-DC)", TSG-RAN WORKING GROUP 4 (RADIO) MEETING #86, R4-1802359, 2 March 2018 (2018-03-02), XP051403204 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4192157A4 (en) * 2020-08-07 2023-10-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. POWER REGULATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
JP2023174443A (ja) * 2022-05-26 2023-12-07 北京小米移動軟件有限公司 送信電力制御方法及び装置、電子機器、読み取り可能な記憶媒体
JP7411745B2 (ja) 2022-05-26 2024-01-11 北京小米移動軟件有限公司 送信電力制御方法及び装置、電子機器、読み取り可能な記憶媒体

Also Published As

Publication number Publication date
EP4192126A1 (en) 2023-06-07
AU2018443808B2 (en) 2024-08-29
EP3846547A1 (en) 2021-07-07
SG11202103060QA (en) 2021-04-29
KR102685484B1 (ko) 2024-07-17
US20230328641A1 (en) 2023-10-12
US20210250855A1 (en) 2021-08-12
EP3846547A4 (en) 2021-08-18
US20220022130A1 (en) 2022-01-20
EP3846547B1 (en) 2023-03-08
US11147013B2 (en) 2021-10-12
AU2018443808A1 (en) 2021-05-13
CN112771932A (zh) 2021-05-07
JP2022504031A (ja) 2022-01-13
US12041539B2 (en) 2024-07-16
CN113316241B (zh) 2023-02-17
CA3114120C (en) 2023-08-15
JP7330267B2 (ja) 2023-08-21
CA3114120A1 (en) 2020-04-02
KR20210064243A (ko) 2021-06-02
MX2021003562A (es) 2021-05-27
US11706708B2 (en) 2023-07-18
CN113316241A (zh) 2021-08-27
BR112021005623A2 (pt) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2020061753A1 (zh) 无线通信的方法和终端设备
US20210321476A1 (en) Resource allocation method, terminal, network device and computer storage medium
US20190297582A1 (en) Method and device for controlling uplink power
WO2020034128A1 (zh) 无线通信方法、终端设备发射上行信号的方法及设备
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
WO2020210964A1 (zh) 无线通信方法、终端设备和网络设备
US11991729B2 (en) Resource configuration method and apparatus, and communication device
WO2021232297A1 (zh) 上报功率回退信息的方法及装置、网络设备、终端设备
WO2020093394A1 (zh) 通信方法、终端设备和网络设备
US20210160857A1 (en) Information transmission method, terminal device and network device
WO2020132862A1 (zh) 一种上行传输的功率控制方法及终端设备、网络设备
WO2021022894A1 (zh) 一种天线面板状态的通知方法、设备、芯片及存储介质
WO2020143048A1 (zh) 一种信息处理方法及终端设备
WO2020087353A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019242382A1 (zh) 一种指示信道接入类型的方法、终端设备及网络设备
WO2020034096A1 (zh) 一种终端功率等级控制方法及装置、终端
WO2020029077A1 (zh) 一种信息传输方法及装置、终端
US20220007425A1 (en) Method and apparatus for transmitting a system information request and system
WO2021195928A1 (zh) 上报功率回退信息的方法及装置、终端设备、网络设备
WO2020093267A1 (zh) 资源调整方法、装置、芯片及计算机程序
RU2774297C1 (ru) Способ беспроводной связи и терминальное устройство
WO2019242378A1 (zh) 确定信道接入类型的方法、终端设备及网络设备
WO2020228034A9 (zh) 一种资源管理方法、网络设备、用户设备
WO2020042977A1 (zh) 一种ui显示方法、装置、终端设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3114120

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021517049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018934740

Country of ref document: EP

Effective date: 20210401

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021005623

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018443808

Country of ref document: AU

Date of ref document: 20180925

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021005623

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210324