WO2020059880A1 - Ac voltage output system, power system control system, power system, dc power transmission system, power generation system, and battery system - Google Patents

Ac voltage output system, power system control system, power system, dc power transmission system, power generation system, and battery system Download PDF

Info

Publication number
WO2020059880A1
WO2020059880A1 PCT/JP2019/037111 JP2019037111W WO2020059880A1 WO 2020059880 A1 WO2020059880 A1 WO 2020059880A1 JP 2019037111 W JP2019037111 W JP 2019037111W WO 2020059880 A1 WO2020059880 A1 WO 2020059880A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
power
arm
voltage output
voltage
Prior art date
Application number
PCT/JP2019/037111
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 修治
良和 ▲高▼橋
哲郎 遠藤
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2020549162A priority Critical patent/JP7299628B2/en
Publication of WO2020059880A1 publication Critical patent/WO2020059880A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to an AC voltage output system, a power system control system, a power system, a DC power transmission system, a power generation system, and a battery system.
  • Patent Literature 1 since a plurality of unit converters are connected in series, a control device fails, a power supply for driving a switch fails, or a power supply line is disconnected. As a result, when the power supply for driving the switch of one unit converter is lost and the unit converter cannot operate, the other unit converters also need to stop operating and stop operating the power storage system. .
  • Patent Document 2 discloses that a short-circuit switch is provided in each unit converter, and when the unit converter loses power, the short-circuit switch is turned on to short-circuit the unit converter that has lost power. (See Patent Document 2).
  • the present invention has been made in view of the above-described problems, and allows an AC voltage output system, a power system control system, a power system, and a DC power transmission system that can be continuously operated even when a power supply for driving a switch is lost. , A power generation system and a battery system.
  • the AC voltage output system includes at least one arm in which a plurality of unit converters that output a predetermined voltage are connected in series, and the unit converter includes a first switch and a second switch connected in series.
  • the second switch arm is connected to the third switch side end of the second switch arm, and the first switch arm is connected to the second switch side end of the first switch arm and the fourth switch side end of the second switch arm.
  • the first switch arm, the second switch arm, and the power storage device are connected in parallel, and the first switch, the third switch, and the second switch are connected in parallel.
  • the fourth switch or said first switch, said third switch, said second switch and said fourth switch is constituted by a normally-on type switching element.
  • the AC voltage output system includes at least one arm in which a plurality of unit converters that output a predetermined voltage are connected in series, and the unit converter includes a first switch and a second switch connected in series.
  • the second switch arm is connected to the third switch side end of the second switch arm, and the first switch arm is connected to the second switch side end of the first switch arm and the fourth switch side end of the second switch arm.
  • the first switch arm, the second switch arm, and the power storage device are connected in parallel, and the first switch, the third switch, and the second switch are connected in parallel.
  • the fourth switch or the first switch, the third switch, the second switch, and the fourth switch are each configured by a switching element using a field-effect transistor that realizes a low on-voltage by using a two-dimensional electron gas. I have.
  • the AC voltage output system includes at least one arm in which a plurality of unit converters that output a predetermined voltage are connected in series, and the unit converter includes a first switch and a second switch connected in series.
  • the second switch arm is connected to the third switch side end of the second switch arm, and the first switch arm is connected to the second switch side end of the first switch arm and the fourth switch side end of the second switch arm.
  • the first switch arm, the second switch arm, and the power storage device are connected in parallel, and the first switch, the third switch, and the second switch are connected in parallel.
  • the fourth switch or said first switch, said third switch, said second switch and said fourth switch is constituted by a switching element using a field-effect transistor composed of a gallium nitride.
  • the AC voltage output system includes at least one arm in which a plurality of unit converters that output a predetermined voltage are connected in series, and the unit converter includes a first switch and a second switch connected in series.
  • the second switch arm is connected to the third switch side end of the second switch arm, and the first switch arm is connected to the second switch side end of the first switch arm and the fourth switch side end of the second switch arm.
  • the first switch arm, the second switch arm, and the power storage device are connected in parallel, and the first switch, the third switch, and the second switch are connected in parallel.
  • the fourth switch or the first switch, the third switch, the second switch, and the fourth switch are each configured by a switching element using a field-effect transistor formed of gallium nitride; An effect transistor is formed on silicon.
  • the power system control system includes a system control device that controls a power system to which an AC power distribution system or an AC power transmission system is connected, and the system control device is configured based on a frequency of the AC power distribution system or the AC power transmission system. Thus, the output of any one of the AC voltage output systems connected to the AC distribution system or the AC transmission system is controlled.
  • An electric power system is an electric power system to which an AC power distribution system or an AC power transmission system is connected, and any one of the AC voltage output systems is connected to the AC power distribution system or the AC power transmission system, and An output of the AC voltage output system is controlled based on a frequency of a system or the AC transmission system.
  • the power system control system includes a system control device that controls a power system to which an AC power distribution system or an AC power transmission system is connected, and the power system includes a plurality of the AC power distribution systems or a plurality of the AC power transmission systems. Connected in parallel, any one of the AC voltage output systems described above is connected to at least one of the plurality of AC power distribution systems or the plurality of AC power transmission systems, the system control device, the output of the AC voltage output system To control the power flow of the AC distribution system or the AC transmission system.
  • An electric power system is an electric power system to which an AC power distribution system or an AC power transmission system is connected, wherein a plurality of the AC power distribution systems or a plurality of the AC power transmission systems are connected in parallel, and a plurality of the AC power distribution systems. Any one of the AC voltage output systems described above is connected to at least one of a system or a plurality of the AC transmission systems, and the output of the AC voltage output system controls the power flow of the AC distribution system or the AC transmission system.
  • a DC power transmission system includes any one of the AC voltage output systems described above, wherein a DC power line is connected to the DC terminal, and DC power input from the DC power line to the DC terminal is converted into AC power. And output from the AC terminal.
  • a power generation system includes any one of the AC voltage output systems described above, and an active power source is connected to the DC terminal, and converts DC power input from the active power source to the DC terminal into AC power. Output from the AC terminal.
  • a battery system of the present invention includes any one of the AC voltage output systems described above.
  • the unit converter when the power supply for driving the switch of the unit converter is lost, the unit converter is short-circuited, so that the continuous operation can be performed even when the power supply for driving the switch is lost.
  • FIG. 1 is a schematic diagram illustrating a configuration of an AC voltage output system according to the present invention. It is a schematic diagram showing the composition of the unit converter of the alternating current voltage output system of the present invention.
  • FIG. 3A is a schematic cross-sectional view showing an example of an FET made of GaN.
  • FIG. 3B shows a GaN-FET and a control circuit of a gate driver and a unit converter for driving the gan-FET on the same silicon substrate. It is a schematic sectional drawing which shows an example when it is provided.
  • FIG. 4A is a schematic diagram showing an example of a configuration of a switching element in which a normally-on type switching element is improved to a normally-off type, and FIG.
  • 4B is a diagram showing the normally-off type switching element of FIG. It is the schematic which shows an example of the switching element improved to the type
  • an AC voltage output system 1 of the present embodiment is connected to an AC power distribution system (hereinafter simply referred to as a power distribution system) 510. It is used as a distribution system stabilizing device for receiving and transmitting power and stabilizing the distribution system 510.
  • the AC voltage output system 1 is connected to the distribution line of the distribution system 510 between the power system 50 and the load 56.
  • the power system 50 is grouped into circuit symbols indicating voltage sources, various system configurations are possible. For example, similar to a domestic power system or the like, the frequency may change depending on the relationship between power demand and supply.
  • the AC voltage output system 1 includes an R-phase arm 2R, an S-phase arm 2S, and a T-phase arm 2T as arms.
  • Each of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T includes four unit converters 3 that output a predetermined voltage, and the four unit converters 3 are connected in series.
  • each of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T is connected to the terminals 53u, 53v, 53w of the distribution lines 57u, 57v, 57w of the distribution system 510 via the reactors 150R, 150S, 150T.
  • the other end is star-connected at a connection point NP.
  • the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T are connected in parallel between the connection point NP and the power distribution system 510.
  • the unit converter 3 includes a first switch arm 13 in which a first switch 13H and a second switch 13L are connected in series, and a third switch 14H and a fourth switch 14L connected in series.
  • the power storage device 15 is configured by, for example, a secondary battery such as a lithium ion battery, a nickel hydride battery, and a nickel cadmium battery.
  • the power storage 15 is not particularly limited as long as the power can be charged and discharged, and may be a capacitor, an electric double layer capacitor, a DC flywheel, or the like.
  • the AC voltage output system 1 includes the power storage units 15 in which the unit converters 3 can charge and discharge power, it is possible to store electric energy by charging the power storage units 15, It can be used as a power storage device.
  • the unit converter 3 includes an end of the first switch arm 13 on the side of the first switch 13H, an end of the second switch arm 14 on the side of the third switch 14H, and one terminal of the power storage device 15 (in this embodiment, (Positive side), the end of the first switch arm 13 on the second switch 13L side, the end of the second switch arm 14 on the fourth switch 14L side, and other terminals of the power storage device 15 (this embodiment). In the figure, the minus side is connected. As described above, the unit converter 3 has a full bridge circuit configuration in which the first switch arm 13, the second switch arm 14, and the power storage unit 15 are connected in parallel.
  • the unit converter 3 is connected to a control circuit (not shown).
  • the first switch 13H, the second switch 13L, the third switch 14H, and the fourth switch 14L are provided with a drive voltage (for example, a drive voltage for controlling on / off of each switch).
  • a drive voltage for example, a drive voltage for controlling on / off of each switch.
  • a gate voltage in the case of a switching element constituted by an FET (field effect transistor).
  • the unit converter 3 is configured such that the first terminal FT is pulled out from the connection point 10 between the first switch 13H and the second switch 13L of the first switch arm 13, and the third switch 14H and the fourth switch 14L of the second switch arm 14 A second terminal ST is drawn out from a connection point 12 with the second terminal ST. Assuming that the voltage of the power storage unit 15 is V, the unit converter 3 turns on / off the first switch 13H, the second switch 13L, the third switch 14H, and the fourth switch 14L, thereby connecting the first terminal FT to the first terminal FT. A three-level voltage of ⁇ V and zero can be output between the second terminal ST. Note that each unit converter 3 may be configured to output the same voltage, and a different voltage may be output by appropriately changing the configuration (such as the capacity of a battery) of the power storage unit 15 of each unit converter 3. May be configured.
  • the first terminal FT of one unit converter 3 and the second terminal ST of another unit converter 3 are connected, and a plurality of unit converters 3 are connected in series. It is connected. Therefore, the AC voltage output system 1 switches the number of the unit converters 3 that output voltage in the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T, so that the number of the unit converters 3 is changed. Each arm can output a multi-step voltage. Further, the AC voltage output system 1 includes a control device that controls a control circuit of each unit converter 3.
  • the control device sends to the control circuit of each unit converter a command for the control circuit to control on / off of the switch of each unit converter, and outputs the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T.
  • the control device sends to the control circuit of each unit converter a command for the control circuit to control on / off of the switch of each unit converter, and outputs the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T.
  • the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T each include four unit converters 3 has been described, but the number of unit converters 3 included in each arm is described. Is not limited.
  • the number of unit converters 3 provided in each arm is large, the number of stages of the AC voltage output by the AC voltage output system 1 increases, and the waveform of the AC voltage is closer to a sine wave even when the switching frequency of each switching element is low. Can be a waveform. Therefore, the switching loss of the semiconductor can be reduced.
  • a voltage waveform close to a sine wave can be output, there is a merit that a harmonic filter can be eliminated or simplified.
  • high voltage can be output by using multiple stages, there is an advantage that the step-up / step-down transformer can be omitted depending on the system.
  • the first switch 13H and the third switch 13H are connected between the first terminal FT and the second terminal ST. 14H are connected in series (reverse series), and the second switch 13L and the fourth switch 14L are connected in series.
  • one of the switches connected in series between the first terminal FT and the second terminal ST is a first switch group 16
  • the other of the switches connected in series are referred to as a second switch group 17.
  • the unit converter 3 includes switches (the first switch 13H and the third switch 14H) of the first switch group 16, each switch (the second switch 13L and the fourth switch 14L) of the second switch group 17, or the first switch group.
  • Each of the switches (the first switch, the third switch, the second switch, and the fourth switch) of the switch group 16 and the second switch group 17 is configured by a normally-on type switching element.
  • the normally-on type switching element referred to in this specification refers to a switching element in which a switch is on when a driving voltage for controlling on / off of the switch is zero.
  • a normally-off type switching element is a switching element in which a switch is in an off state when a driving voltage is zero, and is generally used as a switch in the field of power electronics.
  • Si-MOSFET Insulated-gate bipolar transistor
  • IGBT gate turn-off thyristor
  • GCT Gate Commutated Turn-off thyristor
  • the unit converter 3 is configured such that each switch of the first switch group 16 is configured by an IGBT that is a normally-off type switching element, and each switch of the second switch group 17 is a normally-on type switching element.
  • IGBT an IGBT that is a normally-off type switching element
  • each switch of the second switch group 17 is a normally-on type switching element.
  • HEMT an FET made of GaN (gallium nitride)
  • GaN-FET is used as the HEMT.
  • This GaN-FET is a GaN-FET formed on Si (silicon), for example, on a Si substrate.
  • the HEMT is a field-effect transistor that realizes a lower on-state voltage than a normal FET that uses a high-mobility two-dimensional electron gas induced in a semiconductor heterojunction as a channel and applies a voltage to a gate to turn on. . Since the HEMT has a low on-voltage, it can reduce power consumption by switching the switch on and off, and since it is a high breakdown voltage FET, it is connected to a power distribution system of about 100 V to 6.6 kV or a higher voltage power transmission system. Suitable for the AC voltage output system 1. In particular, the GaN-FET has a lower switching loss than Si in a high voltage region, and is therefore more suitable for the AC voltage output system 1 that handles a high voltage.
  • the GaN-FET since the GaN-FET is formed on the Si substrate, it can be manufactured at lower cost than when the GaN-FET is formed on the GaN substrate, which is more preferable.
  • a normally-on depletion mode MOS-FET can also be used as a switching element using a field-effect transistor in which a low on-voltage is realized by a two-dimensional electron gas.
  • the GaN-FET 20 is formed on a Si substrate 21.
  • the GaN-FET 20 includes a GaN layer 22 formed on a Si substrate 21, an AlGaN layer 23 formed in contact with the GaN layer 22, a source electrode 24, a drain electrode 25 formed in contact with the AlGaN layer 23, and a gate.
  • the semiconductor device includes an insulating layer 27 and a gate electrode 26 formed in contact with the gate insulating layer 27.
  • a two-dimensional electron gas layer is formed at the interface between the AlGaN layer 23 and the GaN layer 22, and the two-dimensional electron gas layer becomes a conductive channel.
  • the switching element constituted by the GaN-FET 20 is in an on state even when the drive voltage applied to the gate electrode 26 is zero, and is a normally-on type.
  • the switching element constituted by the GaN-FET 20 by applying a negative drive voltage to the gate electrode 26, no current flows between the source electrode 24 and the drain electrode 25, and the switching element can be turned off.
  • a gate driver 28 for driving the GaN-FET 20 and a control circuit of the unit converter 3 may be mounted on the same Si substrate 21.
  • the GaN-FET 20 is enlarged for convenience of explanation.
  • the GaN-FET is not limited to the Si substrate, and may be formed on, for example, a SiC substrate or a GaN substrate.
  • a GaN-FET switching element formed on a Si substrate is used for the second switch 13L and the fourth switch 14L, and a switching element for the second switch 13L and a switching element for the fourth switch 14L are used.
  • the switching elements for the second switch 13L and the fourth switch 14L may be formed integrally.
  • a GaN-FET for the second switch 13L and a GaN for the fourth switch 14L may be formed on one Si substrate.
  • -An element in which an FET is formed may be used.
  • the first switch 13H and the third switch 14H may be formed integrally (on the same substrate) with the second switch 13L and the fourth switch 14L.
  • each switch of the first switch group 16 is a normally-off type switching element and each switch of the second switch group 17 is a normally-on type switching element.
  • a switch driving power supply for the control circuit to supply the driving voltage to the first switch 13H, the second switch 13L, the third switch 14H, and the fourth switch 14L fails, or the control circuit of the unit converter 3 fails.
  • the power supply for driving the switches (switching elements) of the unit converter 3 is lost due to the power supply line or disconnection of the power supply line, the drive voltage of each switch becomes zero, and the first switch 13H and the third switch 13H are driven. 14H is turned off, and the second switch 13L and the fourth switch 14L are turned on.
  • a short-circuit path is formed from the second terminal ST to the fourth switch 14L, the second switch 13L, and the first terminal FT in this order. Therefore, the unit converter 3 is in a state where the first terminal FT and the second terminal ST are short-circuited.
  • the AC voltage output system 1 of the present embodiment when the power for driving each switch of the unit converter 3 is lost, the first terminal FT and the second terminal ST are short-circuited, and the unit conversion is performed. Since the converter 3 is short-circuited and a current flows between the first terminal FT and the second terminal ST, the current does not stop flowing to the arm to which the unit converter belongs, and the operation can be continued. Further, in the AC voltage output system 1, since the first terminal FT and the second terminal ST are in a short-circuit state, the unit converter 3 is short-circuited between the first terminal FT and the second terminal ST. There is no need to provide a switch.
  • the unit converter 3 is a switch of the first switch group 16 (the first switch 13H and the third switch 14H) or a switch of the first switch group 16 and the second switch group 17 (the first switch 13H and the third switch 14H).
  • the second switch 13L and the fourth switch 14L) have the same effect even if they are constituted by normally-on type switching elements.
  • each switch (switching element) of the unit converter 3 is When the drive power supply is lost, the drive voltage of each switch becomes zero, the first switch 13H and the third switch 14H are turned on, and the second switch 13L and the fourth switch 14L are turned off. That is, a short-circuit path is formed from the second terminal ST to the first terminal FT via the first switch 13H, the third switch 14H, and the like in this order. Therefore, the unit converter 3 is in a state where the first terminal FT and the second terminal ST are short-circuited.
  • each switch (first switch 13H, third switch 14H, second switch 13L, and fourth switch 14L) of the first switch group 16 and the second switch group 17 is a normally-on type switching element
  • the unit is When the power supply for driving each switch (switching element) of the converter 3 is lost, the drive voltage of each switch becomes zero and all the switches are turned on. As a result, a short-circuit path from the second terminal ST to the first switch 13H, the third switch 14H, and the first terminal FT in this order, and the second switch 13L, the fourth switch 14L, and the like from the second terminal ST. A short-circuit path to the first terminal FT that passes in order is formed, and the first terminal FT and the second terminal ST are short-circuited.
  • the unit converter 3 is configured such that each switch (the first switch 13H and the third switch 14H) of the first switch group 16 or each of the first switch group 16 and the second switch group 17 Even when the switches (the first switch 13H, the third switch 14H, the second switch 13L, and the fourth switch 14L) are configured by normally-on switching elements, the power for driving each switch of the unit converter 3 is lost. Then, the first terminal FT and the second terminal ST are short-circuited, and the unit converter 3 is short-circuited.
  • the AC voltage output system 1 is connected to a power distribution system 510.
  • the power distribution system 510 connects the power system 50 and the load 56 by distribution lines 57u, 57v, 57w, and supplies power from the power system 50 to the load 56.
  • the frequency of the power system 50 is higher if the input of mechanical energy or light energy to a generator (not shown) is larger than the generator output, and if the input is lower, the frequency is lower. It is assumed that the system becomes lower.
  • the distribution line 57u has one end connected to the u phase of the power system 50 and the other end connected to the R phase of the load 56.
  • the distribution line 57v has one end connected to the v phase of the power system 50 and the other end connected to the S phase of the load 56.
  • the distribution line 57w has one end connected to the w phase of the power system 50 and the other end connected to the T phase of the load 56.
  • the power system 50 includes power generation facilities such as a generator, power transmission facilities such as an AC transmission system, transformer facilities such as a transformer, distribution facilities such as an AC distribution system, and customer facilities such as loads. It is a power transmission and distribution network and is controlled by a power system control system (not shown in FIG. 1) provided at a command center or the like.
  • the distribution system 510 and the load 56 are connected to such a power system 50.
  • the distribution line 57u has a terminal 53u to which the R-phase arm 2R of the AC voltage output system 1 is connected.
  • the distribution line 57v has a terminal 53v, and the S-phase arm 2S of the AC voltage output system 1 is connected to the terminal 53v.
  • the distribution line 57w has a terminal 53w, and the T-phase arm 2T of the AC voltage output system 1 is connected to the terminal 53w.
  • the AC voltage output system 1 is connected to the distribution system 510.
  • the load 56 is, for example, a customer such as a factory, or a machine or a manufacturing device possessed by the customer. Also, 52u, 52v, 52w and 51u, 51v, 51w in FIG.
  • the AC voltage output system 1 as a distribution system stabilizing device can stabilize the frequency of the distribution system 510.
  • a control device (not shown in FIG. 1) receives a detection result of a three-phase package or a frequency of each phase from a frequency measuring device (not shown in FIG. 1) provided in the power distribution system 510, and performs power distribution.
  • the frequency of the system 510 is monitored. Since a normal three-phase power system receives power supply from a three-phase generator, the frequency of each phase is the same.
  • the control device detects that the frequency of any phase has increased, it absorbs power from the phase (distribution line) having the increased frequency and detects that the frequency of any phase has decreased.
  • the unit converters 3 of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T are controlled so as to emit power to the phase whose frequency has decreased. For example, when the frequency of the u-phase of the distribution system 510 increases, the control device controls each switch of the unit converter 3 of the R-phase arm 2R to charge the power storage 15 with the u-phase voltage.
  • the control device controls each switch of the unit converter 3 of the R-phase arm 2R, so that the power storage unit 15 discharges to the u-phase. Power is released from the arm 2R to the u-phase to increase the frequency of the u-phase.
  • the distribution system stabilizing device using the AC voltage output system 1 can stabilize the frequency of the distribution system 510.
  • the frequency of the power distribution system 510 fluctuates due to an imbalance in power supply and demand during a system accident due to a lightning strike or the like.
  • a generator (not shown) of the power system 50 loses synchronism.
  • the AC voltage output system 1 prevents such a situation.
  • a lightning strike or the like easily damages the AC voltage output system 1 and the power supply for driving each switch of the unit converter 3 is changed. Sometimes they are lost. If the AC voltage output system 1 is according to the present invention, the operation can be continued even in a state where the driving power supply is partially lost, so that robustness against frequency fluctuations and generator step-out can be improved.
  • the control device of the AC voltage output system 1 controls the output to the power distribution system 510 for each phase based on the frequency of each phase of the power distribution system 510 to which the AC voltage output system 1 is connected. It has been described that the frequency of each phase of the system 510 has been stabilized.
  • the system control device (not shown in FIG. 1) of the above-described power system control system that controls the power system 50 to which the power distribution system 510 is connected includes Control for stabilizing the frequency may be performed.
  • the system control device controls the output of the AC voltage output system 1 connected to the power distribution system 510 for each phase based on the frequency of each phase of the power distribution system 510, and adjusts the frequency of each phase of the power distribution system 510. Stabilize.
  • the control method of the frequency stabilization is the same as that of the control device of the AC voltage output system 1, and the description is omitted.
  • the control device controls the switch of each unit converter 3 of the S-phase arm 2S to charge the power storage unit 15 of the unit converter 3 with the w-phase voltage. Absorb power and eliminate excess power.
  • the control device controls the switch of each unit converter 3 of the R-phase arm 2R, so that the power storage unit 15 discharges to the u-phase, and the R-phase arm 2R discharges the power to the u-phase, and the power is insufficient.
  • the power distribution system stabilizing device supplies power to the u-phase with insufficient power, absorbs power from the w-phase with excessive power, adjusts the imbalance of power between phases, and stabilizes the power distribution system 510.
  • the distribution system stabilization device can also balance the line voltage between the distribution lines 57u, 57w, and 57v of the distribution system 510.
  • a control device (not shown in FIG. 1) monitors the voltage of each phase of the power distribution system 510. When the control device detects the imbalance of the line voltage from the voltage of each phase, the AC voltage output system 1 outputs a high voltage to the phase where the voltage has increased and outputs a low voltage to the phase where the voltage has decreased.
  • the unit converters 3 of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T are controlled so as to perform the operations.
  • the control device controls the switches of the unit converters 3 of the R-phase arm 2R and the S-phase arm 2S, A high voltage is output to the u-phase and a low voltage is output to the w-phase to balance the line voltage between the distribution line 57u and the distribution line 57w.
  • the distribution system stabilizing device can stabilize the distribution system 510 by balancing the line voltages between the distribution lines 57u, 57w, and 57v of the distribution system 510.
  • the effect of lightning differs between the phases of the distribution system 510, and a ground fault occurs only in a specific phase, and imbalance of the interphase voltage occurs even when the load is dropped. Further, due to the lightning strike, the driving power supply of the corresponding phase of the AC voltage output system 1 may be lost at the same time. If the AC voltage output system 1 is according to the present invention, the operation can be continued even in a state where the driving power supply is partially lost, so that robustness against frequency fluctuations and generator step-out can be improved.
  • the distribution system stabilizing device using the AC voltage output system 1 can control the frequency of each phase, adjust the excess or deficiency of power between phases, cancel the imbalance of voltage between phases,
  • the power distribution system 510 can be stabilized.
  • the power distribution system stabilizing device includes the AC voltage output system 1, even when the power for driving the switch of the unit converter 3 of the AC voltage output system 1 is lost, the power distribution system stabilization device can be continuously operated, and the reliability is higher.
  • the AC voltage output system 1 can be connected to an AC power transmission system that connects between power systems instead of the AC power distribution system 510, and can be applied as a stabilizing device for the AC power transmission system.
  • the AC voltage output system 1 is for three-phase AC, but one arm can be removed for single-phase AC. Further, by removing the two arms and connecting the remaining one arm between the single-phase terminals at the interconnection point, it is also possible to use a single-phase terminal.
  • the AC voltage output system 1 has at least one arm (R-phase arm 2R, S-phase arm 2S) to which a plurality of unit converters 3 each outputting a predetermined voltage are connected in series.
  • T-phase arm 2T the unit converter 3 includes a first switch arm 13 in which a first switch 13H and a second switch 13L are connected in series, and a third switch 14H and a fourth switch 14L in series.
  • a second switch arm 14 and a chargeable / dischargeable power storage unit 15 are connected, and an end of the first switch arm 13 on the first switch 13H side and an end of the second switch arm 14 on the third switch 14H side are provided.
  • the first switch arm 13 is connected to an end of the first switch arm 13 on the second switch 13L side and an end of the second switch arm 14 on the fourth switch 14L side.
  • the second switch arm 14 and the power storage 15 are configured to be connected in parallel, and the first switch 13H and the third switch 14H, the second switch 13L and the fourth switch 14L or the first switch 13H, the third switch 14H,
  • the second switch 13L and the fourth switch 14L are constituted by normally-on switching elements.
  • the AC voltage output system 1 of the present invention when the power supply for driving the switch of the unit converter 3 is lost, the first terminal FT and the second terminal ST are short-circuited, and the unit converter 3 is short-circuited. In this state, the operation can be continued even when the power for driving the switch is lost. Therefore, the AC voltage output system 1 can omit the short-circuit switch. Furthermore, if the unit converter 3 is housed in one case together with control means for measuring the SOC (state of charge), SOH (state of health), etc. of the battery, the unit converter 3 functions as a battery pack with a built-in converter. Exchange can be performed smoothly when the battery has deteriorated.
  • a plurality of unit converters 3 may be incorporated in one case having a low explosion-proof function.
  • the first switch 13H and the second switch 13L of the unit converter 3 are erroneously turned on. Even if a PN short circuit occurs, the voltage is low, so that the risk of the switching element exploding is sufficiently low.
  • a concave portion and a convex portion are provided in each case so that a convex portion of another case can be inserted into a concave portion of one case, it is easy to connect a large number of battery packs in multiple stages.
  • the HEMT which is a normally-on type switching element, includes the first switch 13H and the third switch 14H, the second switch 13L and the fourth switch 14L, or the first switch 13H, the second switch 13L, and the third switch 13H. It has been described that the switch 14H and the fourth switch 14L (see FIG. 2) are used.
  • a normally-on type switching element such as a HEMT is often commercially available as a normally-off type switching element after adding a normally-off circuit.
  • Such a normally-off normally-on type switching element (hereinafter, referred to as an N-OFF switching element for convenience of description) is also provided when a driving power supply is lost by adding a circuit described later.
  • the normally-on type switching element can be used as the switch (first switch, second switch, third switch, and fourth switch) of the above embodiment.
  • the switch first switch, second switch, third switch, and fourth switch
  • FIG. 4A is a diagram showing an example of an N-OFF switching element.
  • the N-OFF switching element 30 shown in FIG. 4A includes a normally-on switching element 29 (for example, a GaN-FET that is a HEMT) and a normally-off switching element 31 (for example, a Si-MOSFET). You have a connected configuration.
  • 4A is a source-side terminal of the N-OFF switching element 30, and D is a drain-side terminal of the N-OFF switching element 30.
  • a normally-on switching element 29 is disposed on the drain terminal D side, and a normally-off switching element 31 is disposed on the source side.
  • the gate 29 ⁇ / b> G of the normally-on type switching element 29 is connected to a wiring closer to the source than the normally-off type switching element 31.
  • the gate 31G of the normally-off switching element 31 is connected to a control circuit (not shown in FIG. 4A) of the N-OFF switching element 30, and a drive voltage for driving the normally-off switching element 31 is , From the control circuit to the gate 31G.
  • the normally-off switching element 31 when a positive driving voltage is applied to the gate 31G from the control circuit, the normally-off switching element 31 is turned on, and the normally-on switching element 29 is connected to the gate 29G. Since the applied voltage becomes equal to the source voltage of the switching element 29, the switching element 29 is turned on.
  • the normally-off type switching element 31 is turned off.
  • the gate voltage of the normally-on switching element 29 is lower than the source voltage of the normally-on switching element 29, the normally-on switching element 29 is also turned off.
  • the N-OFF switching element 30 cascode-connects the normally-on switching element 29 and the normally-off switching element 30 to make the normally-on switching element 29 normally-off. I have.
  • N-OFF switching element 30 which is a switching element in which a normally-on switching element 29 is normally-off, is normally-on when a driving power supply is lost.
  • N-ON switching element a switching element in which the N-OFF switching element 30 is normally on.
  • the N-ON switching element 37 includes a normally-on switching element 29 and a normally-off switching element 31 (the N-OFF switching element 30 shown in FIG. , A resistor 32, a Zener diode 33, and a drive voltage supply switching element 34.
  • the resistor 32 is inserted between the gate 31G and the drain terminal D of the normally-off type switching element 31.
  • the Zener diode 33 is inserted between the gate 31G and the source terminal S, the anode is connected to the source terminal S side, and the cathode is connected to the gate 31G side.
  • the gate 31G, the resistor 32, and the Zener diode 33 are connected.
  • the specifications of the resistor 32 and the Zener diode 33 are appropriately set according to the threshold voltage of the normally-off type switching element 31 and the like.
  • the drain of the drive voltage supply switching element 34 is connected to the connection point 35.
  • the drive voltage supply switching element 34 is connected to the control circuit (not shown in FIG. 4B) of the N-ON switching element 37 that supplies the drive voltage of the normally-off type switching element 31 to the source.
  • the drive voltage supply switching element 34 is provided to cut off the control circuit and the connection point 35 when the power is lost.
  • the gate 34G of the drive voltage supply switching element 34 is normally in the ON state.
  • the drive voltage supply switching element 34 is connected to a power supply circuit of a control circuit of the N-ON switching element 37. When the drive voltage supply switching element 34 is in the ON state, the control circuit can drive the gate 34G.
  • the switching element for driving voltage supply 34 is turned off, and the connection point 35 is cut off from the control circuit.
  • the voltage at the connection point 35 rises to the voltage allowed by the Zener diode 33.
  • the increased voltage at the connection point 35 is applied to the gate 31G of the switching element 31 and is higher than the driving voltage of the switching element 31, so that the switching element 31 is turned on.
  • the N-ON switching element 37 is turned on.
  • the N-ON switching element 37 is turned on when the driving power supply is lost and the driving voltage is not supplied. Therefore, even if the N-ON switching element 37 is used as a normally-on type switching element for the switch of the unit converter 3 of the above-described embodiment, the same effect as in the above-described embodiment can be obtained.
  • the second switch 13L and the fourth switch 14L of the unit converter 3 shown in FIG. 2 are provided with GaN-FETs formed on a Si substrate as normally-on switching elements (see FIG. 3A).
  • the normally-on type switching element may be one in which a GaN-FET for the second switch 13L and a GaN-FET for the fourth switch 14L are integrally formed on one Si substrate. He explained that.
  • the present invention further provides, for example, a device in which a control circuit of the unit converter 3 is formed with a GaN-FET for the second switch 13L and a GaN-FET for the fourth switch 14L on a Si substrate mounted on Si. It may be used as a marion type switching element.
  • circuits mounted on the Si substrate include, for example, a circuit corresponding to a control device that controls a control circuit of each unit converter 3 of the AC voltage output system 1, a circuit corresponding to a gate driver, and the like.
  • a GaN-FET for the first switch 13H and a third switch 14H are provided on the Si substrate on which the circuit is formed. GaN-FET is formed.
  • a normally-off type switching element used for a switch other than a switch using a normally-on type switching element may be formed on a Si substrate on which a circuit is formed.
  • Each switch (first switch) of the unit converter 3 such as a circuit corresponding to a control device that controls the control circuit of the unit converter 3 or the control circuit of each unit converter 3 of the AC voltage output system 1, a circuit corresponding to a gate driver, etc. All the elements and all the switches that constitute a circuit for driving at least one of the switch 13H, the second switch 13L, the third switch 14H, and the fourth switch 14L) may be mounted on Si. Only the element may be mounted on Si.
  • the present invention is not limited to this, and one arm of the AC voltage output system is used. And can be used for single-phase alternating current.
  • the AC voltage output system 1 can be used for power flow control of distribution systems 510 and 610 connected in parallel between the power system 50 and the power system 59.
  • the power system 50 and the power system 59 are interconnected by the power distribution system 510 and the power distribution system 610. Both ends of the distribution system 610 are connected to the distribution system 510, and the distribution system 510 and the distribution system 610 are connected in parallel.
  • the AC voltage output system 1 is connected to terminals 53u, 53v, 53w of each phase of the distribution system 510.
  • a load (not shown in FIG. 5) is connected to each of the power distribution system 510 and the power distribution system 610.
  • the distribution system stabilization device controls the frequency of each phase, adjusts the excess or deficiency of power between the phases, and controls the voltage between the phases, similarly to the distribution system stabilization device shown in FIG. Or cancel the imbalance.
  • the power distribution system stabilizing device can eliminate the situation in which the power flow between the power system 50 and the power system 59 is unbalanced in the power distribution system 510 and the power distribution system 610. For example, when the power flow of the distribution system 510 is excessive, the power storage 15 of the unit converter 3 of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T is charged by the voltage of the distribution system 510, and The power flow is reduced by absorbing power.
  • the unit conversion of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T is performed.
  • the power flow is increased by discharging the power storage unit 15 of the unit 3 and supplying power to the distribution system 510.
  • the tide can be increased by increasing the output voltage (voltage at the interconnection point).
  • the AC voltage output system 1 that exchanges power with the distribution system 510 can eliminate excess or deficiency of the power flow in the distribution system. Further, the power distribution system stabilizing device using the AC voltage output system 1 can be continuously operated even when the power for driving the switch of the unit converter 3 of the AC voltage output system 1 is lost, and is more reliable.
  • the AC voltage output system 1 may be connected to the distribution system 610 instead of the distribution system 510. A plurality of AC voltage output systems 1 may be prepared, and the AC voltage output systems 1 may be connected to both the distribution system 510 and the distribution system 610, respectively.
  • control device of AC voltage output system 1 connected to one (distribution system 510) of a plurality of distribution systems 510 and 610 connected in parallel controls the power flow of distribution system 510 and distribution system 610.
  • the present invention is not limited to this.
  • a power system control device of the power system control system that controls the power system 50, the power system 59, or both, to which the power distribution system 510 is connected, controls the output of the AC voltage output system 1 connected to the plurality of power distribution systems 510, and The power flow of the system 510 and the power distribution system 610 may be controlled.
  • the method of controlling the power flow is the same as that in the case where the control device of the AC voltage output system 1 controls the power flow, and a description thereof will be omitted.
  • the AC voltage output system 1 may be connected to an AC transmission system that connects between power systems instead of the distribution system 510, and may be applied as a stabilizing device for the AC transmission system.
  • the AC voltage output system 1 of the present invention has a power storage unit 15 in which each unit converter 3 can charge and discharge, stores power, and at a predetermined timing. Since the stored power can be output as an AC voltage, it is used for various battery systems such as UPS (uninterruptible power supply) and electric vehicle batteries, and converters for DC power transmission, in addition to power distribution system stabilizing devices. be able to.
  • UPS uninterruptible power supply
  • electric vehicle batteries and converters for DC power transmission, in addition to power distribution system stabilizing devices. be able to.
  • the AC voltage output system 1 can also be used as a UPS.
  • AC voltage output system 1 is connected to a commercial AC power supply, receives a power from the commercial AC power supply, a power storage unit that stores the power received by the power reception unit, and a power storage unit.
  • a power supply unit that supplies the stored electric power to electric devices and electronic devices.
  • the AC voltage output system is used as the power storage unit and functions as a UPS.
  • the AC voltage output system 1 functioning as the UPS charges an electric power storage of each unit converter of the AC voltage output system with electric power from a commercial AC power supply, and outputs the AC voltage output when the commercial AC power supply is cut off. Outputs an AC voltage, and supplies the AC voltage to an electric device or an electronic device via a power supply unit. Since the UPS includes the AC voltage output system of the present invention, the UPS can be continuously operated even when the power supply for driving the switch of the unit converter 3 of the AC voltage output system is lost, and the UPS is more reliable.
  • the AC voltage output system 1 When used for a battery of an electric vehicle, the AC voltage output system 1 is connected to each phase of a three-phase AC motor instead of the power system 50 shown in FIG. Further, it is preferable to use a large-capacity secondary battery as the power storage unit 15 of each unit converter 3. Further, a terminal for charging the power storage device 15 from outside the electric vehicle is connected to each arm of the AC voltage output system 1.
  • the battery provided with the AC voltage output system 1 is a three-phase battery that converts the power stored in the AC voltage output system 1 by charging the power storage unit 15 with the power supplied from the outside to the AC voltage output system 1. Supply to each phase of the AC motor to rotate the motor. At this time, the power storage 15 of the AC voltage output system 1 can be charged by the voltage regenerated by the motor.
  • the battery of the conventional electric vehicle is a secondary battery such as a lithium ion battery
  • an inverter for converting a DC voltage output by the secondary battery into an AC voltage is required.
  • the battery and the inverter can be replaced with the AC voltage output system 1, and these configurations can be omitted.
  • the battery of the electric vehicle is provided with the AC voltage output system 1, the battery can be continuously operated even when the power supply for driving the switch of the unit converter 3 of the AC voltage output system 1 of the present invention is lost, and the reliability is further improved. high.
  • the AC voltage output system 1 can be applied to batteries of vehicles other than electric vehicles.
  • each of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T is star-connected, and the other end is connected to each phase of the power distribution system via the reactors 150R, 150S, 150T.
  • the form of the AC voltage output system can be variously changed. For example, as in an AC voltage output system 110 shown in FIG.
  • a leg 110R in which two arms 112R are connected in series also referred to as an R-phase leg
  • a leg 110S in which two arms 112S are connected in series S-phase
  • a leg 110T also referred to as a T-phase leg
  • two arms 112T are connected in series, and one end and the other end are connected in parallel, and an AC voltage output system is connected in parallel. It may be 110.
  • Each of the arms 112R, 112S, and 112T (also referred to as an R-phase arm, an S-phase arm, and a T-phase arm) of the AC voltage output system 110 illustrated in FIG. 6 includes three unit converters 3 and a reactor 103, and the reactor 103 has an end portion. Are connected in series to come in. In the example shown in FIG. 6, the configuration of each arm 112R, 112S, 112T is the same. In each of the legs 110R, 110S, and 110T, the reactors 103 of the arms 112R, 112S, and 112T are connected to each other and connected in series.
  • Each leg 110R, 110S, 110T has a DC terminal P1, N1 at each end for transferring DC power, and AC terminals 113R, 113S, 113T for transferring AC power at a connection point between the arms. ing. In the AC voltage output system 110, the legs 110R, 110S, 110T share one DC terminal P1, N1 because their ends are connected to each other.
  • the AC terminals 113R, 113S, 113T are connected to the u-phase, v-phase, and w-phase of the power system 50, respectively. Therefore, the AC voltage output system 110 has a configuration in which the legs 110R, 110S, and 110T are star-connected by the DC terminal P1 and the DC terminal N1.
  • the unit converter 3 of each arm 112R, 112S, 112T is the unit converter 3 shown in FIG. 2 and has a full bridge circuit configuration.
  • the AC voltage output system 110 is connected between the DC terminal P1 and the DC terminal N1 of each leg 110R, 110S, 110T, for example, by connecting an active power source 105 such as a prime mover, a solar power generation device, or a wind power generation device. It can be used for a power generation system that converts DC power generated by a prime mover into multi-stage AC power according to the number of unit converters 3 and outputs the AC power to each phase of the power system 50. Further, the AC voltage output system 110 converts a DC power input from the DC power transmission line into a multi-stage AC power by connecting a DC power transmission line to the DC terminal P1 and the DC terminal N1 so that each phase of the power system 50 is connected.
  • an active power source 105 such as a prime mover, a solar power generation device, or a wind power generation device. It can be used for a power generation system that converts DC power generated by a prime mover into multi-stage AC power according to the number of unit converters 3 and outputs the AC power to
  • the AC voltage output system 110 can also convert the AC power input from the power system 50 into DC power, output the DC power to a DC transmission line, and perform DC power transmission.
  • the unit converter 3 has a full-bridge configuration, there is an advantage that a DC output voltage is reduced at the time of a DC short-circuit accident due to a lightning strike or the like, and a short-circuit current can be suppressed.
  • Such an AC voltage output system 110 includes at least one arm (arms 112R, 112S, and 112T) in which a plurality of unit converters 3 that output a predetermined voltage are connected in series.
  • a first switch arm 13 in which a switch 13H and a second switch 13L are connected in series; a second switch arm 14 in which a third switch 14H and a fourth switch 14L are connected in series; 15, an end of the first switch arm 13 on the first switch 13H side and an end of the second switch arm 14 on the third switch 14H side, and an end of the first switch arm 13 on the second switch 13L side.
  • the end of the second switch arm 14 on the side of the fourth switch 14L, the first switch arm 13, the second switch arm 14, and the power storage 15 are connected in parallel, and the first switch 13H and the third switch 14H, the second switch 13L and the fourth switch 14L or the first switch 13H, the third switch 14H, the second switch 13L and the fourth switch 14L Are composed of normally-on type switching elements.
  • the AC voltage output system 110 may lose power for driving the switches of the unit converter 3.
  • the AC voltage output system 110 is in a state where the unit converter 3 is short-circuited when the power for driving the switch of the unit converter 3 is lost, so that the continuous operation is performed even when the power for driving the switch is lost. can do. Therefore, the AC voltage output system 110 can omit the short-circuit switch.
  • the AC voltage output system 110 shown in FIG. 6 is for three-phase AC, but can be used for single-phase by removing two legs. Further, the number of unit converters 3 included in each arm 112R, 112S, 112T is not limited. In this example, the AC voltage output system 110 is connected to the power system 50, but may be connected to an AC distribution system or a DC distribution system connected to the power system.

Abstract

Provided are an AC voltage output system, a power system control system, a power system, a DC power transmission system, a power generation system, and a battery system, with which operation can be continued even when a power source for driving a switch has been lost. The AC voltage output system comprises at least one arm to which a plurality of unit converters 3 that output a prescribed voltage are connected in series. Each unit converter 3 comprises: a first switch arm 13 to which a first switch 13H and a second switch 13L are connected in series; a second switch arm 14 to which a third switch 14H and a fourth switch 14L are connected in series; and a power reservoir 15 that can be charged and discharged. The end on the first switch 13H side of the first switch arm 13 is connected to the end on the third switch 14H side of the second switch arm 14, and the end on the second switch 13L side of the first switch arm 13 is connected to the end on the fourth switch 14L side of the second switch arm 14, and the first switch arm 13, the second switch arm 14, and the power reservoir 15 are connected in parallel. The first switch 13H and the third switch 14H, the second switch 13L and the fourth switch 14L, or the first switch 13H, the third switch 14H, the second switch 13L, and the fourth switch 14L are each constituted by a normally-on switching element.

Description

交流電圧出力システム、電力系統制御システム、電力系統、直流送電システム、発電システム及びバッテリシステムAC voltage output system, power system control system, power system, DC transmission system, power generation system and battery system
 本発明は、交流電圧出力システム、電力系統制御システム、電力系統、直流送電システム、発電システム及びバッテリシステムに関する。 The present invention relates to an AC voltage output system, a power system control system, a power system, a DC power transmission system, a power generation system, and a battery system.
 高効率に電力変換可能な蓄電システムとして、スイッチ回路(電力変換回路)と直流電源(蓄電器)とを接続して構成した単位変換器が、複数、直列に接続されてなり、各単位変換器の電源回路の出力電圧を合成して出力するように構成された多重化インバータ方式の蓄電システムが知られている(特許文献1参照)。 As a power storage system capable of high-efficiency power conversion, a plurality of unit converters configured by connecting a switch circuit (power conversion circuit) and a DC power supply (capacitor) are connected in series. 2. Description of the Related Art A multiplex inverter type power storage system configured to combine and output output voltages of a power supply circuit is known (see Patent Document 1).
 特許文献1に開示されている蓄電システムでは、複数の単位変換器が直列に接続されているため、制御装置が故障したり、スイッチ駆動用の電源が故障したり、電力の供給線が切断されたりして、1つの単位変換器のスイッチの駆動用電源が喪失し、当該単位変換器が動作できなくなると、他の単位変換器も運転をやめ、蓄電システムの運転をとめなくてはならなくなる。 In the power storage system disclosed in Patent Literature 1, since a plurality of unit converters are connected in series, a control device fails, a power supply for driving a switch fails, or a power supply line is disconnected. As a result, when the power supply for driving the switch of one unit converter is lost and the unit converter cannot operate, the other unit converters also need to stop operating and stop operating the power storage system. .
 特許文献1に開示されている蓄電システムのような複数の単位変換器が直列に接続されたシステムにおいて、複数の単位変換器の内の1つの単位変換器の電源が喪失したときもシステムを継続運転させる手法として、特許文献2には、短絡スイッチを各単位変換器に設け、単位変換器が電源喪失したときに、短絡スイッチをオンにして電源喪失した単位変換器を短絡することが開示されている(特許文献2参照)。 In a system in which a plurality of unit converters are connected in series, such as the power storage system disclosed in Patent Document 1, the system is continued even when the power of one of the unit converters is lost. As a method of operating the unit converter, Patent Document 2 discloses that a short-circuit switch is provided in each unit converter, and when the unit converter loses power, the short-circuit switch is turned on to short-circuit the unit converter that has lost power. (See Patent Document 2).
特開2006-174663号公報JP 2006-174663 A 特開2011-193615号公報JP 2011-193615 A
 しかしながら、従来の蓄電システムでは、スイッチの駆動用電源が喪失したときに交流電圧出力システムを継続運転するためには、単位変換器に短絡スイッチを設け、電源喪失した単位変換器を短絡する必要があった。短絡スイッチはサイズが大きいため、交流電圧出力システムのサイズも大きくなってしまう。また、短絡スイッチを設けることでコストも増大する。そのため、短絡スイッチを設ける必要のない、スイッチの駆動用電源が喪失したときも継続運転できる交流電圧出力システムが求められている。 However, in the conventional power storage system, in order to continue the operation of the AC voltage output system when the power for driving the switch is lost, it is necessary to provide a short-circuit switch in the unit converter and short-circuit the unit converter in which the power is lost. there were. The large size of the short-circuit switch also increases the size of the AC voltage output system. Also, providing a short-circuit switch increases costs. Therefore, there is a need for an AC voltage output system that does not require a short-circuit switch and that can be continuously operated even when the power for driving the switch is lost.
 そこで、本発明は、上記のような問題に鑑みてなされたものであり、スイッチの駆動用電源が喪失したときも継続運転できる、交流電圧出力システム、電力系統制御システム、電力系統、直流送電システム、発電システム及びバッテリシステムを提供することを目的とする。 Therefore, the present invention has been made in view of the above-described problems, and allows an AC voltage output system, a power system control system, a power system, and a DC power transmission system that can be continuously operated even when a power supply for driving a switch is lost. , A power generation system and a battery system.
 本発明による交流電圧出力システムは、所定電圧を出力する複数の単位変換器が直列に接続されたアームを少なくとも1つ備え、前記単位変換器が、第1スイッチと第2スイッチとが直列に接続された第1スイッチアームと、第3スイッチと第4スイッチとが直列に接続された第2スイッチアームと、充放電できる電力貯蔵器とを備え、前記第1スイッチアームの前記第1スイッチ側端部と前記第2スイッチアームの前記第3スイッチ側端部とが接続され、前記第1スイッチアームの前記第2スイッチ側端部と前記第2スイッチアームの前記第4スイッチ側端部とが接続されて、前記第1スイッチアーム、前記第2スイッチアーム及び前記電力貯蔵器が並列に接続された構成をし、前記第1スイッチ及び前記第3スイッチ、前記第2スイッチ及び前記第4スイッチ又は前記第1スイッチ、前記第3スイッチ、前記第2スイッチ及び前記第4スイッチがノーマリーオン型のスイッチング素子で構成されている。 The AC voltage output system according to the present invention includes at least one arm in which a plurality of unit converters that output a predetermined voltage are connected in series, and the unit converter includes a first switch and a second switch connected in series. A first switch arm, a second switch arm in which a third switch and a fourth switch are connected in series, and a chargeable / dischargeable power storage unit, and the first switch side end of the first switch arm. The second switch arm is connected to the third switch side end of the second switch arm, and the first switch arm is connected to the second switch side end of the first switch arm and the fourth switch side end of the second switch arm. The first switch arm, the second switch arm, and the power storage device are connected in parallel, and the first switch, the third switch, and the second switch are connected in parallel. And the fourth switch or said first switch, said third switch, said second switch and said fourth switch is constituted by a normally-on type switching element.
 本発明による交流電圧出力システムは、所定電圧を出力する複数の単位変換器が直列に接続されたアームを少なくとも1つ備え、前記単位変換器が、第1スイッチと第2スイッチとが直列に接続された第1スイッチアームと、第3スイッチと第4スイッチとが直列に接続された第2スイッチアームと、充放電できる電力貯蔵器とを備え、前記第1スイッチアームの前記第1スイッチ側端部と前記第2スイッチアームの前記第3スイッチ側端部とが接続され、前記第1スイッチアームの前記第2スイッチ側端部と前記第2スイッチアームの前記第4スイッチ側端部とが接続されて、前記第1スイッチアーム、前記第2スイッチアーム及び前記電力貯蔵器が並列に接続された構成をし、前記第1スイッチ及び前記第3スイッチ、前記第2スイッチ及び前記第4スイッチ又は前記第1スイッチ、前記第3スイッチ、前記第2スイッチ及び前記第4スイッチが二次元電子ガスによって低オン電圧を実現した電界効果型トランジスタを用いたスイッチング素子で構成されている。 The AC voltage output system according to the present invention includes at least one arm in which a plurality of unit converters that output a predetermined voltage are connected in series, and the unit converter includes a first switch and a second switch connected in series. A first switch arm, a second switch arm in which a third switch and a fourth switch are connected in series, and a chargeable / dischargeable power storage unit, and the first switch side end of the first switch arm. The second switch arm is connected to the third switch side end of the second switch arm, and the first switch arm is connected to the second switch side end of the first switch arm and the fourth switch side end of the second switch arm. The first switch arm, the second switch arm, and the power storage device are connected in parallel, and the first switch, the third switch, and the second switch are connected in parallel. And the fourth switch or the first switch, the third switch, the second switch, and the fourth switch are each configured by a switching element using a field-effect transistor that realizes a low on-voltage by using a two-dimensional electron gas. I have.
 本発明による交流電圧出力システムは、所定電圧を出力する複数の単位変換器が直列に接続されたアームを少なくとも1つ備え、前記単位変換器が、第1スイッチと第2スイッチとが直列に接続された第1スイッチアームと、第3スイッチと第4スイッチとが直列に接続された第2スイッチアームと、充放電できる電力貯蔵器とを備え、前記第1スイッチアームの前記第1スイッチ側端部と前記第2スイッチアームの前記第3スイッチ側端部とが接続され、前記第1スイッチアームの前記第2スイッチ側端部と前記第2スイッチアームの前記第4スイッチ側端部とが接続されて、前記第1スイッチアーム、前記第2スイッチアーム及び前記電力貯蔵器が並列に接続された構成をし、前記第1スイッチ及び前記第3スイッチ、前記第2スイッチ及び前記第4スイッチ又は前記第1スイッチ、前記第3スイッチ、前記第2スイッチ及び前記第4スイッチが窒化ガリウムで構成された電界効果型トランジスタを用いたスイッチング素子で構成されている。 The AC voltage output system according to the present invention includes at least one arm in which a plurality of unit converters that output a predetermined voltage are connected in series, and the unit converter includes a first switch and a second switch connected in series. A first switch arm, a second switch arm in which a third switch and a fourth switch are connected in series, and a chargeable / dischargeable power storage unit, and the first switch side end of the first switch arm. The second switch arm is connected to the third switch side end of the second switch arm, and the first switch arm is connected to the second switch side end of the first switch arm and the fourth switch side end of the second switch arm. The first switch arm, the second switch arm, and the power storage device are connected in parallel, and the first switch, the third switch, and the second switch are connected in parallel. And the fourth switch or said first switch, said third switch, said second switch and said fourth switch is constituted by a switching element using a field-effect transistor composed of a gallium nitride.
 本発明による交流電圧出力システムは、所定電圧を出力する複数の単位変換器が直列に接続されたアームを少なくとも1つ備え、前記単位変換器が、第1スイッチと第2スイッチとが直列に接続された第1スイッチアームと、第3スイッチと第4スイッチとが直列に接続された第2スイッチアームと、充放電できる電力貯蔵器とを備え、前記第1スイッチアームの前記第1スイッチ側端部と前記第2スイッチアームの前記第3スイッチ側端部とが接続され、前記第1スイッチアームの前記第2スイッチ側端部と前記第2スイッチアームの前記第4スイッチ側端部とが接続されて、前記第1スイッチアーム、前記第2スイッチアーム及び前記電力貯蔵器が並列に接続された構成をし、前記第1スイッチ及び前記第3スイッチ、前記第2スイッチ及び前記第4スイッチ又は前記第1スイッチ、前記第3スイッチ、前記第2スイッチ及び前記第4スイッチが、窒化ガリウムで構成された電界効果型トランジスタを用いたスイッチング素子で構成されており、前記電界効果型トランジスタがシリコン上に形成されている。 The AC voltage output system according to the present invention includes at least one arm in which a plurality of unit converters that output a predetermined voltage are connected in series, and the unit converter includes a first switch and a second switch connected in series. A first switch arm, a second switch arm in which a third switch and a fourth switch are connected in series, and a chargeable / dischargeable power storage unit, and the first switch side end of the first switch arm. The second switch arm is connected to the third switch side end of the second switch arm, and the first switch arm is connected to the second switch side end of the first switch arm and the fourth switch side end of the second switch arm. The first switch arm, the second switch arm, and the power storage device are connected in parallel, and the first switch, the third switch, and the second switch are connected in parallel. The fourth switch or the first switch, the third switch, the second switch, and the fourth switch are each configured by a switching element using a field-effect transistor formed of gallium nitride; An effect transistor is formed on silicon.
 本発明による電力系統制御システムは、交流配電系統又は交流送電系統が接続された電力系統を制御する系統制御装置を備え、前記系統制御装置が、前記交流配電系統又は前記交流送電系統の周波数に基づいて、前記交流配電系統又は前記交流送電系統に接続された上記のいずれかの交流電圧出力システムの出力を制御する。 The power system control system according to the present invention includes a system control device that controls a power system to which an AC power distribution system or an AC power transmission system is connected, and the system control device is configured based on a frequency of the AC power distribution system or the AC power transmission system. Thus, the output of any one of the AC voltage output systems connected to the AC distribution system or the AC transmission system is controlled.
 本発明による電力系統は、交流配電系統又は交流送電系統が接続された電力系統であって、前記交流配電系統又は前記交流送電系統に、上記いずれかの交流電圧出力システムが接続され、前記交流発電系統又は前記交流送電系統の周波数に基づいて、前記交流電圧出力システムの出力が制御される。 An electric power system according to the present invention is an electric power system to which an AC power distribution system or an AC power transmission system is connected, and any one of the AC voltage output systems is connected to the AC power distribution system or the AC power transmission system, and An output of the AC voltage output system is controlled based on a frequency of a system or the AC transmission system.
 本発明による電力系統制御システムは、交流配電系統又は交流送電系統が接続された電力系統を制御する系統制御装置を備え、前記電力系統は、複数の前記交流配電系統又は複数の前記交流送電系統が並列に接続されており、複数の前記交流配電系統又は複数の前記交流送電系統の少なくとも一方に上記のいずれかの交流電圧出力システムが接続され、前記系統制御装置が、前記交流電圧出力システムの出力を制御することで、前記交流配電系統又は前記交流送電系統の潮流を制御する。 The power system control system according to the present invention includes a system control device that controls a power system to which an AC power distribution system or an AC power transmission system is connected, and the power system includes a plurality of the AC power distribution systems or a plurality of the AC power transmission systems. Connected in parallel, any one of the AC voltage output systems described above is connected to at least one of the plurality of AC power distribution systems or the plurality of AC power transmission systems, the system control device, the output of the AC voltage output system To control the power flow of the AC distribution system or the AC transmission system.
 本発明による電力系統は、交流配電系統又は交流送電系統が接続された電力系統であって、複数の前記交流配電系統又は複数の前記交流送電系統が並列に接続されており、複数の前記交流配電系統又は複数の前記交流送電系統の少なくとも一方に上記のいずれかの交流電圧出力システムが接続され、前記交流電圧出力システムの出力により、前記交流配電系統又は前記交流送電系統の潮流が制御される。 An electric power system according to the present invention is an electric power system to which an AC power distribution system or an AC power transmission system is connected, wherein a plurality of the AC power distribution systems or a plurality of the AC power transmission systems are connected in parallel, and a plurality of the AC power distribution systems. Any one of the AC voltage output systems described above is connected to at least one of a system or a plurality of the AC transmission systems, and the output of the AC voltage output system controls the power flow of the AC distribution system or the AC transmission system.
 本発明による直流送電システムは、上記のいずれかの交流電圧出力システムを備え、前記直流端子に直流送電線が接続され、前記直流送電線から前記直流端子に入力された直流電力を交流電力に変換して前記交流端子から出力する。 A DC power transmission system according to the present invention includes any one of the AC voltage output systems described above, wherein a DC power line is connected to the DC terminal, and DC power input from the DC power line to the DC terminal is converted into AC power. And output from the AC terminal.
 本発明による発電システムは、上記のいずれかの交流電圧出力システムを備え、前記直流端子に有効電力源が接続され、前記有効電力源から前記直流端子に入力された直流電力を交流電力に変換して前記交流端子から出力する。 A power generation system according to the present invention includes any one of the AC voltage output systems described above, and an active power source is connected to the DC terminal, and converts DC power input from the active power source to the DC terminal into AC power. Output from the AC terminal.
 本発明のバッテリシステムは、上記のいずれかの交流電圧出力システムを備える。 バ ッ テ リ A battery system of the present invention includes any one of the AC voltage output systems described above.
 本発明によれば、単位変換器のスイッチの駆動用電源が喪失したとき、当該単位変換器が短絡された状態となるので、スイッチの駆動用電源が喪失したときも継続運転することができる。 According to the present invention, when the power supply for driving the switch of the unit converter is lost, the unit converter is short-circuited, so that the continuous operation can be performed even when the power supply for driving the switch is lost.
本発明の交流電圧出力システムの構成を示す概略図である。1 is a schematic diagram illustrating a configuration of an AC voltage output system according to the present invention. 本発明の交流電圧出力システムの単位変換器の構成を示す概略図である。It is a schematic diagram showing the composition of the unit converter of the alternating current voltage output system of the present invention. 図3Aは、GaNで構成したFETの一例を示す概略断面図であり、図3Bは、同一のシリコン基板上にGaN-FETと、Gan-FETを駆動するゲートドライバや単位変換器の制御回路を設けた場合の一例を示す概略断面図である。FIG. 3A is a schematic cross-sectional view showing an example of an FET made of GaN. FIG. 3B shows a GaN-FET and a control circuit of a gate driver and a unit converter for driving the gan-FET on the same silicon substrate. It is a schematic sectional drawing which shows an example when it is provided. 図4Aは、ノーマリーオン型のスイッチング素子をノーマリーオフ型に改良したスイッチング素子の構成の一例を示す概略図であり、図4Bは、図4Aのノーマリーオフ型のスイッチング素子をノーマリーオン型に改良したスイッチング素子の一例を示す概略図である。FIG. 4A is a schematic diagram showing an example of a configuration of a switching element in which a normally-on type switching element is improved to a normally-off type, and FIG. 4B is a diagram showing the normally-off type switching element of FIG. It is the schematic which shows an example of the switching element improved to the type | mold. 変形例の配電系統安定化装置を示す概略図である。It is a schematic diagram showing a distribution system stabilization device of a modification. 変形例の交流電圧出力システムの構成を示す概略図である。It is the schematic which shows the structure of the alternating current voltage output system of a modification.
(1)本発明の実施形態の交流電圧出力システムの全体構成
 図1に示すように、本実施形態の交流電圧出力システム1は、交流配電系統(以下、単に配電系統という)510との間で電力を授受し、配電系統510を安定化させる配電系統安定化装置として用いられる。この場合、交流電圧出力システム1は、電力系統50と負荷56の間の配電系統510の配電線に接続される。電力系統50は、電圧源を示す回路記号に集約したが、様々な系統構成がありうる。例えば、国内の電力系統等と同様に電力需要と供給の関係によって周波数が変化する系統であったりする。図示しない発電機への機械エネルギーの入力や光エネルギーなどの入力が発電機出力よりも大きければ、周波数が高くなり、低ければ、周波数が低くなる系統であったりする。また、前記とは異なり、電力変換器を介した発電機しか接続されていない系統も電力系統50の例の1つである。交流電圧出力システム1は、アームとして、R相アーム2R、S相アーム2S、T相アーム2Tとを備えている。R相アーム2R、S相アーム2S、T相アーム2Tは、それぞれ、所定電圧を出力する単位変換器3を4つ備え、4つの単位変換器3が直列に接続されている。R相アーム2R、S相アーム2S、T相アーム2Tは、一端がリアクトル150R、150S、150Tを介して、配電系統510の配電線57u、57v、57wの端子53u、53v、53wにそれぞれ接続され、他端が接続点NPでスター結線されている。このように、R相アーム2R、S相アーム2S、T相アーム2Tは、接続点NPと配電系統510の間で並列に接続されている。
(1) Overall Configuration of AC Voltage Output System of Embodiment of the Present Invention As shown in FIG. 1, an AC voltage output system 1 of the present embodiment is connected to an AC power distribution system (hereinafter simply referred to as a power distribution system) 510. It is used as a distribution system stabilizing device for receiving and transmitting power and stabilizing the distribution system 510. In this case, the AC voltage output system 1 is connected to the distribution line of the distribution system 510 between the power system 50 and the load 56. Although the power system 50 is grouped into circuit symbols indicating voltage sources, various system configurations are possible. For example, similar to a domestic power system or the like, the frequency may change depending on the relationship between power demand and supply. If the input of mechanical energy or light energy to a generator (not shown) is larger than the output of the generator, the frequency will be higher, and if it is lower, the frequency will be lower. Also, unlike the above, a system to which only a generator via a power converter is connected is one example of the power system 50. The AC voltage output system 1 includes an R-phase arm 2R, an S-phase arm 2S, and a T-phase arm 2T as arms. Each of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T includes four unit converters 3 that output a predetermined voltage, and the four unit converters 3 are connected in series. One end of each of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T is connected to the terminals 53u, 53v, 53w of the distribution lines 57u, 57v, 57w of the distribution system 510 via the reactors 150R, 150S, 150T. , The other end is star-connected at a connection point NP. As described above, the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T are connected in parallel between the connection point NP and the power distribution system 510.
 図2に示すように、単位変換器3は、第1スイッチ13Hと第2スイッチ13Lとが直列に接続された第1スイッチアーム13と、第3スイッチ14Hと第4スイッチ14Lとが直列に接続された第2スイッチアーム14と、充放電できる電力貯蔵器15とを備えている。電力貯蔵器15は、例えば、リチウムイオン電池、ニッケル水素電池及びニッケルカドミウム電池などの二次電池で構成されている。なお、電力貯蔵器15は、電力を充放電可能であれば特に限定されず、コンデンサや電気二重層キャパシタ、直流のフライホイールなどであってもよい。 As shown in FIG. 2, the unit converter 3 includes a first switch arm 13 in which a first switch 13H and a second switch 13L are connected in series, and a third switch 14H and a fourth switch 14L connected in series. A second switch arm 14 and a power storage 15 that can be charged and discharged. The power storage device 15 is configured by, for example, a secondary battery such as a lithium ion battery, a nickel hydride battery, and a nickel cadmium battery. The power storage 15 is not particularly limited as long as the power can be charged and discharged, and may be a capacitor, an electric double layer capacitor, a DC flywheel, or the like.
 このように、交流電圧出力システム1は、各単位変換器3が電力を充放電できる電力貯蔵器15を備えているので、各電力貯蔵器15を充電することで電気エネルギーを蓄えることができ、電力貯蔵装置として用いることができる。 As described above, since the AC voltage output system 1 includes the power storage units 15 in which the unit converters 3 can charge and discharge power, it is possible to store electric energy by charging the power storage units 15, It can be used as a power storage device.
 単位変換器3は、第1スイッチアーム13の第1スイッチ13H側の端部と、第2スイッチアーム14の第3スイッチ14H側の端部と電力貯蔵器15の一の端子(本実施形態ではプラス側)とが接続され、第1スイッチアーム13の第2スイッチ13L側の端部と第2スイッチアーム14の第4スイッチ14L側の端部と電力貯蔵器15の他の端子(本実施形態では、マイナス側)とが接続されている。このように、単位変換器3は、第1スイッチアーム13、第2スイッチアーム14及び電力貯蔵器15が並列に接続されたフルブリッジ回路構成をしている。 The unit converter 3 includes an end of the first switch arm 13 on the side of the first switch 13H, an end of the second switch arm 14 on the side of the third switch 14H, and one terminal of the power storage device 15 (in this embodiment, (Positive side), the end of the first switch arm 13 on the second switch 13L side, the end of the second switch arm 14 on the fourth switch 14L side, and other terminals of the power storage device 15 (this embodiment). In the figure, the minus side is connected. As described above, the unit converter 3 has a full bridge circuit configuration in which the first switch arm 13, the second switch arm 14, and the power storage unit 15 are connected in parallel.
 単位変換器3は、図示しない制御回路が接続されており、第1スイッチ13H、第2スイッチ13L、第3スイッチ14H及び第4スイッチ14Lに、各スイッチのオン・オフを制御する駆動電圧(例えば、FET(電界効果型トランジスタ)で構成されたスイッチング素子の場合はゲート電圧)を供給する。 The unit converter 3 is connected to a control circuit (not shown). The first switch 13H, the second switch 13L, the third switch 14H, and the fourth switch 14L are provided with a drive voltage (for example, a drive voltage for controlling on / off of each switch). , A gate voltage in the case of a switching element constituted by an FET (field effect transistor).
 単位変換器3は、第1スイッチアーム13の第1スイッチ13Hと第2スイッチ13Lとの接続点10から第1端子FTが引き出され、第2スイッチアーム14の第3スイッチ14Hと第4スイッチ14Lとの接続点12から第2端子STが引き出されている。単位変換器3は、電力貯蔵器15の電圧をVとすると、第1スイッチ13H、第2スイッチ13L、第3スイッチ14H及び第4スイッチ14Lのオン・オフを切り替えることにより、第1端子FTと第2端子STとの間に、±V、ゼロの3レベルの電圧を出力できる。なお、各単位変換器3が、同じ電圧を出力するように構成してもよく、各単位変換器3の電力貯蔵器15の構成(電池の容量など)を適宜変更することで異なる電圧を出力するように構成してもよい。 The unit converter 3 is configured such that the first terminal FT is pulled out from the connection point 10 between the first switch 13H and the second switch 13L of the first switch arm 13, and the third switch 14H and the fourth switch 14L of the second switch arm 14 A second terminal ST is drawn out from a connection point 12 with the second terminal ST. Assuming that the voltage of the power storage unit 15 is V, the unit converter 3 turns on / off the first switch 13H, the second switch 13L, the third switch 14H, and the fourth switch 14L, thereby connecting the first terminal FT to the first terminal FT. A three-level voltage of ± V and zero can be output between the second terminal ST. Note that each unit converter 3 may be configured to output the same voltage, and a different voltage may be output by appropriately changing the configuration (such as the capacity of a battery) of the power storage unit 15 of each unit converter 3. May be configured.
 図1に示す交流電圧出力システム1では、一の単位変換器3の第1端子FTと、他の単位変換器3の第2端子STとが接続されて、複数の単位変換器3が直列に接続されている。そのため、交流電圧出力システム1は、R相アーム2R、S相アーム2S及びT相アーム2Tにおいて、電圧を出力する単位変換器3の数をそれぞれ切り替えることで、単位変換器3の数に応じた多段階の電圧を各アームが出力できる。また、交流電圧出力システム1は、各単位変換器3の制御回路を統括する制御装置を備えている。制御装置は、各単位変換器の制御回路に、制御回路が各単位変換器のスイッチのオン・オフを制御するための指令を送出し、R相アーム2R、S相アーム2S及びT相アーム2Tから多段階の交流電圧を出力させる。なお、本実施形態では、R相アーム2R、S相アーム2S及びT相アーム2Tがそれぞれ4つの単位変換器3を備えている場合につて説明したが、各アームが備える単位変換器3の数は限定されない。各アームが備える単位変換器3の数が多いと、交流電圧出力システム1が出力する交流電圧の段数が多くなり、各スイッチング素子のスイッチング周波数が低くても交流電圧の波形をより正弦波に近い波形にできる。したがって、半導体のスイッチング損失を低減できる。また、正弦波に近い電圧波形を出力できることから、高調波フィルタを削除もしくは、簡素化できるメリットがある。さらに、多段とすることで高電圧を出力できるので、システムによっては、昇降圧トランスを省略できるメリットがある。 In the AC voltage output system 1 shown in FIG. 1, the first terminal FT of one unit converter 3 and the second terminal ST of another unit converter 3 are connected, and a plurality of unit converters 3 are connected in series. It is connected. Therefore, the AC voltage output system 1 switches the number of the unit converters 3 that output voltage in the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T, so that the number of the unit converters 3 is changed. Each arm can output a multi-step voltage. Further, the AC voltage output system 1 includes a control device that controls a control circuit of each unit converter 3. The control device sends to the control circuit of each unit converter a command for the control circuit to control on / off of the switch of each unit converter, and outputs the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T. To output multi-stage AC voltage. In the present embodiment, the case where the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T each include four unit converters 3 has been described, but the number of unit converters 3 included in each arm is described. Is not limited. When the number of unit converters 3 provided in each arm is large, the number of stages of the AC voltage output by the AC voltage output system 1 increases, and the waveform of the AC voltage is closer to a sine wave even when the switching frequency of each switching element is low. Can be a waveform. Therefore, the switching loss of the semiconductor can be reduced. In addition, since a voltage waveform close to a sine wave can be output, there is a merit that a harmonic filter can be eliminated or simplified. Further, since high voltage can be output by using multiple stages, there is an advantage that the step-up / step-down transformer can be omitted depending on the system.
 単位変換器3では、第1スイッチアーム13と第2スイッチアーム14とが並列に接続されていることから、第1端子FTと第2端子STとの間では、第1スイッチ13Hと第3スイッチ14Hが直列(逆直列)に接続され、第2スイッチ13Lと第4スイッチ14Lが直列に接続された構成になっている。ここで、第1端子FTと第2端子ST間で直列に接続されたスイッチの一方(第1スイッチ13H及び第3スイッチ14H)を第1スイッチ群16とし、直列に接続されたスイッチの他方(第2スイッチ13L及び第4スイッチ14L)を第2スイッチ群17とする。 In the unit converter 3, since the first switch arm 13 and the second switch arm 14 are connected in parallel, the first switch 13H and the third switch 13H are connected between the first terminal FT and the second terminal ST. 14H are connected in series (reverse series), and the second switch 13L and the fourth switch 14L are connected in series. Here, one of the switches connected in series between the first terminal FT and the second terminal ST (the first switch 13H and the third switch 14H) is a first switch group 16, and the other of the switches connected in series ( The second switch 13L and the fourth switch 14L) are referred to as a second switch group 17.
 単位変換器3は、第1スイッチ群16の各スイッチ(第1スイッチ13H及び第3スイッチ14H)、第2スイッチ群17の各スイッチ(第2スイッチ13L及び第4スイッチ14L)又は第1スイッチ群16及び第2スイッチ群17の各スイッチ(第1スイッチ、第3スイッチ、第2スイッチ及び第4スイッチ)をノーマリーオン型のスイッチング素子で構成する。ここで、本明細書でいうノーマリーオン型のスイッチング素子は、スイッチのオン・オフを制御する駆動電圧がゼロのとき、スイッチがオン状態であるスイッチング素子をいう。なお、ノーマリーオフ型のスイッチング素子は、駆動電圧がゼロのとき、スイッチがオフ状態であるスイッチング素子であり、パワーエレクトロニクス分野でスイッチとして一般に用いられている、例えば、シリコンで形成された金属酸化物半導体FET(Si-MOSFET)や絶縁ゲートバイポーラトランジスタ(Insulated-gate bipolar transistor:IGBT)、ゲートターンオフサイリスタ(Gate Turn-Off thyristor:GTO)、ゲート転流型ターンオフサイリスタ(Gate Commutated Turn-off thyristor:GCT)などである。 The unit converter 3 includes switches (the first switch 13H and the third switch 14H) of the first switch group 16, each switch (the second switch 13L and the fourth switch 14L) of the second switch group 17, or the first switch group. Each of the switches (the first switch, the third switch, the second switch, and the fourth switch) of the switch group 16 and the second switch group 17 is configured by a normally-on type switching element. Here, the normally-on type switching element referred to in this specification refers to a switching element in which a switch is on when a driving voltage for controlling on / off of the switch is zero. Note that a normally-off type switching element is a switching element in which a switch is in an off state when a driving voltage is zero, and is generally used as a switch in the field of power electronics. Semiconductor FET (Si-MOSFET), insulated-gate bipolar transistor (IGBT), gate turn-off thyristor (GTO), gate commutated turn-off thyristor (Gate Commutated Turn-off thyristor: GCT).
 本実施形態では、単位変換器3は、第1スイッチ群16の各スイッチがノーマリーオフ型のスイッチング素子であるIGBTで構成され、第2スイッチ群17の各スイッチがノーマリーオン型のスイッチング素子である高電子移動度トランジスタ(以下、HEMTともいう)で構成されている。さらに、本実施形態では、HEMTとして、GaN(窒化ガリウム)で構成されたFET(以下、GaN-FETともいう)を用いている。このGaN-FETは、Si(シリコン)の上に、例えば、Si基板に形成されたGaN-FETである。なお、HEMTは、半導体ヘテロ接合に誘起された高移動度の二次元電子ガスをチャネルとし、ゲートに電圧を印加してオンにする通常のFETより低オン電圧を実現した電界効果型トランジスタである。HEMTは、オン電圧が低いのでスイッチのオン・オフの切り替えによる消費電力を削減でき、さらに高耐圧のFETであるので、100V~6.6kV程度の配電系統やさらに高電圧の送電系統に接続する交流電圧出力システム1に適している。特に、GaN-FETは、高電圧領域においてSiよりもスイッチング損失が低いので、高電圧を扱う交流電圧出力システム1により適している。さらに、本実施形態の場合、GaN-FETがSi基板上に形成されているので、GaN基板にGaN-FETを形成する場合より安価に作製することができ、さらに好ましい。なお、二次元電子ガスによって低オン電圧を実現した電界効果型トランジスタを用いたスイッチング素子としては、ノーマリーオン型であるデプレッションモードのMOS-FETも用いることができる。 In the present embodiment, the unit converter 3 is configured such that each switch of the first switch group 16 is configured by an IGBT that is a normally-off type switching element, and each switch of the second switch group 17 is a normally-on type switching element. (Hereinafter, also referred to as HEMT). Further, in the present embodiment, an FET made of GaN (gallium nitride) (hereinafter, also referred to as a GaN-FET) is used as the HEMT. This GaN-FET is a GaN-FET formed on Si (silicon), for example, on a Si substrate. The HEMT is a field-effect transistor that realizes a lower on-state voltage than a normal FET that uses a high-mobility two-dimensional electron gas induced in a semiconductor heterojunction as a channel and applies a voltage to a gate to turn on. . Since the HEMT has a low on-voltage, it can reduce power consumption by switching the switch on and off, and since it is a high breakdown voltage FET, it is connected to a power distribution system of about 100 V to 6.6 kV or a higher voltage power transmission system. Suitable for the AC voltage output system 1. In particular, the GaN-FET has a lower switching loss than Si in a high voltage region, and is therefore more suitable for the AC voltage output system 1 that handles a high voltage. Furthermore, in the case of the present embodiment, since the GaN-FET is formed on the Si substrate, it can be manufactured at lower cost than when the GaN-FET is formed on the GaN substrate, which is more preferable. Note that a normally-on depletion mode MOS-FET can also be used as a switching element using a field-effect transistor in which a low on-voltage is realized by a two-dimensional electron gas.
 本実施形態に用いたGaN-FETの構成を説明する。図3Aに示すように、GaN-FET20は、Si基板21に形成されている。GaN-FET20は、Si基板21上に形成されたGaN層22と、GaN層22に接して形成されたAlGaN層23と、AlGaN層23に接して形成されたソース電極24、ドレイン電極25及びゲート絶縁層27と、ゲート絶縁層27と接して形成されたゲート電極26とを備えている。GaN-FET20では、AlGaN層23とGaN層22の界面に2次元電子気体層が生じ、当該2次元電子気体層が導電チャネルとなるので、ゲート電極26に印加される電圧がゼロでもソース電極24-ドレイン電極25間に電流を流すことが可能である。そのため、GaN-FET20で構成されたスイッチング素子は、ゲート電極26に印加される駆動電圧がゼロでもオン状態であり、ノーマリーオン型となる。なお、GaN-FET20で構成されたスイッチング素子では、ゲート電極26に負の駆動電圧を印加することで、ソース電極24-ドレイン電極25間に電流が流れなくなり、オフ状態にできる。 構成 The configuration of the GaN-FET used in the present embodiment will be described. As shown in FIG. 3A, the GaN-FET 20 is formed on a Si substrate 21. The GaN-FET 20 includes a GaN layer 22 formed on a Si substrate 21, an AlGaN layer 23 formed in contact with the GaN layer 22, a source electrode 24, a drain electrode 25 formed in contact with the AlGaN layer 23, and a gate. The semiconductor device includes an insulating layer 27 and a gate electrode 26 formed in contact with the gate insulating layer 27. In the GaN-FET 20, a two-dimensional electron gas layer is formed at the interface between the AlGaN layer 23 and the GaN layer 22, and the two-dimensional electron gas layer becomes a conductive channel. Therefore, even if the voltage applied to the gate electrode 26 is zero, the source electrode 24 A current can flow between the drain electrodes 25; Therefore, the switching element constituted by the GaN-FET 20 is in an on state even when the drive voltage applied to the gate electrode 26 is zero, and is a normally-on type. In the switching element constituted by the GaN-FET 20, by applying a negative drive voltage to the gate electrode 26, no current flows between the source electrode 24 and the drain electrode 25, and the switching element can be turned off.
 また、図3Bに示すように、GaN-FET20で構成されたスイッチング素子としては、GaN-FET20を駆動するゲートドライバ28や単位変換器3の制御回路(第1スイッチ13H、第2スイッチ13L、第3スイッチ14H及び第4スイッチ14Lを駆動する制御回路)19などが同じSi基板21上に実装されたものでもよい。なお、図2では、説明の便宜上、GaN-FET20を大きく示している。また、GaN-FETは、Si基板に限らず、例えば、SiC基板やGaN基板などに形成されていてもよい。また、本実施形態では、第2スイッチ13L及び第4スイッチ14LにSi基板に形成されたGaN-FETのスイッチング素子を用い、第2スイッチ13L用のスイッチング素子と、第4スイッチ14L用のスイッチング素子が別体である。しかし、第2スイッチ13L及び第4スイッチ14L用のスイッチング素子は一体に形成されていてもよく、例えば、1枚のSi基板に第2スイッチ13L用のGaN-FETと第4スイッチ14L用のGaN-FETが形成されたものを用いてもよい。さらに、第1スイッチ13H及び第3スイッチ14Hも第2スイッチ13L及び第4スイッチ14Lと一体(同一基板上)に形成してもよい。 Further, as shown in FIG. 3B, as a switching element composed of the GaN-FET 20, a gate driver 28 for driving the GaN-FET 20 and a control circuit of the unit converter 3 (first switch 13H, second switch 13L, A control circuit for driving the third switch 14H and the fourth switch 14L) 19 and the like may be mounted on the same Si substrate 21. In FIG. 2, the GaN-FET 20 is enlarged for convenience of explanation. Further, the GaN-FET is not limited to the Si substrate, and may be formed on, for example, a SiC substrate or a GaN substrate. In the present embodiment, a GaN-FET switching element formed on a Si substrate is used for the second switch 13L and the fourth switch 14L, and a switching element for the second switch 13L and a switching element for the fourth switch 14L are used. Is separate. However, the switching elements for the second switch 13L and the fourth switch 14L may be formed integrally. For example, a GaN-FET for the second switch 13L and a GaN for the fourth switch 14L may be formed on one Si substrate. -An element in which an FET is formed may be used. Further, the first switch 13H and the third switch 14H may be formed integrally (on the same substrate) with the second switch 13L and the fourth switch 14L.
 このように、単位変換器3では、第1スイッチ群16の各スイッチがノーマリーオフ型のスイッチング素子であり、第2スイッチ群17の各スイッチがノーマリーオン型のスイッチング素子であるので、第1スイッチ13H、第2スイッチ13L、第3スイッチ14H及び第4スイッチ14Lに制御回路が駆動電圧を供給するためのスイッチ駆動用の電源が故障したり、単位変換器3の制御回路自体が故障したり、電力の供給線が切断したりして、単位変換器3の各スイッチ(スイッチング素子)の駆動用電源が喪失したとき、各スイッチの駆動電圧がゼロとなり、第1スイッチ13H及び第3スイッチ14Hがオフ状態となり、第2スイッチ13L及び第4スイッチ14Lがオン状態となる。すなわち、第2端子STから、第4スイッチ14L、第2スイッチ13Lとこの順に経由した第1端子FTへの短絡経路が形成される。よって、単位変換器3は、第1端子FTと第2端子STとの間が短絡された状態となる。 As described above, in the unit converter 3, each switch of the first switch group 16 is a normally-off type switching element and each switch of the second switch group 17 is a normally-on type switching element. A switch driving power supply for the control circuit to supply the driving voltage to the first switch 13H, the second switch 13L, the third switch 14H, and the fourth switch 14L fails, or the control circuit of the unit converter 3 fails. When the power supply for driving the switches (switching elements) of the unit converter 3 is lost due to the power supply line or disconnection of the power supply line, the drive voltage of each switch becomes zero, and the first switch 13H and the third switch 13H are driven. 14H is turned off, and the second switch 13L and the fourth switch 14L are turned on. That is, a short-circuit path is formed from the second terminal ST to the fourth switch 14L, the second switch 13L, and the first terminal FT in this order. Therefore, the unit converter 3 is in a state where the first terminal FT and the second terminal ST are short-circuited.
 単位変換器を直列に接続した構成を有する変換器の従来技術では、単位変換器のすべてのスイッチがノーマリーオフ型のスイッチング素子で構成されているため、スイッチの駆動用電源が喪失したとき、すべてのスイッチがオフ状態となり、第1端子と第2端子との間が絶縁され、当該単位変換器及び当該単位変換器の属するアームに電流が流れなくなり、運転を停止しなくてはならなかった。そのため、従来の交流電圧出力システムは、第1端子と第2端子との間を短絡する短絡スイッチが必要であった。 In the prior art of a converter having a configuration in which unit converters are connected in series, since all switches of the unit converter are configured with normally-off type switching elements, when power for driving the switches is lost, All the switches were turned off, the first terminal and the second terminal were insulated, and no current flowed to the unit converter and the arm to which the unit converter belonged, and the operation had to be stopped. . Therefore, the conventional AC voltage output system requires a short-circuit switch for short-circuiting between the first terminal and the second terminal.
 これに対して本実施形態の交流電圧出力システム1は、単位変換器3の各スイッチの駆動用電源が喪失したとき、第1端子FTと第2端子STとの間が短絡され、当該単位変換器3が短絡された状態となり、第1端子FTと第2端子STとの間に電流が流れるので、当該単位変換器の属するアームに電流が流れなくなることがなく、継続運転することができる。また、交流電圧出力システム1は、第1端子FTと第2端子STとの間が短絡された状態となるので、第1端子FTと第2端子STの間に単位変換器3を短絡する短絡スイッチを設ける必要がない。単位変換器3が、第1スイッチ群16の各スイッチ(第1スイッチ13H及び第3スイッチ14H)又は第1スイッチ群16及び第2スイッチ群17の各スイッチ(第1スイッチ13H、第3スイッチ14H、第2スイッチ13L及び第4スイッチ14L)をノーマリーオン型のスイッチング素子で構成されていても同様の効果を奏する。 On the other hand, in the AC voltage output system 1 of the present embodiment, when the power for driving each switch of the unit converter 3 is lost, the first terminal FT and the second terminal ST are short-circuited, and the unit conversion is performed. Since the converter 3 is short-circuited and a current flows between the first terminal FT and the second terminal ST, the current does not stop flowing to the arm to which the unit converter belongs, and the operation can be continued. Further, in the AC voltage output system 1, since the first terminal FT and the second terminal ST are in a short-circuit state, the unit converter 3 is short-circuited between the first terminal FT and the second terminal ST. There is no need to provide a switch. The unit converter 3 is a switch of the first switch group 16 (the first switch 13H and the third switch 14H) or a switch of the first switch group 16 and the second switch group 17 (the first switch 13H and the third switch 14H). , The second switch 13L and the fourth switch 14L) have the same effect even if they are constituted by normally-on type switching elements.
 第1スイッチ群16の各スイッチをノーマリーオン型のスイッチング素子とし、第2スイッチ群17の各スイッチをノーマリーオフ型のスイッチング素子とした場合、単位変換器3の各スイッチ(スイッチング素子)の駆動用電源が喪失したとき、各スイッチの駆動電圧がゼロとなり、第1スイッチ13H及び第3スイッチ14Hがオン状態となり、第2スイッチ13L及び第4スイッチ14Lがオフ状態となる。すなわち、第2端子STから、第1スイッチ13H、第3スイッチ14Hとこの順に経由した第1端子FTへの短絡経路が形成される。よって、単位変換器3は、第1端子FTと第2端子STとの間が短絡された状態となる。 When each switch of the first switch group 16 is a normally-on type switching element and each switch of the second switch group 17 is a normally-off type switching element, each switch (switching element) of the unit converter 3 is When the drive power supply is lost, the drive voltage of each switch becomes zero, the first switch 13H and the third switch 14H are turned on, and the second switch 13L and the fourth switch 14L are turned off. That is, a short-circuit path is formed from the second terminal ST to the first terminal FT via the first switch 13H, the third switch 14H, and the like in this order. Therefore, the unit converter 3 is in a state where the first terminal FT and the second terminal ST are short-circuited.
 また、第1スイッチ群16及び第2スイッチ群17の各スイッチ(第1スイッチ13H、第3スイッチ14H、第2スイッチ13L及び第4スイッチ14L)をノーマリーオン型のスイッチング素子とした場合、単位変換器3の各スイッチ(スイッチング素子)の駆動用電源が喪失したとき、各スイッチの駆動電圧がゼロとなり、すべてのスイッチがオン状態となる。その結果、第2端子STから、第1スイッチ13H、第3スイッチ14Hとこの順に経由した第1端子FTへの短絡経路と、第2端子STから、第2スイッチ13L、第4スイッチ14Lとこの順に経由した第1端子FTへの短絡経路とが形成され、第1端子FTと第2端子STとの間が短絡された状態となる。 When each switch (first switch 13H, third switch 14H, second switch 13L, and fourth switch 14L) of the first switch group 16 and the second switch group 17 is a normally-on type switching element, the unit is When the power supply for driving each switch (switching element) of the converter 3 is lost, the drive voltage of each switch becomes zero and all the switches are turned on. As a result, a short-circuit path from the second terminal ST to the first switch 13H, the third switch 14H, and the first terminal FT in this order, and the second switch 13L, the fourth switch 14L, and the like from the second terminal ST. A short-circuit path to the first terminal FT that passes in order is formed, and the first terminal FT and the second terminal ST are short-circuited.
 このように、交流電圧出力システム1は、単位変換器3が、第1スイッチ群16の各スイッチ(第1スイッチ13H及び第3スイッチ14H)又は第1スイッチ群16及び第2スイッチ群17の各スイッチ(第1スイッチ13H、第3スイッチ14H、第2スイッチ13L及び第4スイッチ14L)をノーマリーオン型のスイッチング素子で構成されていても、単位変換器3の各スイッチの駆動用電源が喪失したとき、第1端子FTと第2端子STとの間が短絡され、当該単位変換器3が短絡された状態となる。そして、交流電圧出力システム1は、駆動用電源が喪失した単位変換器3の第1端子FTと第2端子STとの間に電流が流れるので、当該単位変換器3の属するアームに電流が流れなくなることがなく、継続運転することができる。 As described above, in the AC voltage output system 1, the unit converter 3 is configured such that each switch (the first switch 13H and the third switch 14H) of the first switch group 16 or each of the first switch group 16 and the second switch group 17 Even when the switches (the first switch 13H, the third switch 14H, the second switch 13L, and the fourth switch 14L) are configured by normally-on switching elements, the power for driving each switch of the unit converter 3 is lost. Then, the first terminal FT and the second terminal ST are short-circuited, and the unit converter 3 is short-circuited. Then, in the AC voltage output system 1, a current flows between the first terminal FT and the second terminal ST of the unit converter 3 in which the driving power supply has been lost, so that the current flows to the arm to which the unit converter 3 belongs. The operation can be continued without disappearing.
 次に、配電系統安定化装置としての交流電圧出力システム1を、配電系統510の周波数を安定させる周波数安定化装置として使用したときの効果について説明する。図1に示すように、交流電圧出力システム1は、配電系統510に接続されている。配電系統510は、電力系統50と負荷56との間を配電線57u、57v、57wによって接続し、電力系統50から負荷56へと電力を供給する。ここで、電力系統50は、国内の電力系統と同じく、図示しない発電機への機械エネルギーの入力や光エネルギーなどの入力が発電機出力よりも大きければ、周波数が高くなり、低ければ、周波数が低くなる系統であるとする。配電線57uは、一端が電力系統50のu相に接続され、他端が負荷56のR相に接続されている。配電線57vは、一端が電力系統50のv相に接続され、他端が負荷56のS相に接続されている。配電線57wは、一端が電力系統50のw相に接続され、他端が負荷56のT相に接続されている。ここで、電力系統50は、発電機などの発電設備、交流送電系統などの送電設備、変圧器などの変電設備、交流配電系統などの配電設備及び負荷などの需要家設備などが含まれる電力の送配電ネットワークであり、指令所などに備えられた電力系統制御システム(図1には不図示)によって制御されている。配電系統510及び負荷56はこのような電力系統50に接続されている。 Next, the effect when the AC voltage output system 1 as a distribution system stabilizing device is used as a frequency stabilizing device for stabilizing the frequency of the distribution system 510 will be described. As shown in FIG. 1, the AC voltage output system 1 is connected to a power distribution system 510. The power distribution system 510 connects the power system 50 and the load 56 by distribution lines 57u, 57v, 57w, and supplies power from the power system 50 to the load 56. Here, similarly to the domestic power system, the frequency of the power system 50 is higher if the input of mechanical energy or light energy to a generator (not shown) is larger than the generator output, and if the input is lower, the frequency is lower. It is assumed that the system becomes lower. The distribution line 57u has one end connected to the u phase of the power system 50 and the other end connected to the R phase of the load 56. The distribution line 57v has one end connected to the v phase of the power system 50 and the other end connected to the S phase of the load 56. The distribution line 57w has one end connected to the w phase of the power system 50 and the other end connected to the T phase of the load 56. Here, the power system 50 includes power generation facilities such as a generator, power transmission facilities such as an AC transmission system, transformer facilities such as a transformer, distribution facilities such as an AC distribution system, and customer facilities such as loads. It is a power transmission and distribution network and is controlled by a power system control system (not shown in FIG. 1) provided at a command center or the like. The distribution system 510 and the load 56 are connected to such a power system 50.
 また、配電線57uは、端子53uを有し、端子53uに交流電圧出力システム1のR相アーム2Rが接続されている。配電線57vは、端子53vを有し、端子53vに交流電圧出力システム1のS相アーム2Sが接続されている。配電線57wは、端子53wを有し、端子53wに交流電圧出力システム1のT相アーム2Tが接続されている。このように交流電圧出力システム1は、配電系統510に接続されている。なお、負荷56は、例えば、工場などの需要家又は需要家の有する機械や製造装置などである。また、図1中の52u、52v、52wと51u、51v、51wは、端子53u、53v、53wより電力系統50側の配電線57u、57v、57wのリアクタン成分及び抵抗成分を模式的に表したものであり、54u、54v、54wと55u、55v、55wは、端子53u、53v、53wより負荷56側の配電線57u、57v、57wのリアクタン成分及び抵抗成分を模式的に表したものである。 The distribution line 57u has a terminal 53u to which the R-phase arm 2R of the AC voltage output system 1 is connected. The distribution line 57v has a terminal 53v, and the S-phase arm 2S of the AC voltage output system 1 is connected to the terminal 53v. The distribution line 57w has a terminal 53w, and the T-phase arm 2T of the AC voltage output system 1 is connected to the terminal 53w. As described above, the AC voltage output system 1 is connected to the distribution system 510. The load 56 is, for example, a customer such as a factory, or a machine or a manufacturing device possessed by the customer. Also, 52u, 52v, 52w and 51u, 51v, 51w in FIG. 1 schematically represent the reactant components and the resistance components of the distribution lines 57u, 57v, 57w closer to the power system 50 than the terminals 53u, 53v, 53w. 54u, 54v, 54w and 55u, 55v, 55w schematically represent the reactant components and the resistance components of the distribution lines 57u, 57v, 57w closer to the load 56 than the terminals 53u, 53v, 53w. .
 配電系統安定化装置としての交流電圧出力システム1は、配電系統510の周波数を安定化させることができる。例えば、制御装置(図1には不図示)が、配電系統510に設けられた周波数測定器(図1には不図示)から三相一括又は各相の周波数の検出結果を受け取るなどし、配電系統510の周波数を監視する。通常の三相の電力系統は、三相発電機から電力供給を受けるので、各相の周波数は同じである。ここでは、個々の相に単相発電機のみが接続されることも物理的には可能であることを考慮して、各相の周波数が必ずしも同じではないというかなり非常識な想定もありうるという前提で説明する。各相の周波数が違うと、相順が入れ替わるなど別の深刻な問題が生じるが、周波数のみに注目して説明する。制御装置は、いずれかの相の周波数が高くなったことを検出したとき、周波数が高くなった相(配電線)から電力を吸収し、いずれかの相の周波数が低下したことを検出したとき、周波数が低下した相に電力を放出するように、R相アーム2R、S相アーム2S、T相アーム2Tの単位変換器3を制御する。例えば、配電系統510のu相の周波数が高くなった場合、制御装置は、R相アーム2Rの単位変換器3の各スイッチを制御し、u相の電圧により電力貯蔵器15を充電するようにしてu相から電力を吸収し、u相の周波数を低下させる。また、配電系統510のu相の周波数が低下した場合、制御装置は、R相アーム2Rの単位変換器3の各スイッチを制御し、電力貯蔵器15がu相に放電するようにしてR相アーム2Rからu相に電力を放出し、u相の周波数を上昇させる。このように、交流電圧出力システム1を用いた配電系統安定化装置は、配電系統510の周波数を安定化できる。 交流 The AC voltage output system 1 as a distribution system stabilizing device can stabilize the frequency of the distribution system 510. For example, a control device (not shown in FIG. 1) receives a detection result of a three-phase package or a frequency of each phase from a frequency measuring device (not shown in FIG. 1) provided in the power distribution system 510, and performs power distribution. The frequency of the system 510 is monitored. Since a normal three-phase power system receives power supply from a three-phase generator, the frequency of each phase is the same. Here, considering that it is physically possible that only a single-phase generator is connected to each phase, there is a rather insane assumption that the frequency of each phase is not necessarily the same. It will be described on the assumption. If the frequency of each phase is different, another serious problem such as a change of the phase order occurs, but the description will focus on only the frequency. When the control device detects that the frequency of any phase has increased, it absorbs power from the phase (distribution line) having the increased frequency and detects that the frequency of any phase has decreased. The unit converters 3 of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T are controlled so as to emit power to the phase whose frequency has decreased. For example, when the frequency of the u-phase of the distribution system 510 increases, the control device controls each switch of the unit converter 3 of the R-phase arm 2R to charge the power storage 15 with the u-phase voltage. To absorb power from the u-phase and reduce the frequency of the u-phase. When the frequency of the u-phase of the distribution system 510 decreases, the control device controls each switch of the unit converter 3 of the R-phase arm 2R, so that the power storage unit 15 discharges to the u-phase. Power is released from the arm 2R to the u-phase to increase the frequency of the u-phase. Thus, the distribution system stabilizing device using the AC voltage output system 1 can stabilize the frequency of the distribution system 510.
 配電系統510の周波数は、落雷などによる系統事故時に電力需給バランスが崩れることにより変動し、極端な場合は、電力系統50の図示していない発電機が脱調してしまう。本来であれば、交流電圧出力システム1がそのような事態を防ぐのであるが、落雷などは、交流電圧出力システム1にもダメージを与えやすく、単位変換器3の各スイッチなどの駆動用電源を喪失してしまう場合もある。交流電圧出力システム1が本発明によるものであれば、駆動用電源を一部喪失した状態でも運転継続できるので、周波数変動や発電機脱調に対するロバスト性を向上できる。 (4) The frequency of the power distribution system 510 fluctuates due to an imbalance in power supply and demand during a system accident due to a lightning strike or the like. In an extreme case, a generator (not shown) of the power system 50 loses synchronism. Normally, the AC voltage output system 1 prevents such a situation. However, a lightning strike or the like easily damages the AC voltage output system 1 and the power supply for driving each switch of the unit converter 3 is changed. Sometimes they are lost. If the AC voltage output system 1 is according to the present invention, the operation can be continued even in a state where the driving power supply is partially lost, so that robustness against frequency fluctuations and generator step-out can be improved.
 なお、ここでは、交流電圧出力システム1の制御装置が、交流電圧出力システム1が接続された配電系統510の各相の周波数に基づいて、配電系統510への出力を相毎に制御し、配電系統510の各相の周波数を安定させたことについて説明した。しかし、本発明はこれに限られず、配電系統510が接続された電力系統50を制御する上記の電力系統制御システムの系統制御装置(図1には不図示)が、配電系統510の各相の周波数を安定化する制御を行ってもよい。この場合、系統制御装置は、配電系統510の各相の周波数に基づいて、配電系統510に接続された交流電圧出力システム1の出力を相毎に制御し、配電系統510の各相の周波数を安定化させる。周波数安定化の制御手法は、交流電圧出力システム1の制御装置の場合と同じなので説明は省略する。 Here, the control device of the AC voltage output system 1 controls the output to the power distribution system 510 for each phase based on the frequency of each phase of the power distribution system 510 to which the AC voltage output system 1 is connected. It has been described that the frequency of each phase of the system 510 has been stabilized. However, the present invention is not limited to this, and the system control device (not shown in FIG. 1) of the above-described power system control system that controls the power system 50 to which the power distribution system 510 is connected includes Control for stabilizing the frequency may be performed. In this case, the system control device controls the output of the AC voltage output system 1 connected to the power distribution system 510 for each phase based on the frequency of each phase of the power distribution system 510, and adjusts the frequency of each phase of the power distribution system 510. Stabilize. The control method of the frequency stabilization is the same as that of the control device of the AC voltage output system 1, and the description is omitted.
 次いで、配電系統安定化装置としての交流電圧出力システム1を配電系統510の相間の電力調整装置として使用した時の効果について説明する。例えば、u相が負荷56の電力需要に対して電力不足で、w相が負荷56の電力需要に対して電力過剰であるように配電系統510のu相、v相、w相で必要な電力がアンバランスなとき、制御装置が、S相アーム2Sの各単位変換器3のスイッチを制御し、w相の電圧で単位変換器3の電力貯蔵器15を充電するようにして、w相から電力を吸収して電力過剰を解消する。そして、制御装置は、R相アーム2Rの各単位変換器3のスイッチを制御し、電力貯蔵器15がu相に放電するようにしてR相アーム2Rがu相に電力を放出して電力不足を解消する。このように、配電系統安定化装置は、電力不足のu相には電力を供給し、電力過剰のw相からは電力を吸収し、相間の電力のアンバランスを調整し、配電系統510を安定化できる。 Next, the effect when the AC voltage output system 1 as a distribution system stabilizing device is used as a power adjustment device between phases of the distribution system 510 will be described. For example, the power required in the u-phase, v-phase, and w-phase of the distribution system 510 is such that the u-phase has insufficient power for the power demand of the load 56 and the w-phase has excess power for the power demand of the load 56. Is unbalanced, the control device controls the switch of each unit converter 3 of the S-phase arm 2S to charge the power storage unit 15 of the unit converter 3 with the w-phase voltage. Absorb power and eliminate excess power. Then, the control device controls the switch of each unit converter 3 of the R-phase arm 2R, so that the power storage unit 15 discharges to the u-phase, and the R-phase arm 2R discharges the power to the u-phase, and the power is insufficient. To eliminate. As described above, the power distribution system stabilizing device supplies power to the u-phase with insufficient power, absorbs power from the w-phase with excessive power, adjusts the imbalance of power between phases, and stabilizes the power distribution system 510. Can be
 配電系統安定化装置は、配電系統510の配電線57u、57w、57v間の線間電圧をバランスすることもできる。例えば、制御装置(図1には不図示)が配電系統510の各相の電圧を監視する。制御装置は、各相の電圧から線間電圧のアンバランスを検出したとき、交流電圧出力システム1が、電圧が高くなった相に高い電圧を出力し、電圧が低下した相に低い電圧を出力するように、R相アーム2R、S相アーム2S、T相アーム2Tの単位変換器3を制御する。例えば、配電系統510のw相の電圧が高く、配電系統510のu相の電圧が低い場合、制御装置は、R相アーム2R、S相アーム2Sの各単位変換器3のスイッチを制御し、u相に高い電圧を出力し、w相に低い電圧を出力し、配電線57u及び配電線57w間の線間電圧をバランスする。このように、配電系統安定化装置は、配電系統510の配電線57u、57w、57v間の線間電圧をバランスし、配電系統510を安定化できる。 電 The distribution system stabilization device can also balance the line voltage between the distribution lines 57u, 57w, and 57v of the distribution system 510. For example, a control device (not shown in FIG. 1) monitors the voltage of each phase of the power distribution system 510. When the control device detects the imbalance of the line voltage from the voltage of each phase, the AC voltage output system 1 outputs a high voltage to the phase where the voltage has increased and outputs a low voltage to the phase where the voltage has decreased. The unit converters 3 of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T are controlled so as to perform the operations. For example, when the voltage of the w-phase of the distribution system 510 is high and the voltage of the u-phase of the distribution system 510 is low, the control device controls the switches of the unit converters 3 of the R-phase arm 2R and the S-phase arm 2S, A high voltage is output to the u-phase and a low voltage is output to the w-phase to balance the line voltage between the distribution line 57u and the distribution line 57w. As described above, the distribution system stabilizing device can stabilize the distribution system 510 by balancing the line voltages between the distribution lines 57u, 57w, and 57v of the distribution system 510.
 なお、落雷の影響が配電系統510の相間で異なり、特定相のみ地絡などが生じて、負荷が脱落した時などにも相間電圧のアンバランスが生じる。また、該落雷の影響で、同時に、交流電圧出力システム1の該当相の駆動用電源も喪失してしまう場合もある。交流電圧出力システム1が本発明によるものであれば、駆動用電源を一部喪失した状態でも運転継続できるので、周波数変動や発電機脱調に対するロバスト性を向上できる。 (4) The effect of lightning differs between the phases of the distribution system 510, and a ground fault occurs only in a specific phase, and imbalance of the interphase voltage occurs even when the load is dropped. Further, due to the lightning strike, the driving power supply of the corresponding phase of the AC voltage output system 1 may be lost at the same time. If the AC voltage output system 1 is according to the present invention, the operation can be continued even in a state where the driving power supply is partially lost, so that robustness against frequency fluctuations and generator step-out can be improved.
 以上より、交流電圧出力システム1を用いた配電系統安定化装置は、各相の周波数を制御したり、相間で電力の過不足を調整したり、相間の電圧のアンバランスを解消したりでき、配電系統510を安定化できる。さらに、配電系統安定化装置は、交流電圧出力システム1を備えているので、交流電圧出力システム1の単位変換器3のスイッチの駆動用電源が喪失したときも継続運転でき、より信頼性が高い。なお、交流電圧出力システム1は、交流配電系統510に変えて、電力系統間を接続する交流送電系統に接続し、交流送電系統の安定化装置として適用することもできる。また、交流電圧出力システム1は、三相交流用であったが、1つのアームを除去して単相用とすることもできる。さらに、2つのアームを除去して残った1アームを連系点の単相端子間に接続することによっても単相用とすることができる。 As described above, the distribution system stabilizing device using the AC voltage output system 1 can control the frequency of each phase, adjust the excess or deficiency of power between phases, cancel the imbalance of voltage between phases, The power distribution system 510 can be stabilized. Furthermore, since the power distribution system stabilizing device includes the AC voltage output system 1, even when the power for driving the switch of the unit converter 3 of the AC voltage output system 1 is lost, the power distribution system stabilization device can be continuously operated, and the reliability is higher. . Note that the AC voltage output system 1 can be connected to an AC power transmission system that connects between power systems instead of the AC power distribution system 510, and can be applied as a stabilizing device for the AC power transmission system. Further, the AC voltage output system 1 is for three-phase AC, but one arm can be removed for single-phase AC. Further, by removing the two arms and connecting the remaining one arm between the single-phase terminals at the interconnection point, it is also possible to use a single-phase terminal.
(2)作用及び効果
 以上の構成において、交流電圧出力システム1は、所定電圧を出力する複数の単位変換器3が直列に接続されたアームを少なくとも1つ(R相アーム2R、S相アーム2S、T相アーム2T)備え、単位変換器3が、第1スイッチ13Hと第2スイッチ13Lとが直列に接続された第1スイッチアーム13と、第3スイッチ14Hと第4スイッチ14Lとが直列に接続された第2スイッチアーム14と、充放電できる電力貯蔵器15とを備え、第1スイッチアーム13の第1スイッチ13H側端部と第2スイッチアーム14の第3スイッチ14H側端部とが接続され、第1スイッチアーム13の第2スイッチ13L側端部と第2スイッチアーム14の第4スイッチ14L側端部とが接続されて、第1スイッチアーム13、第2スイッチアーム14及び電力貯蔵器15が並列に接続された構成をし、第1スイッチ13H及び第3スイッチ14H、第2スイッチ13L及び第4スイッチ14L又は第1スイッチ13H、第3スイッチ14H、第2スイッチ13L及び第4スイッチ14Lがノーマリーオン型のスイッチング素子で構成されているようにした。
(2) Operation and Effect In the above configuration, the AC voltage output system 1 has at least one arm (R-phase arm 2R, S-phase arm 2S) to which a plurality of unit converters 3 each outputting a predetermined voltage are connected in series. , T-phase arm 2T), the unit converter 3 includes a first switch arm 13 in which a first switch 13H and a second switch 13L are connected in series, and a third switch 14H and a fourth switch 14L in series. A second switch arm 14 and a chargeable / dischargeable power storage unit 15 are connected, and an end of the first switch arm 13 on the first switch 13H side and an end of the second switch arm 14 on the third switch 14H side are provided. The first switch arm 13 is connected to an end of the first switch arm 13 on the second switch 13L side and an end of the second switch arm 14 on the fourth switch 14L side. The second switch arm 14 and the power storage 15 are configured to be connected in parallel, and the first switch 13H and the third switch 14H, the second switch 13L and the fourth switch 14L or the first switch 13H, the third switch 14H, The second switch 13L and the fourth switch 14L are constituted by normally-on switching elements.
 よって本発明の交流電圧出力システム1は、単位変換器3のスイッチの駆動用電源が喪失したとき、第1端子FTと第2端子STとの間が短絡され、当該単位変換器3が短絡された状態となるので、スイッチの駆動用電源が喪失したときも継続運転することができる。そのため、交流電圧出力システム1は、短絡スイッチを省略できる。
 さらに、単位変換器3をバッテリのSOC(state of charge)やSOH(state of health)などを測定する制御手段と一緒に一つのケースに収納すると、変換器を内蔵したバッテリパックとして機能するのでバッテリが劣化した際の交換などをスムーズに行える。
 また、単位変換器3の直流電圧が約30V以下のように低いときは、複数の単位変換器3を防爆機能低い一つのケースに内蔵してもよい。直流電圧が低いと、単位変換器3の第1スイッチ13Hと第2スイッチ13Lが誤ってオン状態となり、PN短絡となっても電圧が低いのでスイッチング素子が爆発するリスクは十分に低く、防爆機能の低い一つのケース内に内蔵できる。
 また、各ケースに凹部と凸部を設け、一つのケースの凹部に他のケースの凸部を挿入できるようにすると、多数のバッテリパックを多段に接続するのが容易になる。特に、一つの単位変換器3と他の単位変換器3が該挿入により電気的に接続できるようにできるとなお好ましい。
Therefore, in the AC voltage output system 1 of the present invention, when the power supply for driving the switch of the unit converter 3 is lost, the first terminal FT and the second terminal ST are short-circuited, and the unit converter 3 is short-circuited. In this state, the operation can be continued even when the power for driving the switch is lost. Therefore, the AC voltage output system 1 can omit the short-circuit switch.
Furthermore, if the unit converter 3 is housed in one case together with control means for measuring the SOC (state of charge), SOH (state of health), etc. of the battery, the unit converter 3 functions as a battery pack with a built-in converter. Exchange can be performed smoothly when the battery has deteriorated.
Further, when the DC voltage of the unit converter 3 is as low as about 30 V or less, a plurality of unit converters 3 may be incorporated in one case having a low explosion-proof function. When the DC voltage is low, the first switch 13H and the second switch 13L of the unit converter 3 are erroneously turned on. Even if a PN short circuit occurs, the voltage is low, so that the risk of the switching element exploding is sufficiently low. In one low case
Further, when a concave portion and a convex portion are provided in each case so that a convex portion of another case can be inserted into a concave portion of one case, it is easy to connect a large number of battery packs in multiple stages. In particular, it is more preferable that one unit converter 3 and another unit converter 3 can be electrically connected by the insertion.
(3)変形例
 なお、本発明は、上記の実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。上記の実施形態では、ノーマリーオン型のスイッチング素子であるHEMTを、第1スイッチ13H及び第3スイッチ14H、第2スイッチ13L及び第4スイッチ14L又は第1スイッチ13H、第2スイッチ13L、第3スイッチ14H及び第4スイッチ14L(図2参照)に用いることを説明した。実際には、HEMTのようなノーマリーオン型のスイッチング素子は、ノーマリーオフ化する回路を付加されて、ノーマリーオフ型のスイッチング素子として市販されていることが多い。
(3) Modifications The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention. In the above embodiment, the HEMT, which is a normally-on type switching element, includes the first switch 13H and the third switch 14H, the second switch 13L and the fourth switch 14L, or the first switch 13H, the second switch 13L, and the third switch 13H. It has been described that the switch 14H and the fourth switch 14L (see FIG. 2) are used. Actually, a normally-on type switching element such as a HEMT is often commercially available as a normally-off type switching element after adding a normally-off circuit.
 このようなノーマリーオフ化されたノーマリーオン型のスイッチング素子(以下、説明の便宜上、N-OFFスイッチング素子ということとする)も、後述する回路を付加して駆動用電源が喪失したときにノーマリーオン化することで、ノーマリーオン型のスイッチング素子として上記の実施形態のスイッチ(第1スイッチ、第2スイッチ、第3スイッチ、第4スイッチ)に用いることができる。以下では、N-OFFスイッチング素子の回路の一例及びN-OFFスイッチング素子をノーマリーオン化する回路の一例について説明する。 Such a normally-off normally-on type switching element (hereinafter, referred to as an N-OFF switching element for convenience of description) is also provided when a driving power supply is lost by adding a circuit described later. By turning on normally, the normally-on type switching element can be used as the switch (first switch, second switch, third switch, and fourth switch) of the above embodiment. Hereinafter, an example of a circuit of an N-OFF switching element and an example of a circuit for normally turning on the N-OFF switching element will be described.
 図4Aは、N-OFFスイッチング素子の一例を示す図である。図4Aに示すN-OFFスイッチング素子30は、ノーマリーオン型のスイッチング素子29(例えば、HEMTであるGaN-FET)と、ノーマリーオフ型のスイッチング素子31(例えば、Si-MOSFET)とがカスコード接続された構成をしている。図4A中のSは、N-OFFスイッチング素子30のソース側端子であり、Dは、N-OFFスイッチング素子30のドレイン側端子である。ノーマリーオン型のスイッチング素子29がドレイン端子D側に配置され、ノーマリーオフ型のスイッチング素子31がソース側に配置されている。ノーマリーオン型のスイッチング素子29のゲート29Gは、ノーマリーオフ型のスイッチング素子31よりもソース側の配線に接続されている。ノーマリーオフ型のスイッチング素子31のゲート31Gは、N-OFFスイッチング素子30の制御回路(図4Aには不図示)に接続されており、ノーマリーオフ型のスイッチング素子31を駆動する駆動電圧が、制御回路からゲート31Gに印加されるようになされている。 FIG. 4A is a diagram showing an example of an N-OFF switching element. The N-OFF switching element 30 shown in FIG. 4A includes a normally-on switching element 29 (for example, a GaN-FET that is a HEMT) and a normally-off switching element 31 (for example, a Si-MOSFET). You have a connected configuration. 4A is a source-side terminal of the N-OFF switching element 30, and D is a drain-side terminal of the N-OFF switching element 30. A normally-on switching element 29 is disposed on the drain terminal D side, and a normally-off switching element 31 is disposed on the source side. The gate 29 </ b> G of the normally-on type switching element 29 is connected to a wiring closer to the source than the normally-off type switching element 31. The gate 31G of the normally-off switching element 31 is connected to a control circuit (not shown in FIG. 4A) of the N-OFF switching element 30, and a drive voltage for driving the normally-off switching element 31 is , From the control circuit to the gate 31G.
 N-OFFスイッチング素子30では、制御回路からゲート31Gに正の駆動電圧が印加されている場合、ノーマリーオフ型のスイッチング素子31はオン状態となり、ノーマリーオン型のスイッチング素子29はゲート29Gに印加された電圧が当該スイッチング素子29のソース電圧と等しくなるので、スイッチング素子29はオン状態となる。 In the N-OFF switching element 30, when a positive driving voltage is applied to the gate 31G from the control circuit, the normally-off switching element 31 is turned on, and the normally-on switching element 29 is connected to the gate 29G. Since the applied voltage becomes equal to the source voltage of the switching element 29, the switching element 29 is turned on.
 一方で、制御回路からゲート31Gに駆動電圧が印加されていない場合、ノーマリーオフ型のスイッチング素子31はオフ状態となる。このとき、ノーマリーオン型のスイッチング素子29のゲート電圧は、ノーマリーオン型のスイッチング素子29のソース電圧より低いので、ノーマリーオン型のスイッチング素子29もオフ状態となる。その結果、N-OFFスイッチング素子30は、ソース端子Sとドレイン端子Dの間に電流が流れることができず、オフ状態となる。このように、N-OFFスイッチング素子30は、ノーマリーオン型のスイッチング素子29とノーマリーオフ型のスイッチング素子30をカスコード接続することで、ノーマリーオン型のスイッチング素子29をノーマリーオフ化している。 On the other hand, when the drive voltage is not applied to the gate 31G from the control circuit, the normally-off type switching element 31 is turned off. At this time, since the gate voltage of the normally-on switching element 29 is lower than the source voltage of the normally-on switching element 29, the normally-on switching element 29 is also turned off. As a result, no current can flow between the source terminal S and the drain terminal D, and the N-OFF switching element 30 is turned off. As described above, the N-OFF switching element 30 cascode-connects the normally-on switching element 29 and the normally-off switching element 30 to make the normally-on switching element 29 normally-off. I have.
 ノーマリーオン型のスイッチング素子29をノーマリーオフ化したスイッチング素子であるN-OFFスイッチング素子30を、駆動用電源が喪失したときにノーマリーオン化する本発明の一手法について図4Bを参照して説明する。ここで、説明の便宜上、N-OFFスイッチング素子30をノーマリーオン化したスイッチング素子をN-ONスイッチング素子ということとする。 One method of the present invention in which an N-OFF switching element 30, which is a switching element in which a normally-on switching element 29 is normally-off, is normally-on when a driving power supply is lost, is referred to FIG. 4B. Will be explained. Here, for convenience of description, a switching element in which the N-OFF switching element 30 is normally on is referred to as an N-ON switching element.
 図4Bに示すように、N-ONスイッチング素子37は、直列に接続されたノーマリーオン型のスイッチング素子29及びノーマリーオフ型のスイッチング素子31(図4Aに示したN-OFFスイッチング素子30に相当)と、抵抗32と、ツェナーダイオード33と、駆動電圧供給用スイッチング素子34とを備えている。抵抗32は、ノーマリーオフ型のスイッチング素子31のゲート31Gとドレイン端子Dの間に挿入されている。ツェナーダイオード33は、ゲート31Gとソース端子Sの間に挿入され、アノードがソース端子S側に接続され、カソードがゲート31G側に接続されている。本実施形態では、接続点35で、ゲート31Gと抵抗32とツェナーダイオード33とが接続されている。なお、抵抗32及びツェナーダイオード33のスペックは、ノーマリーオフ型のスイッチング素子31の閾値電圧などに応じて適宜設定する。 As shown in FIG. 4B, the N-ON switching element 37 includes a normally-on switching element 29 and a normally-off switching element 31 (the N-OFF switching element 30 shown in FIG. , A resistor 32, a Zener diode 33, and a drive voltage supply switching element 34. The resistor 32 is inserted between the gate 31G and the drain terminal D of the normally-off type switching element 31. The Zener diode 33 is inserted between the gate 31G and the source terminal S, the anode is connected to the source terminal S side, and the cathode is connected to the gate 31G side. In the present embodiment, at the connection point 35, the gate 31G, the resistor 32, and the Zener diode 33 are connected. The specifications of the resistor 32 and the Zener diode 33 are appropriately set according to the threshold voltage of the normally-off type switching element 31 and the like.
 さらに、接続点35には、駆動電圧供給用スイッチング素子34のドレインが接続されている。駆動電圧供給用スイッチング素子34は、ソースにノーマリーオフ型のスイッチング素子31の駆動電圧を供給するN-ONスイッチング素子37の制御回路(図4Bには図示せず)が接続されている。駆動電圧供給用スイッチング素子34は、電源喪失時に、制御回路と接続点35とを遮断するために設けている。駆動電圧供給用スイッチング素子34は、通常、ゲート34GがON状態である。駆動電圧供給用スイッチング素子34はN-ONスイッチング素子37の制御回路の電源回路に接続されている。駆動電圧供給用スイッチング素子34がON状態であれば、制御回路によって、ゲート34Gを駆動できる。 Further, the drain of the drive voltage supply switching element 34 is connected to the connection point 35. The drive voltage supply switching element 34 is connected to the control circuit (not shown in FIG. 4B) of the N-ON switching element 37 that supplies the drive voltage of the normally-off type switching element 31 to the source. The drive voltage supply switching element 34 is provided to cut off the control circuit and the connection point 35 when the power is lost. The gate 34G of the drive voltage supply switching element 34 is normally in the ON state. The drive voltage supply switching element 34 is connected to a power supply circuit of a control circuit of the N-ON switching element 37. When the drive voltage supply switching element 34 is in the ON state, the control circuit can drive the gate 34G.
 一方で、N-ONスイッチング素子37の駆動用電源が喪失した場合は、駆動電圧供給用スイッチング素子34がオフ状態となり、接続点35が制御回路から遮断される。その結果、接続点35の電圧がツェナーダイオード33が許容する電圧まで上昇する。上昇した接続点35の電圧が、スイッチング素子31のゲート31Gに印加され、スイッチング素子31の駆動電圧より高いので、スイッチング素子31がオン状態となる。その結果、N-ONスイッチング素子37がオン状態となる。このように、N-ONスイッチング素子37は、駆動用電源が喪失し、駆動電圧が供給されなくなったときにオン状態となる。よって、N-ONスイッチング素子37をノーマリーオン型のスイッチング素子として、上記の実施形態の単位変換器3のスイッチに用いても、上記の実施形態と同様の効果を奏する。 On the other hand, when the power supply for driving the N-ON switching element 37 is lost, the switching element for driving voltage supply 34 is turned off, and the connection point 35 is cut off from the control circuit. As a result, the voltage at the connection point 35 rises to the voltage allowed by the Zener diode 33. The increased voltage at the connection point 35 is applied to the gate 31G of the switching element 31 and is higher than the driving voltage of the switching element 31, so that the switching element 31 is turned on. As a result, the N-ON switching element 37 is turned on. As described above, the N-ON switching element 37 is turned on when the driving power supply is lost and the driving voltage is not supplied. Therefore, even if the N-ON switching element 37 is used as a normally-on type switching element for the switch of the unit converter 3 of the above-described embodiment, the same effect as in the above-described embodiment can be obtained.
 上記の実施形態では、図2に示した単位変換器3の第2スイッチ13L及び第4スイッチ14Lに、ノーマリーオン型のスイッチング素子として、Si基板に形成されたGaN-FET(図3A参照)を用いた場合について説明した。このとき、ノーマリーオン型のスイッチング素子としては、1枚のSi基板に第2スイッチ13L用のGaN-FETと第4スイッチ14L用のGaN-FETとを一体に形成したものであってもよいことも説明した。本発明はさらに、例えば、単位変換器3の制御回路をSi上に実装されたSi基板に第2スイッチ13L用のGaN-FETと第4スイッチ14L用のGaN-FETとを形成したものをノーマリーオン型のスイッチング素子として用いてもよい。Si基板上に実装する回路としては、他には、例えば、交流電圧出力システム1の各単位変換器3の制御回路を統括する制御装置に相当する回路、ゲートドライバに相当する回路などがある。なお、第1スイッチ13Hと第3スイッチ14Hとをノーマリーオン型のスイッチング素子とした場合は、回路が形成されたSi基板上に、第1スイッチ13H用のGaN-FETと第3スイッチ14H用のGaN-FETとを形成する。また、ノーマリーオン型のスイッチング素子を用いたスイッチ以外のスイッチに用いるノーマリーオフ型のスイッチング素子についても、回路形成したSi基板上に形成してもよい。単位変換器3の制御回路や交流電圧出力システム1の各単位変換器3の制御回路を統括する制御装置に相当する回路、ゲートドライバに相当する回路など、単位変換器3の各スイッチ(第1スイッチ13H、第2スイッチ13L、第3スイッチ14H及び第4スイッチ14L)の少なくとも1つを駆動する回路を構成するすべての素子や全てのスイッチをSi上に実装してもよく、その一部の素子のみSi上に実装するようにしてもよい。 In the above embodiment, the second switch 13L and the fourth switch 14L of the unit converter 3 shown in FIG. 2 are provided with GaN-FETs formed on a Si substrate as normally-on switching elements (see FIG. 3A). Has been described. At this time, the normally-on type switching element may be one in which a GaN-FET for the second switch 13L and a GaN-FET for the fourth switch 14L are integrally formed on one Si substrate. He explained that. The present invention further provides, for example, a device in which a control circuit of the unit converter 3 is formed with a GaN-FET for the second switch 13L and a GaN-FET for the fourth switch 14L on a Si substrate mounted on Si. It may be used as a marion type switching element. Other circuits mounted on the Si substrate include, for example, a circuit corresponding to a control device that controls a control circuit of each unit converter 3 of the AC voltage output system 1, a circuit corresponding to a gate driver, and the like. When the first switch 13H and the third switch 14H are normally-on type switching elements, a GaN-FET for the first switch 13H and a third switch 14H are provided on the Si substrate on which the circuit is formed. GaN-FET is formed. Further, a normally-off type switching element used for a switch other than a switch using a normally-on type switching element may be formed on a Si substrate on which a circuit is formed. Each switch (first switch) of the unit converter 3, such as a circuit corresponding to a control device that controls the control circuit of the unit converter 3 or the control circuit of each unit converter 3 of the AC voltage output system 1, a circuit corresponding to a gate driver, etc. All the elements and all the switches that constitute a circuit for driving at least one of the switch 13H, the second switch 13L, the third switch 14H, and the fourth switch 14L) may be mounted on Si. Only the element may be mounted on Si.
 上記の実施形態では、図1に示すように交流電圧出力システム1が、三相交流用として用いられた場合について説明したが、本発明はこれに限られず、交流電圧出力システムのアームを1つにして単相交流用として用いることもできる。 In the above embodiment, the case where the AC voltage output system 1 is used for three-phase AC as shown in FIG. 1 has been described, but the present invention is not limited to this, and one arm of the AC voltage output system is used. And can be used for single-phase alternating current.
 また、上記の実施形態では、図1に示したように、電力系統と負荷の間の配電系統の配電系統安定化装置として交流電圧出力システム1を適用した場合について説明したが、本発明はこれに限られない。例えば、図5に示すように、交流電圧出力システム1を、電力系統50及び電力系統59間で並列に接続された配電系統510、610の潮流制御に用いることができる。図5に示す例では、電力系統50と電力系統59とが、配電系統510と配電系統610とによって連系されている。配電系統610の両端が配電系統510に接続されて、配電系統510と配電系統610とが並列に接続されている。交流電圧出力システム1は、配電系統510の各相の端子53u、53v、53wに接続されている。なお、配電系統510及び配電系統610には、それぞれ負荷(図5には不図示)が接続されている。 Further, in the above embodiment, as shown in FIG. 1, the case where the AC voltage output system 1 is applied as the distribution system stabilizing device of the distribution system between the power system and the load has been described. Not limited to For example, as shown in FIG. 5, the AC voltage output system 1 can be used for power flow control of distribution systems 510 and 610 connected in parallel between the power system 50 and the power system 59. In the example shown in FIG. 5, the power system 50 and the power system 59 are interconnected by the power distribution system 510 and the power distribution system 610. Both ends of the distribution system 610 are connected to the distribution system 510, and the distribution system 510 and the distribution system 610 are connected in parallel. The AC voltage output system 1 is connected to terminals 53u, 53v, 53w of each phase of the distribution system 510. A load (not shown in FIG. 5) is connected to each of the power distribution system 510 and the power distribution system 610.
 このような場合も、配電系統安定化装置は、図1に示した配電系統安定化装置と同様に、各相の周波数を制御したり、相間で電力の過不足を調整したり、相間の電圧のアンバランスを解消したりできる。さらに、配電系統安定化装置は、電力系統50と電力系統59との間の潮流が配電系統510及び配電系統610でアンバランスであることを解消できる。例えば、配電系統510の潮流が過剰なときは、配電系統510の電圧により、R相アーム2R、S相アーム2S、T相アーム2Tの単位変換器3の電力貯蔵器15を充電し配電系統510の電力を吸収することで、潮流を減少させる。 In such a case, the distribution system stabilization device controls the frequency of each phase, adjusts the excess or deficiency of power between the phases, and controls the voltage between the phases, similarly to the distribution system stabilization device shown in FIG. Or cancel the imbalance. Further, the power distribution system stabilizing device can eliminate the situation in which the power flow between the power system 50 and the power system 59 is unbalanced in the power distribution system 510 and the power distribution system 610. For example, when the power flow of the distribution system 510 is excessive, the power storage 15 of the unit converter 3 of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T is charged by the voltage of the distribution system 510, and The power flow is reduced by absorbing power.
 一方で、配電系統510の潮流が不足なとき(図5に不図示の負荷に必要な電力を供給できていないとき)は、R相アーム2R、S相アーム2S、T相アーム2Tの単位変換器3の電力貯蔵器15を放電して配電系統510に電力を供給することにより、潮流を増加させる。また、出力電圧(連系点の電圧)を高くすることでも、潮流を増加できる。 On the other hand, when the power flow of the distribution system 510 is insufficient (when necessary power cannot be supplied to a load (not shown in FIG. 5)), the unit conversion of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T is performed. The power flow is increased by discharging the power storage unit 15 of the unit 3 and supplying power to the distribution system 510. Also, the tide can be increased by increasing the output voltage (voltage at the interconnection point).
このように、配電系統510との間で電力を授受する交流電圧出力システム1は、配電系統の潮流の過不足を解消できる。さらに、交流電圧出力システム1を用いた配電系統安定化装置は、交流電圧出力システム1の単位変換器3のスイッチの駆動用電源が喪失したときも継続運転でき、より信頼性が高い。なお、交流電圧出力システム1は、配電系統510のかわりに配電系統610に接続されていてもよい。複数の交流電圧出力システム1を用意し、配電系統510及び配電系統610の両方にそれぞれ交流電圧出力システム1を接続するようにしてもよい。 As described above, the AC voltage output system 1 that exchanges power with the distribution system 510 can eliminate excess or deficiency of the power flow in the distribution system. Further, the power distribution system stabilizing device using the AC voltage output system 1 can be continuously operated even when the power for driving the switch of the unit converter 3 of the AC voltage output system 1 is lost, and is more reliable. The AC voltage output system 1 may be connected to the distribution system 610 instead of the distribution system 510. A plurality of AC voltage output systems 1 may be prepared, and the AC voltage output systems 1 may be connected to both the distribution system 510 and the distribution system 610, respectively.
 ここでは、並列に接続された複数の配電系統510、610の一方(配電系統510)に接続された交流電圧出力システム1の制御装置が、配電系統510及び配電系統610の潮流を制御する場合について説明したが、本発明はこれに限られない。配電系統510が接続された電力系統50、電力系統59又は両方を制御する電力系統制御システムの系統制御装置が、複数の配電系統510に接続された交流電圧出力システム1の出力を制御し、配電系統510及び配電系統610潮流を制御するようにしてもよい。潮流の制御手法は、交流電圧出力システム1の制御装置が潮流を制御する場合と同じであるので、説明を省略する。交流電圧出力システム1は、配電系統510に変えて、電力系統間を接続する交流送電系統に接続し、交流送電系統の安定化装置として適用することもできる。 Here, a case is described in which the control device of AC voltage output system 1 connected to one (distribution system 510) of a plurality of distribution systems 510 and 610 connected in parallel controls the power flow of distribution system 510 and distribution system 610. Although described, the present invention is not limited to this. A power system control device of the power system control system that controls the power system 50, the power system 59, or both, to which the power distribution system 510 is connected, controls the output of the AC voltage output system 1 connected to the plurality of power distribution systems 510, and The power flow of the system 510 and the power distribution system 610 may be controlled. The method of controlling the power flow is the same as that in the case where the control device of the AC voltage output system 1 controls the power flow, and a description thereof will be omitted. The AC voltage output system 1 may be connected to an AC transmission system that connects between power systems instead of the distribution system 510, and may be applied as a stabilizing device for the AC transmission system.
(4)交流電圧出力システムの他の用途
 本発明の交流電圧出力システム1は、各単位変換器3が充放電可能な電力貯蔵器15を有しており、電力を貯蔵し、所定のタイミングで貯蔵した電力を交流電圧として出力することができるので、配電系統安定化装置以外に、例えば、UPS(無停電電源装置)及び電気自動車のバッテリなど各種バッテリシステムや直流送電用の変換器などに用いることができる。
(4) Other Applications of AC Voltage Output System The AC voltage output system 1 of the present invention has a power storage unit 15 in which each unit converter 3 can charge and discharge, stores power, and at a predetermined timing. Since the stored power can be output as an AC voltage, it is used for various battery systems such as UPS (uninterruptible power supply) and electric vehicle batteries, and converters for DC power transmission, in addition to power distribution system stabilizing devices. be able to.
 交流電圧出力システム1は、UPSとしても用いることができる。例えば、図1に示すように、交流電圧出力システム1は、商用交流電源に接続され、商用交流電源から電力を受け取る受電部と、受電部が受け取った電力を蓄電する蓄電部と、蓄電部に蓄えられた電力を電気機器や電子機器に供給する給電部とを備えている。交流電圧出力システムは、当該蓄電部として用いられUPSとして機能する。該UPSとして機能する交流電圧出力システム1は、商用交流電源からの電力により交流電圧出力システムの各単位変換器の電力貯蔵器を充電しておき、商用交流電源が遮断されたとき、交流電圧出力が交流電圧を出力し、給電部を介して電気機器や電子機器に交流電圧を供給する。UPSは、本発明の交流電圧出力システムを備えているので、交流電圧出力システムの単位変換器3のスイッチの駆動用電源が喪失したときも継続運転でき、より信頼性が高い。 The AC voltage output system 1 can also be used as a UPS. For example, as shown in FIG. 1, AC voltage output system 1 is connected to a commercial AC power supply, receives a power from the commercial AC power supply, a power storage unit that stores the power received by the power reception unit, and a power storage unit. A power supply unit that supplies the stored electric power to electric devices and electronic devices. The AC voltage output system is used as the power storage unit and functions as a UPS. The AC voltage output system 1 functioning as the UPS charges an electric power storage of each unit converter of the AC voltage output system with electric power from a commercial AC power supply, and outputs the AC voltage output when the commercial AC power supply is cut off. Outputs an AC voltage, and supplies the AC voltage to an electric device or an electronic device via a power supply unit. Since the UPS includes the AC voltage output system of the present invention, the UPS can be continuously operated even when the power supply for driving the switch of the unit converter 3 of the AC voltage output system is lost, and the UPS is more reliable.
 電気自動車のバッテリに用いる場合、交流電圧出力システム1は、図1に示す電力系統50に変えて三相交流用モーターの各相に接続される。また、各単位変換器3の電力貯蔵器15は、大容量の二次電池を用いるのが好ましい。また、電気自動車の外部から電力貯蔵器15を充電するための端子が、交流電圧出力システム1の各アームに接続されている。交流電圧出力システム1を備えるバッテリは、外部からの電力供給により電力貯蔵器15が充電されて交流電圧出力システム1に蓄えられた電力を、交流電圧出力システム1が交流電圧に変換して三相交流用モーターの各相に供給して、モーターを回転させる。このとき、モーターで回生された電圧によって、交流電圧出力システム1の電力貯蔵器15を充電することもできる。従来の電気自動車のバッテリは、リチウムイオン電池などの二次電池なので、二次電池が出力する直流電圧を交流電圧に変換するインバータが必要であった。一方で、電気自動車のバッテリにとして交流電圧出力システム1を用いることで、バッテリとインバータとを交流電圧出力システム1に置き換え、これらの構成を省略できる。さらに電気自動車のバッテリは、交流電圧出力システム1を備えているので、本発明の交流電圧出力システム1の単位変換器3のスイッチの駆動用電源が喪失したときも継続運転でき、より信頼性が高い。なお、交流電圧出力システム1は、電気自動車以外の自動車のバッテリにも適用できる。 When used for a battery of an electric vehicle, the AC voltage output system 1 is connected to each phase of a three-phase AC motor instead of the power system 50 shown in FIG. Further, it is preferable to use a large-capacity secondary battery as the power storage unit 15 of each unit converter 3. Further, a terminal for charging the power storage device 15 from outside the electric vehicle is connected to each arm of the AC voltage output system 1. The battery provided with the AC voltage output system 1 is a three-phase battery that converts the power stored in the AC voltage output system 1 by charging the power storage unit 15 with the power supplied from the outside to the AC voltage output system 1. Supply to each phase of the AC motor to rotate the motor. At this time, the power storage 15 of the AC voltage output system 1 can be charged by the voltage regenerated by the motor. Since the battery of the conventional electric vehicle is a secondary battery such as a lithium ion battery, an inverter for converting a DC voltage output by the secondary battery into an AC voltage is required. On the other hand, by using the AC voltage output system 1 as the battery of the electric vehicle, the battery and the inverter can be replaced with the AC voltage output system 1, and these configurations can be omitted. Further, since the battery of the electric vehicle is provided with the AC voltage output system 1, the battery can be continuously operated even when the power supply for driving the switch of the unit converter 3 of the AC voltage output system 1 of the present invention is lost, and the reliability is further improved. high. Note that the AC voltage output system 1 can be applied to batteries of vehicles other than electric vehicles.
 図1に示した交流電圧出力システム1は、R相アーム2R、S相アーム2S、T相アーム2Tの一端がスター結線され、他端がリアクトル150R、150S、150Tを介して配電系統の各相に接続された形式であったが、交流電圧出力システムの態様を種々変更できる。例えば、図6に示す交流電圧出力システム110のように、2つのアーム112Rが直列に接続されたレグ110R(R相レグともいう)、2つのアーム112Sが直列に接続されたレグ110S(S相レグともいう)及び2つのアーム112Tが直列に接続されたレグ110T(T相レグともいう)が、一端部同士及び他端部同士がそれぞれ接続されて、並列に接続されている交流電圧出力システム110であってもよい。 In the AC voltage output system 1 shown in FIG. 1, one end of each of the R-phase arm 2R, the S-phase arm 2S, and the T-phase arm 2T is star-connected, and the other end is connected to each phase of the power distribution system via the reactors 150R, 150S, 150T. However, the form of the AC voltage output system can be variously changed. For example, as in an AC voltage output system 110 shown in FIG. 6, a leg 110R in which two arms 112R are connected in series (also referred to as an R-phase leg) and a leg 110S in which two arms 112S are connected in series (S-phase A leg 110T (also referred to as a T-phase leg) in which two arms 112T are connected in series, and one end and the other end are connected in parallel, and an AC voltage output system is connected in parallel. It may be 110.
 図6に示す交流電圧出力システム110の各アーム112R、112S、112T(R相アーム、S相アーム、T相アームともいう)は、3つの単位変換器3とリアクトル103が、リアクトル103が端部に来るように直列に接続されている。図6に示す例では、各アーム112R、112S、112Tの構成は同じである。各レグ110R、110S、110Tは、各アーム112R、112S、112Tのリアクトル103同士が接続されて直列に接続されている。各レグ110R、110S、110Tは、両端に直流電力を授受するための直流端子P1、N1をそれぞれ備え、アーム同士の接続点に交流電力を授受するための交流端子113R、113S、113Tをそれぞれ備えている。交流電圧出力システム110では、各レグ110R、110S、110Tが、端部同士が接続されているので、1つの直流端子P1、N1を共有している。 Each of the arms 112R, 112S, and 112T (also referred to as an R-phase arm, an S-phase arm, and a T-phase arm) of the AC voltage output system 110 illustrated in FIG. 6 includes three unit converters 3 and a reactor 103, and the reactor 103 has an end portion. Are connected in series to come in. In the example shown in FIG. 6, the configuration of each arm 112R, 112S, 112T is the same. In each of the legs 110R, 110S, and 110T, the reactors 103 of the arms 112R, 112S, and 112T are connected to each other and connected in series. Each leg 110R, 110S, 110T has a DC terminal P1, N1 at each end for transferring DC power, and AC terminals 113R, 113S, 113T for transferring AC power at a connection point between the arms. ing. In the AC voltage output system 110, the legs 110R, 110S, 110T share one DC terminal P1, N1 because their ends are connected to each other.
 交流端子113R、113S、113Tは、それぞれ、電力系統50のu相、v相、w相に接続されている。そのため、交流電圧出力システム110は、各レグ110R、110S、110Tが直流端子P1及び直流端子N1でスター結線された構成となっている。各アーム112R、112S、112Tの単位変換器3は、図2に示す単位変換器3であり、フルブリッジ回路構成をしている。 The AC terminals 113R, 113S, 113T are connected to the u-phase, v-phase, and w-phase of the power system 50, respectively. Therefore, the AC voltage output system 110 has a configuration in which the legs 110R, 110S, and 110T are star-connected by the DC terminal P1 and the DC terminal N1. The unit converter 3 of each arm 112R, 112S, 112T is the unit converter 3 shown in FIG. 2 and has a full bridge circuit configuration.
 交流電圧出力システム110は、各レグ110R、110S、110Tの直流端子P1と直流端子N1との間に、例えば原動機や太陽光発電装置、風力発電装置など有効電力源105を接続することで、例えば、原動機で発電された直流電力を単位変換器3の数に応じた多段階の交流電力に変換し、電力系統50の各相に出力する発電システムに利用できる。また、交流電圧出力システム110は、直流端子P1と直流端子N1に直流送電線を接続することで、直流送電線から入力された直流電力を多段の交流電力に変換して電力系統50の各相に出力する直流送電システムに利用できる。この直流送電システムは、逆に、交流電圧出力システム110は、電力系統50から入力された交流電力を直流電力に変換し、直流送電線に出力して直流送電することもできる。公知情報であるが、単位変換器3がフルブリッジ構成の場合、落雷などによる直流短絡事故時に直流出力電圧を低下させて、短絡電流を抑制することができるメリットがある。 The AC voltage output system 110 is connected between the DC terminal P1 and the DC terminal N1 of each leg 110R, 110S, 110T, for example, by connecting an active power source 105 such as a prime mover, a solar power generation device, or a wind power generation device. It can be used for a power generation system that converts DC power generated by a prime mover into multi-stage AC power according to the number of unit converters 3 and outputs the AC power to each phase of the power system 50. Further, the AC voltage output system 110 converts a DC power input from the DC power transmission line into a multi-stage AC power by connecting a DC power transmission line to the DC terminal P1 and the DC terminal N1 so that each phase of the power system 50 is connected. Can be used for DC power transmission systems that output to Conversely, in this DC power transmission system, the AC voltage output system 110 can also convert the AC power input from the power system 50 into DC power, output the DC power to a DC transmission line, and perform DC power transmission. As known information, when the unit converter 3 has a full-bridge configuration, there is an advantage that a DC output voltage is reduced at the time of a DC short-circuit accident due to a lightning strike or the like, and a short-circuit current can be suppressed.
 このような交流電圧出力システム110は、所定電圧を出力する複数の単位変換器3が直列に接続されたアームを少なくとも1つ(アーム112R、112S、112T)備え、単位変換器3が、第1スイッチ13Hと第2スイッチ13Lとが直列に接続された第1スイッチアーム13と、第3スイッチ14Hと第4スイッチ14Lとが直列に接続された第2スイッチアーム14と、充放電できる電力貯蔵器15とを備え、第1スイッチアーム13の第1スイッチ13H側端部と第2スイッチアーム14の第3スイッチ14H側端部とが接続され、第1スイッチアーム13の第2スイッチ13L側端部と第2スイッチアーム14の第4スイッチ14L側端部とが接続されて、第1スイッチアーム13、第2スイッチアーム14及び電力貯蔵器15が並列に接続された構成をし、第1スイッチ13H及び第3スイッチ14H、第2スイッチ13L及び第4スイッチ14L又は第1スイッチ13H、第3スイッチ14H、第2スイッチ13L及び第4スイッチ14Lがノーマリーオン型のスイッチング素子で構成されている。 Such an AC voltage output system 110 includes at least one arm ( arms 112R, 112S, and 112T) in which a plurality of unit converters 3 that output a predetermined voltage are connected in series. A first switch arm 13 in which a switch 13H and a second switch 13L are connected in series; a second switch arm 14 in which a third switch 14H and a fourth switch 14L are connected in series; 15, an end of the first switch arm 13 on the first switch 13H side and an end of the second switch arm 14 on the third switch 14H side, and an end of the first switch arm 13 on the second switch 13L side. And the end of the second switch arm 14 on the side of the fourth switch 14L, the first switch arm 13, the second switch arm 14, and the power storage 15 are connected in parallel, and the first switch 13H and the third switch 14H, the second switch 13L and the fourth switch 14L or the first switch 13H, the third switch 14H, the second switch 13L and the fourth switch 14L Are composed of normally-on type switching elements.
 交流電圧出力システム110の効果について説明する。例えば、落雷など発生した時に、交流電圧出力システム110は、単位変換器3のスイッチの駆動用電源が喪失する可能性がある。しかし、交流電圧出力システム110は、単位変換器3のスイッチの駆動用電源が喪失したとき、当該単位変換器3が短絡された状態となるので、スイッチの駆動用電源が喪失したときも継続運転することができる。そのため、交流電圧出力システム110は、短絡スイッチを省略できる。 The effect of the AC voltage output system 110 will be described. For example, when a lightning strike or the like occurs, the AC voltage output system 110 may lose power for driving the switches of the unit converter 3. However, the AC voltage output system 110 is in a state where the unit converter 3 is short-circuited when the power for driving the switch of the unit converter 3 is lost, so that the continuous operation is performed even when the power for driving the switch is lost. can do. Therefore, the AC voltage output system 110 can omit the short-circuit switch.
 図6に示した交流電圧出力システム110は、三相交流用であるが、レグを2つ除去することにより、単相用として用いることができる。また、各アーム112R、112S、112Tが有する単位変換器3の数は限定されない。この例では、交流電圧出力システム110は、電力系統50に接続されているが、電力系統に接続された交流配電系統や直流配電系統に接続されてもよい。 The AC voltage output system 110 shown in FIG. 6 is for three-phase AC, but can be used for single-phase by removing two legs. Further, the number of unit converters 3 included in each arm 112R, 112S, 112T is not limited. In this example, the AC voltage output system 110 is connected to the power system 50, but may be connected to an AC distribution system or a DC distribution system connected to the power system.
 1  交流電圧出力システム
 2R  R相アーム
 2S  S相アーム
 2T  T相アーム
 3  単位変換器
 13  第1スイッチアーム
 13H  第1スイッチ
 13L  第2スイッチ
 14  第2スイッチアーム
 14H  第3スイッチ
 14L  第4スイッチ
 15  電力貯蔵器
 20  GaN-FET

 
DESCRIPTION OF SYMBOLS 1 AC voltage output system 2R R phase arm 2S S phase arm 2T T phase arm 3 Unit converter 13 1st switch arm 13H 1st switch 13L 2nd switch 14 2nd switch arm 14H 3rd switch 14L 4th switch 15 Power storage 20 GaN-FET

Claims (17)

  1.  所定電圧を出力する複数の単位変換器が直列に接続されたアームを少なくとも1つ備え、
     前記単位変換器が、
     第1スイッチと第2スイッチとが直列に接続された第1スイッチアームと、
     第3スイッチと第4スイッチとが直列に接続された第2スイッチアームと、
     充放電できる電力貯蔵器とを備え、
     前記第1スイッチアームの前記第1スイッチ側端部と前記第2スイッチアームの前記第3スイッチ側端部とが接続され、前記第1スイッチアームの前記第2スイッチ側端部と前記第2スイッチアームの前記第4スイッチ側端部とが接続されて、前記第1スイッチアーム、前記第2スイッチアーム及び前記電力貯蔵器が並列に接続された構成をし、
     前記第1スイッチ及び前記第3スイッチ、前記第2スイッチ及び前記第4スイッチ又は前記第1スイッチ、前記第3スイッチ、前記第2スイッチ及び前記第4スイッチがノーマリーオン型のスイッチング素子で構成されている
     交流電圧出力システム。
    A plurality of unit converters that output a predetermined voltage include at least one arm connected in series,
    Wherein the unit converter is
    A first switch arm in which a first switch and a second switch are connected in series;
    A second switch arm in which a third switch and a fourth switch are connected in series;
    Power storage that can be charged and discharged,
    The first switch-side end of the first switch arm is connected to the third switch-side end of the second switch arm, and the second switch-side end of the first switch arm is connected to the second switch. The fourth switch side end of the arm is connected, the first switch arm, the second switch arm and the power storage are connected in parallel,
    The first switch and the third switch, the second switch and the fourth switch, or the first switch, the third switch, the second switch, and the fourth switch each include a normally-on type switching element. Has an AC voltage output system.
  2.  所定電圧を出力する複数の単位変換器が直列に接続されたアームを少なくとも1つ備え、
     前記単位変換器が、
     第1スイッチと第2スイッチとが直列に接続された第1スイッチアームと、
     第3スイッチと第4スイッチとが直列に接続された第2スイッチアームと、
     充放電できる電力貯蔵器とを備え、
     前記第1スイッチアームの前記第1スイッチ側端部と前記第2スイッチアームの前記第3スイッチ側端部とが接続され、前記第1スイッチアームの前記第2スイッチ側端部と前記第2スイッチアームの前記第4スイッチ側端部とが接続されて、前記第1スイッチアーム、前記第2スイッチアーム及び前記電力貯蔵器が並列に接続された構成をし、
     前記第1スイッチ及び前記第3スイッチ、前記第2スイッチ及び前記第4スイッチ又は前記第1スイッチ、前記第3スイッチ、前記第2スイッチ及び前記第4スイッチが二次元電子ガスによって低オン電圧を実現した電界効果型トランジスタを用いたスイッチング素子で構成されている
     交流電圧出力システム。
    A plurality of unit converters that output a predetermined voltage include at least one arm connected in series,
    Wherein the unit converter is
    A first switch arm in which a first switch and a second switch are connected in series;
    A second switch arm in which a third switch and a fourth switch are connected in series;
    Power storage that can be charged and discharged,
    The first switch-side end of the first switch arm is connected to the third switch-side end of the second switch arm, and the second switch-side end of the first switch arm is connected to the second switch. The fourth switch side end of the arm is connected, the first switch arm, the second switch arm and the power storage are connected in parallel,
    The first switch and the third switch, the second switch and the fourth switch, or the first switch, the third switch, the second switch, and the fourth switch realize a low on-voltage by a two-dimensional electron gas. AC voltage output system composed of switching elements using field-effect transistors.
  3.  所定電圧を出力する複数の単位変換器が直列に接続されたアームを少なくとも1つ備え、
     前記単位変換器が、
     第1スイッチと第2スイッチとが直列に接続された第1スイッチアームと、
     第3スイッチと第4スイッチとが直列に接続された第2スイッチアームと、
     充放電できる電力貯蔵器とを備え、
     前記第1スイッチアームの前記第1スイッチ側端部と前記第2スイッチアームの前記第3スイッチ側端部とが接続され、前記第1スイッチアームの前記第2スイッチ側端部と前記第2スイッチアームの前記第4スイッチ側端部とが接続されて、前記第1スイッチアーム、前記第2スイッチアーム及び前記電力貯蔵器が並列に接続された構成をし、
     前記第1スイッチ及び前記第3スイッチ、前記第2スイッチ及び前記第4スイッチ又は前記第1スイッチ、前記第3スイッチ、前記第2スイッチ及び前記第4スイッチが窒化ガリウムで構成された電界効果型トランジスタを用いたスイッチング素子で構成されている
     交流電圧出力システム。
    A plurality of unit converters that output a predetermined voltage include at least one arm connected in series,
    Wherein the unit converter is
    A first switch arm in which a first switch and a second switch are connected in series;
    A second switch arm in which a third switch and a fourth switch are connected in series;
    Power storage that can be charged and discharged,
    The first switch-side end of the first switch arm is connected to the third switch-side end of the second switch arm, and the second switch-side end of the first switch arm is connected to the second switch. The fourth switch side end of the arm is connected, the first switch arm, the second switch arm and the power storage are connected in parallel,
    A field-effect transistor in which the first switch and the third switch, the second switch and the fourth switch, or the first switch, the third switch, the second switch, and the fourth switch are formed of gallium nitride AC voltage output system composed of switching elements using
  4.  所定電圧を出力する複数の単位変換器が直列に接続されたアームを少なくとも1つ備え、
     前記単位変換器が、
     第1スイッチと第2スイッチとが直列に接続された第1スイッチアームと、
     第3スイッチと第4スイッチとが直列に接続された第2スイッチアームと、
     充放電できる電力貯蔵器とを備え、
     前記第1スイッチアームの前記第1スイッチ側端部と前記第2スイッチアームの前記第3スイッチ側端部とが接続され、前記第1スイッチアームの前記第2スイッチ側端部と前記第2スイッチアームの前記第4スイッチ側端部とが接続されて、前記第1スイッチアーム、前記第2スイッチアーム及び前記電力貯蔵器が並列に接続された構成をし、
     前記第1スイッチ及び前記第3スイッチ、前記第2スイッチ及び前記第4スイッチ又は前記第1スイッチ、前記第3スイッチ、前記第2スイッチ及び前記第4スイッチが、窒化ガリウムで構成された電界効果型トランジスタを用いたスイッチング素子で構成されており、
     前記電界効果型トランジスタがシリコン上に形成されている
     交流電圧出力システム。
    A plurality of unit converters that output a predetermined voltage include at least one arm connected in series,
    Wherein the unit converter is
    A first switch arm in which a first switch and a second switch are connected in series;
    A second switch arm in which a third switch and a fourth switch are connected in series;
    Power storage that can be charged and discharged,
    The first switch-side end of the first switch arm is connected to the third switch-side end of the second switch arm, and the second switch-side end of the first switch arm is connected to the second switch. The fourth switch side end of the arm is connected, the first switch arm, the second switch arm and the power storage are connected in parallel,
    A field-effect type in which the first switch and the third switch, the second switch and the fourth switch, or the first switch, the third switch, the second switch, and the fourth switch are formed of gallium nitride; It is composed of switching elements using transistors,
    An AC voltage output system, wherein the field effect transistor is formed on silicon.
  5.  前記第1スイッチ、前記第2スイッチ、前記第3スイッチ又は前記第4スイッチの少なくとも1つ以上を駆動する回路の少なくとも一部の素子が前記シリコン上に実装されている
     請求項4に記載の交流電圧出力システム。
    The AC according to claim 4, wherein at least a part of elements of a circuit that drives at least one of the first switch, the second switch, the third switch, and the fourth switch is mounted on the silicon. Voltage output system.
  6.  前記電界効果型トランジスタを用いたスイッチング素子が駆動用電源を喪失した際に、ノーマリーオンとなるノーマリーオフ型のスイッチング素子である
     請求項2~5のいずれか1項に記載の交流電圧出力システム。
    The AC voltage output according to any one of claims 2 to 5, wherein the switching element using the field-effect transistor is a normally-off switching element that is normally on when a driving power supply is lost. system.
  7.  交流配電系統又は交流送電系統に接続され、
     前記交流配電系統又は前記交流送電系統の周波数に基づいて、前記交流配電系統又は前記交流送電系統への出力を制御する制御装置を有する
     請求項1~6のいずれか1項に記載の交流電圧出力システム。
    Connected to AC distribution system or AC transmission system,
    The AC voltage output according to any one of claims 1 to 6, further comprising a control device that controls an output to the AC distribution system or the AC transmission system based on a frequency of the AC distribution system or the AC transmission system. system.
  8.  交流配電系統又は交流送電系統が接続された電力系統を制御する系統制御装置を備え、
     前記系統制御装置が、前記交流配電系統又は前記交流送電系統の周波数に基づいて、前記交流配電系統又は前記交流送電系統に接続された請求項1~6のいずれか1項に記載の交流電圧出力システムの出力を制御する
     電力系統制御システム。
    With a system control device that controls the power system to which the AC distribution system or the AC transmission system is connected,
    The AC voltage output according to any one of claims 1 to 6, wherein the system control device is connected to the AC distribution system or the AC transmission system based on a frequency of the AC distribution system or the AC transmission system. A power system control system that controls the output of the system.
  9.  交流配電系統又は交流送電系統が接続された電力系統であって、
     前記交流配電系統又は前記交流送電系統に、請求項1~6のいずれか1項に記載の交流電圧出力システムが接続され、
     前記交流配電系統又は前記交流送電系統の周波数に基づいて、前記交流電圧出力システムの出力が制御される
     電力系統。
    An AC power distribution system or an AC transmission system to which the power transmission system is connected,
    The AC voltage output system according to any one of claims 1 to 6, which is connected to the AC distribution system or the AC transmission system,
    A power system in which an output of the AC voltage output system is controlled based on a frequency of the AC distribution system or the AC transmission system.
  10.  並列に接続された複数の交流配電系統又は複数の交流送電系統の一方に接続され、
     前記交流配電系統又は前記交流送電系統の潮流を制御する制御装置を備える
     請求項1~6のいずれか1項に記載の交流電圧出力システム。
    Connected to one of a plurality of AC distribution systems or a plurality of AC transmission systems connected in parallel,
    The AC voltage output system according to any one of claims 1 to 6, further comprising a control device that controls a power flow of the AC distribution system or the AC transmission system.
  11.  交流配電系統又は交流送電系統が接続された電力系統を制御する系統制御装置を備え、
     前記電力系統は、複数の前記交流配電系統又は複数の前記交流送電系統が並列に接続されており、
     複数の前記交流配電系統又は複数の前記交流送電系統の少なくとも一方に請求項1~6のいずれか1項に記載の交流電圧出力システムが接続され、
     前記系統制御装置が、前記交流電圧出力システムの出力を制御することで、前記交流配電系統又は前記交流送電系統の潮流を制御する
     電力系統制御システム。
    With a system control device that controls the power system to which the AC distribution system or the AC transmission system is connected,
    The power system, a plurality of the AC distribution system or a plurality of the AC transmission system is connected in parallel,
    The AC voltage output system according to any one of claims 1 to 6, which is connected to at least one of the plurality of AC distribution systems or the plurality of AC transmission systems,
    A power system control system, wherein the system control device controls an output of the AC voltage output system to control a power flow of the AC distribution system or the AC transmission system.
  12.  交流配電系統又は交流送電系統が接続された電力系統であって、
     複数の前記交流配電系統又は複数の前記交流送電系統が並列に接続されており、
     複数の前記交流配電系統又は複数の前記交流送電系統の少なくとも一方に請求項1~6のいずれか1項に記載の交流電圧出力システムが接続され、
     前記交流電圧出力システムの出力により、前記交流配電系統又は前記交流送電系統の潮流が制御される
     電力系統。
    An AC power distribution system or an AC transmission system to which the power transmission system is connected,
    A plurality of AC power distribution systems or a plurality of AC power transmission systems are connected in parallel,
    The AC voltage output system according to any one of claims 1 to 6, which is connected to at least one of the plurality of AC distribution systems or the plurality of AC transmission systems,
    A power system in which a flow of the AC distribution system or the AC transmission system is controlled by an output of the AC voltage output system.
  13.  2つの前記アームが直列に接続されたレグを少なくとも1つ備え、
     前記レグは、直流電力を授受するための直流端子を両端にそれぞれ備え、交流電力を授受するための交流端子を前記アーム同士の接続点に備える
     請求項1~6のいずれか1項に記載の交流電圧出力システム。
    At least one leg in which the two arms are connected in series;
    The leg according to any one of claims 1 to 6, wherein the leg includes a DC terminal for transmitting and receiving DC power at both ends, and an AC terminal for transmitting and receiving AC power at a connection point between the arms. AC voltage output system.
  14.  請求項13に記載の交流電圧出力システムを備え、
     前記直流端子に直流送電線が接続され、
     前記直流送電線から前記直流端子に入力された直流電力を交流電力に変換して前記交流端子から出力する
     直流送電システム。
    An AC voltage output system according to claim 13,
    A DC transmission line is connected to the DC terminal,
    A DC power transmission system that converts DC power input to the DC terminal from the DC transmission line into AC power and outputs the AC power from the AC terminal.
  15.  請求項13に記載の交流電圧出力システムを備え、
     前記直流端子に有効電力源が接続され、
     前記有効電力源から前記直流端子に入力された直流電力を交流電力に変換して前記交流端子から出力する
     発電システム。
    An AC voltage output system according to claim 13,
    An active power source is connected to the DC terminal,
    A power generation system that converts DC power input to the DC terminal from the active power source into AC power and outputs the AC power from the AC terminal.
  16.  請求項1~6のいずれか1項に記載の交流電圧出力システムを備える
     バッテリシステム。
    A battery system comprising the AC voltage output system according to any one of claims 1 to 6.
  17.  無停電電源装置又は電気自動車用のバッテリである
     請求項16に記載のバッテリシステム。
    The battery system according to claim 16, wherein the battery system is an uninterruptible power supply device or a battery for an electric vehicle.
PCT/JP2019/037111 2018-09-21 2019-09-20 Ac voltage output system, power system control system, power system, dc power transmission system, power generation system, and battery system WO2020059880A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549162A JP7299628B2 (en) 2018-09-21 2019-09-20 AC voltage output system, power system control system, power system, DC transmission system, power generation system and battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018178007 2018-09-21
JP2018-178007 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020059880A1 true WO2020059880A1 (en) 2020-03-26

Family

ID=69887265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037111 WO2020059880A1 (en) 2018-09-21 2019-09-20 Ac voltage output system, power system control system, power system, dc power transmission system, power generation system, and battery system

Country Status (2)

Country Link
JP (1) JP7299628B2 (en)
WO (1) WO2020059880A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023278822A1 (en) * 2021-07-02 2023-01-05 Tae Technologies, Inc. Systems, devices, and methods for module-based cascaded energy systems having reconfigurable arrays
JP7305594B2 (en) 2020-04-06 2023-07-10 東芝キヤリア株式会社 power converter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229262A (en) * 2010-04-19 2011-11-10 Daikin Ind Ltd Power conversion equipment
WO2014128842A1 (en) * 2013-02-20 2014-08-28 株式会社 日立製作所 Power converter
JP2015115977A (en) * 2013-12-09 2015-06-22 東芝三菱電機産業システム株式会社 Power conversion equipment
JP2017059778A (en) * 2015-09-18 2017-03-23 株式会社デンソー Semiconductor module
JP2017195687A (en) * 2016-04-19 2017-10-26 株式会社デンソー Electric power conversion system
JP2018133950A (en) * 2017-02-17 2018-08-23 株式会社東芝 Power converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229262A (en) * 2010-04-19 2011-11-10 Daikin Ind Ltd Power conversion equipment
WO2014128842A1 (en) * 2013-02-20 2014-08-28 株式会社 日立製作所 Power converter
JP2015115977A (en) * 2013-12-09 2015-06-22 東芝三菱電機産業システム株式会社 Power conversion equipment
JP2017059778A (en) * 2015-09-18 2017-03-23 株式会社デンソー Semiconductor module
JP2017195687A (en) * 2016-04-19 2017-10-26 株式会社デンソー Electric power conversion system
JP2018133950A (en) * 2017-02-17 2018-08-23 株式会社東芝 Power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305594B2 (en) 2020-04-06 2023-07-10 東芝キヤリア株式会社 power converter
WO2023278822A1 (en) * 2021-07-02 2023-01-05 Tae Technologies, Inc. Systems, devices, and methods for module-based cascaded energy systems having reconfigurable arrays

Also Published As

Publication number Publication date
JPWO2020059880A1 (en) 2021-11-25
JP7299628B2 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
KR101738032B1 (en) Converter with active fault current limitation
JP4056886B2 (en) converter
US9748848B2 (en) Modular multilevel DC/DC converter for HVDC applications
KR101649248B1 (en) Control circuit
EP2781013B1 (en) A power electronic module
US9331595B2 (en) Multi-level inverter
US10637371B2 (en) Interface arrangement between an alternating current power system and a direct current power system with control of converter valve for fault protection
RU2652690C2 (en) Modular multi-point valve inverter for high voltages
JP2017526331A (en) DC-DC converter having a transformer
US11777401B2 (en) Fault tolerant AC-DC chain-link converter
WO2017182091A1 (en) Converter arrangement
US20160352239A1 (en) Power electronic converter
WO2018006970A1 (en) Semiconductor power stack of a modular multilevel converter
WO2020059880A1 (en) Ac voltage output system, power system control system, power system, dc power transmission system, power generation system, and battery system
EP3756273B1 (en) Energization of a converter including a mix of half-bridge and full-bridge submodules
EP2852019B1 (en) Improvements in or relating to power modules for use in power transmission networks
CN109417348B (en) Protection of semiconductors in power converters
CN212063828U (en) Modular multilevel converter and converter cell
EP3796539B1 (en) Modular switching cell
US20230119315A1 (en) Improvements in or relating to chain-link modules for voltage source converters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862363

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020549162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862363

Country of ref document: EP

Kind code of ref document: A1