WO2020059813A1 - Foldable display - Google Patents

Foldable display Download PDF

Info

Publication number
WO2020059813A1
WO2020059813A1 PCT/JP2019/036809 JP2019036809W WO2020059813A1 WO 2020059813 A1 WO2020059813 A1 WO 2020059813A1 JP 2019036809 W JP2019036809 W JP 2019036809W WO 2020059813 A1 WO2020059813 A1 WO 2020059813A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
display
acid
resin
polyester resin
Prior art date
Application number
PCT/JP2019/036809
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 小井土
根本 友幸
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020217007822A priority Critical patent/KR20210062011A/en
Priority to CN201980060383.2A priority patent/CN112714931A/en
Publication of WO2020059813A1 publication Critical patent/WO2020059813A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • C08G63/197Hydroxy compounds containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a folderable display provided with a display film having excellent heat resistance and folding resistance.
  • Polyester is excellent in properties such as heat resistance, weather resistance, mechanical strength, transparency, chemical resistance, and gas barrier properties, and is easily available in terms of price. It is a resin widely used in food containers, packaging materials, molded products, films and the like.
  • Patent Literature 1 discusses a film that is made of a cyclic olefin resin and has a resistance to repeated bending.
  • Patent Documents 2 and 3 propose a film made of polyimide as a film having excellent heat resistance and bending resistance.
  • Patent Literature 1 has a low level of repeated bending resistance and does not satisfy the requirements of the market. Further, since the cyclic olefin-based resin has poor coating properties and adhesiveness, it is considered that lamination with other members as a flexible display member is difficult.
  • the polyimide film described in Patent Document 2 has high heat resistance, the molding temperature is 350 ° C. and the molding time is long, so that the productivity is difficult.
  • the polyimide film described in Patent Literature 3 has bending resistance, its manufacturing process is a molding method by application using a solvent, so that productivity is poor and costs are high.
  • the problem to be solved by the present invention is to solve the above problems and to provide a foldable display including a display film having excellent folding resistance and heat resistance.
  • the present invention includes the following aspects.
  • the folderable display of the present invention contains a polyester resin (A) as a main component, has a glass transition temperature of 85 ° C. or more and 150 ° C. or less, and yields in at least one direction when subjected to a tensile test at 23 ° C. It has a display film having a point strain of 8.0% or more.
  • the polyester resin (A) is a terephthalic acid unit as the dicarboxylic acid component (a-1) and 1,4-cyclohexanedimethanol as the diol component (a-2). Polycyclohexylene dimethylene terephthalate containing units.
  • the polycyclohexylene dimethylene terephthalate has a crystal melting temperature of 255 ° C. or more and 310 ° C. or less.
  • the display film is a polyarylate having a higher glass transition temperature than the polyester-based resin (A) with respect to 100 parts by mass of the polyester-based resin (A). B) in an amount of 1 part by mass to 50 parts by mass.
  • the crystal melting temperature of the display film is 255 ° C. or more and 300 ° C. or less.
  • the display film has a thickness of 1 to 250 ⁇ m.
  • the film laminate for a display of the present invention contains a polyester resin (A) as a main component, has a glass transition temperature of 85 ° C. or more and 150 ° C. or less, and has at least one direction when subjected to a tensile test at 23 ° C.
  • the foldable display of the present invention has a configuration in which another member is bonded via an adhesive layer of the display film laminate.
  • the display film proposed by the present invention is excellent in folding resistance and heat resistance. By laminating this film with other members, a folderable display excellent in folding resistance and heat resistance can be obtained.
  • the present invention has a polyester resin (A) as a main component, a glass transition temperature of 85 ° C. or more and 150 ° C. or less, and a yield point strain of at least one direction of 8.0% when subjected to a tensile test at 23 ° C.
  • the yield point strain in at least one direction when the tensile test is performed at 23 ° C. is also simply referred to as yield point strain.
  • the display film included in the folderable display of the present invention will be described in detail.
  • a display film according to an example of the embodiment of the present invention (hereinafter, may be referred to as “the present film”) contains a polyester resin (A) as a main component, and has a glass transition temperature of 85 ° C. or more and 150 ° C. or less. And a display film having a yield point strain of at least 8.0% in at least one direction when subjected to a tensile test at 23 ° C.
  • the “main component” refers to a component occupying the largest mass ratio, specifically, 50% by mass or more, more preferably 55% by mass or more, and more preferably 60% by mass or more. Is more preferred.
  • the inventor has reported that a polyester resin film having a glass transition temperature of 85 ° C. or more and 150 ° C. or less and a yield point strain of a specific value or more has excellent folding resistance and heat resistance as a display film.
  • the present invention has been found to be particularly suitable for foldable applications, and the present invention has been completed.
  • the present inventor believes that the present film has a relatively large amount of strain before plastic deformation starts, so that the film exhibits folding resistance.
  • This film is preferably a biaxially stretched film from the viewpoint of providing a thin film and folding resistance.
  • the glass transition temperature (Tg) of the present film is from 85 ° C to 150 ° C, preferably from 86 ° C to 140 ° C, more preferably from 87 ° C to 130 ° C.
  • Tg of the present film is 85 ° C. or higher, the film is not deformed even when the present film is used for display use, and thus is excellent in heat resistance.
  • the Tg of the film is 150 ° C. or lower, the film is suitable for workability.
  • the glass transition temperature (Tg) of this film is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) according to JIS K7121 (2012).
  • DSC differential scanning calorimeter
  • the yield point strain in at least one direction is 8.0% or more.
  • the yield point strain of the present film is preferably 8.5% or more, more preferably 9.0% or more.
  • the upper limit of the yield point strain is not particularly limited, it is 50% or less.
  • the yield point strain in at least one direction is 8.0% or more, the bending resistance of the film is kept within a practical range.
  • the yield point strain can be adjusted by the stretching conditions and the like when producing the present film.
  • the yield point strain in one direction is within the above range, and the yield point strain in a direction orthogonal to the one direction is preferably 8.0% or more, more preferably 8.5% or more. It is more preferably at least 9.0%, and further preferably at most 50%.
  • the “one direction” is not particularly limited, but means, for example, the MD (or TD) of the present film, and the “direction orthogonal to one direction” means, for example, the TD (or MD) of the present film. I do.
  • MD means "Machine Direction”
  • TD means "Transverse Direction”.
  • the yield point strain of the film means a strain (%) at a yield point of a stress-strain curve obtained in a tensile test, and can be measured by a method according to JIS K 7127: 1999.
  • the yield stress of the film when subjected to a tensile test at 23 ° C is preferably 50 MPa or more, more preferably 55% or more, and further preferably 60 MPa or more.
  • the upper limit is not particularly limited, it is usually 300 MPa or less in the case of a film made of a polyester resin.
  • the crystal melting temperature (Tm) of the film is preferably from 255 ° C to 300 ° C. In particular, it is more preferably from 256 ° C to 295 ° C, further preferably from 257 ° C to 290 ° C, particularly preferably from 258 ° C to 285 ° C.
  • the crystal melting temperature (Tm) of the present film is in such a range, the present film is excellent in balance between heat resistance and melt moldability.
  • the crystal melting temperature (Tm) is a value measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) for the film according to JIS K7121 (2012).
  • the crystal melting temperature (Tm) means a crystal melting peak temperature.
  • the crystal melting temperature (Tm) in the present invention indicates the highest crystal melting temperature.
  • the crystal melting temperature (Tm) of the present film is selected by selecting a resin material constituting the present film, adding a crystal nucleating agent, and in producing the present film, a cooling temperature from a molten state, a stretching ratio, a stretching temperature, It can be optimized by adjusting the heat treatment conditions after stretching.
  • the thickness of the present film is preferably from 1 to 250 ⁇ m, more preferably from 5 to 200 ⁇ m. When the thickness is 1 ⁇ m or more, the film strength is kept within a practical range. When the thickness is 250 ⁇ m or less, folding resistance is easily developed. The thickness can be adjusted by stretching conditions.
  • the present inventors have found that, in general, a film containing a polyester-based resin as a main component showing a relatively high yield stress than polyethylene-based resin and polypropylene-based resin is excellent in bending resistance, the present inventors have made. Things. Even in the case of a polyester resin having a high yield stress, when the stress applied by the deformation is large, there is a problem that the deformation occurs and unresolved strain remains in the material. However, the present inventor has found that in the present invention, if the yield point strain is equal to or more than a specific value, the strain hardly occurs.
  • the film may contain other resins other than the polyester resin (A) as long as the effects of the present invention are not impaired.
  • resins for example, polystyrene resin, polyvinyl chloride resin, polyvinylidene chloride resin, chlorinated polyethylene resin, polycarbonate resin, polyamide resin (including aramid resin), polyacetal resin, acrylic resin Resin, ethylene-vinyl acetate copolymer, polymethylpentene resin, polyvinyl alcohol resin, cyclic olefin resin, polyacrylonitrile resin, polyethylene oxide resin, cellulose resin, polyimide resin, polyurethane resin, polyphenylene sulfide Resin, polyphenylene ether resin, polyvinyl acetal resin, polybutadiene resin, polybutene resin, polyamideimide resin, polyamidebismaleimide resin, polyetherimide resin, polyether Teruketon resins, polyether ketone resins, polyether sulfone resins, polyket
  • the present film may appropriately contain additives generally compounded within a range that does not significantly impair the effects of the present invention.
  • additives include recycled resins generated from trimming loss of ears and the like, silica, talc, kaolin, calcium carbonate, and the like, which are added for the purpose of improving and adjusting molding processability, productivity, and various physical properties of the film.
  • Inorganic particles coloring agents such as pigments and dyes such as titanium oxide and carbon black, flame retardants, weather resistance stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, and plasticizers
  • coloring agents such as pigments and dyes such as titanium oxide and carbon black, flame retardants, weather resistance stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, and plasticizers
  • Antioxidants antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents and the like.
  • the present film may have a coating layer as long as the effect of the present invention is not significantly impaired.
  • the function of the coating layer include a hard coat property, an antistatic property, a peeling property, an easy adhesive property, a printing suitability, a UV cut property, an infrared shielding property, a gas barrier property and the like.
  • the coating layer it may be provided by in-line coating that treats the film surface during the stretching process, or may be applied outside the system once on the manufactured film, and may employ off-line coating. Is also good.
  • polyester resin (A) constituting the film will be described.
  • the polyester resin (A) constituting the film may be a homopolyester or a copolyester.
  • a homopolyester those obtained by polycondensing an aromatic dicarboxylic acid and an aliphatic glycol are preferred.
  • the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid
  • examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol.
  • Typical polyesters include polyethylene terephthalate (PET) and the like.
  • examples of the dicarboxylic acid component of the copolymerized polyester include one or more of isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, sebacic acid, and oxycarboxylic acid.
  • isophthalic acid phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, sebacic acid, and oxycarboxylic acid.
  • ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like can be mentioned.
  • an oxycarboxylic acid such as P-oxybenzoic acid may be used as a copolymer component.
  • the polyester resin (A) contains terephthalic acid units as the dicarboxylic acid component (a-1) and 1,4-cyclohexane as the diol component (a-2). Preference is given to polycyclohexylene dimethylene terephthalate containing dimethanol units.
  • the heat of crystal fusion ( ⁇ Hm (A)) of the polyester resin (A) is preferably 35 J / g or more and 70 J / g or less, more preferably 36 J / g or more or 65 J / g or less.
  • ⁇ Hm (A) is within such a range, the polyester resin (A) has appropriate crystallinity that is excellent in heat resistance, wet heat resistance, melt moldability and stretch processability.
  • the heat of crystal fusion ⁇ (Hm (A)) of the polyester resin (A) can be measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) according to JIS K7122 (2012). it can.
  • the heat of crystal fusion ( ⁇ Hm (A)) of the polyester-based resin (A) is, if it is a constituent unit of the (A), for example, polycyclohexylene dimethylene terephthalate, an acid component other than terephthalic acid and / or
  • the content can be adjusted within the above range.
  • the crystal melting temperature (Tm (A)) of the polyester resin (A) is preferably from 255 to 310 ° C, more preferably from 280 to 310 ° C, and from 260 to 340 ° C. Is more preferably 270 ° C. or more or 330 ° C. or less, and particularly preferably 280 ° C. or more or 310 ° C. or less.
  • Tm (A) crystal melting temperature
  • the crystal melting temperature (Tm (A)) of the polyester resin (A) can be measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) according to JIS K7121 (2012). .
  • the crystal melting temperature (Tm (A)) of the polyester-based resin (A) is the same as the ⁇ Hm described above, and in the case of the structural unit of (A), for example, polycyclohexylene dimethylene terephthalate, other acid components other than terephthalic acid By adjusting the type and blending ratio of other diol components other than the 1,4-cyclohexanedimethanol unit, and / or the ratio can be adjusted within the above range.
  • the glass transition temperature (Tg (A)) of the polyester resin (A) is more preferably from 60 ° C to 150 ° C, and even more preferably from 70 ° C to 120 ° C.
  • the glass transition temperature (Tg) is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) according to JIS K7121 (2012).
  • the heat of crystal melting ( ⁇ Hm (A)), the crystal melting temperature (Tm (A)), and the glass transition temperature (Tg (A)) of the polyester-based resin (A) are all used to produce this film.
  • the polyester resin (A) constituting the film of the present invention are all used to produce this film.
  • polycyclohexylene dimethylene terephthalate is a polymer containing terephthalic acid units as the dicarboxylic acid component (a-1) and 1,4-cyclohexanedimethanol units as the diol component (a-2).
  • polycyclohexylene dimethylene terephthalate contains 90 mol% or more of terephthalic acid units as the dicarboxylic acid component (a-1) and 1,4-cyclohexanedimethanol unit as the diol component (a-2).
  • the dicarboxylic acid component (a-1) constituting the polycyclohexylene dimethylene terephthalate preferably contains at least 90 mol% of terephthalic acid.
  • terephthalic acid is more preferably at least 92 mol%, even more preferably at least 94 mol%, particularly preferably at least 96 mol%, particularly preferably 98 mol%. It is particularly preferable that the amount is at least as described above, and it is most preferable that all (100 mol%) of the dicarboxylic acid component (a-1) be terephthalic acid.
  • terephthalic acid By setting terephthalic acid to 90 mol% or more as the dicarboxylic acid component (a-1), the glass transition temperature, melting point and crystallinity of polycyclohexylene dimethylene terephthalate are improved, and the heat resistance of the present film is improved.
  • the polycyclohexylene dimethylene terephthalate may be copolymerized with less than 10 mol% of an acid component other than terephthalic acid for the purpose of improving moldability and heat resistance.
  • an acid component other than terephthalic acid include isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,5-furandicarboxylic acid.
  • Aromatic dicarboxylic acids Aromatic dicarboxylic acids; cyclohexanedicarboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, aliphatic dicarboxylic acids such as sebacic acid, and the like. From the viewpoint of moldability, isophthalic acid, 2,5-furandicarboxylic acid, 2,4-furandic acid Bon acid, 3,4-furan dicarboxylic acid.
  • the diol component (a-2) constituting the polycyclohexylene dimethylene terephthalate preferably contains 90 mol% or more of 1,4-cyclohexanedimethanol.
  • 1,4-cyclohexanedimethanol is more preferably at least 92 mol%, even more preferably at least 94 mol%, particularly preferably at least 96 mol%. , 98 mol% or more, and most preferably, all (100 mol%) of the diol component (a-2) is 1,4-cyclohexanedimethanol.
  • 1,4-cyclohexanedimethanol 90 mol% or more as the diol component (a-2), the melting point and crystallinity of polycyclohexylene dimethylene terephthalate are improved, and the heat resistance of the present film is improved.
  • the polycyclohexylene dimethylene terephthalate may be copolymerized with less than 10 mol% of a diol component other than 1,4-cyclohexanedimethanol for the purpose of improving moldability and heat resistance.
  • a diol component other than 1,4-cyclohexanedimethanol specifically, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6 Hexanediol, neopentyl glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, hydroquinone, bisphenol, spiroglycol, 2,2,4, Examples thereof include 4, -tetramethylcyclobutane-1,3-diol and isosorbide.
  • the method for producing the present film according to an example of the embodiment of the present invention is a production method in which a resin composition containing the polyester-based resin (A) as a main component is formed into a film and biaxially stretched.
  • the method of kneading the polyester resin (A), other resins and additives to obtain a resin composition is not particularly limited. However, in order to obtain the resin composition as simply as possible, melt kneading using an extruder is performed. It is preferably manufactured. In order to uniformly mix the raw materials constituting the resin composition, it is preferable to perform melt kneading using a co-directional twin screw extruder.
  • the kneading temperature must be equal to or higher than the glass transition temperature of all the resins used, and must be equal to or higher than the crystal melting temperature of a crystalline resin.
  • the kneading temperature is from 260 ° C to 350 ° C, preferably from 270 ° C to 340 ° C, more preferably from 280 ° C to 330 ° C, particularly preferably from 290 ° C to 320 ° C.
  • the resin composition may be once cooled and solidified to form a pellet or the like, and then heated and melted again for molding, or the resin composition obtained in a molten state may be molded as it is. .
  • the resin composition obtained as described above can be molded by a general molding method, for example, extrusion molding, injection molding, blow molding, vacuum molding, pressure molding, press molding, etc., to produce a biaxially stretched film.
  • a general molding method for example, extrusion molding, injection molding, blow molding, vacuum molding, pressure molding, press molding, etc.
  • This film is preferably produced, for example, by the following method.
  • a substantially amorphous and non-oriented film (hereinafter sometimes referred to as “unstretched film”) is produced by an extrusion method.
  • the production of this unstretched film includes, for example, an extrusion method in which the raw material is melted by an extruder, extruded from a flat die or an annular die, and then rapidly cooled to obtain a flat or annular (cylindrical) unstretched film. Can be adopted. At this time, depending on the case, a laminated structure using a plurality of extruders may be used.
  • the unstretched film is usually placed in at least one direction of the film flow direction (longitudinal direction) and the direction perpendicular thereto (transverse direction) in a range of 1.1 to 1.1.
  • the film is stretched 5.0 times, preferably in the range of 1.1 to 5.0 times in each of the longitudinal and transverse directions.
  • any conventionally known stretching methods such as tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular simultaneous biaxial stretching can be used.
  • a tenter-type sequential biaxial stretching method an unstretched film is heated to a temperature range of Tg to Tg + 50 ° C., with the glass transition temperature of the resin composition being Tg, and is vertically stretched by a roll-type longitudinal stretching machine.
  • the film can be produced by stretching the film to 1.1 to 5.0 times, and subsequently stretching the film to 1.1 to 5.0 times in the transverse direction in a temperature range of Tg to Tg + 50 ° C. by a tenter type transverse stretching machine.
  • stretching is performed 1.1 to 5.0 times in each axial direction simultaneously in the vertical and horizontal directions. Can be manufactured.
  • the biaxially stretched film stretched by the above method is subsequently heat-set.
  • the treatment temperature in this case is preferably selected from the range of Tm-50 to Tm-1 ° C., where Tm is the crystal melting temperature of the resin composition.
  • Tm is the crystal melting temperature of the resin composition.
  • the film in order to relax the stress of crystallization shrinkage due to heat setting, relaxation is performed in the width direction in the range of 0 to 15%, preferably 3 to 10% during heat setting, so that the relaxation is sufficiently achieved. Then, the film is uniformly relaxed in the width direction of the film, the shrinkage in the width direction becomes uniform, and a film having excellent dimensional stability at room temperature is obtained. Further, since the film is relaxed following the shrinkage of the film, there is no loosening of the film, no flapping in the tenter, and no breakage of the film.
  • Polyarylate (B)> An example of another embodiment of the present film is that, based on 100 parts by mass of the polyester-based resin (A), 1 part by mass or more of polyarylate (B) having a higher glass transition temperature than that of the polyester-based resin (A) is used. This is a display film containing not more than parts by mass.
  • the difference between the glass transition temperatures of the polyester resin (A) and the polyarylate (B) is preferably 60 ° C. or more, more preferably 70 ° C. or more, even more preferably 80 ° C. or more, and 90 ° C.
  • the temperature is particularly preferably at least 100 ° C.
  • the glass transition temperature of the polyarylate (B) is preferably from 150 ° C to 350 ° C, more preferably from 160 ° C to 340 ° C, even more preferably from 170 ° C to 330 ° C, It is particularly preferably at least 180 ° C or at most 320 ° C, particularly preferably at least 190 ° C or at most 300 ° C.
  • the content ratio of the polyarylate (B) is 1 part by mass or more and 50 parts by mass or less, preferably 3 parts by mass or more or 49 parts by mass or less, preferably 5 parts by mass with respect to 100 parts by mass of the polyester resin (A). It is more preferably at least 10 parts by mass or at most 47 parts by mass, and even more preferably at least 10 parts by mass or at most 45 parts by mass.
  • the proportion of the polyarylate (B) is at least 1 part by mass, the crystallization rate can be reduced, so that the stretchability at the time of stretching the film can be improved.
  • the proportion of the polyarylate (B) is at most 50 parts by mass, the crystallinity of the film will be maintained, and the resulting film will have sufficient shrinkage resistance upon heating.
  • improvement in heat resistance of a resin composition can be achieved by improving the glass transition temperature (Tg).
  • Tg glass transition temperature
  • a resin composition having a higher glass transition temperature than that of the polyester-based resin (A) alone can be obtained.
  • An excellent film can be obtained.
  • crystallization during stretching occurs remarkably, there is a problem that breakage from a crystal portion is likely to occur during stretching. Therefore, as will be described later, by adding an amorphous polyarylate (B), the crystallinity of the polyester resin (A) itself is relaxed, the breakage during stretching is suppressed, and the handleability during processing is improved. Can be.
  • the present film can include polyarylate (B) having a higher glass transition temperature measured according to JIS K7198A than the polyester resin (A).
  • the polyarylate (B) is a polycondensate of a dicarboxylic acid component (b-1) and a dihydric phenol component (b-2).
  • the glass transition temperature of the polyarylate (B) can be adjusted by appropriately selecting the dicarboxylic acid component (b-1) and the dihydric phenol component (b-2). It is preferable to select.
  • the dicarboxylic acid component (b-1) constituting the polyarylate (B) is not particularly limited as long as it is a divalent aromatic carboxylic acid, but is preferably a mixture of a terephthalic acid component and an isophthalic acid component. preferable.
  • the polyarylate (B) is excellent in heat resistance and melt moldability.
  • the polyarylate (B) may be obtained by copolymerizing an acid component other than terephthalic acid and isophthalic acid as a dicarboxylic acid component.
  • the copolymerization ratio of an acid component other than terephthalic acid and isophthalic acid is
  • the dihydric phenol component (b-2) that constitutes the polyarylate (B) is not particularly limited as long as it is a dihydric phenol, but the bisphenol A component and the bisphenol TMC (1,1-bis (4- (Hydroxyphenyl) -3,3,5-trimethylcyclohexane), or both bisphenol A and bisphenol TMC.
  • a polyarylate having excellent melt moldability (flowability) is obtained by including a bisphenol A component.
  • the bisphenol TMC component a polyarylate (B) having an improved glass transition temperature and excellent heat resistance can be obtained.
  • both the bisphenol A component and the bisphenol TMC component are used.
  • a polyarylate (B) having an excellent balance between heat resistance and melt moldability can be obtained.
  • the polyarylate (B) comprises bisphenol A (2,2-bis (4-hydroxyphenyl) propane) and bisphenol TMC (1,1-bis (4-hydroxyphenyl)-as the dihydric phenol component (b-2).
  • Bisphenol components other than (3,3,5-trimethylcyclohexane) may be copolymerized.
  • bisphenol AP (1,1-bis (4-hydroxyphenyl) -1-phenylethane), bisphenol AF (2,2-bis (4-hydroxyphenyl) hexafluoropropane), bisphenol B (2 2-bis (4-hydroxyphenyl) butane), bisphenol BP (bis (4-hydroxyphenyl) diphenylmethane), bisphenol C (2,2-bis (3-methyl-4-hydroxyphenyl) propane), bisphenol E (1 , 1-bis (4-hydroxyphenyl) ethane), bisphenol F (bis (4-hydroxyphenyl) methane), bisphenol G (2,2-bis (4-hydroxy-3-isopropylphenyl) propane), bisphenol M ( 1,3-bis (2- (4-hydroxyphenyl) 2-propyl) benzene), bisphenol S (bis (4-hydroxyphenyl) sulfone), bisphenol P (1,4-bis (2- (4-hydroxyphenyl) -2-propyl) benzene), bisphenol PH (5 5 ′-(1-bis
  • the polyarylate (B) contains a mixture of a terephthalic acid component and an isophthalic acid component as a dicarboxylic acid component (b-1) and a dihydric phenol component (b-2) in order to increase the compatibility with polycyclohexylene dimethylene terephthalate. It is preferable to select either bisphenol A component or bisphenol TMC component or a mixture of bisphenol A and bisphenol TMC.
  • the polyarylate (B) a mixture of polycarbonate for improving melt moldability may be used. Since polyarylate (B) and polycarbonate are compatible, mixing polycarbonate with polyarylate (B) can lower the glass transition temperature of polyarylate (B) while maintaining transparency and mechanical properties. As a result, the melt moldability can be improved.
  • the melt moldability can be improved while maintaining the heat resistance of the polyarylate (B).
  • the mixing of the polyarylate (B) and the polycarbonate is preferably performed using a mixture of these two components in advance, but is not limited to this method alone.
  • the above structure may be adopted by selecting and using as an independent raw material.
  • polyester resin (A) and the polyarylate (B) from the viewpoint of compatibility, a combination of polycyclohexylene dimethylene terephthalate and polyarylate is particularly preferable.
  • the polycyclohexylene dimethylene terephthalate also includes a transesterified product obtained by subjecting a part or all of the polycyclohexylene dimethylene terephthalate to a transesterification reaction.
  • the transesterified product obtained by the exchange is also included.
  • reaction rate The degree of transesterification (reaction rate) can be adjusted by melt-mixing conditions such as mixing temperature, shear rate, residence time, etc., whereby the heat of crystal fusion ( ⁇ Hm) of the film can also be adjusted.
  • the above-described display film (the present film) in the present invention is used as a constituent member for a display, for example, a front plate, a base film for a touch sensor, a lower protective film, and the like, and is connected to another member via an adhesive layer. It is preferable that they are laminated. More specifically, the display film is preferably a display film laminate including the display film and an adhesive layer provided on at least one surface of the display film, and further, the adhesive layer of the display film laminate is preferably used. It is preferable to provide a foldable display having a configuration in which other members are bonded together through the above.
  • an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a vinylalkyl ether-based pressure-sensitive adhesive, an epoxy pressure-sensitive adhesive, or the like can be used.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is used alone or in combination of two or more.
  • the other members include various electronic devices having a display such as a mobile phone, a smartphone, a digital camera, and a personal computer.
  • the display film laminate is used by being attached to a display of these electronic devices via an adhesive layer.
  • the type of display is not particularly limited, and may be any of a liquid crystal display, a plasma display, an organic EL display, and the like, and may be a touch panel type display.
  • Yield point strain measuring device used was a tensile tester (a tensile tester AG-1kNXplus manufactured by Shimadzu Corporation).
  • the test piece used was cut out from the present film into a rectangle having a length of 100 mm and a width of 15 mm in the measurement direction. Both ends in the longitudinal direction of the test piece were chucked at a chuck distance of 40 mm, pulled at a crosshead speed of 200 mm / min, and the strain at the yield point was measured three times as the yield strain, and the average value was obtained.
  • both the MD tensile test and the TD tensile test of the film were performed.
  • Example 1 Pellets (B) -1 were added at a ratio of 30% by mass with respect to 70% by mass of (A) -1 in the form of pellets.
  • the obtained strand was cooled and solidified in a water tank, and cut with a pelletizer to produce a pellet.
  • the prepared pellets were melt-kneaded at 310 ° C.
  • the obtained longitudinally stretched film is passed through a transverse stretching machine (tenter) and stretched 3.5 times in the transverse direction (TD) at a preheating temperature of 130 ° C, a stretching temperature of 130 ° C, and a heat setting temperature of 260 ° C.
  • the film was subjected to a 10% relaxation treatment in a tenter.
  • the obtained films were evaluated in the above (1) to (5). Table 1 shows the results.
  • Example 2 For the polyester resin (A), a sample was prepared and evaluated in the same manner as in Example 1 except that (A) -2 was used instead of (A) -1. Table 1 shows the results.
  • Example 3 For the polyester resin (A), a sample was prepared and evaluated in the same manner as in Example 1 except that (A) -3 was used instead of (A) -1. Table 1 shows the results.
  • films could be produced without any particular problems during molding.
  • the films of Examples 1 to 3 have a high crystal melting temperature and a high glass transition temperature, and have excellent heat resistance.

Abstract

The present invention is a foldable display with a display film which contains a polyester resin (A) as a primary component and which has a glass transition temperature of 85 to 150°C and a yield point strain of 8.0% or greater in at least one direction when tensile testing is performed at 23°C. The present invention can provide a foldable display with a display film that has excellent folding endurance and heat resistance.

Description

フォルダブルディスプレイFoldable display
 本発明は耐熱性、耐折性に優れたディスプレイ用フィルムを備えるフォルダブルディスプレイに関する。 (4) The present invention relates to a folderable display provided with a display film having excellent heat resistance and folding resistance.
 ポリエステルは、耐熱性、耐候性、機械的強度、透明性、耐薬品性、ガスバリア性などの性質に優れており、かつ価格的にも入手し易いことから、汎用性が高く、現在、飲料・食品用容器や包装材、成形品、フィルムなどに広く利用されている樹脂である。 Polyester is excellent in properties such as heat resistance, weather resistance, mechanical strength, transparency, chemical resistance, and gas barrier properties, and is easily available in terms of price. It is a resin widely used in food containers, packaging materials, molded products, films and the like.
 一方、近年、フレキシブルなディスプレイに対するニーズが高まってきている中で、耐熱性が高く繰り返しの折り曲げ耐性に優れるフィルムが強く求められている。 On the other hand, in recent years, a need for a flexible display has been increasing, and a film having high heat resistance and excellent in repeated bending resistance has been strongly demanded.
 例えば、特許文献1には、環状オレフィン樹脂からなるフィルムによる、繰り返しの折り曲げ耐性のフィルムが検討されている。 For example, Patent Literature 1 discusses a film that is made of a cyclic olefin resin and has a resistance to repeated bending.
 また、特許文献2,3には耐熱性や耐屈曲性の優れたフィルムとして、ポリイミドからなるフィルムが提案されている。 特許 Also, Patent Documents 2 and 3 propose a film made of polyimide as a film having excellent heat resistance and bending resistance.
特開2014-104687号公報JP 2014-104687 A 国際公開第2017/150377号パンフレットWO 2017/150377 pamphlet 国際公開第2016/060213号パンフレットWO 2016/060213 pamphlet
 しかしながら、特許文献1に開示されているフィルムは、繰り返しの折り曲げ耐性のレベルとしては低く、市場の要求を満たすものではなかった。
 また、環状オレフィン系樹脂は塗工性、接着性に乏しいため、フレキシブルディスプレイ用部材として他部材との積層が困難であると考えられる。
However, the film disclosed in Patent Literature 1 has a low level of repeated bending resistance and does not satisfy the requirements of the market.
Further, since the cyclic olefin-based resin has poor coating properties and adhesiveness, it is considered that lamination with other members as a flexible display member is difficult.
 また、特許文献2に記載されているポリイミドフィルムは耐熱性が高い反面、成型温度は350℃であり、その成形時間も長いため、生産性に難がある。 ポ リ イ ミ ド Although the polyimide film described in Patent Document 2 has high heat resistance, the molding temperature is 350 ° C. and the molding time is long, so that the productivity is difficult.
 特許文献3に記載のポリイミドフィルムは耐屈曲性を有するものの、その製造プロセスにおいて、溶剤を使用した塗布による成形方法であるため、生産性が悪く、コストもかかる。 ポ リ イ ミ ド Although the polyimide film described in Patent Literature 3 has bending resistance, its manufacturing process is a molding method by application using a solvent, so that productivity is poor and costs are high.
 本発明で解決しようとする課題は、上記の問題点を解決し、耐折性、耐熱性に優れたディスプレイ用フィルムを備えるフォルダブルディスプレイを提供することにある。 The problem to be solved by the present invention is to solve the above problems and to provide a foldable display including a display film having excellent folding resistance and heat resistance.
 本発明は、以下の態様を含むものである。 The present invention includes the following aspects.
[1]本発明のフォルダブルディスプレイは、ポリエステル系樹脂(A)を主成分とし、ガラス転移温度が85℃以上150℃以下であり、23℃における引張試験を行った際に少なくとも一方向における降伏点ひずみが8.0%以上である、ディスプレイ用フィルムを備えるものである。
[2]好ましい一態様に係るフォルダブルディスプレイは、前記ポリエステル系樹脂(A)が、ジカルボン酸成分(a-1)としてテレフタル酸単位、ジオール成分(a-2)として1,4-シクロヘキサンジメタノール単位を含むポリシクロヘキシレンジメチレンテレフタレートである。
[3]好ましい一態様に係るフォルダブルディスプレイは、前記ポリシクロヘキシレンジメチレンテレフタレートの結晶融解温度が255℃以上310℃以下である。
[4]好ましい一態様に係るフォルダブルディスプレイは、前記ディスプレイ用フィルムが、前記ポリエステル系樹脂(A)100質量部に対して、該ポリエステル系樹脂(A)よりもガラス転移温度が高いポリアリレート(B)を1質量部以上50質量部以下含む。
[5]好ましい一態様に係るフォルダブルディスプレイは、前記ディスプレイ用フィルムの結晶融解温度が255℃以上300℃以下である。
[6]好ましい一態様に係るフォルダブルディスプレイは、前記ディスプレイ用フィルムの厚みが1~250μmである。
[7]好ましい一態様に係るフォルダブルディスプレイは、23℃における1000回の折り曲げ試験を屈曲半径(R)=1.5mmの条件で行った際、前記ディスプレイ用フィルムに外観変化がない。
[8]本発明のディスプレイ用フィルム積層体は、ポリエステル系樹脂(A)を主成分とし、ガラス転移温度が85℃以上150℃以下であり、23℃における引張試験を行った際に少なくとも一方向における降伏点ひずみが8.0%以上であるディスプレイ用フィルムと、該ディスプレイ用フィルムの少なくとも片面に設けられた粘着層とを備える。
[9]本発明のフォルダブルディスプレイは、前記ディスプレイ用フィルム積層体の粘着層を介して他の部材を貼り合せて成る構成を備えるものである。
[1] The folderable display of the present invention contains a polyester resin (A) as a main component, has a glass transition temperature of 85 ° C. or more and 150 ° C. or less, and yields in at least one direction when subjected to a tensile test at 23 ° C. It has a display film having a point strain of 8.0% or more.
[2] In the folderable display according to a preferred embodiment, the polyester resin (A) is a terephthalic acid unit as the dicarboxylic acid component (a-1) and 1,4-cyclohexanedimethanol as the diol component (a-2). Polycyclohexylene dimethylene terephthalate containing units.
[3] In the folderable display according to a preferred embodiment, the polycyclohexylene dimethylene terephthalate has a crystal melting temperature of 255 ° C. or more and 310 ° C. or less.
[4] The folderable display according to a preferred embodiment, wherein the display film is a polyarylate having a higher glass transition temperature than the polyester-based resin (A) with respect to 100 parts by mass of the polyester-based resin (A). B) in an amount of 1 part by mass to 50 parts by mass.
[5] In the folderable display according to a preferred embodiment, the crystal melting temperature of the display film is 255 ° C. or more and 300 ° C. or less.
[6] In a folderable display according to a preferred embodiment, the display film has a thickness of 1 to 250 μm.
[7] In the foldable display according to a preferred embodiment, when the bending test is performed 1000 times at 23 ° C. under the condition of a bending radius (R) = 1.5 mm, the display film has no change in appearance.
[8] The film laminate for a display of the present invention contains a polyester resin (A) as a main component, has a glass transition temperature of 85 ° C. or more and 150 ° C. or less, and has at least one direction when subjected to a tensile test at 23 ° C. , A display film having a yield point strain of 8.0% or more, and an adhesive layer provided on at least one surface of the display film.
[9] The foldable display of the present invention has a configuration in which another member is bonded via an adhesive layer of the display film laminate.
 本発明が提案するディスプレイ用フィルムは、耐折性、耐熱性に優れており、このフィルムを他部材と積層することによって耐折性、耐熱性に優れたフォルダブルディスプレイを得ることができる。 デ ィ ス プ レ イ The display film proposed by the present invention is excellent in folding resistance and heat resistance. By laminating this film with other members, a folderable display excellent in folding resistance and heat resistance can be obtained.
 以下、本発明を詳細に説明する。ただし、本発明の内容が以下に説明する実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail. However, the content of the present invention is not limited to the embodiment described below.
 本発明は、ポリエステル系樹脂(A)を主成分とし、ガラス転移温度が85℃以上150℃以下であり、23℃における引張試験を行った際に少なくとも一方向における降伏点ひずみが8.0%以上であるディスプレイ用フィルムを備えたフォルダブルディスプレイである。
 なお、23℃における引張試験を行った際の少なくとも一方向における降伏点ひずみのことを、単に降伏点ひずみともいう。
 以下、本発明のフォルダブルディスプレイが備えるディスプレイ用フィルムについて詳細に説明する。
The present invention has a polyester resin (A) as a main component, a glass transition temperature of 85 ° C. or more and 150 ° C. or less, and a yield point strain of at least one direction of 8.0% when subjected to a tensile test at 23 ° C. A foldable display including the display film described above.
In addition, the yield point strain in at least one direction when the tensile test is performed at 23 ° C. is also simply referred to as yield point strain.
Hereinafter, the display film included in the folderable display of the present invention will be described in detail.
<ディスプレイ用フィルム>
 本発明の実施形態の一例に係るディスプレイ用フィルム(以下、「本フィルム」と称することがある)は、ポリエステル系樹脂(A)を主成分とし、ガラス転移温度が85℃以上150℃以下であり、23℃における引張試験を行った際に少なくとも一方向における降伏点ひずみが8.0%以上であるディスプレイ用フィルムである。
<Display Film>
A display film according to an example of the embodiment of the present invention (hereinafter, may be referred to as “the present film”) contains a polyester resin (A) as a main component, and has a glass transition temperature of 85 ° C. or more and 150 ° C. or less. And a display film having a yield point strain of at least 8.0% in at least one direction when subjected to a tensile test at 23 ° C.
 本発明においては「主成分」とは、最も多い質量比率を占める成分であることをいい、具体的には50質量%以上であり、55質量%以上であるのがより好ましく、60質量%以上であるのがさらに好ましい。 In the present invention, the “main component” refers to a component occupying the largest mass ratio, specifically, 50% by mass or more, more preferably 55% by mass or more, and more preferably 60% by mass or more. Is more preferred.
 本発明者は、ガラス転移温度が85℃以上150℃以下であり、降伏点ひずみが特定の値以上であるポリエステル系樹脂系フィルムが、ディスプレイ用フィルムとして優れた耐折性、耐熱性を有し、特にフォルダブル用途に適することを見出し、本発明を完成した。
 本発明者は、本フィルムは、塑性変形が始まるまでのひずみ量が比較的大きいため耐折性が発現しているものと考えている。
The inventor has reported that a polyester resin film having a glass transition temperature of 85 ° C. or more and 150 ° C. or less and a yield point strain of a specific value or more has excellent folding resistance and heat resistance as a display film. The present invention has been found to be particularly suitable for foldable applications, and the present invention has been completed.
The present inventor believes that the present film has a relatively large amount of strain before plastic deformation starts, so that the film exhibits folding resistance.
 本フィルムは薄膜、耐折性付与の観点から二軸延伸フィルムであることが好ましい。 This film is preferably a biaxially stretched film from the viewpoint of providing a thin film and folding resistance.
(1)ガラス転移温度
 本フィルムのガラス転移温度(Tg)は、85℃以上150℃以下であり、86℃以上140℃以下がより好ましく、87℃以上130℃以下が更に好ましい。
 本フィルムのTgが85℃以上であれば、ディスプレイ用途に本フィルムを用いた際にも変形することがないため、耐熱性に優れる。
 一方、本フィルムのTgが150℃以下であれば、加工性にも適したものとなる。
 本フィルムのガラス転移温度(Tg)は、JIS K7121(2012年)に準じて示差走査熱量計(DSC)を用いて加熱速度10℃/分で測定するものである。
 なお、DSC測定において複数のガラス転移温度が確認される場合は、本発明におけるガラス転移温度(Tg)は、高温側のガラス転移温度を指すものとする。
(1) Glass transition temperature The glass transition temperature (Tg) of the present film is from 85 ° C to 150 ° C, preferably from 86 ° C to 140 ° C, more preferably from 87 ° C to 130 ° C.
When the Tg of the present film is 85 ° C. or higher, the film is not deformed even when the present film is used for display use, and thus is excellent in heat resistance.
On the other hand, when the Tg of the film is 150 ° C. or lower, the film is suitable for workability.
The glass transition temperature (Tg) of this film is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) according to JIS K7121 (2012).
When a plurality of glass transition temperatures are confirmed by DSC measurement, the glass transition temperature (Tg) in the present invention indicates the glass transition temperature on the high temperature side.
(2)降伏点ひずみ
 本フィルムの23℃における引張試験を行った際に少なくとも一方向における降伏点ひずみが、8.0%以上である。
 本フィルムの降伏点ひずみは、好ましくは8.5%以上、より好ましくは9.0%以上である。降伏点ひずみの上限は特に限定されるものではないが、50%以下である。少なくとも一方向における降伏点ひずみが8.0%以上であることでフィルムの折り曲げ耐性が実用範囲内に保たれる。
 降伏点ひずみは、本フィルムを製造する際の延伸条件などによって調整することができる。
(2) Yield point strain When a tensile test at 23 ° C. is performed on the film, the yield point strain in at least one direction is 8.0% or more.
The yield point strain of the present film is preferably 8.5% or more, more preferably 9.0% or more. Although the upper limit of the yield point strain is not particularly limited, it is 50% or less. When the yield point strain in at least one direction is 8.0% or more, the bending resistance of the film is kept within a practical range.
The yield point strain can be adjusted by the stretching conditions and the like when producing the present film.
 本フィルムは、一方向における降伏点ひずみが上記範囲であると共に、一方向に直交する方向における降伏点ひずみが、8.0%以上であることが好ましく、8.5%以上であることがより好ましく、9.0%以上であることがさらに好ましく、そして50%以下であることが好ましい。
 なお、上記「一方向」とは、特に限定されないが、例えば本フィルムのMD(又はTD)を意味し、「一方向と直交する方向」とは、例えば本フィルムのTD(又はMD)を意味する。ここで、MDは「Machine Direction」を意味し、TDは「Transverse Direction」を意味する。
 本フィルムの降伏点ひずみは、引張試験において得られる応力-ひずみ曲線の降伏点におけるひずみ(%)を意味し、JIS K 7127:1999に準じた方法により測定することができる。
In the present film, the yield point strain in one direction is within the above range, and the yield point strain in a direction orthogonal to the one direction is preferably 8.0% or more, more preferably 8.5% or more. It is more preferably at least 9.0%, and further preferably at most 50%.
The “one direction” is not particularly limited, but means, for example, the MD (or TD) of the present film, and the “direction orthogonal to one direction” means, for example, the TD (or MD) of the present film. I do. Here, MD means "Machine Direction", and TD means "Transverse Direction".
The yield point strain of the film means a strain (%) at a yield point of a stress-strain curve obtained in a tensile test, and can be measured by a method according to JIS K 7127: 1999.
(3)降伏応力
 23℃における引張試験を行った際の本フィルムの降伏応力は、50MPa以上であることが好ましく、より好ましくは55%以上、さらに好ましくは60MPa以上である。
 上限は特に限定されるものではないが、ポリエステル系樹脂からなるフィルムの場合、通常は300MPa以下である。
 本フィルムの降伏応力を50MPa以上とすることでフィルム強度が実用範囲内に保たれ、フィルムの折り曲げ耐性が実用範囲内に保たれる。降伏応力は延伸条件によって調整することができる。
 本フィルムの降伏応力は、JIS K 7127:1999に準じた方法により測定することができる。
(3) Yield stress The yield stress of the film when subjected to a tensile test at 23 ° C is preferably 50 MPa or more, more preferably 55% or more, and further preferably 60 MPa or more.
Although the upper limit is not particularly limited, it is usually 300 MPa or less in the case of a film made of a polyester resin.
By setting the yield stress of the present film to 50 MPa or more, the film strength is kept within a practical range, and the bending resistance of the film is kept within a practical range. Yield stress can be adjusted by stretching conditions.
The yield stress of the film can be measured by a method according to JIS K 7127: 1999.
(4)結晶融解温度
 本フィルムの結晶融解温度(Tm)は255℃以上300℃以下であることが好ましい。
 特に256℃以上295℃以下であることがより好ましく、257℃以上290℃以下であることがさらに好ましく、258℃以上285℃以下であることがとりわけ好ましい。
 本フィルムの結晶融解温度(Tm)がかかる範囲であれば、本フィルムは耐熱性と溶融成形性のバランスに優れる。
 ここで、結晶融解温度(Tm)は、JIS K7121(2012年)に準じて、本フィルムについて示差走査熱量計(DSC)を用いて加熱速度10℃/分で測定するものである。
 なお、結晶融解温度(Tm)とは、結晶融解ピーク温度を意味する。
 DSC測定において、複数の結晶融解温度が確認される場合は、本発明における結晶融解温度(Tm)は、最も高い温度の結晶融解温度を指すものとする。
 本フィルムの結晶融解温度(Tm)は、本フィルムを構成する樹脂材料を選択したり、結晶核剤を添加したり、本フィルムの製造において、溶融状態からの冷却温度、延伸倍率、延伸温度、延伸後の熱処理条件を調整したりすることで最適化することができる。
(4) Crystal melting temperature The crystal melting temperature (Tm) of the film is preferably from 255 ° C to 300 ° C.
In particular, it is more preferably from 256 ° C to 295 ° C, further preferably from 257 ° C to 290 ° C, particularly preferably from 258 ° C to 285 ° C.
When the crystal melting temperature (Tm) of the present film is in such a range, the present film is excellent in balance between heat resistance and melt moldability.
Here, the crystal melting temperature (Tm) is a value measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) for the film according to JIS K7121 (2012).
The crystal melting temperature (Tm) means a crystal melting peak temperature.
When a plurality of crystal melting temperatures are confirmed in the DSC measurement, the crystal melting temperature (Tm) in the present invention indicates the highest crystal melting temperature.
The crystal melting temperature (Tm) of the present film is selected by selecting a resin material constituting the present film, adding a crystal nucleating agent, and in producing the present film, a cooling temperature from a molten state, a stretching ratio, a stretching temperature, It can be optimized by adjusting the heat treatment conditions after stretching.
(5)厚み
 本フィルムの厚みは、1~250μmであることが好ましく、5~200μmであるのがより好ましい。1μm以上とすることでフィルム強度が実用範囲内に保たれる。
 250μm以下であることで、耐折性が発現しやすくなる。
 厚みは延伸条件によって調整することができる。
(5) Thickness The thickness of the present film is preferably from 1 to 250 μm, more preferably from 5 to 200 μm. When the thickness is 1 μm or more, the film strength is kept within a practical range.
When the thickness is 250 μm or less, folding resistance is easily developed.
The thickness can be adjusted by stretching conditions.
(6)耐折性
 本フィルムは、YUASA製折り曲げ試験装置(DLDMLH-FS-C)を用いて、23℃における1000回の折り曲げ試験を屈曲半径(R)=1.5mmの条件で行った際、外観変化がないものであることが好ましい。
 これを満たすことにより、本フィルムは耐折性に優れているものということができる。
(6) Folding resistance This film was subjected to 1000 bending tests at 23 ° C. using a bending test apparatus (DLDMLH-FS-C) manufactured by YUASA at a bending radius (R) of 1.5 mm. It is preferable that there is no change in appearance.
By satisfying this, it can be said that the present film is excellent in folding resistance.
 本発明は、一般的にポリエチレン系樹脂、ポリプロピレン系樹脂よりも比較的高い降伏応力を示すポリエステル系樹脂を主成分としたフィルムが耐折り曲げ性に優れることを、本発明者が見出し、成されたものである。
 降伏応力が高いポリエステル系樹脂であっても、変形によって加えられた応力が大きい場合、変形が起こり、材料に解消されないひずみが残ってしまうという問題があった。
 しかし、本発明者は、本発明において、降伏点ひずみが特定の数値以上であればひずみが発生しにくくなることを見出した。
 弾性変形領域(降伏点)を越えてひずんでしまった場合に、折れ跡やシワなどの変形跡が残ってしまい、外観不良や、材料特性そのものに影響が出てしまうと考えている。
 つまり、降伏点ひずみ量が大きければ大きいほど塑性変形が始まるまでのひずみ量が大きいため、大きなひずみが印加された場合でも、変形跡が付きにくく、変形耐性に優れていると考えている。
The present invention, the present inventors have found that, in general, a film containing a polyester-based resin as a main component showing a relatively high yield stress than polyethylene-based resin and polypropylene-based resin is excellent in bending resistance, the present inventors have made. Things.
Even in the case of a polyester resin having a high yield stress, when the stress applied by the deformation is large, there is a problem that the deformation occurs and unresolved strain remains in the material.
However, the present inventor has found that in the present invention, if the yield point strain is equal to or more than a specific value, the strain hardly occurs.
It is considered that when the material is distorted beyond the elastic deformation region (yield point), deformation marks such as break marks and wrinkles remain, which may affect the appearance and the material properties itself.
In other words, it is considered that the larger the yield point strain amount is, the larger the strain amount until the plastic deformation starts is. Therefore, even when a large strain is applied, it is considered that a deformation mark is hardly formed and the deformation resistance is excellent.
 本発明においては、本発明の効果を損なわない範囲において、本フィルムはポリエステル系樹脂(A)以外の他の樹脂を含むことができる。
 他の樹脂としては、例えばポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、塩素化ポリエチレン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂(アラミド系樹脂を含む)、ポリアセタール系樹脂、アクリル系樹脂、エチレン-酢酸ビニル共重合体、ポリメチルペンテン系樹脂、ポリビニルアルコール系樹脂、環状オレフィン系樹脂、ポリアクリロニトリル系樹脂、ポリエチレンオキサイド系樹脂、セルロース系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、ポリフェニレンスルフィド系樹脂、ポリフェニレンエーテル系樹脂、ポリビニルアセタール系樹脂、ポリブタジエン系樹脂、ポリブテン系樹脂、ポリアミドイミド系樹脂、ポリアミドビスマレイミド系樹脂、ポリエーテルイミド系樹脂、ポリエーテルエーテルケトン系樹脂、ポリエーテルケトン系樹脂、ポリエーテルスルホン系樹脂、ポリケトン系樹脂、ポリサルフォン系樹脂、及び、フッ素系樹脂等が挙げられる。
In the present invention, the film may contain other resins other than the polyester resin (A) as long as the effects of the present invention are not impaired.
As other resins, for example, polystyrene resin, polyvinyl chloride resin, polyvinylidene chloride resin, chlorinated polyethylene resin, polycarbonate resin, polyamide resin (including aramid resin), polyacetal resin, acrylic resin Resin, ethylene-vinyl acetate copolymer, polymethylpentene resin, polyvinyl alcohol resin, cyclic olefin resin, polyacrylonitrile resin, polyethylene oxide resin, cellulose resin, polyimide resin, polyurethane resin, polyphenylene sulfide Resin, polyphenylene ether resin, polyvinyl acetal resin, polybutadiene resin, polybutene resin, polyamideimide resin, polyamidebismaleimide resin, polyetherimide resin, polyether Teruketon resins, polyether ketone resins, polyether sulfone resins, polyketone resins, polysulfone resins, and include fluorine-based resins and the like.
 また、本フィルムは、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般的に配合される添加剤を適宜含むことができる。
 前記添加剤としては、成形加工性、生産性及びフィルムの諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂や、シリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料や染料などの着色剤、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤などが挙げられる。
In addition to the components described above, the present film may appropriately contain additives generally compounded within a range that does not significantly impair the effects of the present invention.
Examples of the additives include recycled resins generated from trimming loss of ears and the like, silica, talc, kaolin, calcium carbonate, and the like, which are added for the purpose of improving and adjusting molding processability, productivity, and various physical properties of the film. Inorganic particles, coloring agents such as pigments and dyes such as titanium oxide and carbon black, flame retardants, weather resistance stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, and plasticizers Antioxidants, antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents and the like.
 また、本フィルムは、前述した添加剤のほかに、本発明の効果を著しく阻害しない範囲内で、塗布層を有することができる。
 前記塗布層の機能としては、ハードコート性、帯電防止性、剥離性、易接着性、印字適性、UVカット性、赤外線遮断性、ガスバリア性などが挙げられる。
 塗布層の形成については、延伸行程中にフィルム表面を処理するインラインコーティングにより設けてもよく、一旦製造したフィルム上に系外で塗布する、オフラインコーティングを採用してもよく、両者を併用してもよい。
In addition to the above-mentioned additives, the present film may have a coating layer as long as the effect of the present invention is not significantly impaired.
Examples of the function of the coating layer include a hard coat property, an antistatic property, a peeling property, an easy adhesive property, a printing suitability, a UV cut property, an infrared shielding property, a gas barrier property and the like.
Regarding the formation of the coating layer, it may be provided by in-line coating that treats the film surface during the stretching process, or may be applied outside the system once on the manufactured film, and may employ off-line coating. Is also good.
 以下、本フィルムを構成するポリエステル系樹脂(A)について説明する。 Hereinafter, the polyester resin (A) constituting the film will be described.
<ポリエステル系樹脂(A)>
 本フィルムを構成するポリエステル系樹脂(A)は、ホモポリエステルであっても共重合ポリエステルであってもよい。
 ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。
 芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール等が挙げられる。
 代表的なポリエステルとしては、ポリエチレンテレフタレート(PET)等が例示される。
 一方、共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、セバシン酸、オキシカルボン酸等の一種又は二種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール等の一種又は二種以上が挙げられる。
 更に共重合成分として、P-オキシ安息香酸等のオキシカルボン酸を用いてもよい。
 本発明においては、ガラス転移温度、降伏点ひずみの観点から、ポリエステル系樹脂(A)が、ジカルボン酸成分(a-1)としてテレフタル酸単位、ジオール成分(a-2)として1,4-シクロヘキサンジメタノール単位を含むポリシクロヘキシレンジメチレンテレフタレートであることが好ましい。
<Polyester resin (A)>
The polyester resin (A) constituting the film may be a homopolyester or a copolyester.
In the case of a homopolyester, those obtained by polycondensing an aromatic dicarboxylic acid and an aliphatic glycol are preferred.
Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol.
Typical polyesters include polyethylene terephthalate (PET) and the like.
On the other hand, examples of the dicarboxylic acid component of the copolymerized polyester include one or more of isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, sebacic acid, and oxycarboxylic acid. One or more of ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like can be mentioned.
Further, an oxycarboxylic acid such as P-oxybenzoic acid may be used as a copolymer component.
In the present invention, from the viewpoint of the glass transition temperature and the yield point strain, the polyester resin (A) contains terephthalic acid units as the dicarboxylic acid component (a-1) and 1,4-cyclohexane as the diol component (a-2). Preference is given to polycyclohexylene dimethylene terephthalate containing dimethanol units.
 ポリエステル系樹脂(A)の結晶融解熱量(ΔHm(A))は、35J/g以上70J/g以下であるのが好ましく、36J/g以上或いは65J/g以下であることがより好ましい。ΔHm(A)がかかる範囲であれば、ポリエステル系樹脂(A)は、耐熱性、耐湿熱性、溶融成形性及び延伸加工性にも優れる適度な結晶性を有する。
 ポリエステル系樹脂(A)の結晶融解熱量Δ(Hm(A))は、JIS K7122(2012年)に準じて、示差走査熱量計(DSC)を用いて加熱速度10℃/分で測定することができる。
 なお、ポリエステル系樹脂(A)の結晶融解熱量(ΔHm(A))は、該(A)の構成単位、例えばポリシクロヘキシレンジメチレンテレフタレートであれば、テレフタル酸以外の他の酸成分及び/又は1,4-シクロヘキサンジメタノール単位以外の他のジオール成分の種類や配合割合を調整することにより、上記範囲内に調整することができる。
The heat of crystal fusion (ΔHm (A)) of the polyester resin (A) is preferably 35 J / g or more and 70 J / g or less, more preferably 36 J / g or more or 65 J / g or less. When ΔHm (A) is within such a range, the polyester resin (A) has appropriate crystallinity that is excellent in heat resistance, wet heat resistance, melt moldability and stretch processability.
The heat of crystal fusion Δ (Hm (A)) of the polyester resin (A) can be measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) according to JIS K7122 (2012). it can.
The heat of crystal fusion (ΔHm (A)) of the polyester-based resin (A) is, if it is a constituent unit of the (A), for example, polycyclohexylene dimethylene terephthalate, an acid component other than terephthalic acid and / or By adjusting the type and mixing ratio of the diol component other than the 1,4-cyclohexanedimethanol unit, the content can be adjusted within the above range.
 ポリエステル系樹脂(A)の結晶融解温度(Tm(A))は、255℃以上310℃以下であることが好ましく、280℃以上310℃以下であることがより好ましく、260℃以上或いは340℃以下であることがさらに好ましく、270℃以上或いは330℃以下であることがよりさらに好ましく、280℃以上或いは310℃以下であることが特に好ましい。
 ポリエステル系樹脂(A)の結晶融解温度(Tm(A))がかかる範囲であれば、ポリエステル系樹脂(A)は耐熱性と溶融成形性のバランスに優れる。
 ポリエステル系樹脂(A)の結晶融解温度(Tm(A))は、JIS K7121(2012年)に準じて、示差走査熱量計(DSC)を用いて加熱速度10℃/分で測定することができる。
 ポリエステル系樹脂(A)の結晶融解温度(Tm(A))は、上記ΔHmと同じく、該(A)の構成単位、例えばポリシクロヘキシレンジメチレンテレフタレートであれば、テレフタル酸以外の他の酸成分及び/又は1,4-シクロヘキサンジメタノール単位以外の他のジオール成分の種類や配合割合を調整することにより、上記範囲内に調整することができる。
The crystal melting temperature (Tm (A)) of the polyester resin (A) is preferably from 255 to 310 ° C, more preferably from 280 to 310 ° C, and from 260 to 340 ° C. Is more preferably 270 ° C. or more or 330 ° C. or less, and particularly preferably 280 ° C. or more or 310 ° C. or less.
When the crystal melting temperature (Tm (A)) of the polyester resin (A) is in such a range, the polyester resin (A) has an excellent balance between heat resistance and melt moldability.
The crystal melting temperature (Tm (A)) of the polyester resin (A) can be measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) according to JIS K7121 (2012). .
The crystal melting temperature (Tm (A)) of the polyester-based resin (A) is the same as the ΔHm described above, and in the case of the structural unit of (A), for example, polycyclohexylene dimethylene terephthalate, other acid components other than terephthalic acid By adjusting the type and blending ratio of other diol components other than the 1,4-cyclohexanedimethanol unit, and / or the ratio can be adjusted within the above range.
 ポリエステル系樹脂(A)のガラス転移温度(Tg(A))は、60℃以上150℃以下であることがより好ましく、70℃以上或いは120℃以下であることが更に好ましい。
 前記ポリエステル系樹脂(A)のガラス転移温度(Tg(A))がかかる範囲にあれば、耐熱性と溶融成形性のバランスに優れる。
 前記ガラス転移温度(Tg)は、JIS K7121(2012年)に準じて示差走査熱量計(DSC)を用いて加熱速度10℃/分で測定されるものである。
The glass transition temperature (Tg (A)) of the polyester resin (A) is more preferably from 60 ° C to 150 ° C, and even more preferably from 70 ° C to 120 ° C.
When the glass transition temperature (Tg (A)) of the polyester resin (A) is in such a range, the balance between heat resistance and melt moldability is excellent.
The glass transition temperature (Tg) is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) according to JIS K7121 (2012).
 なお、上記のポリエステル系樹脂(A)の結晶融解熱量(ΔHm(A))、結晶融解温度(Tm(A))及びガラス転移温度(Tg(A))は何れも、本フィルムを製造するための原料の特性としてのみならず、本フィルムを構成しているポリエステル系樹脂(A)成分の特性としても適用される。 The heat of crystal melting (ΔHm (A)), the crystal melting temperature (Tm (A)), and the glass transition temperature (Tg (A)) of the polyester-based resin (A) are all used to produce this film. Of the polyester resin (A) constituting the film of the present invention.
 上記ポリシクロへキシレンジメチレンテレフタレートは、ジカルボン酸成分(a-1)としてテレフタル酸単位、ジオール成分(a-2)として1,4-シクロヘキサンジメタノール単位を含む重合体である。
 特に、本発明で用いる場合、ポリシクロヘキシレンジメチレンテレフタレートは、ジカルボン酸成分(a-1)としてテレフタル酸単位を90モル%以上、ジオール成分(a-2)として1,4-シクロヘキサンジメタノール単位を90モル%以上含む重合体であることが好ましい。
The polycyclohexylene dimethylene terephthalate is a polymer containing terephthalic acid units as the dicarboxylic acid component (a-1) and 1,4-cyclohexanedimethanol units as the diol component (a-2).
In particular, when used in the present invention, polycyclohexylene dimethylene terephthalate contains 90 mol% or more of terephthalic acid units as the dicarboxylic acid component (a-1) and 1,4-cyclohexanedimethanol unit as the diol component (a-2). Is preferably a polymer containing 90 mol% or more of
 前記ポリシクロヘキシレンジメチレンテレフタレートを構成するジカルボン酸成分(a-1)は、テレフタル酸を90モル%以上であることが好ましい。
 ジカルボン酸成分(a-1)のうち、テレフタル酸が92モル%以上であることがより好ましく、94モル%以上であることがさらに好ましく、96モル%以上であることが特に好ましく、98モル%以上であることがとりわけ好ましく、ジカルボン酸成分(a-1)の全て(100モル%)がテレフタル酸であることが最も好ましい。
 ジカルボン酸成分(a-1)としてテレフタル酸を90モル%以上とすることにより、ポリシクロヘキシレンジメチレンテレフタレートのガラス転移温度、融点及び結晶性が向上し、ひいては本フィルムの耐熱性が向上する。
The dicarboxylic acid component (a-1) constituting the polycyclohexylene dimethylene terephthalate preferably contains at least 90 mol% of terephthalic acid.
Of the dicarboxylic acid component (a-1), terephthalic acid is more preferably at least 92 mol%, even more preferably at least 94 mol%, particularly preferably at least 96 mol%, particularly preferably 98 mol%. It is particularly preferable that the amount is at least as described above, and it is most preferable that all (100 mol%) of the dicarboxylic acid component (a-1) be terephthalic acid.
By setting terephthalic acid to 90 mol% or more as the dicarboxylic acid component (a-1), the glass transition temperature, melting point and crystallinity of polycyclohexylene dimethylene terephthalate are improved, and the heat resistance of the present film is improved.
 前記ポリシクロヘキシレンジメチレンテレフタレートは、成型性や耐熱性の向上を目的として、テレフタル酸以外の酸成分を10モル%未満共重合しても良い。
 テレフタル酸以外の酸成分としては、具体的には、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,5-フランジカルボン酸、2,4-フランジカルボン酸、3,4-フランジカルボン酸、ベンゾフェノンジカルボン酸、4,4’-ジフェニルジカルボン酸、3,3’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等の芳香族ジカルボン酸;シクロヘキサンジカルボン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸等が挙げられるが、これらの中でも成形性の観点からイソフタル酸、2,5-フランジカルボン酸、2,4-フランジカルボン酸、3,4-フランジカルボン酸が好ましい。
The polycyclohexylene dimethylene terephthalate may be copolymerized with less than 10 mol% of an acid component other than terephthalic acid for the purpose of improving moldability and heat resistance.
Specific examples of the acid component other than terephthalic acid include isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,5-furandicarboxylic acid. Acid, 2,4-furandicarboxylic acid, 3,4-furandicarboxylic acid, benzophenonedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 3,3′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, etc. Aromatic dicarboxylic acids; cyclohexanedicarboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, aliphatic dicarboxylic acids such as sebacic acid, and the like. From the viewpoint of moldability, isophthalic acid, 2,5-furandicarboxylic acid, 2,4-furandic acid Bon acid, 3,4-furan dicarboxylic acid.
 前記ポリシクロヘキシレンジメチレンテレフタレートを構成するジオール成分(a-2)は、1,4-シクロヘキサンジメタノールが90モル%以上であることが好ましい。
 ジオール成分(a-2)のうち、1,4-シクロヘキサンジメタノールが92モル%以上であることがより好ましく、94モル%以上であることがさらに好ましく、96モル%以上であることが特に好ましく、98モル%以上であることがとりわけ好ましく、ジオール成分(a-2)の全て(100モル%)が1,4-シクロヘキサンジメタノールであることが、最も好ましい。
 ジオール成分(a-2)として1,4-シクロヘキサンジメタノールを90モル%以上とすることにより、ポリシクロヘキシレンジメチレンテレフタレートの融点及び結晶性が向上し、ひいては本フィルムの耐熱性が向上する。
The diol component (a-2) constituting the polycyclohexylene dimethylene terephthalate preferably contains 90 mol% or more of 1,4-cyclohexanedimethanol.
Of the diol component (a-2), 1,4-cyclohexanedimethanol is more preferably at least 92 mol%, even more preferably at least 94 mol%, particularly preferably at least 96 mol%. , 98 mol% or more, and most preferably, all (100 mol%) of the diol component (a-2) is 1,4-cyclohexanedimethanol.
By making 1,4-cyclohexanedimethanol 90 mol% or more as the diol component (a-2), the melting point and crystallinity of polycyclohexylene dimethylene terephthalate are improved, and the heat resistance of the present film is improved.
 前記ポリシクロヘキシレンジメチレンテレフタレートは、成型性や耐熱性の向上を目的として、1,4-シクロヘキサンジメタノール以外のジオール成分を10モル%未満共重合しても良い。
 1,4-シクロヘキサンジメタノール以外のジオール成分としては、具体的には、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、ヒドロキノン、ビスフェノール、スピログリコール、2,2,4,4,-テトラメチルシクロブタン-1,3-ジオール、イソソルバイド等が挙げられるが、これらの中でも成形性の観点からエチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-シクロヘキサンジメタノールが好ましい。
The polycyclohexylene dimethylene terephthalate may be copolymerized with less than 10 mol% of a diol component other than 1,4-cyclohexanedimethanol for the purpose of improving moldability and heat resistance.
As the diol component other than 1,4-cyclohexanedimethanol, specifically, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6 Hexanediol, neopentyl glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, hydroquinone, bisphenol, spiroglycol, 2,2,4, Examples thereof include 4, -tetramethylcyclobutane-1,3-diol and isosorbide. Of these, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3 -Shiku Hexane dimethanol are preferred.
<本フィルムの製造方法>
 本発明のディスプレイ用フィルムの製造方法について説明するが、以下の説明は本フィルムを製造する方法の一例であり、本フィルムはかかる製造方法により製造されるフィルムに限定されるものではない。
<Production method of this film>
The method for producing the display film of the present invention will be described, but the following description is an example of the method for producing the present film, and the present film is not limited to the film produced by such a production method.
 本発明の実施形態の一例に係る本フィルムの製造方法は、前記ポリエステル系樹脂(A)を主成分とする樹脂組成物をフィルム状に成形し、二軸延伸する製造方法である。 製造 The method for producing the present film according to an example of the embodiment of the present invention is a production method in which a resin composition containing the polyester-based resin (A) as a main component is formed into a film and biaxially stretched.
 ポリエステル系樹脂(A)、その他の樹脂及び添加剤を混練し、樹脂組成物を得る方法は特に限定されないが、なるべく簡便に樹脂組成物を得るために、押出機を用いて溶融混練することによって製造するのが好ましい。
 樹脂組成物を構成する原料を均一に混合するために、同方向二軸押出機を用いて溶融混練するのが好ましい。
 混練温度は、用いる全ての樹脂のガラス転移温度以上であり、かつ結晶性樹脂に対しては、その結晶融解温度以上であることが必要である。
 使用する樹脂のガラス転移温度や結晶融解温度に対して、なるべく混練温度が高い方が、樹脂の一部のエステル交換反応が生じやすく、相溶性が向上しやすいものの、必要以上に混練温度が高くなると樹脂の分解が起こるため好ましくない。
 このことから、混練温度は260℃以上350℃以下であり、270℃以上340℃以下が好ましく、280℃以上330℃以下がより好ましく、290℃以上320℃以下が特に好ましい。
 混練温度がかかる範囲であれば、樹脂の分解を生じることなく、相溶性や溶融成形性を向上させることができる。
 樹脂組成物は、一度冷却固化してペレット状などの形状にした後、これを再び加熱溶融して成形に供してもよいし、溶融状態で得られた樹脂組成物をそのまま成形してもよい。
The method of kneading the polyester resin (A), other resins and additives to obtain a resin composition is not particularly limited. However, in order to obtain the resin composition as simply as possible, melt kneading using an extruder is performed. It is preferably manufactured.
In order to uniformly mix the raw materials constituting the resin composition, it is preferable to perform melt kneading using a co-directional twin screw extruder.
The kneading temperature must be equal to or higher than the glass transition temperature of all the resins used, and must be equal to or higher than the crystal melting temperature of a crystalline resin.
With respect to the glass transition temperature and the crystal melting temperature of the resin used, the higher the kneading temperature is, the easier the transesterification reaction of a part of the resin occurs, and the better the compatibility is, but the kneading temperature is higher than necessary. If it does, the decomposition of the resin occurs, which is not preferable.
For this reason, the kneading temperature is from 260 ° C to 350 ° C, preferably from 270 ° C to 340 ° C, more preferably from 280 ° C to 330 ° C, particularly preferably from 290 ° C to 320 ° C.
When the kneading temperature is within the above range, the compatibility and the melt moldability can be improved without decomposing the resin.
The resin composition may be once cooled and solidified to form a pellet or the like, and then heated and melted again for molding, or the resin composition obtained in a molten state may be molded as it is. .
 上記により得られた樹脂組成物を、一般の成形法、例えば押出成形、射出成形、ブロー成形、真空成形、圧空成形、プレス成形等によって成形して二軸延伸フィルムを作製することができる。それぞれの成形方法において、装置及び加工条件は特に限定されない。
 本フィルムは、例えば以下の方法により製造することが好ましい。
The resin composition obtained as described above can be molded by a general molding method, for example, extrusion molding, injection molding, blow molding, vacuum molding, pressure molding, press molding, etc., to produce a biaxially stretched film. In each molding method, the apparatus and processing conditions are not particularly limited.
This film is preferably produced, for example, by the following method.
 混合して得られた樹脂組成物より、実質的に無定型で配向していないフィルム(以下「未延伸フィルム」と称することがある)を押出法で製造する。
 この未延伸フィルムの製造は、例えば上記原料を押出機により溶融し、フラットダイ、又は環状ダイから押出した後、急冷することによりフラット状又は環状(円筒状)の未延伸フィルムとする押出法を採用することができる。
 この際、場合によって、複数の押出機を使用した積層構成としてもよい。
From the resin composition obtained by mixing, a substantially amorphous and non-oriented film (hereinafter sometimes referred to as “unstretched film”) is produced by an extrusion method.
The production of this unstretched film includes, for example, an extrusion method in which the raw material is melted by an extruder, extruded from a flat die or an annular die, and then rapidly cooled to obtain a flat or annular (cylindrical) unstretched film. Can be adopted.
At this time, depending on the case, a laminated structure using a plurality of extruders may be used.
 次に、延伸効果、フィルム強度等の点から、上記の未延伸フィルムを、フィルムの流れ方向(縦方向)及びこれと直角な方向(横方向)のうち、少なくとも一方向に通常1.1~5.0倍、好ましくは縦横二軸方向に各々1.1~5.0倍の範囲で延伸する。 Next, from the viewpoints of stretching effect, film strength, and the like, the unstretched film is usually placed in at least one direction of the film flow direction (longitudinal direction) and the direction perpendicular thereto (transverse direction) in a range of 1.1 to 1.1. The film is stretched 5.0 times, preferably in the range of 1.1 to 5.0 times in each of the longitudinal and transverse directions.
 二軸延伸の方法としては、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等、従来公知の延伸方法がいずれも採用できる。
 例えばテンター式逐次二軸延伸方法の場合には、前記樹脂組成物のガラス転移温度をTgとして、未延伸フィルムを、Tg~Tg+50℃の温度範囲に加熱し、ロール式縦延伸機によって縦方向に1.1~5.0倍に延伸し、続いてテンター式横延伸機によって、Tg~Tg+50℃の温度範囲内で横方向に1.1~5.0倍に延伸することにより製造できる。
 また、テンター式同時二軸延伸やチューブラー式同時二軸延伸方法の場合は、例えばTg~Tg+50℃の温度範囲において、縦横同時に各軸方向に1.1~5.0倍に延伸することにより製造できる。
As the biaxial stretching method, any conventionally known stretching methods such as tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular simultaneous biaxial stretching can be used.
For example, in the case of a tenter-type sequential biaxial stretching method, an unstretched film is heated to a temperature range of Tg to Tg + 50 ° C., with the glass transition temperature of the resin composition being Tg, and is vertically stretched by a roll-type longitudinal stretching machine. The film can be produced by stretching the film to 1.1 to 5.0 times, and subsequently stretching the film to 1.1 to 5.0 times in the transverse direction in a temperature range of Tg to Tg + 50 ° C. by a tenter type transverse stretching machine.
In the case of a tenter-type simultaneous biaxial stretching or a tubular simultaneous biaxial stretching method, for example, in a temperature range of Tg to Tg + 50 ° C., stretching is performed 1.1 to 5.0 times in each axial direction simultaneously in the vertical and horizontal directions. Can be manufactured.
 上記方法により延伸された二軸延伸フィルムは、引き続き熱固定される。
 熱固定をすることにより常温における寸法安定性を付与できる。
 この場合の処理温度は、好ましくは前記樹脂組成物の結晶融解温度をTmとした場合にTm-50~Tm-1℃の範囲を選択する。
 熱固定温度が上記範囲内にあれば、熱固定が十分に行われ、延伸時の応力が緩和され、十分な耐熱性や機械特性が得られ、破断やフィルム表面の白化などのトラブルがない優れたフィルムが得られる。
The biaxially stretched film stretched by the above method is subsequently heat-set.
By heat setting, dimensional stability at normal temperature can be imparted.
The treatment temperature in this case is preferably selected from the range of Tm-50 to Tm-1 ° C., where Tm is the crystal melting temperature of the resin composition.
When the heat setting temperature is within the above range, the heat setting is sufficiently performed, the stress during stretching is relaxed, sufficient heat resistance and mechanical properties are obtained, and there is no trouble such as breakage or whitening of the film surface. The resulting film is obtained.
 本発明においては、熱固定による結晶化収縮の応力を緩和させる為に、熱固定中に幅方向に0~15%、好ましくは3~10%の範囲で弛緩を行うことで、弛緩が十分に行われ、フィルムの幅方向に均一に弛緩され、幅方向の収縮率が均一になり、常温寸法安定性に優れたフィルムが得られる。
 また、フィルムの収縮に追従した弛緩が行われる為、フィルムの弛み、テンター内でのバタツキがなく、フィルムの破断もない。
In the present invention, in order to relax the stress of crystallization shrinkage due to heat setting, relaxation is performed in the width direction in the range of 0 to 15%, preferably 3 to 10% during heat setting, so that the relaxation is sufficiently achieved. Then, the film is uniformly relaxed in the width direction of the film, the shrinkage in the width direction becomes uniform, and a film having excellent dimensional stability at room temperature is obtained.
Further, since the film is relaxed following the shrinkage of the film, there is no loosening of the film, no flapping in the tenter, and no breakage of the film.
<ポリアリレート(B)>
 本フィルムの別の実施形態の一例は、前記ポリエステル系樹脂(A)100質量部に対して、該ポリエステル系樹脂(A)よりもガラス転移温度が高いポリアリレート(B)を1質量部以上50質量部以下含むディスプレイ用フィルムである。
<Polyarylate (B)>
An example of another embodiment of the present film is that, based on 100 parts by mass of the polyester-based resin (A), 1 part by mass or more of polyarylate (B) having a higher glass transition temperature than that of the polyester-based resin (A) is used. This is a display film containing not more than parts by mass.
 ポリエステル系樹脂(A)とポリアリレート(B)のガラス転移温度の差は60℃以上であるのが好ましく、70℃以上であるのがより好ましく、80℃以上であるのが更に好ましく、90℃以上であるのが特に好ましく、100℃以上であるのがとりわけ好ましい。
 ポリアリレート(B)のガラス転移温度は150℃以上350℃以下であるのが好ましく、160℃以上或いは340℃以下であるのがより好ましく、170℃以上或いは330℃以下であるのが更に好ましく、180℃以上或いは320℃以下であるのが特に好ましく、190℃以上或いは300℃以下であるのがとりわけ好ましい。
 ポリエステル系樹脂(A)とポリアリレート(B)のガラス転移温度の差が上記を満たすことで、本フィルムのガラス転移温度が向上し、溶融成形性にも優れた本フィルムが得られる。
The difference between the glass transition temperatures of the polyester resin (A) and the polyarylate (B) is preferably 60 ° C. or more, more preferably 70 ° C. or more, even more preferably 80 ° C. or more, and 90 ° C. The temperature is particularly preferably at least 100 ° C.
The glass transition temperature of the polyarylate (B) is preferably from 150 ° C to 350 ° C, more preferably from 160 ° C to 340 ° C, even more preferably from 170 ° C to 330 ° C, It is particularly preferably at least 180 ° C or at most 320 ° C, particularly preferably at least 190 ° C or at most 300 ° C.
When the difference between the glass transition temperatures of the polyester resin (A) and the polyarylate (B) satisfies the above, the glass transition temperature of the film is improved, and the film having excellent melt moldability can be obtained.
 ポリアリレート(B)の含有割合はポリエステル系樹脂(A)100質量部に対して、1質量部以上50質量部以下であり、3質量部以上或いは49質量部以下であることが好ましく、5質量部以上或いは47質量部以下であることがより好ましく、10質量部以上或いは45質量部以下であることが更に好ましい。
 ポリアリレート(B)の割合が1質量部以上であれば、結晶化速度を遅くすることができるためフィルムを延伸する際の延伸加工性が向上することができる。
 一方、ポリアリレート(B)の割合が50質量部以下であれば、フィルムの結晶性を維持され、ひいては得られる本フィルムの加熱時の耐収縮性が十分なものとなる。
The content ratio of the polyarylate (B) is 1 part by mass or more and 50 parts by mass or less, preferably 3 parts by mass or more or 49 parts by mass or less, preferably 5 parts by mass with respect to 100 parts by mass of the polyester resin (A). It is more preferably at least 10 parts by mass or at most 47 parts by mass, and even more preferably at least 10 parts by mass or at most 45 parts by mass.
When the proportion of the polyarylate (B) is at least 1 part by mass, the crystallization rate can be reduced, so that the stretchability at the time of stretching the film can be improved.
On the other hand, if the proportion of the polyarylate (B) is at most 50 parts by mass, the crystallinity of the film will be maintained, and the resulting film will have sufficient shrinkage resistance upon heating.
 一般的に、樹脂組成物の耐熱性の向上は、ガラス転移温度(Tg)を向上させることで達成できる。
 ここで、ポリエステル系樹脂(A)よりTgの高いポリアリレート(B)を混合することで、ポリエステル系樹脂(A)単体よりもガラス転移温度の高い樹脂組成物が得られ、耐熱性、耐湿熱性に優れたフィルムを得ることができる。
 一方、延伸時の結晶化が顕著に起こる場合、延伸時に結晶部分からの破断が起きやすくなるという問題を有する。
 そこで後述するように、非晶性であるポリアリレート(B)を加えることにより、ポリエステル系樹脂(A)自体の結晶性を緩和し、延伸時の破断を抑え加工時のハンドリング性を向上させることができる。
Generally, improvement in heat resistance of a resin composition can be achieved by improving the glass transition temperature (Tg).
Here, by mixing the polyarylate (B) having a higher Tg than the polyester-based resin (A), a resin composition having a higher glass transition temperature than that of the polyester-based resin (A) alone can be obtained. An excellent film can be obtained.
On the other hand, when crystallization during stretching occurs remarkably, there is a problem that breakage from a crystal portion is likely to occur during stretching.
Therefore, as will be described later, by adding an amorphous polyarylate (B), the crystallinity of the polyester resin (A) itself is relaxed, the breakage during stretching is suppressed, and the handleability during processing is improved. Can be.
 先述したように、本フィルムは、前記ポリエステル系樹脂(A)よりもJIS K7198Aに準じて測定されるガラス転移温度が高いポリアリレート(B)を含むことができる。
 ポリアリレート(B)は、ジカルボン酸成分(b-1)と二価フェノール成分(b-2)との重縮合物である。
 ポリアリレート(B)のガラス転移温度は、前記ジカルボン酸成分(b-1)及び二価フェノール成分(b-2)を適宜選択することで調整することができ、とりわけ、二価フェノール成分を適宜選択することが好ましい。
As described above, the present film can include polyarylate (B) having a higher glass transition temperature measured according to JIS K7198A than the polyester resin (A).
The polyarylate (B) is a polycondensate of a dicarboxylic acid component (b-1) and a dihydric phenol component (b-2).
The glass transition temperature of the polyarylate (B) can be adjusted by appropriately selecting the dicarboxylic acid component (b-1) and the dihydric phenol component (b-2). It is preferable to select.
 前記ポリアリレート(B)を構成するジカルボン酸成分(b-1)としては、二価の芳香族カルボン酸であれば特に制限はないが、中でもテレフタル酸成分とイソフタル酸成分の混合物であることが好ましい。
 そのテレフタル酸成分とイソフタル酸成分の混合比(モル%)は、テレフタル酸/イソフタル酸=99/1~1/99が好ましく、90/10~10/90がより好ましく、80/20~20/80が更に好ましく、70/30~30/70が特に好ましく、60/40~40/60がとりわけ好ましい。
 ジカルボン酸成分(b-1)としてテレフタル酸とイソフタル酸の混合比が上記範囲であることで、ポリアリレート(B)は耐熱性と溶融成形性に優れる。
The dicarboxylic acid component (b-1) constituting the polyarylate (B) is not particularly limited as long as it is a divalent aromatic carboxylic acid, but is preferably a mixture of a terephthalic acid component and an isophthalic acid component. preferable.
The mixing ratio (mol%) of the terephthalic acid component and the isophthalic acid component is preferably terephthalic acid / isophthalic acid = 99/1 to 1/99, more preferably 90/10 to 10/90, and more preferably 80/20 to 20 /. 80 is more preferable, 70/30 to 30/70 is particularly preferable, and 60/40 to 40/60 is particularly preferable.
When the mixing ratio of terephthalic acid and isophthalic acid as the dicarboxylic acid component (b-1) is within the above range, the polyarylate (B) is excellent in heat resistance and melt moldability.
 前記ポリアリレート(B)は、ジカルボン酸成分としてテレフタル酸とイソフタル酸以外の酸成分を共重合しても良い。
 具体的には、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ベンゾフェノンジカルボン酸、4,4’-ジフェニルジカルボン酸、3,3’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等の芳香族ジカルボン酸や、シクロヘキサンジカルボン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸等が挙げられる。ポリアリレート樹脂(B)の耐熱性を損なわないよう、テレフタル酸とイソフタル酸以外の酸成分の共重合比率は10モル%未満であることが好ましい。
The polyarylate (B) may be obtained by copolymerizing an acid component other than terephthalic acid and isophthalic acid as a dicarboxylic acid component.
Specifically, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, benzophenonedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 3,3′- Aromatic dicarboxylic acids such as diphenyldicarboxylic acid and 4,4'-diphenyletherdicarboxylic acid, and cyclohexanedicarboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid And the like. The copolymerization ratio of an acid component other than terephthalic acid and isophthalic acid is preferably less than 10 mol% so as not to impair the heat resistance of the polyarylate resin (B).
 前記ポリアリレート(B)を構成する二価フェノール成分(b-2)としては、二価のフェノール類であれば特に制限はないが、ビスフェノールA成分、ビスフェノールTMC(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)成分のいずれか、又は、ビスフェノールAとビスフェノールTMCのいずれも含むことが好ましい。
 一般に、ビスフェノールA成分を含むことで溶融成形性(流動性)に優れたポリアリレートとなる。
 一方、ビスフェノールTMC成分を含むことで、ガラス転移温度が向上し耐熱性に優れるポリアリレート(B)となる。
 溶融成形性と耐熱性のバランスを取りたい場合には、ビスフェノールA成分とビスフェノールTMC成分のいずれも用いる。
 この場合、ビスフェノールA成分とビスフェノールTMC成分の割合(モル%)は、ビスフェノールA/ビスフェノールTMC=99/1~1/99が好ましく、90/10~10/90がより好ましく、80/20~20/80が更に好ましく、70/30~30/70が特に好ましく、60/40~40/60がとりわけ好ましい。
 ビスフェノールA成分とビスフェノールTMC成分の割合をかかる範囲にすることにより、耐熱性と溶融成形性のバランスに優れるポリアリレート(B)となる。
The dihydric phenol component (b-2) that constitutes the polyarylate (B) is not particularly limited as long as it is a dihydric phenol, but the bisphenol A component and the bisphenol TMC (1,1-bis (4- (Hydroxyphenyl) -3,3,5-trimethylcyclohexane), or both bisphenol A and bisphenol TMC.
In general, a polyarylate having excellent melt moldability (flowability) is obtained by including a bisphenol A component.
On the other hand, by including the bisphenol TMC component, a polyarylate (B) having an improved glass transition temperature and excellent heat resistance can be obtained.
When it is desired to balance the melt moldability and the heat resistance, both the bisphenol A component and the bisphenol TMC component are used.
In this case, the ratio (mol%) of the bisphenol A component and the bisphenol TMC component is preferably bisphenol A / bisphenol TMC = 99/1 to 1/99, more preferably 90/10 to 10/90, and more preferably 80/20 to 20/20. / 80 is more preferable, 70/30 to 30/70 is particularly preferable, and 60/40 to 40/60 is particularly preferable.
By setting the ratio of the bisphenol A component to the bisphenol TMC component in such a range, a polyarylate (B) having an excellent balance between heat resistance and melt moldability can be obtained.
 前記ポリアリレート(B)は、二価フェノール成分(b-2)としてビスフェノールA(2,2-ビス(4-ヒドロキシフェニル)プロパン)とビスフェノールTMC(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)以外のビスフェノール成分を共重合しても良い。
 具体的には、ビスフェノールAP(1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン)、ビスフェノールAF(2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン)、ビスフェノールB(2,2-ビス(4-ヒドロキシフェニル)ブタン)、ビスフェノールBP(ビス(4-ヒドロキシフェニル)ジフェニルメタン)、ビスフェノールC(2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン)、ビスフェノールE(1,1-ビス(4-ヒドロキシフェニル)エタン)、ビスフェノールF(ビス(4-ヒドロキシフェニル)メタン)、ビスフェノールG(2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン)、ビスフェノールM(1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン)、ビスフェノールS(ビス(4-ヒドロキシフェニル)スルホン)、ビスフェノールP(1,4-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン)、ビスフェノールPH(5,5’-(1-メチルエチリデン)-ビス[1,1’-(ビスフェニル)-2-オール]プロパン)、ビスフェノールZ(1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン)等が挙げられる。
 ポリアリレート(B)の耐熱性を損なわないよう、上記化合物の共重合比率は10モル%未満であることが好ましい。
The polyarylate (B) comprises bisphenol A (2,2-bis (4-hydroxyphenyl) propane) and bisphenol TMC (1,1-bis (4-hydroxyphenyl)-as the dihydric phenol component (b-2). Bisphenol components other than (3,3,5-trimethylcyclohexane) may be copolymerized.
Specifically, bisphenol AP (1,1-bis (4-hydroxyphenyl) -1-phenylethane), bisphenol AF (2,2-bis (4-hydroxyphenyl) hexafluoropropane), bisphenol B (2 2-bis (4-hydroxyphenyl) butane), bisphenol BP (bis (4-hydroxyphenyl) diphenylmethane), bisphenol C (2,2-bis (3-methyl-4-hydroxyphenyl) propane), bisphenol E (1 , 1-bis (4-hydroxyphenyl) ethane), bisphenol F (bis (4-hydroxyphenyl) methane), bisphenol G (2,2-bis (4-hydroxy-3-isopropylphenyl) propane), bisphenol M ( 1,3-bis (2- (4-hydroxyphenyl) 2-propyl) benzene), bisphenol S (bis (4-hydroxyphenyl) sulfone), bisphenol P (1,4-bis (2- (4-hydroxyphenyl) -2-propyl) benzene), bisphenol PH (5 5 ′-(1-methylethylidene) -bis [1,1 ′-(bisphenyl) -2-ol] propane), bisphenol Z (1,1-bis (4-hydroxyphenyl) cyclohexane) and the like.
The copolymerization ratio of the above compound is preferably less than 10 mol% so as not to impair the heat resistance of the polyarylate (B).
 ポリアリレート(B)は、ポリシクロへキシレンジメチレンテレフタレートとの相溶性を高めるために、ジカルボン酸成分(b-1)としてテレフタル酸成分とイソフタル酸成分の混合物を、二価フェノール成分(b-2)としてビスフェノールA成分、ビスフェノールTMC成分のいずれか、又は、ビスフェノールAとビスフェノールTMCの混合物を選択することが好ましい。 The polyarylate (B) contains a mixture of a terephthalic acid component and an isophthalic acid component as a dicarboxylic acid component (b-1) and a dihydric phenol component (b-2) in order to increase the compatibility with polycyclohexylene dimethylene terephthalate. It is preferable to select either bisphenol A component or bisphenol TMC component or a mixture of bisphenol A and bisphenol TMC.
 ポリアリレート(B)としては、溶融成形性向上のためポリカーボネートを混合したものを用いてもよい。
 ポリアリレート(B)とポリカーボネートは相溶するため、ポリアリレート(B)に対してポリカーボネートを混合することで、透明性や機械特性を維持したままポリアリレート(B)のガラス転移温度を下げることができ、結果として溶融成形性を向上させることができる。
 ポリアリレート(B)とポリカーボネートを混合する場合、その混合比率(質量%)は、ポリアリレート(B)/ポリカーボネート=99/1~50/50が好ましく、98/2=60/40がより好ましく、97/3~70/30が更に好ましく、96/5~80/20が特に好ましい。
 ポリアリレート(B)とポリカーボネートの混合比率がかかる範囲であれば、ポリアリレート(B)の耐熱性を維持したまま溶融成形性を向上することができる。
 なお、ポリアリレート(B)とポリカーボネートとの混合とは、これら2成分を予め混合したものを原料として用いることが好ましいが、この方法のみには限定されず、ポリカーボネートを前記「他の樹脂」として選択し、独立した原料として用いることで上記構成としてもよい。
As the polyarylate (B), a mixture of polycarbonate for improving melt moldability may be used.
Since polyarylate (B) and polycarbonate are compatible, mixing polycarbonate with polyarylate (B) can lower the glass transition temperature of polyarylate (B) while maintaining transparency and mechanical properties. As a result, the melt moldability can be improved.
When the polyarylate (B) and the polycarbonate are mixed, the mixing ratio (% by mass) of the polyarylate (B) / polycarbonate is preferably 99/1 to 50/50, more preferably 98/2 = 60/40, It is more preferably from 97/3 to 70/30, particularly preferably from 96/5 to 80/20.
When the mixing ratio of the polyarylate (B) and the polycarbonate is within the above range, the melt moldability can be improved while maintaining the heat resistance of the polyarylate (B).
In addition, the mixing of the polyarylate (B) and the polycarbonate is preferably performed using a mixture of these two components in advance, but is not limited to this method alone. The above structure may be adopted by selecting and using as an independent raw material.
 上述した、ポリエステル系樹脂(A)とポリアリレート(B)の組合せの中でも、相溶性の観点から、とりわけ、ポリシクロヘキシレンジメチレンテレフタレートとポリアリレートの組合せが好ましい。 中 で も Among the above-mentioned combinations of the polyester resin (A) and the polyarylate (B), from the viewpoint of compatibility, a combination of polycyclohexylene dimethylene terephthalate and polyarylate is particularly preferable.
 なお、ポリシクロヘキシレンジメチレンテレフタレート(A)とポリアリレート(B)を溶融混合すると、ポリシクロヘキシレンジメチレンテレフタレート(A)とポリアリレート(B)のそれぞれ一部がエステル交換反応をして、両重合体間の界面張力が大幅に低下するため相溶し、透明性、耐熱性に極めて優れた樹脂組成物になると考えられる。 When the polycyclohexylene dimethylene terephthalate (A) and the polyarylate (B) are melted and mixed, a part of each of the polycyclohexylene dimethylene terephthalate (A) and the polyarylate (B) undergoes a transesterification reaction. It is considered that the interfacial tension between the polymers is greatly reduced, so that they are compatible with each other and become a resin composition having extremely excellent transparency and heat resistance.
 したがって、ポリシクロヘキシレンジメチレンテレフタレートは、該ポリシクロヘキシレンジメチレンテレフタレートの一部又は全部がエステル交換反応して得られるエステル交換体も包含し、ポリアリレートは、ポリアリレートの一部又は全部がエステル交換して得られるエステル交換体も包含する。 Therefore, the polycyclohexylene dimethylene terephthalate also includes a transesterified product obtained by subjecting a part or all of the polycyclohexylene dimethylene terephthalate to a transesterification reaction. The transesterified product obtained by the exchange is also included.
 エステル交換の程度(反応率)は、混合温度、せん断速度、滞留時間等の溶融混合条件によって調整することが可能であり、それにより本フィルムの結晶融解熱量(ΔHm)を調整することもできる。 程度 The degree of transesterification (reaction rate) can be adjusted by melt-mixing conditions such as mixing temperature, shear rate, residence time, etc., whereby the heat of crystal fusion (ΔHm) of the film can also be adjusted.
<フォルダブルディスプレイ>
 本発明におけるディスプレイ用フィルムは、耐折性、耐熱性に優れており、かつ、透明性にも優れるため、このフィルムを備えたフォルダブルディスプレイは耐折性、耐熱性に優れる。
<Foldable display>
Since the display film according to the present invention is excellent in folding resistance and heat resistance and also excellent in transparency, a folderable display provided with this film is excellent in folding resistance and heat resistance.
 本発明における上記したディスプレイ用フィルム(本フィルム)は、ディスプレイ用構成部材、例えば前面板、タッチセンサー用基材フィルム、下部保護フィルム等の構成部材として使用され、粘着層を介して他の部材と積層されることが好ましい。
 より詳細には、上記ディスプレイ用フィルムと、該ディスプレイ用フィルムの少なくとも片面に設けられた粘着層とを備えたディスプレイ用フィルム積層体とすることが好ましく、さらに、該ディスプレイ用フィルム積層体の粘着層を介して他の部材を貼り合せてなる構成を備えたフォルダブルディスプレイとすることが好ましい。
The above-described display film (the present film) in the present invention is used as a constituent member for a display, for example, a front plate, a base film for a touch sensor, a lower protective film, and the like, and is connected to another member via an adhesive layer. It is preferable that they are laminated.
More specifically, the display film is preferably a display film laminate including the display film and an adhesive layer provided on at least one surface of the display film, and further, the adhesive layer of the display film laminate is preferably used. It is preferable to provide a foldable display having a configuration in which other members are bonded together through the above.
 上記粘着層を形成するための粘着剤としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ビニルアルキルエーテル系粘着剤、エポキシ粘着剤などを使用することができる。
 上記粘着層を形成する粘着剤は、単独で又は2種以上組み合わせて用いられる。
 上記他の部材は、例えば、携帯電話、スマートフォン、デジタルカメラ、パソコンなどのディスプレイを有する各種電子機器などが挙げられる。
 具体的には、上記ディスプレイ用フィルム積層体は、粘着層を介して、これら電子機器のディスプレイに貼り合わせて使用される。
 ディスプレイの種類は、特に制限されず、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなどいずれでもよく、タッチパネル型のディスプレイであってもよい。
As the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer, an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a vinylalkyl ether-based pressure-sensitive adhesive, an epoxy pressure-sensitive adhesive, or the like can be used. .
The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is used alone or in combination of two or more.
Examples of the other members include various electronic devices having a display such as a mobile phone, a smartphone, a digital camera, and a personal computer.
Specifically, the display film laminate is used by being attached to a display of these electronic devices via an adhesive layer.
The type of display is not particularly limited, and may be any of a liquid crystal display, a plasma display, an organic EL display, and the like, and may be a touch panel type display.
 以下に実施例を示すが、これらにより本発明は何ら制限を受けるものではない。 Examples are shown below, but the present invention is not limited by these.
(1)ガラス転移温度
 得られたフィルムについて、Diamond DSC(パーキンエルマージャパン社製)を用いて、JIS K7121(2012年)に準じて、加熱速度10℃/分にて一度融解温度まで昇温させたのちに降温速度10℃/分にて降温させ、加熱速度10℃/分の昇温過程におけるガラス転移温度を測定した。
(1) Glass transition temperature The obtained film was heated once to the melting temperature at a heating rate of 10 ° C./min using Diamond DSC (manufactured by PerkinElmer Japan) in accordance with JIS K7121 (2012). Thereafter, the temperature was lowered at a temperature lowering rate of 10 ° C./min, and the glass transition temperature during the heating process at a heating rate of 10 ° C./min was measured.
(2)結晶融解温度
 得られたフィルムについて、Diamond DSC(パーキンエルマージャパン社製)を用いて、JIS K7121(2012年)に準じて、加熱速度10℃/分の昇温過程における結晶融解温度を測定した。
(2) Crystal melting temperature For the obtained film, the crystal melting temperature in the heating process at a heating rate of 10 ° C./min according to JIS K7121 (2012) was determined using Diamond DSC (manufactured by PerkinElmer Japan). It was measured.
(3)成形性 
 キャストフィルムについて、二軸延伸を行った際、破断せずに延伸できたものを合格(○)、破断が起こったものを不合格(×)とした。
(3) Formability
Regarding the cast film, when the film was biaxially stretched, the film that could be stretched without breaking was passed (合格), and the film that broke was failed (×).
(4)降伏点ひずみ
 測定装置は、引張試験機(株式会社島津製作所製 引張試験機AG‐1kNXplus)を用いた。試験片は、本フィルムから測定方向の長さ100mm、幅15mmの長方形に切り出したものを用いた。試験片の長さ方向の両端部をチャック間距離40mmでチャックし、クロスヘッドスピード200mm/分で引っ張り、降伏点におけるひずみを降伏ひずみとして3回測定し、その平均値を求めた。上記引張試験はフィルムのMDの引張試験及びTDの引張試験の両方を実施した。
(4) Yield point strain measuring device used was a tensile tester (a tensile tester AG-1kNXplus manufactured by Shimadzu Corporation). The test piece used was cut out from the present film into a rectangle having a length of 100 mm and a width of 15 mm in the measurement direction. Both ends in the longitudinal direction of the test piece were chucked at a chuck distance of 40 mm, pulled at a crosshead speed of 200 mm / min, and the strain at the yield point was measured three times as the yield strain, and the average value was obtained. In the tensile test, both the MD tensile test and the TD tensile test of the film were performed.
(5)耐折性
(折り曲げ評価)
 得られたフィルムについて、YUASA製折り曲げ試験装置(DLDMLH-FS-C)を用いて23℃における1000回の折り曲げ試験を、屈曲半径(R)=2mm、1.5mm、1mmの条件で実施した。外観変化がないものには○、わずかな折り曲げ跡が見られたものには△、明確な折り曲げ跡が見られたものは×とした。
(総合評価)
 折曲げ試験の結果から以下のように評価した。
  ○:R=2mm、1.5mmの評価で外観変化がなく、実用性あり
  ×:R=2mm、1.5mmの少なくとも1つの評価で外観変化あり、実用性低い
(5) Folding resistance (bending evaluation)
The obtained film was subjected to 1000 bending tests at 23 ° C. using a bending test apparatus (DLDMLH-FS-C) manufactured by YUASA under the conditions of a bending radius (R) of 2 mm, 1.5 mm and 1 mm.が な い indicates no change in appearance, △ indicates slight bending marks, and × indicates clear bending marks.
(Comprehensive evaluation)
The results of the bending test were evaluated as follows.
:: R = 2 mm, no change in appearance in 1.5 mm evaluation, practicality ×: R = 2 mm, change in appearance in at least one evaluation of 1.5 mm, low practicality
[ポリエステル系樹脂(A)]
(A)-1:SKYPURA0502HC
 (SKケミカル社製、ジカルボン酸成分:テレフタル酸=100モル%、ジオール成分:1,4-シクロヘキサンジメタノール=100モル%、Tm=293℃、ΔHm=48J/g、Tg=110℃)
[Polyester resin (A)]
(A) -1: SKYPURA0502HC
(Manufactured by SK Chemical Company, dicarboxylic acid component: terephthalic acid = 100 mol%, diol component: 1,4-cyclohexanedimethanol = 100 mol%, Tm = 293 ° C., ΔHm = 48 J / g, Tg = 110 ° C.)
(A)-2:SKYPURA0502
 (SKケミカル社製、ジカルボン酸成分:テレフタル酸=100モル%、ジオール成分:1,4-シクロヘキサンジメタノール=100モル%、Tm=286℃、ΔHm=42J/g、Tg=104℃)
(A) -2: SKYPURA0502
(Manufactured by SK Chemical Company, dicarboxylic acid component: terephthalic acid = 100 mol%, diol component: 1,4-cyclohexanedimethanol = 100 mol%, Tm = 286 ° C., ΔHm = 42 J / g, Tg = 104 ° C.)
(A)-3:SKYPURA1631
 (SKケミカル社製、ジカルボン酸成分:テレフタル酸=91.8モル%、イソフタル酸=8.2モル%、ジオール成分:1,4-シクロヘキサンジメタノール=100モル%、Tm=274℃、ΔHm=32J/g、Tg=101℃)
(A) -3: SKYPURA1631
(Manufactured by SK Chemical Company, dicarboxylic acid component: terephthalic acid = 91.8 mol%, isophthalic acid = 8.2 mol%, diol component: 1,4-cyclohexanedimethanol = 100 mol%, Tm = 274 ° C., ΔHm = 32 J / g, Tg = 101 ° C.)
[ポリアリレート(B)]
(B)-1:Uポリマー(登録商標) U-100
 (ユニチカ社製、ジカルボン酸成分:テレフタル酸/イソフタル酸=50/50モル%、ビスフェノール成分:ビスフェノールA=100モル%、Tg(B)=210℃)
[Polyarylate (B)]
(B) -1: U polymer (registered trademark) U-100
(Manufactured by Unitika, dicarboxylic acid component: terephthalic acid / isophthalic acid = 50/50 mol%, bisphenol component: bisphenol A = 100 mol%, Tg (B) = 210 ° C.)
[二軸延伸PETフィルム(C)]
(C)-1:厚み50μmの二軸延伸PETフィルム
[Biaxially stretched PET film (C)]
(C) -1: Biaxially stretched PET film having a thickness of 50 μm
[PENフィルム(D)]
(D)-1:厚み50μmのPENフィルム(テオネックスQ51)
[PEN film (D)]
(D) -1: 50 μm thick PEN film (TEONEX Q51)
(実施例1)
 ペレット状の(A)-1を70質量%に対して、ペレット状の(B)-1を30質量%の割合で添加し((A)-1が100重量部に対して、(B)-1が43質量部)、ドライブレンドした後、310℃に設定した同方向二軸押出機(東芝機械株式会社製、口径40mm、スクリューの有効長Lと外径Dの比L/D=32)に投入し、得られたストランドを水槽で冷却固化し、ペレタイザーでカットし、ペレットを作製した。
 作製したペレットを、単軸押出機(三菱重工業株式会社製)を用いて、310℃で溶融混練後、ギャップ1.0mm、310℃のTダイより押出した溶融樹脂シートを115℃のキャストロールで引き取り、冷却固化し、厚み約500μmの膜状物を得た。
 続いて、得られたキャストフィルムを縦延伸機に通し、125℃で縦方向(MD)に3倍延伸を行った。
 続いて、得られた縦延伸フィルムを横延伸機(テンター)に通し、予熱温度130℃、延伸温度130℃、熱固定温度260℃で横方向(TD)に3.5倍延伸を行い、その後テンター内にてフィルムの弛緩処理を10%行った。得られたフィルムについて、上記(1)~(5)の評価を行った。結果を表1に示す。
(Example 1)
Pellets (B) -1 were added at a ratio of 30% by mass with respect to 70% by mass of (A) -1 in the form of pellets. After the dry blending, a co-axial twin screw extruder (manufactured by Toshiba Machine Co., Ltd., diameter: 40 mm, ratio L / D of the effective length L of the screw to the outer diameter D = 32) was set to 310 ° C. ), The obtained strand was cooled and solidified in a water tank, and cut with a pelletizer to produce a pellet.
The prepared pellets were melt-kneaded at 310 ° C. using a single screw extruder (manufactured by Mitsubishi Heavy Industries, Ltd.), and a molten resin sheet extruded from a T-die having a gap of 1.0 mm and 310 ° C. was cast with a 115 ° C. cast roll. It was taken out, cooled and solidified to obtain a film having a thickness of about 500 μm.
Subsequently, the obtained cast film was passed through a longitudinal stretching machine and stretched three times in the machine direction (MD) at 125 ° C.
Subsequently, the obtained longitudinally stretched film is passed through a transverse stretching machine (tenter) and stretched 3.5 times in the transverse direction (TD) at a preheating temperature of 130 ° C, a stretching temperature of 130 ° C, and a heat setting temperature of 260 ° C. The film was subjected to a 10% relaxation treatment in a tenter. The obtained films were evaluated in the above (1) to (5). Table 1 shows the results.
(実施例2)
 ポリエステル系樹脂(A)に関して、(A)-1の代わりに(A)-2を使用した以外は実施例1と同様の方法でサンプルの作製及び評価を行った。結果を表1に示す。
(Example 2)
For the polyester resin (A), a sample was prepared and evaluated in the same manner as in Example 1 except that (A) -2 was used instead of (A) -1. Table 1 shows the results.
(実施例3)
 ポリエステル系樹脂(A)に関して、(A)-1の代わりに(A)-3を使用した以外は実施例1と同様の方法でサンプルの作製及び評価を行った。結果を表1に示す。
(Example 3)
For the polyester resin (A), a sample was prepared and evaluated in the same manner as in Example 1 except that (A) -3 was used instead of (A) -1. Table 1 shows the results.
(比較例1)
 二軸延伸PETフィルム(C)-1について評価を行った結果を表1に示す。
(Comparative Example 1)
Table 1 shows the evaluation results of the biaxially stretched PET film (C) -1.
(比較例2)
 PENフィルム(D)-1について評価を行った結果を表1に示す。
(Comparative Example 2)
Table 1 shows the results of the evaluation of the PEN film (D) -1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3では、成形時に特に問題なくフィルムを製造することができた。実施例1~3のフィルムは結晶融解温度、ガラス転移温度は高く、耐熱性も優れている。実施例1~3のフィルムはR=1、1.5における評価にて、比較例1、2との明確な優劣の差がついていた。よって、実施例1~3のフィルムは耐折性に優れている。 フ ィ ル ム In Examples 1 to 3, films could be produced without any particular problems during molding. The films of Examples 1 to 3 have a high crystal melting temperature and a high glass transition temperature, and have excellent heat resistance. The films of Examples 1 to 3 were clearly different from Comparative Examples 1 and 2 in the evaluation at R = 1 and 1.5. Therefore, the films of Examples 1 to 3 are excellent in folding resistance.

Claims (9)

  1.  ポリエステル系樹脂(A)を主成分とし、ガラス転移温度が85℃以上150℃以下であり、23℃における引張試験を行った際に少なくとも一方向における降伏点ひずみが8.0%以上であるディスプレイ用フィルムを備えたフォルダブルディスプレイ。 A display comprising a polyester resin (A) as a main component, a glass transition temperature of 85 ° C. or more and 150 ° C. or less, and a yield point strain in at least one direction of 8.0% or more when subjected to a tensile test at 23 ° C. Display with film
  2.  前記ポリエステル系樹脂(A)が、ジカルボン酸成分(a-1)としてテレフタル酸単位、ジオール成分(a-2)として1,4-シクロヘキサンジメタノール単位を含むポリシクロヘキシレンジメチレンテレフタレートである、請求項1記載のフォルダブルディスプレイ。 The polyester resin (A) is a polycyclohexylene dimethylene terephthalate containing a terephthalic acid unit as a dicarboxylic acid component (a-1) and a 1,4-cyclohexanedimethanol unit as a diol component (a-2). Item 4. The folderable display according to Item 1.
  3.  前記ポリシクロヘキシレンジメチレンテレフタレートの結晶融解温度が255℃以上310℃以下である、請求項2記載のフォルダブルディスプレイ。 3. The foldable display according to claim 2, wherein the polycyclohexylene dimethylene terephthalate has a crystal melting temperature of 255 ° C. or more and 310 ° C. or less.
  4.  前記ディスプレイ用フィルムは、前記ポリエステル系樹脂(A)100質量部に対して、該ポリエステル系樹脂(A)よりもガラス転移温度が高いポリアリレート(B)を1質量部以上50質量部以下含む、請求項1~3の何れか一項記載のフォルダブルディスプレイ。 The display film contains 1 part by mass or more and 50 parts by mass or less of polyarylate (B) having a higher glass transition temperature than that of the polyester resin (A) based on 100 parts by mass of the polyester resin (A). The folderable display according to any one of claims 1 to 3.
  5.  前記ディスプレイ用フィルムは、結晶融解温度が255℃以上300℃以下である請求項1~4の何れか一項記載のフォルダブルディスプレイ。 The folderable display according to any one of claims 1 to 4, wherein the display film has a crystal melting temperature of 255 ° C or more and 300 ° C or less.
  6.  前記ディスプレイ用フィルムは、厚みが1~250μmである、請求項1~5の何れか一項記載のフォルダブルディスプレイ。 The folderable display according to any one of claims 1 to 5, wherein the display film has a thickness of 1 to 250 μm.
  7.  前記ディスプレイ用フィルムは、23℃における1000回の折り曲げ試験を屈曲半径(R)=1.5mmの条件で行った際、外観変化がない請求項1~6の何れか一項記載のフォルダブルディスプレイ。 The foldable display according to any one of claims 1 to 6, wherein the display film has no change in appearance when subjected to 1000 bending tests at 23 ° C under a condition of a bending radius (R) of 1.5 mm. .
  8.  ポリエステル系樹脂(A)を主成分とし、ガラス転移温度が85℃以上150℃以下であり、23℃における引張試験を行った際に少なくとも一方向における降伏点ひずみが8.0%以上であるディスプレイ用フィルムと、該ディスプレイ用フィルムの少なくとも片面に設けられた粘着層とを備えたディスプレイ用フィルム積層体。 A display comprising a polyester resin (A) as a main component, a glass transition temperature of 85 ° C. or more and 150 ° C. or less, and a yield point strain in at least one direction of 8.0% or more when subjected to a tensile test at 23 ° C. A display film laminate comprising: a film for display; and an adhesive layer provided on at least one surface of the film for display.
  9.  請求項8記載のディスプレイ用フィルム積層体の粘着層を介して他の部材を貼り合せて成る構成を備えたフィルダブルディスプレイ。 A fillable display having a configuration in which another member is bonded via an adhesive layer of the display film laminate according to claim 8.
PCT/JP2019/036809 2018-09-21 2019-09-19 Foldable display WO2020059813A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217007822A KR20210062011A (en) 2018-09-21 2019-09-19 Foldable display
CN201980060383.2A CN112714931A (en) 2018-09-21 2019-09-19 Folding display

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-177742 2018-09-21
JP2018177742 2018-09-21
JP2018-183772 2018-09-28
JP2018183772 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020059813A1 true WO2020059813A1 (en) 2020-03-26

Family

ID=69888513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036809 WO2020059813A1 (en) 2018-09-21 2019-09-19 Foldable display

Country Status (4)

Country Link
KR (1) KR20210062011A (en)
CN (1) CN112714931A (en)
TW (1) TW202026342A (en)
WO (1) WO2020059813A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140187111A1 (en) * 2011-05-12 2014-07-03 Young Kwon Kim Composite sheet and display substrate using same
JP2015010121A (en) * 2013-06-27 2015-01-19 東レ株式会社 Biaxially oriented polyester film for molding
JP2018072663A (en) * 2016-11-01 2018-05-10 東洋紡株式会社 Folding display and mobile terminal device
JP2018104496A (en) * 2016-12-22 2018-07-05 三菱ケミカル株式会社 Polyester resin composition
JP2019167442A (en) * 2018-03-23 2019-10-03 富士フイルム株式会社 Film and polyester resin

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080946A (en) * 1996-09-09 1998-03-31 Toray Ind Inc Stretching method for polyester film
JP2000143841A (en) * 1998-11-17 2000-05-26 Unitika Ltd Polyester film for lamination with metallic sheet for can cover
JP2004284036A (en) * 2003-03-19 2004-10-14 Konica Minolta Holdings Inc Biaxially stretched polyester film
JP4502118B2 (en) * 2004-05-28 2010-07-14 東洋紡績株式会社 Easy-bending biaxially stretched polyester film
JP2008290365A (en) * 2007-05-25 2008-12-04 Teijin Dupont Films Japan Ltd Composite film
JP5655380B2 (en) * 2010-06-04 2015-01-21 東洋紡株式会社 Biaxially stretched polyester film for curable resin lamination
JP2014104687A (en) 2012-11-29 2014-06-09 Nippon Zeon Co Ltd Film having scratch prevention layer, transparent and electroconductive film, and method for producing the film having scratch prevention layer
KR102277807B1 (en) 2014-10-17 2021-07-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin composition, polyimide film and laminate
US10005264B2 (en) * 2015-12-15 2018-06-26 3M Innovative Properties Company Thin protective display film
US20190092913A1 (en) 2016-03-03 2019-03-28 Dai Nippon Printing Co., Ltd. Polyimide film, method for producing polyimide film, and polyimide precursor resin composition
JP2018076430A (en) * 2016-11-09 2018-05-17 三菱ケミカル株式会社 Polyester resin composition
JP6874358B2 (en) * 2016-12-20 2021-05-19 東レ株式会社 Polyester composition and its biaxially stretched polyester film
WO2018150940A1 (en) * 2017-02-20 2018-08-23 東洋紡株式会社 Polyester film and applications thereof
WO2018159285A1 (en) * 2017-03-02 2018-09-07 東洋紡株式会社 Polyester film as surface protective film for foldable display and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140187111A1 (en) * 2011-05-12 2014-07-03 Young Kwon Kim Composite sheet and display substrate using same
JP2015010121A (en) * 2013-06-27 2015-01-19 東レ株式会社 Biaxially oriented polyester film for molding
JP2018072663A (en) * 2016-11-01 2018-05-10 東洋紡株式会社 Folding display and mobile terminal device
JP2018104496A (en) * 2016-12-22 2018-07-05 三菱ケミカル株式会社 Polyester resin composition
JP2019167442A (en) * 2018-03-23 2019-10-03 富士フイルム株式会社 Film and polyester resin

Also Published As

Publication number Publication date
KR20210062011A (en) 2021-05-28
CN112714931A (en) 2021-04-27
TW202026342A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP2020050872A (en) Film for use in display, and foldable display
JP6194629B2 (en) Polyester film and method for producing the same
US20090074998A1 (en) Heat-shrinkable laminated film, molded product and heat-shrinkable label employing the film, and container
CN108883570B (en) Heat-shrinkable polyester film containing voids
CN111868147B (en) Biaxially stretched film
WO2021199896A1 (en) Biaxially stretched film
JP2004269766A (en) Biaxially oriented polyester film
JP2022122202A (en) Biaxially oriented film, and laminate film
JP6809149B2 (en) Polyester resin composition
JP2022063244A (en) Heat-shrinkable film, packaging material, molding or container
JP2022124921A (en) Biaxial oriented film
JP2018104496A (en) Polyester resin composition
WO2020059813A1 (en) Foldable display
JP2021161151A (en) Biaxial oriented film
JP2020056016A (en) Display film, and foldable display
CN112654664B (en) Copolyester film
JP6915411B2 (en) Polyester resin composition
JP7070623B2 (en) Polyester resin composition
JP2006028210A (en) Polyester resin composition, and heat-shrinkable polyester film, molded article and container composed of the resin composition
JP7290041B2 (en) biaxially stretched film
WO2005063887A1 (en) Resin blend composition, sheet and heat-shrinkable sheet comprising the resin blend composition, and shrink label and package obtained with the heat-shrinkable sheet
JP2018076430A (en) Polyester resin composition
JP2009102529A (en) Heat-shrinkable polyester-based film
JP2006028209A (en) Polyester resin composition, and heat-shrinkable polyester film, molded article and container composed of the resin composition
JP2022172667A (en) polyester resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862854

Country of ref document: EP

Kind code of ref document: A1