WO2005063887A1 - Resin blend composition, sheet and heat-shrinkable sheet comprising the resin blend composition, and shrink label and package obtained with the heat-shrinkable sheet - Google Patents

Resin blend composition, sheet and heat-shrinkable sheet comprising the resin blend composition, and shrink label and package obtained with the heat-shrinkable sheet Download PDF

Info

Publication number
WO2005063887A1
WO2005063887A1 PCT/JP2004/019568 JP2004019568W WO2005063887A1 WO 2005063887 A1 WO2005063887 A1 WO 2005063887A1 JP 2004019568 W JP2004019568 W JP 2004019568W WO 2005063887 A1 WO2005063887 A1 WO 2005063887A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
mass
resin
resin composition
heat
Prior art date
Application number
PCT/JP2004/019568
Other languages
French (fr)
Japanese (ja)
Inventor
Kouichirou Taniguchi
Takeyoshi Yamada
Toshiaki Ebitani
Original Assignee
Mitsubishi Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004034388A external-priority patent/JP4596788B2/en
Priority claimed from JP2004353051A external-priority patent/JP2005232435A/en
Priority claimed from JP2004373163A external-priority patent/JP2006044219A/en
Application filed by Mitsubishi Plastics, Inc. filed Critical Mitsubishi Plastics, Inc.
Priority to GB0614660A priority Critical patent/GB2425127B/en
Priority claimed from JP2004375873A external-priority patent/JP4614761B2/en
Publication of WO2005063887A1 publication Critical patent/WO2005063887A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a mixed resin composition, a sheet using the mixed resin composition, and a heat-shrinkable sheet
  • the present invention relates to a sheet and a heat-shrinkable sheet, and a shrink label and a package using the heat-shrinkable sheet.
  • PVC polychlorinated rubber
  • the glass transition temperature can be controlled in a wide range by appropriately selecting and using plasticizers and various compounding agents in accordance therewith, and thus it has been used for various applications.
  • PVC resin has a problem that it emits chlorine-containing gas when incinerated after disposal. For this reason, research on alternative materials for PVC is being actively pursued.
  • One of the promising candidate materials for PVC substitutes is polycarbonate resin with excellent transparency and impact resistance.
  • sheets and molded articles using this resin were inferior in moldability due to high melt viscosity and low fluidity.
  • Polycarbonate resin also has good heat resistance because it has a higher glass transition temperature than PVC resin, but in the secondary processing temperature range of PVC resin (usually about 50 ° C or more and 100 ° C or less). It was difficult to perform secondary processing (such as vacuum forming or pressure forming).
  • a polyester resin composed of terephthalic acid, ethylene glycol and 1,4-cyclohexanedimethanol (hereinafter, also simply referred to as "1,4-CHDM”), comprising 1,4C HDM Polyester resin having a power of 0 mol% or more is compatible with polycarbonate resin by simply melt-mixing, and a resin composition having a transparent, single glass transition temperature and good mechanical properties can be obtained.
  • 1,4-CHDM 1,4-cyclohexanedimethanol
  • polyester resins containing 1,4 CHDM in an amount of 40 mol% or more usually have a glass transition temperature of about 80 ° C or more, and the glass transition temperature of a resin composition mixed with polycarbonate resin is reduced.
  • the temperature of the PVC resin was controlled to the secondary temperature range (usually about 50 ° C or more and 100 ° C or less).
  • the polycarbonate resin is 5 to 95 parts by mass and the polyester resin 5 parts by mass.
  • a mixed resin comprising at least one part of a polyester resin and at least one part by weight of a polyester resin containing at least one kind of polyester resin, a terephthalic acid-based component, a dicarboxylic acid-based polycondensation component, and 1,4 CHDM at 40 mol% or more.
  • shrink wrapping and shrink wrapping packaging heat shrinkable sheets widely used for shrink labels for plastic containers, packaging for preventing destruction and shattering of glass containers, cap seals, etc., are also used as substitutes for Shiori-Dani-Bulle. Materials are needed.
  • the heat-shrinkable sheet has shrink finish, natural shrinkage (shrinkage at a temperature slightly higher than room temperature, for example, The sheet must shrink slightly before its original use.) It is required to have a low rate, transparency, excellent sheet stiffness (rigidity at room temperature), excellent mechanical strength such as rupture resistance, etc. You.
  • An object of the present invention is to provide a mixed resin composition which is suitably used as a substitute material for PVC and which is excellent in transparency, impact resistance, fluidity, and secondary workability, and a sheet using the mixed resin composition. It is to provide.
  • Another object of the present invention is to provide a heat-shrinkable sheet having excellent mechanical strength such as shrinkage finish, spontaneous shrinkage, transparency, and sheet stiffness (rigidity at ordinary temperature), which is also a substitute for PVC.
  • An object of the present invention is to provide a shrink label and a package using the heat shrinkable sheet.
  • Still another object of the present invention is to provide a resin-coated sheet for a metal sheet which also has an excellent substitute for PVC, has excellent calenderability at low temperatures, and has excellent boiling water resistance. Means for solving the problem
  • the present inventors have conducted intensive studies and as a result, found that a mixed resin composition comprising a polycarbonate resin and a specific polyester resin can solve the above-mentioned problems, and completed the present invention. It led to.
  • the mixed resin composition of the present invention comprises 1% by mass or more and 99% by mass or less of the polycarbonate resin (bl) and 1% by mass or more and 99% by mass or less of the polyester resin (b-2).
  • the polyester resin (b-2) is a carboxylic acid monomer As a unit (a)
  • the sulfonic acid monomer unit (a) contains an aromatic dicarboxylic acid unit in an amount of 80 mol% or more and 100 mol% or less.
  • Cyclohexanedicarboxylic methanol unit 0.1 mole 0/0 or cyclohexane, a number average molecular weight of 500 or more 3,000 or less polyalkylene glycol units 0 It is characterized by being a polyester resin containing not less than 5 mol% and not more than 15 mol%.
  • the polycarbonate resin (b-1) is preferably an aromatic polycarbonate resin.
  • the polyester resin (b-2) has a heating rate of 10 ° C by differential scanning calorimetry.
  • the glass transition temperature measured in Z minutes, can be between 0 ° C and 50 ° C.
  • the mixed resin composition has a single glass transition temperature measured at a heating rate of 10 ° CZ by differential scanning calorimetry, and the glass transition temperature is the same as the polycarbonate resin ( It can be a temperature located between the glass transition temperature of b-1) and the glass transition temperature of the polyester resin (b-2).
  • the mixed resin composition has a glass transition temperature of 50 ° C. or more and 100 ° C. or less measured by differential scanning calorimetry at a heating rate of 10 ° C.Z, or this glass transition.
  • the temperature can be between 100 ° C and 150 ° C.
  • the mixed resin composition may be the polycarbonate resin (b-1) in an amount of 75% by mass or more.
  • the mixed resin composition comprises the polycarbonate resin (b-1) in an amount of 60% by mass or more and 95% by mass or less, and the polyester resin (b-2) in an amount of 5% by mass or more and 40% by mass or less. The following can be helpful.
  • the mixed resin composition comprises 30% by mass or more and 75% by mass or less of the polycarbonate resin (b-1) and 25% by mass or more and 75% by mass of the polyester resin (b-2). It can consist of:
  • the mixed resin composition comprises 30% by mass or more and 70% by mass or less of the polycarbonate resin (b-1) and 30% by mass or more and 70% by mass or less of the polyester resin (b-2). Less than And can consist of below.
  • the sheet of the present invention is characterized by using any of the above mixed resin compositions.
  • the heat-shrinkable sheet of the present invention is characterized in that the polycarbonate resin (b-1) is 30% by mass or more and 70% by mass or less, and the polyester resin (b-2) is 30% by mass or more and 70% by mass or less.
  • a sheet comprising the above mixed resin composition comprising: stretching in at least one direction and immersing in hot water at 80 ° C for 10 seconds for at least 20% or more in at least one direction It is characterized by the following.
  • the loss tangent (tan ⁇ ) curve obtained by performing dynamic viscoelasticity measurement at a vibration frequency of 10 Hz is within a range of 70 ° C. or more and 130 ° C. or less.
  • a half width of the loss tangent curve may be 15 ° C. or more.
  • the heat-shrinkable laminated sheet of the present invention has a layer (A) constituting both outer layers, and a layer (B) located between the outer layers, and is stretched in at least one axial direction.
  • the resin (B) is composed of a resin composition containing (1) as a main component, and the layer (B) comprises 30% by mass or more and 70% by mass or less of the polycarbonate resin (b-1) and the polyester resin (b). -2) It is characterized by comprising the above mixed resin composition comprising 30% by mass or more and 70% by mass or less.
  • thermoplastic polyester resin (a-1) contains 1,4-cyclohexanedimethanol alone in all the glycol monomer units in the thermoplastic polyester resin (a-1). position may be a a 15 mole 0/0 to 50 mole 0/0 non-crystalline polyethylene terephthalate resin containing less.
  • the resin-coated metal sheet sheet of the present invention comprises a polycarbonate resin (b-1) of 60% by mass to 95% by mass, and a polyester resin (b-2) of 5% by mass to 40% by mass. % Or less, characterized in that it is a resin-coated metal sheet using the above mixed resin composition.
  • the method for producing a sheet for a resin-coated metal sheet of the present invention is a method for producing the sheet for a resin-coated metal sheet, wherein the mixed resin composition is flow-opened by a calendering method. It is characterized by forming at a temperature 10 ° C higher than the starting temperature (T1) and at a temperature from (T1 + 10 ° C) to 200 ° C.
  • the resin-coated metal sheet of the present invention is characterized by being covered with the resin-coated metal sheet.
  • the shrinkable label of the present invention is characterized in that the heat-shrinkable sheet or any one of the heat-shrinkable laminated sheets is used.
  • the package of the present invention is characterized in that the shrinkable label is attached.
  • the molded article of the present invention is characterized by using any of the mixed resin compositions described above.
  • a mixed resin composition which is suitably used as a substitute material for PVC and is excellent in transparency, impact resistance, fluidity, and secondary workability, and a sheet using the mixed resin composition Can be provided.
  • a heat-shrinkable sheet made of a PVC substitute material having excellent mechanical strength such as shrink finish, natural shrinkage, transparency, and sheet stiffness (rigidity at room temperature), A shrink label and a package using the heat shrinkable sheet can be provided.
  • the mixed resin composition of the present invention comprises a polycarbonate resin (b-1) and a polyester resin (b-2).
  • the polycarbonate resin (b-1) used in the present invention is preferably an aromatic polycarbonate resin.
  • the aromatic polycarbonate resin (b-11) may be either a homopolymer or a copolymer.
  • aromatic polycarbonate resin (b-1 1) may be a branched structure, a linear structure, or a mixture of a branched structure and a linear structure.
  • the aromatic polycarbonate resin (b-11) used in the present invention can be produced by any known method such as a phosgene method, an ester exchange method, and a pyridine method.
  • a method for producing an aromatic polycarbonate resin by a transesterification method will be described.
  • the transesterification method is a production method in which a divalent phenol and a carbonic acid diester are added with a basic catalyst, and further an acidic substance that neutralizes the basic catalyst is added to carry out melt transesterification polycondensation.
  • divalent phenols include bisphenols, and 2,2 bis (4-hydroxyphenyl) propane, that is, bisphenol A is particularly preferably used. Also, part or all of bisphenol A may be replaced with another divalent phenol! / ,.
  • Other divalent phenols include bis (4-hydroxyphenol) such as hydroquinone, 4,4-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane and 1,1 bis (4-hydroxyphenyl) ethane.
  • Alkanes, bis (4-hydroxyphenyl) cycloalkanes such as 1,1 bis (4-hydroxyphenyl) cyclohexane, bis (4-hydro
  • Representative examples of the carbonic acid diester include diphenyl carbonate, ditolyl carbonate, bis (chlorophenol) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (biphenyl) carbonate, and getyl. Carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like. Of these, diphenyl carbonate is particularly preferably used.
  • the aromatic polycarbonate resin (b-11) used in the present invention has mechanical properties and Taking into account the balance of plasticity, the weight-average molecular weight is usually 10,000 or more, preferably 20 000 or more, and 100,000 or less, preferably ⁇ 50,000 or less. ! If the weight average molecular weight is 10,000 or more, the mechanical strength of the obtained aromatic polycarbonate resin will not decrease.If the upper limit is 100,000, an appropriate melt viscosity will be obtained, so molding Since processability can be maintained and polymerization can be performed in a relatively short time, it is preferable from the viewpoint of production cycle and cost. In the present invention, the aromatic polycarbonate resin (b-11) may be used alone or in a combination of two or more.
  • polyester resin (b-2) constituting the resin composition of the present invention will be described.
  • the polyester resin (b-2) contains the aromatic dicarboxylic acid unit in the total amount of carboxylic acid monomer units (i) in the range of 80 mol% to 100 mol% as the carboxylic acid monomer unit (ii).
  • 1,4-cyclohexanedimethanol unit is 0.1 mol% or more and 40 mol% or less in all glycol monomer units (mouth), and the number average molecular weight is 500 or more 3 , containing a 15 mole 0/0 hereinafter 000 following polyalkylene glycol unit 0.5 mole 0/0 above.
  • the polyester resin (b-2) may contain other carboxylic acid monomer units and other glycol monomer units as long as the above conditions are satisfied! ,.
  • the carboxylic acid monomer unit (ii) in the polyester resin (b-2) is the same as the carboxylic acid monomer unit in the polyester resin (b-2). It is desirable that the content of the compound be at least 80 mol%, preferably at least 85 mol%, more preferably at least 90 mol%.
  • the aromatic dicarboxylic acid imparts heat resistance and mechanical strength to the obtained polyester resin (b-2).
  • the content of aromatic dicarboxylic acid unit is at least 80 mol% in the rubonic acid monomer unit (ii)
  • the resulting polyester resin (b-2) should have good heat resistance and mechanical strength.
  • the upper limit of the content of the aromatic dicarboxylic acid unit is not particularly limited, and the content of the aromatic dicarboxylic acid unit is preferably 100 mol% or less!
  • the aromatic dicarboxylic acid used is not particularly limited, but, for example, terephthalic acid, isophthalic acid, naphthalene 1,4 or 2,6-dicarboxylic acid, anthracene dicarboxylic acid , 4,4, diphenyldicarboxylic acid, 4,4, diphenyletherdicarboxylic acid, 5-sulfoisophthalic acid, sodium 3-sulfoisophthalate and the like.
  • Aromatic dicarboxylic acids may be subjected to polymerization as their esters.
  • the aromatic dicarbonate to be used is not particularly limited.
  • the above-mentioned esters of aromatic dicarboxylic acids are preferred. Specifically, lower alkyl esters, aryl esters, ester carbonates, and acid esters are preferred. And Rogenie-danimono.
  • the carboxylic acid monomer unit (a) may contain a small amount of the aliphatic dicarboxylic acid unit (generally, less than 20 mol%).
  • the aliphatic dicarboxylic acid is not particularly limited, and may be oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, sebacic acid, azelaic acid, dodecandionic acid, dimer acid, 1,3 or 1,4-cyclohexane.
  • Xandicarboxylic acid, cyclopentanedicarboxylic acid, 4,4'-dicyclohexyldicarboxylic acid and the like are included.
  • the number of glycol monomer units (ports) used in the polyester-based resin (b-2) is 0.1 mol% or more and 40 mol% or less, as described above. It contains 0.5 to 15 mol% of polyalkylene glycol units having an average molecular weight of 500 to 3,000.
  • glycol monomer units that are not particularly limited as long as the above conditions are satisfied include, for example, ethylene glycol, diethylene glycol (including by-product components), 1,2-propylene glycol, 3 propanediol, 2,2 dimethyl-1,3 propanediol, trans- or cis 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1, 4 Butanediol, neopentyl glycol, 1,5 pentanediol, 1,6-hexanediol, 1,3-cyclohexanedimethanol, decamethylene glycol, cyclohexanediol, p-xylenediol, bisphenolone A , Tetrabromobisphenol A, tetrabromobisphenol A bis (2-hydroxyethyl ether It is possible to use the unit,
  • the polyester resin can be used alone or in combination of two or more. Further, color tone, transparency, heat resistance, impact resistance and the like can be appropriately imparted to the polyester resin. Considering that the resulting polyester resin can be imparted with thermal stability at the time of molding and that it is inexpensive and easily available industrially, the glycol monomer is an alcohol monomer. It is preferable to use len glycol.
  • the 1,4-CHDM unit used in the glycol monomer unit (mouth) mainly gives impact resistance to the resulting polyester resin.
  • a mixed resin composition is obtained by mixing a polyester resin composed of a terephthalic acid unit, an ethylene glycol unit and 1,4 CHDM units, and a polycarbonate resin, the polyester resin is used.
  • Tg single glass transition temperature
  • 1,4 CHDM units good mechanical properties by well compatibilizing the polycarbonate resin with 1,4 CHDM units was typically at least 40 mol% (eg,
  • 1, 4 polyester ⁇ as contained CHDM unit force 0 mole 0/0 or more, usually, since Tg is above about 80 ° C, the mixture ⁇ composition of polycarbonate-based ⁇ It was difficult to control Tg within the temperature range (usually about 50 ° C or higher and 100 ° C or lower) where the secondary processing of PVC resin was performed.
  • the present inventors have found that a mixed resin composition of a polycarbonate resin and a specific polyester resin has a content of 1,4 CHDM units in the polyester resin. It has been found that they have compatibility even when S is 40 mol% or less.
  • the content of 1,4 CHDM units in the polyester resin (b-2) is 0.1 mol% or more in the glycol monomer unit (mouth), the obtained polyester resin (b-2) ) Can be given impact resistance, and if its upper limit is 0 mol%, the effect of lowering the glass transition temperature of the obtained polyester resin (b-2) can be obtained.
  • the content of 1,4 CHDM units is 1 mol% or more, more preferably 10 mol%, in all the glycol monomer units (mouth) in the polyester resin (b-2). It is more than 38 mol%, more preferably, 35 mol% or less.
  • 1,4 CHDM may be a force in which two types of isomers, cis-type and trans-type, exist.
  • the polyalkylene glycol unit having a number average molecular weight of 500 or more and 3,000 or less contained in the glycol monomer unit (mouth) mainly has flexibility and low glass transition in the obtained polyester resin.
  • the temperature (0 ° C or more and 50 ° C or less) is given.
  • the content of the polyalkylene glycol in the glycol monomer unit (mouth) is 0.5 mol% or more, the resulting polyester resin can be imparted with flexibility and a low glass transition temperature, and the upper limit can be increased. 15 m %, It is possible to suppress a decrease in thermal stability and mechanical strength of the obtained polyester resin (b-2).
  • the content of the polyalkylene glycol having a number average molecular weight of 500 to 3,000 is 1 mol% or more, more preferably 3 mol% or more, in the glycol monomer unit, and It is desirable that the content be 12 mol% or less, more preferably 10 mol% or less.
  • the polyalkylene glycol has a number average molecular weight of 500 or more, preferably 800 or more, more preferably 1,000 or more, and desirably 3,000 or less, preferably 2,000 or less. . If the polyalkylene glycol has a number average molecular weight of 500 or more, the resulting polyester resin (b-2) can have sufficient flexibility, and if the upper limit is 3,000, it can be mixed with other components and polymers. , The polymerization reaction is stagnated, and the mechanical strength of the obtained polyester resin can be suppressed from being reduced.
  • the polyalkylene glycol plural kinds having different number average molecular weights may be used in combination. When a plurality of types are used in combination, it is preferable that the number average molecular weight in a uniformly mixed state is within the above range.
  • the number average molecular weight of the polyalkylene glycol can be measured by a general method such as gel permeation chromatography.
  • polyalkylene glycols examples include polyethylene glycol, polypropylene glycol, polyethylene glycol-polypropylene glycol block copolymer, polytetramethylene glycol, polyhexamethylene glycol, and the like. Particularly, polytetramethylene glycol is preferred. preferable. These can be used alone or in combination of two or more.
  • the polyester resin (b-2) used in the present invention comprises a carboxylic acid monomer unit (i) containing an aromatic dicarboxylic acid unit in an amount of from 80 mol% to 100 mol%, A single glycol containing 0.1 to 40 mol% of 1,4 CHDM units and 0.5 to 15 mol% of polyalkylene glycol units having a number average molecular weight of 500 to 3,000. It consists of a body unit (mouth).
  • a trivalent or higher polycarboxylic acid compound and Z or a trivalent or higher polyhydric alcohol are further added.
  • examples of the trivalent or higher polycarboxylic acid conjugate include trimellitic acid, pyromellitic acid and anhydrides thereof, and trivalent or higher polyhydric alcohols include trimethylol. And propane, pentaerythritol, glycerin and the like. These can be used singly or as a mixture of two or more.When only polycarboxylic acid conjugates are used, the content of polycarboxylic acid compound units is used.
  • Is usually at least 0.05 mol%, preferably at least 0.1 mol%, and at most 2 mol%, preferably at most 1 mol%, in the carboxylic acid monomer unit (a).
  • the content of the polyhydric alcohol unit is usually at least 0.05 mol%, preferably at least 0.1 mol%, in the above-mentioned glycol monomer unit (a).
  • the content of the trivalent or higher polyvalent carboxylic acid compound unit in the carboxylic acid monomer unit and the trivalent or higher polyvalent is usually at least 0.05 mol%, preferably at least 0.1 mol%, and at most 2 mol%, preferably at most 1 mol%. It is.
  • the content of these polycarboxylic acid compound units and / or polyhydric alcohol units is 0.05 mol% or more in each of the above cases, the flexibility and the flexibility of the resulting polyester resin (b-2) can be improved. If the effect of improving the melt viscosity is sufficiently obtained, and if the content is 2 mol% or less, it is difficult to control the reaction due to gelling, and it is also possible to suppress generation of fish eyes in the obtained heat-shrinkable sheet. it can.
  • the mixed resin composition of the present invention has a polycarbonate resin (b-1) of 1% by mass to 99% by mass and a polyester resin (b-2) of 1% by mass to 99% by mass. Consists of
  • the mixing ratio of the polycarbonate resin (b-1) and the polyester resin (b-2) is preferably adjusted as appropriate according to the intended use.
  • the mixing ratio of the mixed resin composition is 30% by mass or more and 75% by mass or less of the polycarbonate resin (b-1) and 25% by mass or more of the polyester resin (b-2). It is more preferable to select 70% by mass or less so that the total is 100% by mass. More preferably, the polycarbonate resin (b-1) is 40% by mass or more and 70% by mass or less, and the polyester resin (B-1) is b-2) It is desirable to select from 30% by mass to 60% by mass so that the total is 100% by mass.
  • the polycarbonate resin (b-1) has a content of 30% by mass or more and 70% by mass or less, and a polyester resin.
  • the mixed resin composition comprises 30% by mass or more and 70% by mass or less of the fat (b-2).
  • the content of the polycarbonate resin (b-1) should be 60% by mass or more and 95% by mass or less. It is preferable that the mixed resin composition comprises 5% by mass or more and 40% by mass or less of the polyester resin (b-2).
  • the mixed resin composition of the present invention has a single glass transition temperature measured by differential scanning calorimetry at a heating rate of 10 ° C.Z, and has a glass transition temperature of a polycarbonate resin (b- It is desirable to be between the glass transition temperature of 1) and the glass transition temperature of the polyester resin (b-2).
  • the mixed resin composition has a single glass transition temperature, the resulting sheet can achieve good compatibility and excellent transparency. Good compatibility can be confirmed by dynamic viscoelasticity measurement and the like in addition to the above DSC measurement.
  • the aromatic polycarbonate resin has a glass transition temperature of usually about 150 ° C measured by differential scanning calorimetry, for example, the polycarbonate resin (b-1) has a content of 30% by mass or more and 75% by mass or less. And a polyester resin (b-2) of 25% by mass or more and 70% by mass or less In order to provide the mixed resin composition with the secondary processing property in the secondary processing temperature range of the PVC resin (normally, about 50 ° C or more and 100 ° C or less), the mixed resin composition In order to bring the glass transition temperature of the polyester resin (b-b-) to 50 ° C or more and 100 ° C or less, preferably 55 ° C or more and 95 ° C or less, more preferably 60 ° C or more and 85 ° C or less.
  • the glass transition temperature of 2) is preferably from 0 ° C to 50 ° C, more preferably from 5 ° C to 45 ° C. In this case, if the glass transition temperature of the mixed resin composition is 50 ° C or higher, sufficient heat resistance can be obtained immediately. If the glass transition temperature is 100 ° C or lower, heat resistance is good. Yes, and sufficient secondary workability is easily obtained in the secondary processing temperature range of PVC resin. If the glass transition temperature of the polyester resin (b-2) is 0 ° C or higher, the pelletized resin does not become difficult to handle due to blocking. (4) It can exhibit the effect of lowering the glass transition temperature of the resin composition.
  • the mixed resin composition of the present invention is used for forming a resin-coated metal sheet
  • the mixed resin composition is measured by differential scanning calorimetry at a heating rate of 10 ° CZ. It is preferable that the glass transition temperature is 100 ° C or higher and 150 ° C or lower. In this case, if the mixed resin composition has a glass transition temperature of 100 ° C or more, the boiling water immersion test! This is practically preferable because satisfactory results can be obtained.
  • the heat-shrinkable sheet of the present invention can be formed using a polycarbonate resin and a polyester resin.
  • the polyester resin used here is preferably a resin capable of shifting the glass transition temperature derived from the polycarbonate resin to a lower temperature side.
  • the polycarbonate resin include the above-mentioned polycarbonate resin (b-1), and examples of the polyester resin include the above-mentioned polyester resin (b-2).
  • the heat-shrinkable sheet of the present invention is a sheet obtained by stretching a sheet obtained using such a mixed resin composition in at least one direction, and is immersed in hot water at 80 ° C for 10 seconds. It is preferable that the heat shrinkage ratio of at least one direction is 20% or more. Further, the heat shrinkable sheet of the present invention has a loss tangent (tan ⁇ ) curve measured by a dynamic viscoelasticity measurement at a vibration frequency of 10 Hz having a single peak within a temperature range of 70 ° C or more and 130 ° C or less. Has the power More preferably, the half width of the loss tangent (tan ⁇ ) curve is 15 ° C or more.
  • the half value width of the loss tangent (tan ⁇ ) curve refers to the value of 1 ⁇ ⁇ 2 of the loss tangent (tan ⁇ ⁇ ⁇ ⁇ ⁇ ) at the maximum peak temperature of the loss tangent (tan ⁇ ) curve.
  • the peak temperature of the loss tangent (tan ⁇ ) curve is the first-order change in the value of tan ⁇ with respect to temperature. The temperature at which the differential value becomes zero.
  • the heat-shrinkable sheet of the present invention preferably has a single peak in the range of a loss tangent (tan ⁇ ) curve force obtained by dynamic viscoelasticity measurement of 70 ° C or more and 130 ° C or less. . If the peak temperature of the loss tangent (tan ⁇ ) curve is 70 ° C or higher, the natural shrinkage can be prevented from becoming excessive, good dimensional stability can be imparted, and the Shrinkage due to temperature rise does not become excessive. On the other hand, when the peak temperature force S130 ° C or less of the loss tangent (tan ⁇ ) curve is not more than 130 ° C, favorable heat shrinkability can be imparted without lowering the low-temperature stretchability.
  • the peak temperature of the loss tangent (tan ⁇ ) curve of the heat-shrinkable sheet is preferably 75 ° C or higher, more preferably 80 ° C or higher, and preferably 125 ° C or lower, more preferably It is desirable that the temperature be 120 ° C or less.
  • the half width of the loss tangent (tan ⁇ ) curve is preferably at least 15 ° C. That is, in the present invention, the half width of the loss tangent (tan ⁇ ) curve is preferably 15 ° C. or more, more preferably 17 ° C. or more, and particularly preferably 20 ° C. or more.
  • the half width of the loss tangent (tan ⁇ ) curve is 15 ° C. or more, a heat-shrinkable sheet having appropriate compatibility with little decrease in transparency and maintaining good shrinkage finish can be obtained.
  • the upper limit of the half value width of the loss tangent (tan ⁇ ) curve is not particularly limited, but it is possible to prevent a decrease in transparency of the sheet due to a decrease in compatibility between the polycarbonate resin and the polyester resin.
  • the half width of the curve should be 40 ° C or less, preferably 35 ° C or less, more preferably 32 ° C or less, and most preferably 30 ° C or less! /.
  • the loss tangent (tan ⁇ ) curve of the heat-shrinkable sheet has a single peak in the temperature range of 70 ° C to 130 ° C, and the half-value width of the loss tangent (tan ⁇ ) curve is In order for the mixed resin composition used for sheet formation to have a loss tangent (tan ⁇ ) curve of 70 ° C or higher, the temperature must be 15 ° C or higher. It is desirable that a single peak exists within a temperature range of 130 ° C or lower and that the half width of the loss tangent (tan ⁇ ) curve is 15 ° C or higher.
  • the polycarbonate resin (b-1) and the polyester resin (b-2) are mixed by appropriately adjusting the mixing ratio and the like in consideration of the degree of compatibility and the like.
  • the shape and half width of the loss tangent (tan ⁇ ) curve of the entire resin composition can be adapted to the above conditions. For example, when a polycarbonate resin having a relatively high Tg is used, a relatively large amount of a polyester resin capable of shifting the Tg of the polycarbonate resin to a lower temperature side can be used to form a mixed resin.
  • the shape and half width of the loss tangent (tan ⁇ ) curve of the mixed resin composition are adjusted to the above conditions, that is, the curve is 70 ° C or higher. It has a single peak in the temperature range below ° C and can be adapted to the condition where the half width is 15 ° C or more.
  • the peak temperature and the half width of the loss tangent (tan ⁇ ) curve obtained by dynamic viscoelasticity measurement can be obtained by the following method. That is, an object to be measured (heat-shrinkable sheet, etc.) Force A sample of 4 mm long and 60 mm wide was cut out, and the vibration frequency was 10 Hz using a viscoelastic spectrometer DVA-200 (manufactured by IT Measurement Co., Ltd.).
  • the heat-shrinkable sheet of the present invention is formed using, for example, a non-crystalline polyester resin or a relatively low-crystalline polyester resin, a loss tangent (tan ⁇ ) curve is obtained.
  • the loss tangent value at the peak temperature is preferably 1.5 or less, more preferably 1.4 or less, and particularly preferably 1.2 or less.
  • the heat-shrinkable laminated sheet of the present invention has a ( ⁇ ) layer constituting both outer layers, and a ( ⁇ ) layer located between the outer layers.
  • the ( ⁇ ) layer is a resin composition resin mainly composed of a thermoplastic polyester resin (a-1) containing at least one carboxylic acid monomer unit and at least one glycol monomer unit.
  • a thermoplastic polyester resin (a-1) containing at least one carboxylic acid monomer unit and at least one glycol monomer unit.
  • the carboxylic acid monomer unit contained in the thermoplastic polyester resin (a-1) include terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, and 2-methyl Terephthalic acid, 4,4 stilbene dicarboxylic acid, 4,4-biphenyldicarboxylic acid, orthophthalic acid, 2,6 naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, bisbenzoic acid, bis (p-carboxyphenyl) methane , Anthracene dicarboxylic acid, 4,4-diphenyl ether dicarboxy
  • the thermoplastic polyester resin (a-1) containing a strong carboxylic acid monomer unit and a glycol monomer unit includes polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene Terephthalate resin, polyethylene isophthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin, polyethylene terephthalate Z-isophthalate copolymer resin, ⁇ ) 4-cyclohexanedimethanol unit in total glycol unit Amorphous polyethylene terephthalate ⁇ like contained in the body unit 15 mole 0/0 to 50 mole 0/0 or the like.
  • a high melting point and high crystalline aromatic polyester as the hard segment, and a thermoplastic polyester elastomer composed of carbon such as amorphous polyester and amorphous polyether as the soft segment should be appropriately mixed and used. You can also. These may be used alone or in combination of two or more.
  • thermoplastic polyester resin (a-1) 1,4-cyclohexane dimethanol unit is the total glycol unit of the thermoplastic polyester resin (a-1).
  • amorphous polyethylene terephthalate ⁇ containing in mer units 15 mole 0/0 to 50 mole 0/0 or less is preferably used.
  • the amorphous polyethylene terephthalate resin is obtained by mainly using terephthalic acid as a carboxylic acid monomer and mainly using ethylene glycol and 1,4 CHDM as a glycol monomer.
  • the content of 1,4 CHDM units is preferably 15 mol based on all glycol monomer units of the thermoplastic polyester resin (a-1). %, More preferably at least 20 mol%, preferably at most 50 mol%, more preferably at most 40 mol%.
  • the content of the 1,4-CHDM unit is 15 mol% or more, the printability problem due to crystallization is less likely to occur, and the brittleness over time can be suppressed.
  • the upper limit is 50 mol%, a good film-forming property without excessively high viscosity during extrusion melting can be obtained.
  • 1,4 CHDM has two types of isomers, cis-type and trans-type.
  • the heat-shrinkable laminated sheet of the present invention has an intermediate layer (B) between both outer layers (A) constituting the surface layer and the back layer.
  • This (B) layer is a mixed resin composition comprising 30% by mass or more and 70% by mass or less of a polycarbonate resin (b-1) and 30% by mass or less and 70% by mass or less of a polyester resin (b-2). Is used.
  • the polyester resin (b-2) has an aromatic dicarboxylic acid unit of 80 mol% or more and 100 mol% or less as a carboxylic acid monomer unit, and 1,4 CHDM units as a glycol monomer unit. 1 mol% to 40 mol%, and 0.5 mol% to 15 mol% of polyalkylene glycol units having a number average molecular weight of 500 to 3,000.
  • polyester resin (b-2) may be used as long as other carboxylic acid mono- It may contain body units and other glycol monomer units.
  • the polycarbonate resin (b-1) forming the layer (B) is an aromatic polycarbonate resin.
  • the layer (B) is a polycarbonate resin (b-1) and a polyester resin (b-2), which are preferably formed using the mixed resin composition of the present invention. Is mentioned.
  • thermoplastic polyester resin (a-1) and the polyester resin (b-2) used in the present invention each have moldability and sheetability within a range not to impair the effects of the present invention.
  • other resins such as polyester resin, polyether, polyamide, polyolefin, polymethyl methacrylate, core-shell type, graft type or linear random and block.
  • Rubber-like modifiers such as copolymers, inorganic particles such as silica, talc, olefins, calcium carbonate, pigments such as titanium oxide and carbon black, flame retardants, weather resistance stabilizers, heat resistance stabilizers, Additives such as an anti-decomposition agent (such as a monomer or polymer of a carbodiimide compound), an anti-static agent, a melt viscosity improver, a cross-linking agent, a lubricant, a nucleating agent, a plasticizer, and an anti-aging agent can be appropriately added.
  • an anti-decomposition agent such as a monomer or polymer of a carbodiimide compound
  • an anti-static agent such as a melt viscosity improver, a cross-linking agent, a lubricant, a nucleating agent, a plasticizer, and an anti-aging agent can be appropriately added.
  • thermoplastic polyester resin (a-1) and the polyester resin (b-2) used in the present invention can each be produced by a known direct polymerization method, transesterification method, or the like.
  • esterification catalysts such as titanium butoxide, dibutyl tin oxide, magnesium acetate, and manganese acetate
  • transesterification catalysts titanium butoxide, dibutyl tin oxide, tin acetate, zinc acetate
  • disulfide Polymerization catalysts such as tin, antimony trioxide, and germanium dioxide can be used.
  • thermoplastic polyester resin (a-1) and the polyester resin (b-2) were each measured at 30 ° C using tetrachloroethane Z phenol (mass ratio 1Z1) as a solvent. It has an intrinsic viscosity of 0.4 dlZg or more, preferably 0.7 dlZg or more, and 1.5 dlZg or less, preferably 1.2 dlZg or less. When the intrinsic viscosity is 0.4 dlZg or more, the resulting polyester resin does not have a reduced moisture resistance and mechanical strength, while when the upper limit is 1.5 dlZg, polymerization can be performed in a relatively short time. It is preferable in terms of production cycle and cost.
  • Layer (B) constituting the heat-shrinkable laminated sheet of the present invention comprises 30% by mass or more and 70% by mass or less of polycarbonate resin (b-1) and 30% by mass of polyester resin (b-2). % Or less and preferably 70% by mass or less.
  • the polycarbonate resin (b-1) is preferably an aromatic polycarbonate resin (b-11). When the polycarbonate resin (b-1) is 70% by mass or less and the polyester resin (b-2) is 30% by mass or more, the glass transition temperature of the mixed resin composition is adjusted to a desired range.
  • the heat shrinkability specified in the present invention can be imparted.
  • the polycarbonate resin (b-1) is at least 30% by mass and the polyester resin (b-2) is at most 70% by mass, the glass transition temperature of the mixed resin composition will be low. Good spontaneous shrinkage can be obtained without becoming too much, and a moderate seat waist can be obtained.
  • the aromatic polycarbonate resin (b-1) is from 40% by mass to 65% by mass
  • the polyester resin (b-2) is from 35% by mass to 60% by mass. More preferably, a mixed resin composition is used.
  • the mixed resin composition comprising the polycarbonate resin (b-l) and the polyester resin (b-2) was measured at a heating rate of 10 ° CZ by differential scanning calorimetry. It is preferable that the glass transition temperature used is single and the glass transition temperature is 50 ° C. or more and 100 ° C. or less.
  • the glass transition temperature of the mixed resin composition is 50 ° C. or higher, natural shrinkage of the obtained heat-shrinkable laminated sheet is suppressed, and a sheet having good dimensional stability is obtained, which is practically preferable.
  • the glass transition temperature is 100 ° C or lower, shrinkage in a relatively short time (several seconds to several tens of seconds) and shrinkage such as shrinkage rate, shrinkage starting temperature, shrinkage gradient, etc. that can achieve high shrink finish can be achieved. It is preferable because characteristics can be easily provided. From these facts, in the present invention, the glass transition temperature of the mixed resin composition comprising the polycarbonate resin (bl) and the polyester resin (b-2) is 55 ° C or more. , More preferably 60 ° C or higher, and 95 ° C or lower, more preferably 85 ° C or lower.
  • the aromatic polycarbonate resin used in the layer (B) has a glass transition temperature of about 150 ° C, usually measured by differential scanning calorimetry. Therefore, the content of the polycarbonate resin (b-1) is 30% by mass or more and 70% by mass or less, and the content of the polyester resin (b-2) In order to achieve a glass transition temperature of the mixed resin composition of not less than 50% by mass and not more than 70% by mass, the glass transition temperature of the polyester resin (b-2) should be 0 °. C or higher, more preferably 5 ° C or higher, and desirably 50 ° C or lower, more preferably 45 ° C or lower.
  • the glass transition temperature of the polyester resin (b-2) is 0 ° C or higher, the occurrence of blocking in the raw material pellets can be suppressed.
  • the upper limit is 50 ° C, the mixed resin composition can be used. Is preferable because the glass transition temperature can easily be lowered to a predetermined range.
  • the layer (A) and the layer Z or (B) of the heat-shrinkable laminated sheet are provided with recycled resin (usually (( B) layer), polyester resins (a-1) and polyester resins other than polyester resins (b-2), such as polyesters, polyethers, polyamides, polyolefins, and polymethyl methacrylates.
  • Rubber-like modifying agents such as core, core, graft or linear random and block copolymers, inorganic particles such as silica, talc, kaolin, calcium carbonate, pigments such as titanium oxide and carbon black, and flame retardants , Weather resistant stabilizer, heat resistant Stabilizer, hydrolysis inhibitor (monomer or polymer of carbodiimide conjugate, epoxy conjugate, oxazoline conjugate, etc.), antistatic agent, melt viscosity improver, crosslinking agent, lubricant, nucleating agent, Additives such as a plasticizer and an antioxidant can be appropriately added.
  • inorganic particles such as silica, talc, kaolin, calcium carbonate, pigments such as titanium oxide and carbon black, and flame retardants , Weather resistant stabilizer, heat resistant Stabilizer, hydrolysis inhibitor (monomer or polymer of carbodiimide conjugate, epoxy conjugate, oxazoline conjugate, etc.), antistatic agent, melt viscosity improver, crosslinking agent,
  • a reaction such as a transesterification reaction that occurs between the polycarbonate resin (bl) and the polyester resin (b-2) during melt kneading is suppressed as much as possible. This is preferred. If the reaction proceeds excessively, not only the thermal properties of the obtained mixed resin composition deteriorates, but also the foaming phenomenon may appear on the sheet due to coloring or gas generation, which is not preferable.
  • the type of catalyst used (a Ge catalyst is preferably used) and the amount of catalyst remaining in the raw material, or the temperature and residence time during melt-kneading, and if necessary, phosphorus-based catalyst It is preferable to pay attention to the addition of a transesterification inhibitor such as a compound (phosphoric acid or phosphorous acid compound).
  • the melt-kneading temperature is appropriately adjusted depending on the flow characteristics, film-forming properties, etc. of the mixed resin composition, but is generally 320 ° C. or lower, preferably 240 ° C. A range of o ° c is preferred.
  • the resin composition of the present invention can be formed into a sheet, film, plate or the like by a known method, for example, a method such as an extrusion casting method using a T-die, a calendar method, or an inflation method. Can be.
  • a force that comprehensively describes a film, a sheet, or a plate as a sheet refers to a force in which the written “sheet” refers to any of a film, a sheet, and a plate, or a plurality of these. It shall be determined as appropriate.
  • the thickness of the sheet to be formed is not particularly limited, but is usually 5 ⁇ m or more and 3,000 m or less.
  • a commonly used single-screw extruder, twin-screw extruder, screwer, mixer and the like can be used. It is preferable to use a twin-screw extruder for uniform dispersion of the mixed resin composition and stability of the mechanical strength of the obtained sheet.
  • the obtained sheet can be stretched uniaxially or biaxially. Further, if necessary, the sheet may be subjected to surface treatment or surface treatment such as printing, embossing, electron beam processing, coating, and vapor deposition.
  • the sheet using the resin composition of the present invention is excellent in mechanical properties such as transparency, impact resistance, and elongation at break, and has a secondary temperature range of PVC resin (usually, Since it has secondary workability at about 50 ° C or more and about 100 ° C or less, it is suitably used for applications where PVC resin has been applied.
  • PVC resin usually, Since it has secondary workability at about 50 ° C or more and about 100 ° C or less, it is suitably used for applications where PVC resin has been applied.
  • PVC resin usually, Since it has secondary workability at about 50 ° C or more and about 100 ° C or less, it is suitably used for applications where PVC resin has been applied.
  • PVC resin usually, Since it has secondary workability at about 50 ° C or more and about 100 ° C or less, it is suitably used for applications where PVC resin has been applied.
  • the roll set temperature in the calendering method depends on the flow characteristics, roll peeling property, film forming speed of the mixed resin composition. It is preferable to appropriately adjust the mixing resin composition, but the flow starting temperature of the mixed resin composition (Tl) + 10 ° C (T1 + 10 ° C) or higher and 250 ° C or lower, preferably the mixed resin composition The temperature is preferably in the range of not less than + 10 ° C (T1 + 10 ° C) and not more than 200 ° C. In particular, if a film can be formed at a roll set temperature of 200 ° C.
  • preliminary kneading can be performed before calendering.
  • a commonly used single-screw extruder, twin-screw extruder, kneader / mixer or the like can be used, and is not particularly limited. It is preferable to use a twin-screw extruder in consideration of the stability of the mechanical strength and the transparency of the obtained sheet.
  • the mixed resin composition of the present invention is used to carry out sheeting by a calendering method, it is preferable to add a lubricant in order to improve roll releasability.
  • the lubricant used examples include hydrocarbon lubricants such as paraffin and polyethylene wax, higher fatty acid lubricants such as stearic acid, metal stone lubricants such as calcium stearate, ester lubricants such as montanic acid wax, benzoguanamine, and polystyrene.
  • Organic fine particles such as crosslinked acrylic resin containing methyl methacrylate as a main component are exemplified.
  • the organic lubricant which has a synergistic effect with the inorganic lubricant one having improved external lubricity and having good compatibility with the resin is suitably used.
  • montanic acid wax is suitably used.
  • montanic acid wax refers to montan wax of fossil wax mainly containing fatty acids and fatty alcohols having 21 to 34 carbon atoms obtained by solvent extraction of lignite, and esterification or partial oxidation of this montan wax. This is a wax that has been degraded.
  • Hoechst WAX S (manufactured by Hoechst) obtained by oxidizing montan wax
  • Hoechst WAX E manufactured by Hoechst
  • montanic acid diester obtained by esterifying montan wax with ethylene glycol
  • montan wax is esterified by glycerin
  • the montanic acid diester obtained by esterifying montan wax with ethylene glycol
  • montan wax is esterified by glycerin
  • the montanic acid diester (manufactured by Hoechst)
  • montan wax is partially esterified with butylene glycol, and the remainder is quenched with calcium hydroxide.
  • Hoechst WAX OP manufactured by Hoechst).
  • the amount of the lubricant to be added is 0.05 mass parts or more and 3.0 mass parts with respect to 100 mass parts of the mixed resin composition. Or less, preferably 0.1 to 1.5 parts by mass. At less than 0.05 parts by mass, the effect of improving the roll releasability is small, whereas at more than 3.0 parts by mass, the bleeding on the sheet surface and the mechanical properties of the sheet are reduced. The problem is likely to occur, which is not preferable.
  • the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention are stretched in at least one direction, and have a heat shrinkage of 2 in the main shrinkage direction when immersed in hot water of 80 ° C for 10 seconds. It is important that it is at least 0%.
  • the shrinking process can be performed in a relatively short time (about several seconds to about ten and several seconds).
  • a relatively short time about several seconds to about ten and several seconds.
  • the shrinkage required for a heat-shrinkable sheet used for shrink labeling of PET bottles varies depending on the shape. Generally, the force is about 20% to 40%.
  • the shrinking machine that is most frequently used industrially for mounting PET bottle labels is generally called a steam shrinker that uses steam as a heating medium for shrinking! / Puru.
  • the heat-shrinkable sheet and the heat-shrinkable laminated sheet need to be sufficiently heat-shrinked at a temperature as low as possible from the viewpoint of the influence of heat on the object to be coated.
  • the sheet having a heat shrinkage of 20% or more tends to be sufficiently adhered to the object to be coated within the shrinkage processing time.
  • the heat shrinkage when immersed in hot water at 80 ° C for 10 seconds is at least one direction, usually in the main shrinkage direction. It is desirable that the shrinkage ratio is at least 30%, preferably at least 40%, and at most 70%, preferably at most 65%, in at least one direction, usually the main shrinkage direction.
  • the heat-shrinkable sheet and heat-shrinkable laminated sheet for use in shrinkable labeling of PET bottles have a heat shrinkage rate when immersed in hot water of 80 ° C for 10 seconds in a direction orthogonal to the main shrinkage direction. It is preferably at most 10%, more preferably at most 7%.
  • a heat-shrinkable sheet, etc. in which the heat shrinkage in the direction perpendicular to the main shrinkage direction is 10% or less, the dimension itself in the direction orthogonal to the main shrinkage direction after shrinkage decreases, or the printed pattern or character after shrinkage When it is used as a shrink label for square bottles, The occurrence of troubles such as vertical sinks can be suppressed.
  • the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention have a tensile elastic modulus of 1,200 MPa or more in the direction orthogonal to the main shrinkage direction of the sheet from the viewpoint of stiffness (rigidity at room temperature). It is important that the pressure be more than 1,800 MPa, more preferably more than 2, OOOMPa.
  • the upper limit of the tensile modulus of the heat-shrinkable sheet and the heat-shrinkable laminated sheet which is usually used is about 4, OOOMPa, preferably about 3, OOOMPa.
  • the stiffness (rigidity at room temperature) of the entire sheet can be increased, and especially when the thickness of the sheet is reduced.
  • a sheet made of a bag such as a PET bottle is covered with a labeling machine or the like, it is preferable because problems such as a decrease in yield and a decrease in sieve due to a break in the seat due to breakage of the seat or the like do not easily occur.
  • the tensile modulus can be measured at 23 ° C. according to JIS K7127.
  • the tensile elastic modulus in the main shrinkage direction of the sheet is not particularly limited as long as the stiffness of the sheet is obtained.
  • the force is 1,200MPa or more, preferably 1,800MPa or more, and more preferably 2, OOOMPa or more.
  • the upper limit is about 6, OOOMPa, the preferable upper limit is about 4,500MPa, and the more preferable upper limit is about 4, OOOMPa.
  • the rupture resistance of the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention is evaluated by tensile elongation at break.
  • the elongation in the direction (MD) is at least 100%, preferably at least 200%, more preferably at least 300%.
  • problems such as breakage of the sheet during processes such as printing and bag-making occur, which is preferable.
  • the tensile force applied to the sheet increases with the speeding up of processes such as printing and bag-making, it is more preferable that the tensile elongation at break is 200% or more, so that the sheet is difficult to break.
  • the seal strength of the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention is a method of peeling at a test speed of 200 mmZ in the main shrinkage direction by a T-type peeling method in an environment of 23 ° C and 50% RH.
  • the width is 3 NZ15 mm or more, preferably 5 NZ15 mm or more, more preferably 7 NZ15 mm or more.
  • the upper limit of the sealing strength is not particularly limited, but is preferably about 15 NZ 15 mm width from the viewpoint of the solvent resistance of the sheet surface.
  • the sheet, the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention have a transparency, for example, when a sheet having a thickness of 50 ⁇ m is measured according to JIS K7105, the total haze is usually 10% or less. Is more preferably 7% or less, particularly preferably 5% or less. If the total haze is 10% or less, a clear display effect can be obtained.
  • the natural shrinkage of the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention is desirably as small as possible.
  • the natural shrinkage of the heat-shrinkable sheet and the like is, for example, 30 days at 30 ° C. It is desirable that the natural shrinkage after storage is 2.0% or less, preferably 1.5% or less, and more preferably 1.0% or less. If the natural shrinkage ratio under the above conditions is 2.0% or less, even if the produced sheet is stored for a long period of time, it can be stably mounted on a container or the like, so that practical problems hardly occur.
  • perforations are used to impart easy-opening properties to cap seals and labels attached to plastic bottles, glass bottles, etc. by heat shrinkage, and to make it easy to peel off bottles and bottles during recycling.
  • Perforations are usually provided in advance with one or two or more perforations.
  • Perforation processing is usually performed using a perforation blade at the time of center sealing.
  • the perforation length and the distance between the perforations are generally about lmm or about 0.7 mm, respectively. The force is not limited to this.
  • the thickness of the heat-shrinkable laminated sheet of the present invention is not particularly limited, but is usually 5 m or more, preferably 20 ⁇ m or more, and 100 ⁇ m or less, preferably 80 ⁇ m or less. m or less.
  • the thickness of the heat-shrinkable laminated sheet is 5 ⁇ m or more, the handling property of the sheet is good, and when it is 100 m or less, the shrinkage property is good, and It is economically favorable.
  • the heat-shrinkable laminated sheet of the present invention may be subjected to surface treatment and surface treatment such as corona treatment, printing, coating, and vapor deposition, as well as bag making and perforation using various solvents and heat seals, as necessary. And so on.
  • each layer constituting the heat-shrinkable laminated sheet of the present invention is not particularly limited as long as it is set in consideration of the above-described effects and functions.
  • the (A) layer Z ( B) Layer Z The thickness ratio of the (A) layer is preferably in the range of 1Z2Z1-1Z12Z1, and more preferably in the range of 1/3 / 1-1Z1OZ1.
  • the thickness ratio of the intermediate layer (B) is less than S1Z2Z1, the effect of improving the shrinkage finish and perforation cutability is not remarkable.
  • the polycarbonate resin (b-l) forming the layer (B) is generally inferior in solvent resistance required at the time of printing. Therefore, it is preferable to mix a polyester resin (b-2).
  • (A) are preferably laminated as outer layers.
  • the thickness of the layer (A) is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and the upper limit is more preferably 20 ⁇ m or less. ! / ,.
  • the sheet, heat-shrinkable sheet, and the heat-shrinkable laminated sheet of the present invention can be produced by a conventionally known method.
  • the form of the sheet may be flat or tubular, but it is flat in terms of productivity (a number of products can be cut in the width direction of the raw sheet) and printing on the inner surface.
  • productivity a number of products can be cut in the width direction of the raw sheet
  • a planar shape is more preferable.
  • each resin as a raw material is melt-kneaded, co-extruded from a T-die, and chilled (cast roll). Cool and solidify to form a laminate, then roll stretch in the machine direction and tenter stretch in the transverse direction, and then uniaxial or biaxial by annealing, cooling, and if necessary, corona discharge treatment.
  • a laminated sheet stretched in the direction can be manufactured.
  • a tubular sheet manufactured by the tubular method may be cut out to be flat.
  • the resin composition or the like as a raw material may be melt-kneaded and cut into pellets, for example, and the pellet-shaped resin composition may be melt-extruded again and heated.
  • a shrinkable laminated sheet can also be manufactured.
  • melt-kneading generally used single-screw extruders, twin-screw extruders, kneader mixers, and the like can be used, and are not particularly limited. Considering the uniform dispersibility of the mixed resin composition, the stability of the mechanical strength and the transparency of the resulting heat-shrinkable sheet, twin-screw extrusion It is preferable to use a machine.
  • the reaction e.g., transesterification reaction
  • the molding temperature is set to a force appropriately adjusted depending on the flow characteristics, film forming properties, and the like of the mixed resin composition. A range is preferred.
  • the melt-extruded resin is cooled by a cooling roll, air, water, etc., and then reheated by an appropriate method such as hot air, hot water, infrared ray, microwave, etc., and roll method, tenter method, tubular method, etc. Thereby, it is stretched in a uniaxial or biaxial direction.
  • the stretching temperature is a force that needs to be changed depending on the glass transition temperature of the resin composition to be used and the characteristics required for the heat-shrinkable sheet. Generally, the temperature is from 60 ° C to 130 ° C, preferably from 70 ° C to 120 ° C. It is controlled within the range of ° C or less.
  • the stretching ratio is 1.5 to 10 times, preferably 1.7 times, in the main shrinkage direction, depending on the properties of the resin composition to be used, the stretching method, the stretching temperature, the desired product form, and the like. Within the range of 7 times or less, it is appropriately determined in the uniaxial and Z or biaxial directions.
  • the stretched sheet is subjected to a heat treatment or a relaxation treatment at a temperature of about 50 ° C or more and 100 ° C or less, as necessary, for the purpose of reducing the natural shrinkage rate and improving the heat shrinkage property, and the like.
  • the sheet is rapidly cooled within a period in which the molecular orientation is not relaxed, and becomes a heat-shrinkable sheet.
  • a resin-coated metal sheet can be formed using the mixed resin composition of the present invention.
  • the resin-coated metal sheet sheet of the present invention has a polycarbonate resin (b-1) of 60% by mass or more and 95% by mass or less, and a polyester resin (b-2) of 5% by mass or more and 40% by mass or less. It is necessary to be formed by using a mixed resin composition comprising a polycarbonate resin (b-1) of 65% by mass or more and 90% by mass or less and a polyester resin (b-2). ) Is preferably formed using a mixed resin composition comprising 10% by mass or more and 35% by mass or less.
  • Polycarbonate resin is a mixed resin composition in which the mixing amount of the polycarbonate resin (b-1) is 95% by mass or less and the mixing amount of the polyester resin (b-2) is 5% by mass or more. Since the flow start temperature of the system resin (b-l) can be appropriately reduced, calendering can be performed using a calendering facility for a soft polychlorinated bur. That is, the bank (mixed resin composition) can rotate regularly and stably in the processing equipment.
  • the obtained mixed resin composition can be obtained. Since the glass transition temperature of the product does not drop significantly, satisfactory results can be obtained by a boiling water immersion test, and the mechanical strength such as tensile elongation at break does not decrease, so that the secondary workability decreases. Not even. Therefore, secondary processing such as bending can be applied to the obtained resin-coated metal plate.
  • a laminate can be formed using the mixed resin composition of the present invention.
  • a layered product can be formed by laminating a layer composed of another material from the layer composed of the mixed resin composition of the present invention, or a heat-shrinkable laminated sheet.
  • the laminated body may have a configuration in which a layer made of the mixed resin composition of the present invention is used as an intermediate layer, and outer layers on both sides of the layer are made of another material.
  • the resin-coated metal sheet of the present invention can be manufactured by a known method, for example, an extrusion casting method using a T-die, a calendering method, an inflation method, or the like.
  • the calendar processing method is preferred in view of the response to multi-product small-lot production including color change.
  • the thickness of the resin-coated metal sheet of the present invention is not particularly limited, but is usually 50 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the sheet is less than 50 ⁇ m, when used for a resin-coated metal plate, the performance as a protective layer for the metal plate and the embossability are poor. It is not preferable because the secondary curability such as punching tends to be inferior.
  • the sheet can be subjected to a surface treatment such as printing, embossing, electron beam processing, coating, vapor deposition, or surface treatment.
  • the obtained resin-coated metal sheet can be used after being colored with a pigment or the like.
  • a sheet having excellent transparency is suitably used as an oversheet of a printed resin-coated metal sheet.
  • the haze (haze value) which is an index of transparency, is preferably smaller, but when the thickness of the sheet is 150 m, it is usually 5% or less, preferably 4% or less. If present, it can be used as an oversheet of a resin-coated metal plate on which printing has been performed without deteriorating its design, visibility, display effect, and the like.
  • a method for bonding the resin-coated metal sheet of the present invention to a metal plate a method using an adhesive, a method of heat-sealing without using an adhesive, a method of extrusion coating, and the like.
  • a method of applying a polyester-based or epoxy-based adhesive to the surface of the metal plate to be bonded to the resin-coated metal plate sheet to cover the resin sheet.
  • a commonly used coating equipment such as a reverse coater or a kiss coater is used for the metal plate, and the adhesive film after drying is applied to the metal surface on which the resin-coated metal plate sheet is to be bonded.
  • the coating surface is dried and heated by an infrared heater and a hot air heating furnace, and the surface temperature of the metal plate is adjusted to the flow start temperature of the resin-coated metal sheet + 10
  • the resin-coated metal sheet can be obtained by immediately covering and cooling the sheet with a roll laminator while maintaining the temperature at about ° C or higher.
  • Examples of the metal sheet used for the resin-coated metal sheet of the present invention include various steel sheets such as a hot-rolled steel sheet, a cold-rolled steel sheet, a molten zinc plated steel sheet, an electric zinc plated steel sheet, a tin plated steel sheet, a stainless steel sheet, and the like.
  • a plate can be used, and may be used after performing a normal chemical conversion treatment.
  • the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention each have an excellent shrink finish. It has mechanical strength such as resilience, natural shrinkage, transparency, sheet stiffness (rigidity at room temperature), perforation cutability, etc., and its use is not particularly limited.
  • the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention each have excellent shrinkage finish and shrinkage properties, so that the heat-shrinkable label material of a plastic molded article that is deformed when heated to a high temperature.
  • a material whose thermal expansion coefficient, water absorption and the like are very different from those of the heat-shrinkable laminated sheet of the present invention for example, metal, porcelain, glass, paper, polyethylene, polypropylene, polyolefin resin such as polybutene, polymethacrylic resin Heat of a package (container) using at least one selected from acid ester resin, polycarbonate resin, polyester resin such as polyethylene terephthalate and polybutylene terephthalate, and polyamide resin as a constituent material It can be suitably used as a shrinkable label material.
  • polystyrene rubber-modified impact-resistant polystyrene (HIPS), styrene, and the like may be used as the material constituting the plastic package in which the heat-shrinkable sheet or the heat-shrinkable laminated sheet of the present invention can be used.
  • HIPS rubber-modified impact-resistant polystyrene
  • ABS acrylonitrile butadiene styrene copolymer
  • MVS methacrylate butadiene styrene copolymer
  • Cellulose resin, phenol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, silicone resin and the like can be mentioned.
  • These plastic packages may be a mixture of two or more resins or a laminate.
  • the present invention will be described in more detail with reference to Examples, but the present invention is not limited by these.
  • Various measurements and evaluations of the resin, sheet, film, and the like displayed in the present specification were performed as follows.
  • the direction of flow of the sheet (film) from the extruder or calendering machine is defined as the longitudinal direction (MD), and TD).
  • a 10 mg sample was heated from -40 ° C to 250 ° C at a heating rate of 10 ° CZ, and then heated to 250 ° C. After cooling for 1 minute, the cooling rate is lowered to 40 ° C in 10 ° CZ minutes, and after holding for 1 minute at 40 ° C, the thermogram force when the heating rate is raised again in 10 ° CZ minutes is also The glass transition temperature (Tg) was determined.
  • a solution prepared by dissolving a polyester resin in form (solvent) of heavy-duty mouth shall be used as a sample, and this sample solution shall be monitored for 1 H by a nuclear magnetic resonance apparatus (NMR).
  • NMR nuclear magnetic resonance apparatus
  • the haze of the obtained sheet was measured according to Japanese Industrial Standard JIS K7105.
  • the tensile modulus in the lateral direction of the sample was determined under the conditions of a temperature of 23 ° C and a test speed of 5 mmZ.
  • the sample was pulled under the conditions of a temperature of 23 ° C and a test speed of 200 mmZ, and the tensile strength and elongation at break in the lateral direction of the sample were measured.
  • HTM-1 high-speed impact tester
  • a sample piece of 100 mm in the vertical direction and 100 mm in the horizontal direction is fixed with a clamp, and the sample piece is heated at 0 ° C.
  • Center An impact tip with a diameter of 1Z2 inches was dropped at a falling speed of 3 mZ seconds on the sample, and an impact (kgf'mm) was measured when the sample piece was broken.
  • the obtained sheet is cut into small pieces with scissors, dried, and then heated at a heating rate using “Koka Type Flow Tester CFT-500C” manufactured by Shimadzu Corporation (lmm inner diameter, 2 mm long nozzle).
  • the flow start temperature was measured under the conditions of 3 ° CZ and a load of 3.92 MPa (40 kgfZcm 2 ).
  • a sample having a size of 4 mm in the vertical direction and 60 mm in the horizontal direction was cut out from the obtained sheet.
  • a viscoelastic spectrometer DVA-200 manufactured by IT Measurement Co., Ltd.
  • the sample was subjected to a vibration frequency of 10 Hz, a strain of 0.1%, a heating rate of 3 ° CZ, and a chuck distance of 25 mm.
  • the temperature was raised at 50 ° C, and the storage modulus (E ') and the loss modulus (E ") were measured.
  • the number of peaks, the peak temperature, the half width and the peak value of the curve were determined.
  • a sample having a size of 60 mm in the vertical direction and 4 mm in the horizontal direction was cut out from the obtained sheet.
  • a viscoelasticity measuring device DVA-200 manufactured by IT Measurement Control Co., Ltd.
  • this sample was used under the conditions of a vibration frequency of 10 Hz, a strain of 0.1%, a heating rate of 3 ° CZ, and a gap of 25 mm between the chucks.
  • the temperature was increased by 50 ° C, and the storage elastic modulus ( ⁇ ') was measured.
  • the obtained data was also determined as the value of storage modulus ( ⁇ ') at 25 ° C.
  • a sample having a size of 100 mm in the vertical direction and 100 mm in the horizontal direction was cut out from the obtained sheet. After immersing this sample in a hot water bath at 80 ° C for 10 seconds, the amount of shrinkage in the main shrinkage direction (horizontal direction) of the sheet was measured, and the ratio of the amount of shrinkage to the original size before shrinkage was calculated as a percentage. , A minus (1) in the ratio means that it is expanded from its original size.
  • the sheet on which grids were printed at intervals of 10 mm in length and width was cut into a size of 100 mm in the vertical direction and 298 mm in the horizontal direction.
  • This cylindrical sheet is attached to a 1.5-liter round plastic bottle and passed through a steam-heated 3m long shrink tunnel for 10 seconds without rotating to cover the sheet. did.
  • the temperature of the discharged steam was 99 ° C and the ambient temperature in the tunnel was 90-94 ° C.
  • the sheet covered with the PET bottle was evaluated for shrink finish based on the following evaluation criteria.
  • the bank turns irregularly, or the amount of heat is clearly insufficient, and the wound state around the roll is poor.
  • the surface appearance of the sheet may be defective, such as unevenness, or the thickness may be uneven.
  • Boiling water immersion test A sample cut into a size of 60 mm X 60 mm from a resin-coated metal plate was used. The sample was provided with a 6 mm overhang so that the resin-coated side became convex using an Erichsen test apparatus specified in Japanese Industrial Standard JIS K7121. Thereafter, this sample was immersed in boiling water for 3 hours, and the surface state of the resin sheet of the immersed sample was visually evaluated based on the following criteria.
  • Pencil hardness was measured in accordance with the “Pencil pull value” of Japanese Industrial Standard JIS K54008.4 (Testing Machine Method).
  • the impact adhesion bending test was performed as follows. ⁇ Cut the sample of 50mm x 150mm each in the length and width direction of the resin coated metal plate, keep it at 23 ° C for 1 hour or more, then bend it to 180 ° (inner bending radius 2mm) using a bending tester Then, a cylindrical weight with a diameter of 75 mm and a mass of 5 kg was dropped on the sample with a height of 50 cm.
  • the heat-shrinkable laminated sheet is perforated (perforation length: 0.7 mm, interval between perforations: 0.7 mm, single line), and the above evaluation of “(13) Shrink finish” is performed.
  • perforation length 0.7 mm, interval between perforations: 0.7 mm, single line
  • “(13) Shrink finish” is performed.
  • attach to a 1.5-liter round PET bottle by heat shrinkage After cooling to room temperature, the perforated portion was torn by hand, and the perforated cutability was evaluated.
  • a cutting test was performed on 10 samples, and the evaluation was performed based on the following evaluation criteria in a sensory test. And evaluated.
  • X 3 or more do not cut along the perforation, or 3 or more cut along the perforation, but cut off due to perforation
  • a polycarbonate resin (b-l) a dried aromatic polycarbonate resin (manufactured by Mitsubishi Engineering-Plastics Corporation, "NOVAREX 7025A", Tg: 149.5 ° C , Average refractive index: 1.5858) (hereinafter may be simply abbreviated as PC) 75% by mass, and as polyester-based resin (b-2), dried transparent soft polyester resin (Mitsubishi Rayon Co., Ltd.) ) Ltd., "DIANITE DN-124", Tg: 19.
  • carboxylic acid monomers (I) unit terephthalic acid 100 mol 0/0
  • glycol monomer (mouth) unit ethylene glycol 66 mol 0/0
  • diethylene glycol 2 mol 0/0 1, 4 Cyclohexanedicarboxylic to Shikuro methanol 26 mole 0/0
  • the average refractive index 1.
  • PET-1 PET- 1
  • LZD ⁇ 40mm co-rotating twin screw extruder
  • Example 1-1 As shown in Table 1, in Example 1-1, the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) was changed. Sheets were obtained in the same manner as in Example 1 except that the amounts were changed to 90% by mass and 10% by mass, respectively. The glass transition temperature (Tg) and mechanical properties were evaluated using the obtained sheet. The results are shown in Table 1. (Example I 3)
  • Example 1-1 the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) was changed. Sheets were obtained in the same manner as in Example 1 except that the amounts were changed to 95% by mass and 5% by mass, respectively. The obtained sheets were used to evaluate glass transition temperature (Tg) and mechanical properties. The results are shown in Table 1.
  • Example 1-1 the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) was changed. Sheets were obtained in the same manner as in Example 1 except that the amounts were changed to 100% by mass and 0% by mass, respectively. The glass transition temperature (Tg) and mechanical properties were evaluated using the obtained sheet. The results are shown in Table 1.
  • Example 1-1 the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) was changed.
  • a sheet was obtained in the same manner as in Example 1 except that the mass was changed to 50% by mass and 50% by mass, respectively. Subsequently, the obtained sheet was stretched 3.0 times in the transverse direction at a stretching temperature of 95 ° C using a tenter stretching apparatus, and then rapidly cooled with cold air to obtain a heat-shrinkable sheet having a thickness of 50 m. .
  • Tg glass transition temperature
  • evaluation of mechanical properties were performed. The results are shown in Table 2.
  • the heat shrinkage rate was determined by cutting the obtained heat shrinkable sheet to a size of 100 mm in the vertical direction and 100 mm in the horizontal direction, immersing it in a hot water bath at 80 ° C for 10 seconds, measuring the amount of shrinkage in the horizontal direction, The ratio of the amount of shrinkage to the previous original size was calculated as a percentage value.
  • FIG. 1 shows a DSC thermogram of the obtained sheet. Fig. 1 Force As can be seen, the glass transition temperature of this sheet has one peak.
  • FIG. 2 shows the DSC thermogram of the obtained sheet. As is clear from FIG. 2, this sheet has two glass transition temperatures (Tg) at 79.4 ° C. and 134.8 ° C.
  • the mixed resin composition consisting of the polycarbonate resin (b-1) and the polyester resin (b-2) and having a single glass transition temperature is the same as the polycarbonate resin.
  • Transparent It can be seen that it has excellent fluidity (Example I13) and secondary workability (Example I4) without significantly impairing features such as lightness and impact resistance.
  • Comparative Example I1 which is a polycarbonate resin (b-1) alone, the impact resistance and the transparency were good, but the flowability was poor, and the resin was out of the range specified in the present invention.
  • Comparative Example 2 which is a resin using a polyester resin, the compatibility with the polycarbonate resin (b-1) is inferior. It can be seen that it is difficult to impart secondary workability (such as heat shrinkability) at a temperature of about 100 ° C or more and 100 ° C or less.
  • polycarbonate resin (b-l) a dried aromatic polycarbonate resin (manufactured by Mitsubishi Engineering-Plastics Corporation, Novalex 7025A, Tg: 149.5 ° C, average refraction) Rate: 1.5858) (hereinafter may be simply abbreviated as PC) 50% by mass, and as a polyester resin, dried transparent soft polyester resin (manufactured by Mitsubishi Rayon Co., Ltd., Dianite DN-124, tg: 19.
  • carboxylic acid monomers (I) unit terephthalic acid 100 mol 0/0
  • glycol monomer (mouth) unit ethylene glycol 66 mol 0/0
  • Cyclohexanedicarboxylic to Shikuro methanol 26 mole 0/0 the number average molecular weight 1, Porite Bok La glycol 6 mole 0/0 000, average refractive index: 1.5461, intrinsic viscosity: 0.
  • PET-1 50% by mass
  • LZD 36
  • T die melt-kneading the mixture at a set temperature of 2 70 ° C, and mixing at 50 ° C (except for Example II 1).
  • the temperature of the cast roll was adjusted to a temperature of about 20 ° C. (Tg of the resin composition) while confirming the state of adhesion of the sheet to the cast roll. As a result, a cast sheet having a thickness of 150 m was obtained.
  • FIG. 3 shows a loss tangent curve of the obtained heat-shrinkable sheet.
  • Example II 2 As shown in Table 3, the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) in Example II 1 was 60 mass, respectively. % And 40% by mass, and the stretching temperature was changed to 105 ° C., to obtain a cast sheet and a heat-shrinkable sheet in the same manner as in Example III-1. The Tg was evaluated using the obtained cast sheet, and the mechanical properties and the like were evaluated using the obtained heat-shrinkable sheet. The results are shown in Table 4.
  • FIG. 3 shows a loss tangent curve of the obtained heat-shrinkable sheet.
  • Example II 1 the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) in Example II 1 was 80 mass, respectively. % And 20% by mass, and the stretching temperature was changed to 135 ° C., to obtain a cast sheet and a heat-shrinkable sheet in the same manner as in Example I-1.
  • the Tg was evaluated using the obtained cast sheet, and the mechanical properties and the like were evaluated using the obtained heat-shrinkable sheet.
  • FIG. 3 shows a loss tangent curve of the obtained heat-shrinkable sheet.
  • an amorphous polyester resin (EASTAR PETG Copolyester6763 manufactured by Eastman Chemical Co., Ltd.) was used in place of PET-1 used as the polyester resin (b-l) in Example II 1.
  • Tg 79. 0 ° C
  • carboxylic acid monomers (I) unit terephthalic acid 100 mol 0/0
  • glycol monomer (mouth) unit ethylene glycol 68 mol 0/0
  • the obtained sheet was stretched 3.0 times in the transverse direction at a stretching temperature of 95 ° C. using a tenter stretching apparatus, but the sheet could not be stretched because the sheet was broken.
  • the obtained sheet showed Tg at two places, 79.4 ° C and 134.8 ° C.
  • Example II 3 the cast sheet and the heat-shrinkable sheet were manufactured in the same manner as in Example II 1 except that the PET-2 used in Comparative Example II 2 was changed to the simple substance and the stretching temperature was changed to 90 ° C. To Obtained. Tg was evaluated using the obtained cast sheet, and mechanical properties and the like were evaluated using the obtained heat-shrinkable sheet. The results are shown in Table 4.
  • FIG. 3 shows a loss tangent curve of the obtained heat-shrinkable sheet.
  • the heat shrinkability obtained by stretching the mixed resin composition of the polycarbonate resin (b-1) and the polyester resin (b-2) specified in the present invention was obtained.
  • the sheet has a peak temperature of tan ⁇ and a half-value width within a predetermined range, and has a mechanical strength such as shrinkage finish, spontaneous shrinkage, transparency, sheet stiffness (rigidity at room temperature), and rupture resistance. (Example II 1 and Example II 2).
  • Comparative Example III-l in which the peak temperature of tan ⁇ where the Tg is high and the tan ⁇ exceeds 130 ° C, it is difficult to impart heat shrinkage, and it is practical to use as a heat shrinkable sheet. I helped to make things impossible. Further, in the case of Comparative Example II-1 using a polyester resin outside the range specified in the present invention, the compatibility with the polycarbonate resin (b-1) was deteriorated. In addition, it was difficult to obtain a heat-shrinkable sheet. Furthermore, in Comparative Example III-3, which is a polyester resin alone, the heat shrinkable sheet obtained by stretching the resin has a narrow half width of tan ⁇ and has a shrink finish. Inferiority helps.
  • a polycarbonate resin (b-l) a dried aromatic polycarbonate resin (manufactured by Mitsubishi Engineering-Plastics Corporation, Novalex 7025A, Tg: 149.5 ° C, average refraction) Rate: 1.5858, flow start temperature: 194.9 ° C) (hereinafter simply abbreviated as PC) 85% by mass, and as a polyester resin (b-2), dried transparent soft polyester resin (Mitsubishi Rayon Co., DIANITE DN- 124, Tg: 19.
  • a 150 m sheet was obtained. Further, a polyester adhesive for a commercially available poly-Shidani-Bull coated metal plate is applied to the metal surface to which the sheet is to be bonded so that the thickness of the dried adhesive film is about 4 m. Then, the coated surface is dried and heated by an infrared heater and a hot-air heating furnace, while maintaining the surface temperature of the zinc-plated steel sheet (0.5 mm thick) at the flow start temperature of the sheet + 10 ° C or more. Immediately, coating and cooling were performed using a roll laminator to obtain a resin-coated metal plate. Glass transition temperature (Tg), mechanical properties, etc. were evaluated using the obtained sheet, and practical tests were evaluated using the obtained resin-coated metal plate. Table 5 summarizes the results. In addition, comprehensive evaluation was performed on the obtained results, and good results were obtained in all of the above evaluations. Show something with symbol "X" did.
  • Example III the mixing amount of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) was determined.
  • a sheet having a thickness of 150 / zm was obtained in the same manner as in Example II-1, except that the mass was changed to 70% by mass and 30% by mass, respectively, and the set temperature of the roll was changed to 185 ° C.
  • a resin-coated metal plate was obtained in the same manner as in Example II.
  • evaluation of glass transition temperature (Tg), mechanical properties, and the like, and evaluation of a practical test were performed. Table 5 summarizes the results.
  • Example II-1 the mixing amounts of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) were respectively determined.
  • a sheet having a thickness of 150 / zm was obtained in the same manner as in Example 1 except that the temperature was changed to 50% by mass and 50% by mass, and the set temperature of the roll was changed to 175 ° C.
  • a resin-coated metal plate was obtained in the same manner as in Example III-1.
  • evaluation of glass transition temperature (Tg), mechanical properties, and the like, and evaluation of a practical test were performed. Table 5 summarizes the results.
  • Example II-1 the mixing amounts of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) were respectively determined. It was subjected to calendering in the same manner as in Example III1 except that it was changed to 100% by mass and 0% by mass. However, the winding state around the roll was poor due to the insufficient amount of heat, and the bank was turned irregularly, and it was impossible to obtain a sheet with a good surface appearance.
  • Example II-1 50% by mass of PC used as the polycarbonate resin (b-1) was used as the polyester resin (b-1).
  • Amorphous polyester resin manufactured by Eastman Chemical Co., Ltd., EASTARPE TG Copolyester6763, Tg: 79.0 ° C, carboxylic acid monomer (a) unit: terephthalic acid 1) 00 mole 0/0, glycol monomer (mouth) Unit: Ethylene glycol 68 mol 0/0, 1, 4-Cyclohexanedicarboxylic cyclohexane methanol 32 mole 0/0, the average refractive index: 1.5667) (hereinafter, simply A sheet having a thickness of 150 / zm was obtained in the same manner as in Example I-1, except that PET-2 (abbreviated as PET-2) was 50% by mass and the roll set temperature was 195 ° C. Using the obtained sheet, a resin-coated metal plate was obtained in the same manner
  • Example II-1 70% by mass of PC used as the polycarbonate resin (b-1) was used as the polyester resin (b-2).
  • Polyester resin manufactured by Eastman Chemical Co., Ltd., EASTAR PCTG Copolyester 5445, Tg: 87.3 ° C, carboxylic acid monomer (a)): 100 mol of terephthalic acid 0/0, glycol monomer (mouth) unit: ethylene glycol 35 mol 0/0, 1, 4-65 mol% hexa Nji methanol cyclohexane) (hereinafter, simply PET-3 and abbreviated) to 30 mass% Except for that, it was subjected to calendering in the same manner as in Example II-1. However, the sheet crystallized during calendering, and it was impossible to obtain a sheet having a good surface appearance. In addition, DSC measurement using the sheet showed a crystal melting peak of 243 ° C.
  • the resin-coated metal sheet made of the mixed resin composition of the polycarbonate resin and the polyester resin specified in the present invention has high transparency, low-temperature calenderability, and low heat resistance. It can be seen that they are excellent in boiling water, scratch resistance and secondary workability (Example mi, Example III 2).
  • Comparative Example III 1 having a low glass transition temperature was inferior to the evaluation by the boiling water immersion test, and Comparative Example II-2 of polycarbonate resin alone was inferior in low temperature power renderability. ⁇ When a polyester resin out of the range specified in the present invention is used, the compatibility with the polycarbonate resin is inferior, and the transparency of the obtained sheet is reduced (Comparative Example III-3). However, it can be seen that during calendering at a low temperature, there is a problem such as crystallization of the sheet due to insufficient heat (Comparative Example III4).
  • PET-1 94dl / g
  • the sheet is stretched 3.0 times in the transverse uniaxial direction at a preheating temperature of 110 ° C and a stretching temperature of 95 ° C, and then rapidly cooled with cold air to obtain a heat-shrinkable laminated sheet having a thickness of 50 m.
  • the obtained heat-shrinkable laminated sheet was evaluated for glass transition temperature, mechanical properties, and the like. Table 6 shows the results.
  • thermoplastic polyester resin (a-1) 85 parts by mass of PET-2 used in Example IV-1 and polybutylene terephthalate resin [Mitsubishi Engineering Plastics Co., Ltd.] Ltd., NOVADUR5008, carboxylic acid monomer units: terephthalic acid 100 mol 0/0, glycol monomer units: 1, 4-butanediol 100 mol 0/0, mp: 225 ° C, unique viscosity: 0. 84Dl / g] (hereinafter simply referred to as “PET-4”) 0.2 parts by mass of silica (average particle size: 3) was added to 15 parts by mass to form a resin composition.
  • This resin composition is a raw material for the (A) layer.
  • a mixed resin composition comprising 60% by mass of the PC used in Example IV-1 and 40% by mass of PET-1 was formed.
  • This mixed resin composition is a raw material for the layer (B).
  • the Z (A) layer was co-extruded from a three-layer die so as to be 1Z4Z1, taken with a cast roll at 50 ° C, and cooled and solidified to obtain an unstretched laminated sheet having a width of 500 mm and a thickness of 150 ⁇ m.
  • Example IV-1 As shown in Table 6, the same procedure as in Example IV-1 was carried out except that the intermediate layer (B) was not provided in Example IV-1.
  • Example IV-1 The same evaluation as in Example IV-1 was performed on the obtained heat-shrinkable sheet. Table 6 shows the results.
  • PET-2 (% by mass) 100 85 100
  • PC (% by mass) 50 60 ⁇
  • the heat-shrinkable laminated sheet of the present invention having a predetermined (A) layer constituting both outer layers and a predetermined (B) layer located between both outer layers ( Examples IV-1 and IV-2) were found to have a small natural shrinkage, excellent shrinkage finish, transparency, sheet waist (rigidity at room temperature), and excellent perforation cutability ( Example IV-1, Example IV-2).
  • a single-layer heat-shrinkable sheet composed of only the layer (A) is excellent in the evaluation of the transparency and the natural shrinkage, but the shrinkage is small. It was a component that was inferior in finish and perforation cutability.
  • the heat-shrinkable laminated sheet of the present invention (the sheet of Example IV-1 and Example IV-2) can be obtained by adding recycled resin to the raw materials of the (A) layer and the Z or (B) layer.
  • a sheet having good compatibility and excellent transparency was obtained. That is, it was a component that the heat-shrinkable laminated sheet of the present invention was also excellent in the recyclability.
  • the resin composition of the present invention has excellent mechanical properties such as transparency, impact resistance, fluidity, and elongation at break, and has secondary workability and the like in the same temperature range as PVC resin. Because of this, it can be applied to a wide range of applications, and is suitably used for applications where PVC resin has been used conventionally. For example, it is applied to building materials, interior parts, transparent sheets, resin-coated metal plates, molding sheets, colored plates, transparent plates, heat-shrinkable sheets, molded products, and the like.
  • the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention are used for applications such as shrink wrapping, shrink wrapping, and shrink labels.
  • FIG. 1 is a DSC thermogram showing a glass transition temperature (Tg) of a sheet obtained in Example I4.
  • FIG. 2 is a DSC thermogram showing a glass transition temperature (Tg) of the sheet obtained in Comparative Example I2.
  • FIG. 3 is a diagram showing loss tangent (tan ⁇ ) curves of Examples II I and II 2 and Comparative Examples II 1 and II 3

Abstract

[PROBLEMS] To obtain a resin blend composition having transparency, impact resistance, flowability, etc. [MEANS FOR SOLVING PROBLEMS] The resin blend composition comprises 1 to 99% by mass polycarbonate resin (b-1) and 1 to 99% by mass polyester resin (b-2), the polyester resin (b-2) being a polyester resin comprising: carboxylic acid monomer units (i) in which 80 to 100 mol% of all the units (i) are accounted for by aromatic dicarboxylic acid units; and glycol monomer units (ii) in which 0.1 to 40 mol% of all the units (ii) are accounted for by 1,4-CHDM units and 0.5 to 15 mol% of all the units (ii) are accounted for by polyalkylene glycol units having a number-average molecular weight of 500 to 3,000.

Description

混合樹脂組成物、該混合樹脂組成物を用いたシートと熱収縮性シート、 並びに、該熱収縮性シートを用いた収縮ラベルと包装体  Mixed resin composition, sheet and heat-shrinkable sheet using the mixed resin composition, and shrinkable label and package using the heat-shrinkable sheet
技術分野  Technical field
[0001] 本発明は、混合榭脂組成物、該混合樹脂組成物を用いたシートと熱収縮性シート The present invention relates to a mixed resin composition, a sheet using the mixed resin composition, and a heat-shrinkable sheet
、及び、該シートを用いた収縮ラベルと包装体に関し、さらに詳細には、透明性、耐 衝撃性、流動性及び二次加工性を有する混合榭脂組成物、該混合樹脂組成物を用 いたシートと熱収縮性シート、及び、該熱収縮性シートを用いた収縮ラベルと包装体 に関する。 And a shrinkable label and a package using the sheet. More specifically, a mixed resin composition having transparency, impact resistance, fluidity, and secondary workability, and the mixed resin composition were used. The present invention relates to a sheet and a heat-shrinkable sheet, and a shrink label and a package using the heat-shrinkable sheet.
背景技術  Background art
[0002] 従来から、透明性及び耐薬品性を有し、かつ諸物性のバランスが良好な榭脂であ るポリ塩ィ匕ビュル (以下、単に「PVC」ともいう)榭脂は、用途に応じて可塑剤や各種 配合剤を適当に選択して用いることによりガラス転移温度を幅広く制御できるため、 様々な用途に用いられてきた。ところが PVC榭脂は、廃棄後焼却すると塩素を含ん だガスを発生するという問題がある。そのため PVCの代替材料への研究が活発に進 められている。 PVC代替材料の有力な候補材料の 1つとして、透明性及び耐衝撃性 に優れたポリカーボネート系榭脂がある。し力しながら、この榭脂を用いたシート、成 形品等は、溶融粘度が高く流動性が低いため成形性に劣っていた。また、ポリカーボ ネート系榭脂は PVC榭脂よりもガラス転移温度が高いので耐熱性は良好であるが、 PVC榭脂の二次加工温度領域 (通常、 50°C以上 100°C以下程度)で二次加工 (真 空成形又は圧空成形など)を行うことは困難であった。  [0002] Conventionally, polychlorinated rubber (hereinafter, also referred to simply as "PVC"), which is a resin having transparency and chemical resistance and having a good balance of various physical properties, has been used in various applications. The glass transition temperature can be controlled in a wide range by appropriately selecting and using plasticizers and various compounding agents in accordance therewith, and thus it has been used for various applications. However, PVC resin has a problem that it emits chlorine-containing gas when incinerated after disposal. For this reason, research on alternative materials for PVC is being actively pursued. One of the promising candidate materials for PVC substitutes is polycarbonate resin with excellent transparency and impact resistance. However, sheets and molded articles using this resin were inferior in moldability due to high melt viscosity and low fluidity. Polycarbonate resin also has good heat resistance because it has a higher glass transition temperature than PVC resin, but in the secondary processing temperature range of PVC resin (usually about 50 ° C or more and 100 ° C or less). It was difficult to perform secondary processing (such as vacuum forming or pressure forming).
[0003] このようなポリカーボネート系榭脂の問題点を解決するために、ポリカーボネート系 榭脂にポリエステル系榭脂を配合した榭脂組成物が従来カゝら数多く提案されている 。例えば、ポリカーボネート榭脂と、ポリブチレンテレフタレート、ポリエチレンフタレー ト等のポリエステル榭脂とを混合したポリカーボネート榭脂組成物が特開昭 58— 183 91号公報 (特許請求の範囲参照)に開示されているが、得られるシート等は充分な 透明性を満足するものではな力つた。これは、ポリカーボネート榭脂とポリエステル榭 脂とのエステル交換反応が充分に進行して 、な 、ためと考えられる。 [0003] In order to solve such problems of the polycarbonate resin, many resin compositions in which a polyester resin is blended with a polycarbonate resin have been conventionally proposed. For example, a polycarbonate resin composition obtained by mixing a polycarbonate resin and a polyester resin such as polybutylene terephthalate and polyethylene phthalate is disclosed in Japanese Patent Application Laid-Open No. 58-18391 (refer to claims). However, the sheets obtained did not satisfy the required transparency. It is made of polycarbonate resin and polyester. It is considered that the transesterification reaction with the fat progressed sufficiently, and the reason was that.
[0004] これに対して、ポリカーボネート榭脂とポリエステル榭脂とのエステル交換反応を制 御することで流動性が改良され、かつ透明性、耐溶剤性及び耐衝撃性に優れた榭 脂組成物が特開平 10-87973号公報 (特許請求の範囲参照)に開示されているが、 エステル交換反応の制御は難しぐまた、末端に官能基を有するポリカーボネート榭 脂を用いる必要があり、問題であった。  [0004] On the other hand, by controlling the transesterification reaction between a polycarbonate resin and a polyester resin, a resin composition having improved fluidity and excellent transparency, solvent resistance and impact resistance is provided. However, it is difficult to control the transesterification reaction and it is necessary to use a polycarbonate resin having a functional group at a terminal, which is a problem. Was.
[0005] また、テレフタル酸とエチレングリコールと 1, 4ーシクロへキサンジメタノール(以下、 単に「1, 4—CHDM」ともいう)とから構成されるポリエステル榭脂であって、 1, 4 C HDM力 0モル%以上含有されるポリエステル榭脂は、ポリカーボネート榭脂と単に 溶融混合するだけで相容化し、透明で単一のガラス転移温度と良好な力学特性とを 有する榭脂組成物が得られること力 Res.Discl.(UK),229,182(1983)に開示されてい る。  [0005] Also, a polyester resin composed of terephthalic acid, ethylene glycol and 1,4-cyclohexanedimethanol (hereinafter, also simply referred to as "1,4-CHDM"), comprising 1,4C HDM Polyester resin having a power of 0 mol% or more is compatible with polycarbonate resin by simply melt-mixing, and a resin composition having a transparent, single glass transition temperature and good mechanical properties can be obtained. Disc. (UK), 229, 182 (1983).
[0006] しかしながら、 1, 4 CHDMを 40モル%以上含有するポリエステル榭脂は、通常、 ガラス転移温度が 80°C程度以上であり、ポリカーボネート榭脂との混合榭脂組成物 のガラス転移温度を PVC榭脂の二次カ卩ェ温度領域 (通常、 50°C以上 100°C以下程 度)に制御することには制限があった。  [0006] However, polyester resins containing 1,4 CHDM in an amount of 40 mol% or more usually have a glass transition temperature of about 80 ° C or more, and the glass transition temperature of a resin composition mixed with polycarbonate resin is reduced. There was a limitation in controlling the temperature of the PVC resin to the secondary temperature range (usually about 50 ° C or more and 100 ° C or less).
[0007] さらに、ポリカーボネート榭脂の透明性、耐衝撃性を損なわずに、流動性を向上さ せることを目的として、ポリカーボネート榭脂 5質量部以上 95質量部以下と、ポリエス テル榭脂 5質量部以上 95質量部以下とからなる混合樹脂であって、ポリエステル榭 脂の少なくとも 1種類力 テレフタル酸系成分力 なるジカルボン酸系重縮合成分と、 1, 4 CHDMを 40モル%以上含有するポリエステル榭脂であり、該榭脂の重量比 が全体のポリエステル榭脂成分の 10%以上である榭脂組成物が特開 2002-1274 8号公報に開示されている力 透明性及び耐衝撃性をバランス良く併有するものでは なぐ満足できるものではな力つた。  [0007] Furthermore, in order to improve the fluidity without impairing the transparency and impact resistance of the polycarbonate resin, the polycarbonate resin is 5 to 95 parts by mass and the polyester resin 5 parts by mass. A mixed resin comprising at least one part of a polyester resin and at least one part by weight of a polyester resin containing at least one kind of polyester resin, a terephthalic acid-based component, a dicarboxylic acid-based polycondensation component, and 1,4 CHDM at 40 mol% or more. A resin composition wherein the weight ratio of the resin is at least 10% of the total polyester resin component balances the force transparency and impact resistance disclosed in JP-A-2002-127488. It was not as satisfying as it could be if it had enough.
[0008] また、収縮包装や収縮結束包装、あるいはプラスチック容器の収縮ラベル、ガラス 容器の破壊飛散防止包装やキャップシールなどに広く利用される熱収縮性シートに 対しても、塩ィ匕ビュルの代替材料が求められている。熱収縮性シートには、収縮仕上 り性、 自然収縮(常温よりやや高い温度で収縮してしまうこと、例えば夏場においてシ ートが本来の使用前に少し収縮してしまうこと)率が小さいこと、透明性、シートの腰( 常温における剛性)、耐破断性等の機械的強度などに優れていること等が要求され る。 [0008] In addition, shrink wrapping and shrink wrapping packaging, heat shrinkable sheets widely used for shrink labels for plastic containers, packaging for preventing destruction and shattering of glass containers, cap seals, etc., are also used as substitutes for Shiori-Dani-Bulle. Materials are needed. The heat-shrinkable sheet has shrink finish, natural shrinkage (shrinkage at a temperature slightly higher than room temperature, for example, The sheet must shrink slightly before its original use.) It is required to have a low rate, transparency, excellent sheet stiffness (rigidity at room temperature), excellent mechanical strength such as rupture resistance, etc. You.
[0009] また、内外装及び家電、家具等の意匠性を高めるために用いられる榭脂被覆金属 板用シートに対しても塩ィ匕ビニルの代替材料が求められて 、る。このような榭脂被覆 金属板用シートには、ポリ塩ィ匕ビュルと同様の温度域 (通常、軟質ポリ塩ィ匕ビニル用 のカレンダー加工設備は、トラブル処理などの長時間の滞留時におけるポリ塩ィ匕ビ- ルの熱分解を抑制するために、カレンダーロールでのせん断発熱も考慮し、加熱上 限温度が 200°C程度の使用になって!/、る場合が多 、)でカレンダー加工等できること が要求される。また、榭脂被覆金属板用シートには、建築内層用榭脂被覆金属板の 評価項目の 1つである沸騰水浸漬試験を満足することが要求される。  [0009] There is also a demand for an alternative material to vinyl resin for a resin-coated metal sheet used for enhancing the design of interior and exterior, home appliances, furniture and the like. Such a resin-coated metal sheet has a temperature range similar to that of the polychlorinated vinyl. In order to suppress the thermal decomposition of the Shio-Daniel, considering the heat generated by shearing on the calender rolls, the upper temperature limit of the heating was about 200 ° C! It must be able to process. In addition, the sheet for resin-coated metal sheet is required to satisfy the boiling water immersion test, which is one of the evaluation items for the resin-coated metal sheet for building inner layers.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明の目的は、 PVC代替材料として好適に用いられ、透明性、耐衝撃性、流動 性及び二次加工性に優れた混合榭脂組成物、該混合樹脂組成物を用いたシートを 提供することにある。 [0010] An object of the present invention is to provide a mixed resin composition which is suitably used as a substitute material for PVC and which is excellent in transparency, impact resistance, fluidity, and secondary workability, and a sheet using the mixed resin composition. It is to provide.
[0011] また、本発明の別の目的は、 PVC代替材料力もなり、収縮仕上がり性、自然収縮、 透明性、シートの腰 (常温における剛性)等の機械的強度に優れた熱収縮性シート、 該熱収縮性シートを用いた収縮ラベルと包装体を提供することにある。  Another object of the present invention is to provide a heat-shrinkable sheet having excellent mechanical strength such as shrinkage finish, spontaneous shrinkage, transparency, and sheet stiffness (rigidity at ordinary temperature), which is also a substitute for PVC. An object of the present invention is to provide a shrink label and a package using the heat shrinkable sheet.
[0012] さらにまた、本発明の他の目的は、 PVC代替材料力もなり、低温でのカレンダー加 ェ性に優れ、耐沸騰水性に優れた榭脂被覆金属板用シートを提供することにある。 課題を解決するための手段  [0012] Still another object of the present invention is to provide a resin-coated sheet for a metal sheet which also has an excellent substitute for PVC, has excellent calenderability at low temperatures, and has excellent boiling water resistance. Means for solving the problem
[0013] 本発明者らは、鋭意検討を重ねた結果、ポリカーボネート系榭脂と特定のポリエス テル系榭脂とからなる混合榭脂組成物が上記課題を解消できることを見出し、本発 明を完成させるに至った。  The present inventors have conducted intensive studies and as a result, found that a mixed resin composition comprising a polycarbonate resin and a specific polyester resin can solve the above-mentioned problems, and completed the present invention. It led to.
[0014] すなわち、本発明の混合榭脂組成物は、ポリカーボネート系榭脂 (b—l) 1質量% 以上 99質量%以下と、ポリエステル系榭脂(b— 2) 1質量%以上 99質量%以下とから なる混合榭脂組成物において、該ポリエステル系榭脂 (b— 2)が、カルボン酸単量体 単位 (ィ)として、全力ルボン酸単量体単位 (ィ)中に芳香族ジカルボン酸単位を 80モ ル%以上 100モル%以下含有すると共に、グリコール単量体単位(口)として、全ダリ コール単量体単位(口)中に 1, 4—シクロへキサンジメタノール単位 0. 1モル0 /0以上 4 0モル%以下と、数平均分子量が 500以上 3, 000以下のポリアルキレングリコール 単位 0. 5モル%以上 15モル%以下とを含有するポリエステル系榭脂であることを特 徴とする。 That is, the mixed resin composition of the present invention comprises 1% by mass or more and 99% by mass or less of the polycarbonate resin (bl) and 1% by mass or more and 99% by mass or less of the polyester resin (b-2). In the mixed resin composition comprising: the polyester resin (b-2) is a carboxylic acid monomer As a unit (a), the sulfonic acid monomer unit (a) contains an aromatic dicarboxylic acid unit in an amount of 80 mol% or more and 100 mol% or less. 1 in monomer units (mouth), 4 and 4 0 mol% Cyclohexanedicarboxylic methanol unit 0.1 mole 0/0 or cyclohexane, a number average molecular weight of 500 or more 3,000 or less polyalkylene glycol units 0 It is characterized by being a polyester resin containing not less than 5 mol% and not more than 15 mol%.
[0015] ここで、前記ポリカーボネート系榭脂 (b— 1)は芳香族ポリカーボネート系榭脂である ことが好ましい。  Here, the polycarbonate resin (b-1) is preferably an aromatic polycarbonate resin.
[0016] また、前記ポリエステル系榭脂 (b-2)は、示差走査熱量測定により加熱速度 10°C [0016] The polyester resin (b-2) has a heating rate of 10 ° C by differential scanning calorimetry.
Z分で測定されるガラス転移温度が 0°C以上 50°C以下であることができる。 The glass transition temperature, measured in Z minutes, can be between 0 ° C and 50 ° C.
[0017] また、前記混合榭脂組成物は、示差走査熱量測定により加熱速度 10°CZ分で測 定されるガラス転移温度が単一であり、該ガラス転移温度が、前記ポリカーボネート 系榭脂 (b— 1)のガラス転移温度と前記ポリエステル系榭脂 (b— 2)のガラス転移温度 との間に位置する温度であることができる。 Further, the mixed resin composition has a single glass transition temperature measured at a heating rate of 10 ° CZ by differential scanning calorimetry, and the glass transition temperature is the same as the polycarbonate resin ( It can be a temperature located between the glass transition temperature of b-1) and the glass transition temperature of the polyester resin (b-2).
[0018] また、前記混合榭脂組成物は、示差走査熱量測定により加熱速度 10°CZ分で測 定されるガラス転移温度が 50°C以上 100°C以下である力、あるいは、このガラス転移 温度が 100°C以上 150°C以下であることができる。 Further, the mixed resin composition has a glass transition temperature of 50 ° C. or more and 100 ° C. or less measured by differential scanning calorimetry at a heating rate of 10 ° C.Z, or this glass transition. The temperature can be between 100 ° C and 150 ° C.
[0019] また、前記混合榭脂組成物は、前記ポリカーボネート系榭脂 (b— 1) 75質量%以上[0019] The mixed resin composition may be the polycarbonate resin (b-1) in an amount of 75% by mass or more.
95質量%以下と、前記ポリエステル系榭脂 (b— 2) 5質量%以上 25質量%以下とから なることができる。 95% by mass or less, and 5% by mass or more and 25% by mass or less of the polyester resin (b-2).
[0020] あるいは、前記混合榭脂組成物は、前記ポリカーボネート系榭脂 (b— 1) 60質量% 以上 95質量%以下と、前記ポリエステル系榭脂 (b— 2) 5質量%以上 40質量%以下 と力 なることができる。  [0020] Alternatively, the mixed resin composition comprises the polycarbonate resin (b-1) in an amount of 60% by mass or more and 95% by mass or less, and the polyester resin (b-2) in an amount of 5% by mass or more and 40% by mass or less. The following can be helpful.
[0021] あるいは、前記混合榭脂組成物は、前記ポリカーボネート系榭脂 (b— 1) 30質量% 以上 75質量%以下と、前記ポリエステル系榭脂 (b— 2) 25質量%以上 75質量%以 下とからなることができる。  [0021] Alternatively, the mixed resin composition comprises 30% by mass or more and 75% by mass or less of the polycarbonate resin (b-1) and 25% by mass or more and 75% by mass of the polyester resin (b-2). It can consist of:
[0022] あるいは、前記混合榭脂組成物は、前記ポリカーボネート系榭脂 (b— 1) 30質量% 以上 70質量%以下と、前記ポリエステル系榭脂 (b— 2) 30質量%以上 70質量%以 下とからなることができる。 Alternatively, the mixed resin composition comprises 30% by mass or more and 70% by mass or less of the polycarbonate resin (b-1) and 30% by mass or more and 70% by mass or less of the polyester resin (b-2). Less than And can consist of below.
[0023] 本発明のシートは、上記いずれかの混合榭脂組成物を用いてなることを特徴とする  [0023] The sheet of the present invention is characterized by using any of the above mixed resin compositions.
[0024] 本発明の熱収縮性シートは、前記ポリカーボネート系榭脂 (b— 1) 30質量%以上 70 質量%以下と、前記ポリエステル系榭脂 (b-2) 30質量%以上 70質量%以下とから なる上記混合榭脂組成物を用いてなるシートを、少なくとも一方向に延伸し、 80°Cの 温水中に 10秒間浸漬したときの熱収縮率力 少なくとも一方向にぉ 、て 20%以上で あることを特徴とする。 [0024] The heat-shrinkable sheet of the present invention is characterized in that the polycarbonate resin (b-1) is 30% by mass or more and 70% by mass or less, and the polyester resin (b-2) is 30% by mass or more and 70% by mass or less. A sheet comprising the above mixed resin composition comprising: stretching in at least one direction and immersing in hot water at 80 ° C for 10 seconds for at least 20% or more in at least one direction It is characterized by the following.
[0025] ここで、本発明の熱収縮性シートは、振動周波数 10Hzで動的粘弾性測定を行つ たときの損失正接 (tan δ )曲線が、 70°C以上 130°C以下の範囲内に単一のピークを 有し、前記損失正接曲線の半値幅が 15°C以上であることができる。  Here, in the heat-shrinkable sheet of the present invention, the loss tangent (tan δ) curve obtained by performing dynamic viscoelasticity measurement at a vibration frequency of 10 Hz is within a range of 70 ° C. or more and 130 ° C. or less. And a half width of the loss tangent curve may be 15 ° C. or more.
[0026] 本発明の熱収縮性積層シートは、両外層を構成する (A)層と、該両外層の間に位 置する(B)層とを有し、少なくとも一軸方向に延伸され、 80°Cの温水中に 10秒間浸 漬したときの主収縮方向における熱収縮率が 20%以上である熱収縮性積層シート であって、前記 (A)層が、熱可塑性ポリエステル系榭脂 (a— 1)を主成分とする榭脂 組成物からなり、前記 (B)層が、前記ポリカーボネート系榭脂 (b— 1) 30質量%以上 7 0質量%以下と、前記ポリエステル系榭脂 (b-2) 30質量%以上 70質量%以下とから なる上記混合榭脂組成物からなることを特徴とする。  The heat-shrinkable laminated sheet of the present invention has a layer (A) constituting both outer layers, and a layer (B) located between the outer layers, and is stretched in at least one axial direction. A heat-shrinkable laminated sheet having a heat-shrinkage ratio of 20% or more in the main shrinkage direction when immersed in warm water of 10 ° C for 10 seconds, wherein the layer (A) is a thermoplastic polyester resin (a — The resin (B) is composed of a resin composition containing (1) as a main component, and the layer (B) comprises 30% by mass or more and 70% by mass or less of the polycarbonate resin (b-1) and the polyester resin (b). -2) It is characterized by comprising the above mixed resin composition comprising 30% by mass or more and 70% by mass or less.
[0027] ここで、前記熱可塑性ポリエステル系榭脂(a— 1)は、該熱可塑性ポリエステル系榭 脂(a—l)における全グリコール単量体単位中に 1, 4ーシクロへキサンジメタノール単 位を 15モル0 /0以上 50モル0 /0以下含有する非晶性ポリエチレンテレフタレート樹脂で あることができる。 Here, the thermoplastic polyester resin (a-1) contains 1,4-cyclohexanedimethanol alone in all the glycol monomer units in the thermoplastic polyester resin (a-1). position may be a a 15 mole 0/0 to 50 mole 0/0 non-crystalline polyethylene terephthalate resin containing less.
[0028] 本発明の榭脂被覆金属板用シートは、ポリカーボネート系榭脂 (b— 1) 60質量%以 上 95質量%以下と、ポリエステル系榭脂(b— 2) 5質量%以上 40質量%以下とからな る上記混合榭脂組成物を用いてなる榭脂被覆金属板用シートであることを特徴とす る。  [0028] The resin-coated metal sheet sheet of the present invention comprises a polycarbonate resin (b-1) of 60% by mass to 95% by mass, and a polyester resin (b-2) of 5% by mass to 40% by mass. % Or less, characterized in that it is a resin-coated metal sheet using the above mixed resin composition.
[0029] 本発明の榭脂被覆金属板用シートの製造方法は、上記榭脂被覆金属板用シート を製造する方法であって、カレンダー加工法により、前記混合榭脂組成物の流動開 始温度 (T1)より 10°C高 、温度 (T1+10°C)から 200°Cまでの温度で成形することを 特徴とする。 The method for producing a sheet for a resin-coated metal sheet of the present invention is a method for producing the sheet for a resin-coated metal sheet, wherein the mixed resin composition is flow-opened by a calendering method. It is characterized by forming at a temperature 10 ° C higher than the starting temperature (T1) and at a temperature from (T1 + 10 ° C) to 200 ° C.
[0030] 本発明の榭脂被覆金属板は、上記榭脂被覆金属板用シートで被覆されて!ヽること を特徴とする。  [0030] The resin-coated metal sheet of the present invention is characterized by being covered with the resin-coated metal sheet.
[0031] 本発明の収縮ラベルは、上記熱収縮性シート又は上記いずれかの熱収縮性積層 シートを用いることを特徴とする。  [0031] The shrinkable label of the present invention is characterized in that the heat-shrinkable sheet or any one of the heat-shrinkable laminated sheets is used.
[0032] 本発明の包装体は、上記収縮ラベルを装着したことを特徴とする。 [0032] The package of the present invention is characterized in that the shrinkable label is attached.
[0033] 本発明の成形品は、上記いずれかの混合榭脂組成物を用いることを特徴とする。 [0033] The molded article of the present invention is characterized by using any of the mixed resin compositions described above.
発明の効果  The invention's effect
[0034] 本発明によれば、 PVC代替材料として好適に用いられ、透明性、耐衝撃性、流動 性及び二次加工性に優れた混合榭脂組成物、該混合樹脂組成物を用いたシートを 提供することができる。  [0034] According to the present invention, a mixed resin composition which is suitably used as a substitute material for PVC and is excellent in transparency, impact resistance, fluidity, and secondary workability, and a sheet using the mixed resin composition Can be provided.
[0035] また、本発明によれば、 PVC代替材料カゝらなり、収縮仕上がり性、自然収縮、透明 性、シートの腰 (常温における剛性)等の機械的強度に優れた熱収縮性シート、該熱 収縮性シートを用いた収縮ラベルと包装体を提供することができる。  [0035] Further, according to the present invention, a heat-shrinkable sheet made of a PVC substitute material, having excellent mechanical strength such as shrink finish, natural shrinkage, transparency, and sheet stiffness (rigidity at room temperature), A shrink label and a package using the heat shrinkable sheet can be provided.
[0036] さらにまた、本発明によれば、 PVC代替材料力 なり、低温でのカレンダー加工性 に優れ、耐沸騰水性に優れた榭脂被覆金属板用シートを提供することができる。 発明を実施するための形態 Further, according to the present invention, it is possible to provide a sheet for a resin-coated metal sheet that is excellent in PVC substitute material, excellent in calendering at low temperatures, and excellent in boiling water resistance. BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下、本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail.
なお、本発明における数値範囲の上限値及び下限値は、本発明が特定する数値 範囲内から僅かに外れる場合であっても、当該数値範囲内と同様の作用効果を備え ている限り本発明の均等範囲に包含するものである。  Note that the upper and lower limits of the numerical range in the present invention may be slightly different from the numerical range specified by the present invention, as long as they have the same operational effects as in the numerical range. It is included in the equivalent range.
[0038] [混合榭脂組成物] [0038] [Mixed resin composition]
本発明の混合榭脂組成物は、ポリカーボネート系榭脂 (b—1)と、ポリエステル系榭 脂 (b-2)とからなる。  The mixed resin composition of the present invention comprises a polycarbonate resin (b-1) and a polyester resin (b-2).
[0039] 本発明に用いられるポリカーボネート系榭脂 (b— 1)は、芳香族ポリカーボネート系 榭脂であることが好ましい。芳香族ポリカーボネート系榭脂 (b-11)は、ホモポリマー 及びコポリマーのいずれであってもよい。また、芳香族ポリカーボネート系榭脂(b— 1 1)は、分岐構造であっても、直鎖構造であってもよいし、さらに、分岐構造と直鎖構 造の混合物であってもよ 、。 The polycarbonate resin (b-1) used in the present invention is preferably an aromatic polycarbonate resin. The aromatic polycarbonate resin (b-11) may be either a homopolymer or a copolymer. In addition, aromatic polycarbonate resin (b-1 1) may be a branched structure, a linear structure, or a mixture of a branched structure and a linear structure.
[0040] 本発明に用いられる芳香族ポリカーボネート系榭脂 (b— 11)は、ホスゲン法やエス テル交換法、ピリジン法など公知の 、ずれかの方法を用いて製造することができる。 以下に、一例として、エステル交換法による芳香族ポリカーボネート系榭脂の製造方 法を説明する。  [0040] The aromatic polycarbonate resin (b-11) used in the present invention can be produced by any known method such as a phosgene method, an ester exchange method, and a pyridine method. Hereinafter, as one example, a method for producing an aromatic polycarbonate resin by a transesterification method will be described.
[0041] エステル交換法は、 2価フエノールと炭酸ジエステルとを塩基性触媒、さらにはこの 塩基性触媒を中和する酸性物質を添加して、溶融エステル交換縮重合を行う製造方 法である。  [0041] The transesterification method is a production method in which a divalent phenol and a carbonic acid diester are added with a basic catalyst, and further an acidic substance that neutralizes the basic catalyst is added to carry out melt transesterification polycondensation.
2価フエノールの代表例としては、ビスフエノール類が挙げられ、特に 2, 2 ビス(4 ヒドロキシフエ-ル)プロパン、すなわちビスフエノール Aが好ましく用いられる。また、 ビスフエノール Aの一部または全部を他の 2価フエノールで置き換えてもよ!/、。他の 2 価フエノールとしては、ハイドロキノン、 4, 4ージヒドロキシジフエニル、ビス(4—ヒドロキ シフエ-ル)メタンや 1 , 1 ビス(4ーヒドロキシフエ-ル)ェタンなどのビス(4—ヒドロキシ フエ-ル)アルカン、 1 , 1 ビス(4ーヒドロキシフエ-ル)シクロへキサンなどのビス(4— ヒドロキシフエ-ル)シクロアルカン、ビス(4—ヒドロ  Representative examples of divalent phenols include bisphenols, and 2,2 bis (4-hydroxyphenyl) propane, that is, bisphenol A is particularly preferably used. Also, part or all of bisphenol A may be replaced with another divalent phenol! / ,. Other divalent phenols include bis (4-hydroxyphenol) such as hydroquinone, 4,4-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane and 1,1 bis (4-hydroxyphenyl) ethane. ) Alkanes, bis (4-hydroxyphenyl) cycloalkanes such as 1,1 bis (4-hydroxyphenyl) cyclohexane, bis (4-hydro
キシフエ-ル)スルフイド、ビス(4ーヒドロキシフエ-ル)スルフォン、ビス(4ーヒドロキシ フエ-ル)スルフォキシド、ビス(4ーヒドロキシフエ-ル)エーテルのような化合物、 2, 2 —ビス(3—メチルー 4—ヒドロキシフエ-ル)プロパン、 2, 2 ビス(3, 5 ジメチルー 4ーヒ ドロキシフエ-ル)プロパンのようなアルキル化ビスフエノール類、 2, 2 ビス(3, 5—ジ ブロモー 4—ヒドロキシフエ-ル)プロパン、 2, 2 ビス(3, 5—ジクロロー 4ーヒドロキシフエ -ル)プロパンのようなハロゲン化ビスフエノール類を挙げることができる。  Compounds such as xyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ether, 2,2-bis (3-methyl-4-hydroxy) Alkylated bisphenols such as phenol) propane, 2,2 bis (3,5 dimethyl-4-hydroxyphenol) propane, 2,2 bis (3,5-dibromo-4-hydroxyphenol) Examples thereof include halogenated bisphenols such as propane and 2,2 bis (3,5-dichloro-4-hydroxyphenol) propane.
[0042] 炭酸ジエステルの代表例としては、ジフエニルカーボネート、ジトリールカーボネー ト、ビス(クロ口フエ-ル)カーボネート、 m—クレジルカーボネート、ジナフチルカーボ ネート、ビス(ビフエニル)カーボネート、ジェチルカーボネート、ジメチルカーボネート 、ジブチルカーボネート、ジシクロへキシルカーボネートなどが挙げられる。これらのう ち、特にジフエ二ルカーボネートが好ましく用いられる。  [0042] Representative examples of the carbonic acid diester include diphenyl carbonate, ditolyl carbonate, bis (chlorophenol) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (biphenyl) carbonate, and getyl. Carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like. Of these, diphenyl carbonate is particularly preferably used.
[0043] 本発明に用いられる芳香族ポリカーボネート系榭脂 (b— 11)は、力学特性と成形カロ ェ性のバランスを考慮すると、重量平均分子量が、通常、 10, 000以上、好ましくは 2 0, 000以上であり、また、 100, 000以下、好まし <ίま 50, 000以下のもの力用!ヽら れる。重量平均分子量が 10, 000以上であれば、得られる芳香族ポリカーボネート 系榭脂の力学強度が低下することがなぐまた、上限が 100, 000であれば、適度な 溶融粘度が得られるため、成形加工性も維持でき、また、比較的短時間で重合でき るため、生産サイクルやコストの点からも好ましい。なお、本発明においては、芳香族 ポリカーボネート系榭脂 (b— 11)を一種のみを単独で、又は二種以上を混合して使 用してちょい。 The aromatic polycarbonate resin (b-11) used in the present invention has mechanical properties and Taking into account the balance of plasticity, the weight-average molecular weight is usually 10,000 or more, preferably 20 000 or more, and 100,000 or less, preferably <50,000 or less. ! If the weight average molecular weight is 10,000 or more, the mechanical strength of the obtained aromatic polycarbonate resin will not decrease.If the upper limit is 100,000, an appropriate melt viscosity will be obtained, so molding Since processability can be maintained and polymerization can be performed in a relatively short time, it is preferable from the viewpoint of production cycle and cost. In the present invention, the aromatic polycarbonate resin (b-11) may be used alone or in a combination of two or more.
[0044] 次に、本発明の榭脂組成物を構成するポリエステル系榭脂 (b— 2)につ ヽて説明す る。  Next, the polyester resin (b-2) constituting the resin composition of the present invention will be described.
ポリエステル系榭脂 (b— 2)は、カルボン酸単量体単位 (ィ)として、全力ルボン酸単 量体単位 (ィ)中に芳香族ジカルボン酸単位を 80モル%以上 100モル%以下含有 すると共に、グリコール単量体単位(口)として、全グリコール単量体単位(口)中に 1, 4ーシクロへキサンジメタノール単位 0. 1モル%以上 40モル%以下と、数平均分子量 500以上 3, 000以下のポリアルキレングリコール単位 0. 5モル0 /0以上 15モル0 /0以 下とを含有する。なお、ポリエステル系榭脂 (b— 2)は、上記条件を満たす限り、他の カルボン酸単量体単位、他のグリコール単量体単位を含んでもよ!、。 The polyester resin (b-2) contains the aromatic dicarboxylic acid unit in the total amount of carboxylic acid monomer units (i) in the range of 80 mol% to 100 mol% as the carboxylic acid monomer unit (ii). In addition, as a glycol monomer unit (mouth), 1,4-cyclohexanedimethanol unit is 0.1 mol% or more and 40 mol% or less in all glycol monomer units (mouth), and the number average molecular weight is 500 or more 3 , containing a 15 mole 0/0 hereinafter 000 following polyalkylene glycol unit 0.5 mole 0/0 above. The polyester resin (b-2) may contain other carboxylic acid monomer units and other glycol monomer units as long as the above conditions are satisfied! ,.
[0045] ポリエステル系榭脂 (b— 2)におけるカルボン酸単量体単位 (ィ)は、芳香族ジカル ボン酸単位を、ポリエステル系榭脂 (b— 2)における全力ルボン酸単量体単位 (ィ)中 に 80モル%以上、好ましくは 85モル%以上、さらに好ましくは 90モル%以上含むこ とが望ましい。該芳香族ジカルボン酸は、得られるポリエステル系榭脂 (b— 2)に耐熱 性及び力学強度を付与するものである。芳香族ジカルボン酸単位の含有量力 全力 ルボン酸単量体単位 (ィ)中 80モル%以上であれば、得られるポリエステル系榭脂( b— 2)が良好な耐熱性及び力学強度を示すようになる。一方、芳香族ジカルボン酸 単位の含有量の上限は特に制限はなぐ芳香族ジカルボン酸単位の含有量は 100 モル%以下であることが好まし!/、。  [0045] The carboxylic acid monomer unit (ii) in the polyester resin (b-2) is the same as the carboxylic acid monomer unit in the polyester resin (b-2). It is desirable that the content of the compound be at least 80 mol%, preferably at least 85 mol%, more preferably at least 90 mol%. The aromatic dicarboxylic acid imparts heat resistance and mechanical strength to the obtained polyester resin (b-2). When the content of aromatic dicarboxylic acid unit is at least 80 mol% in the rubonic acid monomer unit (ii), the resulting polyester resin (b-2) should have good heat resistance and mechanical strength. Become. On the other hand, the upper limit of the content of the aromatic dicarboxylic acid unit is not particularly limited, and the content of the aromatic dicarboxylic acid unit is preferably 100 mol% or less!
[0046] 用いられる芳香族ジカルボン酸としては特に制限はな 、が、例えば、テレフタル酸 、イソフタル酸、ナフタレン 1, 4又は 2, 6—ジカルボン酸、アントラセンジカルボン酸 、 4, 4,ージフエ-ルジカルボン酸、 4, 4,ージフエ-ルエーテルジカルボン酸、 5—ス ルホイソフタル酸、 3—スルホイソフタル酸ナトリウム等が挙げられる。芳香族ジカルボ ン酸は、そのエステルとして重合に供される場合もある。用いられる芳香族ジカルボ ン酸エステルとしては特に制限はないが、例えば、上記の芳香族ジカルボン酸のェ ステルが好ましぐ具体的には、低級アルキルエステル、ァリールエステル、炭酸エス テル、酸ノ、ロゲンィ匕物等が挙げられる。 [0046] The aromatic dicarboxylic acid used is not particularly limited, but, for example, terephthalic acid, isophthalic acid, naphthalene 1,4 or 2,6-dicarboxylic acid, anthracene dicarboxylic acid , 4,4, diphenyldicarboxylic acid, 4,4, diphenyletherdicarboxylic acid, 5-sulfoisophthalic acid, sodium 3-sulfoisophthalate and the like. Aromatic dicarboxylic acids may be subjected to polymerization as their esters. The aromatic dicarbonate to be used is not particularly limited. For example, the above-mentioned esters of aromatic dicarboxylic acids are preferred. Specifically, lower alkyl esters, aryl esters, ester carbonates, and acid esters are preferred. And Rogenie-danimono.
[0047] ここでは、カルボン酸単量体単位 (ィ)中に、脂肪族ジカルボン酸単位を少量 (通常 、 20モル%未満の範囲)含んでもよい。脂肪族ジカルボン酸としては、特に制限はな く、シユウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、セバシン酸、ァゼライン 酸、ドデカンジオン酸、ダイマー酸、 1, 3又は 1, 4ーシクロへキサンジカルボン酸、シ クロペンタンジカルボン酸、 4, 4'ージシクロへキシルジカルボン酸等が挙げられる。  Here, the carboxylic acid monomer unit (a) may contain a small amount of the aliphatic dicarboxylic acid unit (generally, less than 20 mol%). The aliphatic dicarboxylic acid is not particularly limited, and may be oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, sebacic acid, azelaic acid, dodecandionic acid, dimer acid, 1,3 or 1,4-cyclohexane. Xandicarboxylic acid, cyclopentanedicarboxylic acid, 4,4'-dicyclohexyldicarboxylic acid and the like are included.
[0048] ポリエステル系榭脂 (b— 2)に使用されるグリコール単量体単位 (口)は、上述したよう に、 1, 4 CHDM単位を 0. 1モル%以上 40モル%以下と、数平均分子量が 500以 上 3, 000以下のポリアルキレングリコール単位を 0. 5モル%以上 15モル%以下含 む。  [0048] As described above, the number of glycol monomer units (ports) used in the polyester-based resin (b-2) is 0.1 mol% or more and 40 mol% or less, as described above. It contains 0.5 to 15 mol% of polyalkylene glycol units having an average molecular weight of 500 to 3,000.
[0049] 上記条件を満たす限りそれ以外に特に制限はなぐグリコール単量体単位 (口)とし て、例えば、エチレングリコール、ジエチレングリコール(副成する成分も含む)、 1, 2 —プロピレングリコール、 1, 3 プロパンジオール、 2, 2 ジメチルー 1, 3 プロパンジ オール、トランス一又はシス 2, 2, 4, 4ーテトラメチルー 1, 3—シクロブタンジオール、 2, 2, 4, 4ーテトラメチルー 1, 3—シクロブタンジオール、 1, 4 ブタンジオール、ネオ ペンチルグリコール、 1, 5 ペンタンジオール、 1, 6—へキサンジオール、 1, 3—シク 口へキサンジメタノール、デカメチレングリコール、シクロへキサンジオール、 p キシレ ンジォ一ノレ、ビスフエノーノレ A、テトラブロモビスフエノール A、テトラブロモビスフエノ ール A ビス(2—ヒドロキシェチルエーテル)などの単位を使用することができる。  [0049] Other glycol monomer units (ports) that are not particularly limited as long as the above conditions are satisfied include, for example, ethylene glycol, diethylene glycol (including by-product components), 1,2-propylene glycol, 3 propanediol, 2,2 dimethyl-1,3 propanediol, trans- or cis 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1, 4 Butanediol, neopentyl glycol, 1,5 pentanediol, 1,6-hexanediol, 1,3-cyclohexanedimethanol, decamethylene glycol, cyclohexanediol, p-xylenediol, bisphenolone A , Tetrabromobisphenol A, tetrabromobisphenol A bis (2-hydroxyethyl ether It is possible to use the unit, such as.
[0050] これらは一種のみを単独で、又は二種以上を混合して使用することができる。また、 ポリエステル系榭脂に、色調、透明性、耐熱性、耐衝撃性等を適宜付与することがで きる。得られるポリエステル系榭脂に成形時における熱安定性を付与できること、安 価で工業的に入手が容易であること等を考慮すると、グリコール単量体としてはェチ レングリコールを用いることが好まし 、。 [0050] These can be used alone or in combination of two or more. Further, color tone, transparency, heat resistance, impact resistance and the like can be appropriately imparted to the polyester resin. Considering that the resulting polyester resin can be imparted with thermal stability at the time of molding and that it is inexpensive and easily available industrially, the glycol monomer is an alcohol monomer. It is preferable to use len glycol.
[0051] グリコール単量体単位(口)で使用される 1, 4—CHDM単位は、得られるポリエステ ル系榭脂に主に耐衝撃性を付与するものである。従来、テレフタル酸単位と、ェチレ ングリコール単位及び 1, 4 CHDM単位とからなるポリエステル系榭脂と、ポリカー ボネート系榭脂とを混合させて混合榭脂組成物を得る場合、ポリエステル系榭脂とポ リカーボネート系榭脂とを良好に相容化させて、透明な単一のガラス転移温度 (Tg) 及び良好な力学特性を併有する榭脂組成物を得るためには、 1, 4 CHDM単位は 少なくとも 40モル%含有させるのが一般的であった (例えば、  [0051] The 1,4-CHDM unit used in the glycol monomer unit (mouth) mainly gives impact resistance to the resulting polyester resin. Conventionally, when a mixed resin composition is obtained by mixing a polyester resin composed of a terephthalic acid unit, an ethylene glycol unit and 1,4 CHDM units, and a polycarbonate resin, the polyester resin is used. In order to obtain a transparent resin composition having both a single glass transition temperature (Tg) and good mechanical properties by well compatibilizing the polycarbonate resin with 1,4 CHDM units Was typically at least 40 mol% (eg,
Res.Discl.(UK),229, 182(1983)参照)。しかしながら、 1, 4 CHDM単位力 0モル0 /0 以上含有されるようなポリエステル系榭脂は、通常、 Tgが 80°C程度以上であるため、 ポリカーボネート系榭脂との混合榭脂組成物の Tgを PVC榭脂の二次加工を行う温 度域 (通常、 50°C以上 100°C以下程度)に制御することは困難であった。本発明者ら は、鋭意検討を重ねた結果、ポリカーボネート系榭脂と特定のポリエステル系榭脂と の混合榭脂組成物であれば、ポリエステル系榭脂中の 1, 4 CHDM単位の含有量 力 S40モル%以下であっても相溶性を有することを見出した。 Res. Discl. (UK), 229, 182 (1983)). However, 1, 4 polyester榭脂as contained CHDM unit force 0 mole 0/0 or more, usually, since Tg is above about 80 ° C, the mixture榭脂composition of polycarbonate-based榭脂It was difficult to control Tg within the temperature range (usually about 50 ° C or higher and 100 ° C or lower) where the secondary processing of PVC resin was performed. As a result of intensive studies, the present inventors have found that a mixed resin composition of a polycarbonate resin and a specific polyester resin has a content of 1,4 CHDM units in the polyester resin. It has been found that they have compatibility even when S is 40 mol% or less.
[0052] ポリエステル系榭脂(b—2)における 1, 4 CHDM単位の含有量力 グリコール単 量体単位(口)中 0. 1モル%以上であれば、得られるポリエステル系榭脂(b— 2)に耐 衝撃性を付与することができ、またその上限力 0モル%であれば、得られるポリエス テル榭脂 (b-2)のガラス転移温度を低下させる効果が得られる。本発明にお ヽては 、 1, 4 CHDM単位の含有量は、ポリエステル系榭脂(b—2)における全グリコール 単量体単位(口)中に 1モル%以上、より好ましくは 10モル%以上であり、また、 38モ ル%以下、より好ましくは 35モル%以下であることが望ましい。なお、 1, 4 CHDM には、シス型とトランス型の 2種類の異性体が存在する力 いずれであってもよい。  When the content of 1,4 CHDM units in the polyester resin (b-2) is 0.1 mol% or more in the glycol monomer unit (mouth), the obtained polyester resin (b-2) ) Can be given impact resistance, and if its upper limit is 0 mol%, the effect of lowering the glass transition temperature of the obtained polyester resin (b-2) can be obtained. In the present invention, the content of 1,4 CHDM units is 1 mol% or more, more preferably 10 mol%, in all the glycol monomer units (mouth) in the polyester resin (b-2). It is more than 38 mol%, more preferably, 35 mol% or less. In addition, 1,4 CHDM may be a force in which two types of isomers, cis-type and trans-type, exist.
[0053] グリコール単量体単位(口)に含まれる、数平均分子量が 500以上 3, 000以下のポ リアルキレングリコール単位は、得られるポリエステル系榭脂に主に柔軟性と低 ヽガラ ス転移温度(0°C以上 50°C以下)を付与するものである。このポリアルキレングリコー ルの含有量力 グリコール単量体単位(口)中、 0. 5モル%以上であれば、得られる ポリエステル系榭脂に、柔軟性や低いガラス転移温度を付与でき、また上限が 15モ ル%であれば、得られるポリエステル系榭脂 (b— 2)の熱安定性や力学強度の低下を 抑えることができる。本発明においては、数平均分子量が 500以上 3, 000以下のポ リアルキレングリコールの含有量は、グリコール単量体単位中、 1モル%以上、より好 ましくは 3モル%以上であり、かつ、 12モル%以下、より好ましくは 10モル%以下であ ることが望ましい。 [0053] The polyalkylene glycol unit having a number average molecular weight of 500 or more and 3,000 or less contained in the glycol monomer unit (mouth) mainly has flexibility and low glass transition in the obtained polyester resin. The temperature (0 ° C or more and 50 ° C or less) is given. When the content of the polyalkylene glycol in the glycol monomer unit (mouth) is 0.5 mol% or more, the resulting polyester resin can be imparted with flexibility and a low glass transition temperature, and the upper limit can be increased. 15 m %, It is possible to suppress a decrease in thermal stability and mechanical strength of the obtained polyester resin (b-2). In the present invention, the content of the polyalkylene glycol having a number average molecular weight of 500 to 3,000 is 1 mol% or more, more preferably 3 mol% or more, in the glycol monomer unit, and It is desirable that the content be 12 mol% or less, more preferably 10 mol% or less.
[0054] 前記ポリアルキレングリコールは、数平均分子量が 500以上、好ましくは 800以上、 さらに好ましくは 1, 000以上であり、また、 3, 000以下、好ましくは 2, 000以下であ ることが望ましい。ポリアルキレングリコールの数平均分子量が 500以上であれば、得 られるポリエステル系榭脂 (b— 2)に柔軟性を十分付与でき、また上限が 3, 000であ れば、他の成分やポリマーとの相溶性が低下し、重合反応が停滞したり、得られるポ リエステル系榭脂の力学強度が低下したりすることを抑えることができる。  [0054] The polyalkylene glycol has a number average molecular weight of 500 or more, preferably 800 or more, more preferably 1,000 or more, and desirably 3,000 or less, preferably 2,000 or less. . If the polyalkylene glycol has a number average molecular weight of 500 or more, the resulting polyester resin (b-2) can have sufficient flexibility, and if the upper limit is 3,000, it can be mixed with other components and polymers. , The polymerization reaction is stagnated, and the mechanical strength of the obtained polyester resin can be suppressed from being reduced.
[0055] また、前記ポリアルキレングリコールは、数平均分子量の異なるものを複数種併用し てもよい。複数種併用する場合には、均一に混合した状態での数平均分子量が上記 範囲内であることが好ましい。なお、ポリアルキレングリコールの数平均分子量は、ゲ ルパーミエーシヨンクロマトグラフィー等の一般的な方法により測定することができる。  [0055] Further, as the polyalkylene glycol, plural kinds having different number average molecular weights may be used in combination. When a plurality of types are used in combination, it is preferable that the number average molecular weight in a uniformly mixed state is within the above range. The number average molecular weight of the polyalkylene glycol can be measured by a general method such as gel permeation chromatography.
[0056] このようなポリアルキレングリコールとしては、ポリエチレングリコール、ポリプロピレン グリコール、ポリエチレングリコール ポリプロピレングリコールブロック共重合体、ポリ テトラメチレングリコール、ポリへキサメチレングリコール等が挙げられ、ポリテトラメチ レンダリコールであることが特に好ましい。これらは一種のみを単独で、または二種以 上を混合して使用することができる。  [0056] Examples of such polyalkylene glycols include polyethylene glycol, polypropylene glycol, polyethylene glycol-polypropylene glycol block copolymer, polytetramethylene glycol, polyhexamethylene glycol, and the like. Particularly, polytetramethylene glycol is preferred. preferable. These can be used alone or in combination of two or more.
[0057] 本発明に用いられるポリエステル系榭脂 (b— 2)は、上述したように芳香族ジカルボ ン酸単位を 80モル%以上 100モル%以下含むカルボン酸単量体単位 (ィ)と、 1, 4 CHDM単位を 0. 1モル%以上 40モル%以下、及び、数平均分子量が 500以上 3 , 000以下のポリアルキレングリコール単位を 0. 5モル%以上 15モル%以下含むグ リコール単量体単位 (口)とから構成される。得られるポリエステル系榭脂の柔軟性、 溶融粘度、透明性、機械特性、耐溶剤性などを調整するために、さらに、 3価以上の 多価カルボン酸化合物及び Z又は 3価以上の多価アルコールを少量(通常、 0. 05 一 2モル%程度)共重合させてもょ 、。 [0058] ここで、 3価以上の多価カルボン酸ィ匕合物としては、トリメリット酸、ピロメリット酸およ びこれらの無水物等が挙げられ、 3価以上の多価アルコールとしては、トリメチロール プロパン、ペンタエリスリトール、グリセリン等が挙げられる。これらは一種のみを単独 で、または二種以上を混合して使用することができる力 多価カルボン酸ィ匕合物のみ を使用する場合には、多価カルボン酸ィヒ合物単位の含有量が上記カルボン酸単量 体単位 (ィ)中、通常、 0. 05モル%以上、好ましくは 0. 1モル%以上であり、また、 2 モル%以下、好ましくは 1モル%以下である。また、多価アルコールのみを使用する 場合には、多価アルコール単位の含有量が上記グリコール単量体単位 (ィ)中、通常 、 0. 05モル%以上、好ましくは 0. 1モル%以上であり、また、 2モル%以下、好ましく は 1モル0 /0以下である。 [0057] As described above, the polyester resin (b-2) used in the present invention comprises a carboxylic acid monomer unit (i) containing an aromatic dicarboxylic acid unit in an amount of from 80 mol% to 100 mol%, A single glycol containing 0.1 to 40 mol% of 1,4 CHDM units and 0.5 to 15 mol% of polyalkylene glycol units having a number average molecular weight of 500 to 3,000. It consists of a body unit (mouth). In order to adjust the flexibility, melt viscosity, transparency, mechanical properties, solvent resistance, etc. of the resulting polyester resin, a trivalent or higher polycarboxylic acid compound and Z or a trivalent or higher polyhydric alcohol are further added. May be copolymerized in a small amount (usually, about 0.05 to 12 mol%). [0058] Here, examples of the trivalent or higher polycarboxylic acid conjugate include trimellitic acid, pyromellitic acid and anhydrides thereof, and trivalent or higher polyhydric alcohols include trimethylol. And propane, pentaerythritol, glycerin and the like. These can be used singly or as a mixture of two or more.When only polycarboxylic acid conjugates are used, the content of polycarboxylic acid compound units is used. Is usually at least 0.05 mol%, preferably at least 0.1 mol%, and at most 2 mol%, preferably at most 1 mol%, in the carboxylic acid monomer unit (a). When only a polyhydric alcohol is used, the content of the polyhydric alcohol unit is usually at least 0.05 mol%, preferably at least 0.1 mol%, in the above-mentioned glycol monomer unit (a). There also 2 mol% or less, preferably 1 mole 0/0 or less.
[0059] 多価カルボン酸ィ匕合物と多価アルコールを併用する場合、 3価以上の多価カルボ ン酸化合物単位のカルボン酸単量体単位中における含有量と、 3価以上の多価アル コール単位のグリコール単量体単位中における含有量との合計は、通常 0. 05モル %以上、好ましくは 0. 1モル%以上であり、また、 2モル%以下、好ましくは 1モル% 以下である。  [0059] When the polyvalent carboxylic acid conjugate and the polyhydric alcohol are used in combination, the content of the trivalent or higher polyvalent carboxylic acid compound unit in the carboxylic acid monomer unit and the trivalent or higher polyvalent The total of the alcohol unit and the content in the glycol monomer unit is usually at least 0.05 mol%, preferably at least 0.1 mol%, and at most 2 mol%, preferably at most 1 mol%. It is.
これら多価カルボン酸化合物単位及び/又は多価アルコール単位の含有量が、 上記それぞれの場合において、 0. 05モル%以上であれば、得られるポリエステル系 榭脂 (b— 2)の柔軟性や溶融粘度の改良効果が十分得られ、また 2モル%以下であ れば、ゲルイ匕して反応の制御が困難になることはなぐまた得られる熱収縮性シート においてフィッシュアイの発生を抑えることができる。  If the content of these polycarboxylic acid compound units and / or polyhydric alcohol units is 0.05 mol% or more in each of the above cases, the flexibility and the flexibility of the resulting polyester resin (b-2) can be improved. If the effect of improving the melt viscosity is sufficiently obtained, and if the content is 2 mol% or less, it is difficult to control the reaction due to gelling, and it is also possible to suppress generation of fish eyes in the obtained heat-shrinkable sheet. it can.
[0060] 本発明の混合榭脂組成物は、ポリカーボネート系榭脂 (b— 1) 1質量%以上 99質量 %以下と、ポリエステル系榭脂 (b— 2) 1質量%以上 99質量%以下とからなる。  [0060] The mixed resin composition of the present invention has a polycarbonate resin (b-1) of 1% by mass to 99% by mass and a polyester resin (b-2) of 1% by mass to 99% by mass. Consists of
ポリカーボネート系榭脂 (b—l)及びポリエステル系榭脂 (b— 2)の混合割合は、 目 的とする使用用途に応じて適宜調整することが好ましい。  The mixing ratio of the polycarbonate resin (b-1) and the polyester resin (b-2) is preferably adjusted as appropriate according to the intended use.
[0061] 例えば、芳香族ポリカーボネート系榭脂の本来有する耐熱性、透明性、耐衝撃性 などの特長を損なうことなぐ流動性を向上させるには、ポリカーボネート系榭脂 (b— 1 ) 75質量%以上 95質量%以下とポリエステル系榭脂(b-2) 5質量%以上 25質量% 以下とからなる混合榭脂組成物とすればよ!ヽ。 [0062] また、 PVC榭脂の二次加工温度領域 (通常、 50°C以上 100°C以下程度)での二次 加工性 (熱収縮性や真空 ·圧空成型性など)を混合榭脂組成物に付与するには、混 合榭脂組成物の混合割合は、ポリカーボネート系榭脂 (b— 1) 30質量%以上 75質量 %以下と、ポリエステル系榭脂 (b— 2) 25質量%以上 70質量%以下とを合計で 100 質量%となるように選択することが好ましぐより好ましくは、ポリカーボネート系榭脂( b— 1) 40質量%以上 70質量%以下と、ポリエステル系榭脂(b— 2) 30質量%以上 60 質量%以下とを合計で 100質量%となるように選択することが望ましい。 [0061] For example, in order to improve the fluidity without impairing the inherent properties of the aromatic polycarbonate resin such as heat resistance, transparency, and impact resistance, it is necessary to use 75% by mass of the polycarbonate resin (b-1). A mixed resin composition consisting of at least 95% by mass and at least 5% by mass and at most 25% by mass of the polyester resin (b-2)!ヽ. [0062] The secondary resin composition (heat shrinkage, vacuum / pressure forming, etc.) in the secondary processing temperature range of the PVC resin (usually about 50 ° C or higher and 100 ° C or lower) is mixed. In order to apply the mixture to the product, the mixing ratio of the mixed resin composition is 30% by mass or more and 75% by mass or less of the polycarbonate resin (b-1) and 25% by mass or more of the polyester resin (b-2). It is more preferable to select 70% by mass or less so that the total is 100% by mass. More preferably, the polycarbonate resin (b-1) is 40% by mass or more and 70% by mass or less, and the polyester resin (B-1) is b-2) It is desirable to select from 30% by mass to 60% by mass so that the total is 100% by mass.
[0063] 本発明の混合榭脂組成物が熱収縮性シートの形成に使用される場合には、ポリ力 ーボネート系榭脂 (b— 1) 30質量%以上 70質量%以下と、ポリエステル系榭脂 (b-2 ) 30質量%以上 70質量%以下とからなる混合榭脂組成物とすることが好ま 、。  When the mixed resin composition of the present invention is used for forming a heat-shrinkable sheet, the polycarbonate resin (b-1) has a content of 30% by mass or more and 70% by mass or less, and a polyester resin. Preferably, the mixed resin composition comprises 30% by mass or more and 70% by mass or less of the fat (b-2).
[0064] また、本発明の混合榭脂組成物が榭脂被覆金属板用シートの形成に使用される場 合には、ポリカーボネート系榭脂 (b— 1) 60質量%以上 95質量%以下と、ポリエステ ル系榭脂 (b-2) 5質量%以上 40質量%以下とからなる混合榭脂組成物であることが 好ましい。  When the mixed resin composition of the present invention is used for forming a resin-coated metal sheet, the content of the polycarbonate resin (b-1) should be 60% by mass or more and 95% by mass or less. It is preferable that the mixed resin composition comprises 5% by mass or more and 40% by mass or less of the polyester resin (b-2).
[0065] 本発明の混合榭脂組成物は、示差走査熱量測定により加熱速度 10°CZ分で測定 されるガラス転移温度が単一であり、そのガラス転移温度が、ポリカーボネート系榭脂 (b-1)のガラス転移温度とポリエステル系榭脂 (b-2)のガラス転移温度との間にある ことが望ましい。  The mixed resin composition of the present invention has a single glass transition temperature measured by differential scanning calorimetry at a heating rate of 10 ° C.Z, and has a glass transition temperature of a polycarbonate resin (b- It is desirable to be between the glass transition temperature of 1) and the glass transition temperature of the polyester resin (b-2).
[0066] ここで、混合榭脂組成物のガラス転移温度が単一であるとは、混合榭脂組成物を 日本工業規格 JISK 7121に準じて、加熱速度 10°CZ分で示差走査熱量計 (DSC) を用いてガラス転移温度を測定した際に、ガラス転移温度を示すピークが 1つだけ現 れるという意味である。混合榭脂組成物のガラス転移温度が単一であることにより、得 られるシートが良好な相溶性と優れた透明性とを実現することが可能になる。相溶性 が良好なことは、上記 DSC測定の他、動的粘弾性測定などによっても確認すること ができる。  Here, that the mixed resin composition has a single glass transition temperature means that the mixed resin composition is measured by a differential scanning calorimeter at a heating rate of 10 ° CZ according to Japanese Industrial Standard JISK 7121 ( This means that when measuring the glass transition temperature using DSC), only one peak showing the glass transition temperature appears. When the mixed resin composition has a single glass transition temperature, the resulting sheet can achieve good compatibility and excellent transparency. Good compatibility can be confirmed by dynamic viscoelasticity measurement and the like in addition to the above DSC measurement.
[0067] 芳香族ポリカーボネート系榭脂は、示差走査熱量測定により測定されるガラス転移 温度が通常 150°C程度であるため、例えばポリカーボネート系榭脂 (b— 1) 30質量% 以上 75質量%以下と、ポリエステル系榭脂(b— 2) 25質量%以上 70質量%以下との 混合榭脂組成物に、 PVC榭脂の二次加工温度域 (通常、 50°C以上 100°C以下程 度)での二次加工性を付与するためには、すなわち、混合榭脂組成物のガラス転移 温度を 50°C以上 100°C以下、好ましくは 55°C以上 95°C以下、より好ましくは 60°C以 上 85°C以下にするためには、ポリエステル系榭脂(b— 2)のガラス転移温度が 0°C以 上 50°C以下であることが好ましぐ 5°C以上 45°C以下であることがより好ましい。この 場合、混合榭脂組成物のガラス転移温度が 50°C以上であれば、十分な耐熱性が得 られやすぐまた、このガラス転移温度が 100°C以下であれば、耐熱性が良好であり 、かつ PVC榭脂の二次加工温度域で十分な二次加工性が得られやすい。また、ポリ エステル系榭脂 (b— 2)のガラス転移温度が 0°C以上であれば、ペレット化された榭脂 がブロッキングにより取扱い困難となることはなぐ 50°C以下であれば、混合榭脂組 成物のガラス転移温度を低下させる効果を発揮することができる。 [0067] Since the aromatic polycarbonate resin has a glass transition temperature of usually about 150 ° C measured by differential scanning calorimetry, for example, the polycarbonate resin (b-1) has a content of 30% by mass or more and 75% by mass or less. And a polyester resin (b-2) of 25% by mass or more and 70% by mass or less In order to provide the mixed resin composition with the secondary processing property in the secondary processing temperature range of the PVC resin (normally, about 50 ° C or more and 100 ° C or less), the mixed resin composition In order to bring the glass transition temperature of the polyester resin (b-b-) to 50 ° C or more and 100 ° C or less, preferably 55 ° C or more and 95 ° C or less, more preferably 60 ° C or more and 85 ° C or less. The glass transition temperature of 2) is preferably from 0 ° C to 50 ° C, more preferably from 5 ° C to 45 ° C. In this case, if the glass transition temperature of the mixed resin composition is 50 ° C or higher, sufficient heat resistance can be obtained immediately.If the glass transition temperature is 100 ° C or lower, heat resistance is good. Yes, and sufficient secondary workability is easily obtained in the secondary processing temperature range of PVC resin. If the glass transition temperature of the polyester resin (b-2) is 0 ° C or higher, the pelletized resin does not become difficult to handle due to blocking. (4) It can exhibit the effect of lowering the glass transition temperature of the resin composition.
[0068] 本発明の混合榭脂組成物が榭脂被覆金属板用シートの形成に用いられる場合に は、混合榭脂組成物は、示差走査熱量測定により加熱速度 10°CZ分で測定される ガラス転移温度が 100°C以上 150°C以下であることが好ましい。この場合、混合榭脂 組成物のガラス転移温度が 100°C以上であれば、沸騰水浸漬試験にお!、て満足な 結果が得られるので、実用上好ましい。  [0068] When the mixed resin composition of the present invention is used for forming a resin-coated metal sheet, the mixed resin composition is measured by differential scanning calorimetry at a heating rate of 10 ° CZ. It is preferable that the glass transition temperature is 100 ° C or higher and 150 ° C or lower. In this case, if the mixed resin composition has a glass transition temperature of 100 ° C or more, the boiling water immersion test! This is practically preferable because satisfactory results can be obtained.
[0069] [熱収縮性シート]  [Heat-shrinkable sheet]
以下に本発明の熱収縮性シートについて説明する。本発明の熱収縮性シートは、 ポリカーボネート系榭脂とポリエステル系榭脂とを用いて形成することができる。ここ で用いられるポリエステル系榭脂は、ポリカーボネート系榭脂に由来するガラス転移 温度を低温側へシフトさせることができる榭脂であることが好まし 、。このポリカーボネ 一ト系榭脂としては、例えば上記ポリカーボネート系榭脂 (b— 1)が挙げられ、ポリエス テル系榭脂としては、例えば上記ポリエステル系榭脂 (b— 2)が挙げられる。  Hereinafter, the heat-shrinkable sheet of the present invention will be described. The heat-shrinkable sheet of the present invention can be formed using a polycarbonate resin and a polyester resin. The polyester resin used here is preferably a resin capable of shifting the glass transition temperature derived from the polycarbonate resin to a lower temperature side. Examples of the polycarbonate resin include the above-mentioned polycarbonate resin (b-1), and examples of the polyester resin include the above-mentioned polyester resin (b-2).
[0070] 本発明の熱収縮性シートは、このような混合榭脂組成物を用いて得られたシートを 少なくとも一方向に延伸したシートであり、 80°Cの温水中に 10秒間浸漬したときの熱 収縮率が少なくとも一方向において 20%以上であることが好ましい。また、本発明の 熱収縮性シートは、動的粘弾性測定により振動周波数 10Hzで測定したときの損失 正接 (tan δ )曲線が 70°C以上 130°C以下の温度範囲内で単一のピークを有し、力 つ損失正接 (tan δ )曲線の半値幅が 15°C以上であることが更に好ましい。 [0070] The heat-shrinkable sheet of the present invention is a sheet obtained by stretching a sheet obtained using such a mixed resin composition in at least one direction, and is immersed in hot water at 80 ° C for 10 seconds. It is preferable that the heat shrinkage ratio of at least one direction is 20% or more. Further, the heat shrinkable sheet of the present invention has a loss tangent (tan δ) curve measured by a dynamic viscoelasticity measurement at a vibration frequency of 10 Hz having a single peak within a temperature range of 70 ° C or more and 130 ° C or less. Has the power More preferably, the half width of the loss tangent (tan δ) curve is 15 ° C or more.
[0071] 本発明にお 、て損失正接 (tan δ )曲線の半値幅とは、損失正接 (tan δ )曲線の最 大ピーク温度における損失正接 (tan δ Μ直の 1Ζ2の値を示す低温側の温度と高温 側の温度との温度差を絶対値で示したものをいう。また損失正接 (tan δ )曲線のピ ーク温度とは、 tan δの値の温度に対する変化量の第 1次微分値が零になる温度を いう。 In the present invention, the half value width of the loss tangent (tan δ) curve refers to the value of 1 示 す 2 of the loss tangent (tan δ に お け る) at the maximum peak temperature of the loss tangent (tan δ) curve. The peak temperature of the loss tangent (tan δ) curve is the first-order change in the value of tan δ with respect to temperature. The temperature at which the differential value becomes zero.
[0072] 本発明の熱収縮性シートは、動的粘弾性測定により得られる損失正接 (tan δ )曲 線力 温度 70°C以上 130°C以下の範囲に単一のピークを有することが好ましい。損 失正接 (tan δ )曲線のピーク温度が 70°C以上であれば、自然収縮率が過大になる ことを抑制し、良好な寸法安定性を付与することができ、かつ、シート装着時の温度 上昇による収縮が過大になることもない。一方、損失正接 (tan δ )曲線のピーク温度 力 S130°C以下であれば、低温延伸性を低下させることなく好ましい熱収縮性を付与 できる。本発明において、熱収縮性シートの損失正接 (tan δ )曲線のピーク温度は、 好ましくは 75°C以上、より好ましくは 80°C以上であり、また、好ましくは 125°C以下、 より好ましくは 120°C以下であることが望ましい。  [0072] The heat-shrinkable sheet of the present invention preferably has a single peak in the range of a loss tangent (tan δ) curve force obtained by dynamic viscoelasticity measurement of 70 ° C or more and 130 ° C or less. . If the peak temperature of the loss tangent (tan δ) curve is 70 ° C or higher, the natural shrinkage can be prevented from becoming excessive, good dimensional stability can be imparted, and the Shrinkage due to temperature rise does not become excessive. On the other hand, when the peak temperature force S130 ° C or less of the loss tangent (tan δ) curve is not more than 130 ° C, favorable heat shrinkability can be imparted without lowering the low-temperature stretchability. In the present invention, the peak temperature of the loss tangent (tan δ) curve of the heat-shrinkable sheet is preferably 75 ° C or higher, more preferably 80 ° C or higher, and preferably 125 ° C or lower, more preferably It is desirable that the temperature be 120 ° C or less.
[0073] 本発明の熱収縮性シートは、上記損失正接 (tan δ )曲線の半値幅が少なくとも 15 °Cであることが好ましい。すなわち、本発明において、損失正接 (tan δ )曲線の半値 幅は、 15°C以上であり、より好ましくは 17°C以上であり、特に好ましくは 20°C以上で あることが望ましい。損失正接 (tan δ )曲線の半値幅が 15°C以上であれば、透明性 がほとんど低下せず適度な相溶性を有するとともに、良好な収縮仕上り性を維持した 熱収縮性シートが得られる。一方、損失正接 (tan δ )曲線の半値幅の上限は特に限 定されるものではな ヽが、ポリカーボネート系榭脂とポリエステル系榭脂との相溶性 低下に起因するシートの透明性低下を防ぐためには、損失正接 (tan δ )曲線の半値 幅は 40°C以下、好ましくは 35°C以下、さらに好ましくは 32°C以下、最も好ましくは 30 °C以下であることが望まし!/、。  [0073] In the heat-shrinkable sheet of the present invention, the half width of the loss tangent (tan δ) curve is preferably at least 15 ° C. That is, in the present invention, the half width of the loss tangent (tan δ) curve is preferably 15 ° C. or more, more preferably 17 ° C. or more, and particularly preferably 20 ° C. or more. When the half width of the loss tangent (tan δ) curve is 15 ° C. or more, a heat-shrinkable sheet having appropriate compatibility with little decrease in transparency and maintaining good shrinkage finish can be obtained. On the other hand, the upper limit of the half value width of the loss tangent (tan δ) curve is not particularly limited, but it is possible to prevent a decrease in transparency of the sheet due to a decrease in compatibility between the polycarbonate resin and the polyester resin. In order to reduce the loss tangent (tan δ) curve, the half width of the curve should be 40 ° C or less, preferably 35 ° C or less, more preferably 32 ° C or less, and most preferably 30 ° C or less! /.
[0074] 熱収縮性シートの損失正接 (tan δ )曲線が、 70°C以上 130°C以下の温度範囲内 で単一のピークを有し、かつ損失正接 (tan δ )曲線の半値幅が 15°C以上であるため には、シート形成に用いられる混合榭脂組成物も、損失正接 (tan δ )曲線が 70°C以 上 130°C以下の温度範囲内で単一のピークを有し、かつ損失正接 (tan δ )曲線の 半値幅が 15°C以上であることが望ましい。本発明においては、ポリカーボネート系榭 脂 (b— 1)とポリエステル系榭脂 (b— 2)とを、相溶性の程度等を考慮して混合比等を 適宜調整して混合することにより、混合榭脂組成物全体の損失正接 (tan δ )曲線の 形状及び半値幅を上記条件と適合させることができる。例えば、比較的高い Tgを有 するポリカーボネート系榭脂が用いられる場合には、ポリカーボネート系榭脂の Tgを 低温側にシフトさせうるポリエステル系榭脂を比較的多量に含有させれば、混合榭脂 組成物全体の Tgを低下させて急激な熱収縮を抑制することにより、混合榭脂組成物 の損失正接 (tan δ )曲線の形状及び半値幅を上記条件、すなわちこの曲線が 70°C 以上 130°C以下の温度範囲で単一のピークを有し、かつ半値幅が 15°C以上の条件 に適合させることができる。 [0074] The loss tangent (tan δ) curve of the heat-shrinkable sheet has a single peak in the temperature range of 70 ° C to 130 ° C, and the half-value width of the loss tangent (tan δ) curve is In order for the mixed resin composition used for sheet formation to have a loss tangent (tan δ) curve of 70 ° C or higher, the temperature must be 15 ° C or higher. It is desirable that a single peak exists within a temperature range of 130 ° C or lower and that the half width of the loss tangent (tan δ) curve is 15 ° C or higher. In the present invention, the polycarbonate resin (b-1) and the polyester resin (b-2) are mixed by appropriately adjusting the mixing ratio and the like in consideration of the degree of compatibility and the like. The shape and half width of the loss tangent (tan δ) curve of the entire resin composition can be adapted to the above conditions. For example, when a polycarbonate resin having a relatively high Tg is used, a relatively large amount of a polyester resin capable of shifting the Tg of the polycarbonate resin to a lower temperature side can be used to form a mixed resin. By suppressing the rapid thermal shrinkage by lowering the Tg of the entire composition, the shape and half width of the loss tangent (tan δ) curve of the mixed resin composition are adjusted to the above conditions, that is, the curve is 70 ° C or higher. It has a single peak in the temperature range below ° C and can be adapted to the condition where the half width is 15 ° C or more.
[0075] 動的粘弾性測定により得られる損失正接 (tan δ )曲線のピーク温度とその半値幅と は下記に示す方法で得ることができる。すなわち、測定対象物 (熱収縮性シート等) 力 縦 4mm、横 60mmの大きさの試料片を切り出し、粘弾性スぺクトロメーター DVA — 200 (アイティ計測 (株)製)を用い、振動周波数 10Hz、歪 0. 1%、昇温速度 3°CZ 分、チャック間 25mmの条件下で横方向について温度 50°Cから測定を開始し、(E ' )と損失弾性率 (E")とを測定する。得られたデータから損失正接 (tan δ =Ε"ΖΕ' )曲線を求め、損失正接曲線のピーク温度とその半値幅を求める。  [0075] The peak temperature and the half width of the loss tangent (tan δ) curve obtained by dynamic viscoelasticity measurement can be obtained by the following method. That is, an object to be measured (heat-shrinkable sheet, etc.) Force A sample of 4 mm long and 60 mm wide was cut out, and the vibration frequency was 10 Hz using a viscoelastic spectrometer DVA-200 (manufactured by IT Measurement Co., Ltd.). , Strain 0.1%, temperature rise rate 3 ° CZ, 25mm between chucks, start measurement at 50 ° C in the horizontal direction, and measure (E ') and loss modulus (E ") From the obtained data, a loss tangent (tan δ = Ε "ΖΕ ') curve is obtained, and the peak temperature of the loss tangent curve and its half-value width are obtained.
[0076] 本発明の熱収縮性シートは、例えば非結晶性ポリエステル系榭脂又は比較的低結 晶性のポリエステル系榭脂を用いて形成される場合には、損失正接 (tan δ )曲線の ピーク温度における損失正接値が 1. 5以下であることが好ましぐ 1. 4以下であるこ とがより好ましぐ 1. 2以下であることが特に好ましい。  When the heat-shrinkable sheet of the present invention is formed using, for example, a non-crystalline polyester resin or a relatively low-crystalline polyester resin, a loss tangent (tan δ) curve is obtained. The loss tangent value at the peak temperature is preferably 1.5 or less, more preferably 1.4 or less, and particularly preferably 1.2 or less.
[0077] [熱収縮性積層シート]  [0077] [Heat-shrinkable laminated sheet]
以下に、本発明の熱収縮性積層シートについて説明する。本発明の熱収縮性積層 シートは、両外層を構成する (Α)層と、該両外層の間に位置する(Β)層とを有する。  Hereinafter, the heat-shrinkable laminated sheet of the present invention will be described. The heat-shrinkable laminated sheet of the present invention has a (Α) layer constituting both outer layers, and a (Β) layer located between the outer layers.
[0078] (Α)層は、カルボン酸単量体単位及びグリコール単量体単位のそれぞれを少なくと も一種含む熱可塑性ポリエステル系榭脂 (a— 1)を主成分とする榭脂組成物カゝらなる [0079] 熱可塑性ポリエステル系榭脂(a— 1)に含まれるカルボン酸単量体単位の例として は、テレフタル酸、イソフタル酸、 2 クロロテレフタル酸、 2, 5—ジクロロテレフタル酸、 2—メチルテレフタル酸、 4, 4 スチルベンジカルボン酸、 4, 4ービフエ-ルジカルボン 酸、オルトフタル酸、 2, 6 ナフタレンジカルボン酸、 2, 7—ナフタレンジカルボン酸、 ビス安息香酸、ビス(p カルボキシフエ-ル)メタン、アントラセンジカルボン酸、 4, 4 ージフエ-ルエーテルジカルボン酸、 4, 4ージフエノキシエタンジカルボン酸、 5— Na スルホイソフタル酸、エチレン ビス p 安息香酸等の芳香族ジカルボン酸単位、ァ ジピン酸、セバシン酸、ァゼライン酸、ドデカン二酸、 1, 3—シクロへキサンジカルボン 酸、 1, 4ーシクロへキサンジカルボン酸等の脂肪族ジカルボン酸単位が挙げられ、中 でもテレフタル酸単位が好ましい。これらのカルボン酸単量体単位は、一種のみを単 独で、または二種以上を混合して使用してもよい。 [0078] The (は) layer is a resin composition resin mainly composed of a thermoplastic polyester resin (a-1) containing at least one carboxylic acid monomer unit and at least one glycol monomer unit. Planar Examples of the carboxylic acid monomer unit contained in the thermoplastic polyester resin (a-1) include terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, and 2-methyl Terephthalic acid, 4,4 stilbene dicarboxylic acid, 4,4-biphenyldicarboxylic acid, orthophthalic acid, 2,6 naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, bisbenzoic acid, bis (p-carboxyphenyl) methane , Anthracene dicarboxylic acid, 4,4-diphenyl ether dicarboxylic acid, 4,4-diphenoxyethane dicarboxylic acid, aromatic dicarboxylic acid units such as 5-Na sulfoisophthalic acid, ethylene bis p-benzoic acid, adipic acid, sebacine Aliphatic diacids such as acid, azelaic acid, dodecanedioic acid, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid Examples thereof include a carboxylic acid unit, and among them, a terephthalic acid unit is preferable. These carboxylic acid monomer units may be used alone or in a combination of two or more.
[0080] また、熱可塑性ポリエステル系榭脂(a— 1)に含まれるグリコール単量体単位の例と しては、ジエチレングリコール、エチレングリコール、 1, 2 プロピレングリコール、 1, 3 プロパンジォーノレ、 2, 2 ジメチルー 1, 3 プロパンジォーノレ、トランス一又はシス一 2 , 2, 4, 4—テ卜ラメチル— 1, 3—シクロブタンジオール、 2, 2, 4, 4—テ卜ラメチル— 1, 3 ーシクロブタンジオール、 1, 4 ブタンジオール、ネオペンチルグリコール、 1, 5 ペン タンジオール、 1, 6—へキサンジオール、 1, 4ーシクロへキサンジメタノール、 1 , 3—シ クロへキサンジメタノール、デカメチレングリコール、シクロへキサンジオール、 p—キシ レンジオール、ビスフエノーノレ A、テトラブロモビスフエノール八、テトラブロモビスフエ ノール A ビス(2—ヒドロキシェチルエーテル)などの単位が挙げられ、中でもェチレ ングリコール単位と 1, 4—シクロへキサンジメタノール単位が好ましい。これらのグリコ 一ル単量体単位は、一種のみを単独で、または二種以上を混合して使用してもよい  [0080] Examples of the glycol monomer unit contained in the thermoplastic polyester resin (a-1) include diethylene glycol, ethylene glycol, 1,2 propylene glycol, and 1,3 propanediol. , 2,2 dimethyl-1,3 propanediole, trans- or cis-1,2,2,4,4-tetramethyl- 1,3-cyclobutanediol, 2,2,4,4-tetramethyl- 1,3-cyclobutanediol, 1,4-butanediol, neopentyl glycol, 1,5 pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol , Decamethylene glycol, cyclohexanediol, p-xylene diol, bisphenol A, tetrabromobisphenol 8, tetrabromobisphenol A bis (2-hydroxy Chirueteru) include units such as, among others Echire glycol units and 1, the 4-cyclohexylene Cyclohexanedicarboxylic methanol units preferable. These glycol monomer units may be used alone or in combination of two or more.
[0081] 力かるカルボン酸単量体単位とグリコール単量体単位とを含む熱可塑性ポリエステ ル系榭脂(a— 1)としては、ポリエチレンテレフタレート榭脂、ポリプロピレンテレフタレ ート榭脂、ポリブチレンテレフタレート榭脂、ポリエチレンイソフタレート榭脂、ポリェチ レンナフタレート榭脂、ポリブチレンナフタレート榭脂、ポリエチレンテレフタレート Zィ ソフタレート共重合樹脂、 Χ ) 4ーシクロへキサンジメタノール単位を全グリコール単量 体単位中に 15モル0 /0以上 50モル0 /0以下含有する非晶性ポリエチレンテレフタレー ト榭脂等が挙げられる。また、ハードセグメントとして高融点高結晶性の芳香族ポリエ ステル、ソフトセグメントとして非晶性ポリエステルや非晶性ポリエーテルなどカゝら構成 される熱可塑性ポリエステル系エラストマ一を適宜混合して使用することもできる。こ れらは、一種のみを単独で、または二種以上を混合して使用してもよい。 The thermoplastic polyester resin (a-1) containing a strong carboxylic acid monomer unit and a glycol monomer unit includes polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene Terephthalate resin, polyethylene isophthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin, polyethylene terephthalate Z-isophthalate copolymer resin, Χ) 4-cyclohexanedimethanol unit in total glycol unit Amorphous polyethylene terephthalate榭脂like contained in the body unit 15 mole 0/0 to 50 mole 0/0 or the like. A high melting point and high crystalline aromatic polyester as the hard segment, and a thermoplastic polyester elastomer composed of carbon such as amorphous polyester and amorphous polyether as the soft segment should be appropriately mixed and used. You can also. These may be used alone or in combination of two or more.
[0082] 本発明にお ヽては、熱可塑性ポリエステル系榭脂(a— 1)として、 1, 4ーシクロへキ サンジメタノール単位を該熱可塑性ポリエステル系榭脂(a— 1)の全グリコール単量体 単位中に 15モル0 /0以上 50モル0 /0以下含有する非晶性ポリエチレンテレフタレート 榭脂が好適に用いられる。該非晶性ポリエチレンテレフタレート榭脂は、カルボン酸 単量体として、主にテレフタル酸を使用し、グリコール単量体として、主にエチレング リコールと 1, 4 CHDMとを使用してなるものである。 [0082] In the present invention, as the thermoplastic polyester resin (a-1), 1,4-cyclohexane dimethanol unit is the total glycol unit of the thermoplastic polyester resin (a-1). amorphous polyethylene terephthalate榭脂containing in mer units 15 mole 0/0 to 50 mole 0/0 or less is preferably used. The amorphous polyethylene terephthalate resin is obtained by mainly using terephthalic acid as a carboxylic acid monomer and mainly using ethylene glycol and 1,4 CHDM as a glycol monomer.
[0083] ここで、非晶性ポリエチレンテレフタレート榭脂において、 1, 4 CHDM単位の含 有量は、熱可塑性ポリエステル系榭脂(a— 1)の全グリコール単量体単位中、好ましく は 15モル%以上、より好ましくは 20モル%以上であり、また、好ましくは 50モル%以 下、より好ましくは 40モル%以下である。 1, 4— CHDM単位の含有量が 15モル%以 上であれば、結晶化に起因する印刷適性の問題が起こりにくぐかつ経時的な脆ィ匕 を抑えることができる。一方、上限が 50モル%であれば、押出溶融時に粘度が高くな り過ぎることもなぐ良好な製膜性が得られる。なお、 1, 4 CHDMには、シス型とトラ ンス型の 2種類の異性体が存在するが、 V、ずれであってもよ 、。  Here, in the amorphous polyethylene terephthalate resin, the content of 1,4 CHDM units is preferably 15 mol based on all glycol monomer units of the thermoplastic polyester resin (a-1). %, More preferably at least 20 mol%, preferably at most 50 mol%, more preferably at most 40 mol%. When the content of the 1,4-CHDM unit is 15 mol% or more, the printability problem due to crystallization is less likely to occur, and the brittleness over time can be suppressed. On the other hand, if the upper limit is 50 mol%, a good film-forming property without excessively high viscosity during extrusion melting can be obtained. It should be noted that 1,4 CHDM has two types of isomers, cis-type and trans-type.
[0084] 本発明の熱収縮性積層シートは、表層及び裏層を構成する両外層 (A)の間に、中 間層である(B)層を有する。この(B)層は、ポリカーボネート系榭脂 (b— 1) 30質量% 以上 70質量%以下とポリエステル系榭脂(b— 2) 30質量%以上 70質量%以下とから なる混合榭脂組成物を用いてなる。該ポリエステル系榭脂 (b-2)は、カルボン酸単 量体単位として、芳香族ジカルボン酸単位を 80モル%以上 100モル%以下、グリコ 一ル単量体単位として、 1, 4 CHDM単位 0. 1モル%以上 40モル%以下と、数平 均分子量が 500以上 3, 000以下のポリアルキレングリコール単位を 0. 5モル%以上 15モル%以下とを含む。  The heat-shrinkable laminated sheet of the present invention has an intermediate layer (B) between both outer layers (A) constituting the surface layer and the back layer. This (B) layer is a mixed resin composition comprising 30% by mass or more and 70% by mass or less of a polycarbonate resin (b-1) and 30% by mass or less and 70% by mass or less of a polyester resin (b-2). Is used. The polyester resin (b-2) has an aromatic dicarboxylic acid unit of 80 mol% or more and 100 mol% or less as a carboxylic acid monomer unit, and 1,4 CHDM units as a glycol monomer unit. 1 mol% to 40 mol%, and 0.5 mol% to 15 mol% of polyalkylene glycol units having a number average molecular weight of 500 to 3,000.
なお、ポリエステル系榭脂 (b— 2)は、上記条件を満たす限り、他のカルボン酸単量 体単位、他のグリコール単量体単位を含んでもょ 、。 In addition, the polyester resin (b-2) may be used as long as other carboxylic acid mono- It may contain body units and other glycol monomer units.
[0085] (B)層を形成するポリカーボネート系榭脂 (b— 1)は芳香族ポリカーボネート系榭脂  [0085] The polycarbonate resin (b-1) forming the layer (B) is an aromatic polycarbonate resin.
(b— 11)であることが好ま ヽ。 (B)層は本発明の混合榭脂組成物を用いて形成され ることが好ましぐポリカーボネート系榭脂 (b—l)及びポリエステル系榭脂 (b— 2)とし ては既述したものが挙げられる。  (b-11) is preferred. The layer (B) is a polycarbonate resin (b-1) and a polyester resin (b-2), which are preferably formed using the mixed resin composition of the present invention. Is mentioned.
[0086] 本発明に用いられる熱可塑性ポリエステル系榭脂(a— 1)及びポリエステル系榭脂( b-2)には、それぞれ、本発明の効果を阻害しない範囲内で、成形加工性、シートの 諸物性等を改良及び調整する目的で、他のポリエステル榭脂、ポリエーテル、ポリア ミド、ポリオレフイン、ポリメチルメタタリレート等の榭脂、コア シェル型、グラフト型又 は線状のランダム及びブロック共重合体のようなゴム状改質剤、シリカ、タルク、力オリ ン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤 、耐候性安定剤、耐熱性安定剤、加水分解防止剤 (カルポジイミド化合物の単量体 または重合体など)、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、 老化防止剤等の添加剤を適宜添加することができる。  [0086] The thermoplastic polyester resin (a-1) and the polyester resin (b-2) used in the present invention each have moldability and sheetability within a range not to impair the effects of the present invention. For the purpose of improving and adjusting the physical properties, etc. of other resins, other resins such as polyester resin, polyether, polyamide, polyolefin, polymethyl methacrylate, core-shell type, graft type or linear random and block. Rubber-like modifiers such as copolymers, inorganic particles such as silica, talc, olefins, calcium carbonate, pigments such as titanium oxide and carbon black, flame retardants, weather resistance stabilizers, heat resistance stabilizers, Additives such as an anti-decomposition agent (such as a monomer or polymer of a carbodiimide compound), an anti-static agent, a melt viscosity improver, a cross-linking agent, a lubricant, a nucleating agent, a plasticizer, and an anti-aging agent can be appropriately added.
[0087] 本発明に用いられる熱可塑性ポリエステル系榭脂(a— 1)及びポリエステル系榭脂( b-2)は、それぞれ、公知の直接重合法やエステル交換法等によって製造することが できる。また、必要に応じて、チタンブトキサイド、ジブチルスズォキシド、酢酸マグネ シゥム、酢酸マンガン等のエステル化触媒、エステル交換触媒や、チタンブトキサイド 、ジブチルスズォキシド、酢酸スズ、酢酸亜鉛、二硫化スズ、三酸化アンチモン、二酸 化ゲルマニウム等の重合触媒を使用することができる。  [0087] The thermoplastic polyester resin (a-1) and the polyester resin (b-2) used in the present invention can each be produced by a known direct polymerization method, transesterification method, or the like. If necessary, esterification catalysts such as titanium butoxide, dibutyl tin oxide, magnesium acetate, and manganese acetate, transesterification catalysts, titanium butoxide, dibutyl tin oxide, tin acetate, zinc acetate, and disulfide Polymerization catalysts such as tin, antimony trioxide, and germanium dioxide can be used.
[0088] 熱可塑性ポリエステル系榭脂(a— 1)及びポリエステル系榭脂 (b-2)は、それぞれ、 テトラクロロェタン Zフエノール (質量比 1Z1)を溶媒として 30°Cで測定したときの固 有粘度が、 0. 4dlZg以上、好ましくは 0. 7dlZg以上であり、かつ、 1. 5dlZg以下、 好ましくは 1. 2dlZg以下のものである。固有粘度が 0. 4dlZg以上であれば、得ら れるポリエステル系榭脂の耐湿性や力学強度が低下することなぐ一方、上限が 1. 5 dlZgであれば、比較的短時間で重合できるため、生産サイクルやコストの点におい て好ましい。なお、本発明においては、これらの榭脂を単独で、または二種以上を混 合して使用してもよい。 [0089] 本発明の熱収縮性積層シートを構成する(B)層は、ポリカーボネート系榭脂 (b— 1) 30質量%以上 70質量%以下と、ポリエステル系榭脂(b— 2) 30質量%以上 70質量 %以下とからなる混合榭脂組成物を用いてなることが好ましい。なお、ポリカーボネー ト系榭脂 (b-1)は芳香族ポリカーボネート系榭脂 (b— 11)であることが好ま 、。 ポリカーボネート系榭脂(b— 1)が 70質量%以下であり、かつポリエステル系榭脂(b -2)が 30質量%以上であれば、混合榭脂組成物のガラス転移温度を所望の範囲に 調整でき、かつ低温で良好な延伸性が得られるため、本発明で規定する熱収縮性を 付与することができる。一方、ポリカーボネート系榭脂 (b—l)が 30質量%以上であり 、かつポリエステル系榭脂 (b— 2)が 70質量%以下であれば、混合榭脂組成物のガラ ス転移温度が低くなり過ぎることもなぐ良好な自然収縮率が得られ、また適度なシー トの腰が得られる。これらのことから、本発明においては、芳香族ポリカーボネート系 榭脂 (b— 1)40質量%以上 65質量%以下と、ポリエステル系榭脂 (b— 2) 35質量% 以上 60質量%以下とからなる混合榭脂組成物を用いることがより好ましい。なお、こ の場合、上記ポリカーボネート系榭脂 (b—l)と、ポリエステル系榭脂 (b— 2)とからなる 混合榭脂組成物は、示差走査熱量測定により加熱速度 10°CZ分で測定されるガラ ス転移温度が単一であり、かつ、該ガラス転移温度が 50°C以上 100°C以下であるこ とが好ましい。 [0088] The thermoplastic polyester resin (a-1) and the polyester resin (b-2) were each measured at 30 ° C using tetrachloroethane Z phenol (mass ratio 1Z1) as a solvent. It has an intrinsic viscosity of 0.4 dlZg or more, preferably 0.7 dlZg or more, and 1.5 dlZg or less, preferably 1.2 dlZg or less. When the intrinsic viscosity is 0.4 dlZg or more, the resulting polyester resin does not have a reduced moisture resistance and mechanical strength, while when the upper limit is 1.5 dlZg, polymerization can be performed in a relatively short time. It is preferable in terms of production cycle and cost. In the present invention, these resins may be used alone or as a mixture of two or more. [0089] Layer (B) constituting the heat-shrinkable laminated sheet of the present invention comprises 30% by mass or more and 70% by mass or less of polycarbonate resin (b-1) and 30% by mass of polyester resin (b-2). % Or less and preferably 70% by mass or less. The polycarbonate resin (b-1) is preferably an aromatic polycarbonate resin (b-11). When the polycarbonate resin (b-1) is 70% by mass or less and the polyester resin (b-2) is 30% by mass or more, the glass transition temperature of the mixed resin composition is adjusted to a desired range. Since it can be adjusted and good stretchability can be obtained at a low temperature, the heat shrinkability specified in the present invention can be imparted. On the other hand, if the polycarbonate resin (b-1) is at least 30% by mass and the polyester resin (b-2) is at most 70% by mass, the glass transition temperature of the mixed resin composition will be low. Good spontaneous shrinkage can be obtained without becoming too much, and a moderate seat waist can be obtained. From these facts, in the present invention, the aromatic polycarbonate resin (b-1) is from 40% by mass to 65% by mass, and the polyester resin (b-2) is from 35% by mass to 60% by mass. More preferably, a mixed resin composition is used. In this case, the mixed resin composition comprising the polycarbonate resin (b-l) and the polyester resin (b-2) was measured at a heating rate of 10 ° CZ by differential scanning calorimetry. It is preferable that the glass transition temperature used is single and the glass transition temperature is 50 ° C. or more and 100 ° C. or less.
[0090] 混合榭脂組成物のガラス転移温度が 50°C以上であれば、得られた熱収縮性積層 シートの自然収縮を抑え、寸法安定性の良好なシートとなるので、実用上好ましい。 一方、ガラス転移温度が 100°C以下であれば、比較的短時間 (数秒一十数秒程度) での収縮加工及び高度な収縮仕上り性を実現できる収縮率、収縮開始温度、収縮 勾配等の収縮特性を付与しやすくなるため好ましい。これらのことから、本発明にお いては、ポリカーボネート系榭脂 (b—l)と、ポリエステル系榭脂 (b— 2)とからなる混合 榭脂組成物のガラス転移温度は、 55°C以上、より好ましくは 60°C以上であり、また、 95°C以下、より好ましくは 85°C以下である。  If the glass transition temperature of the mixed resin composition is 50 ° C. or higher, natural shrinkage of the obtained heat-shrinkable laminated sheet is suppressed, and a sheet having good dimensional stability is obtained, which is practically preferable. On the other hand, if the glass transition temperature is 100 ° C or lower, shrinkage in a relatively short time (several seconds to several tens of seconds) and shrinkage such as shrinkage rate, shrinkage starting temperature, shrinkage gradient, etc. that can achieve high shrink finish can be achieved. It is preferable because characteristics can be easily provided. From these facts, in the present invention, the glass transition temperature of the mixed resin composition comprising the polycarbonate resin (bl) and the polyester resin (b-2) is 55 ° C or more. , More preferably 60 ° C or higher, and 95 ° C or lower, more preferably 85 ° C or lower.
[0091] また、(B)層で用いられる芳香族ポリカーボネート系榭脂は、示差走査熱量測定に より測定されるガラス転移温度力 通常、 150°C程度である。したがって、ポリカーボ ネート系榭脂 (b-1) 30質量%以上 70質量%以下と、ポリエステル系榭脂 (b— 2) 30 質量%以上 70質量%以下との混合榭脂組成物のガラス転移温度が 50°C以上 100 °C以下を実現するためには、ポリエステル系榭脂 (b— 2)のガラス転移温度が 0°C以 上、より好ましくは 5°C以上であり、また、 50°C以下、より好ましくは 45°C以下であるこ とが望ましい。ポリエステル系榭脂(b— 2)のガラス転移温度が 0°C以上であれば、原 料ペレットにおけるブロッキングの発生を抑えることができ、また上限が 50°Cであれば 、混合榭脂組成物のガラス転移温度を所定範囲内に低下させやすくなるため好まし い。 [0091] The aromatic polycarbonate resin used in the layer (B) has a glass transition temperature of about 150 ° C, usually measured by differential scanning calorimetry. Therefore, the content of the polycarbonate resin (b-1) is 30% by mass or more and 70% by mass or less, and the content of the polyester resin (b-2) In order to achieve a glass transition temperature of the mixed resin composition of not less than 50% by mass and not more than 70% by mass, the glass transition temperature of the polyester resin (b-2) should be 0 °. C or higher, more preferably 5 ° C or higher, and desirably 50 ° C or lower, more preferably 45 ° C or lower. When the glass transition temperature of the polyester resin (b-2) is 0 ° C or higher, the occurrence of blocking in the raw material pellets can be suppressed. When the upper limit is 50 ° C, the mixed resin composition can be used. Is preferable because the glass transition temperature can easily be lowered to a predetermined range.
[0092] 本発明にお ヽては、成形加工性や混合榭脂組成物、熱収縮性シート等の諸物性 を改良'調整する目的で、混合榭脂組成物、熱収縮性シート、及び、熱収縮性積層 シートの (A)層及び Z又は (B)層には、本発明の効果を著しく阻害しない範囲で、ト リミンダロス等力 発生するシートの耳などのリサイクル榭脂(通常は、(B)層に添カロ する)、ポリエステル系榭脂(a— 1)及びポリエステル系榭脂 (b— 2)以外のポリエステ ル、ポリエーテル、ポリアミド、ポリオレフイン、ポリメチルメタタリレート等の榭脂や、コ アーシエル型、グラフト型又は線状のランダム及びブロック共重合体のようなゴム状改 質剤、シリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボン ブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、加水分解防止剤 (カルボ ジイミドィ匕合物の単量体または重合体、エポキシィ匕合物、ォキサゾリンィ匕合物など)、 帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤等の添加 剤を適宜添加することができる。  [0092] In the present invention, the mixed resin composition, the heat-shrinkable sheet, and the mixed resin composition, the heat-shrinkable sheet, The layer (A) and the layer Z or (B) of the heat-shrinkable laminated sheet are provided with recycled resin (usually (( B) layer), polyester resins (a-1) and polyester resins other than polyester resins (b-2), such as polyesters, polyethers, polyamides, polyolefins, and polymethyl methacrylates. Rubber-like modifying agents such as core, core, graft or linear random and block copolymers, inorganic particles such as silica, talc, kaolin, calcium carbonate, pigments such as titanium oxide and carbon black, and flame retardants , Weather resistant stabilizer, heat resistant Stabilizer, hydrolysis inhibitor (monomer or polymer of carbodiimide conjugate, epoxy conjugate, oxazoline conjugate, etc.), antistatic agent, melt viscosity improver, crosslinking agent, lubricant, nucleating agent, Additives such as a plasticizer and an antioxidant can be appropriately added.
[0093] 本発明にお 、ては、溶融混練時にポリカーボネート系榭脂 (b—l)とポリエステル系 榭脂 (b— 2)との間で発生する反応 (エステル交換反応など)をできるだけ抑制するこ とが好ましい。過度に反応が進行すると、得られる混合榭脂組成物の熱的性質の劣 化のみならず、着色やガス生成によりシートに発泡現象が現れる場合があり好ましく ない。このため、使用する原料の触媒の種類 (Ge系触媒が好ましく使用される)と原 料中に残存している触媒量、あるいは、溶融混練時の温度と滞留時間、必要に応じ て、リン系化合物(リン酸または亜リン酸系化合物等)などエステル交換抑制剤の添 加などにも注意を払うことが好ましい。溶融混練温度は、混合榭脂組成物の流動特 性や製膜性等によって適宜調整されるが、概ね 320°C以下、好ましくは 240°C— 28 o°cの範囲が好適である。 [0093] In the present invention, a reaction (such as a transesterification reaction) that occurs between the polycarbonate resin (bl) and the polyester resin (b-2) during melt kneading is suppressed as much as possible. This is preferred. If the reaction proceeds excessively, not only the thermal properties of the obtained mixed resin composition deteriorates, but also the foaming phenomenon may appear on the sheet due to coloring or gas generation, which is not preferable. Therefore, the type of catalyst used (a Ge catalyst is preferably used) and the amount of catalyst remaining in the raw material, or the temperature and residence time during melt-kneading, and if necessary, phosphorus-based catalyst It is preferable to pay attention to the addition of a transesterification inhibitor such as a compound (phosphoric acid or phosphorous acid compound). The melt-kneading temperature is appropriately adjusted depending on the flow characteristics, film-forming properties, etc. of the mixed resin composition, but is generally 320 ° C. or lower, preferably 240 ° C. A range of o ° c is preferred.
[0094] 本発明の榭脂組成物は、公知の方法、例えば Tダイを用いる押出キャスト法やカレ ンダ一法、インフレーション法などの方法を用いて、シート、フィルム、プレート等を形 成することができる。なお、本発明においては、フィルム、シート、あるいはプレートを 総合的にシートと表記する力 表記された文言「シート」がフィルム、シート、プレート のいずれを指すものである力、あるいはこれらの複数を指すものであるかは、適宜判 断されるものとする。 [0094] The resin composition of the present invention can be formed into a sheet, film, plate or the like by a known method, for example, a method such as an extrusion casting method using a T-die, a calendar method, or an inflation method. Can be. In the present invention, a force that comprehensively describes a film, a sheet, or a plate as a sheet refers to a force in which the written “sheet” refers to any of a film, a sheet, and a plate, or a plurality of these. It shall be determined as appropriate.
[0095] 形成されるシートの厚さは特に限定されるものではないが、通常 5 μ m以上 3, 000 m以下である。溶融混練には、一般的に使用される単軸押出機、二軸押出機、二 ーダ一、ミキサー等を使用できる。混合榭脂組成物の均一分散性、得られるシートの 力学強度の安定性力 二軸押出機を用いることが好ましい。  [0095] The thickness of the sheet to be formed is not particularly limited, but is usually 5 µm or more and 3,000 m or less. For the melt-kneading, a commonly used single-screw extruder, twin-screw extruder, screwer, mixer and the like can be used. It is preferable to use a twin-screw extruder for uniform dispersion of the mixed resin composition and stability of the mechanical strength of the obtained sheet.
[0096] 本発明においては、得られたシートに一軸方向または二軸方向に延伸加工を施す ことができる。さらに必要に応じてシートには、印刷、エンボス力卩ェ、電子線加工、コ 一ティング、蒸着等の表面処理や表面加工を施すことができる。  [0096] In the present invention, the obtained sheet can be stretched uniaxially or biaxially. Further, if necessary, the sheet may be subjected to surface treatment or surface treatment such as printing, embossing, electron beam processing, coating, and vapor deposition.
[0097] 本発明の榭脂組成物を用いてなるシートは、透明性、耐衝撃性、破断強伸度など の力学特性に優れ、かつ PVC榭脂の二次カ卩ェ温度域 (通常、 50°C以上 100°C以下 程度)での二次加工性等を有しているため、従来 PVC榭脂が適用されていた用途に 好適に用いられる。例えば、建材、内装部品、透明シート、榭脂被覆金属板用シート 、成型 (真空'圧空成型、熱プレス成型など)用シート、着色プレート、透明プレート、 シュリンクシート、シュリンクラベル、シュリンクチューブ等に使用できる。  [0097] The sheet using the resin composition of the present invention is excellent in mechanical properties such as transparency, impact resistance, and elongation at break, and has a secondary temperature range of PVC resin (usually, Since it has secondary workability at about 50 ° C or more and about 100 ° C or less, it is suitably used for applications where PVC resin has been applied. For example, used for building materials, interior parts, transparent sheets, resin-coated metal sheet sheets, molding (vacuum / pressure molding, hot press molding, etc.) sheets, coloring plates, transparent plates, shrink sheets, shrink labels, shrink tubes, etc. it can.
[0098] 本発明の混合榭脂組成物を用いてカレンダー加工法によりシートィ匕する場合、カレ ンダー加工法におけるロール設定温度は、混合榭脂組成物の流動特性やロール剥 離性、製膜速度等によって適宣調整されることが好ましいが、混合榭脂組成物の流 動開始温度 (Tl) + 10°C (T1+10°C)以上、 250°C以下、好ましくは混合榭脂組成 物の流動開始温度 + 10°C (T1+10°C)以上、 200°C以下の範囲が好適である。特に 、 200°C以下のロール設定温度で製膜可能であれば、既存の軟質ポリ塩化ビニル用 のカレンダー加工設備を特別な改造をあまり加えることなく用いることが可能となる。 さらに、より低温で加工することにより加水分解などの影響も少なくすることができる。 芳香族ポリカーボネート系榭脂単体の場合、耐衝撃性や力学強度が安定して発現 する重量平均分子量 20,000以上のグレードは、通常、流動開始温度が 190°C以上 (190°C以上 205°C以下程度)となるため 200°C以下のロール設定温度では、安定し たカレンダー加工を行うことが困難となりやすい。 [0098] In the case where the mixed resin composition of the present invention is sheet-shaped by a calendering method, the roll set temperature in the calendering method depends on the flow characteristics, roll peeling property, film forming speed of the mixed resin composition. It is preferable to appropriately adjust the mixing resin composition, but the flow starting temperature of the mixed resin composition (Tl) + 10 ° C (T1 + 10 ° C) or higher and 250 ° C or lower, preferably the mixed resin composition The temperature is preferably in the range of not less than + 10 ° C (T1 + 10 ° C) and not more than 200 ° C. In particular, if a film can be formed at a roll set temperature of 200 ° C. or less, existing calendering equipment for flexible polyvinyl chloride can be used without much special modification. Further, by processing at a lower temperature, the influence of hydrolysis or the like can be reduced. In the case of aromatic polycarbonate resin alone, grades with a weight-average molecular weight of 20,000 or more that exhibit stable impact resistance and mechanical strength usually have a flow start temperature of 190 ° C or higher (190 ° C or higher and 205 ° C or lower). At a roll set temperature of 200 ° C or less, stable calendering tends to be difficult.
[0099] また、本発明においては、カレンダー加工を行う前に予備混練を行うことができる。  [0099] In the present invention, preliminary kneading can be performed before calendering.
予備混練には、一般的に使用される単軸押出機、二軸押出機、ニーダーゃミキサー などを使用することができ、特に制限されるものではないが、混合榭脂組成物の均一 分散性、得られるシートの力学強度の安定性や透明性などを考慮すると二軸押出機 を用いることが好ましい。  For the pre-kneading, a commonly used single-screw extruder, twin-screw extruder, kneader / mixer or the like can be used, and is not particularly limited. It is preferable to use a twin-screw extruder in consideration of the stability of the mechanical strength and the transparency of the obtained sheet.
[0100] また、本発明の混合榭脂組成物を用いてカレンダー加工法によりシートィ匕する場合 には、ロール剥離性を向上させるために、滑剤を添加することが好ましい。  [0100] In the case where the mixed resin composition of the present invention is used to carry out sheeting by a calendering method, it is preferable to add a lubricant in order to improve roll releasability.
用いられる滑剤としては、パラフィン、ポリエチレンワックス等の炭化水素系滑剤、ス テアリン酸等の高級脂肪酸系滑剤、ステアリン酸カルシウム等の金属石鹼系滑剤、モ ンタン酸ワックス等のエステル系滑剤、ベンゾグアナミン、ポリメチルメタアタリレートを 主成分とした架橋アクリル榭脂等の有機微粒子が挙げられる。特に無機滑剤との相 乗効果をもたらす有機滑剤は外部滑性を向上させ、且つ樹脂との相溶性の良いもの が好適に用いられる。このほかに溶融混練時の熱安定性を有する等の条件を満たす 必要があり、本発明においてはモンタン酸ワックスが好適に用いられる。  Examples of the lubricant used include hydrocarbon lubricants such as paraffin and polyethylene wax, higher fatty acid lubricants such as stearic acid, metal stone lubricants such as calcium stearate, ester lubricants such as montanic acid wax, benzoguanamine, and polystyrene. Organic fine particles such as crosslinked acrylic resin containing methyl methacrylate as a main component are exemplified. In particular, as the organic lubricant which has a synergistic effect with the inorganic lubricant, one having improved external lubricity and having good compatibility with the resin is suitably used. In addition, it is necessary to satisfy conditions such as having thermal stability during melt-kneading, and in the present invention, montanic acid wax is suitably used.
[0101] ここで、モンタン酸ワックスとは、褐炭の溶剤抽出によって得られる炭素数 21— 34 の脂肪酸及び脂肪アルコールを主に含有する化石ろうのモンタンワックス、およびこ のモンタンワックスをエステル化や部分鹼化したワックスである。具体的には、モンタ ンワックスを酸化した Hoechst WAX S (Hoechst社製)、モンタンワックスをェチレ ングリコールでエステル化したモンタン酸ジエステルである Hoechst WAX E (Hoec hst社製)、モンタンワックスをグリセリンでエステル化したモンタン酸ジエステルである HostalubWE40 (Hoechst社製)、モンタンワックスをブチレングリコールで部分的 にエステルイ匕し、残りが水酸ィ匕カルシウムで鹼ィ匕されて 、る部分鹼ィ匕モンタン酸エス テルである Hoechst WAX OP (Hoechst社製)等が挙げられる。  [0101] Here, montanic acid wax refers to montan wax of fossil wax mainly containing fatty acids and fatty alcohols having 21 to 34 carbon atoms obtained by solvent extraction of lignite, and esterification or partial oxidation of this montan wax. This is a wax that has been degraded. Specifically, Hoechst WAX S (manufactured by Hoechst) obtained by oxidizing montan wax, Hoechst WAX E (manufactured by Hoechst), which is a montanic acid diester obtained by esterifying montan wax with ethylene glycol, and montan wax is esterified by glycerin The montanic acid diester, Hostalub WE40 (manufactured by Hoechst), montan wax is partially esterified with butylene glycol, and the remainder is quenched with calcium hydroxide. Hoechst WAX OP (manufactured by Hoechst).
[0102] 滑剤の添加量は、混合榭脂組成物 100質量部に対して、 0. 05質量部以上 3. 0質 量部以下、好ましくは 0. 1質量部以上 1. 5質量部以下である。ここで、滑剤の添カロ 量力 0. 05質量部未満では、ロール剥離性の改良効果が少なぐ一方、 3. 0質量 部を越えるとシート表面へのブリードやシートの力学特性などが低下するなどの問題 が発生しやすく好ましくな 、。 [0102] The amount of the lubricant to be added is 0.05 mass parts or more and 3.0 mass parts with respect to 100 mass parts of the mixed resin composition. Or less, preferably 0.1 to 1.5 parts by mass. At less than 0.05 parts by mass, the effect of improving the roll releasability is small, whereas at more than 3.0 parts by mass, the bleeding on the sheet surface and the mechanical properties of the sheet are reduced. The problem is likely to occur, which is not preferable.
[0103] 本発明の熱収縮性シート及び熱収縮性積層シートは、少なくとも一軸方向に延伸さ れており、 80°Cの温水中に 10秒間浸漬したときの主収縮方向における熱収縮率が 2 0%以上であることが重要である。  [0103] The heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention are stretched in at least one direction, and have a heat shrinkage of 2 in the main shrinkage direction when immersed in hot water of 80 ° C for 10 seconds. It is important that it is at least 0%.
[0104] この条件は、本発明の熱収縮性シート及び熱収縮性積層シートをペットボトル等の 収縮ラベル用途等として使用する場合には比較的短時間 (数秒一十数秒程度)で収 縮加工できるように、収縮加工工程への適応性を判断する指標となる。例えばペット ボトルの収縮ラベル用途に適用される熱収縮性シート等に要求される収縮率は、そ の形状によって様々である力 一般には 20%以上 40%以下程度である。また、現在 、ペットボトルのラベル装着に工業的に最も多く用いられている収縮加工機は、収縮 加工を行う加熱媒体として水蒸気を用いる蒸気シュリンカ一と一般に呼ばれて!/ヽるも のである。また、熱収縮性シート及び熱収縮性積層シートは、被覆対象物への熱の 影響などの点から、できるだけ低!ヽ温度で十分熱収縮することが必要である。  When the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention are used for shrink label applications such as PET bottles, the shrinking process can be performed in a relatively short time (about several seconds to about ten and several seconds). As an index, it is an index for determining the adaptability to the shrinking process. For example, the shrinkage required for a heat-shrinkable sheet used for shrink labeling of PET bottles varies depending on the shape. Generally, the force is about 20% to 40%. At present, the shrinking machine that is most frequently used industrially for mounting PET bottle labels is generally called a steam shrinker that uses steam as a heating medium for shrinking! / Puru. In addition, the heat-shrinkable sheet and the heat-shrinkable laminated sheet need to be sufficiently heat-shrinked at a temperature as low as possible from the viewpoint of the influence of heat on the object to be coated.
[0105] 工業生産性等も考慮すると、上記熱収縮率が 20%以上のシートは収縮加工時間 内に十分に被覆対象物に密着させやすいという傾向にある。本発明においては、 80 °Cの温水中に 10秒間浸漬したときの熱収縮率が、少なくとも一方向、通常、主収縮 方向において、本発明において、 80°C温水中 10秒間浸漬したときの熱収縮率が少 なくとも一方向、通常、主収縮方向において、 30%以上、好ましくは 40%以上であり 、かつ、 70%以下、好ましくは 65%以下であることが望ましい。  [0105] In consideration of industrial productivity and the like, the sheet having a heat shrinkage of 20% or more tends to be sufficiently adhered to the object to be coated within the shrinkage processing time. In the present invention, the heat shrinkage when immersed in hot water at 80 ° C for 10 seconds is at least one direction, usually in the main shrinkage direction. It is desirable that the shrinkage ratio is at least 30%, preferably at least 40%, and at most 70%, preferably at most 65%, in at least one direction, usually the main shrinkage direction.
[0106] また、ペットボトルの収縮ラベル用途における熱収縮性シート及び熱収縮性積層シ ートは、主収縮方向と直交する方向の 80°C温水中に 10秒間浸漬したときの熱収縮 率が 10%以下であることが好ましぐより好ましくは 7%以下である。主収縮方向と直 交する方向の熱収縮率が 10%以下である熱収縮性シート等であれば、収縮後に主 収縮方向と直交する方向の寸法自体が短くなつたり、収縮後に印刷柄や文字の歪み 等が生じやす力つたり、また、角型ボトルの収縮ラベル用途として使用する場合には 、縦ひけ等のトラブルの発生を抑えることができる。 [0106] The heat-shrinkable sheet and heat-shrinkable laminated sheet for use in shrinkable labeling of PET bottles have a heat shrinkage rate when immersed in hot water of 80 ° C for 10 seconds in a direction orthogonal to the main shrinkage direction. It is preferably at most 10%, more preferably at most 7%. In the case of a heat-shrinkable sheet, etc., in which the heat shrinkage in the direction perpendicular to the main shrinkage direction is 10% or less, the dimension itself in the direction orthogonal to the main shrinkage direction after shrinkage decreases, or the printed pattern or character after shrinkage When it is used as a shrink label for square bottles, The occurrence of troubles such as vertical sinks can be suppressed.
[0107] 本発明の熱収縮性シート及び熱収縮性積層シートは、腰強さ(常温での剛性)の点 から、シートの主収縮方向と直交する方向の引張弾性率が 1, 200MPa以上であるこ とが重要であり、より好ましくは 1, 800MPa以上、さらに好ましくは 2, OOOMPa以上 である。また、通常使用される熱収縮性シート及び熱収縮性積層シートの引張弾性 率の上限値は、 4, OOOMPa程度であり、好ましくは 3, OOOMPa程度である。シート の主収縮方向と直交する方向の引張弾性率が 1, 500MPa以上あれば、シート全体 としての腰(常温での剛性)を高くすることができ、特にシートの厚みを薄くした場合に ぉ 、ても、ペットボトルなどの容器に製袋したシートをラベリングマシン等で被せる際 に、斜めに被ったり、シートの腰折れなどで歩留まりが低下したりしゃすいなどの問題 点が発生し難ぐ好ましい。上記引張弾性率は、 JIS K7127に準じて、 23°Cの条件 で測定することができる。  [0107] The heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention have a tensile elastic modulus of 1,200 MPa or more in the direction orthogonal to the main shrinkage direction of the sheet from the viewpoint of stiffness (rigidity at room temperature). It is important that the pressure be more than 1,800 MPa, more preferably more than 2, OOOMPa. The upper limit of the tensile modulus of the heat-shrinkable sheet and the heat-shrinkable laminated sheet which is usually used is about 4, OOOMPa, preferably about 3, OOOMPa. If the tensile modulus in the direction perpendicular to the main shrinkage direction of the sheet is 1,500 MPa or more, the stiffness (rigidity at room temperature) of the entire sheet can be increased, and especially when the thickness of the sheet is reduced, However, when a sheet made of a bag such as a PET bottle is covered with a labeling machine or the like, it is preferable because problems such as a decrease in yield and a decrease in sieve due to a break in the seat due to breakage of the seat or the like do not easily occur. The tensile modulus can be measured at 23 ° C. according to JIS K7127.
[0108] また、シートの主収縮方向の引張弾性率はシートの腰強さが出れば特に制限はな い力 1, 200MPa以上、好ましくは 1、 800MPa以上、さらに好ましくは 2, OOOMPa 以上であり、上限は 6, OOOMPa程度、好ましい上限は 4, 500MPa程度、さらに好ま しい上限は 4, OOOMPa程度である。シートの主収縮方向の引張弾性率を 1, 200M Pa以上 6, OOOMPa以下にすることにより、双方向においてシートの腰の強さを高め ることができるため好まし!/、。  [0108] Further, the tensile elastic modulus in the main shrinkage direction of the sheet is not particularly limited as long as the stiffness of the sheet is obtained. The force is 1,200MPa or more, preferably 1,800MPa or more, and more preferably 2, OOOMPa or more. The upper limit is about 6, OOOMPa, the preferable upper limit is about 4,500MPa, and the more preferable upper limit is about 4, OOOMPa. By setting the tensile elastic modulus in the main shrinkage direction of the sheet to be 1,200 MPa or more and 6,0 MPa or less, the stiffness of the sheet in both directions can be increased!
[0109] 本発明の熱収縮性シート及び熱収縮性積層シートの耐破断性は、引張破断伸度 により評価され、 o°c環境下の引張破断試験において、特にラベル用途ではシートの 引き取り(流れ)方向(MD)で伸び率が 100%以上、好ましくは 200%以上、さらに好 ましくは 300%以上である。 0°C環境下での引張破断伸度が 100%以上であれば、 印刷'製袋などの工程時にシートが破断するなどの不具合を生じに《なり、好ましい 。また、印刷'製袋などの工程のスピードアップにともなってシートに対して力かる張 力が増加するような際にも、引張破断伸度が 200%以上あれば破断しづらぐさらに 好ましい。  [0109] The rupture resistance of the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention is evaluated by tensile elongation at break. The elongation in the direction (MD) is at least 100%, preferably at least 200%, more preferably at least 300%. When the tensile elongation at break in an environment of 0 ° C. is 100% or more, problems such as breakage of the sheet during processes such as printing and bag-making occur, which is preferable. In addition, when the tensile force applied to the sheet increases with the speeding up of processes such as printing and bag-making, it is more preferable that the tensile elongation at break is 200% or more, so that the sheet is difficult to break.
[0110] 本発明の熱収縮性シート及び熱収縮性積層シートのシール強度は、 23°C50%R H環境下で、 T型剥離法にて主収縮方向に試験速度 200mmZ分で剥離する方法 を用いて測定した場合、 3NZl5mm幅以上、好ましくは 5NZl5mm幅以上、より好 ましくは 7NZl5mm幅以上である。また、シール強度の上限は特に制限されないが 、シート表面の耐溶剤性の観点から 15NZ 15mm幅程度であることが好ま U、。 [0110] The seal strength of the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention is a method of peeling at a test speed of 200 mmZ in the main shrinkage direction by a T-type peeling method in an environment of 23 ° C and 50% RH. When measured by using, the width is 3 NZ15 mm or more, preferably 5 NZ15 mm or more, more preferably 7 NZ15 mm or more. The upper limit of the sealing strength is not particularly limited, but is preferably about 15 NZ 15 mm width from the viewpoint of the solvent resistance of the sheet surface.
[0111] 本発明のシート、熱収縮性シート及び熱収縮性積層シートは、透明性が、例えば、 厚み 50 μ mのシートを JIS K7105に準じて測定した場合、通常、全ヘーズは 10% 以下であることが好ましぐより好ましくは 7%以下、特に好ましくは 5%以下である。全 ヘーズが 10%以下であれば、クリア一なディスプレイ効果が得られるため好まし!/、。  [0111] The sheet, the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention have a transparency, for example, when a sheet having a thickness of 50 µm is measured according to JIS K7105, the total haze is usually 10% or less. Is more preferably 7% or less, particularly preferably 5% or less. If the total haze is 10% or less, a clear display effect can be obtained.
[0112] 本発明の熱収縮性シート及び熱収縮性積層シートの自然収縮率はできるだけ小さ いほうが望ましいが、一般的に熱収縮性シート等の自然収縮率は、例えば、 30°Cで 30日間保存した後の自然収縮率が 2. 0%以下、好ましくは 1. 5%以下、さらに好ま しく 1. 0%以下であることが望ましい。上記条件下における自然収縮率が 2. 0%以 下であれば作製したシートを長期保存する場合であっても容器等に安定して装着す ることができ、実用上問題を生じにくい。  [0112] The natural shrinkage of the heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention is desirably as small as possible. Generally, the natural shrinkage of the heat-shrinkable sheet and the like is, for example, 30 days at 30 ° C. It is desirable that the natural shrinkage after storage is 2.0% or less, preferably 1.5% or less, and more preferably 1.0% or less. If the natural shrinkage ratio under the above conditions is 2.0% or less, even if the produced sheet is stored for a long period of time, it can be stably mounted on a container or the like, so that practical problems hardly occur.
[0113] 次に、本発明の熱収縮性積層シートのミシン目切断性について説明する。  Next, the perforation cutability of the heat-shrinkable laminated sheet of the present invention will be described.
ここで、ミシン目とは、プラスチックボトル、ガラス瓶等に熱収縮により装着されるキヤ ップシールやラベルに易開封性を付与したり、ボトル、瓶のリサイクル時に容易に剥 離できるようにするために施されたミシン目であり、通常、予め、 1本線又は 2本線以 上のミシン目が施されている。ミシン目加工は、通常、センターシールカ卩ェ時にミシン 刃を用いて行われる。ミシン目の長さ、及び、ミシン目とミシン目との間隔は、各々 lm m程度、または各々 0. 7mm程度とするのが一般的である力 これに限定されるもの ではない。  Here, perforations are used to impart easy-opening properties to cap seals and labels attached to plastic bottles, glass bottles, etc. by heat shrinkage, and to make it easy to peel off bottles and bottles during recycling. Perforations are usually provided in advance with one or two or more perforations. Perforation processing is usually performed using a perforation blade at the time of center sealing. The perforation length and the distance between the perforations are generally about lmm or about 0.7 mm, respectively. The force is not limited to this.
[0114] 本発明の熱収縮性積層シートの厚さは、特に限定されるものではないが、通常 5 m以上、好ましくは 20 μ m以上であり、また、 100 μ m以下、好ましくは 80 μ m以下 の厚さである。ここで、熱収縮性積層シートの厚さが 5 μ m以上であれば、シートのハ ンドリング性が良好であり、一方、 100 m以下であれば、収縮カ卩ェ性が良好であり、 かつ経済的にも好ましい。また、本発明の熱収縮性積層シートは、必要に応じて、コ ロナ処理、印刷、コーティング、蒸着等の表面処理や表面加工、さらには、各種溶剤 や熱シールによる製袋加工やミシン目加工などを施すことができる。 [0115] 本発明の熱収縮性積層シートを構成する各層の厚みは、上述した効果及び作用を 考慮して設定すればよぐ特に限定されるものではないが、例えば、(A)層 Z (B)層 Z (A)層の厚み比を 1Z2Z1— 1Z12Z1の範囲内にすることが好ましぐ 1/3/1 一 1 Z 1 OZ 1の範囲内にすることが更に好まし 、。中間層である(B)層の厚み比率 力 S1Z2Z1未満の場合には、収縮仕上り性やミシン目切断性の改良効果が顕著で はない。また、(B)層を形成するポリカーボネート系榭脂 (b—l)は、一般に印刷時に 必要な耐溶剤性に劣るため、ポリエステル系榭脂 (b— 2)を混合することが好ましぐ また、(A)層を外層として積層することが好ましい。このことを考慮すると、(A)層の厚 みは 1 μ m以上であることが好ましぐ 3 μ m以上であることがさらに好ましぐ上限は 2 0 μ m以下であることが好まし!/、。 [0114] The thickness of the heat-shrinkable laminated sheet of the present invention is not particularly limited, but is usually 5 m or more, preferably 20 µm or more, and 100 µm or less, preferably 80 µm or less. m or less. Here, when the thickness of the heat-shrinkable laminated sheet is 5 μm or more, the handling property of the sheet is good, and when it is 100 m or less, the shrinkage property is good, and It is economically favorable. In addition, the heat-shrinkable laminated sheet of the present invention may be subjected to surface treatment and surface treatment such as corona treatment, printing, coating, and vapor deposition, as well as bag making and perforation using various solvents and heat seals, as necessary. And so on. [0115] The thickness of each layer constituting the heat-shrinkable laminated sheet of the present invention is not particularly limited as long as it is set in consideration of the above-described effects and functions. For example, the (A) layer Z ( B) Layer Z The thickness ratio of the (A) layer is preferably in the range of 1Z2Z1-1Z12Z1, and more preferably in the range of 1/3 / 1-1Z1OZ1. When the thickness ratio of the intermediate layer (B) is less than S1Z2Z1, the effect of improving the shrinkage finish and perforation cutability is not remarkable. Further, the polycarbonate resin (b-l) forming the layer (B) is generally inferior in solvent resistance required at the time of printing. Therefore, it is preferable to mix a polyester resin (b-2). , (A) are preferably laminated as outer layers. In consideration of this, the thickness of the layer (A) is preferably 1 μm or more, more preferably 3 μm or more, and the upper limit is more preferably 20 μm or less. ! / ,.
[0116] 次に、本発明のシート、熱収縮性シート及び熱収縮性積層シートの製造方法につ いて説明する。本発明のシート、熱収縮性シート及び熱収縮性積層シートは、従来 公知の方法によって製造することができる。  Next, a method for producing the sheet, the heat-shrinkable sheet, and the heat-shrinkable laminated sheet of the present invention will be described. The sheet, heat-shrinkable sheet and heat-shrinkable laminated sheet of the present invention can be produced by a conventionally known method.
シートの形態としては平面状、チューブ状の何れであってもよいが、生産性 (原反シ 一トの幅方向に製品として数丁取りが可能)や内面に印刷が可能という点などから平 面状がより好ましい。  The form of the sheet may be flat or tubular, but it is flat in terms of productivity (a number of products can be cut in the width direction of the raw sheet) and printing on the inner surface. A planar shape is more preferable.
[0117] 例えば平面状の積層シートの製造方法について説明するが、例えば、複数の押出 機を用い、原料となる榭脂をそれぞれ溶融混練し、 Tダイから共押出し、チルドロー ル (キャストロール)で冷却固化して積層体を形成し、次いで、縦方向にロール延伸、 横方向にテンター延伸をし、その後、ァニール、冷却、必要に応じて、コロナ放電処 理等の工程により 1軸又は 2軸方向に延伸された積層シートを製造することができる。 また、チューブラ法により製造された筒状のシートを切り開いて平面状としてもよい。 ここで、原料となる榭脂組成物等は、あら力じめ溶融混練し、カッティングしてペレット 状としておいてもよぐ例えば、このペレット状榭脂組成物を、再度、溶融押出して、 熱収縮性積層シートを製造をすることもできる。  [0117] For example, a method for manufacturing a planar laminated sheet will be described. For example, using a plurality of extruders, each resin as a raw material is melt-kneaded, co-extruded from a T-die, and chilled (cast roll). Cool and solidify to form a laminate, then roll stretch in the machine direction and tenter stretch in the transverse direction, and then uniaxial or biaxial by annealing, cooling, and if necessary, corona discharge treatment. A laminated sheet stretched in the direction can be manufactured. Further, a tubular sheet manufactured by the tubular method may be cut out to be flat. Here, the resin composition or the like as a raw material may be melt-kneaded and cut into pellets, for example, and the pellet-shaped resin composition may be melt-extruded again and heated. A shrinkable laminated sheet can also be manufactured.
[0118] 溶融混練には、一般的に使用される単軸押出機、二軸押出機、ニーダーゃミキサ 一などが使用でき、特に制限されるものではない。混合榭脂組成物の均一分散性、 得られる熱収縮性シートの力学強度の安定性や透明性などを考慮すると、二軸押出 機を用いることが好ましい。 [0118] For melt-kneading, generally used single-screw extruders, twin-screw extruders, kneader mixers, and the like can be used, and are not particularly limited. Considering the uniform dispersibility of the mixed resin composition, the stability of the mechanical strength and the transparency of the resulting heat-shrinkable sheet, twin-screw extrusion It is preferable to use a machine.
[0119] 本発明においては、溶融混練時に発生する反応 (エステル交換反応など)をできる だけ抑制することが好ましい。すなわち、(B)層を構成するポリカーボネート系榭脂( b— 1)とポリエステル系榭脂 (b-2)、及び Z又は、リサイクル榭脂等として添加される 熱可塑性ポリエステル系榭脂 (a— 1)との間で発生する反応 (エステル交換反応など) をできるだけ抑制することが好ま 、。  [0119] In the present invention, it is preferable to suppress as much as possible the reaction (eg, transesterification reaction) that occurs during melt-kneading. That is, the polycarbonate resin (b-1) and the polyester resin (b-2) constituting the layer (B), and the thermoplastic polyester resin (a-) added as Z or recycled resin or the like. It is preferable to minimize the reaction (e.g., transesterification reaction) occurring between 1).
[0120] 過度に反応が進行すると、得られる混合榭脂組成物の熱的性質の劣化が生じたり 、着色やガス生成により溶融押出シートに発泡現象が現れたりする場合があり好まし くない。そのため、使用する原料の触媒の種類 (Ge系触媒が好ましく使用される)と 原料中に残存している触媒量、あるいは、溶融混練時の温度と滞留時間などに注意 を払うことが好ましい。また、必要に応じて、リン系化合物(リン酸または亜リン酸系化 合物等)などのエステル交換抑制剤を添加することも好ま ヽ。  [0120] If the reaction proceeds excessively, thermal properties of the obtained mixed resin composition may deteriorate, or a foaming phenomenon may appear on the melt-extruded sheet due to coloring or gas generation, which is not preferable. Therefore, it is preferable to pay attention to the type of catalyst of the raw material to be used (a Ge-based catalyst is preferably used) and the amount of the catalyst remaining in the raw material, or the temperature and residence time during melt-kneading. It is also preferable to add a transesterification inhibitor such as a phosphorus compound (phosphoric acid or phosphorous acid compound) if necessary.
[0121] 例えば Tダイ法を用いる場合、成形温度は混合榭脂組成物の流動特性や製膜性 等によって適宜調整される力 概ね 320°C以下、好ましくは 240°C以上 280°C以下 の範囲が好適である。溶融押出された榭脂は、冷却ロ-ル、空気、水等で冷却された 後、熱風、温水、赤外線、マイクロウエーブ等の適当な方法で再加熱され、ロール法、 テンター法、チューブラ法等により、 1軸又は 2軸方向に延伸される。  [0121] For example, when the T-die method is used, the molding temperature is set to a force appropriately adjusted depending on the flow characteristics, film forming properties, and the like of the mixed resin composition. A range is preferred. The melt-extruded resin is cooled by a cooling roll, air, water, etc., and then reheated by an appropriate method such as hot air, hot water, infrared ray, microwave, etc., and roll method, tenter method, tubular method, etc. Thereby, it is stretched in a uniaxial or biaxial direction.
[0122] 延伸温度は用いる榭脂組成物のガラス転移温度や熱収縮性シートに要求される特 性によってかえる必要がある力 概ね 60°C以上 130°C以下、好ましくは 70°C以上 12 0°C以下の範囲で制御される。また、延伸倍率は、用いる榭脂組成物の特性、延伸 手段、延伸温度、目的とする製品形態等に応じて、主収縮方向には 1. 5倍以上 10 倍以下、好ましくは 1. 7倍以上 7倍以下の範囲で、 1軸及び Z又は 2軸方向に適宜 決定される。また、横方向に 1軸延伸する場合でも、シートの機械物性を改良する等 の目的で、縦方向にも 1. 05倍以上 1. 8倍以下程度の弱延伸を付与すると効果的で ある。次いで、延伸されたシートは、必要に応じて、自然収縮率の低減や熱収縮特性 の改良等を目的として、 50°C以上 100°C以下程度の温度で熱処理や弛緩処理を行 つた後、分子配向が緩和しない時間内で速やかに冷却され、熱収縮性シートとなる。  [0122] The stretching temperature is a force that needs to be changed depending on the glass transition temperature of the resin composition to be used and the characteristics required for the heat-shrinkable sheet. Generally, the temperature is from 60 ° C to 130 ° C, preferably from 70 ° C to 120 ° C. It is controlled within the range of ° C or less. The stretching ratio is 1.5 to 10 times, preferably 1.7 times, in the main shrinkage direction, depending on the properties of the resin composition to be used, the stretching method, the stretching temperature, the desired product form, and the like. Within the range of 7 times or less, it is appropriately determined in the uniaxial and Z or biaxial directions. Even in the case of uniaxial stretching in the transverse direction, it is effective to impart a weak stretch of about 1.05 to 1.8 times in the longitudinal direction for the purpose of improving the mechanical properties of the sheet. Next, the stretched sheet is subjected to a heat treatment or a relaxation treatment at a temperature of about 50 ° C or more and 100 ° C or less, as necessary, for the purpose of reducing the natural shrinkage rate and improving the heat shrinkage property, and the like. The sheet is rapidly cooled within a period in which the molecular orientation is not relaxed, and becomes a heat-shrinkable sheet.
[0123] [榭脂被覆金属板用シート] 本発明の榭脂被覆金属板用シートは、 [Sheet for resin coated metal sheet] The resin-coated metal sheet of the present invention,
本発明の混合榭脂組成物を用いて榭脂被覆金属板用シートを形成することができ る。本発明の榭脂被覆金属板用シートは、ポリカーボネート系榭脂 (b—1)が 60質量 %以上 95質量%以下と、ポリエステル系榭脂(b— 2)が 5質量%以上 40質量%以下 とカゝらなる混合榭脂組成物を用いて形成されることが必要であり、ポリカーボネート系 榭脂 (b— 1)が 65質量%以上 90質量%以下と、ポリエステル系榭脂 (b— 2)が 10質量 %以上 35質量%以下とからなる混合榭脂組成物を用いて形成されることが好ま 、 。ポリカーボネート系榭脂(b—l)の混合量が 95質量%以下、かつポリエステル系榭 脂 (b— 2)の混合量が 5質量%以上である混合榭脂組成物であれば、ポリカーボネー ト系榭脂 (b—l)の流動開始温度を適度に低下させることができるので、軟質ポリ塩化 ビュル用のカレンダー加工設備を用いてカレンダー加工を施すことができる。すなわ ち、加工設備内でバンク (混合榭脂組成物)が規則的に安定して回ることを可能にす る。  A resin-coated metal sheet can be formed using the mixed resin composition of the present invention. The resin-coated metal sheet sheet of the present invention has a polycarbonate resin (b-1) of 60% by mass or more and 95% by mass or less, and a polyester resin (b-2) of 5% by mass or more and 40% by mass or less. It is necessary to be formed by using a mixed resin composition comprising a polycarbonate resin (b-1) of 65% by mass or more and 90% by mass or less and a polyester resin (b-2). ) Is preferably formed using a mixed resin composition comprising 10% by mass or more and 35% by mass or less. Polycarbonate resin is a mixed resin composition in which the mixing amount of the polycarbonate resin (b-1) is 95% by mass or less and the mixing amount of the polyester resin (b-2) is 5% by mass or more. Since the flow start temperature of the system resin (b-l) can be appropriately reduced, calendering can be performed using a calendering facility for a soft polychlorinated bur. That is, the bank (mixed resin composition) can rotate regularly and stably in the processing equipment.
[0124] また、ポリカーボネート系榭脂 (b— 1)の混合量が 60質量%以上、ポリエステル系榭 脂 (b-2)の混合量が 40質量%以下であれば、得られる混合榭脂組成物のガラス転 移温度は大幅に低下しないため、沸騰水浸漬試験による満足な結果が得られ、また 、引張破壊伸び等の力学強度が低下することもないので、二次加工性が低下するこ ともない。したがって、得られる榭脂被覆金属板に折り曲げ加工等の二次加工を施す ことができる。  [0124] When the mixing amount of the polycarbonate resin (b-1) is 60% by mass or more and the mixing amount of the polyester resin (b-2) is 40% by mass or less, the obtained mixed resin composition can be obtained. Since the glass transition temperature of the product does not drop significantly, satisfactory results can be obtained by a boiling water immersion test, and the mechanical strength such as tensile elongation at break does not decrease, so that the secondary workability decreases. Not even. Therefore, secondary processing such as bending can be applied to the obtained resin-coated metal plate.
[0125] 本発明においては、本発明の混合榭脂組成物を用いて積層体を形成することがで きる。例えば、本発明の混合榭脂組成物カゝらなる層に他の材料カゝらなる層を積層し て積層体を形成することができ、また、熱収縮性積層シートとすることもできる。積層 体としては、本発明の混合榭脂組成物カゝらなる層を中間層とし、その両側に外層とし て、他の材料力 なる層を有する構成とすることができる。  [0125] In the present invention, a laminate can be formed using the mixed resin composition of the present invention. For example, a layered product can be formed by laminating a layer composed of another material from the layer composed of the mixed resin composition of the present invention, or a heat-shrinkable laminated sheet. The laminated body may have a configuration in which a layer made of the mixed resin composition of the present invention is used as an intermediate layer, and outer layers on both sides of the layer are made of another material.
[0126] 本発明の榭脂被覆金属板用シートは、公知の方法、例えば Tダイを用いる押し出し キャスト法やカレンダー加工法、インフレーション法等により製造することができる。色 替えを含む多品種小ロット生産への対応を考慮するとカレンダー加工法が好ましい。  [0126] The resin-coated metal sheet of the present invention can be manufactured by a known method, for example, an extrusion casting method using a T-die, a calendering method, an inflation method, or the like. The calendar processing method is preferred in view of the response to multi-product small-lot production including color change.
[0127] 本発明の榭脂被覆金属板用シートの厚みは、特に限定されるものではないが通常 50 μ m以上 500 μ m以下である。シートの厚みが 50 μ m未満では榭脂被覆金属板 用として使用した場合、金属板に対する保護層としての性能やエンボス加工性が劣り やすぐ一方 500 mを超えると榭脂被覆ィ匕粧金属板としての打ち抜き加工等の二 次カ卩ェ性が劣り易いため好ましくない。さらに必要に応じてシートには、印刷、ェンボ ス加工、電子線加工、コーティング、蒸着等の表面処理や表面力卩ェを施すことができ る。 [0127] The thickness of the resin-coated metal sheet of the present invention is not particularly limited, but is usually 50 μm or more and 500 μm or less. When the thickness of the sheet is less than 50 μm, when used for a resin-coated metal plate, the performance as a protective layer for the metal plate and the embossability are poor. It is not preferable because the secondary curability such as punching tends to be inferior. Further, if necessary, the sheet can be subjected to a surface treatment such as printing, embossing, electron beam processing, coating, vapor deposition, or surface treatment.
[0128] 得られる榭脂被覆金属板用シートに顔料等で着色して用いることができるが、透明 性に優れたシートは、印刷が施された榭脂被覆金属板のオーバーシートとして好適 に用いられる。ここで、透明性の指標であるヘーズ (曇価)については、より小さな値 であることが好ましいが、シートの厚みが 150 mである場合、通常 5%以下、好まし くは 4%以下であれば、印刷が施された榭脂被覆金属板のオーバーシートとして意 匠性、視認性、ディスプレイ効果等を低下させることなく用いることができる。  [0128] The obtained resin-coated metal sheet can be used after being colored with a pigment or the like. A sheet having excellent transparency is suitably used as an oversheet of a printed resin-coated metal sheet. Can be Here, the haze (haze value), which is an index of transparency, is preferably smaller, but when the thickness of the sheet is 150 m, it is usually 5% or less, preferably 4% or less. If present, it can be used as an oversheet of a resin-coated metal plate on which printing has been performed without deteriorating its design, visibility, display effect, and the like.
[0129] 次に本発明の榭脂被覆金属板用シートと金属板とを接着させる方法としては、接着 剤を使用する方法、接着剤を使用しないで熱融着させる方法、押出コーティングする 方法等があり特に限定されないが、例えば、金属板の榭脂被覆金属板用シートとの 接着面にポリエステル系、エポキシ系等の接着剤を塗布し、榭脂シートを被覆する方 法が挙げられる。  [0129] Next, as a method for bonding the resin-coated metal sheet of the present invention to a metal plate, a method using an adhesive, a method of heat-sealing without using an adhesive, a method of extrusion coating, and the like. For example, there is a method of applying a polyester-based or epoxy-based adhesive to the surface of the metal plate to be bonded to the resin-coated metal plate sheet to cover the resin sheet.
[0130] この方法では金属板にリバースコータ、キスコータ等の一般的に使用されるコーティ ング設備を使用し、榭脂被覆金属板用シートを貼り合せる金属面に乾燥後の接着剤 膜厚が 2 m以上 4 m以下程度になるように塗布し、次いで赤外線ヒータおよび熱 風加熱炉により塗布面の乾燥および加熱を行 ヽ、金属板表面温度を榭脂被覆金属 板用シートの流動開始温度 + 10°C程度以上に保持しつつ、直ちにロールラミネータ を用いて該シートを被覆、冷却することにより榭脂被覆金属板を得ることができる。  [0130] In this method, a commonly used coating equipment such as a reverse coater or a kiss coater is used for the metal plate, and the adhesive film after drying is applied to the metal surface on which the resin-coated metal plate sheet is to be bonded. The coating surface is dried and heated by an infrared heater and a hot air heating furnace, and the surface temperature of the metal plate is adjusted to the flow start temperature of the resin-coated metal sheet + 10 The resin-coated metal sheet can be obtained by immediately covering and cooling the sheet with a roll laminator while maintaining the temperature at about ° C or higher.
[0131] 本発明の榭脂被覆金属板に用いられる金属板としては、熱延鋼板、冷延鋼板、溶 融亜鉛メツキ鋼板、電気亜鉛メツキ鋼板、スズメツキ鋼板、ステンレス鋼板等の各種鋼 板やアルミニウム板が使用でき、通常の化成処理を施した後に使用しても良い。  [0131] Examples of the metal sheet used for the resin-coated metal sheet of the present invention include various steel sheets such as a hot-rolled steel sheet, a cold-rolled steel sheet, a molten zinc plated steel sheet, an electric zinc plated steel sheet, a tin plated steel sheet, a stainless steel sheet, and the like. A plate can be used, and may be used after performing a normal chemical conversion treatment.
[0132] [収縮ラベル及び包装体]  [0132] [Shrink label and package]
本発明の熱収縮性シート及び熱収縮性積層シートは、それぞれ、優れた収縮仕上 り性、 自然収縮、透明性、シートの腰 (常温における剛性)、ミシン目切断性などの機 械的強度等を有しているため、その用途が特に制限されるものではないが、ペットボ トル(300ミリリットル一 2リットル程度の丸型、角型ボトル)の収縮ラベル用途、各種食 品や物品の収縮包装、収縮結束包装用途、各種容器のキャップシール用途、各種 食品や物品の収縮チューブなどに、収縮ラベルとして好適に用いることができ、この 収縮ラベルを装着した包装体を得ることができる。そして、本発明の収縮ラベル及び 包装体は、通常の方法を用いて作製することができる。 The heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention each have an excellent shrink finish. It has mechanical strength such as resilience, natural shrinkage, transparency, sheet stiffness (rigidity at room temperature), perforation cutability, etc., and its use is not particularly limited. (Round and square bottles of about 300 ml to 12 liters) for shrink label applications, shrink packaging for various foods and goods, shrink bundling packaging, cap sealing for various containers, shrink tubing for various foods and goods, etc. It can be suitably used as a shrink label, and a package with the shrink label attached can be obtained. Then, the shrink label and the package of the present invention can be manufactured by using a usual method.
[0133] 本発明の熱収縮性シート及び熱収縮性積層シートは、それぞれ優れた収縮仕上り 性及び収縮特性を有するため、高温に加熱すると変形を生じるようなプラスチック成 形品の熱収縮性ラベル素材のほか、熱膨張率や吸水性等が本発明の熱収縮性積 層シートとは極めて異なる材質、例えば金属、磁器、ガラス、紙、ポリエチレン、ポリプ ロピレン、ポリブテン等のポリオレフイン系榭脂、ポリメタクリル酸エステル系榭脂、ポリ カーボネート系榭旨、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリ エステル系榭脂、及びポリアミド系榭脂から選ばれる少なくとも 1種を構成素材として 用いた包装体 (容器)の熱収縮性ラベル素材として好適に利用できる。  [0133] The heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention each have excellent shrinkage finish and shrinkage properties, so that the heat-shrinkable label material of a plastic molded article that is deformed when heated to a high temperature. In addition, a material whose thermal expansion coefficient, water absorption and the like are very different from those of the heat-shrinkable laminated sheet of the present invention, for example, metal, porcelain, glass, paper, polyethylene, polypropylene, polyolefin resin such as polybutene, polymethacrylic resin Heat of a package (container) using at least one selected from acid ester resin, polycarbonate resin, polyester resin such as polyethylene terephthalate and polybutylene terephthalate, and polyamide resin as a constituent material It can be suitably used as a shrinkable label material.
[0134] 本発明の熱収縮性シート又は熱収縮性積層シートが利用できるプラスチック包装 体を構成する材質としては、上記の榭脂の他、ポリスチレン、ゴム変性耐衝撃性ポリ スチレン(HIPS)、スチレン ブチルアタリレート共重合体、スチレン アクリロニトリル 共重合体、スチレン 無水マレイン酸共重合体、アクリロニトリル ブタジエンースチレ ン共重合体 (ABS)、メタクリル酸エステル ブタジエン スチレン共重合体(MBS)、 ポリ塩ィ匕ビ二ル系榭脂、フエノール榭脂、ユリア榭脂、メラミン榭脂、エポキシ榭脂、不 飽和ポリエステル榭脂、シリコーン榭脂等を挙げることができる。これらのプラスチック 包装体は 2種以上の榭脂類の混合物でも、積層体であってもよい。  [0134] In addition to the above resins, polystyrene, rubber-modified impact-resistant polystyrene (HIPS), styrene, and the like may be used as the material constituting the plastic package in which the heat-shrinkable sheet or the heat-shrinkable laminated sheet of the present invention can be used. Butyl acrylate copolymer, styrene acrylonitrile copolymer, styrene maleic anhydride copolymer, acrylonitrile butadiene styrene copolymer (ABS), methacrylate butadiene styrene copolymer (MBS), polychloride copolymer Cellulose resin, phenol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, silicone resin and the like can be mentioned. These plastic packages may be a mixture of two or more resins or a laminate.
実施例  Example
[0135] 以下に実施例を用いて更に詳しく説明するが、これらにより本発明は何ら制限を受 けるものではない。なお、本明細書中に表示される榭脂、シート、フィルム等について の種々の測定値および評価は次のようにして行った。ここで、シート(フィルム)の押出 機又はカレンダー加工機からの流れ方向を縦方向(MD)、その直交方向を横方向( TD)と称す。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by these. Various measurements and evaluations of the resin, sheet, film, and the like displayed in the present specification were performed as follows. Here, the direction of flow of the sheet (film) from the extruder or calendering machine is defined as the longitudinal direction (MD), and TD).
[0136] (1)ガラス転移温度 (Tg) [0136] (1) Glass transition temperature (Tg)
パーキンエルマ一社製の示差走査熱量計 DSC— 7を用い、 JIS K7121に準じて、 試料 10mgを、加熱速度が 10°CZ分で- 40°Cから 250°Cまで昇温し、 250°Cで 1分 間保持した後、冷却速度が 10°CZ分で 40°Cまで降温し、 40°Cで 1分間保持した 後、加熱速度が 10°CZ分で再昇温した時のサーモグラム力もガラス転移温度 (Tg) を求めた。  Using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer Co., Ltd., according to JIS K7121, a 10 mg sample was heated from -40 ° C to 250 ° C at a heating rate of 10 ° CZ, and then heated to 250 ° C. After cooling for 1 minute, the cooling rate is lowered to 40 ° C in 10 ° CZ minutes, and after holding for 1 minute at 40 ° C, the thermogram force when the heating rate is raised again in 10 ° CZ minutes is also The glass transition temperature (Tg) was determined.
[0137] (2)ポリエステル系榭脂の組成分析  [0137] (2) Composition analysis of polyester resin
ポリエステル系榭脂を重クロ口ホルム (溶媒)に溶解させた溶液 (試料濃度: lOOmg ,1ミリリットル溶媒)を試料とし、この試料溶液を、核磁気共鳴装置 (NMR)により1 H をモニターすることにより分析した。カルボン酸単量体単位に関しては全力ルボン酸 単量体単位に対するモル%を、グリコール単量体単位に関しては全グリコール単量 体単位に対するモル%を求めた。 A solution prepared by dissolving a polyester resin in form (solvent) of heavy-duty mouth (sample concentration: 100 mg, 1 ml solvent) shall be used as a sample, and this sample solution shall be monitored for 1 H by a nuclear magnetic resonance apparatus (NMR). Was analyzed. For the carboxylic acid monomer unit, the mole% was calculated based on the total rubonic acid monomer unit, and for the glycol monomer unit, the mole% was calculated based on the total glycol monomer unit.
[0138] (3)平均屈折率 [0138] (3) Average refractive index
日本工業規格 JIS K7142に準じて、ナトリウム D線(589nm)を光源とし、(株)ァタ ゴ製アッベ屈折計を用いて測定した。  In accordance with Japanese Industrial Standards JIS K7142, the measurement was performed using sodium D line (589 nm) as a light source and Abago refractometer manufactured by Atago Co., Ltd.
[0139] (4)ヘーズ(曇価) [4] Haze (cloudiness value)
日本工業規格 JIS K7105に準じて、得られたシートのヘーズを測定した。  The haze of the obtained sheet was measured according to Japanese Industrial Standard JIS K7105.
[0140] (5)引張弾性率 [0140] (5) Tensile modulus
日本工業規格 JIS K7127に準じて、温度 23°C、試験速度 5mmZ分の条件下で 試料の横方向の引張弾性率を求めた。  According to the Japanese Industrial Standards JIS K7127, the tensile modulus in the lateral direction of the sample was determined under the conditions of a temperature of 23 ° C and a test speed of 5 mmZ.
[0141] (6)引張破壊強さ、引張破壊伸び [0141] (6) Tensile breaking strength, tensile breaking elongation
日本工業規格 JIS K7127〖こ準じて、試料を、温度 23°C、試験速度 200mmZ分の 条件下で引張って、試料の横方向の引張破壊強さ及び引張破壊伸びの測定を行つ た。  In accordance with Japanese Industrial Standard JIS K7127, the sample was pulled under the conditions of a temperature of 23 ° C and a test speed of 200 mmZ, and the tensile strength and elongation at break in the lateral direction of the sample were measured.
[0142] (7)耐衝撃性  [0142] (7) Impact resistance
ノ、イド口ショット高速衝撃試験器 ( (株)島津製作所製「HTM— 1型」)を用い、縦方 向 100mm X横方向 100mmの試料片をクランプで固定し、温度 0°Cで試料片中央 に直径が 1Z2インチの撃芯を落下速度 3mZ秒で落下させて衝撃を与え、試料片 が破壊したときのエネルギー(kgf 'mm)を測定した。 Using a high-speed impact tester (“HTM-1” manufactured by Shimadzu Corporation), a sample piece of 100 mm in the vertical direction and 100 mm in the horizontal direction is fixed with a clamp, and the sample piece is heated at 0 ° C. Center An impact tip with a diameter of 1Z2 inches was dropped at a falling speed of 3 mZ seconds on the sample, and an impact (kgf'mm) was measured when the sample piece was broken.
[0143] (8)流動開始温度  (8) Flow start temperature
得られたシートをはさみで小さく刻み、乾燥させた後、(株)島津製作所製の「高化 式フローテスター CFT— 500C型」(内径 lmm、長さ 2mmのノズル)を用い、昇温速 度 3°CZ分、荷重 3. 92MPa (40kgfZcm2)の条件下で流動開始温度を測定した。 The obtained sheet is cut into small pieces with scissors, dried, and then heated at a heating rate using “Koka Type Flow Tester CFT-500C” manufactured by Shimadzu Corporation (lmm inner diameter, 2 mm long nozzle). The flow start temperature was measured under the conditions of 3 ° CZ and a load of 3.92 MPa (40 kgfZcm 2 ).
[0144] (9)動的粘弾性測定  [0144] (9) Dynamic viscoelasticity measurement
得られたシートから縦方向 4mm X横方向 60mmの大きさの試料を切り取った。この 試料を、粘弾性スぺクトロメーター DVA— 200 (アイティ計測 (株)製)を用い、振動周 波数 10Hz、ひずみ 0. 1%、昇温速度 3°CZ分、チャック間 25mmの条件下で、横方 向につ 、て 50°C力ゝら昇温を開始し、貯蔵弾性率 (E ' )と損失弾性率 (E")を測定し た。得られたデータ力も損失正接 (tan δ =Ε"ΖΕ' )曲線のピーク数、ピーク温度と その半値幅及びピーク値を求めた。  A sample having a size of 4 mm in the vertical direction and 60 mm in the horizontal direction was cut out from the obtained sheet. Using a viscoelastic spectrometer DVA-200 (manufactured by IT Measurement Co., Ltd.), the sample was subjected to a vibration frequency of 10 Hz, a strain of 0.1%, a heating rate of 3 ° CZ, and a chuck distance of 25 mm. In the horizontal direction, the temperature was raised at 50 ° C, and the storage modulus (E ') and the loss modulus (E ") were measured. The obtained data force was also measured by the loss tangent (tan δ). = Ε "ΖΕ ') The number of peaks, the peak temperature, the half width and the peak value of the curve were determined.
[0145] (10)貯蔵弾性率 (Ε' )  (10) Storage modulus (Ε ')
得られたシートから、縦方向 60mm X横方向 4mmの大きさの試料を切り出した。こ の試料を、粘弾性測定装置 DVA-200 (アイティ計測制御 (株)製)を用い、振動周 波数 10Hz、ひずみ 0. 1%、昇温速度 3°CZ分、チャック間 25mmの条件下で、縦方 向について 50°C力も昇温を開始し、貯蔵弾性率 (Ε' )を測定した。得られたデータ 力も 25°Cにおける貯蔵弾性率 (Ε' )の値を求めた。  A sample having a size of 60 mm in the vertical direction and 4 mm in the horizontal direction was cut out from the obtained sheet. Using a viscoelasticity measuring device DVA-200 (manufactured by IT Measurement Control Co., Ltd.), this sample was used under the conditions of a vibration frequency of 10 Hz, a strain of 0.1%, a heating rate of 3 ° CZ, and a gap of 25 mm between the chucks. In the vertical direction, the temperature was increased by 50 ° C, and the storage elastic modulus (Ε ') was measured. The obtained data was also determined as the value of storage modulus (Ε ') at 25 ° C.
[0146] (11)熱収縮率  (11) Heat shrinkage
得られたシートから、縦方向 100mm X横方向 100mmの大きさの試料を切り取つ た。この試料を、 80°Cの温水バスに 10秒間浸漬した後、シートの主収縮方向(横方 向)における収縮量を測定し、収縮前の原寸に対する収縮量の比率を%値で求めた なお、比率のマイナス (一)は原寸よりも膨張していることを意味する。  A sample having a size of 100 mm in the vertical direction and 100 mm in the horizontal direction was cut out from the obtained sheet. After immersing this sample in a hot water bath at 80 ° C for 10 seconds, the amount of shrinkage in the main shrinkage direction (horizontal direction) of the sheet was measured, and the ratio of the amount of shrinkage to the original size before shrinkage was calculated as a percentage. , A minus (1) in the ratio means that it is expanded from its original size.
[0147] (12)自然収縮率 (12) Natural contraction rate
得られたシートから、縦方向 1, OOOmm X横方向 1, 000mmの大きさの試料を切り 取った。この試料を、 30°Cの雰囲気の恒温槽内に 30日間放置した後、シートの主収 縮方向(横方向)における収縮量を測定し、収縮前の原寸に対する収縮量の比率を %値で求めた。 From the obtained sheet, a sample having a size of 1, OOO mm in the vertical direction and 1,000 mm in the horizontal direction was cut out. After leaving this sample in a thermostat at 30 ° C for 30 days, the main The amount of shrinkage in the shrinking direction (lateral direction) was measured, and the ratio of the amount of shrinkage to the original size before shrinking was determined as a% value.
[0148] (13)収縮仕上り性  (13) Shrink finish
縦横 10mm間隔の格子目を印刷したシートを、縦方向 100mm X横方向 298mm の大きさに切り取り、横方向の両端を 10mm重ねて溶剤シールし円筒状にした。この 円筒状のシートを、内容量 1. 5リットルの丸型のペットボトルに装着し、蒸気加熱方式 の長さ 3mの収縮トンネルの中を、回転させずに 10秒間で通過させてシートを被覆し た。ただし、吹き出し蒸気温度は 99°C、トンネル内雰囲気温度は 90— 94°Cであった 。ペットボトルに被覆されたシートについて、下記評価基準に基づき、収縮仕上り性 の評価を行った。  The sheet on which grids were printed at intervals of 10 mm in length and width was cut into a size of 100 mm in the vertical direction and 298 mm in the horizontal direction. This cylindrical sheet is attached to a 1.5-liter round plastic bottle and passed through a steam-heated 3m long shrink tunnel for 10 seconds without rotating to cover the sheet. did. However, the temperature of the discharged steam was 99 ° C and the ambient temperature in the tunnel was 90-94 ° C. The sheet covered with the PET bottle was evaluated for shrink finish based on the following evaluation criteria.
評価基準:  Evaluation criteria:
〇収縮が十分であり、シヮ入り、ァバタはなぐ格子目の歪みも実用上問題なぐ かつシートの密着性も良好なもの  〇Sufficient shrinkage, no cracks, no avatars, no practical grid problem, and good sheet adhesion
X 明らかに収縮不足部分があるか、あるいはシヮ入り、ァバタ、格子目の歪みが 目立つもの  X There is clearly a part with insufficient shrinkage, or it has cracks, abata, and noticeable distortion of the lattice.
[0149] (14)カレンダー加工性 (14) Calendar workability
φ 40πιπι同方向二軸押出機 (LZD = 32)を用い、シリンダー設定温度 270°Cで溶 融混練した後、ロール径 250mmの金属ロール 4本力 なる L型カレンダー加工設備 に移し、ロール設定温度を榭脂組成物の流動開始温度より 10°C高!ヽ温度 (流動開 始温度 + 10°C)から 200°Cまでの温度の範囲内で調整し、 目視にて、下記評価基準 に基づき、カレンダー製膜性の評価を行った。  Using a φ40πιπι twin screw extruder (LZD = 32), melt and knead at a cylinder setting temperature of 270 ° C, and then transfer it to an L-shaped calendering facility with four rolls of metal rolls with a roll diameter of 250mm. 10 ° C higher than the flow start temperature of the resin composition! ヽ Adjust the temperature within the temperature range (flow start temperature + 10 ° C) to 200 ° C, and visually, based on the following evaluation criteria. The calender film-forming properties were evaluated.
評価基準:  Evaluation criteria:
〇 バンク (榭脂組成物)の回り方が規則的で安定しており、得られるシートの表面 外観や厚みの均一性が良好なもの  も の The bank (resin composition) turns regularly and stably, and the resulting sheet has good surface appearance and uniform thickness
X バンクの回り方が不規則だったり、明らかに熱量不足でロールへの巻き付き状 態が悪く得られるシートの表面外観に凹凸などの不良が発生したり、厚みが不均一と なるもの  X The bank turns irregularly, or the amount of heat is clearly insufficient, and the wound state around the roll is poor.The surface appearance of the sheet may be defective, such as unevenness, or the thickness may be uneven.
[0150] (15)沸騰水浸漬試験 榭脂被覆金属板から 60mm X 60mmの大きさに切り出した試料を用いた。この試 料に、日本工業規格 JIS K7121で規定されるエリクセン試験装置を用いて、榭脂被 覆側が凸になるように 6mmの張り出しを設けた。その後、この試料を沸騰水中に 3時 間浸潰し、浸漬後の試料の榭脂シートの面状態を、目視により、下記に示す基準に 基づいて評価を行った。 (15) Boiling water immersion test A sample cut into a size of 60 mm X 60 mm from a resin-coated metal plate was used. The sample was provided with a 6 mm overhang so that the resin-coated side became convex using an Erichsen test apparatus specified in Japanese Industrial Standard JIS K7121. Thereafter, this sample was immersed in boiling water for 3 hours, and the surface state of the resin sheet of the immersed sample was visually evaluated based on the following criteria.
評価基準:  Evaluation criteria:
〇 全く変化のな力つたもの  全 く Power that is completely changeable
X 表面の荒れゃ榭脂層の膨れ、剥離等が発生したもの  X Rough surface, swelling of resin layer, peeling, etc.
[0151] (16)鉛筆硬度 [0151] (16) Pencil hardness
日本工業規格 JIS K5400 8. 4の「鉛筆引つ力き値」(試験機法)に準じて鉛筆硬 度の測定を行った。  Pencil hardness was measured in accordance with the “Pencil pull value” of Japanese Industrial Standard JIS K54008.4 (Testing Machine Method).
[0152] (17)二次加工性 [0152] (17) Secondary workability
得られた榭脂被覆金属板にっ ヽて衝撃密着曲げ試験を行った。曲げ加工後の榭 脂シートの面状態を目?見観察し、下記に示す評価基準に基づ!/ヽて二次加工性の評 価を行った。  An impact adhesion bending test was performed on the obtained resin-coated metal plate. Looking at the surface condition of the resin sheet after bending? It was observed and observed, and the secondary workability was evaluated based on the evaluation criteria shown below.
評価基準:  Evaluation criteria:
〇 ほとんど変化がなく良好なもの  も の Good with little change
X クラックや割れが発生したもの  X cracks or cracks
なお、衝撃密着曲げ試験は次のようにして行った。榭脂被覆金属板の長さ方向お よび幅方向力 それぞれ 50mm X 150mmの試料を切出し、 23°Cで 1時間以上保つ た後、折り曲げ試験機を用いて 180° (内曲げ半径 2mm)に折り曲げ、その試料に 直径 75mm、質量 5kgの円柱形の錘を 50cmの高さ力も落下させた。  The impact adhesion bending test was performed as follows.力 Cut the sample of 50mm x 150mm each in the length and width direction of the resin coated metal plate, keep it at 23 ° C for 1 hour or more, then bend it to 180 ° (inner bending radius 2mm) using a bending tester Then, a cylindrical weight with a diameter of 75 mm and a mass of 5 kg was dropped on the sample with a height of 50 cm.
[0153] (18)ミシン目切断性 (18) Perforation cutability
熱収縮性積層シートにミシン目加工 (ミシン目の長さ: 0. 7mm、ミシン目とミシン目 との間隔: 0. 7mm, 1本線)を施し、上記「(13)収縮仕上り性」の評価と同様の方法 で、内容量 1. 5リットルの丸型のペットボトルに熱収縮により装着させる。常温に冷却 した後、ミシン目部分を手で引裂いて、ミシン目切断性の評価を行った。ただし、試料 数 10本について切断試験を行い、評価は、官能試験にて、下記の評価基準に基づ いて評価した。 The heat-shrinkable laminated sheet is perforated (perforation length: 0.7 mm, interval between perforations: 0.7 mm, single line), and the above evaluation of “(13) Shrink finish” is performed. In the same manner as above, attach to a 1.5-liter round PET bottle by heat shrinkage. After cooling to room temperature, the perforated portion was torn by hand, and the perforated cutability was evaluated. However, a cutting test was performed on 10 samples, and the evaluation was performed based on the following evaluation criteria in a sensory test. And evaluated.
評価基準:  Evaluation criteria:
〇 8本以上がミシン目に沿ってきれいに切れる  〇 8 or more pieces cut cleanly along perforations
X 3本以上がミシン目に沿って切れないか、あるいは 3本以上がミシン目に沿つ て切れかけるが、途中でミシン目力 ずれて切れる  X 3 or more do not cut along the perforation, or 3 or more cut along the perforation, but cut off due to perforation
[0154] [実施例 I] [Example I]
(実施例 1—1)  (Example 1-1)
表 1に示すように、ポリカーボネート系榭脂 (b—l)として、乾燥した芳香族ポリカー ボネート榭脂(三菱エンジニアリングプラスチックス (株)製、「ノバレックス 7025A」、 T g : 149. 5°C、平均屈折率: 1. 5858) (以下、単に PCと略記することがある) 75質量 %と、ポリエステル系榭脂 (b— 2)として、乾燥した透明軟質ポリエステル榭脂 (三菱レ ィヨン(株)製、「ダイヤナイト DN— 124」、Tg : 19. 1°C、カルボン酸単量体 (ィ)単位: テレフタル酸 100モル0 /0、グリコール単量体(口)単位:エチレングリコール 66モル0 /0 、ジエチレングリコール 2モル0 /0、 1, 4ーシクロへキサンジメタノール 26モル0 /0、数平 均分子量が 1, 000のポリテトラメチレングリコール 6モル0 /0、平均屈折率: 1. 5461) ( 以下、単に PET-1と略記することがある) 25質量%とからなる混合組成物を、 Tダイ を備えた φ 40mm同方向二軸押出機 (LZD= 36)を用い、設定温度 270°Cで溶融 混練し、 80°C (実施例 I 1以外の実施例等においては、キャストロールの温度は、シ ートのキャストロールへの密着状態を確認しながら、混合榭脂組成物の Tg— 20°C前 後の温度で適宜調整した)のキャストロールでキャスト製膜することにより厚さ 150 mのシートを得た。得られたシートを用いてガラス転移温度 (Tg)や力学特性などの 評価を行った。その結果を表 1に示す。 As shown in Table 1, as a polycarbonate resin (b-l), a dried aromatic polycarbonate resin (manufactured by Mitsubishi Engineering-Plastics Corporation, "NOVAREX 7025A", Tg: 149.5 ° C , Average refractive index: 1.5858) (hereinafter may be simply abbreviated as PC) 75% by mass, and as polyester-based resin (b-2), dried transparent soft polyester resin (Mitsubishi Rayon Co., Ltd.) ) Ltd., "DIANITE DN-124", Tg: 19. 1 ° C, carboxylic acid monomers (I) unit: terephthalic acid 100 mol 0/0, glycol monomer (mouth) unit: ethylene glycol 66 mol 0/0, diethylene glycol 2 mol 0/0, 1, 4 Cyclohexanedicarboxylic to Shikuro methanol 26 mole 0/0, Sutaira average molecular weight of 1, 000 polytetramethylene glycol 6 mole 0/0, the average refractive index: 1. 5461) (hereinafter sometimes abbreviated simply as PET-1) Using a φ40mm co-rotating twin screw extruder (LZD = 36) equipped with a T-die, melt-kneaded at a set temperature of 270 ° C, and mixed at 80 ° C (Examples other than Example I1). In such cases, the temperature of the cast roll was adjusted appropriately at a temperature around the Tg of the mixed resin composition-20 ° C while confirming the state of adhesion of the sheet to the cast roll.) By forming the film, a sheet having a thickness of 150 m was obtained. The obtained sheets were used to evaluate glass transition temperature (Tg), mechanical properties, and the like. The results are shown in Table 1.
[0155] (実施例 I 2) (Example I 2)
表 1に示すように、実施例 1-1にお 、てポリカーボネート系榭脂 (b-1)として使用し た PCとポリエステル系榭脂 (b— 2)として使用した PET— 1の混合比をそれぞれ 90質 量%及び 10質量%に変更した以外は、実施例ト 1と同様にしてシートを得た。得ら れたシートを用いてガラス転移温度 (Tg)や力学特性などの評価を行った。その結果 を表 1に示す。 [0156] (実施例 I 3) As shown in Table 1, in Example 1-1, the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) was changed. Sheets were obtained in the same manner as in Example 1 except that the amounts were changed to 90% by mass and 10% by mass, respectively. The glass transition temperature (Tg) and mechanical properties were evaluated using the obtained sheet. The results are shown in Table 1. (Example I 3)
表 1に示すように、実施例 1-1にお 、てポリカーボネート系榭脂 (b-1)として使用し た PCとポリエステル系榭脂 (b— 2)として使用した PET— 1の混合比をそれぞれ 95質 量%及び 5質量%に変更した以外は、実施例ト 1と同様にしてシートを得た。得られ たシートを用いてガラス転移温度 (Tg)や力学特性などの評価を行った。その結果を 表 1に示す。  As shown in Table 1, in Example 1-1, the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) was changed. Sheets were obtained in the same manner as in Example 1 except that the amounts were changed to 95% by mass and 5% by mass, respectively. The obtained sheets were used to evaluate glass transition temperature (Tg) and mechanical properties. The results are shown in Table 1.
[0157] (比較例 I 1)  (Comparative Example I 1)
表 1に示すように、実施例 1-1にお 、てポリカーボネート系榭脂 (b-1)として使用し た PCとポリエステル系榭脂 (b— 2)として使用した PET— 1の混合比をそれぞれ 100 質量%及び 0質量%に変更した以外は、実施例ト 1と同様にしてシートを得た。得ら れたシートを用いてガラス転移温度 (Tg)や力学特性などの評価を行った。その結果 を表 1に示す。  As shown in Table 1, in Example 1-1, the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) was changed. Sheets were obtained in the same manner as in Example 1 except that the amounts were changed to 100% by mass and 0% by mass, respectively. The glass transition temperature (Tg) and mechanical properties were evaluated using the obtained sheet. The results are shown in Table 1.
[0158] (実施例 I 4)  (Example I 4)
表 2に示すように、実施例 1-1にお 、てポリカーボネート系榭脂 (b-1)として使用し た PCとポリエステル系榭脂 (b— 2)として使用した PET— 1の混合比をそれぞれ 50質 量%及び 50質量%に変更した以外は、実施例ト 1と同様にしてシートを得た。続い て、得られたシートを、テンター延伸設備を用いて、延伸温度 95°C、横方向に 3. 0倍 延伸した後、冷風で急冷して、厚み 50 mの熱収縮性シートを得た。得られたシート 及び得られた熱収縮性シートを適宜用いて、ガラス転移温度 (Tg)の測定、及び、力 学特性などの評価を行った。その結果を表 2に示す。なお、熱収縮率は、得られた熱 収縮性シートを縦方向 100mm X横方向 100mmの大きさに切り出し、 80°Cの温水 バスに 10秒間浸漬し、横方向の収縮量を測定し、収縮前の原寸に対する収縮量の 比率を%値で求めた。また、得られたシートの DSCサーモグラムを図 1に示す。図 1 力 明らかなように、このシートのガラス転移温度はピークを 1つ有するものであること が分かる。  As shown in Table 2, in Example 1-1, the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) was changed. A sheet was obtained in the same manner as in Example 1 except that the mass was changed to 50% by mass and 50% by mass, respectively. Subsequently, the obtained sheet was stretched 3.0 times in the transverse direction at a stretching temperature of 95 ° C using a tenter stretching apparatus, and then rapidly cooled with cold air to obtain a heat-shrinkable sheet having a thickness of 50 m. . Using the obtained sheet and the obtained heat-shrinkable sheet as appropriate, measurement of glass transition temperature (Tg) and evaluation of mechanical properties were performed. The results are shown in Table 2. The heat shrinkage rate was determined by cutting the obtained heat shrinkable sheet to a size of 100 mm in the vertical direction and 100 mm in the horizontal direction, immersing it in a hot water bath at 80 ° C for 10 seconds, measuring the amount of shrinkage in the horizontal direction, The ratio of the amount of shrinkage to the previous original size was calculated as a percentage value. FIG. 1 shows a DSC thermogram of the obtained sheet. Fig. 1 Force As can be seen, the glass transition temperature of this sheet has one peak.
[0159] (比較例 I 2)  (Comparative Example I2)
表 2に示すように、実施例 I 4においてポリエステル系榭脂 (b—l)として使用した P ET-1に代えて、非晶性ポリエステル榭脂 (イーストマンケミカル (株)製、「EASTAR PETG Copolyester6763」、 Tg : 79. 0°C、カルボン酸単量体 (ィ)単位:テレフタ ル酸 100モル0 /0、グリコール単量体(口)単位:エチレングリコール 68モル0 /0、 1, 4— シクロへキサンジメタノール 32モル0 /0、平均屈折率: 1. 5667) (以下、単に PET— 2 と略記することがある)を使用した以外は、実施例 I 4と同様にしてシートを得た。続 いて、得られたシートをテンター延伸設備を用いて、延伸温度 95°C、横方向に 3. 0倍 延伸しようと試みたが、シートが破断したため延伸はできなかった。また、得られたシ ートの DSCサーモグラムを図 2に示す。図 2から明らかなように、このシートは、 79. 4 °Cと 134. 8°Cの 2箇所にガラス転移温度 (Tg)を有するものであることがわかる。 As shown in Table 2, in place of PET-1 used as the polyester resin (b-l) in Example I4, an amorphous polyester resin (Eastman Chemical Co., Ltd., “EASTAR PETG Copolyester6763 ", Tg: 79. 0 ° C, carboxylic acid monomers (I) Unit: terephthalic Le acid 100 mole 0/0, glycol monomer (mouth) Unit: Ethylene glycol 68 mol 0/0, 1, 4- Cyclohexanedicarboxylic methanol 32 mole 0/0 cyclohexane, average refractive index: 1.5667) (hereinafter, simply except for using that there is a) abbreviated as PET-2, in the same manner as in example I 4 sheets Got. Subsequently, an attempt was made to stretch the obtained sheet 3.0 times in the transverse direction at a stretching temperature of 95 ° C using a tenter stretching apparatus, but the sheet was broken and could not be stretched. Figure 2 shows the DSC thermogram of the obtained sheet. As is clear from FIG. 2, this sheet has two glass transition temperatures (Tg) at 79.4 ° C. and 134.8 ° C.
[0160] [表 1] [0160] [Table 1]
Figure imgf000039_0001
Figure imgf000039_0001
[0161] [表 2] [0161] [Table 2]
Figure imgf000039_0002
表 1乃至 2より、ポリカーボネート系榭脂 (b— 1)とポリエステル系榭脂 (b— 2)とからな り、単一のガラス転移温度を有する混合榭脂組成物は、ポリカーボネート系榭脂の透 明性、耐衝撃性などの特長を大きく損なうことなぐ流動性 (実施例 I 1一 3)や二次 加工性 (実施例 I 4)などに優れることがわかる。
Figure imgf000039_0002
According to Tables 1 and 2, the mixed resin composition consisting of the polycarbonate resin (b-1) and the polyester resin (b-2) and having a single glass transition temperature is the same as the polycarbonate resin. Transparent It can be seen that it has excellent fluidity (Example I13) and secondary workability (Example I4) without significantly impairing features such as lightness and impact resistance.
一方、ポリカーボネート系榭脂 (b—1)単独の榭脂である比較例 I 1では、耐衝撃性 や透明性などは良好なものの、流動性に劣り、また、本発明で規定する範囲外のポリ エステル系榭脂を用いた榭脂である比較例ト 2では、ポリカーボネート系榭脂 (b— 1) との相溶性が劣っているため、 PVC榭脂の二次加工温度域 (通常、 50°C以上 100 °C以下程度)での二次加工性 (熱収縮性など)の付与が困難であることがわかる。  On the other hand, in Comparative Example I1, which is a polycarbonate resin (b-1) alone, the impact resistance and the transparency were good, but the flowability was poor, and the resin was out of the range specified in the present invention. In Comparative Example 2 which is a resin using a polyester resin, the compatibility with the polycarbonate resin (b-1) is inferior. It can be seen that it is difficult to impart secondary workability (such as heat shrinkability) at a temperature of about 100 ° C or more and 100 ° C or less.
[0163] [実施例 II] [0163] [Example II]
(実施例 Π— 1)  (Example II-1)
表 3に示すように、ポリカーボネート系榭脂 (b—l)として、乾燥した芳香族ポリカー ボネート榭脂(三菱エンジニアリングプラスチックス (株)製、ノバレックス 7025A、 Tg : 149. 5°C、平均屈折率: 1. 5858) (以下、単に PCと略記することがある) 50質量% と、ポリエステル系榭脂として、乾燥した透明軟質ポリエステル榭脂(三菱レイヨン (株 )製、ダイヤナイト DN— 124、 Tg : 19. 1°C、カルボン酸単量体 (ィ)単位:テレフタル 酸 100モル0 /0、グリコール単量体(口)単位:エチレングリコール 66モル0 /0、ジェチレ ングリコール 2モル0 /0、 1, 4ーシクロへキサンジメタノール 26モル0 /0、数平均分子量 1 , 000のポリテ卜ラメチレングリコール 6モル0 /0、平均屈折率: 1. 5461、固有粘度: 0. 94dl/g) (以下、単に PET-1と略記することがある) 50質量%とからなる混合組成 物を、 Tダイを備えた φ 40mm同方向二軸押出機 (LZD = 36)を用いて設定温度 2 70°Cで溶融混練し、 50°C (実施例 II 1以外の実施例等において、キャストロールの 温度は、シートのキャストロールへの密着状態を確認しながら、榭脂組成物の Tg— 20 °C前後の温度で適宜調整した)のキャストロールでキャスト製膜することにより厚さ 15 0 mのキャストシートを得た。続いて、得られたシートをテンター延伸設備を用い、延 伸温度 95°C、横方向に 3. 0倍延伸した後、冷風で急冷して、厚み 50 mの熱収縮 性シートを得た。得られたキャストシートを用いてガラス転移温度 (Tg)の評価を行!ヽ 、得られた熱収縮性シートを用いて力学特性などの評価を行った。その結果を表 4に 示す。また、得られた熱収縮性シートにおける損失正接曲線を図 3に示す。 As shown in Table 3, as polycarbonate resin (b-l), a dried aromatic polycarbonate resin (manufactured by Mitsubishi Engineering-Plastics Corporation, Novalex 7025A, Tg: 149.5 ° C, average refraction) Rate: 1.5858) (hereinafter may be simply abbreviated as PC) 50% by mass, and as a polyester resin, dried transparent soft polyester resin (manufactured by Mitsubishi Rayon Co., Ltd., Dianite DN-124, tg: 19. 1 ° C, carboxylic acid monomers (I) unit: terephthalic acid 100 mol 0/0, glycol monomer (mouth) unit: ethylene glycol 66 mol 0/0, Jechire glycol 2 mol 0 / 0, 1, 4 Cyclohexanedicarboxylic to Shikuro methanol 26 mole 0/0, the number average molecular weight 1, Porite Bok La glycol 6 mole 0/0 000, average refractive index: 1.5461, intrinsic viscosity: 0. 94dl / g ) (Hereinafter sometimes abbreviated simply as PET-1) 50% by mass Using a φ40mm co-rotating twin screw extruder (LZD = 36) equipped with a T die, melt-kneading the mixture at a set temperature of 2 70 ° C, and mixing at 50 ° C (except for Example II 1). In Examples, the temperature of the cast roll was adjusted to a temperature of about 20 ° C. (Tg of the resin composition) while confirming the state of adhesion of the sheet to the cast roll. As a result, a cast sheet having a thickness of 150 m was obtained. Subsequently, the obtained sheet was stretched 3.0 times in the transverse direction at a stretching temperature of 95 ° C using a tenter stretching apparatus, and then rapidly cooled with cold air to obtain a heat-shrinkable sheet having a thickness of 50 m. Glass transition temperature (Tg) was evaluated using the obtained cast sheet, and mechanical properties and the like were evaluated using the obtained heat-shrinkable sheet. The results are shown in Table 4. FIG. 3 shows a loss tangent curve of the obtained heat-shrinkable sheet.
[0164] (実施例 II 2) 表 3に示すように、実施例 II 1においてポリカーボネート系榭脂 (b— 1)として使用し た PCとポリエステル系榭脂 (b— 2)として使用した PET— 1の混合比をそれぞれ 60質 量%及び 40質量%に変更し、延伸温度を 105°Cに変更した以外は、実施例 Π-1と 同様にしてキャストシート及び熱収縮性シートを得た。得られたキャストシートを用い て Tgの評価を行 ヽ、得られた熱収縮性シートを用いて力学特性などの評価を行った 。その結果を表 4に示す。また、得られた熱収縮性シートにおける損失正接曲線を図 3に示す。 (Example II 2) As shown in Table 3, the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) in Example II 1 was 60 mass, respectively. % And 40% by mass, and the stretching temperature was changed to 105 ° C., to obtain a cast sheet and a heat-shrinkable sheet in the same manner as in Example III-1. The Tg was evaluated using the obtained cast sheet, and the mechanical properties and the like were evaluated using the obtained heat-shrinkable sheet. The results are shown in Table 4. FIG. 3 shows a loss tangent curve of the obtained heat-shrinkable sheet.
[0165] (比較例 II 1) (Comparative Example II 1)
表 3に示すように、実施例 II 1においてポリカーボネート系榭脂 (b— 1)として使用し た PCとポリエステル系榭脂 (b— 2)として使用した PET— 1の混合比をそれぞれ 80質 量%及び 20質量%に変更し、延伸温度を 135°Cに変更した以外は、実施例 Π-1と 同様にして、キャストシート及び熱収縮性シートを得た。得られたキャストシートを用い て Tgの評価を行 ヽ、得られた熱収縮性シートを用いて力学特性などの評価を行った 。その結果を表 4に示す。また、得られた熱収縮性シートにおける損失正接曲線を図 3に示す。  As shown in Table 3, the mixing ratio of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) in Example II 1 was 80 mass, respectively. % And 20% by mass, and the stretching temperature was changed to 135 ° C., to obtain a cast sheet and a heat-shrinkable sheet in the same manner as in Example I-1. The Tg was evaluated using the obtained cast sheet, and the mechanical properties and the like were evaluated using the obtained heat-shrinkable sheet. The results are shown in Table 4. FIG. 3 shows a loss tangent curve of the obtained heat-shrinkable sheet.
[0166] (比較例 II 2) (Comparative Example II 2)
表 3に示すように、実施例 II 1においてポリエステル系榭脂 (b—l)として使用した P ET— 1に代えて、非晶性ポリエステル榭脂 (イーストマンケミカル (株)製、 EASTAR PETG Copolyester6763、Tg : 79. 0°C、カルボン酸単量体(ィ)単位:テレフタル 酸 100モル0 /0、グリコール単量体(口)単位:エチレングリコール 68モル0 /0、 1, 4ーシク 口へキサンジメタノール 32モル0 /0、平均屈折率: 1. 5667) (以下、単に PET— 2と略 記することがある)を使用した以外は、実施例 II 1と同様にしてシートを得た。続いて 、得られたシートを、テンター延伸設備を用い、延伸温度 95°C、横方向に 3. 0倍延伸 しょうと試みたが、シートが破断したため延伸することはできな力 た。また、得られた シートは、 79. 4°Cと 134. 8°Cの 2箇所に Tgを示した。 As shown in Table 3, an amorphous polyester resin (EASTAR PETG Copolyester6763 manufactured by Eastman Chemical Co., Ltd.) was used in place of PET-1 used as the polyester resin (b-l) in Example II 1. , Tg: 79. 0 ° C, carboxylic acid monomers (I) unit: terephthalic acid 100 mol 0/0, glycol monomer (mouth) unit: ethylene glycol 68 mol 0/0, 1, to 4 Shiku port Cyclohexanedicarboxylic methanol 32 mole 0/0, the average refractive index: 1.5667) (hereinafter, simply PET-2 and were used in place of the substantially serial there be), to obtain a sheet in the same manner as in example II 1 . Subsequently, the obtained sheet was stretched 3.0 times in the transverse direction at a stretching temperature of 95 ° C. using a tenter stretching apparatus, but the sheet could not be stretched because the sheet was broken. The obtained sheet showed Tg at two places, 79.4 ° C and 134.8 ° C.
[0167] (比較例 II 3) (Comparative Example II 3)
表 3に示すように、比較例 II 2で使用した PET— 2単体に変更し、延伸温度を 90°C に変更した以外は、実施例 II 1と同様にして、キャストシート及び熱収縮性シートを 得た。得られたキャストシートを用いて Tgの評価を行い、得られた熱収縮性シートを 用いて力学特性などの評価を行った。その結果を表 4に示す。また、得られた熱収縮 性シートにおける損失正接曲線を図 3に示す。 As shown in Table 3, the cast sheet and the heat-shrinkable sheet were manufactured in the same manner as in Example II 1 except that the PET-2 used in Comparative Example II 2 was changed to the simple substance and the stretching temperature was changed to 90 ° C. To Obtained. Tg was evaluated using the obtained cast sheet, and mechanical properties and the like were evaluated using the obtained heat-shrinkable sheet. The results are shown in Table 4. FIG. 3 shows a loss tangent curve of the obtained heat-shrinkable sheet.
[表 3] [Table 3]
Figure imgf000042_0001
Figure imgf000042_0001
[0169] [表 4]
Figure imgf000042_0002
[0169] [Table 4]
Figure imgf000042_0002
[0170] 表 3及び表 4より、本発明で規定するポリカーボネート系榭脂 (b— 1)とポリエステル 系榭脂 (b— 2)との混合榭脂組成物を延伸して得られる熱収縮性シートは、 tan δの ピーク温度及び半値幅がいずれも所定の範囲内であり、収縮仕上り性、自然収縮、 透明性、シートの腰 (常温における剛性)、耐破断性等の機械的強度のノランスに優 れて 、ることが分かる(実施例 II 1、実施例 II 2)。  [0170] From Tables 3 and 4, the heat shrinkability obtained by stretching the mixed resin composition of the polycarbonate resin (b-1) and the polyester resin (b-2) specified in the present invention was obtained. The sheet has a peak temperature of tan δ and a half-value width within a predetermined range, and has a mechanical strength such as shrinkage finish, spontaneous shrinkage, transparency, sheet stiffness (rigidity at room temperature), and rupture resistance. (Example II 1 and Example II 2).
これに対して、 Tgが高ぐ tan δのピーク温度が 130°Cを超える比較例 Π—lでは、 熱収縮性を付与することが困難であり、熱収縮性シートとしては実用に供することが できないものであることが分力つた。また、本発明で規定する範囲外のポリエステル系 榭脂を用いた比較例 Π— 1の場合には、ポリカーボネート系榭脂 (b— 1)との相溶性に 劣り、熱収縮性シートを得ることが困難であることが分力つた。さらにまた、ポリエステ ル系榭脂単体の榭脂である比較例 Π— 3では、 tan δの半値幅が狭ぐかつ、この榭 脂を延伸して得られる熱収縮性シートは、収縮仕上り性に劣ることが分力る。 On the other hand, in Comparative Example III-l, in which the peak temperature of tan δ where the Tg is high and the tan δ exceeds 130 ° C, it is difficult to impart heat shrinkage, and it is practical to use as a heat shrinkable sheet. I helped to make things impossible. Further, in the case of Comparative Example II-1 using a polyester resin outside the range specified in the present invention, the compatibility with the polycarbonate resin (b-1) was deteriorated. In addition, it was difficult to obtain a heat-shrinkable sheet. Furthermore, in Comparative Example III-3, which is a polyester resin alone, the heat shrinkable sheet obtained by stretching the resin has a narrow half width of tan δ and has a shrink finish. Inferiority helps.
[実施例 III] [Example III]
(実施例 ΠΙ— 1)  (Example II-1)
表 5に示すようにポリカーボネート系榭脂 (b—l)として、乾燥した芳香族ポリカーボ ネート榭脂(三菱エンジニアリングプラスチックス (株)製、ノバレックス 7025A、 Tg : 1 49. 5°C、平均屈折率: 1. 5858、流動開始温度: 194. 9°C) (以下、単に PCと略記 する) 85質量%と、ポリエステル系榭脂 (b— 2)として、乾燥した透明軟質ポリエステル 榭脂(三菱レイヨン (株)製、ダイヤナイト DN— 124、 Tg : 19. 1°C、カルボン酸単量体 (ィ)単位:テレフタル酸 100モル0 /0、グリコール単量体(口)単位:エチレングリコール 66モル0 /0、ジエチレングリコール 2モル0 /0、 1, 4ーシクロへキサンジメタノール 26モル %、数平均分子量 1000のポリテトラメチレングリコール 6モル0 /0、平均屈折率: 1. 54 61、固有粘度: 0. 94dl/g) (以下、単に PET-1と略記する) 15質量%とからなる混 合組成物 100質量部に滑剤としてモンタン酸ワックス(Hoechst社製、 Hoechst W AX OP)を 1. 0質量部添カ卩し、 φ 40mm同方向二軸押出機 (LZD= 32)を用いて シリンダー設定温度 270°Cで溶融混練し、続いて、ロール径 250mmの金属ロール 4 本力もなる L型カレンダー加工設備に移し、ロール設定温度 200°Cの条件下で圧延 して、厚み 150 mのシートを得た。さら〖こ、巿販されているポリ塩ィ匕ビュル被覆金属 板用のポリエステル系接着剤を該シートを貼り合せる金属面に乾燥後の接着剤膜厚 カ^ー 4 m程度になるように塗布し、ついで赤外線ヒーターおよび熱風加熱炉によ り塗布面の乾燥および加熱を行い、亜鉛めつき鋼板 (厚み 0. 5mm)の表面温度を該 シートの流動開始温度 + 10°C以上に保持しつつ、直ちにロールラミネータを用いて 被覆'冷却することにより榭脂被覆金属板を得た。得られたシートを用いてガラス転移 温度 (Tg)、力学特性などの評価を行い、得られた榭脂被覆金属板を用いて実用試 験の評価を行った。その結果をまとめて表 5に示す。また、得られた結果について総 合評価も行い、上記評価の全てにおいて良好な結果が得られ、実用上問題のないも のを記号「〇」、上記評価のうち、いずれか 1つでも不良であるものを記号「X」で表示 した。 As shown in Table 5, as a polycarbonate resin (b-l), a dried aromatic polycarbonate resin (manufactured by Mitsubishi Engineering-Plastics Corporation, Novalex 7025A, Tg: 149.5 ° C, average refraction) Rate: 1.5858, flow start temperature: 194.9 ° C) (hereinafter simply abbreviated as PC) 85% by mass, and as a polyester resin (b-2), dried transparent soft polyester resin (Mitsubishi Rayon Co., DIANITE DN- 124, Tg: 19. 1 ° C, carboxylic acid monomers (I) unit: terephthalic acid 100 mol 0/0, glycol monomer (mouth) unit: ethylene glycol 66 mole 0/0, diethylene glycol 2 mol 0/0, 1, 4 Shikuro to Cyclohexanedicarboxylic methanol 26 mol%, a number average molecular weight 1000 polytetramethylene glycol 6 mole 0/0, the average refractive index: 1.54 61, intrinsic viscosity : 0.94dl / g) (hereinafter simply abbreviated as PET-1) 15 mass To 100 parts by mass of a mixed composition consisting of the following, 1.0 part by mass of montanic acid wax (Hoechst Co., Ltd., Hoechst WAX OP) was added as a lubricant, and a φ40 mm co-rotating twin screw extruder (LZD = 32) Melt and knead at a cylinder set temperature of 270 ° C using a roll.Then, transfer to an L-shaped calendering facility that has four rolls of metal rolls with a roll diameter of 250mm and roll at a roll set temperature of 200 ° C to obtain a thickness. A 150 m sheet was obtained. Further, a polyester adhesive for a commercially available poly-Shidani-Bull coated metal plate is applied to the metal surface to which the sheet is to be bonded so that the thickness of the dried adhesive film is about 4 m. Then, the coated surface is dried and heated by an infrared heater and a hot-air heating furnace, while maintaining the surface temperature of the zinc-plated steel sheet (0.5 mm thick) at the flow start temperature of the sheet + 10 ° C or more. Immediately, coating and cooling were performed using a roll laminator to obtain a resin-coated metal plate. Glass transition temperature (Tg), mechanical properties, etc. were evaluated using the obtained sheet, and practical tests were evaluated using the obtained resin-coated metal plate. Table 5 summarizes the results. In addition, comprehensive evaluation was performed on the obtained results, and good results were obtained in all of the above evaluations. Show something with symbol "X" did.
[0172] (実施例 m— 2)  (Example m—2)
表 5に示すように、実施例 ΙΠ-1にお 、てポリカーボネート系榭脂 (b-1)として使用 した PCとポリエステル系榭脂 (b— 2)として使用した PET— 1との混合量をそれぞれ 70 質量%及び 30質量%に変更し、ロール設定温度を 185°Cにした以外は実施例 ΠΙ— 1と同様にして、厚さ 150 /z mのシートを得た。また、得られたシートを用いて実施例 II ト 1と同様にして榭脂被覆金属板を得た。得られたシート及び得られた榭脂金属板 を適宜用いて、ガラス転移温度 (Tg)や力学特性などの評価及び実用試験の評価を 行った。その結果をまとめて表 5に示す。  As shown in Table 5, in Example III, the mixing amount of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) was determined. A sheet having a thickness of 150 / zm was obtained in the same manner as in Example II-1, except that the mass was changed to 70% by mass and 30% by mass, respectively, and the set temperature of the roll was changed to 185 ° C. Using the obtained sheet, a resin-coated metal plate was obtained in the same manner as in Example II. Using the obtained sheet and the obtained resin metal plate as appropriate, evaluation of glass transition temperature (Tg), mechanical properties, and the like, and evaluation of a practical test were performed. Table 5 summarizes the results.
[0173] (比較例 ΠΙ— 1)  [0173] (Comparative Example II-1)
表 5に示すように、実施例 ΙΠ-1にお 、てポリカーボネート系榭脂 (b-1)として使用 した PCとポリエステル系榭脂 (b— 2)として使用した PET— 1の混合量をそれぞれ 50 質量%及び 50質量%に変更し、ロール設定温度を 175°Cにした以外は実施例 1と 同様にして厚さ 150 /z mのシートを得た。また、得られたシートを用い、実施例 ΙΠ— 1 と同様にして榭脂被覆金属板を得た。得られたシート及び榭脂被覆金属板を適宜用 いて、ガラス転移温度 (Tg)や力学特性などの評価、及び、実用試験の評価を行った 。その結果をまとめて表 5に示す。  As shown in Table 5, in Example II-1, the mixing amounts of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) were respectively determined. A sheet having a thickness of 150 / zm was obtained in the same manner as in Example 1 except that the temperature was changed to 50% by mass and 50% by mass, and the set temperature of the roll was changed to 175 ° C. Using the obtained sheet, a resin-coated metal plate was obtained in the same manner as in Example III-1. Using the obtained sheet and resin-coated metal plate as appropriate, evaluation of glass transition temperature (Tg), mechanical properties, and the like, and evaluation of a practical test were performed. Table 5 summarizes the results.
[0174] (比較例 ΠΙ— 2)  (Comparative Example II—2)
表 5に示すように、実施例 ΙΠ-1にお 、てポリカーボネート系榭脂 (b-1)として使用 した PCとポリエステル系榭脂 (b— 2)として使用した PET— 1の混合量をそれぞれ 100 質量%及び 0質量%に変更した以外は実施例 III 1と同様にしてカレンダー加工に 供した。し力しながら、明らかに熱量不足でロールへの巻き付き状態が悪ぐまた、バ ンクの回り方が不規則であり、表面外観が良好なシートを得ることは出来な力つた。  As shown in Table 5, in Example II-1, the mixing amounts of PC used as the polycarbonate resin (b-1) and PET-1 used as the polyester resin (b-2) were respectively determined. It was subjected to calendering in the same manner as in Example III1 except that it was changed to 100% by mass and 0% by mass. However, the winding state around the roll was poor due to the insufficient amount of heat, and the bank was turned irregularly, and it was impossible to obtain a sheet with a good surface appearance.
[0175] (比較例 ΠΙ— 3)  (Comparative Example III—3)
表 5に示すように、実施例 ΙΠ-1にお 、てポリカーボネート系榭脂 (b-1)として使用 した PCを 50質量%とポリエステル系榭脂 (b— 1)として、実施例 ΙΠ— 1で使用した PE T 1に代えて、非晶性ポリエステル榭脂 (イーストマンケミカル (株)製、 EASTARPE TG Copolyester6763、 Tg : 79. 0°C、カルボン酸単量体(ィ)単位:テレフタル酸 1 00モル0 /0、グリコール単量体(口)単位:エチレングリコール 68モル0 /0、 1, 4—シクロ へキサンジメタノール 32モル0 /0、平均屈折率: 1. 5667) (以下、単に PET— 2と略記 する)を 50質量%、ロール設定温度を 195°Cにした以外は実施例 ΙΠ-1と同様にして 、厚さ 150 /z mのシートを得た。また、この得られたシートを用い、実施例 ΠΙ— 1と同様 にして榭脂被覆金属板を得た。 As shown in Table 5, in Example II-1, 50% by mass of PC used as the polycarbonate resin (b-1) was used as the polyester resin (b-1). Amorphous polyester resin (manufactured by Eastman Chemical Co., Ltd., EASTARPE TG Copolyester6763, Tg: 79.0 ° C, carboxylic acid monomer (a) unit: terephthalic acid 1) 00 mole 0/0, glycol monomer (mouth) Unit: Ethylene glycol 68 mol 0/0, 1, 4-Cyclohexanedicarboxylic cyclohexane methanol 32 mole 0/0, the average refractive index: 1.5667) (hereinafter, simply A sheet having a thickness of 150 / zm was obtained in the same manner as in Example I-1, except that PET-2 (abbreviated as PET-2) was 50% by mass and the roll set temperature was 195 ° C. Using the obtained sheet, a resin-coated metal plate was obtained in the same manner as in Example III-1.
得られたシート及び得られた榭脂被覆金属板を適宜用い、ガラス転移温度 (Tg)や 力学特性などの評価及び実用試験の評価を行った。その結果をまとめて表 5に示す 。得られたシートは、 79. 4°Cと 134. 8°Cの 2箇所にガラス転移温度 (Tg)を示した。 また、該シートのヘーズは 6. 5%であり、透明性に劣るものであった。  Using the obtained sheet and the obtained resin-coated metal plate as appropriate, evaluation of glass transition temperature (Tg), mechanical properties, and the like, and evaluation of a practical test were performed. Table 5 summarizes the results. The obtained sheet showed two glass transition temperatures (Tg) at 79.4 ° C and 134.8 ° C. Further, the haze of the sheet was 6.5%, which was inferior in transparency.
[0176] (比較例 ΠΙ— 4)  [0176] (Comparative Example II—4)
表 5に示すように、実施例 ΙΠ-1にお 、てポリカーボネート系榭脂 (b-1)として使用 した PCを 70質量%とポリエステル系榭脂 (b— 2)として、実施例 ΙΠ— 1で使用した PE T 1に代えて、ポリエステル榭脂(イーストマンケミカル (株)製、 EASTAR PCTG C opolyester5445、 Tg : 87. 3°C、カルボン酸単量体(ィ)単位:テレフタル酸 100モ ル0 /0、グリコール単量体(口)単位:エチレングリコール 35モル0 /0、 1, 4—シクロへキサ ンジメタノール 65モル%) (以下、単に PET— 3と略記する)を 30質量%にした以外は 実施例 ΙΠ— 1と同様にしてカレンダー加工に供した。しかしながら、カレンダー加工中 にシートが結晶化し表面外観が良好なシートを得ることは出来な力つた。なお、該シ ートを用いて DSC測定を行ったところ、結晶融解ピークが 243°Cであった。 As shown in Table 5, in Example II-1, 70% by mass of PC used as the polycarbonate resin (b-1) was used as the polyester resin (b-2). Polyester resin (manufactured by Eastman Chemical Co., Ltd., EASTAR PCTG Copolyester 5445, Tg: 87.3 ° C, carboxylic acid monomer (a)): 100 mol of terephthalic acid 0/0, glycol monomer (mouth) unit: ethylene glycol 35 mol 0/0, 1, 4-65 mol% hexa Nji methanol cyclohexane) (hereinafter, simply PET-3 and abbreviated) to 30 mass% Except for that, it was subjected to calendering in the same manner as in Example II-1. However, the sheet crystallized during calendering, and it was impossible to obtain a sheet having a good surface appearance. In addition, DSC measurement using the sheet showed a crystal melting peak of 243 ° C.
[0177] [表 5] [0177] [Table 5]
Figure imgf000046_0001
Figure imgf000046_0001
[0178] 表 5より、本発明で規定するポリカーボネート系榭脂とポリエステル系榭脂との混合 榭脂組成物からなる榭脂被覆金属板用シートは、透明性、低温でのカレンダー加工 性、耐沸騰水性、耐擦傷性、二次加工性に優れていることがわかる(実施例 m-i、 実施例 III 2)。 [0178] From Table 5, it can be seen that the resin-coated metal sheet made of the mixed resin composition of the polycarbonate resin and the polyester resin specified in the present invention has high transparency, low-temperature calenderability, and low heat resistance. It can be seen that they are excellent in boiling water, scratch resistance and secondary workability (Example mi, Example III 2).
一方、ガラス転移温度が低い比較例 III 1では、耐沸騰水浸漬試験による評価に 劣っており、またポリカーボネート榭脂単体の榭脂の比較例 ΠΙ— 2では、低温での力 レンダー加工性が悪カゝつた。また、本発明で規定する範囲外のポリエステル系榭脂 を用いた場合には、ポリカーボネート系榭脂との相溶性に劣り、得られるシートの透 明性が低下したり(比較例 ΠΙ— 3)、低温でのカレンダー加工中に熱量不足のためシ ートが結晶化するなどの問題が発生する(比較例 III 4)ことがわかる。  On the other hand, Comparative Example III 1 having a low glass transition temperature was inferior to the evaluation by the boiling water immersion test, and Comparative Example II-2 of polycarbonate resin alone was inferior in low temperature power renderability.ゝWhen a polyester resin out of the range specified in the present invention is used, the compatibility with the polycarbonate resin is inferior, and the transparency of the obtained sheet is reduced (Comparative Example III-3). However, it can be seen that during calendering at a low temperature, there is a problem such as crystallization of the sheet due to insufficient heat (Comparative Example III4).
[0179] [実施例 IV] [Example IV]
(実施例 IV— 1)  (Example IV-1)
表 6に示すように、熱可塑性ポリエステル系榭脂(a— 1)として、乾燥した非晶性ポリ エステル榭脂(イーストマンケミカル社製、 EASTAR PETG Copolyester6763、 T g : 79. 0°C、カルボン酸単量体単位:テレフタル酸 100モル0 /0、グリコール単量体単 位:エチレングリコール 68モル0 /0、 1, 4ーシクロへキサンジメタノール 32モル0 /0、平均 屈折率: 1. 5667) (以下、単に「PET-2」と略記する) 100質量部に、シリカ(平均粒 径: 3 ^ ) 0. 2質量部を添加して榭脂組成物を形成する。次に、ポリカーボネート系榭 脂 (b—l)として、乾燥した芳香族ポリカーボネート榭脂(三菱エンジニアリングプラス チックス(株)製、ノノ レックス 7025A、Tg : 149. 5°C、平均屈折率: 1. 5858) (以下 、単に「PC」と略記する) 50質量%と、ポリエステル系榭脂 (b— 2)として、乾燥した透 明軟質ポリエステル榭脂(三菱レイヨン (株)製、ダイヤナイト DN— 124、 Tg : 19. 1°C 、カルボン酸単量体単位:テレフタル酸 100モル0 /0、グリコール単量体単位:エチレン グリコール 66モル0 /0、ジエチレングリコール 2モル0 /0、 1, 4ーシクロへキサンジメタノー ル 26モル0 /0、数平均分子量 1000のポリテトラメチレングリコール 6モル0 /0、平均屈折 率: 1. 5461、固有粘度: 0. 94dl/g) (以下、単に「PET—1」と略記する) 50質量% とからなる混合榭脂組成物を形成した。(A)層用原料として榭脂組成物を用い、 (B) 層用原料として混合榭脂組成物を用い、これらの榭脂組成物および混合榭脂組成 物を、それぞれ別個の φ 40mm同方向二軸押出機 (LZD= 36)に投入し、設定温 度 270°Cで溶融混合した後、各層の厚み比が (A)層 Z (B)層 Z (A)層 = 1Z4Z1と なるよう 3層ダイスより共押出し、 50°Cのキャストロールで引き取り、冷却固化させて幅 500mm,厚さ 150 mの未延伸積層シートを得た。次いで、テンター延伸設備内に て、予熱温度 110°C、延伸温度 95°Cで横一軸方向に 3. 0倍延伸した後、冷風で急 冷して、厚さ 50 mの熱収縮性積層シートを得た。得られた熱収縮性積層シートに ついて、ガラス転移温度の評価、力学特性などの評価を行った。その結果を表 6に示 す。 As shown in Table 6, dried amorphous polyester resin (EASTAR PETG Copolyester 6763, manufactured by Eastman Chemical Co., Ltd., Tg: 79.0 ° C, acid monomer units: terephthalic acid 100 mol 0/0, glycol monomer unit: ethylene glycol 68 mol 0/0, 1, 4 Cyclohexanedicarboxylic methanol 32 moles to Shikuro 0/0, the average refractive index: 1.5667 ) (Hereinafter simply referred to as "PET-2") 0.2 parts by mass of silica (average particle size: 3 ^) is added to 100 parts by mass to form a resin composition. Next, polycarbonate-based As the fat (b-l), a dried aromatic polycarbonate resin (manufactured by Mitsubishi Engineering-Plastics Co., Ltd., Nonolex 7025A, Tg: 149.5 ° C, average refractive index: 1.5858) (hereinafter simply referred to as “ PC ") and 50% by mass, and as a polyester resin (b-2), a dried transparent soft polyester resin (manufactured by Mitsubishi Rayon Co., Ltd., Dianite DN-124, Tg: 19.1 °) C, a carboxylic acid monomer unit: terephthalic acid 100 mol 0/0, glycol monomer unit: ethylene glycol 66 mol 0/0, diethylene glycol 2 mol 0/0, 1, 4 Kisanjimetano to Shikuro Le 26 mole 0/0 , number average molecular weight 1000 polytetramethylene glycol 6 mole 0/0, the average refractive index: 1.5461, intrinsic viscosity: 0. 94dl / g) (hereinafter, abbreviated as "PET-1") and 50 wt% Was formed. (A) A resin composition is used as a raw material for a layer, and (B) A mixed resin composition is used as a raw material for a layer. These resin composition and the mixed resin composition are separately separated in the same direction by φ40 mm. After charging into a twin-screw extruder (LZD = 36) and melting and mixing at a set temperature of 270 ° C, the thickness ratio of each layer is (A) layer Z (B) layer Z (A) layer = 1Z4Z1 3 It was co-extruded from a layer die, taken up with a cast roll at 50 ° C, and cooled and solidified to obtain an unstretched laminated sheet having a width of 500 mm and a thickness of 150 m. Next, in the tenter stretching equipment, the sheet is stretched 3.0 times in the transverse uniaxial direction at a preheating temperature of 110 ° C and a stretching temperature of 95 ° C, and then rapidly cooled with cold air to obtain a heat-shrinkable laminated sheet having a thickness of 50 m. Got. The obtained heat-shrinkable laminated sheet was evaluated for glass transition temperature, mechanical properties, and the like. Table 6 shows the results.
また、得られた結果について総合評価も行い、評価項目の全てに対して問題がな かったシートを記号(〇)、 1つでも問題があったシートを記号( X )で示した。  Comprehensive evaluation was also performed on the obtained results. Sheets that did not have any problem with all of the evaluation items were indicated by a symbol (〇), and sheets that had at least one problem were indicated by a symbol (X).
(実施例 IV— 2) (Example IV-2)
表 6に示すように、熱可塑性ポリエステル系榭脂(a— 1)として、実施例 IV— 1で使用 した PET— 2を 85質量部と、ポリブチレンテレフタレート榭脂 [三菱エンジニアリングプ ラスチックス(株)製、 NOVADUR5008、カルボン酸単量体単位:テレフタル酸 100 モル0 /0、グリコール単量体単位: 1, 4 ブタンジオール 100モル0 /0、融点: 225°C、固 有粘度: 0. 84dl/g] (以下、単に「PET - 4」と略記する) 15質量部に、シリカ(平均 粒径: 3 ) 0. 2質量部を添加して榭脂組成物を形成した。この榭脂組成物は (A)層 用原料である。 次に、ポリカーボネート系榭脂 (b—1)として、実施例 IV— 1で使用した PCを 60質量 %と、 PET— 1を 40質量%とからなる混合榭脂組成物を形成した。この混合榭脂組成 物は、(B)層の原料である。これらの原料を、それぞれ別個の φ 40mm同方向二軸 押出機 (LZD = 36)に投入し、設定温度 270°Cで溶融混合した後、各層の厚み比 が (A)層 Z (B)層 Z (A)層 = 1Z4Z1となるよう 3層ダイスより共押出し、 50°Cのキヤ ストロールで引き取り、冷却固化させて幅 500mm、厚さ 150 μ mの未延伸積層シー トを得た。次いで、テンター延伸設備内にて、予熱温度 110°C、延伸温度 95°Cで横 一軸方向に 3. 0倍延伸した後、冷風で急冷して、厚さ 50 mの熱収縮性積層シート を得た。得られた熱収縮性積層シートについて、実施例 1と同様の評価を行った。そ の結果を表 6に示す。 As shown in Table 6, as a thermoplastic polyester resin (a-1), 85 parts by mass of PET-2 used in Example IV-1 and polybutylene terephthalate resin [Mitsubishi Engineering Plastics Co., Ltd.] Ltd., NOVADUR5008, carboxylic acid monomer units: terephthalic acid 100 mol 0/0, glycol monomer units: 1, 4-butanediol 100 mol 0/0, mp: 225 ° C, unique viscosity: 0. 84Dl / g] (hereinafter simply referred to as “PET-4”) 0.2 parts by mass of silica (average particle size: 3) was added to 15 parts by mass to form a resin composition. This resin composition is a raw material for the (A) layer. Next, as the polycarbonate resin (b-1), a mixed resin composition comprising 60% by mass of the PC used in Example IV-1 and 40% by mass of PET-1 was formed. This mixed resin composition is a raw material for the layer (B). These raw materials were put into separate φ40mm co-rotating twin-screw extruders (LZD = 36), melt-mixed at a set temperature of 270 ° C, and the thickness ratio of each layer was changed to (A) layer Z (B) layer The Z (A) layer was co-extruded from a three-layer die so as to be 1Z4Z1, taken with a cast roll at 50 ° C, and cooled and solidified to obtain an unstretched laminated sheet having a width of 500 mm and a thickness of 150 μm. Next, in the tenter stretching equipment, after stretching 3.0 times in the transverse uniaxial direction at a preheating temperature of 110 ° C and a stretching temperature of 95 ° C, it is quenched with cold air to produce a heat-shrinkable laminated sheet having a thickness of 50 m. Obtained. The same evaluation as in Example 1 was performed on the obtained heat-shrinkable laminated sheet. Table 6 shows the results.
[0181] (比較例 IV— 1)  [0181] (Comparative Example IV-1)
表 6に示すように、実施例 IV— 1において、中間層である(B)層を設けなかった以外 は実施例 IV-1と同様にして、実施例 IV-1における (A)層として用いた榭脂組成物 を φ 40mm同方向二軸押出機 (LZD= 36)に投入し、設定温度 270°Cで溶融混合 した後、単層ダイスより押出し、 50°Cのキャストロールで引き取り、冷却固化させて、 幅 500mm、厚さ 150 mの未延伸シートを得た。次いで、テンター延伸設備内にて 、予熱温度 110°C、延伸温度 95°Cで横一軸方向に 3. 0倍延伸した後、冷風で急冷 して、厚さ 50 mの熱収縮性シートを得た。得られた熱収縮性シートについて、実施 例 IV— 1と同様の評価を行った。その結果を表 6に示す。  As shown in Table 6, the same procedure as in Example IV-1 was carried out except that the intermediate layer (B) was not provided in Example IV-1. The resin composition is placed in a φ40mm co-rotating twin screw extruder (LZD = 36), melt-mixed at a set temperature of 270 ° C, extruded from a single-layer die, taken up with a 50 ° C cast roll, and cooled. It was solidified to obtain an unstretched sheet having a width of 500 mm and a thickness of 150 m. Next, the film is stretched 3.0 times in the transverse uniaxial direction at a preheating temperature of 110 ° C and a stretching temperature of 95 ° C in a tenter stretching facility, and then rapidly cooled with cold air to obtain a heat-shrinkable sheet having a thickness of 50 m. Was. The same evaluation as in Example IV-1 was performed on the obtained heat-shrinkable sheet. Table 6 shows the results.
[0182] [表 6] [0182] [Table 6]
実施 1列 IV 比^例 IV Implementation 1 row IV ratio ^ Example IV
1 2 1  1 2 1
P ET— 2 (質量%) 100 85 100  PET-2 (% by mass) 100 85 100
P ET— 4 (質量0 /0) 15 P ET- 4 (mass 0/0) 15
PC (質量%) 50 60 ―  PC (% by mass) 50 60 ―
P ET- 1 (質量%) 50 40 ―  PET-1 (mass%) 50 40 ―
延伸温度 c) 95 95 95  Stretching temperature c) 95 95 95
S伸倍率 3.0 3.0 3.0  S elongation 3.0 3.0 3.0
(B) 層を構成する 64.2 76.5 混合樹脂組成物裀の T g C°c) ―  (B) Tg C ° c of layer 64.2 76.5 Mixed resin composition 裀
(単一) (単一)  (Single) (single)
ヘーズ (%) 2.8 2.9 2.2 熱収縮率 [%) 48.8 42.3 54.6  Haze (%) 2.8 2.9 2.2 Heat shrinkage [%] 48.8 42.3 54.6
0.6 0.5 0,5 貯截弾性率 (Ε') (MP a) 2118 2253 1831  0.6 0.5 0,5 Storage modulus (Ε ') (MP a) 2118 2253 1831
収縮仕上リ性 O 〇 X  O 仕 X
ミシン自幼 fef性 o o X  Sewing machine
総台評価 〇 〇 X  Total evaluation 〇 〇 X
[0183] 表 6から明らかなように、両外層を構成する所定の (A)層と、該両外層の間に位置 する所定の(B)層とを有する本発明の熱収縮性積層シート(実施例 IV— 1、実施例 IV —2)は、自然収縮率が小さいこと、収縮仕上り性、透明性、シートの腰 (常温における 剛性)、ミシン目切断性に優れていることがわかった (実施例 IV— 1、実施例 IV— 2)。 これに対して、比較例 IV— 1のように、(A)層のみカゝらなる単層の熱収縮性シートは、 透明性や自然収縮率の評価に対しては優れているものの、収縮仕上り性やミシン目 切断性に関しては劣っていることが分力つた。 [0183] As is clear from Table 6, the heat-shrinkable laminated sheet of the present invention having a predetermined (A) layer constituting both outer layers and a predetermined (B) layer located between both outer layers ( Examples IV-1 and IV-2) were found to have a small natural shrinkage, excellent shrinkage finish, transparency, sheet waist (rigidity at room temperature), and excellent perforation cutability ( Example IV-1, Example IV-2). On the other hand, as in Comparative Example IV-1, a single-layer heat-shrinkable sheet composed of only the layer (A) is excellent in the evaluation of the transparency and the natural shrinkage, but the shrinkage is small. It was a component that was inferior in finish and perforation cutability.
また、本発明の熱収縮性積層シート(実施例 IV— 1及び実施例 IV— 2のシート)は、 リサイクル榭脂を (A)層及び Z又は (B)層の原料に添加しても、良好な相溶性、透 明性に優れたシートを得ることができた。すなわち、本発明の熱収縮性積層シートは 、再生添加性にも優れていることが分力ゝつた。  Further, the heat-shrinkable laminated sheet of the present invention (the sheet of Example IV-1 and Example IV-2) can be obtained by adding recycled resin to the raw materials of the (A) layer and the Z or (B) layer. A sheet having good compatibility and excellent transparency was obtained. That is, it was a component that the heat-shrinkable laminated sheet of the present invention was also excellent in the recyclability.
産業上の利用可能性  Industrial applicability
[0184] 本発明の榭脂組成物は、透明性、耐衝撃性、流動性、破断強伸度等の力学特性 に優れ、また、 PVC榭脂と同様の温度域で二次加工性等を有するので、広範囲の用 途に適用可能であり、従来 PVC榭脂が用いられていた用途に好適に用いられる。例 えば、建材、内装部品、透明シート、榭脂被覆金属板、成形用シート、着色プレート、 透明プレート、熱収縮性シート、成形品等に適用される。 本発明の熱収縮性シート及び熱収縮性積層シートは、収縮包装、収縮結束包装、 収縮ラベル等の用途に用いられる。 [0184] The resin composition of the present invention has excellent mechanical properties such as transparency, impact resistance, fluidity, and elongation at break, and has secondary workability and the like in the same temperature range as PVC resin. Because of this, it can be applied to a wide range of applications, and is suitably used for applications where PVC resin has been used conventionally. For example, it is applied to building materials, interior parts, transparent sheets, resin-coated metal plates, molding sheets, colored plates, transparent plates, heat-shrinkable sheets, molded products, and the like. The heat-shrinkable sheet and the heat-shrinkable laminated sheet of the present invention are used for applications such as shrink wrapping, shrink wrapping, and shrink labels.
図面の簡単な説明 Brief Description of Drawings
[図 1]実施例 I 4で得られたシートのガラス転移温度 (Tg)を示す DSCサーモグラム である。 FIG. 1 is a DSC thermogram showing a glass transition temperature (Tg) of a sheet obtained in Example I4.
[図 2]比較例 I 2で得られたシートのガラス転移温度 (Tg)を示す DSCサーモグラム である。  FIG. 2 is a DSC thermogram showing a glass transition temperature (Tg) of the sheet obtained in Comparative Example I2.
[図 3]実施例 II I、 II 2、比較例 II 1、 II 3の損失正接 (tan δ )曲線を示す図である  FIG. 3 is a diagram showing loss tangent (tan δ) curves of Examples II I and II 2 and Comparative Examples II 1 and II 3

Claims

請求の範囲 The scope of the claims
[1] ポリカーボネート系榭脂 (b— 1) 1質量%以上 99質量%以下と、ポリエステル系榭脂  [1] Polycarbonate resin (b-1) 1% to 99% by mass and polyester resin
(b-2) 1質量%以上 99質量%以下とからなる混合榭脂組成物において、該ポリエス テル系榭脂 (b-2)力 カルボン酸単量体単位 (ィ)として、全力ルボン酸単量体単位 (ィ)中に芳香族ジカルボン酸単位を 80モル%以上 100モル%以下含有すると共に 、グリコール単量体単位(口)として、全グリコール単量体単位(口)中に 1, 4ーシクロへ キサンジメタノール単位 0. 1モル%以上 40モル%以下と、数平均分子量が 500以上 3, 000以下のポリアルキレングリコール単位 0. 5モル0 /0以上 15モル0 /0以下とを含有 するポリエステル系榭脂であることを特徴とする混合榭脂組成物。 (b-2) In the mixed resin composition comprising not less than 1% by mass and not more than 99% by mass, the polyester resin (b-2) force The monomer unit (a) contains an aromatic dicarboxylic acid unit in an amount of 80 mol% or more and 100 mol% or less, and has a glycol monomer unit (mouth) of 1, 4 in all glycol monomer units (mouth). and 40 mol% or less Cyclohexanedicarboxylic methanol units 0.1 mol% or more to Shikuro, contains a number average molecular weight of 500 or more 3,000 or less polyalkylene glycol unit 0.5 mole 0/0 to 15 mole 0/0 or less A mixed resin composition characterized in that it is a polyester resin.
[2] 前記ポリカーボネート系榭脂 (b— 1)が芳香族ポリカーボネート系榭脂であることを 特徴とする請求項 1に記載の混合榭脂組成物。  [2] The mixed resin composition according to claim 1, wherein the polycarbonate resin (b-1) is an aromatic polycarbonate resin.
[3] 前記ポリエステル系榭脂 (b-2)は、示差走査熱量測定により加熱速度 10°CZ分で 測定されるガラス転移温度が 0°C以上 50°C以下であることを特徴とする請求項 1又は 2に記載の混合榭脂組成物。  [3] The polyester resin (b-2) has a glass transition temperature of 0 ° C or more and 50 ° C or less measured at a heating rate of 10 ° CZ by differential scanning calorimetry. Item 3. The mixed resin composition according to Item 1 or 2.
[4] 前記混合榭脂組成物は、示差走査熱量測定により加熱速度 10°CZ分で測定され るガラス転移温度が単一であり、該ガラス転移温度が、前記ポリカーボネート系榭脂( b-1)のガラス転移温度と前記ポリエステル系榭脂 (b-2)のガラス転移温度との間に 位置する温度であることを特徴とする請求項 1乃至 3のいずれか 1項に記載の混合榭 脂組成物。  [4] The mixed resin composition has a single glass transition temperature measured at a heating rate of 10 ° CZ by differential scanning calorimetry, and has a glass transition temperature of the polycarbonate resin (b-1). The mixed resin according to any one of claims 1 to 3, wherein the temperature is located between the glass transition temperature of the polyester resin and the glass transition temperature of the polyester resin (b-2). Composition.
[5] 前記混合榭脂組成物は、示差走査熱量測定により加熱速度 10°CZ分で測定され るガラス転移温度が 50°C以上 100°C以下であることを特徴とする請求項 1乃至 4のい ずれ力 1項に記載の混合榭脂組成物。  [5] The mixed resin composition according to any one of claims 1 to 4, wherein the glass transition temperature measured at a heating rate of 10 ° CZ by differential scanning calorimetry is 50 ° C to 100 ° C. 3. The mixed resin composition according to item 1.
[6] 前記混合榭脂組成物は、示差走査熱量測定により加熱速度 10°CZ分で測定され るガラス転移温度が 100°C以上 150°C以下であることを特徴とする請求項 1乃至 4の V、ずれか 1項記載の混合榭脂組成物。  [6] The mixed resin composition according to any one of claims 1 to 4, wherein a glass transition temperature measured at a heating rate of 10 ° CZ by differential scanning calorimetry is 100 ° C to 150 ° C. 2. The mixed resin composition according to item 1, V.
[7] 前記混合榭脂組成物が、前記ポリカーボネート系榭脂 (b—l) 75質量%以上 95質 量%以下と、前記ポリエステル系榭脂 (b-2) 5質量%以上 25質量%以下とからなる ことを特徴とする請求項 1乃至 6のいずれか 1項に記載の混合榭脂組成物。 [7] The mixed resin composition comprises 75% by mass or more and 95% by mass or less of the polycarbonate resin (b-l) and 5% by mass or more and 25% by mass or less of the polyester resin (b-2). The mixed resin composition according to any one of claims 1 to 6, comprising:
[8] 前記混合榭脂組成物が、前記ポリカーボネート系榭脂 (b—l) 60質量%以上 95質 量%以下と、前記ポリエステル系榭脂 (b-2) 5質量%以上 40質量%以下とからなる ことを特徴とする請求項 1乃至 6のいずれか 1項に記載の混合榭脂組成物。 [8] The mixed resin composition comprises the polycarbonate resin (bl) in an amount of from 60% by mass to 95% by mass, and the polyester resin (b-2) in an amount of from 5% by mass to 40% by mass. The mixed resin composition according to any one of claims 1 to 6, comprising:
[9] 前記混合榭脂組成物が、前記ポリカーボネート系榭脂 (b—l) 30質量%以上 75質 量%以下と、前記ポリエステル系榭脂 (b-2) 25質量%以上 75質量%以下とからな ることを特徴とする請求項 1乃至 6のいずれか 1項に記載の混合榭脂組成物。  [9] The mixed resin composition comprises 30% by mass or more and 75% by mass or less of the polycarbonate resin (b-l) and 25% by mass or more and 75% by mass or less of the polyester resin (b-2). The mixed resin composition according to any one of claims 1 to 6, comprising:
[10] 前記混合榭脂組成物が、前記ポリカーボネート系榭脂 (b—l) 30質量%以上 70質 量%以下と、前記ポリエステル系榭脂 (b-2) 30質量%以上 70質量%以下とからな ることを特徴とする請求項 1乃至 6のいずれか 1項に記載の混合榭脂組成物。  [10] The mixed resin composition comprises 30% by mass or more and 70% by mass or less of the polycarbonate resin (bl) and 30% by mass or less and 70% by mass or less of the polyester resin (b-2). The mixed resin composition according to any one of claims 1 to 6, comprising:
[11] 請求項 1乃至 10のいずれか 1項に記載の混合榭脂組成物を用いてなることを特徴 とするシート。  [11] A sheet comprising the mixed resin composition according to any one of claims 1 to 10.
[12] 請求項 10に記載の混合榭脂組成物を用いてなるシートを、少なくとも一方向に延 伸し、 80°Cの温水中に 10秒間浸漬したときの熱収縮率力 少なくとも一方向におい て 20%以上であることを特徴とする熱収縮性シート。  [12] A sheet formed using the mixed resin composition according to claim 10 is stretched in at least one direction and immersed in hot water at 80 ° C for 10 seconds for at least one direction. A heat-shrinkable sheet characterized by at least 20%.
[13] 振動周波数 10Hzで動的粘弾性測定を行ったときの損失正接 (tan δ )曲線が、 70 °C以上 130°C以下の範囲内に単一のピークを有し、前記損失正接曲線の半値幅が 15°C以上であることを特徴とする請求項 12に記載の熱収縮性シート。  [13] A loss tangent (tan δ) curve obtained by performing dynamic viscoelasticity measurement at a vibration frequency of 10 Hz has a single peak within a range of 70 ° C to 130 ° C, and the loss tangent curve 13. The heat-shrinkable sheet according to claim 12, wherein a half width of the heat-shrinkable sheet is 15 ° C. or more.
[14] 両外層を構成する (A)層と、該両外層の間に位置する(B)層とを有し、少なくとも一 軸方向に延伸され、 80°Cの温水中に 10秒間浸漬したときの主収縮方向における熱 収縮率が 20%以上である熱収縮性積層シートであって、前記 (A)層力 熱可塑性ポ リエステル系榭脂 (a— 1)を主成分とする榭脂組成物カゝらなり、前記 (B)層が、請求項 10に記載の混合榭脂組成物からなることを特徴とする熱収縮性積層シート。 [14] It has a layer (A) constituting both outer layers and a layer (B) located between both outer layers, is stretched in at least one axial direction, and is immersed in warm water of 80 ° C for 10 seconds. A heat-shrinkable laminated sheet having a heat shrinkage ratio of 20% or more in the main shrinkage direction at the time, wherein the (A) layer strength is a resin composition mainly composed of a thermoplastic polyester resin ( a -1). 11. A heat-shrinkable laminated sheet, characterized in that the layer (B) is made of the mixed resin composition according to claim 10.
[15] 前記熱可塑性ポリエステル系榭脂(a— 1) 1S 該熱可塑性ポリエステル系榭脂(a— 1 )における全グリコール単量体単位中に 1, 4ーシクロへキサンジメタノール単位を 15 モル0 /0以上 50モル%以下含有する非晶性ポリエチレンテレフタレート榭脂である請 求項 14に記載の熱収縮性積層シート。 [15] The thermoplastic polyester榭脂(a- 1) 1S thermoplastic polyester榭脂(a- 1) 1 in the whole glycol monomer unit in the 4 Cyclohexanedicarboxylic methanol unit 15 mol 0 to Shikuro / 0 or more heat-shrinkable laminated sheet according to請Motomeko 14 is an amorphous polyethylene terephthalate榭脂containing 50 mol% or less.
[16] 請求項 8に記載の混合榭脂組成物を用いてなることを特徴とする榭脂被覆金属板 用シート。 [16] A sheet for a resin-coated metal sheet, comprising the mixed resin composition according to claim 8.
[17] 請求項 16に記載の榭脂被覆金属板用シートを製造する方法であって、カレンダー 加工法により、前記混合榭脂組成物の流動開始温度 (T1)より 10°C高!、温度 (T1+1 0°C)から 200°Cまでの温度で前記シートを成形することを特徴とする榭脂被覆金属 板用シートの製造方法。 [17] The method for producing a resin-coated metal sheet according to claim 16, wherein the temperature of the mixed resin composition is higher by 10 ° C than the flow starting temperature (T1) by a calendering method. A method for producing a sheet for a resin-coated metal sheet, comprising forming the sheet at a temperature from (T1 + 10 ° C) to 200 ° C.
[18] 請求項 16に記載の榭脂被覆金属板用シートで被覆されていることを特徴とする榭 脂被覆金属板。  [18] A resin-coated metal plate coated with the resin-coated metal sheet sheet according to claim 16.
[19] 請求項 12若しくは 13に記載の熱収縮性シート又は請求項 14若しくは 15に記載の 熱収縮性積層シートを用いたことを特徴とする収縮ラベル。  [19] A shrinkable label using the heat-shrinkable sheet according to claim 12 or 13 or the heat-shrinkable laminated sheet according to claim 14 or 15.
[20] 請求項 19に記載の収縮ラベルを装着したことを特徴とする包装体。 [20] A package equipped with the shrink label according to claim 19.
[21] 請求項 1乃至 10のいずれか 1項に記載の混合榭脂組成物を用いたことを特徴とす る成形品。 [21] A molded article using the mixed resin composition according to any one of claims 1 to 10.
PCT/JP2004/019568 2003-12-25 2004-12-27 Resin blend composition, sheet and heat-shrinkable sheet comprising the resin blend composition, and shrink label and package obtained with the heat-shrinkable sheet WO2005063887A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB0614660A GB2425127B (en) 2003-12-25 2004-12-27 Resin blend composition, sheet and heat-shrinkable sheet comprising the resin blend composition, and shrink label and package

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2003429957 2003-12-25
JP2003-429957 2003-12-25
JP2004011932 2004-01-20
JP2004-011932 2004-01-20
JP2004034388A JP4596788B2 (en) 2004-02-12 2004-02-12 Resin-coated metal sheet, method for producing the same, and resin-coated metal sheet using the sheet
JP2004-034388 2004-02-12
JP2004201916 2004-07-08
JP2004-201916 2004-07-08
JP2004353051A JP2005232435A (en) 2004-01-20 2004-12-06 Heat-shrinkable film
JP2004-353051 2004-12-06
JP2004373163A JP2006044219A (en) 2004-07-08 2004-12-24 Heat-shrinkable laminated film, and shrinkable label and package using this film
JP2004-373163 2004-12-24
JP2004-375873 2004-12-27
JP2004375873A JP4614761B2 (en) 2003-12-25 2004-12-27 Mixed resin composition and sheet and molded product using the same

Publications (1)

Publication Number Publication Date
WO2005063887A1 true WO2005063887A1 (en) 2005-07-14

Family

ID=34744017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019568 WO2005063887A1 (en) 2003-12-25 2004-12-27 Resin blend composition, sheet and heat-shrinkable sheet comprising the resin blend composition, and shrink label and package obtained with the heat-shrinkable sheet

Country Status (2)

Country Link
GB (1) GB2425127B (en)
WO (1) WO2005063887A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368276A (en) * 2015-12-01 2018-08-03 三菱瓦斯化学株式会社 Polyester resin composition and its manufacturing method, formed body and its manufacturing method and masterbatch
CN109836782A (en) * 2017-11-28 2019-06-04 远东新世纪股份有限公司 Thermal contracting polyester film
CN109897349A (en) * 2019-03-11 2019-06-18 东莞市东翔塑胶有限公司 A kind of fiberglass reinforced fire retardant PCT material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201336667A (en) 2011-12-16 2013-09-16 Saudi Basic Ind Corp Uniaxially-oriented films comprising thermoplastic polyesters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525294A (en) * 1991-07-19 1993-02-02 Shin Etsu Chem Co Ltd Heat-shrinkable polyester film
JPH0623904A (en) * 1992-07-06 1994-02-01 Teijin Ltd Damping material
JP2003261688A (en) * 2002-03-06 2003-09-19 Yuka Denshi Co Ltd Semi-conductive resin molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525294A (en) * 1991-07-19 1993-02-02 Shin Etsu Chem Co Ltd Heat-shrinkable polyester film
JPH0623904A (en) * 1992-07-06 1994-02-01 Teijin Ltd Damping material
JP2003261688A (en) * 2002-03-06 2003-09-19 Yuka Denshi Co Ltd Semi-conductive resin molded article

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368276A (en) * 2015-12-01 2018-08-03 三菱瓦斯化学株式会社 Polyester resin composition and its manufacturing method, formed body and its manufacturing method and masterbatch
CN108368276B (en) * 2015-12-01 2021-03-12 三菱瓦斯化学株式会社 Polyester resin composition and method for producing same, molded body and method for producing same, and master batch
US11130859B2 (en) 2015-12-01 2021-09-28 Mitsubishi Gas Chemical Company, Inc. Polyester-based resin composition and production process therefor, molded object and production process therefor, and masterbatch
CN109836782A (en) * 2017-11-28 2019-06-04 远东新世纪股份有限公司 Thermal contracting polyester film
CN109836782B (en) * 2017-11-28 2021-03-26 远东新世纪股份有限公司 Heat-shrinkable polyester film
CN109897349A (en) * 2019-03-11 2019-06-18 东莞市东翔塑胶有限公司 A kind of fiberglass reinforced fire retardant PCT material and preparation method thereof

Also Published As

Publication number Publication date
GB2425127B (en) 2009-07-08
GB0614660D0 (en) 2006-08-30
GB2425127A (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP5330740B2 (en) Polylactic acid resin composition, polylactic acid film, molded article using the film, stretched film, heat-shrinkable label, and container equipped with the label
TWI382930B (en) A heat-shrinkable laminated film, a molded article using the film, a heat-shrinkable label, and a container
JP4678637B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container
JP5072077B2 (en) Light-shielding heat-shrinkable film, molded product using this light-shielding heat-shrinkable film, heat-shrinkable label, and container using this molded product or attached with this label
JP4953587B2 (en) Heat-shrinkable film and molded article and container using the film
JP3568672B2 (en) Stretched thermoplastic polyester resin film
JP5033326B2 (en) Heat-shrinkable pore-containing film, molded article using the film, heat-shrinkable label, and container
JP4878837B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP4232004B2 (en) Biaxially oriented polyester film
JP5354848B2 (en) Heat-shrinkable pore-containing film, molded product based on the film, heat-shrinkable label, and container
JP5606159B2 (en) Resin composition, molded article using this resin composition, film, stretched film, heat-shrinkable film, heat-shrinkable label, and container equipped with the label
JP5383011B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP2005232435A (en) Heat-shrinkable film
WO2005063887A1 (en) Resin blend composition, sheet and heat-shrinkable sheet comprising the resin blend composition, and shrink label and package obtained with the heat-shrinkable sheet
JP5037249B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label
US6630230B2 (en) Polyester resin composition and film using the same
JP2007090876A (en) Heat-shrinkable hole-containing film, molding using the film as substrate, and heat-shrinkable label and container
JP4563090B2 (en) Polyester resin composition, heat-shrinkable polyester film comprising the resin composition, molded article and container
JP2006044219A (en) Heat-shrinkable laminated film, and shrinkable label and package using this film
JP4568043B2 (en) Polyester resin composition, heat-shrinkable polyester film comprising the resin composition, molded article and container
JP6551087B2 (en) Polylactic acid-based laminate film, heat-shrinkable laminate film using the laminate film, molded article using the heat-shrinkable laminate film, heat-shrinkable label, and using the molded article or the label container
JP2007210270A (en) Laminated polyester sheet and decorating sheet using it
JP5289674B2 (en) Heat-shrinkable film, heat-shrink label using the film, molded product, and container
JP5037250B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label
JP2017171906A (en) Thermoplastic resin oriented film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 0614660

Country of ref document: GB

122 Ep: pct application non-entry in european phase