WO2020059427A1 - Substrate processing device, lid opening and closing mechanism, manufacturing method for semiconductor device, and fluid pressure drive system - Google Patents

Substrate processing device, lid opening and closing mechanism, manufacturing method for semiconductor device, and fluid pressure drive system Download PDF

Info

Publication number
WO2020059427A1
WO2020059427A1 PCT/JP2019/033195 JP2019033195W WO2020059427A1 WO 2020059427 A1 WO2020059427 A1 WO 2020059427A1 JP 2019033195 W JP2019033195 W JP 2019033195W WO 2020059427 A1 WO2020059427 A1 WO 2020059427A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
port
supply
cylinder
check valve
Prior art date
Application number
PCT/JP2019/033195
Other languages
French (fr)
Japanese (ja)
Inventor
岳史 森
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Publication of WO2020059427A1 publication Critical patent/WO2020059427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present disclosure relates to a substrate processing apparatus and a lid opening / closing mechanism for performing a heat treatment such as generation, oxidation, diffusion, CVD, and annealing of a thin film on a substrate such as a silicon wafer, a method for manufacturing a semiconductor device, and a fluid pressure driving system.
  • the vertical substrate processing apparatus includes a lid opening / closing mechanism (furnace port shutter) that can open and close the furnace port of the processing furnace.
  • a furnace port gate valve (corresponding to a lid opening / closing mechanism) is provided between a processing furnace and a load lock chamber to isolate the processing furnace from the load lock chamber.
  • the furnace port shutter driven by the conventional cylinder is held at the standby position when not in use. On the other hand, in use, the furnace port shutter is moved to the furnace port position, and the furnace port is closed with the furnace port shutter.
  • the furnace port shutter may not be able to be held at the standby position or the furnace port position. At this time, the furnace port shutter may come into contact with the substrate or the like, and the substrate or the like may be damaged.
  • the present disclosure provides a configuration in which the lid of the lid opening / closing mechanism can be held at the standby position or the furnace port position even when the working fluid is shut off.
  • One embodiment of the present disclosure is directed to a processing furnace for processing the substrate in a state in which a substrate holder holding a substrate is loaded, a lid covering a furnace port of the processing furnace, a first port and a second port.
  • a lid opening / closing mechanism including a cylinder for operating the lid, and an arm for connecting and fixing the lid and the cylinder, wherein the lid opening / closing mechanism is configured to connect the second port of the cylinder to an electromagnetic
  • a first flow rate adjuster and a first check valve provided, a second flow rate adjuster and a second check valve provided on the second supply / discharge flow path, and a branch from the first supply / discharge flow path;
  • a first pilot flow path connected to a pilot port of a second check valve, and the second supply / discharge flow path Configured to be driven by a hydraulic drive system and a second pilot flow path et branched and is connected to the pilot port of the first check valve is provided.
  • the pressure in the cylinder can be maintained, and the lid of the lid opening / closing mechanism can be held at the furnace port position or the standby position.
  • FIG. 1 is a perspective view illustrating a substrate processing apparatus according to an embodiment of the present disclosure.
  • 1 is a side sectional view illustrating a substrate processing apparatus according to an embodiment of the present disclosure.
  • FIG. 3 is an enlarged cross-sectional view illustrating a main part of a furnace port shutter of the substrate processing apparatus according to the embodiment of the present disclosure.
  • 1 is a block diagram illustrating a control system in a substrate processing apparatus according to an embodiment of the present disclosure.
  • FIG. 2 is a configuration diagram illustrating a fluid circuit for driving a furnace port shutter of the substrate processing apparatus according to the embodiment of the present disclosure.
  • FIG. 1 and 2 show a vertical substrate processing apparatus as an example of the substrate processing apparatus.
  • a wafer 17 made of silicon or the like is shown as an example.
  • the substrate processing apparatus 1 includes a housing 2, and a front maintenance port 4 as an opening provided for maintenance is provided below the front wall 3 of the housing 2.
  • the front maintenance opening 4 is opened and closed by a front maintenance door 5.
  • a pod loading / unloading port 6 is provided on the front wall 3 of the housing 2 so as to communicate between the inside and the outside of the housing 2.
  • the pod loading / unloading port 6 is opened / closed by a front shutter (not shown), and a load port 7 is provided at the front front side of the pod loading / unloading port 6, and the load port 7 positions the mounted pod 8. It is configured to match.
  • the pod 8 is a sealed substrate container, which is carried in and out of the load port 7 by an in-process transfer device (not shown).
  • a pod shelf 9 is installed at a substantially central portion in the front-rear direction in the housing 2, and the pod shelf 9 is configured to store a plurality of pods 8 in a plurality of rows and a plurality of rows.
  • the pod shelf 9 is provided with a transfer shelf 12 in which a pod 8 to be transferred by a wafer transfer mechanism (hereinafter, also referred to as a transfer machine) 11 described later is stored.
  • a spare pod shelf 13 is provided above the load port 7 so as to store the pod 8 in a preliminary manner.
  • a pod transport device 14 is provided between the load port 7 and the pod shelf 9.
  • the pod transport device 14 includes a pod elevator 15 that can move up and down in the CZ axis direction while holding the pod 8, and a pod transport mechanism 16 that can move forward and backward and rotate in the CX axis direction and the CS axis direction.
  • the pod transport device 14 is configured to transport the pod 8 between the load port 7, the pod shelf 9, and the spare pod shelf 13 in cooperation with the pod elevator 15 and the pod transport mechanism 16.
  • a transfer machine 11 is provided behind the pod shelf 9.
  • the transfer machine 11 includes a wafer transfer device 18 that can rotate or move the wafer 17 in a horizontal direction and a wafer transfer device elevator 19 that moves the wafer transfer device 18 up and down.
  • the wafer transfer device 18 includes a required number (three in the drawing) of wafer mounting plates (substrate support portions) 21 on which the wafers 17 are mounted.
  • the transfer machine 11 is configured to load and unload the wafers 17 to and from the boat (substrate holder) 22.
  • a notch aligning device (not shown) as a substrate aligning device for aligning the circumferential position of the wafer 17 is provided.
  • a standby section 23 is provided in the rear area of the housing 2 to accommodate and stand by the boat 22, and a vertical processing furnace 24 is provided above the standby section 23.
  • the processing furnace 24 has a processing chamber 25 formed therein.
  • the lower end of the processing chamber 25 is an opening (furnace port), and the furnace port is opened and closed by a furnace port shutter (lid opening / closing mechanism) 26. It has become.
  • the furnace port shutter 26 includes a cover 27 that can open and close the furnace port of the processing furnace 24, an arm 29 to which the cover 27 is fixed by screws 28, and the like. It has a holding portion 31 that is held and fixed to the inner wall of the housing 2 and a cylinder 32 that operates the arm 29.
  • a fluid circuit (fluid pressure drive system) 33 described below is connected to the cylinder 32, and a working fluid such as compressed air can be supplied to and discharged from the cylinder 32 via the fluid circuit 33.
  • the fluid circuit 33 switches the port for supplying the working fluid, which is described later, so that the lid 27 is rotated integrally with the arm 29 around the holding portion 31 between the standby position and the furnace port position.
  • An opening / closing operation by the shutter 26 is performed.
  • the lid 27 is retracted to a position where it does not come into contact with other components such as the boat 22, and at the furnace port position, the lid 27 is configured to hermetically close the furnace port of the processing furnace 24.
  • a boat elevator 34 is installed in the standby section 23 as an elevating mechanism for elevating the boat 22 to the processing chamber 25.
  • a seal cap 36 as a lid is horizontally mounted on the arm 35 connected to the elevator of the boat elevator 34, so that the processing chamber 25 can be airtightly closed with the boat 22 loaded in the processing chamber 25. It has become.
  • the boat 22 is configured to hold a plurality of (for example, about 50 to 175) wafers 17 in multiple stages in a horizontal posture with their centers aligned.
  • a clean unit 38 is provided at a position facing the boat elevator 34.
  • the clean unit 38 includes a supply fan and a dustproof filter for supplying a clean atmosphere or clean air that is an inert gas.
  • the clean air blown out from the clean unit 38 is circulated through the transfer machine 11, the boat 22, and the like, and is then sucked into the duct 37 provided above the pod shelf 9, and the exhaust air is discharged to the outside of the housing 2. Or is blown into the housing 2 again by the clean unit 38.
  • the pod loading / unloading port 6 When the pod loading / unloading port 6 is opened by a front shutter (not shown), the pod 8 is loaded into the housing 2 through the pod loading / unloading port 6 and supplied onto the load port 7. When the pod 8 is supplied onto the load port 7, the pod loading / unloading port 6 is closed by the front shutter.
  • the pod 8 on the load port 7 is placed on the pod shelf 9 or the spare pod shelf 13 at a designated shelf position by the pod transport device 14.
  • the pod 8 is temporarily stored on the pod shelf 9 or the spare pod shelf 13 and then transferred to the transfer shelf 12 by the pod transport device 14 or transferred directly from the load port 7 to the transfer shelf 12. Is done.
  • the casing 2 is filled with clean air flowing therein.
  • the wafer 17 is taken out of the pod 8 by the transfer machine 11 and transferred to a notch aligning device (not shown). After aligning the position of the wafer 17 with the notch aligning device, the transfer machine 11 carries the wafer 17 into the standby unit 23 and loads (charges) it into the boat 22.
  • the furnace port shutter 26 is moved to the standby position, and the furnace port of the processing furnace 24 closed by the furnace port shutter 26 is opened. Subsequently, the boat 22 is lifted by the boat elevator 34 and loaded into the processing chamber 25 (loading).
  • the furnace port is hermetically closed by the seal cap 36, and a predetermined substrate processing is performed on the wafer 17.
  • the processing chamber 25 is evacuated to a desired pressure (degree of vacuum) by a gas exhaust mechanism (not shown). Further, the processing chamber 25 is heated to a predetermined temperature by a heating unit (heater) 39 so as to have a desired temperature distribution.
  • a processing gas controlled at a predetermined flow rate is supplied by a gas supply mechanism (not shown), and in the process of flowing the processing gas through the processing chamber 25, the processing gas comes into contact with the surface of the wafer 17 and a thin film is formed on the surface of the wafer 17. Is formed. Further, the processing gas after the reaction is exhausted from the processing chamber 25 by the gas exhaust mechanism.
  • an inert gas is supplied from an inert gas supply source (not shown) by a gas supply mechanism, and the atmosphere in the processing chamber 25 is replaced with the inert gas.
  • the pressure of 25 is returned to normal pressure.
  • the boat 22 is lowered by the boat elevator 34 via the seal cap 36. Further, the furnace port shutter 26 is moved to the furnace port position, and the furnace port of the processing furnace 24 is closed.
  • the wafer 17 and the pod 8 are discharged to the outside of the housing 2 in a procedure reverse to the above description.
  • the unprocessed wafers 17 are further loaded into the boat 22, and the batch processing of the wafers 17 is repeated.
  • a control device 41 for controlling the heater 39 for heating the processing furnace 24 to a predetermined temperature will be described with reference to FIG.
  • reference numeral 42 denotes a process control unit as a process system controller
  • 43 denotes a transfer control unit as a transfer system controller
  • 44 denotes a main control unit.
  • the process control unit 42 includes a storage unit 45, and the storage unit 45 stores a process execution program required to execute a process.
  • the transfer control unit 43 includes a storage unit 46.
  • the storage unit 46 includes a transfer program for executing a transfer process of the wafer 17, the pod transfer device 14, the transfer machine 11, the boat elevator 34, and the furnace port shutter 26. And an operation control program for controlling each of the operations.
  • the main control unit 44 includes a data storage unit 47, and the data storage unit 47 includes an external storage device such as an HDD. Note that the process execution program, the transport program, and the operation control program may be stored in the data storage unit 47.
  • FIG. 4 illustrates the sub-controllers 48, 49, and 50.
  • 48 is a first sub-controller for controlling the heating of the processing furnace 24
  • 49 is a second sub-controller for controlling the opening and closing of the valve, the operation of the flow controller 52 and the like, and controlling the supply flow rate of the processing gas to the processing furnace 24.
  • Reference numeral 50 denotes a third sub-controller that controls the exhaust of gas from the processing furnace 24, adjusts the opening of the pressure control valve 53, and controls the pressure in the processing furnace 24.
  • 54 is a temperature detector
  • 55 is a flow detector
  • 56 is a pressure sensor.
  • only one detector or sensor for detecting the state of each process actuator 39, 52, 53 is shown in the figure, a plurality of detectors or sensors may be provided.
  • the transport control unit 43 controls various transport control modules.
  • the various transport control modules control a first actuator, a second operation controller 58, a third operation controller 59, and a fourth operation, which control operation actuators described later. It comprises a control unit 60.
  • the first operation control unit 57 as a driver controls a servomotor (hereinafter, a first operation actuator) 62 which is a driving unit for driving the pod transport device 14.
  • the second operation control unit 58 as a driver controls a servomotor (hereinafter, a second operation actuator) 65 which is a driving unit for moving the transfer machine 11 forward and backward, moving up and down, and rotating.
  • the third operation control unit 59 as a driver controls a servomotor (hereinafter, a third operation actuator) 66 that is a driving unit that drives the boat elevator 34.
  • the fourth operation control unit 60 as a driver controls an electromagnetic switching valve (hereinafter, a fourth operation actuator) 67 which is a driving unit for driving the lid 27 of the furnace port shutter 26.
  • Each operation actuator is provided with a state detection sensor 68, 71, 72, 73 for detecting the state of each operation actuator (for example, a position state such as whether or not it is at a limit point).
  • Each of the state detection sensors 68, 71, 72, and 73 detects the state of each operation actuator, and outputs the detection results to the first operation control unit 57, the second operation control unit 58, the third operation control unit 59, and the fourth operation control unit.
  • Each section 60 has a function of feeding back the information.
  • Each of the operation control units 57, 58, 59, and 60 has a memory, and can temporarily store feedback data (detection result).
  • each state detection sensor 68, 71, 72, 73 is provided in each of the operation actuators 62, 65, 66, 67 in the figure, the present invention is not limited to this embodiment. Needless to say, a plurality of state detection sensors may be provided for each operation actuator.
  • the first operation control unit 57 controls the drive of the pod transport device 14 that transfers the pod 8 from the load port 7 to the transfer shelf 12 or the like.
  • the second operation control unit 58 takes out the wafer 17 from the pod 8 and drives and controls the transfer machine 11 to be loaded on the boat 22.
  • the third operation control unit 59 drives and controls the boat elevator 34 that carries the boat 22 loaded with the wafers 17 into the processing furnace 24.
  • the fourth operation control unit 60 drives and controls the furnace port shutter 26 that opens and closes the furnace port of the processing furnace 24.
  • the input device 75 indicates a keyboard, a mouse, an operation panel and the like
  • the monitor 76 is an operation screen including a setting screen and the like.
  • the operation unit 77 receives various instructions from the monitor 76 using the input device 75.
  • the monitor 76 is individually set for a transfer operation in which the transfer device 11 is directed to at least one of the pod 8 and the boat 22 and a transfer operation in which the transfer device 11 is separated from at least one of the pod 8 and the boat 22. It is configured to be.
  • the process controller 42 inputs a set value instruction or a command signal according to a processing sequence to the first sub-controller 48, the second sub-controller 49, and the third sub-controller 50.
  • the process control unit 42 controls the first sub-controller 48, the second sub-controller 49, and the third sub-controller 50 based on the detection results detected by the temperature detector 54, the flow rate detector 55, and the pressure sensor 56.
  • the process control unit 42 executes the substrate processing according to a command from the operation unit 77 via the main control unit 44.
  • the substrate processing is executed by the process control unit 42 independently of other control systems according to a program stored in the storage unit 45. Therefore, even if a problem occurs in the transport control unit 43 and the main control unit 44, the substrate processing is completed without interruption.
  • the first operation control unit 57 controls the first operation actuator 62 based on the detection result detected by the state detection sensor 68.
  • the second operation control unit 58 controls the second operation actuator 65 based on the detection result detected by the state detection sensor 71.
  • the third operation control section 59 controls the third operation actuator 66 based on the detection result detected by the state detection sensor 72.
  • the fourth operation control unit 60 controls each operation actuator corresponding to each state detection sensor, such as controlling the fourth operation actuator 67 based on the detection result detected by the state detection sensor 73. .
  • the transport control unit 43 executes a transport process according to an instruction from the operation unit 77.
  • the pod 8 and the wafer 17 are transferred independently of other control systems according to the transfer program and the operation control program stored in the storage unit 46 by the transfer control unit 43.
  • the data storage unit 47 stores a program for controlling the progress of the substrate processing, a setting program for setting processing contents and processing conditions, and a substrate processing in which setting conditions such as heating of the processing furnace 24 and supply and exhaust of the processing gas are stored.
  • Various programs such as a recipe, a communication program, an alarm information display program, and a parameter editing program are stored as files.
  • the communication program transmits and receives data to and from the process control unit 42 and the transport control unit 43 via communication means such as a LAN. Further, the alarm information display program displays, on the monitor 76, alarm information on the cause of an abnormality of the operation actuator 62, 65, 66, 67, for example, the cause of the stop, when an abnormality is detected by the state detection sensors 68, 71, 72, 73. To display.
  • the data storage means 47 has a data storage area. In the data storage area, parameters required for transporting the wafer 17 are stored, and further, setting information preset in the transport mechanism, detection results detected by the state detection sensors 68, 71, 72, 73, And information such as the processing state.
  • the transport control unit 43 causes the pod transport device 14 to move through the first operation control unit 57, the second operation control unit 58, the third operation control unit 59, and the fourth operation control unit 60.
  • the drive of the loading machine 11, each transport mechanism of the boat elevator 34, and the furnace port shutter 26 is controlled.
  • the furnace port shutter 26 moves the lid 27 to the standby position during substrate processing and when the boat 22 is loaded and unloaded, and opens the furnace port of the processing furnace 24. At other times, the lid 27 is moved to the furnace port position to close the furnace port.
  • the pressure in the cylinder 32 decreases and cannot be maintained at the standby position (or the furnace port position). 27 may stop. In this case, the boat 22 may come into contact with the lid 27, and the boat 22 may be damaged.
  • the lid 27 can be held at the standby position or the furnace port position.
  • the fluid circuit (fluid pressure drive system) 33 capable of holding the position of the lid 27 will be described with reference to FIG.
  • the fluid circuit 33 includes the cylinder 32 driven by the working fluid, the first supply / discharge flow path 82, and the second supply / discharge flow path 84.
  • One end of the first supply / discharge passage 82 is connected to a second air port 81 serving as a second port of the cylinder 32
  • the second supply / discharge passage 84 is connected to a first air port 83 serving as a first port of the cylinder 32.
  • a rotary actuator is used as the cylinder 32.
  • a first pilot check valve 85 as a first check valve and a first speed controller 86 as a first flow rate adjusting unit are provided on the first supply / discharge flow path 82 in order from the second port 81 side.
  • a first branch flow path 87 is connected between the cylinder 32 of the first supply / discharge flow path 82 and the first check valve 85, and a first pressure release valve 88 is provided in the first branch flow path 87. Have been. Further, an electromagnetic switching valve 67 is connected to the other end of the first supply / discharge flow path 82. When the substrate processing apparatus 1 is operating normally, the first pressure release valve 88 is closed.
  • a second pilot check valve 91 as a second check valve and a second speed controller 92 as a second flow rate adjuster are provided on the second supply / discharge flow path 84 in order from the first port 83 side.
  • a second branch passage 93 is connected between the cylinder 32 of the second supply / discharge passage 84 and the second check valve 91, and a second pressure release valve 94 is provided in the second branch passage 93. Have been. When the substrate processing apparatus 1 is operating normally, the second pressure release valve 94 is closed.
  • the first check valve 85 includes a first pilot port 85a and a check valve 85b.
  • the second check valve 91 includes a second pilot port 91a and a check valve 91b.
  • One end of a first pilot flow path 97 is connected between the first flow rate adjusting section 86 of the first supply / discharge flow path 82 and the electromagnetic switching valve 67, and the other end of the first pilot flow path 97 is connected to the second flow path. It is connected to the pilot port 91a.
  • One end of a second pilot flow path 98 is connected between the second flow rate adjusting unit 92 of the second supply / discharge flow path 84 and the electromagnetic switching valve 67, and the other end of the second pilot flow path 98 is It is connected to the first pilot port 85a.
  • a working fluid supply channel 99 is connected to the electromagnetic switching valve 67, and a working fluid supply source 101 is connected to the other end of the working fluid supply channel 99.
  • a working fluid is supplied from the working fluid supply source 101 to one of the first supply / discharge flow path 82 and the second supply / discharge flow path 84, and the first supply / discharge flow path 82
  • the working fluid can be discharged from one of the second supply / discharge passages 84.
  • the working fluid supplied from the working fluid supply source 101 passes through the first flow rate adjustment unit 86, passes through the first check valve 85, and is then supplied into the cylinder 32 from the second port 81. At this time, since the working fluid can also flow through the check valve 86b together with the throttle flow path 86a of the first flow rate adjusting unit 86, the working fluid is supplied into the cylinder 32 without restriction of the flow rate.
  • a part of the working fluid is introduced into the second pilot port 91a via the first pilot channel 97.
  • the check valve 91b loses its function due to the pilot pressure, and the working fluid can flow from the cylinder 32 toward the electromagnetic switching valve 67.
  • the working fluid introduced into the cylinder 32 is discharged from the first port 83, and discharged to the atmosphere via the second check valve 91, the second flow rate adjusting unit 92, and the electromagnetic switching valve 67.
  • the cylinder 32 operates, the lid 27 moves from, for example, the standby position to the furnace port position, and the furnace port is closed by the furnace port shutter 26.
  • the check valve 92b acts during the passage of the working fluid through the second flow rate adjusting section 92, so that the flow rate of the working fluid is restricted by the throttle flow path 92a. Therefore, the working fluid is not rapidly discharged to the atmosphere, and the lid 27 does not suddenly move from the standby position to the furnace port position.
  • a part of the working fluid is introduced into the first pilot port 85a via the second pilot flow path 98.
  • the check valve 85b loses its function due to the pilot pressure, and the working fluid can flow from the cylinder 32 toward the electromagnetic switching valve 67.
  • the working fluid introduced into the cylinder 32 is discharged from the second port 81, and is discharged to the atmosphere via the first check valve 85, the first flow rate adjusting unit 86, and the electromagnetic switching valve 67.
  • the cylinder 32 operates, the lid 27 moves from, for example, the furnace port position to the standby position, and the furnace port is opened. That is, the lid 27 is configured to move between the standby position and the furnace port position according to the direction of the working fluid supplied into the fluid circuit (fluid pressure drive system) 33.
  • the check valve 86b acts during the passage of the working fluid through the first flow rate adjusting unit 86, so that the flow rate of the working fluid is restricted by the throttle passage 86a. Therefore, the working fluid is not rapidly discharged to the atmosphere, and the lid 27 does not suddenly move from the furnace port position to the standby position.
  • the check valve 91b maintains its function and the working fluid is sealed in the cylinder 32, so that the working fluid in the cylinder 32 is not discharged to the atmosphere, and the pressure in the cylinder 32 is maintained. Therefore, the state of the furnace port shutter 26 is maintained, and the cover section 27 does not move, so that the cover section 27 is held at the furnace port position.
  • the check valve 85b maintains its function and the working fluid is sealed in the cylinder 32, so that the working fluid in the cylinder 32 is not discharged to the atmosphere, and the pressure in the cylinder 32 is maintained. Accordingly, the state of the furnace port shutter 26 is maintained, and the lid 27 does not move, so that the lid 27 is held at the standby position.
  • the furnace port shutter 26 it is necessary to manually operate the furnace port shutter 26, for example, when the working fluid from the working fluid supply source 101 is shut off or when the electromagnetic switching valve 67 breaks down.
  • the front maintenance door 5 is opened, and the first pressure release valve 88 or the second pressure release valve 94 is opened. Accordingly, the working fluid in the cylinder 32 is discharged, and the position of the lid 27 can be manually moved.
  • the first supply / discharge flow path 82 and the second supply / discharge flow path 84 A check valve 85 and a second check valve 91 are provided, and a first pilot passage 97 and a second supply / discharge passage 84 connecting the first supply / discharge passage 82 and the second pilot port 91a to the first pilot port 85a. And a second pilot flow path 98 that connects the second pilot flow path and the second pilot flow path.
  • the working fluid from the working fluid supply source 101 is shut off for some reason, the working fluid is not supplied to the first pilot port 85a and the second pilot port 91a, and the functions of the check valves 85b and 91b are reduced. Since the pressure is maintained, the working fluid in the cylinder 32 is not discharged, and the pressure in the cylinder 32 is maintained.
  • the lid section 27 moves rapidly. Therefore, it is possible to prevent the connection portion between the arm 29 and the holding portion 31 from being damaged.
  • the first pressure release valve 88 and the second pressure release valve 94 are provided and the working fluid in the cylinder 32 can be manually discharged, the position of the lid portion 27 held at the standby position or the furnace port position is provided. Can be changed manually.
  • a rotary actuator is used as the cylinder 32, but any other cylinder may be used as long as it is a compressed fluid driven cylinder.
  • the present disclosure can be applied not only to a semiconductor manufacturing apparatus but also to an apparatus for processing a glass substrate such as an LCD apparatus.
  • the type of the thin film formed on the substrate is not particularly limited.
  • the present invention can be applied to a process for forming various types of thin films such as a nitride film (eg, SiN), an oxide film (eg, SiO), and a metal oxide film.

Abstract

The present invention comprises a lid part (27) that covers a furnace opening of a processing furnace (24), and a lid opening and closing mechanism (26). The lid opening and closing mechanism (26) comprises: a cylinder (32) that comprises a first port (83) and a second port (81), and actuates the lid part; and an arm (29) that couples and secures the lid part and the cylinder. The lid opening and closing mechanism is configured so as to be driven by a fluid pressure drive system (33) comprising: a first supply/exhaust flow path (82) that interconnects the second port (81) of the cylinder and an electromagnetic switching valve (67); a second supply/exhaust flow path (84) that interconnects the first port (83) of the cylinder and the electromagnetic switching valve; a first flow speed adjustment unit (86) and a first check valve (85) provided on the first supply/exhaust flow path; a second flow speed adjustment unit (92) and a second check valve (91) provided on the second supply/exhaust flow path; a first pilot flow path (97) branching from the first supply/exhaust flow path and connected to a pilot port (91a) of the second check valve; and a second pilot flow path (98) branching from the second supply/exhaust flow path and connected to a pilot port (85a) of the first check valve.

Description

基板処理装置及び蓋開閉機構及び半導体装置の製造方法及び流体圧駆動システムSubstrate processing apparatus, lid opening / closing mechanism, semiconductor device manufacturing method, and fluid pressure drive system
 本開示は、シリコンウェーハ等の基板に薄膜の生成、酸化、拡散、CVD、アニール等の熱処理を行う基板処理装置及び蓋開閉機構及び半導体装置の製造方法及び流体圧駆動システムに関するものである。 The present disclosure relates to a substrate processing apparatus and a lid opening / closing mechanism for performing a heat treatment such as generation, oxidation, diffusion, CVD, and annealing of a thin film on a substrate such as a silicon wafer, a method for manufacturing a semiconductor device, and a fluid pressure driving system.
 半導体装置の製造工程に於ける基板処理を行う基板処理装置として、縦型基板処理装置がある。縦型基板処理装置は、処理炉の炉口を開閉可能な蓋開閉機構(炉口シャッタ)を具備している。例えば、特許文献1によれば、処理炉とロードロック室の間に炉口ゲートバルブ(蓋開閉機構に相当)を設け、処理炉とロードロック室を隔離する。 縦 As a substrate processing apparatus for performing substrate processing in a semiconductor device manufacturing process, there is a vertical substrate processing apparatus. The vertical substrate processing apparatus includes a lid opening / closing mechanism (furnace port shutter) that can open and close the furnace port of the processing furnace. For example, according to Patent Literature 1, a furnace port gate valve (corresponding to a lid opening / closing mechanism) is provided between a processing furnace and a load lock chamber to isolate the processing furnace from the load lock chamber.
 従来のシリンダにより駆動される炉口シャッタは、不使用時には待機位置で保持される。一方、使用時には炉口シャッタを炉口位置へ移動させ、炉口シャッタで炉口を閉塞する。 炉 The furnace port shutter driven by the conventional cylinder is held at the standby position when not in use. On the other hand, in use, the furnace port shutter is moved to the furnace port position, and the furnace port is closed with the furnace port shutter.
 然し乍ら、従来の炉口シャッタの場合、シリンダに対して何らかの理由で圧縮空気等の作動流体が遮断されると、炉口シャッタを待機位置或は炉口位置に保持できないことがある。このとき、炉口シャッタが基板等と接触し、基板等が破損する場合がある。 However, in the case of the conventional furnace port shutter, if the working fluid such as the compressed air is shut off for some reason from the cylinder, the furnace port shutter may not be able to be held at the standby position or the furnace port position. At this time, the furnace port shutter may come into contact with the substrate or the like, and the substrate or the like may be damaged.
特開2006−100354号公報JP 2006-100354 A
 本開示は、作動流体が遮断された場合であっても、蓋開閉機構の蓋部を待機位置又は炉口位置に保持可能な構成を提供するものである。 The present disclosure provides a configuration in which the lid of the lid opening / closing mechanism can be held at the standby position or the furnace port position even when the working fluid is shut off.
 本開示の一態様は、基板を保持した基板保持具を装入した状態で、前記基板を処理する処理炉と、該処理炉の炉口を覆う蓋部と、第1ポートと第2ポートとを備え、該蓋部を動作させるシリンダと、前記蓋部と前記シリンダとを連結固定するアームとを備えた蓋開閉機構とを備え、前記蓋開閉機構は、前記シリンダの前記第2ポートと電磁切換弁との間を接続する第1給排流路と、前記シリンダの前記第1ポートと前記電磁切換弁との間を接続する第2給排流路と、前記第1給排流路上に設けられた第1流速調整部及び第1チェック弁と、前記第2給排流路上に設けられた第2流速調整部及び第2チェック弁と、前記第1給排流路から分岐して前記第2チェック弁のパイロットポートに接続される第1パイロット流路と、前記第2給排流路から分岐して前記第1チェック弁のパイロットポートに接続される第2パイロット流路とを具備する流体圧駆動システムにより駆動される構成が提供される。 One embodiment of the present disclosure is directed to a processing furnace for processing the substrate in a state in which a substrate holder holding a substrate is loaded, a lid covering a furnace port of the processing furnace, a first port and a second port. A lid opening / closing mechanism including a cylinder for operating the lid, and an arm for connecting and fixing the lid and the cylinder, wherein the lid opening / closing mechanism is configured to connect the second port of the cylinder to an electromagnetic A first supply / discharge passage connecting between the switching valve, a second supply / discharge passage connecting between the first port of the cylinder and the electromagnetic switching valve, and a first supply / discharge passage on the first supply / discharge passage. A first flow rate adjuster and a first check valve provided, a second flow rate adjuster and a second check valve provided on the second supply / discharge flow path, and a branch from the first supply / discharge flow path; A first pilot flow path connected to a pilot port of a second check valve, and the second supply / discharge flow path Configured to be driven by a hydraulic drive system and a second pilot flow path et branched and is connected to the pilot port of the first check valve is provided.
 本開示によれば、作動流体の供給が遮断された場合であっても、シリンダ内の圧力を維持することができ、蓋開閉機構の蓋部を炉口位置又は待機位置に保持することができる。 According to the present disclosure, even when the supply of the working fluid is cut off, the pressure in the cylinder can be maintained, and the lid of the lid opening / closing mechanism can be held at the furnace port position or the standby position. .
本開示の実施例に係る基板処理装置を示す斜視図である。1 is a perspective view illustrating a substrate processing apparatus according to an embodiment of the present disclosure. 本開示の実施例に係る基板処理装置を示す側断面図である。1 is a side sectional view illustrating a substrate processing apparatus according to an embodiment of the present disclosure. 本開示の実施例に係る基板処理装置の炉口シャッタを示す要部拡大断面図である。FIG. 3 is an enlarged cross-sectional view illustrating a main part of a furnace port shutter of the substrate processing apparatus according to the embodiment of the present disclosure. 本開示の実施例に係る基板処理装置に於ける制御系を示すブロック図である。1 is a block diagram illustrating a control system in a substrate processing apparatus according to an embodiment of the present disclosure. 本開示の実施例に係る基板処理装置の炉口シャッタを駆動させる為の流体回路を示す構成図である。FIG. 2 is a configuration diagram illustrating a fluid circuit for driving a furnace port shutter of the substrate processing apparatus according to the embodiment of the present disclosure.
 以下、図面を参照しつつ本開示の実施例を説明する。図1、図2は、基板処理装置の一例として縦型の基板処理装置を示している。尚、該基板処理装置に於いて処理される基板は、一例としてシリコン等からなるウェーハ17が示されている。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. 1 and 2 show a vertical substrate processing apparatus as an example of the substrate processing apparatus. As a substrate to be processed in the substrate processing apparatus, a wafer 17 made of silicon or the like is shown as an example.
 基板処理装置1は筐体2を備え、該筐体2の正面壁3の下部にはメンテナンス可能な様に設けられた開口部としての正面メンテナンス口4が介設されている。該正面メンテナンス口4は正面メンテナンス扉5によって開閉される。 The substrate processing apparatus 1 includes a housing 2, and a front maintenance port 4 as an opening provided for maintenance is provided below the front wall 3 of the housing 2. The front maintenance opening 4 is opened and closed by a front maintenance door 5.
 筐体2の正面壁3にはポッド搬入搬出口6が筐体2の内外を連通する様に開設されている。ポッド搬入搬出口6はフロントシャッタ(図示せず)によって開閉され、ポッド搬入搬出口6の正面前方側にはロードポート7が設置されており、該ロードポート7は載置されたポッド8を位置合せする様に構成されている。 に は A pod loading / unloading port 6 is provided on the front wall 3 of the housing 2 so as to communicate between the inside and the outside of the housing 2. The pod loading / unloading port 6 is opened / closed by a front shutter (not shown), and a load port 7 is provided at the front front side of the pod loading / unloading port 6, and the load port 7 positions the mounted pod 8. It is configured to match.
 該ポッド8は密閉式の基板収容器であり、図示しない工程内搬送装置によってロードポート7上に搬入され、又、該ロードポート7上から搬出される様になっている。 The pod 8 is a sealed substrate container, which is carried in and out of the load port 7 by an in-process transfer device (not shown).
 筐体2内の前後方向の略中央部には、ポッド棚9が設置されており、該ポッド棚9は複数段複数列にて複数個のポッド8を保管する様に構成されている。ポッド棚9には、後述するウェーハ搬送機構(以後、移載機ともいう)11の搬送対象となるポッド8が収納される移載棚12が設けられている。又、ロードポート7の上方には予備ポッド棚13が設けられ、予備的にポッド8を保管する様に構成されている。 ポ A pod shelf 9 is installed at a substantially central portion in the front-rear direction in the housing 2, and the pod shelf 9 is configured to store a plurality of pods 8 in a plurality of rows and a plurality of rows. The pod shelf 9 is provided with a transfer shelf 12 in which a pod 8 to be transferred by a wafer transfer mechanism (hereinafter, also referred to as a transfer machine) 11 described later is stored. A spare pod shelf 13 is provided above the load port 7 so as to store the pod 8 in a preliminary manner.
 ロードポート7とポッド棚9との間には、ポッド搬送装置14が設置されている。ポッド搬送装置14は、ポッド8を保持したままCZ軸方向に昇降可能なポッドエレベータ15と、CX軸方向とCS軸方向の進退及び回転が可能なポッド搬送機構16とで構成されている。ポッド搬送装置14は、ポッドエレベータ15とポッド搬送機構16との協働により、ロードポート7、ポッド棚9、予備ポッド棚13との間でポッド8を搬送する様に構成されている。 ポ A pod transport device 14 is provided between the load port 7 and the pod shelf 9. The pod transport device 14 includes a pod elevator 15 that can move up and down in the CZ axis direction while holding the pod 8, and a pod transport mechanism 16 that can move forward and backward and rotate in the CX axis direction and the CS axis direction. The pod transport device 14 is configured to transport the pod 8 between the load port 7, the pod shelf 9, and the spare pod shelf 13 in cooperation with the pod elevator 15 and the pod transport mechanism 16.
 ポッド棚9の後方には、移載機11が設置されている。該移載機11は、ウェーハ17を水平方向に回転乃至直動可能なウェーハ搬送装置18、及びウェーハ搬送装置18を昇降させる為のウェーハ搬送装置エレベータ19とで構成されている。 A transfer machine 11 is provided behind the pod shelf 9. The transfer machine 11 includes a wafer transfer device 18 that can rotate or move the wafer 17 in a horizontal direction and a wafer transfer device elevator 19 that moves the wafer transfer device 18 up and down.
 ウェーハ搬送装置18は、ウェーハ17を載置する所要枚数(図示では3枚)のウェーハ載置プレート(基板支持部)21を具備している。ウェーハ搬送装置18とウェーハ搬送装置エレベータ19との協働により、移載機11はボート(基板保持具)22に対してウェーハ17を装填及び払出しする様に構成されている。尚、移載機11の近傍には、ウェーハ17の円周方向の位置を整合させる基板整合装置としてのノッチ合せ装置(図示せず)が設置されている。 The wafer transfer device 18 includes a required number (three in the drawing) of wafer mounting plates (substrate support portions) 21 on which the wafers 17 are mounted. By the cooperation of the wafer transfer device 18 and the wafer transfer device elevator 19, the transfer machine 11 is configured to load and unload the wafers 17 to and from the boat (substrate holder) 22. In the vicinity of the transfer machine 11, a notch aligning device (not shown) as a substrate aligning device for aligning the circumferential position of the wafer 17 is provided.
 筐体2の後側領域には、ボート22を収容して待機させる待機部23が構成され、待機部23の上方には縦型の処理炉24が設けられている。処理炉24は内部に処理室25を形成し、処理室25の下端部は開口(炉口部)となっており、該炉口部は炉口シャッタ(蓋開閉機構)26により開閉される様になっている。 待機 A standby section 23 is provided in the rear area of the housing 2 to accommodate and stand by the boat 22, and a vertical processing furnace 24 is provided above the standby section 23. The processing furnace 24 has a processing chamber 25 formed therein. The lower end of the processing chamber 25 is an opening (furnace port), and the furnace port is opened and closed by a furnace port shutter (lid opening / closing mechanism) 26. It has become.
 図3に示される様に、炉口シャッタ26は、処理炉24の炉口部を開閉可能な蓋部27と、該蓋部27が螺子28等により固着されたアーム29と、アーム29を回転可能に保持し筐体2の内壁に固定された保持部31と、アーム29を動作させるシリンダ32とを具備している。該シリンダ32には後述する流体回路(流体圧駆動システム)33が接続され、該流体回路33を介してシリンダ32に圧縮空気等の作動流体を給排可能となっている。流体回路33は、作動流体を供給する後述するポートを切替えることで、待機位置と炉口位置との間で保持部31を中心に、蓋部27をアーム29と一体に回転駆動させ、炉口シャッタ26による開閉動作を行う。待機位置で蓋部27は、ボート22等の他の部品と接触しない位置に退避し、炉口位置で蓋部27は、処理炉24の炉口部を気密に閉塞する様構成されている。 As shown in FIG. 3, the furnace port shutter 26 includes a cover 27 that can open and close the furnace port of the processing furnace 24, an arm 29 to which the cover 27 is fixed by screws 28, and the like. It has a holding portion 31 that is held and fixed to the inner wall of the housing 2 and a cylinder 32 that operates the arm 29. A fluid circuit (fluid pressure drive system) 33 described below is connected to the cylinder 32, and a working fluid such as compressed air can be supplied to and discharged from the cylinder 32 via the fluid circuit 33. The fluid circuit 33 switches the port for supplying the working fluid, which is described later, so that the lid 27 is rotated integrally with the arm 29 around the holding portion 31 between the standby position and the furnace port position. An opening / closing operation by the shutter 26 is performed. At the standby position, the lid 27 is retracted to a position where it does not come into contact with other components such as the boat 22, and at the furnace port position, the lid 27 is configured to hermetically close the furnace port of the processing furnace 24.
 待機部23には、ボート22を処理室25に昇降させる昇降機構としてのボートエレベータ34が設置されている。ボートエレベータ34の昇降台に連結されたアーム35には、蓋体としてのシールキャップ36が水平に取付けられており、ボート22を処理室25に装入した状態で処理室25を気密に閉塞可能となっている。 A boat elevator 34 is installed in the standby section 23 as an elevating mechanism for elevating the boat 22 to the processing chamber 25. A seal cap 36 as a lid is horizontally mounted on the arm 35 connected to the elevator of the boat elevator 34, so that the processing chamber 25 can be airtightly closed with the boat 22 loaded in the processing chamber 25. It has become.
 ボート22は、複数枚(例えば、50枚~175枚程度)のウェーハ17をその中心を揃えて水平姿勢で多段に保持する様に構成されている。 The boat 22 is configured to hold a plurality of (for example, about 50 to 175) wafers 17 in multiple stages in a horizontal posture with their centers aligned.
 ボートエレベータ34と対向した位置にはクリーンユニット38が配設されている。該クリーンユニット38は、清浄化した雰囲気若しくは不活性ガスであるクリーンエアを供給する様供給ファン及び防塵フィルタで構成されている。 ク リ ー ン A clean unit 38 is provided at a position facing the boat elevator 34. The clean unit 38 includes a supply fan and a dustproof filter for supplying a clean atmosphere or clean air that is an inert gas.
 クリーンユニット38から吹出されたクリーンエアは、移載機11、ボート22等に流通された後に、ポッド棚9の上方に配設されたダクト37により吸込まれて、筐体2の外部に排気が成されるか、若しくはクリーンユニット38によって再び筐体2内に吹出される様に構成されている。 The clean air blown out from the clean unit 38 is circulated through the transfer machine 11, the boat 22, and the like, and is then sucked into the duct 37 provided above the pod shelf 9, and the exhaust air is discharged to the outside of the housing 2. Or is blown into the housing 2 again by the clean unit 38.
 次に、基板処理装置1の作動について説明する。 Next, the operation of the substrate processing apparatus 1 will be described.
 ポッド搬入搬出口6がフロントシャッタ(図示せず)によって開放されると、ポッド8が筐体2の内部へポッド搬入搬出口6を通して搬入され、ロードポート7上に供給される。ロードポート7上にポッド8が供給されると、ポッド搬入搬出口6がフロントシャッタにより閉塞される。 When the pod loading / unloading port 6 is opened by a front shutter (not shown), the pod 8 is loaded into the housing 2 through the pod loading / unloading port 6 and supplied onto the load port 7. When the pod 8 is supplied onto the load port 7, the pod loading / unloading port 6 is closed by the front shutter.
 ロードポート7上のポッド8は、ポッド搬送装置14によってポッド棚9又は予備ポッド棚13の指定された棚位置へ載置される。ポッド8は、ポッド棚9又は予備ポッド棚13で一時的に保管された後、ポッド搬送装置14によって移載棚12に移載されるか、若しくはロードポート7から直接移載棚12に移載される。この時、筐体2内にはクリーンエアが流通され、充満している。 The pod 8 on the load port 7 is placed on the pod shelf 9 or the spare pod shelf 13 at a designated shelf position by the pod transport device 14. The pod 8 is temporarily stored on the pod shelf 9 or the spare pod shelf 13 and then transferred to the transfer shelf 12 by the pod transport device 14 or transferred directly from the load port 7 to the transfer shelf 12. Is done. At this time, the casing 2 is filled with clean air flowing therein.
 ポッド8が移載棚12に移載されると、ウェーハ17はポッド8から移載機11によって取出され、ノッチ合せ装置(図示せず)に移送される。ノッチ合せ装置にてウェーハ17の位置を整合した後、移載機11はウェーハ17を待機部23へと搬入し、ボート22に装填(チャージング)する。 When the pod 8 is transferred to the transfer shelf 12, the wafer 17 is taken out of the pod 8 by the transfer machine 11 and transferred to a notch aligning device (not shown). After aligning the position of the wafer 17 with the notch aligning device, the transfer machine 11 carries the wafer 17 into the standby unit 23 and loads (charges) it into the boat 22.
 予め指定された枚数のウェーハ17がボート22に装填されると、炉口シャッタ26を待機位置へと移動させ、炉口シャッタ26により閉じられていた処理炉24の炉口部を開放する。続いて、ボート22はボートエレベータ34によって上昇され、処理室25に装入(ローディング)される。 When the predetermined number of wafers 17 are loaded in the boat 22, the furnace port shutter 26 is moved to the standby position, and the furnace port of the processing furnace 24 closed by the furnace port shutter 26 is opened. Subsequently, the boat 22 is lifted by the boat elevator 34 and loaded into the processing chamber 25 (loading).
 ローディング後は、シールキャップ36によって炉口部が気密に閉塞され、ウェーハ17に対して所定の基板処理が実行される。 After the loading, the furnace port is hermetically closed by the seal cap 36, and a predetermined substrate processing is performed on the wafer 17.
 処理室25が所望の圧力(真空度)となる様にガス排気機構(図示せず)によって真空排気される。又、処理室25が所望の温度分布となる様に加熱部(ヒータ)39によって所定温度迄加熱される。 (4) The processing chamber 25 is evacuated to a desired pressure (degree of vacuum) by a gas exhaust mechanism (not shown). Further, the processing chamber 25 is heated to a predetermined temperature by a heating unit (heater) 39 so as to have a desired temperature distribution.
 ガス供給機構(図示せず)により、所定の流量に制御された処理ガスが供給され、処理ガスが処理室25を流通する過程で、ウェーハ17の表面と接触し、ウェーハ17の表面上に薄膜が成膜される。更に、反応後の処理ガスは、ガス排気機構により処理室25から排気される。 A processing gas controlled at a predetermined flow rate is supplied by a gas supply mechanism (not shown), and in the process of flowing the processing gas through the processing chamber 25, the processing gas comes into contact with the surface of the wafer 17 and a thin film is formed on the surface of the wafer 17. Is formed. Further, the processing gas after the reaction is exhausted from the processing chamber 25 by the gas exhaust mechanism.
 予め設定された処理時間が経過すると、ガス供給機構により不活性ガス供給源(図示せず)から不活性ガスが供給され、処理室25内の雰囲気が不活性ガスに置換されると共に、処理室25の圧力が常圧に復帰される。 When a preset processing time has elapsed, an inert gas is supplied from an inert gas supply source (not shown) by a gas supply mechanism, and the atmosphere in the processing chamber 25 is replaced with the inert gas. The pressure of 25 is returned to normal pressure.
 ボートエレベータ34によりシールキャップ36を介してボート22が降下される。又、炉口シャッタ26を炉口位置へと移動させ、処理炉24の炉口部を閉塞する。 ボ ー ト The boat 22 is lowered by the boat elevator 34 via the seal cap 36. Further, the furnace port shutter 26 is moved to the furnace port position, and the furnace port of the processing furnace 24 is closed.
 処理後のウェーハ17の搬出については、上記説明と逆の手順で、ウェーハ17及びポッド8は筐体2の外部へ払出される。未処理のウェーハ17が、更にボート22に装填され、ウェーハ17のバッチ処理が繰返される。 (4) Regarding the unloading of the wafer 17 after the processing, the wafer 17 and the pod 8 are discharged to the outside of the housing 2 in a procedure reverse to the above description. The unprocessed wafers 17 are further loaded into the boat 22, and the batch processing of the wafers 17 is repeated.
 複数のウェーハ17を収納したポッド8をロードポート7、ポッド棚9、予備ポッド棚13、移載棚12との間で搬送する搬送機構、又、ボート22にポッド8内のウェーハ17を搬送したり、処理炉24にボート22を搬送したりする搬送機構、炉口シャッタ26を開閉させる駆動機構、処理炉24に処理ガス等を供給するガス供給機構、処理炉24内を排気するガス排気機構、処理炉24を所定温度に加熱するヒータ39をそれぞれ制御する制御装置41について、図4を参照して説明する。 A transport mechanism for transporting the pod 8 containing a plurality of wafers 17 between the load port 7, the pod shelf 9, the spare pod shelf 13, and the transfer shelf 12, and a transport mechanism for transporting the wafer 17 in the pod 8 to the boat 22. Mechanism for transporting the boat 22 to the processing furnace 24, a drive mechanism for opening and closing the furnace port shutter 26, a gas supply mechanism for supplying processing gas and the like to the processing furnace 24, and a gas exhaust mechanism for exhausting the processing furnace 24 A control device 41 for controlling the heater 39 for heating the processing furnace 24 to a predetermined temperature will be described with reference to FIG.
 図4中、42はプロセス系コントローラとしてのプロセス制御部、43は搬送系コントローラとしての搬送制御部、44は主制御部を示している。プロセス制御部42は記憶部45を具備し、該記憶部45にはプロセスを実行する為に必要なプロセス実行プログラムが格納されている。搬送制御部43は記憶部46を具備し、該記憶部46にはウェーハ17の搬送処理を実行する為の搬送プログラムと、ポッド搬送装置14、移載機11、ボートエレベータ34、炉口シャッタ26のそれぞれの動作を制御する動作制御プログラムとが格納されている。主制御部44はデータ格納手段47を具備し、該データ格納手段47は、例えばHDD等の外部記憶装置からなる。尚、プロセス実行プログラム、搬送プログラム、動作制御プログラムは、データ格納手段47に格納されていてもよい。 In FIG. 4, reference numeral 42 denotes a process control unit as a process system controller, 43 denotes a transfer control unit as a transfer system controller, and 44 denotes a main control unit. The process control unit 42 includes a storage unit 45, and the storage unit 45 stores a process execution program required to execute a process. The transfer control unit 43 includes a storage unit 46. The storage unit 46 includes a transfer program for executing a transfer process of the wafer 17, the pod transfer device 14, the transfer machine 11, the boat elevator 34, and the furnace port shutter 26. And an operation control program for controlling each of the operations. The main control unit 44 includes a data storage unit 47, and the data storage unit 47 includes an external storage device such as an HDD. Note that the process execution program, the transport program, and the operation control program may be stored in the data storage unit 47.
 又、図4には、サブコントローラ48,49,50が例示されている。例えば48は処理炉24の加熱制御を行う第1サブコントローラ、49はバルブの開閉、流量制御器52等の作動を制御して処理炉24への処理ガスの供給流量を制御する第2サブコントローラ、50は処理炉24からのガスの排気を制御し、圧力制御バルブ53の開度を調整し、処理炉24内の圧力を制御する第3サブコントローラを示している。 FIG. 4 illustrates the sub-controllers 48, 49, and 50. For example, 48 is a first sub-controller for controlling the heating of the processing furnace 24, 49 is a second sub-controller for controlling the opening and closing of the valve, the operation of the flow controller 52 and the like, and controlling the supply flow rate of the processing gas to the processing furnace 24. Reference numeral 50 denotes a third sub-controller that controls the exhaust of gas from the processing furnace 24, adjusts the opening of the pressure control valve 53, and controls the pressure in the processing furnace 24.
 例えば、54は温度検出器、55は流量検出器、56は圧力センサである。尚、各プロセスアクチュエータ39,52,53の状態を検出する検出器やセンサ類が、図では1つずつしか示されていないが、複数設けられていても構わない。 For example, 54 is a temperature detector, 55 is a flow detector, and 56 is a pressure sensor. Although only one detector or sensor for detecting the state of each process actuator 39, 52, 53 is shown in the figure, a plurality of detectors or sensors may be provided.
 搬送制御部43は各種搬送制御モジュールを制御し、該各種搬送制御モジュールは後述する動作アクチュエータを制御する第1動作制御部57、第2動作制御部58、第3動作制御部59、第4動作制御部60からなっている。 The transport control unit 43 controls various transport control modules. The various transport control modules control a first actuator, a second operation controller 58, a third operation controller 59, and a fourth operation, which control operation actuators described later. It comprises a control unit 60.
 ドライバとしての第1動作制御部57は、ポッド搬送装置14を駆動する駆動部であるサーボモータ(以下第1動作アクチュエータ)62を制御する。又、ドライバとしての第2動作制御部58は、移載機11を進退させ、昇降させ、回転させる駆動部であるサーボモータ(以下第2動作アクチュエータ)65を制御する。又、ドライバとしての第3動作制御部59は、ボートエレベータ34を駆動する駆動部であるサーボモータ(以下第3動作アクチュエータ)66を制御する。更に、ドライバとしての第4動作制御部60は、炉口シャッタ26の蓋部27を駆動する駆動部である電磁切換弁(以下第4動作アクチュエータ)67を制御している。 The first operation control unit 57 as a driver controls a servomotor (hereinafter, a first operation actuator) 62 which is a driving unit for driving the pod transport device 14. Further, the second operation control unit 58 as a driver controls a servomotor (hereinafter, a second operation actuator) 65 which is a driving unit for moving the transfer machine 11 forward and backward, moving up and down, and rotating. The third operation control unit 59 as a driver controls a servomotor (hereinafter, a third operation actuator) 66 that is a driving unit that drives the boat elevator 34. Further, the fourth operation control unit 60 as a driver controls an electromagnetic switching valve (hereinafter, a fourth operation actuator) 67 which is a driving unit for driving the lid 27 of the furnace port shutter 26.
 各動作アクチュエータには、各動作アクチュエータの状態(例えば、限界地点にいるかどうか等の位置状態)を検出する状態検出センサ68,71,72,73が設けられている。各状態検出センサ68,71,72,73は、各動作アクチュエータの状態を検出し、検出結果を第1動作制御部57、第2動作制御部58、第3動作制御部59、第4動作制御部60にそれぞれフィードバックする機能を有している。各動作制御部57,58,59,60はメモリを有し、フィードバックされたデータ(検出結果)を一時的に保存することが可能である。尚、図では、各動作アクチュエータ62,65,66,67に1つの状態検出センサ68,71,72,73が設けられているが、本形態に限定されない。言う迄もなく、各動作アクチュエータに複数の状態検出センサを設けても構わない。 Each operation actuator is provided with a state detection sensor 68, 71, 72, 73 for detecting the state of each operation actuator (for example, a position state such as whether or not it is at a limit point). Each of the state detection sensors 68, 71, 72, and 73 detects the state of each operation actuator, and outputs the detection results to the first operation control unit 57, the second operation control unit 58, the third operation control unit 59, and the fourth operation control unit. Each section 60 has a function of feeding back the information. Each of the operation control units 57, 58, 59, and 60 has a memory, and can temporarily store feedback data (detection result). Although one state detection sensor 68, 71, 72, 73 is provided in each of the operation actuators 62, 65, 66, 67 in the figure, the present invention is not limited to this embodiment. Needless to say, a plurality of state detection sensors may be provided for each operation actuator.
 第1動作制御部57はポッド8をロードポート7から移載棚12等に移載するポッド搬送装置14を駆動制御する。第2動作制御部58はポッド8からウェーハ17を取出し、ボート22に装填する移載機11を駆動制御する。第3動作制御部59はウェーハ17が装填されたボート22を処理炉24に搬入するボートエレベータ34を駆動制御する。第4動作制御部60は処理炉24の炉口部を開閉する炉口シャッタ26を駆動制御する。 {Circle around (1)} The first operation control unit 57 controls the drive of the pod transport device 14 that transfers the pod 8 from the load port 7 to the transfer shelf 12 or the like. The second operation control unit 58 takes out the wafer 17 from the pod 8 and drives and controls the transfer machine 11 to be loaded on the boat 22. The third operation control unit 59 drives and controls the boat elevator 34 that carries the boat 22 loaded with the wafers 17 into the processing furnace 24. The fourth operation control unit 60 drives and controls the furnace port shutter 26 that opens and closes the furnace port of the processing furnace 24.
 入力デバイス75はキーボード、マウス、操作パネル等を示し、モニタ76は設定画面等を含む操作画面である。操作部77はモニタ76から入力デバイス75を用いて各種指示を受付ける。例えば、モニタ76は、移載機11がポッド8とボート22の少なくとも一方に向かう搬送動作、移載機11がポッド8とボート22の少なくとも一方から離れる搬送動作に対して、それぞれ個別に設定される様構成される。 The input device 75 indicates a keyboard, a mouse, an operation panel and the like, and the monitor 76 is an operation screen including a setting screen and the like. The operation unit 77 receives various instructions from the monitor 76 using the input device 75. For example, the monitor 76 is individually set for a transfer operation in which the transfer device 11 is directed to at least one of the pod 8 and the boat 22 and a transfer operation in which the transfer device 11 is separated from at least one of the pod 8 and the boat 22. It is configured to be.
 第1サブコントローラ48、第2サブコントローラ49、第3サブコントローラ50にはプロセス制御部42から設定値の指示、或は処理シーケンスに従った指令信号が入力される。プロセス制御部42は温度検出器54、流量検出器55、圧力センサ56が検出した検出結果に基づき、第1サブコントローラ48、第2サブコントローラ49、第3サブコントローラ50を統括して制御する。 (4) The process controller 42 inputs a set value instruction or a command signal according to a processing sequence to the first sub-controller 48, the second sub-controller 49, and the third sub-controller 50. The process control unit 42 controls the first sub-controller 48, the second sub-controller 49, and the third sub-controller 50 based on the detection results detected by the temperature detector 54, the flow rate detector 55, and the pressure sensor 56.
 プロセス制御部42は、主制御部44を介した操作部77からの指令により、基板処理を実行する。基板処理は、プロセス制御部42が記憶部45に格納されたプログラムに従って、他の制御系とは独立して実行される。従って、搬送制御部43、主制御部44に問題が発生しても、基板処理は中断されることなく完遂される。 (4) The process control unit 42 executes the substrate processing according to a command from the operation unit 77 via the main control unit 44. The substrate processing is executed by the process control unit 42 independently of other control systems according to a program stored in the storage unit 45. Therefore, even if a problem occurs in the transport control unit 43 and the main control unit 44, the substrate processing is completed without interruption.
 第1動作制御部57は、状態検出センサ68が検出した検出結果を基に第1動作アクチュエータ62を制御している。第2動作制御部58は、状態検出センサ71が検出した検出結果を基に第2動作アクチュエータ65を制御している。又、第3動作制御部59は、状態検出センサ72が検出した検出結果を基に第3動作アクチュエータ66を制御している。更に、第4動作制御部60は、状態検出センサ73が検出した検出結果を基に第4動作アクチュエータ67を制御する等、各動作制御部が各状態検出センサに対応する各動作アクチュエータを制御する。 The first operation control unit 57 controls the first operation actuator 62 based on the detection result detected by the state detection sensor 68. The second operation control unit 58 controls the second operation actuator 65 based on the detection result detected by the state detection sensor 71. Further, the third operation control section 59 controls the third operation actuator 66 based on the detection result detected by the state detection sensor 72. Furthermore, the fourth operation control unit 60 controls each operation actuator corresponding to each state detection sensor, such as controlling the fourth operation actuator 67 based on the detection result detected by the state detection sensor 73. .
 搬送制御部43は、操作部77からの指示によって搬送処理を実行する。ポッド8やウェーハ17は、搬送制御部43が記憶部46に格納された搬送プログラム、及び動作制御プログラムに従って、他の制御系とは独立して搬送される。 (4) The transport control unit 43 executes a transport process according to an instruction from the operation unit 77. The pod 8 and the wafer 17 are transferred independently of other control systems according to the transfer program and the operation control program stored in the storage unit 46 by the transfer control unit 43.
 データ格納手段47には、基板処理進行を統括するプログラム、処理内容、処理条件を設定する為の設定プログラム、処理炉24の加熱や処理ガスの供給及び排気等の設定条件が格納された基板処理の為のレシピ、通信プログラム、アラーム情報表示プログラム、パラメータ編集プログラム等の各種プログラムがファイルとして格納されている。 The data storage unit 47 stores a program for controlling the progress of the substrate processing, a setting program for setting processing contents and processing conditions, and a substrate processing in which setting conditions such as heating of the processing furnace 24 and supply and exhaust of the processing gas are stored. Various programs such as a recipe, a communication program, an alarm information display program, and a parameter editing program are stored as files.
 通信プログラムはプロセス制御部42、搬送制御部43とLAN等の通信手段を介してデータの送受信を行うものである。又、アラーム情報表示プログラムは状態検出センサ68,71,72,73によって異常が検出された場合に、動作アクチュエータ62,65,66,67の異常原因、例えば停止した原因のアラーム情報をモニタ76に表示するものである。 The communication program transmits and receives data to and from the process control unit 42 and the transport control unit 43 via communication means such as a LAN. Further, the alarm information display program displays, on the monitor 76, alarm information on the cause of an abnormality of the operation actuator 62, 65, 66, 67, for example, the cause of the stop, when an abnormality is detected by the state detection sensors 68, 71, 72, 73. To display.
 データ格納手段47は、データ格納領域を有している。該データ格納領域には、ウェーハ17の搬送に必要とされるパラメータが格納され、更に搬送機構に予め設定されている設定情報、状態検出センサ68,71,72,73によって検出された検出結果、及び処理状態等の情報が格納される。 The data storage means 47 has a data storage area. In the data storage area, parameters required for transporting the wafer 17 are stored, and further, setting information preset in the transport mechanism, detection results detected by the state detection sensors 68, 71, 72, 73, And information such as the processing state.
 ウェーハ17の搬送処理を行なう際には、目標位置、速度、加速度、減速度等の設定値に加え、トルク制御の有無を操作部77から入力する。その後、操作部77から搬送処理の実行指示を入力することで、記憶部46に格納されている搬送プログラム、及び搬送プログラムからの指示に従って、動作制御プログラムが実行される。 (4) When carrying out the transfer process of the wafer 17, in addition to the set values such as the target position, speed, acceleration, deceleration, etc., the presence or absence of the torque control is inputted from the operation unit 77. Thereafter, by inputting an instruction to execute the transfer process from the operation unit 77, the operation control program is executed in accordance with the transfer program stored in the storage unit 46 and the instructions from the transfer program.
 搬送プログラムが実行されると、搬送制御部43が第1動作制御部57、第2動作制御部58、第3動作制御部59、第4動作制御部60を介して、ポッド搬送装置14、移載機11、ボートエレベータ34の各搬送機構及び炉口シャッタ26を駆動制御する。 When the transport program is executed, the transport control unit 43 causes the pod transport device 14 to move through the first operation control unit 57, the second operation control unit 58, the third operation control unit 59, and the fourth operation control unit 60. The drive of the loading machine 11, each transport mechanism of the boat elevator 34, and the furnace port shutter 26 is controlled.
 炉口シャッタ26は、基板処理中、及びボート22の搬入及び搬出時には蓋部27を待機位置へと移動させ、処理炉24の炉口部を開放している。又、それ以外の時には蓋部27を炉口位置へと移動させ、炉口部を閉塞している。 (4) The furnace port shutter 26 moves the lid 27 to the standby position during substrate processing and when the boat 22 is loaded and unloaded, and opens the furnace port of the processing furnace 24. At other times, the lid 27 is moved to the furnace port position to close the furnace port.
 ここで、何らかの理由により作動流体の流通が遮断されると、シリンダ32内の圧力が低下し、待機位置(又は炉口位置)で維持できなくなり、待機位置と炉口位置との間で蓋部27が停止してしまう場合がある。この場合、ボート22と蓋部27が接触し、ボート22が破損する虞れがある。 Here, if the flow of the working fluid is interrupted for some reason, the pressure in the cylinder 32 decreases and cannot be maintained at the standby position (or the furnace port position). 27 may stop. In this case, the boat 22 may come into contact with the lid 27, and the boat 22 may be damaged.
 そこで、本実施例では、作動流体の流通が遮断された場合であっても、蓋部27を待機位置又は炉口位置に保持できる様にしている。以下、図5を参照し、蓋部27の位置を保持可能な流体回路(流体圧駆動システム)33について説明する。 Therefore, in this embodiment, even when the flow of the working fluid is shut off, the lid 27 can be held at the standby position or the furnace port position. Hereinafter, the fluid circuit (fluid pressure drive system) 33 capable of holding the position of the lid 27 will be described with reference to FIG.
 流体回路33は、作動流体により駆動されるシリンダ32と、第1給排流路82と、第2給排流路84とを有している。第1給排流路82は、シリンダ32の第2ポートとしての第2エアポート81と一端が接続されており、第2給排流路84は、シリンダ32の第1ポートとしての第1エアポート83と一端が接続されている。尚、本実施例では、シリンダ32として、ロータリアクチュエータが用いられる。 The fluid circuit 33 includes the cylinder 32 driven by the working fluid, the first supply / discharge flow path 82, and the second supply / discharge flow path 84. One end of the first supply / discharge passage 82 is connected to a second air port 81 serving as a second port of the cylinder 32, and the second supply / discharge passage 84 is connected to a first air port 83 serving as a first port of the cylinder 32. And one end are connected. In this embodiment, a rotary actuator is used as the cylinder 32.
 第1給排流路82上には、第2ポート81側から順に、第1チェック弁としての第1パイロットチェック弁85、第1流速調整部としての第1スピードコントローラ86が設けられている。又、第1給排流路82のシリンダ32と第1チェック弁85との間には第1分岐流路87が接続され、該第1分岐流路87には第1圧力開放弁88が設けられている。更に、第1給排流路82の他端には、電磁切換弁67が接続されている。尚、基板処理装置1が正常に可動している場合には、第1圧力開放弁88は閉となっている。 に は A first pilot check valve 85 as a first check valve and a first speed controller 86 as a first flow rate adjusting unit are provided on the first supply / discharge flow path 82 in order from the second port 81 side. A first branch flow path 87 is connected between the cylinder 32 of the first supply / discharge flow path 82 and the first check valve 85, and a first pressure release valve 88 is provided in the first branch flow path 87. Have been. Further, an electromagnetic switching valve 67 is connected to the other end of the first supply / discharge flow path 82. When the substrate processing apparatus 1 is operating normally, the first pressure release valve 88 is closed.
 第2給排流路84上には、第1ポート83側から順に、第2チェック弁としての第2パイロットチェック弁91、第2流速調整部としての第2スピードコントローラ92が設けられている。又、第2給排流路84のシリンダ32と第2チェック弁91との間には第2分岐流路93が接続され、該第2分岐流路93には第2圧力開放弁94が設けられている。尚、基板処理装置1が正常に可動している場合には、第2圧力開放弁94は閉となっている。 A second pilot check valve 91 as a second check valve and a second speed controller 92 as a second flow rate adjuster are provided on the second supply / discharge flow path 84 in order from the first port 83 side. A second branch passage 93 is connected between the cylinder 32 of the second supply / discharge passage 84 and the second check valve 91, and a second pressure release valve 94 is provided in the second branch passage 93. Have been. When the substrate processing apparatus 1 is operating normally, the second pressure release valve 94 is closed.
 第1チェック弁85は、第1パイロットポート85aと逆止弁85bにより構成される。又、第2チェック弁91は、第2パイロットポート91aと逆止弁91bにより構成される。 The first check valve 85 includes a first pilot port 85a and a check valve 85b. The second check valve 91 includes a second pilot port 91a and a check valve 91b.
 第1給排流路82の第1流速調整部86と電磁切換弁67との間には、第1パイロット流路97の一端が接続され、該第1パイロット流路97の他端は第2パイロットポート91aに接続されている。又、第2給排流路84の第2流速調整部92と電磁切換弁67との間には、第2パイロット流路98の一端が接続され、該第2パイロット流路98の他端は第1パイロットポート85aに接続されている。 One end of a first pilot flow path 97 is connected between the first flow rate adjusting section 86 of the first supply / discharge flow path 82 and the electromagnetic switching valve 67, and the other end of the first pilot flow path 97 is connected to the second flow path. It is connected to the pilot port 91a. One end of a second pilot flow path 98 is connected between the second flow rate adjusting unit 92 of the second supply / discharge flow path 84 and the electromagnetic switching valve 67, and the other end of the second pilot flow path 98 is It is connected to the first pilot port 85a.
 更に、電磁切換弁67には作動流体供給流路99の一端が接続され、該作動流体供給流路99の他端には作動流体供給源101が接続されている。電磁切換弁67を作動させることで、第1給排流路82と第2給排流路84のいずれか一方に作動流体供給源101から作動流体を供給し、第1給排流路82と第2給排流路84のいずれか他方から作動流体を排出できる様になっている。 Further, one end of a working fluid supply channel 99 is connected to the electromagnetic switching valve 67, and a working fluid supply source 101 is connected to the other end of the working fluid supply channel 99. By operating the electromagnetic switching valve 67, a working fluid is supplied from the working fluid supply source 101 to one of the first supply / discharge flow path 82 and the second supply / discharge flow path 84, and the first supply / discharge flow path 82 The working fluid can be discharged from one of the second supply / discharge passages 84.
 上記の様に構成された流体回路33に於いて、先ず図5に示す様に、第1給排流路82と作動流体供給流路99とが連通する様電磁切換弁67を作動させた場合について説明する。 In the fluid circuit 33 configured as described above, first, as shown in FIG. 5, when the electromagnetic switching valve 67 is operated so that the first supply / discharge flow path 82 and the working fluid supply flow path 99 communicate with each other. Will be described.
 作動流体供給源101から供給される作動流体の大部分は、第1流速調整部86を経由し、第1チェック弁85を通過した後、第2ポート81よりシリンダ32内に供給される。この時、作動流体は、第1流速調整部86の絞り流路86aと共に逆止弁86bも流通可能であるので、作動流体は流量が制限されることなくシリンダ32内に供給される。 Most of the working fluid supplied from the working fluid supply source 101 passes through the first flow rate adjustment unit 86, passes through the first check valve 85, and is then supplied into the cylinder 32 from the second port 81. At this time, since the working fluid can also flow through the check valve 86b together with the throttle flow path 86a of the first flow rate adjusting unit 86, the working fluid is supplied into the cylinder 32 without restriction of the flow rate.
 又、作動流体の一部は、第1パイロット流路97を介して第2パイロットポート91aに導入される。第2パイロットポート91aに作動流体が導入されることで、パイロット圧により逆止弁91bが機能を喪失し、シリンダ32から電磁切換弁67に向かって作動流体が流通可能となる。 一部 A part of the working fluid is introduced into the second pilot port 91a via the first pilot channel 97. When the working fluid is introduced into the second pilot port 91a, the check valve 91b loses its function due to the pilot pressure, and the working fluid can flow from the cylinder 32 toward the electromagnetic switching valve 67.
 これにより、シリンダ32内に導入された作動流体は、第1ポート83から排出され、第2チェック弁91、第2流速調整部92、電磁切換弁67を介して大気に排出される。シリンダ32への作動流体の給排により、シリンダ32が動作し、蓋部27が例えば待機位置から炉口位置へと移動し、炉口部が炉口シャッタ26により閉塞される。 Accordingly, the working fluid introduced into the cylinder 32 is discharged from the first port 83, and discharged to the atmosphere via the second check valve 91, the second flow rate adjusting unit 92, and the electromagnetic switching valve 67. By supplying and discharging the working fluid to and from the cylinder 32, the cylinder 32 operates, the lid 27 moves from, for example, the standby position to the furnace port position, and the furnace port is closed by the furnace port shutter 26.
 尚、作動流体は、第2流速調整部92を通過する過程で逆止弁92bが作用するので、絞り流路92aにより作動流体の流量が制限される。従って、作動流体が急激に大気に排出されず、蓋部27が急激に待機位置から炉口位置へと移動することがない。 The check valve 92b acts during the passage of the working fluid through the second flow rate adjusting section 92, so that the flow rate of the working fluid is restricted by the throttle flow path 92a. Therefore, the working fluid is not rapidly discharged to the atmosphere, and the lid 27 does not suddenly move from the standby position to the furnace port position.
 同様に、電磁切換弁67を切替え、作動流体供給流路99と第2給排流路84とを連通させた場合には、作動流体の大部分が第2流速調整部92、第2チェック弁91を経て第1ポート83からシリンダ32内に供給される。この時、作動流体は、第2流速調整部92の絞り流路92aと共に逆止弁92bも流通可能であるので、作動流体は流量が制限されることなくシリンダ32内に供給される。 Similarly, when the electromagnetic switching valve 67 is switched to make the working fluid supply flow path 99 and the second supply / discharge flow path 84 communicate with each other, most of the working fluid flows through the second flow rate adjusting unit 92 and the second check valve. The gas is supplied from the first port 83 into the cylinder 32 via the valve 91. At this time, the working fluid can flow through the check valve 92b together with the throttle flow path 92a of the second flow rate adjusting section 92, so that the working fluid is supplied into the cylinder 32 without restriction of the flow rate.
 又、作動流体の一部は、第2パイロット流路98を介して第1パイロットポート85aに導入される。第1パイロットポート85aに作動流体が導入されることで、パイロット圧により逆止弁85bが機能を喪失し、シリンダ32から電磁切換弁67に向かって作動流体が流通可能となる。 一部 A part of the working fluid is introduced into the first pilot port 85a via the second pilot flow path 98. When the working fluid is introduced into the first pilot port 85a, the check valve 85b loses its function due to the pilot pressure, and the working fluid can flow from the cylinder 32 toward the electromagnetic switching valve 67.
 これにより、シリンダ32内に導入された作動流体は、第2ポート81から排出され、第1チェック弁85、第1流速調整部86、電磁切換弁67を介して大気に排出される。シリンダ32への作動流体の給排により、シリンダ32が動作し、蓋部27が例えば炉口位置から待機位置へと移動し、炉口部が開放される。即ち、蓋部27は、流体回路(流体圧駆動システム)33内に供給される作動流体の方向に応じて、待機位置と炉口位置との間を移動する様に構成されている。 Accordingly, the working fluid introduced into the cylinder 32 is discharged from the second port 81, and is discharged to the atmosphere via the first check valve 85, the first flow rate adjusting unit 86, and the electromagnetic switching valve 67. By supplying and discharging the working fluid to and from the cylinder 32, the cylinder 32 operates, the lid 27 moves from, for example, the furnace port position to the standby position, and the furnace port is opened. That is, the lid 27 is configured to move between the standby position and the furnace port position according to the direction of the working fluid supplied into the fluid circuit (fluid pressure drive system) 33.
 尚、作動流体は、第1流速調整部86を通過する過程で逆止弁86bが作用するので、絞り流路86aにより作動流体の流量が制限される。従って、作動流体が急激に大気に排出されず、蓋部27が急激に炉口位置から待機位置へと移動することがない。 The check valve 86b acts during the passage of the working fluid through the first flow rate adjusting unit 86, so that the flow rate of the working fluid is restricted by the throttle passage 86a. Therefore, the working fluid is not rapidly discharged to the atmosphere, and the lid 27 does not suddenly move from the furnace port position to the standby position.
 上記した流体回路33に於いて、作動流体供給源101から供給される作動流体が遮断された場合について説明する。例えば、作動流体が第1給排流路82内に供給される様電磁切換弁67を配置させていた場合、作動流体が第1給排流路82内に供給されず、第2パイロットポート91aにも作動流体が供給されない。 A case where the working fluid supplied from the working fluid supply source 101 is cut off in the above-described fluid circuit 33 will be described. For example, when the electromagnetic switching valve 67 is arranged so that the working fluid is supplied into the first supply / discharge flow path 82, the working fluid is not supplied into the first supply / discharge flow path 82, and the second pilot port 91a No working fluid is supplied.
 従って、逆止弁91bが機能を維持し、シリンダ32内に作動流体が封じ込まれるので、シリンダ32内の作動流体が大気に排出されることがなく、シリンダ32内の圧力が維持される。従って、炉口シャッタ26の状態が維持され、蓋部27が移動することがないので、蓋部27は炉口位置で保持される。 Therefore, the check valve 91b maintains its function and the working fluid is sealed in the cylinder 32, so that the working fluid in the cylinder 32 is not discharged to the atmosphere, and the pressure in the cylinder 32 is maintained. Therefore, the state of the furnace port shutter 26 is maintained, and the cover section 27 does not move, so that the cover section 27 is held at the furnace port position.
 同様に、作動流体が第2給排流路84内に供給される様電磁切換弁67を配置させていた場合、作動流体は第2給排流路84内に供給されず、第1パイロットポート85aにも作動流体が供給されない。 Similarly, when the electromagnetic switching valve 67 is arranged so that the working fluid is supplied into the second supply / discharge passage 84, the working fluid is not supplied into the second supply / discharge passage 84, and the first pilot port No working fluid is supplied to 85a.
 従って、逆止弁85bが機能を維持し、シリンダ32内に作動流体が封じ込まれるので、シリンダ32内の作動流体が大気に排出されることがなく、シリンダ32内の圧力が維持される。従って、炉口シャッタ26の状態が維持され、蓋部27が移動することがないので、蓋部27は待機位置で保持される。 Therefore, the check valve 85b maintains its function and the working fluid is sealed in the cylinder 32, so that the working fluid in the cylinder 32 is not discharged to the atmosphere, and the pressure in the cylinder 32 is maintained. Accordingly, the state of the furnace port shutter 26 is maintained, and the lid 27 does not move, so that the lid 27 is held at the standby position.
 尚、作動流体供給源101からの作動流体が遮断された場合や、電磁切換弁67が故障した場合等、炉口シャッタ26を手動で動作させる必要がある場合がある。この場合、例えばメンテナンス時や装置組立て時等に、正面メンテナンス扉5を開放し、第1圧力開放弁88或は第2圧力開放弁94を開放する。これにより、シリンダ32内の作動流体が排出され、手動で蓋部27の位置を移動させることができる。 In some cases, it is necessary to manually operate the furnace port shutter 26, for example, when the working fluid from the working fluid supply source 101 is shut off or when the electromagnetic switching valve 67 breaks down. In this case, for example, at the time of maintenance or assembling of the apparatus, the front maintenance door 5 is opened, and the first pressure release valve 88 or the second pressure release valve 94 is opened. Accordingly, the working fluid in the cylinder 32 is discharged, and the position of the lid 27 can be manually moved.
 上述の様に、本実施例では、炉口シャッタ26の蓋部27を動作させるシリンダ32の流体回路33に於いて、第1給排流路82と第2給排流路84にそれぞれ第1チェック弁85と第2チェック弁91を設けると共に、第1給排流路82と第2パイロットポート91aとを接続する第1パイロット流路97及び第2給排流路84と第1パイロットポート85aとを接続する第2パイロット流路98を設けている。 As described above, in the present embodiment, in the fluid circuit 33 of the cylinder 32 that operates the cover 27 of the furnace port shutter 26, the first supply / discharge flow path 82 and the second supply / discharge flow path 84 A check valve 85 and a second check valve 91 are provided, and a first pilot passage 97 and a second supply / discharge passage 84 connecting the first supply / discharge passage 82 and the second pilot port 91a to the first pilot port 85a. And a second pilot flow path 98 that connects the second pilot flow path and the second pilot flow path.
 これにより、何らかの理由により作動流体供給源101からの作動流体が遮断した場合には、第1パイロットポート85a及び第2パイロットポート91aに作動流体が供給されず、逆止弁85b,91bの機能が維持されるので、シリンダ32内の作動流体が排出されることがなく、シリンダ32内の圧力が維持される。 Accordingly, when the working fluid from the working fluid supply source 101 is shut off for some reason, the working fluid is not supplied to the first pilot port 85a and the second pilot port 91a, and the functions of the check valves 85b and 91b are reduced. Since the pressure is maintained, the working fluid in the cylinder 32 is not discharged, and the pressure in the cylinder 32 is maintained.
 従って、蓋部27は待機位置又は炉口位置で保持され、待機位置と炉口位置との間に移動することがないので、蓋部27とボート22等の部材との接触や接触による破損を防止することができる。 Therefore, since the lid 27 is held at the standby position or the furnace port position and does not move between the standby position and the furnace port position, contact between the lid 27 and members such as the boat 22 or damage due to contact is prevented. Can be prevented.
 本実施例では、第1給排流路82と第2給排流路84にそれぞれ第1流速調整部86と第2流速調整部92を設けているので、蓋部27が急激に移動することがなく、アーム29と保持部31の接続箇所等が破損するのを防止することができる。 In the present embodiment, since the first flow rate adjusting section 86 and the second flow rate adjusting section 92 are provided in the first supply / discharge flow path 82 and the second supply / discharge flow path 84, respectively, the lid section 27 moves rapidly. Therefore, it is possible to prevent the connection portion between the arm 29 and the holding portion 31 from being damaged.
 又、第1圧力開放弁88と第2圧力開放弁94が設けられ、手動でシリンダ32内の作動流体を排出することができるので、待機位置又は炉口位置で保持された蓋部27の位置を手動で変更することができる。 In addition, since the first pressure release valve 88 and the second pressure release valve 94 are provided and the working fluid in the cylinder 32 can be manually discharged, the position of the lid portion 27 held at the standby position or the furnace port position is provided. Can be changed manually.
 尚、本実施例では、シリンダ32としてロータリアクチュエータを用いているが、圧縮流体駆動のシリンダであれば他のシリンダであってもよい。 In the present embodiment, a rotary actuator is used as the cylinder 32, but any other cylinder may be used as long as it is a compressed fluid driven cylinder.
 本開示は、半導体製造装置だけではなく、LCD装置の様なガラス基板を処理する装置でも適用できる。又、本開示は、基板に生成される薄膜の膜種は特に限定されない。例えば、窒化膜(SiN等)、酸化膜(SiO等)、金属酸化膜等、色々な膜種の薄膜を形成する処理にも適用できる。 The present disclosure can be applied not only to a semiconductor manufacturing apparatus but also to an apparatus for processing a glass substrate such as an LCD apparatus. In the present disclosure, the type of the thin film formed on the substrate is not particularly limited. For example, the present invention can be applied to a process for forming various types of thin films such as a nitride film (eg, SiN), an oxide film (eg, SiO), and a metal oxide film.
 1 基板処理装置、24 処理炉、26 炉口シャッタ、27 蓋部、33 流体回路、81 第2ポート、82 第1給排流路、83 第1ポート、84 第2給排流路、85 第1チェック弁、91 第2チェック弁、97 第1パイロット流路、98 第2パイロット流路 1 substrate processing apparatus, 24 processing furnace, 26 furnace shutter, 27 lid, 33 fluid circuit, 81 second port, 82 first supply / discharge channel, 83 first port, 84 second supply / discharge channel, 85 second 1 check valve, 91 # second check valve, 97 # first pilot flow path, 98 # second pilot flow path

Claims (11)

  1.  基板を保持した基板保持具を装入した状態で、前記基板を処理する処理炉と、
    該処理炉の炉口を覆う蓋部と、
    第1ポートと第2ポートとを備え、該蓋部を動作させるシリンダと、
    前記蓋部と前記シリンダとを連結固定するアームとを備えた蓋開閉機構と
    を備え、
    前記蓋開閉機構は、
    前記シリンダの前記第2ポートと電磁切換弁との間を接続する第1給排流路と、
    前記シリンダの前記第1ポートと前記電磁切換弁との間を接続する第2給排流路と、
    前記第1給排流路上に設けられた第1流速調整部及び第1チェック弁と、
    前記第2給排流路上に設けられた第2流速調整部及び第2チェック弁と、
    前記第1給排流路から分岐して前記第2チェック弁のパイロットポートに接続される第1パイロット流路と、
    前記第2給排流路から分岐して前記第1チェック弁のパイロットポートに接続される第2パイロット流路とを具備する流体圧駆動システムにより駆動される様構成された基板処理装置。
    A processing furnace for processing the substrate in a state where the substrate holder holding the substrate is loaded,
    A lid covering the furnace port of the processing furnace;
    A cylinder having a first port and a second port for operating the lid;
    A lid opening / closing mechanism including an arm that couples and fixes the lid and the cylinder,
    The lid opening and closing mechanism,
    A first supply / discharge passage connecting between the second port of the cylinder and an electromagnetic switching valve;
    A second supply / discharge passage connecting between the first port of the cylinder and the electromagnetic switching valve;
    A first flow rate adjusting unit and a first check valve provided on the first supply / discharge flow path;
    A second flow rate adjusting unit and a second check valve provided on the second supply / discharge flow path;
    A first pilot flow path branched from the first supply / discharge flow path and connected to a pilot port of the second check valve;
    A substrate processing apparatus configured to be driven by a fluid pressure drive system including a second pilot flow path branched from the second supply / discharge flow path and connected to a pilot port of the first check valve.
  2.  前記シリンダを駆動させる為の作動流体を供給する流体供給源を更に具備し、
    前記流体圧駆動システムは前記作動流体を前記シリンダ内部に封じ込める様構成された請求項1に記載の基板処理装置。
    Further comprising a fluid supply source for supplying a working fluid for driving the cylinder,
    The substrate processing apparatus according to claim 1, wherein the fluid pressure driving system is configured to confine the working fluid inside the cylinder.
  3.  前記流体圧駆動システムは、前記流体供給源より供給される前記作動流体が遮断された場合であっても、前記シリンダ内の圧力低下を防止する様に構成された請求項2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 2, wherein the fluid pressure driving system is configured to prevent a pressure drop in the cylinder even when the working fluid supplied from the fluid supply source is shut off. apparatus.
  4.  前記流体圧駆動システムは、前記流体供給源より供給される前記作動流体が遮断された場合であっても、前記蓋開閉機構の状態を維持する様に構成された請求項2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 2, wherein the fluid pressure driving system is configured to maintain the state of the lid opening / closing mechanism even when the working fluid supplied from the fluid supply source is shut off. apparatus.
  5.  前記蓋開閉機構の蓋部を炉口位置又は閉塞位置で保持する様に構成された請求項4に記載の基板処理装置。 5. The substrate processing apparatus according to claim 4, wherein the lid of the lid opening / closing mechanism is configured to be held at a furnace port position or a closed position.
  6.  前記流体供給源と前記第1給排流路とを連通させる様に前記電磁切換弁を作動させると、前記作動流体が前記第1チェック弁を貫通して前記第2ポートより前記シリンダ内に供給されると共に、前記第1パイロット流路を介して前記第2チェック弁のパイロットポートに導入され、前記第2チェック弁の逆止弁としての機能が消失される様に構成された請求項2に記載の基板処理装置。 When the electromagnetic switching valve is operated so that the fluid supply source communicates with the first supply / discharge flow path, the working fluid is supplied into the cylinder from the second port through the first check valve. And the second check valve is configured to be introduced into the pilot port of the second check valve via the first pilot flow path, so that the function of the second check valve as a check valve is lost. The substrate processing apparatus according to any one of the preceding claims.
  7.  前記流体供給源と前記第1給排流路とを連通させる様に前記電磁切換弁を作動させると、前記シリンダの前記第1ポートから排出される前記作動流体が、前記第2給排流路及び前記電磁切換弁を介して大気側に排出される様構成された請求項2に記載の基板処理装置。 When the electromagnetic switching valve is operated so that the fluid supply source communicates with the first supply / discharge flow path, the working fluid discharged from the first port of the cylinder is supplied to the second supply / discharge flow path. 3. The substrate processing apparatus according to claim 2, wherein said substrate processing apparatus is configured to be discharged to the atmosphere side via said electromagnetic switching valve.
  8.  基板を処理する処理炉の炉口を覆う蓋部と、該蓋部を動作させるシリンダと、前記蓋部と前記シリンダとを連結固定するアームとを備えた蓋開閉機構であって、
    前記シリンダの第2ポートと電磁切換弁との間を接続する第1給排流路と、
    前記シリンダの第1ポートと前記電磁切換弁との間を接続する第2給排流路と、
    前記第1給排流路上に設けられた第1流速調整部及び第1チェック弁と、
    前記第2給排流路上に設けられた第2流速調整部及び第2チェック弁と、
    前記第1給排流路から分岐して前記第2チェック弁のパイロットポートに接続される第1パイロット流路と、前記第2給排流路から分岐して前記第1チェック弁のパイロットポートに接続される第2パイロット流路とを具備する流体圧駆動システムにより駆動される様構成された蓋開閉機構。
    A lid that covers a furnace port of a processing furnace that processes a substrate, a cylinder that operates the lid, and a lid opening and closing mechanism including an arm that couples and fixes the lid and the cylinder,
    A first supply / discharge flow path connecting between a second port of the cylinder and an electromagnetic switching valve;
    A second supply / drain passage connecting between a first port of the cylinder and the electromagnetic switching valve;
    A first flow rate adjusting unit and a first check valve provided on the first supply / discharge flow path;
    A second flow rate adjusting unit and a second check valve provided on the second supply / discharge flow path;
    A first pilot flow path branched from the first supply / discharge flow path and connected to a pilot port of the second check valve; and a first pilot flow path branched from the second supply / discharge flow path to a pilot port of the first check valve. A lid opening / closing mechanism configured to be driven by a fluid pressure driving system having a second pilot flow path connected thereto.
  9.  前記蓋部は、前記流体圧駆動システム内に供給される作動流体の向きに応じて、待機位置と炉口位置との間を移動する様構成された請求項8に記載の蓋開閉機構。 The lid opening / closing mechanism according to claim 8, wherein the lid is configured to move between a standby position and a furnace port position in accordance with the direction of the working fluid supplied into the fluid pressure drive system.
  10.  基板保持具を処理炉から搬出する工程は、
    該処理炉の炉口を覆う蓋部と、該蓋部を動作させるシリンダと、前記蓋部と前記シリンダとを連結固定するアームとを備えた蓋開閉機構で前記処理炉の炉口を閉塞する工程を更に有し、
    前記炉口を閉塞する工程では、前記シリンダの第2ポートと電磁切換弁との間を接続する第1給排流路と、前記シリンダの第1ポートと前記電磁切換弁との間を接続する第2給排流路と、前記第1給排流路上に設けられた第1流速調整部及び第1チェック弁と、前記第2給排流路上に設けられた第2流速調整部及び第2チェック弁と、前記第1給排流路から分岐して前記第2チェック弁のパイロットポートに接続される第1パイロット流路と、前記第2給排流路から分岐して前記第1チェック弁のパイロットポートに接続される第2パイロット流路とを具備する流体圧駆動システムにより前記蓋開閉機構が駆動される半導体装置の製造方法。
    The step of unloading the substrate holder from the processing furnace includes:
    The furnace port of the processing furnace is closed by a lid opening / closing mechanism including a lid that covers the furnace port of the processing furnace, a cylinder that operates the lid, and an arm that connects and fixes the lid and the cylinder. Further comprising a step,
    In the step of closing the furnace port, a first supply / discharge flow path that connects between a second port of the cylinder and an electromagnetic switching valve, and a connection between a first port of the cylinder and the electromagnetic switching valve. A second flow path, a first flow rate adjusting section and a first check valve provided on the first flow path, a second flow rate adjusting section and a second flow rate section provided on the second flow path. A check valve, a first pilot flow path branched from the first supply / drain flow path and connected to a pilot port of the second check valve, and a first check valve branched from the second supply / drain flow path And a second pilot flow path connected to the pilot port of the semiconductor device.
  11.  蓋部を駆動させるシリンダと、
    該シリンダの第2ポートと電磁切換弁との間を接続する第1給排流路と、
    前記シリンダの第1ポートと前記電磁切換弁との間を接続する第2給排流路と、
    前記第1給排流路上に設けられた第1流速調整部及び第1チェック弁と、
    前記第2給排流路上に設けられた第2流速調整部及び第2チェック弁と、
    前記第1給排流路から分岐して前記第2チェック弁のパイロットポートに接続された第1パイロット流路と、
    前記第2給排流路から分岐して前記第1チェック弁のパイロットポートに接続された第2パイロット流路とを具備する流体圧駆動システム。
    A cylinder for driving the lid,
    A first supply / discharge flow path connecting between a second port of the cylinder and an electromagnetic switching valve;
    A second supply / drain passage connecting between a first port of the cylinder and the electromagnetic switching valve;
    A first flow rate adjusting unit and a first check valve provided on the first supply / discharge flow path;
    A second flow rate adjusting unit and a second check valve provided on the second supply / discharge flow path;
    A first pilot flow path branched from the first supply / discharge flow path and connected to a pilot port of the second check valve;
    A second pilot flow path branched from the second supply / discharge flow path and connected to a pilot port of the first check valve.
PCT/JP2019/033195 2018-09-19 2019-08-20 Substrate processing device, lid opening and closing mechanism, manufacturing method for semiconductor device, and fluid pressure drive system WO2020059427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018174612 2018-09-19
JP2018-174612 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059427A1 true WO2020059427A1 (en) 2020-03-26

Family

ID=69887194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033195 WO2020059427A1 (en) 2018-09-19 2019-08-20 Substrate processing device, lid opening and closing mechanism, manufacturing method for semiconductor device, and fluid pressure drive system

Country Status (1)

Country Link
WO (1) WO2020059427A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498675A (en) * 1972-05-29 1974-01-25
JPS6124804A (en) * 1984-07-16 1986-02-03 Nobutaka Ota Speed control device for pneumatic cylinder
WO2003085712A1 (en) * 2002-04-05 2003-10-16 Tokyo Electron Limited Vertical heat treating equipment
JP2018003943A (en) * 2016-06-30 2018-01-11 Kyb株式会社 Cylinder driving device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498675A (en) * 1972-05-29 1974-01-25
JPS6124804A (en) * 1984-07-16 1986-02-03 Nobutaka Ota Speed control device for pneumatic cylinder
WO2003085712A1 (en) * 2002-04-05 2003-10-16 Tokyo Electron Limited Vertical heat treating equipment
JP2018003943A (en) * 2016-06-30 2018-01-11 Kyb株式会社 Cylinder driving device

Similar Documents

Publication Publication Date Title
JP5635270B2 (en) Substrate processing apparatus, substrate processing system, display method of substrate processing apparatus, parameter setting method of substrate processing apparatus, and recording medium
JP6710321B2 (en) Substrate transfer unit, substrate processing apparatus, and semiconductor device manufacturing method
JP5334261B2 (en) Substrate processing apparatus, display method in substrate processing apparatus, and method of manufacturing semiconductor device
US9443748B2 (en) Substrate processing apparatus, program for controlling the same, and method for fabricating semiconductor device
US20150371914A1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
KR102377165B1 (en) Semiconductor device manufacturing method, substrate processing apparatus and program
JPWO2009031419A1 (en) Vacuum processing system
US20220068687A1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
US11521880B2 (en) Substrate processing apparatus and recording medium for changing atmosphere of transfer chamber
WO2020059427A1 (en) Substrate processing device, lid opening and closing mechanism, manufacturing method for semiconductor device, and fluid pressure drive system
JP2017002353A (en) Substrate treatment apparatus, and production method of semiconductor device
JPH10321698A (en) Substrate treatment method and its equipment
JP7352667B2 (en) Substrate processing equipment, semiconductor device manufacturing method and program
JP7165806B2 (en) SUBSTRATE PROCESSING APPARATUS, FACTOR PORT CLOSING UNIT AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE
JP2011171648A (en) Substrate processing system
JP2008130925A (en) Substrate processing equipment
JP2010183068A (en) Substrate processing apparatus
JP2013055239A (en) Substrate processing apparatus
JP2020150150A (en) Substrate processing apparatus, manufacturing method for semiconductor device, and program
JP2013102037A (en) Substrate processing apparatus
JP2009253217A (en) Substrate processing apparatus
JP2012104701A (en) Substrate processing apparatus
JP2012164850A (en) Substrate processing apparatus, and display method of substrate processing apparatus
JP2012074507A (en) Substrate processing apparatus and control method thereof
JP2013033310A (en) Substrate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP