WO2020061730A1 - Automation process monitoring and controlling method and device - Google Patents

Automation process monitoring and controlling method and device Download PDF

Info

Publication number
WO2020061730A1
WO2020061730A1 PCT/CN2018/107216 CN2018107216W WO2020061730A1 WO 2020061730 A1 WO2020061730 A1 WO 2020061730A1 CN 2018107216 W CN2018107216 W CN 2018107216W WO 2020061730 A1 WO2020061730 A1 WO 2020061730A1
Authority
WO
WIPO (PCT)
Prior art keywords
production
production equipment
supply
state
equipment
Prior art date
Application number
PCT/CN2018/107216
Other languages
French (fr)
Inventor
Wan Ryan Nolan SETIAWAN
Original Assignee
Beijing Apollo Ding Rong Solar Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Apollo Ding Rong Solar Technology Co., Ltd. filed Critical Beijing Apollo Ding Rong Solar Technology Co., Ltd.
Priority to PCT/CN2018/107216 priority Critical patent/WO2020061730A1/en
Publication of WO2020061730A1 publication Critical patent/WO2020061730A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/4184Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by fault tolerance, reliability of production system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0286Modifications to the monitored process, e.g. stopping operation or adapting control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31363Action, if one station defect, execute special program for other stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present disclosure relates to the field of automation technology, in particular to an automation process monitoring and controlling method and an automation process monitoring and controlling device.
  • CIGS production substrates In an automated Copper Indium Gallium Selenide (CIGS) solar panel production line, in order to maintain production quality, CIGS production substrates must be processed in a specified Q-time period. Each of process steps will have their own minimum Q-Time and maximum Q-Time. Current CIGS production process is done with a flow production method, and substrates flow into the next step of the production, provided that there is an empty space for substrates to be processed to go to.
  • CIGS Copper Indium Gallium Selenide
  • Another fact that might have adverse impact on production is that when one of production equipment is having a certain technical fault and cannot continue production, then all the production equipment in front of this faulty production equipment would also need to be stopped to prevent over-production. Such an over-production will cause WIP to build up and some production substrates have to wait for more than their allowed Q-time. Normally to avoid this adverse situation, an operator will have a table of production equipment’s allowed downtime before shutting down one or more upstream equipment. If this allowed downtime limit is breached, then the operator will go to the production equipment himself/herself and manually stop the production equipment.
  • the present disclosure provides in some embodiments an automation process monitoring and controlling method, the method being applied in a Manufacturing Execution Systems (MES) , wherein the MES includes a production object supply source and a plurality of production equipment, the production object supply source is configured to provide production objects, the plurality of production equipment is installed upstream and downstream relative to one another and is configured to perform one or more kinds of production process on the production objects.
  • MES Manufacturing Execution Systems
  • the method includes: monitoring one or more production parameters fed back from at least one of the production object supply source or the plurality of production equipment; determining whether an overall production is in order on the basis of a monitoring result; and adjusting the production object supply source to provide more or less production objects , or adjusting the plurality of production equipment respectively to start or to stop or to be standby, when the overall production is out of order.
  • the present disclosure provides in some embodiments an automation process monitoring and controlling device, the automation process monitoring and controlling device being applied in a Manufacturing Execution Systems (MES) , wherein the MES comprises a production object supply source and a plurality of production equipment, the production object supply source is configured to provide production objects, the plurality of production equipment is installed upstream and downstream relative to one another and is configured to perform one or more kinds of production process on the production objects.
  • MES Manufacturing Execution Systems
  • the automation process monitoring and controlling device includes a processor and a memory, wherein the processor is configured to read programs stored in the memory, to realize: monitoring one or more production parameters fed back from at least one of the production object supply source or the plurality of production equipment; determining whether an overall production is in order on the basis of a monitoring result; and adjusting the production object supply source to provide more or less production objects, or adjusting the plurality of production equipment respectively to start or to stop or to be standby, when the overall production is out of order.
  • the present disclosure provides in some embodiments an automation process monitoring and controlling device, the automation process monitoring and controlling device being applied in a Manufacturing Execution Systems (MES) , wherein the MES comprises a production object supply source and a plurality of production equipment, the production object supply source is configured to provide production objects, the plurality of production equipment is installed upstream and downstream relative to one another and is configured to perform one or more kinds of production process on the production objects.
  • MES Manufacturing Execution Systems
  • the automation process monitoring and controlling device includes: a monitoring module configured to monitor one or more production parameters fed back from at least one of the production object supply source or the plurality of production equipment; a first determining module configured to determine whether an overall production is in order on the basis of a monitoring result of the monitoring module; and an adjusting module configured to adjust the production object supply source to provide more or less production objects, or to adjust the plurality of production equipment respectively to start or to stop or to be standby, when the overall production is out of order determined by the first determining module.
  • the present disclosure provides in some embodiments a non-transitory computer-readable storage medium storing programs therein, wherein the non-transitory computer-readable storage medium causes a computer to invoke the programs stored in the non-transitory computer-readable storage medium to realize the above-mentioned automation process monitoring and controlling method.
  • FIG. 1A is a schematic view showing a Manufacturing Execution Systems (MES) 10 according to embodiments of the present disclosure.
  • MES Manufacturing Execution Systems
  • FIG. 1B is a schematic view showing a basic MES 10 architecture according to embodiments of the present disclosure.
  • FIG. 2 is a flow chart for an automation process monitoring and controlling method, which is applied in the MES 10 according to a first embodiment of the present disclosure.
  • FIG. 3 is another flow chart for the automation process monitoring and controlling method, which is applied in the MES 10 according to a second embodiment of the present disclosure.
  • FIG. 4 is a block diagram illustrating an automation process monitoring and controlling device 100 according to a third embodiment of the present disclosure.
  • FIG. 5 is another block diagram illustrating the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
  • FIG. 6 is yet another block diagram illustrating the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
  • FIG. 7 is yet still another block diagram illustrating the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
  • FIG. 8 is yet still another block diagram illustrating the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
  • FIG. 9 is yet still another block diagram illustrating the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
  • FIG. 10 is a system structural schematic view showing the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
  • FIG. 11 is a graphics illustrating a comparison result between two example tools (between CIGS and Chemical Bath Deposition (CBD) ) in terms of Q-time in a production line according to one embodiment of the present disclosure.
  • Q-Time is a time window in which a production substrate must be processed within the time window or a certain quality problem will occur.
  • the Q-time is a time period between two process steps in a manufacturing process or a total time period for a substrate being processed in a whole manufacturing flow.
  • Minimum Q-Time is a period of time when a certain substrate must wait before being processed in/by next process equipment.
  • Maximum Q-Time is another period of time when a certain substrate can wait before being processed in/by next process equipment.
  • SPC Statistical Process Control
  • WIP Work-in-progress
  • Recipe is a set of equipment settings which contains exact instructions for a substrate must be processed.
  • a Manufacturing Execution System (MES) and operator can control how a product should be processed by specifying a recipe to be used.
  • MES Manufacturing Execution System
  • PIDs production equipment recipes
  • the MES automatic control through MES tracking system will have knowledge about Q-Time status of each production substrates and utilize this knowledge to manage when exactly a substrate will be processed.
  • the above problems that will be addressed by the MES Automatic line control is the WIP control.
  • the MES system In a manual control mode, the MES system will be able to assist operators by giving operators information about the WIP count of each of production equipment and the number of running production equipment. And in an automatic production mode, the MES system can also perform operator's job and directly monitor and manage production equipment status.
  • the CIGS solar panel production line has been taken as an example.
  • the automation process monitoring and controlling method and the automation process monitoring and controlling device can also be applied to other kinds of production lines, for example, warehouse control, production order control, and material supply control, and so forth.
  • the MES 10 includes a production substrate supply source 11, which is used to provide production substrates to be processed (for example, the CIGS solar panel production substrates waiting for being processed) by production equipment in the MES; a plurality of production equipment 12 which is situated upstream and downstream relative to one another and is adapted to perform one or more kinds of production process (for example, Physical Vapor Deposition (PVD) ) on production substrates; and a control device 13, which is adapted to control the plurality of production equipment 12 to start or to stop or to be standby via one or more control commands transmitted by signal lines that connect the control device 13 with the plurality of production equipment 12.
  • PVD Physical Vapor Deposition
  • FIG. 1B is a schematic view showing a basic MES 10 architecture according to embodiments of the present disclosure.
  • the cell controller is an alternative embodiment of the control device 13 in FIG. 1A.
  • the one or more kinds of production process include but are not limited to PVD process, also include sputtering, slicing, packaging, and so forth.
  • the embodiments of the present disclosure are not limited thereto.
  • Step S210 monitoring, by the control device 13, one or more production parameters fed back from at least one of the production substrate supply source 11 or the plurality of production equipment 12
  • Step S220 determining, by the control device 13, whether an overall production is in order on the basis of a monitoring result
  • Step S230 adjusting, by the control device 13, the production substrate supply source 11 to provide more or less the production substrates to be processed, or adjusting the plurality of production equipment 12 respectively to start or to stop or to be standby, in the case of determining that the overall production is out of order.
  • the one or more production parameters fed back from at least one of the production substrate supply source 11 or the plurality of production equipment 12 include at least one of production line WIP or production equipment status.
  • the one or more production parameters fed back from at least one of the production substrate supply source 11 or the plurality of production equipment 12 include Q-time of production substrates in the production line, the number of WIP in a current process step, the capacity of a next process step, and the number of available production equipment.
  • the MES process control according to the first embodiment of the present disclosure on the CIGS production line provides the production line with following benefits, including: (1) to provide better control over process and product quality; (2) to provide more standard operations and less human operational mistakes than conventional methods; and (3) to provide operators and managers with more complete overview throughout the production process.
  • the method includes: Step S210, monitoring, by the control device 13, one or more production parameters fed back from at least one of the production substrate supply source 11 or the plurality of production equipment 12; Step S220, determining, by the control device 13, whether an overall production is in order on the basis of a monitoring result; when it is determined that the overall production is in order on the basis of the above monitoring result (Yes in Step S220) , then the flow goes back to Step S210; on the other hand, when it is determined that the overall production is out of order on the basis of the above monitoring result (No in Step S220) , then the flow proceeds to Step S240; Step S240, determining whether first production equipment is in an over-supply state or in an under-supply state; when it is determined that the first
  • the method further includes: signaling one or more upstream and downstream production equipment to put these production equipment to be standby or signaling an idle production equipment with the same processing type to start via one or more control commands transmitted by the signal lines, after the first production equipment that is in the first state of over-supply has been stopped for a predetermined long period of time.
  • control device when there are one or more production equipment that come back after a predetermined long period of being idle or downtime, the control device signals one or more upstream and downstream production equipment to start.
  • an overall production status is determined as being in order; otherwise, the overall production status is determined as being out of order.
  • the Q-time of production substrates in the production line is a time window in which a production substrate must be processed or a quality problem will occur; and the Q-time of production substrate in the production line includes a time gap between two process steps or a total time a production substrate is to be processed in a whole.
  • the MES process control according to the second embodiment of the present disclosure on the CIGS production line provides the production line with following benefits, including: (1) to provide better control over process and product quality; (2) to provide more standard operations and less human operational mistakes than conventional methods; (3) to provide operators and managers with more complete overview throughout the production process; and (4) to differentiate an over-supply state from another under-supply state, and to adjust the one or more upstream or downstream production equipment relative to the first production equipment in a more tailored manner.
  • the automation process monitoring and controlling device 100 includes: a monitoring module 110 configured to monitor one or more production parameters fed back from at least one of the production substrate supply source 11 or the plurality of production equipment 12; a first determining module 120 configured to determine whether an overall production is in order on the basis of a monitoring result of the monitoring module 110; and an adjusting module 130 configured to adjust the production substrate supply source 11 to provide more or less the production substrates to be processed, or to adjust the plurality of production equipment 12 respectively to start or to stop or to be standby, in the case of determining that the overall production is out of order by the first determining module 120.
  • the one or more production parameters fed back from at least one of the production substrate supply source or the plurality of production equipment include at least one of production line WIP or production equipment status.
  • the one or more production parameters fed back from at least one of the production substrate supply source or the plurality of production equipment include Q-time of production substrates in the production line, the number of WIP in a current process step, the capacity of a next process step, and the number of available production equipment.
  • the automation process monitoring and controlling device used for the MES process control according to the third embodiment of the present disclosure on the CIGS production line provides the production line with following benefits, including: (1) to provide better control over process and product quality; (2) to provide more standard operations and less human operational mistakes than conventional methods; and (3) to provide operators and managers with more complete overview throughout the production process.
  • the automation process monitoring and controlling device 100 further includes: a second determining module 140 configured to determine whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result by the first determining module 120.
  • the second determining module 140 further includes a first stopping module 150 configured to stop the first production equipment that is in the first state of over-supply, subsequent to the step of determining that the first production equipment is in the first state of over-supply by the second determining module 140.
  • the second determining module 140 further includes a first starting module 160 configured to start one or more upstream or downstream production equipment relative to the first production equipment, subsequent to the step of determining that the first production equipment is in the first state of over-supply by the second determining module 140.
  • the second determining module 140 further includes a second starting module 170 configured to start the first production equipment that is in the second state of under-supply, subsequent to the step of determining that the first production equipment is in the second state of under-supply by the second determining module 140.
  • the second determining module 140 further includes a standby-adjusting module 180 configured to adjust one or more upstream or downstream production equipment relative to the first production equipment to be standby, subsequent to the step of determining that the first production equipment is in the second state of under-supply by the second determining module 140.
  • the second determining module 140 further includes a signaling module 190 configured to signal one or more upstream and downstream production equipment to put these production equipment to be standby or to signal an idle production equipment with the same processing type to start via one or more control commands transmitted by the signal lines, after the first production equipment that is in the first state of over-supply has been stopped for a predetermined long period of time.
  • a signaling module 190 configured to signal one or more upstream and downstream production equipment to put these production equipment to be standby or to signal an idle production equipment with the same processing type to start via one or more control commands transmitted by the signal lines, after the first production equipment that is in the first state of over-supply has been stopped for a predetermined long period of time.
  • control device 13 when there are one or more production equipment that come back after a predetermined long period of being idle or downtime, the control device 13 signals one or more upstream and downstream production equipment 12 to start.
  • an overall production status is determined as being in order; otherwise, the overall production status is determined as being out of order.
  • the Q-time of production substrates in the production line is a time window in which a production substrate must be processed or a quality problem will occur; and the Q-time of production substrate in the production line includes a time gap between two process steps or a total time a production substrate is to be processed in a whole.
  • the automation process monitoring and controlling device used for the MES process control according to the fourth embodiment of the present disclosure on the CIGS production line provides the production line with following benefits, including: (1) to provide better control over process and product quality; (2) to provide more standard operations and less human operational mistakes than conventional methods; (3) to provide operators and managers with more complete overview throughout the production process; and (4) to differentiate an over-supply state from another under-supply state, and to adjust the one or more upstream or downstream production equipment relative to the first production equipment in a more tailored manner.
  • the present disclosure further provides in a fifth embodiment an automation process monitoring and controlling device 100.
  • the automation process monitoring and controlling device 100 includes a processor 1002, a transmitter/receiver 1001, a memory 1003, and a bus interface 1004.
  • the processor 1002 is configured to read a program stored in the memory 1003, so as to monitor one or more production parameters fed back from at least one of the production substrate supply source or the plurality of production equipment; determine whether an overall production is in order on the basis of a monitoring result; and to adjust the production substrate supply source to provide more or less the production substrates to be processed, or to adjust the plurality of production equipment respectively to start or to stop or to be standby, in the case of determining that the overall production is out of order.
  • the transmitter/receiver 1001 is configured to receive data from the production substrate supply source 11 or one or more production equipment 12, and transmit data to the production substrate supply source 11 or one or more production equipment 12, under the control of the processor 1002.
  • one bus architecture may include a number of buses and bridges connected to each other, so as to connect various circuits for one or more processors 1002 and one or more memories 1003.
  • the bus architecture may be used to connect any other circuits, such as a circuit for a peripheral device, a circuit for a voltage stabilizer and a power management circuit.
  • Bus interfaces 1004 are provided, and the transmitter/receiver 1001 may consist of a transmitter and a receiver for communication with any other devices, for example the production substrate supply source 11 and production equipment 12, over a transmission medium.
  • the processor 1002 takes charge of managing the bus architecture as well as general processing.
  • the memory 1003 may store data desired for the operation of the processor 1002.
  • each process and/or block, or combinations thereof, in the flow charts and/or block diagrams may be implemented via computer program commands.
  • These computer program commands may be applied to a general-purpose computer, a special-purpose computer, an embedded processor or any other processor of programmable data processing equipment, so as to form a machine, thereby to obtain the means capable of effecting the functions specified in one or more processes in the flow charts and/or one or more blocks in the block diagrams in accordance with the commands executed by the computer or the processor of the other programmable data processing equipment.
  • These computer program commands may also be stored in a computer-readable memory capable of guiding the computer or the other programmable data processing equipment to work in a special manner, so as to form a product including a command device capable of effecting the functions specified in one or more processes in the flow charts and/or one or more blocks in the block diagrams.
  • These computer program commands may also be loaded onto a computer or the other programmable data processing equipment, so as to perform a series of operations thereon and generate the processing implemented by the computer, thereby to provide the steps capable of effecting the functions specified one or more processes in the flow charts and/or one or more blocks in the block diagrams in accordance with the instructions.
  • the MES system would need to be able to perform these functions:
  • the MES system first tracks the whereabouts of all substrates on the production line and the precise moment when substrates finished their respective processing. In this way, the MES system knows exactly up to milliseconds level the remaining Q-Time of a specific substrate. For a single line production type, an automated production line will await the MES system's command to start processing a substrate. In another production line with a buffer storage spaces, the MES system can also let all substrates to go to such buffer and then manages substrate flows based on their remaining Q-Time.
  • the MES system needs to be able to perform these functions below:
  • the MES System will perform the following procedures, including:
  • the MES system will track the Q-Time of substrates in the production line and the number of WIP in a current process step, the capacity of the next process steps and the number of available production equipment, the MES system then will use these information to decide whether the MES system would need to increase or decrease the number of available production equipment.
  • the MES system's Equipment switch algorithm will use above data to decide whether the production equipment are in over-supply or in deficit.
  • a CIGS production line one can take an example of real PVD equipment in the production line. For example, if one PVD equipment can finish 100 pieces of substrates per hour, and there are a total of 10 PVD equipment to perform the PVD process, and one (1) hour Maximum Q-Time for the PVD process step.
  • the MES system will judge the line to be over-supplied and put some production equipment to the running state.
  • MES system will judge that there are an over-supply of production equipment, which aside from causing flow of substrate's instability (which will impact Q-Time) and waste of resources (production equipment in a standby mode will most likely spend less electricity and gas) .
  • the MES System After the MES system decides what actions to be taken, the MES System will actually stop or start the production equipment by sending signals to production equipment and/or line automation to notify that a running equipment to be put on standby state and vice versa, to put a standby equipment to running state.
  • the MES System can send signals for line automation to stop bringing specific process steps substrates to production equipment which will cause over-production.
  • the MES system will perform the following actions, including:
  • the MES System will track the availability of all production equipment in the production line and its capacity.
  • the MES System will track changes in equipment's capacity. If there is a change in production equipment 's capacity that potentially might impact the upstream or downstream production equipment’s WIP and in effect, the WIP substrates'Q-time.
  • the MES system will take action to adjust the imbalance on the line. For example, one production equipment is down for a long time and it will take a long time to repair the production equipment, then the MES system can signal the upstream and downstream equipment to put them on standby or signal an idle production equipment with the same type to run. The same is true when there are production equipment that came back after a long idle or downtime, there can be a shortage of upstream and downstream process equipment. In this case, the MES System can also signal upstream and downstream equipment to start.
  • FIG. 11 is a graphics illustrating a comparison result between two example tools (between CIGS and Chemical Bath Deposition (CBD) ) in terms of Q-time in a production line according to one embodiment of the present disclosure.
  • PMPP indicates power.

Abstract

An automation process monitoring and controlling method and device, the method is applied in an MES(10). The MES(10) includes a production object supply source and a plurality of production equipment(12). The method includes: monitoring one or more production parameters fed back from at least one of the production object supply source or the plurality of production equipment(S210); determining whether an overall production is in order based on a monitoring result(S220); and adjusting the source to provide more or less production objects, or adjusting the production equipment to start or to stop or to be standby, in the case that the overall production is out of order(S230).

Description

AUTOMATION PROCESS MONITORING AND CONTROLLING METHOD AND DEVICE TECHNICAL FIELD
The present disclosure relates to the field of automation technology, in particular to an automation process monitoring and controlling method and an automation process monitoring and controlling device.
BACKGROUND
In an automated Copper Indium Gallium Selenide (CIGS) solar panel production line, in order to maintain production quality, CIGS production substrates must be processed in a specified Q-time period. Each of process steps will have their own minimum Q-Time and maximum Q-Time. Current CIGS production process is done with a flow production method, and substrates flow into the next step of the production, provided that there is an empty space for substrates to be processed to go to.
Another fact that might have adverse impact on production is that when one of production equipment is having a certain technical fault and cannot continue production, then all the production equipment in front of this faulty production equipment would also need to be stopped to prevent over-production. Such an over-production will cause WIP to build up and some production substrates have to wait for more than their allowed Q-time. Normally to avoid this adverse situation, an operator will have a table of production equipment’s allowed downtime before shutting down one or more upstream equipment. If this allowed downtime limit is breached, then the operator will go to the production equipment himself/herself and manually stop the production equipment.
SUMMARY
In one aspect, the present disclosure provides in some embodiments an automation process monitoring and controlling method, the method being applied in a Manufacturing Execution Systems (MES) , wherein the MES includes a production object supply source and a plurality of production equipment, the production object supply source is configured to provide production objects, the plurality of production equipment is installed upstream and downstream relative to one another and is configured to perform one or more  kinds of production process on the production objects. The method includes: monitoring one or more production parameters fed back from at least one of the production object supply source or the plurality of production equipment; determining whether an overall production is in order on the basis of a monitoring result; and adjusting the production object supply source to provide more or less production objects , or adjusting the plurality of production equipment respectively to start or to stop or to be standby, when the overall production is out of order.
In another aspect, the present disclosure provides in some embodiments an automation process monitoring and controlling device, the automation process monitoring and controlling device being applied in a Manufacturing Execution Systems (MES) , wherein the MES comprises a production object supply source and a plurality of production equipment, the production object supply source is configured to provide production objects, the plurality of production equipment is installed upstream and downstream relative to one another and is configured to perform one or more kinds of production process on the production objects. The automation process monitoring and controlling device includes a processor and a memory, wherein the processor is configured to read programs stored in the memory, to realize: monitoring one or more production parameters fed back from at least one of the production object supply source or the plurality of production equipment; determining whether an overall production is in order on the basis of a monitoring result; and adjusting the production object supply source to provide more or less production objects, or adjusting the plurality of production equipment respectively to start or to stop or to be standby, when the overall production is out of order.
In yet another aspect, the present disclosure provides in some embodiments an automation process monitoring and controlling device, the automation process monitoring and controlling device being applied in a Manufacturing Execution Systems (MES) , wherein the MES comprises a production object supply source and a plurality of production equipment, the production object supply source is configured to provide production objects, the plurality of production equipment is installed upstream and downstream relative to one another and is configured to perform one or more kinds of production process on the production objects. The automation process monitoring and controlling device includes: a monitoring module configured to monitor one or more production parameters fed back from at least one of the production object supply source or the plurality of production equipment; a first determining module configured to determine whether an overall production is in order on the basis of a monitoring result of the monitoring module; and an adjusting module configured to adjust the production object supply source to provide more or less production objects, or to adjust the plurality of  production equipment respectively to start or to stop or to be standby, when the overall production is out of order determined by the first determining module.
In still yet another aspect, the present disclosure provides in some embodiments a non-transitory computer-readable storage medium storing programs therein, wherein the non-transitory computer-readable storage medium causes a computer to invoke the programs stored in the non-transitory computer-readable storage medium to realize the above-mentioned automation process monitoring and controlling method.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to illustrate the technical solutions of the present disclosure or the related art in a clearer manner, the drawings desired for the present disclosure or the related art will be described hereinafter briefly. Obviously, the following drawings merely relate to some embodiments of the present disclosure, and based on these drawings, a person skilled in the art may obtain the other drawings without any creative effort.
FIG. 1A is a schematic view showing a Manufacturing Execution Systems (MES) 10 according to embodiments of the present disclosure.
FIG. 1B is a schematic view showing a basic MES 10 architecture according to embodiments of the present disclosure.
FIG. 2 is a flow chart for an automation process monitoring and controlling method, which is applied in the MES 10 according to a first embodiment of the present disclosure.
FIG. 3 is another flow chart for the automation process monitoring and controlling method, which is applied in the MES 10 according to a second embodiment of the present disclosure.
FIG. 4 is a block diagram illustrating an automation process monitoring and controlling device 100 according to a third embodiment of the present disclosure.
FIG. 5 is another block diagram illustrating the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
FIG. 6 is yet another block diagram illustrating the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
FIG. 7 is yet still another block diagram illustrating the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
FIG. 8 is yet still another block diagram illustrating the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
FIG. 9 is yet still another block diagram illustrating the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
FIG. 10 is a system structural schematic view showing the automation process monitoring and controlling device 100 according to one embodiment of the present disclosure.
FIG. 11 is a graphics illustrating a comparison result between two example tools (between CIGS and Chemical Bath Deposition (CBD) ) in terms of Q-time in a production line according to one embodiment of the present disclosure.
DETAILED DESCRIPTION OF THE EMBODIMENTS
LIST OF TECHNICAL TERMS
Q-Time is a time window in which a production substrate must be processed within the time window or a certain quality problem will occur. Normally the Q-time is a time period between two process steps in a manufacturing process or a total time period for a substrate being processed in a whole manufacturing flow.
Minimum Q-Time is a period of time when a certain substrate must wait before being processed in/by next process equipment.
Maximum Q-Time is another period of time when a certain substrate can wait before being processed in/by next process equipment.
Statistical Process Control (SPC) is a method of quality control which employs statistical methods to monitor and control a certain process.
Work-in-progress (WIP) is a company's partially finished goods waiting for completion and eventual sale or the value of these items. These items are either just being fabricated or waiting for further processing in a queue or a buffer storage.
Recipe (PPID) is a set of equipment settings which contains exact instructions for a substrate must be processed. A Manufacturing Execution System (MES) and operator can control how a product should be processed by specifying a recipe to be used.
In order to make the objects, the technical solutions and the advantages of the present disclosure more apparent, the present disclosure will be described hereinafter in a clear and complete manner in conjunction with the drawings and embodiments. Obviously, the following embodiments merely relate to a part of, rather than all of, the embodiments of the present disclosure, and based on these embodiments, a person skilled in the art may, without any creative effort, obtain the other embodiments, which also fall within the scope of the present disclosure.
With the current production method, substrates will try to occupy the next empty conveyor (s) and eventually go to one of the available production equipment. This sometimes will cause substrates to prematurely go into the next process step and cause such substrates to pass their minimum Q-Time.
Another fact to be considered is that different production equipment recipes (PPIDs) will cause substrates to have different Maximum and minimum Q-Time. As a result, the same equipment with different process settings will cause its substrates to have variations in its Maximum and minimum allowed Q-Time.
Yet another fact which might cause problem is the manual WIP control where an operator would always need to monitor the amount of each of production equipment's WIP in the CIGS production line and manually stop and start production equipment in accordance with a monitoring result. And this problem could get worse because several types of production equipment can process more than one type of process, and shutting down one of production equipment can cause disruptions to the production flow. With such situation happening, it is really easy to suffer from over-production (which may lead to substrates exceeding their allowed Q-times) or under-production.
Accordingly embodiments of the present disclosure propose an MES automatic system control over the production line that will provide solutions for the above problems.
Firstly, the MES automatic control through MES tracking system will have knowledge about Q-Time status of each production substrates and utilize this knowledge to manage when exactly a substrate will be processed.
Secondly, the above problems that will be addressed by the MES Automatic line control is the WIP control. In a manual control mode, the MES system will be able to assist operators by giving operators information about the WIP count of each of production equipment and the number of running production equipment. And in an automatic production mode, the MES system can also perform operator's job and directly monitor and manage production equipment status.
Hereinafter in order to best illustrate embodiments of the present disclosure, the CIGS solar panel production line has been taken as an example. However skilled persons in the art can appreciate that the automation process monitoring and controlling method and the automation process monitoring and controlling device can also be applied to other kinds of production lines, for example, warehouse control, production order control, and material supply control, and so forth.
FIRST EMBODIMENT
As shown in FIG. 1A, which is a schematic view showing a Manufacturing Execution Systems (MES) 10 according to a first embodiment of the present disclosure, the MES 10, for example, includes a production substrate supply source 11, which is used to provide production substrates to be processed (for example, the CIGS solar panel production substrates waiting for being processed) by production equipment in the MES; a plurality of production equipment 12 which is situated upstream and downstream relative to one another and is adapted to perform one or more kinds of production process (for example, Physical Vapor Deposition (PVD) ) on production substrates; and a control device 13, which is adapted to control the plurality of production equipment 12 to start or to stop or to be standby via one or more control commands transmitted by signal lines that connect the control device 13 with the plurality of production equipment 12.
Next please refer to FIG. 1B, which is a schematic view showing a basic MES 10 architecture according to embodiments of the present disclosure. As shown in FIG. 1B, the cell controller is an alternative embodiment of the control device 13 in FIG. 1A.
Herein, the one or more kinds of production process include but are not limited to PVD process, also include sputtering, slicing, packaging, and so forth. The embodiments of the present disclosure are not limited thereto.
Next the automation process monitoring and controlling method, which is applied in the MES 10 according to one embodiment of the present disclosure, as shown in FIG. 2, includes the following steps: Step S210, monitoring, by the control device 13, one or more production parameters fed back from at least one of the production substrate supply source 11 or the plurality of production equipment 12; Step S220, determining, by the control device 13, whether an overall production is in order on the basis of a monitoring result; and Step S230, adjusting, by the control device 13, the production substrate supply source 11 to provide more or less the production substrates to be processed, or adjusting the plurality of production equipment 12 respectively to start or to stop or to be standby, in the case of determining that the overall production is out of order.
Herein, as an example, the one or more production parameters fed back from at least one of the production substrate supply source 11 or the plurality of production equipment 12 include at least one of production line WIP or production equipment status.
More specifically, the one or more production parameters fed back from at least one of the production substrate supply source 11 or the plurality of production equipment 12 include Q-time of production substrates in the production line, the number of WIP in a current  process step, the capacity of a next process step, and the number of available production equipment.
Accordingly, the MES process control according to the first embodiment of the present disclosure on the CIGS production line provides the production line with following benefits, including: (1) to provide better control over process and product quality; (2) to provide more standard operations and less human operational mistakes than conventional methods; and (3) to provide operators and managers with more complete overview throughout the production process.
SECOND EMBODIMENT
Hereinafter another automation process monitoring and controlling method according to the second embodiment of the present disclosure will be described in detail. As shown in FIG. 1A and FIG. 3, which is another flow chart for the automation process monitoring and controlling method being applied in the MES 10 according to a second embodiment of the present disclosure, the method includes: Step S210, monitoring, by the control device 13, one or more production parameters fed back from at least one of the production substrate supply source 11 or the plurality of production equipment 12; Step S220, determining, by the control device 13, whether an overall production is in order on the basis of a monitoring result; when it is determined that the overall production is in order on the basis of the above monitoring result (Yes in Step S220) , then the flow goes back to Step S210; on the other hand, when it is determined that the overall production is out of order on the basis of the above monitoring result (No in Step S220) , then the flow proceeds to Step S240; Step S240, determining whether first production equipment is in an over-supply state or in an under-supply state; when it is determined that the first production equipment is in the over-supply state, then the flow proceeds to Step S2311; on the other hand, when it is determined that the first production equipment is in the under-supply state, then the flow proceeds to Step S2312; Step S2311, stopping the first production equipment that is in the first state of over-supply or starting one or more upstream or downstream production equipment relative to the first production equipment; and Step S2312, starting the first production equipment that is in the second state of under-supply or adjusting one or more upstream or downstream production equipment relative to the first production equipment to be standby.
Furthermore, in an alternative to the second embodiment, the method further includes: signaling one or more upstream and downstream production equipment to put these production equipment to be standby or signaling an idle production equipment with the same processing type to start via one or more control commands transmitted by the signal lines, after  the first production equipment that is in the first state of over-supply has been stopped for a predetermined long period of time.
Furthermore, when there are one or more production equipment that come back after a predetermined long period of being idle or downtime, the control device signals one or more upstream and downstream production equipment to start.
Herein, when all production substrates in the production line are processed within an allowed Q-time, an overall production status is determined as being in order; otherwise, the overall production status is determined as being out of order.
Also, the Q-time of production substrates in the production line is a time window in which a production substrate must be processed or a quality problem will occur; and the Q-time of production substrate in the production line includes a time gap between two process steps or a total time a production substrate is to be processed in a whole.
Accordingly, the MES process control according to the second embodiment of the present disclosure on the CIGS production line provides the production line with following benefits, including: (1) to provide better control over process and product quality; (2) to provide more standard operations and less human operational mistakes than conventional methods; (3) to provide operators and managers with more complete overview throughout the production process; and (4) to differentiate an over-supply state from another under-supply state, and to adjust the one or more upstream or downstream production equipment relative to the first production equipment in a more tailored manner.
THIRD EMBODIMENT
Hereinafter an automation process monitoring and controlling device 100 according to a third embodiment of the present disclosure will be described in detail. As shown in FIG. 1A and FIG. 4, the automation process monitoring and controlling device 100 includes: a monitoring module 110 configured to monitor one or more production parameters fed back from at least one of the production substrate supply source 11 or the plurality of production equipment 12; a first determining module 120 configured to determine whether an overall production is in order on the basis of a monitoring result of the monitoring module 110; and an adjusting module 130 configured to adjust the production substrate supply source 11 to provide more or less the production substrates to be processed, or to adjust the plurality of production equipment 12 respectively to start or to stop or to be standby, in the case of determining that the overall production is out of order by the first determining module 120.
Specifically, the one or more production parameters fed back from at least one of the production substrate supply source or the plurality of production equipment include at least one of production line WIP or production equipment status.
More specifically, the one or more production parameters fed back from at least one of the production substrate supply source or the plurality of production equipment include Q-time of production substrates in the production line, the number of WIP in a current process step, the capacity of a next process step, and the number of available production equipment.
Accordingly, the automation process monitoring and controlling device used for the MES process control according to the third embodiment of the present disclosure on the CIGS production line provides the production line with following benefits, including: (1) to provide better control over process and product quality; (2) to provide more standard operations and less human operational mistakes than conventional methods; and (3) to provide operators and managers with more complete overview throughout the production process.
FOURTH EMBODIMENT
Hereinafter an automation process monitoring and controlling device 100 according to a fourth embodiment of the present disclosure will be described in detail. As shown in FIG. 1A and FIG. 5, in addition to all elements shown in FIG. 4, the automation process monitoring and controlling device 100 further includes: a second determining module 140 configured to determine whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result by the first determining module 120.
Furthermore, as shown in FIG. 5, in an alternative to the fourth embodiment, the second determining module 140 further includes a first stopping module 150 configured to stop the first production equipment that is in the first state of over-supply, subsequent to the step of determining that the first production equipment is in the first state of over-supply by the second determining module 140.
Furthermore, as shown in FIG. 6, in an alternative to the fourth embodiment, the second determining module 140 further includes a first starting module 160 configured to start one or more upstream or downstream production equipment relative to the first production equipment, subsequent to the step of determining that the first production equipment is in the first state of over-supply by the second determining module 140.
Furthermore, as shown in FIG. 7, in an alternative to the fourth embodiment, the second determining module 140 further includes a second starting module 170 configured to start the first production equipment that is in the second state of under-supply, subsequent to the  step of determining that the first production equipment is in the second state of under-supply by the second determining module 140.
Furthermore, as shown in FIG. 8, in an alternative to the fourth embodiment, the second determining module 140 further includes a standby-adjusting module 180 configured to adjust one or more upstream or downstream production equipment relative to the first production equipment to be standby, subsequent to the step of determining that the first production equipment is in the second state of under-supply by the second determining module 140.
Furthermore, as shown in FIG. 9, in an alternative to the fourth embodiment, the second determining module 140 further includes a signaling module 190 configured to signal one or more upstream and downstream production equipment to put these production equipment to be standby or to signal an idle production equipment with the same processing type to start via one or more control commands transmitted by the signal lines, after the first production equipment that is in the first state of over-supply has been stopped for a predetermined long period of time.
Herein, when there are one or more production equipment that come back after a predetermined long period of being idle or downtime, the control device 13 signals one or more upstream and downstream production equipment 12 to start.
Herein, when all production substrates in the production line are processed within an allowed Q-time, an overall production status is determined as being in order; otherwise, the overall production status is determined as being out of order.
Herein, the Q-time of production substrates in the production line is a time window in which a production substrate must be processed or a quality problem will occur; and the Q-time of production substrate in the production line includes a time gap between two process steps or a total time a production substrate is to be processed in a whole.
Accordingly, the automation process monitoring and controlling device used for the MES process control according to the fourth embodiment of the present disclosure on the CIGS production line provides the production line with following benefits, including: (1) to provide better control over process and product quality; (2) to provide more standard operations and less human operational mistakes than conventional methods; (3) to provide operators and managers with more complete overview throughout the production process; and (4) to differentiate an over-supply state from another under-supply state, and to adjust the one or more upstream or downstream production equipment relative to the first production equipment in a more tailored manner.
FIFTH EMBODIMENT
Based on an identical inventive concept, the present disclosure further provides in a fifth embodiment an automation process monitoring and controlling device 100. As shown in FIG. 10, the automation process monitoring and controlling device 100 includes a processor 1002, a transmitter/receiver 1001, a memory 1003, and a bus interface 1004. The processor 1002 is configured to read a program stored in the memory 1003, so as to monitor one or more production parameters fed back from at least one of the production substrate supply source or the plurality of production equipment; determine whether an overall production is in order on the basis of a monitoring result; and to adjust the production substrate supply source to provide more or less the production substrates to be processed, or to adjust the plurality of production equipment respectively to start or to stop or to be standby, in the case of determining that the overall production is out of order. The transmitter/receiver 1001 is configured to receive data from the production substrate supply source 11 or one or more production equipment 12, and transmit data to the production substrate supply source 11 or one or more production equipment 12, under the control of the processor 1002.
In FIG. 10, one bus architecture may include a number of buses and bridges connected to each other, so as to connect various circuits for one or more processors 1002 and one or more memories 1003. In addition, as is known in the art, the bus architecture may be used to connect any other circuits, such as a circuit for a peripheral device, a circuit for a voltage stabilizer and a power management circuit. Bus interfaces 1004 are provided, and the transmitter/receiver 1001 may consist of a transmitter and a receiver for communication with any other devices, for example the production substrate supply source 11 and production equipment 12, over a transmission medium. The processor 1002 takes charge of managing the bus architecture as well as general processing. The memory 1003 may store data desired for the operation of the processor 1002.
It should be appreciated that each process and/or block, or combinations thereof, in the flow charts and/or block diagrams may be implemented via computer program commands. These computer program commands may be applied to a general-purpose computer, a special-purpose computer, an embedded processor or any other processor of programmable data processing equipment, so as to form a machine, thereby to obtain the means capable of effecting the functions specified in one or more processes in the flow charts and/or one or more blocks in the block diagrams in accordance with the commands executed by the computer or the processor of the other programmable data processing equipment.
These computer program commands may also be stored in a computer-readable memory capable of guiding the computer or the other programmable data processing equipment to work in a special manner, so as to form a product including a command device capable of effecting the functions specified in one or more processes in the flow charts and/or one or more blocks in the block diagrams.
These computer program commands may also be loaded onto a computer or the other programmable data processing equipment, so as to perform a series of operations thereon and generate the processing implemented by the computer, thereby to provide the steps capable of effecting the functions specified one or more processes in the flow charts and/or one or more blocks in the block diagrams in accordance with the instructions.
EXAMPLES
Hereinafter some practical examples will be discussed in detail for a better understanding all teachings of the present disclosure. All these examples will not impose any limitations on the scope of the present disclosure, which can be appreciated by those skilled in the art.
MES Controlled Substrate Routing and Equipment process start
To be able to perform this function, the MES system would need to be able to perform these functions:
(1) Track the positions of all substrates currently on the production line;
(2) Track the process history of all substrates currently on the production line;
(3) Track the allowed Q-time of all substrates currently on the production line; and
(4) MES-controlled line automation.
The MES system according to the above embodiments of the present disclosure first tracks the whereabouts of all substrates on the production line and the precise moment when substrates finished their respective processing. In this way, the MES system knows exactly up to milliseconds level the remaining Q-Time of a specific substrate. For a single line production type, an automated production line will await the MES system's command to start processing a substrate. In another production line with a buffer storage spaces, the MES system can also let all substrates to go to such buffer and then manages substrate flows based on their remaining Q-Time.
MES Controlled Equipment switching
To be able to perform this function, the MES system needs to be able to perform these functions below:
(1) The total WIP count of the whole line;
(2) The Q-time for all substrates for a certain WIP type (Process Step) ;
(3) The capacity of each process equipment (number of panels per hour) ;
(4) The status of all production equipment in the production line;
(5) The list of process steps and its respective production equipment;
(6) MES-controlled line automation system; and
(7) MES-controlled production equipment’s process.
There are two types of scenarios in which the MES system according to the embodiments of the present disclosure performs the above functions.
WIP status change scenario
The MES System will perform the following procedures, including:
The MES system will track the Q-Time of substrates in the production line and the number of WIP in a current process step, the capacity of the next process steps and the number of available production equipment, the MES system then will use these information to decide whether the MES system would need to increase or decrease the number of available production equipment.
The MES system's Equipment switch algorithm will use above data to decide whether the production equipment are in over-supply or in deficit. To illustrate the MES system's switch algorithm in a CIGS production line, one can take an example of real PVD equipment in the production line. For example, if one PVD equipment can finish 100 pieces of substrates per hour, and there are a total of 10 PVD equipment to perform the PVD process, and one (1) hour Maximum Q-Time for the PVD process step. Depending on the current WIP current, one can calculate the needed production equipment, for the PVD production equipment example, for every 100 WIP substrates, it is needed to have one production equipment running. For example, if the line has currently 600 WIP substrates for the PVD process and the line only run five (5) PVD production equipment, sooner or later some substrates will violate their maximum Q-time and also probable, a WIP buildup will happen. For this situation, the MES system will judge the line to be over-supplied and put some production equipment to the running state. Vice versa, when there are only 400 substrates in the line and there are five production equipment running, then MES system will judge that there are an over-supply of production equipment, which aside from causing flow of substrate's instability (which will impact Q-Time) and waste of resources (production equipment in a standby mode will most likely spend less electricity and gas) .
After the MES system decides what actions to be taken, the MES System will actually stop or start the production equipment by sending signals to production equipment  and/or line automation to notify that a running equipment to be put on standby state and vice versa, to put a standby equipment to running state. For production equipment that can process more than one type of process, the MES System can send signals for line automation to stop bringing specific process steps substrates to production equipment which will cause over-production.
Production Equipment status change scenario
For Equipment status change scenario, the MES system will perform the following actions, including:
The MES System will track the availability of all production equipment in the production line and its capacity.
The MES System will track changes in equipment's capacity. If there is a change in production equipment 's capacity that potentially might impact the upstream or downstream production equipment’s WIP and in effect, the WIP substrates'Q-time. The MES system will take action to adjust the imbalance on the line. For example, one production equipment is down for a long time and it will take a long time to repair the production equipment, then the MES system can signal the upstream and downstream equipment to put them on standby or signal an idle production equipment with the same type to run. The same is true when there are production equipment that came back after a long idle or downtime, there can be a shortage of upstream and downstream process equipment. In this case, the MES System can also signal upstream and downstream equipment to start.
MES production cockpit
There are cases when full MES control is not favorable, especially if there are many external factors which will have impact on Q-time and overall process quality, for example there are no operators to watch over the equipment. If this happens all decisions will be made by operators with information input from the MES system. To be able to perform these functions the MES system will support operators with below functions, including:
Tracking Ability
Operators should be provided with as much information as possible to help them make better decisions, including:
(1) Total WIP count of the whole production line;
(2) Q-time for all substrates for a certain WIP type (Process Step) ;
(3) Capacity of each process equipment (number of panels per hour) ;
(4) Status of all production equipment in the production line;
(5) Status of all Line automation buffer and conveyors;
(6) List of process steps and its respective production equipment;
(7) Process history of all substrates currently in the production line;
(8) Process equipment's SPC charts;
(9) Parts information;
(10) Available operator information; and
(11) Order information and etc.
Line control ability
Operators should be provided with as much control as possible over the production line to help them make better decisions, including:
(1) Line Automation control;
(2) Production Equipment process control; and
(3) Production order control.
As shown in FIG. 11, which is a graphics illustrating a comparison result between two example tools (between CIGS and Chemical Bath Deposition (CBD) ) in terms of Q-time in a production line according to one embodiment of the present disclosure. Also in FIG. 11, PMPP indicates power. As it is clear from FIG. 11, the longer the wait time is, the lower the average time would be.
The above embodiments are for illustrative purposes only, but the present disclosure is not limited thereto. Obviously, a person skilled in the art may make further modifications and improvements without departing from the spirit of the present disclosure, and these modifications and improvements shall also fall within the scope of the present disclosure. 

Claims (34)

  1. An automation process monitoring and controlling method, the method being applied in a Manufacturing Execution Systems (MES) , wherein the MES comprises a production object supply source and a plurality of production equipment, the production object supply source is configured to provide production objects, the plurality of production equipment is installed upstream and downstream relative to one another and is configured to perform one or more kinds of production process on the production objects,
    the method comprising:
    monitoring one or more production parameters fed back from at least one of the production object supply source or the plurality of production equipment;
    determining whether an overall production is in order on the basis of a monitoring result; and
    adjusting the production object supply source to provide more or less production objects, or adjusting the plurality of production equipment respectively to start or to stop or to be standby, in the case that the overall production is out of order.
  2. The automation process monitoring and controlling method according to claim 1, wherein the one or more production parameters comprise at least one of production line Working In Progress (WIP) or production equipment status.
  3. The automation process monitoring and controlling method according to claim 2, wherein the one or more production parameters comprise at least one of Q-time of the production objects in the production line, the number of the WIP in a current process step, the capacity of a next process step, or the number of available production equipment.
  4. The automation process monitoring and controlling method according to any one of claims 1~3, further comprising:
    determining whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result; and
    stopping the first production equipment in the case that the first production equipment is in the first state of over-supply.
  5. The automation process monitoring and controlling method according to any one of claims 1~3, further comprising:
    determining whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result; and
    starting one or more upstream or downstream production equipment relative to the first production equipment, in the case that the first production equipment is in the first state of over-supply.
  6. The automation process monitoring and controlling method according to any one of claims 1~3, further comprising:
    determining whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result; and
    starting the first production equipment in the case that the first production equipment is in the second state of under-supply.
  7. The automation process monitoring and controlling method according to any one of claims 1~3, further comprising:
    determining whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result; and
    adjusting one or more upstream or downstream production equipment relative to the first production equipment to be standby, in the case that the first production equipment is in the second state of under-supply.
  8. The automation process monitoring and controlling method according to claim 4, further comprising:
    signaling one or more upstream and downstream production equipment to put these production equipment to be standby or signaling an idle production equipment with the same processing type to start via one or more control commands transmitted by the signal lines, after the first production equipment that is in the first state of over-supply has been stopped for a predetermined long period of time.
  9. The automation process monitoring and controlling method according to claim 8, wherein in the case that there are one or more production equipment that come back after a predetermined long period of being idle or downtime, the control device signals one or more upstream and downstream production equipment to start.
  10. The automation process monitoring and controlling method according to any one of claims 1~9, wherein in the case that all production objects in the production line are processed within an allowed Q-time, an overall production status is determined as being in order; otherwise, the overall production status is determined as being out of order; and
    the production objects are one or more production substrates.
  11. The automation process monitoring and controlling method according to claim 3, wherein the Q-time of production objects in the production line is a time window in which a production object must be processed or a quality problem will occur; and
    the Q-time of production object in the production line includes a time gap between two process steps or a total time a production object is to be processed in a whole.
  12. An automation process monitoring and controlling device, the automation process monitoring and controlling device being applied in a Manufacturing Execution Systems (MES) , wherein the MES comprises a production object supply source and a plurality of production equipment, the production object supply source is configured to provide production objects, the plurality of production equipment is installed upstream and downstream relative to one another and is configured to perform one or more kinds of production process on the production objects,
    the automation process monitoring and controlling device comprises a processor and a memory, wherein the processor is configured to read programs stored in the memory, to realize:
    monitoring one or more production parameters fed back from at least one of the production object supply source or the plurality of production equipment;
    determining whether an overall production is in order on the basis of a monitoring result; and
    adjusting the production object supply source to provide more or less production objects, or adjusting the plurality of production equipment respectively to start or to stop or to be standby, in the case that the overall production is out of order.
  13. The automation process monitoring and controlling device according to claim 12, wherein the one or more production parameters comprise at least one of production line Working In Progress (WIP) or production equipment status.
  14. The automation process monitoring and controlling device according to claim 13, wherein the one or more production parameters comprise at least one of Q-time of the production objects in the production line, the number of the WIP in a current process step, the capacity of a next process step, or the number of available production equipment.
  15. The automation process monitoring and controlling device according to any one of claims 12~14, wherein the processor is further configured to read programs stored in the memory, to realize:
    determining whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result; and
    stopping the first production equipment in the case that the first production equipment is in the first state of over-supply.
  16. The automation process monitoring and controlling device according to any one of claims 12~14, wherein the processor is further configured to read programs stored in the memory, to realize:
    determining whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result; and
    starting one or more upstream or downstream production equipment relative to the first production equipment, in the case that the first production equipment is in the first state of over-supply.
  17. The automation process monitoring and controlling device according to any one of claims 12~14, wherein the processor is further configured to read programs stored in the memory, to realize:
    determining whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result; and
    starting the first production equipment in the case that the first production equipment is in the second state of under-supply.
  18. The automation process monitoring and controlling device according to any one of claims 12~14, wherein the processor is further configured to read programs stored in the memory, to realize:
    determining whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result; and
    adjusting one or more upstream or downstream production equipment relative to the first production equipment to be standby, in the case that the first production equipment is in the second state of under-supply.
  19. The automation process monitoring and controlling device according to claim 15, wherein the processor is further configured to read programs stored in the memory, to realize:
    signaling one or more upstream and downstream production equipment to put these production equipment to be standby or signaling an idle production equipment with the same processing type to start via one or more control commands transmitted by the signal lines, after the first production equipment that is in the first state of over-supply has been stopped for a predetermined long period of time.
  20. The automation process monitoring and controlling device according to claim 19, wherein in the case that there are one or more production equipment that come back after a predetermined long period of being idle or downtime, the automation process monitoring and controlling device signals one or more upstream and downstream production equipment to start.
  21. The automation process monitoring and controlling device according to any one of claims 12~20, wherein in the case that all production objects in the production line are processed within an allowed Q-time, an overall production status is determined as being in order; otherwise, the overall production status is determined as being out of order; and
    the production objects are one or more production substrates.
  22. The automation process monitoring and controlling device according to claim 14, wherein the Q-time of production objects in the production line is a time window in which a production object must be processed or a quality problem will occur; and
    the Q-time of production object in the production line includes a time gap between two process steps or a total time a production object is to be processed in a whole.
  23. An automation process monitoring and controlling device, the automation process monitoring and controlling device being applied in a Manufacturing Execution Systems (MES) , wherein the MES comprises a production object supply source and a plurality of production equipment, the production object supply source is configured to provide production objects, the plurality of production equipment is installed upstream and downstream relative to one another and is configured to perform one or more kinds of production process on the production objects,
    the automation process monitoring and controlling device comprising:
    a monitoring module configured to monitor one or more production parameters fed back from at least one of the production object supply source or the plurality of production equipment;
    a first determining module configured to determine whether an overall production is in order on the basis of a monitoring result of the monitoring module; and
    an adjusting module configured to adjust the production object supply source to provide more or less production objects, or to adjust the plurality of production equipment respectively to start or to stop or to be standby, in the case that the overall production is out of order determined by the first determining module.
  24. The automation process monitoring and controlling device according to claim 23, wherein the one or more production parameters comprise at least one of production line Working In Progress (WIP) or production equipment status.
  25. The automation process monitoring and controlling device according to claim 24, wherein the one or more production parameters comprise at least one of Q-time of the production objects in the production line, the number of the WIP in a current process step, the capacity of a next process step, or the number of available production equipment.
  26. The automation process monitoring and controlling device according to any one of claims 23~25, further comprising:
    a second determining module configured to determine whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result by the first determining module; and
    a first stopping module configured to stop the first production equipment in the case that the first production equipment is in the first state of over-supply.
  27. The automation process monitoring and controlling device according to any one of claims 23~25, further comprising:
    a second determining module configured to determine whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result by the first determining module; and
    a first starting module configured to start one or more upstream or downstream production equipment relative to the first production equipment, in the case that the first production equipment is in the first state of over-supply.
  28. The automation process monitoring and controlling device according to any one of claims 23~25, further comprising:
    a second determining module configured to determine whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result by the first determining module; and
    a second starting module configured to start the first production equipment in the case that the first production equipment is in the second state of under-supply.
  29. The automation process monitoring and controlling device according to any one of claims 23~25, further comprising:
    a second determining module configured to determine whether first production equipment is in a first state of over-supply or in a second state of under-supply, subsequent to the step of determining the overall production is out of order on the basis of the monitoring result by the first determining module; and
    a standby-adjusting module configured to adjust one or more upstream or downstream production equipment relative to the first production equipment to be standby, in the case that the first production equipment is in the second state of under-supply.
  30. The automation process monitoring and controlling device according to claim 26, further comprising:
    a signaling module configured to signal one or more upstream and downstream production equipment to put these production equipment to be standby or to signal an idle production equipment with the same processing type to start via one or more control commands transmitted by the signal lines, after the first production equipment that is in the first state of over-supply has been stopped for a predetermined long period of time.
  31. The automation process monitoring and controlling device according to claim 30, wherein in the case that there are one or more production equipment that come back after a predetermined long period of being idle or downtime, the automation process monitoring and controlling device signals one or more upstream and downstream production equipment to start.
  32. The automation process monitoring and controlling device according to any one of claims 23~31, wherein in the case that all production objects in the production line are processed within an allowed Q-time, an overall production status is determined as being in order; otherwise, the overall production status is determined as being out of order; and
    the production objects are one or more production substrates.
  33. The automation process monitoring and controlling device according to claim 25, wherein the Q-time of production objects in the production line is a time window in which a production object must be processed or a quality problem will occur; and
    the Q-time of production object in the production line includes a time gap between two process steps or a total time a production object is to be processed in a whole.
  34. A non-transitory computer-readable storage medium storing programs therein, wherein the non-transitory computer-readable storage medium causes a computer to invoke the programs stored in the non-transitory computer-readable storage medium to realize the automation process monitoring and controlling method according to any one of claims 1~11.
PCT/CN2018/107216 2018-09-25 2018-09-25 Automation process monitoring and controlling method and device WO2020061730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107216 WO2020061730A1 (en) 2018-09-25 2018-09-25 Automation process monitoring and controlling method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107216 WO2020061730A1 (en) 2018-09-25 2018-09-25 Automation process monitoring and controlling method and device

Publications (1)

Publication Number Publication Date
WO2020061730A1 true WO2020061730A1 (en) 2020-04-02

Family

ID=69949463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107216 WO2020061730A1 (en) 2018-09-25 2018-09-25 Automation process monitoring and controlling method and device

Country Status (1)

Country Link
WO (1) WO2020061730A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021244263A1 (en) * 2020-06-03 2021-12-09 深圳前海禾盈科技有限公司 Method for constructing automated production control architecture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200510977A (en) * 2003-09-09 2005-03-16 Taiwan Semiconductor Mfg Co Ltd System and method for managing a production line having time constrains and computer-readable medium thereof, dispatch method of overlapping time constrains, and semiconductor product and manufacturing method thereof
US6931296B2 (en) * 2003-09-26 2005-08-16 Taiwan Semiconductor Manufacturing Co., Ltd. Algorithms tunning for dynamic lot dispatching in wafer and chip probing
CN103400301A (en) * 2013-08-14 2013-11-20 上海华力微电子有限公司 Control method and system for Q-time interval products
CN106096861A (en) * 2016-06-24 2016-11-09 苏州鸿然信息科技有限公司 Intelligence based on Alternative executed in parallel produces line control system
CN106371408A (en) * 2015-07-24 2017-02-01 中芯国际集成电路制造(上海)有限公司 Production process modeling system and production process modeling method
CN108197787A (en) * 2017-12-22 2018-06-22 上海海得控制系统股份有限公司 The coordination scheduling system of flexible automation production line and automatic material flow pipeline

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200510977A (en) * 2003-09-09 2005-03-16 Taiwan Semiconductor Mfg Co Ltd System and method for managing a production line having time constrains and computer-readable medium thereof, dispatch method of overlapping time constrains, and semiconductor product and manufacturing method thereof
US6931296B2 (en) * 2003-09-26 2005-08-16 Taiwan Semiconductor Manufacturing Co., Ltd. Algorithms tunning for dynamic lot dispatching in wafer and chip probing
CN103400301A (en) * 2013-08-14 2013-11-20 上海华力微电子有限公司 Control method and system for Q-time interval products
CN106371408A (en) * 2015-07-24 2017-02-01 中芯国际集成电路制造(上海)有限公司 Production process modeling system and production process modeling method
CN106096861A (en) * 2016-06-24 2016-11-09 苏州鸿然信息科技有限公司 Intelligence based on Alternative executed in parallel produces line control system
CN108197787A (en) * 2017-12-22 2018-06-22 上海海得控制系统股份有限公司 The coordination scheduling system of flexible automation production line and automatic material flow pipeline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021244263A1 (en) * 2020-06-03 2021-12-09 深圳前海禾盈科技有限公司 Method for constructing automated production control architecture

Similar Documents

Publication Publication Date Title
EP3633469B1 (en) Systems and methods for broadcasting data and data tags associated with an industrial automation system
EP2940539B1 (en) System and method for identifying relationships between industrial automation devices
EP2940538A2 (en) Systems and methods for adjusting operations of an industrial automation system based on multiple data sources
US11914335B2 (en) Systems and methods for balancing loads in an industrial automation system
JP2001143980A (en) Semiconductor processing technique
CN104820906A (en) Task scheduling method, device and system
JP2001126969A (en) Semiconductor processing technique
JP2001110695A (en) Semiconductor processing technique
EP2940543B1 (en) Systems and methods for operating industrial automation devices based on hierarchical level awareness
CN110989513A (en) Central tool magazine control system applied to intelligent processing production line
US20170343994A1 (en) Manufacturing management device for controlling manufacturing cells in which maintenance work is conducted
WO2020061730A1 (en) Automation process monitoring and controlling method and device
US10281886B2 (en) Method and device for the energy-efficient control of a plant
US10659536B2 (en) Method of controlling inverters
KR20090097623A (en) Method of proactive scheduling approach using simulation and system thereof
CN114282864A (en) Scheduling method and system
US10827085B1 (en) Machine learning device, screen prediction device, and controller
US11755002B2 (en) Method and system for processing optical lenses
CN114418788A (en) Automatic flexible production scheduling method and system for drawer line
CN115826545B (en) Multi-variety small-batch wire-mixing machining flexible manufacturing scheduling and executing method and system
CN111932088A (en) Mixed production scheduling management and control method for polycrystalline silicon rods
CN114443299B (en) Flexible automatic lamination system based on 5G communication and edge calculation
US20220382252A1 (en) Machine control method, machine control system, storage medium, and electronic device
CN117950377A (en) Integrated assembly line production control system and control method thereof
JP2001118764A (en) Semiconductor processing technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935121

Country of ref document: EP

Kind code of ref document: A1