WO2020059293A1 - 流体機械システム及び流体機械 - Google Patents

流体機械システム及び流体機械 Download PDF

Info

Publication number
WO2020059293A1
WO2020059293A1 PCT/JP2019/029194 JP2019029194W WO2020059293A1 WO 2020059293 A1 WO2020059293 A1 WO 2020059293A1 JP 2019029194 W JP2019029194 W JP 2019029194W WO 2020059293 A1 WO2020059293 A1 WO 2020059293A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid machine
pressure
terminal
control
pressure sensor
Prior art date
Application number
PCT/JP2019/029194
Other languages
English (en)
French (fr)
Inventor
崇 中島
彰 伊与泉
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201980054966.4A priority Critical patent/CN112585355B/zh
Priority to JP2020548059A priority patent/JP7052063B2/ja
Publication of WO2020059293A1 publication Critical patent/WO2020059293A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures

Definitions

  • the present invention relates to a fluid machine system and a fluid machine, and more particularly to a fluid machine system and a fluid machine that perform operation control based on a pressure value on an external piping path.
  • ⁇ ⁇ Various fluid machines are known, including compressors and pump devices.
  • the discharged compressed gas is stored in a reservoir tank and supplied from the reservoir tank to each terminal (load) via a facility pipe or the like.
  • the pressure of the compressed gas causes a pressure loss due to the specification of the compressed gas at each end and expansion of the facility piping.
  • the drive control of the fluid machine is controlled based on the input from the terminal pressure sensor disposed in the facility piping.
  • the pressure sensor is communicably connected to the fluid machine in a wired or wireless manner.
  • the input of the terminal pressure value to the fluid machine may be interrupted due to a disconnection or the like in the case of a wired connection or a communication failure in the case of a wireless connection.
  • the wireless communication is susceptible to the environment (high temperature, high humidity, etc.) on the communication path, and is likely to be interrupted. The stop or interruption of the communication affects the driving of the fluid machine, and may not be able to secure a desired terminal pressure.
  • a fluid machine system including a fluid machine for pumping a fluid, a pipe connected to the fluid machine, a terminal load connected to the pipe, and a terminal pressure sensor for detecting a terminal pressure of the pipe.
  • a pressure sensor is communicably connected to the fluid machine, and the fluid machine operates based on an input value from the terminal pressure, a terminal pressure sensor control operation, and a predetermined set pressure of the piping.
  • a terminal pressure prediction control operation at a pressure obtained by adding a difference based on a capacity and a pressure loss value of the pipe, and when the input from the terminal pressure sensor is interrupted or stopped, the terminal pressure sensor control operation is terminated. This is a configuration for switching to pressure prediction control operation.
  • a fluid machine including a fluid machine for pumping a fluid, a pipe connected to the fluid machine, a terminal load connected to the pipe, and a terminal pressure sensor for detecting a terminal pressure of the pipe.
  • a terminal pressure sensor communicatively connected to the fluid machine, wherein the fluid machine operates based on an input value from the terminal pressure; and It performs P control, PI control, or PID control in accordance with the set pressure, and performs P control from the terminal pressure sensor control operation when the input from the terminal pressure sensor is interrupted or stopped. , PI control or PID control.
  • a compressed gas having an appropriate terminal pressure can be supplied even if a communication failure from the terminal pressure sensor occurs.
  • FIG. 1 is a schematic diagram illustrating a configuration of an air compressor system according to a first embodiment to which the present invention is applied.
  • FIG. 2 is a schematic diagram illustrating a configuration of a constant speed compressor according to the first embodiment.
  • 1 is a schematic diagram illustrating a configuration of a variable speed compressor according to a first embodiment.
  • 5 is a flowchart for performing terminal pressure sensor control and terminal pressure prediction control according to the first embodiment.
  • 4 is a flowchart for performing communication failure determination control according to the first embodiment.
  • 4 is a flowchart for performing forced boost control according to the first embodiment.
  • 5 is a flowchart for performing terminal pressure prediction control according to the first embodiment. It is a flowchart which performs terminal pressure sensor control and terminal pressure prediction control by a modification.
  • 9 is a flowchart for performing terminal pressure sensor control and P / PI / PID control according to Embodiment 2 to which the present invention is applied.
  • FIG. 1 schematically shows a configuration of an air compressor system according to a first embodiment to which the present invention is applied.
  • the air compressor system is branched into a compressor 3 having a compressor body 1 and a pressure sensor P4 disposed on a discharge pipe, an air tank 4, an air filter 5, and each terminal device (load 7, 9, 11). And end pressure sensors 6, 8, and 10 disposed in each end pipe.
  • the compressed air discharged (pressurized) from the compressor 3 is sent to an air tank 4 installed on the downstream side of the compressor 3, and the air tank 4 stores the compressed air.
  • the compressed air stored in the air tank 4 is supplied to a load 7, a load 9, and a load 11, which are end devices that require the compressed air, via an air filter 5 installed downstream of the air tank 4.
  • FIG. 2 schematically shows the configuration of the compressor 3.
  • the compressor 3 includes a compressor body 1, a control device 13, a suction throttle valve 14, a suction filter 15, a part of a discharge air system 16 including a check valve 17, and a pressure sensor 2, a pipe 19, and a control valve 20, These are provided as a so-called package type compressor accommodated in a housing.
  • the compressor body 1 receives a driving force from a drive source (for example, an electric motor or an internal combustion engine), draws air from a suction side through a suction filter 15, and discharges compressed air to a discharge air system 16.
  • a check valve 17 is disposed in the discharge air system 16, and the pressure sensor 2 is disposed downstream of the check valve 17.
  • the pressure sensor 2 transmits the detected pressure value to the control device 13, and the control device 13 performs various operation controls.
  • a control valve 20 composed of an electromagnetic valve or the like is arranged in a pipe 19 branched from the discharge air system 16. The control valve 20 opens and closes the valve in response to a command from the control device 13 to permit and restrict the flow of compressed air in the pipe 19.
  • the suction throttle valve 14 is arranged further downstream of the pipe 19.
  • the suction throttle valve 14 is formed of a piston that opens and closes a suction path under the control pressure of compressed air. For example, when the consumption of the compressed air decreases, the suction throttle valve 14 is closed, and the no-load operation for reducing the power consumption is performed by restricting the flow of the atmosphere into the compressor body 1. ing.
  • the control device 13 has a configuration in which, for example, a control function unit is realized by cooperation between a CPU and a program (a part or the whole may be a control configuration using an analog circuit).
  • the control device performs operation control according to a predetermined set pressure.
  • the set pressure is a value set by, for example, a user operation or an externally designated input.
  • the control device 13 monitors the pressure values from the terminal pressure sensors 6, 8, and 10, and controls the operation based on this. That is, by setting a desired end pressure value on the end side as the set pressure, the controller 13 monitors the pressure values from the end pressure sensors 6, 8, and 10 and the set pressure (desired end pressure). Thus, compressed air at a desired end pressure can be supplied.
  • the configuration of the compressor 3 is a configuration of a constant speed machine, but the present invention can also be applied to a variable speed machine.
  • FIG. 3 schematically shows the configuration of the compressor 33 in the case of a variable speed machine.
  • the compressor 33 includes a compressor main body 22, an electric motor 23 for driving the compressor main body 22, an inverter 24 for variably controlling the number of revolutions of the electric motor 23, a control device 25 for controlling the inverter 24, and a compressor.
  • a suction throttle valve 26 provided on the suction side of the main body 22, a suction filter 27 provided upstream of the suction throttle valve 26 for removing dust and the like in the atmosphere, and connected to a discharge side of the compressor main body 22;
  • a discharge air system 28 that supplies compressed air discharged from the compressor body 22 to a supply destination is provided.
  • a check valve 29 and a pressure sensor 30 as means for detecting the discharge pressure of the compressor body 22 are disposed downstream of the check valve 29.
  • a pipe 31 is connected upstream of the check valve 29 of the discharge air system 28 for sucking a part of the compressed air discharged from the compressor body 22 and guiding it as operating air for the throttle valve 26.
  • the pipe 31 is provided with a control valve 32 that can be switched between a communication state and a cutoff state in accordance with a control signal from the control device 25. Then, for example, when the control valve 32 is switched from the shut-off state to the communicating state, the suction throttle valve 26 is driven to shut off the intake air of the compressor main body 22, and the compressor main body 22 is switched from the load operation to the no-load operation. It has become.
  • control device 25 performs operation control by monitoring the value of the terminal pressure sensor 6 and the like is the same as that of the compressor 3 shown in FIG.
  • control device 13 automatically switches to the terminal pressure prediction operation when the input from the terminal pressure sensors 6, 8, and 10 is interrupted or stopped.
  • a communication obstruction factor is, for example, a case where a large vehicle such as a truck or a shield such as a steel frame crosses a communication path, or a case where high heat is radiated from a high temperature body such as an electric furnace. I can give it.
  • control device 13 and the like switch from the operation based on the actually measured pressure of the terminal pressure sensor 6 and the like to the control of the terminal pressure prediction operation disclosed in Patent Document 1 and the like. As a result, it is possible to continuously provide the compressed air having the appropriate terminal pressure.
  • the communication obstruction factor may be temporary. Therefore, in the present embodiment, the control is switched to the terminal pressure prediction control after a predetermined time has elapsed since the communication from the terminal pressure sensor 6 or the like was interrupted. Alternatively, the control may be switched based on the number of communication interruptions during a predetermined time or the cumulative interruption time.
  • FIG. 4 shows a flow chart in which when communication between the compressor 3 and the like and the terminal pressure sensor 6 and the like is interrupted or cut off, the pressure is raised to the upper limit pressure and then the terminal pressure prediction control is performed. The following processing is performed by the control devices 13 and 25.
  • the discharge pressure of the compressor unit during operation is controlled with the terminal pressure sensor value as the target.
  • control device 13 or the like manages whether there is an input from the terminal pressure sensor 6 or the like under predetermined conditions. Then, in the process 36, if there is an input according to the condition, the process returns to the process 34 (NO). This “communication determination process” will be described later.
  • the upper limit pressure is a pressure higher than the pressure value in the terminal pressure sensor control, for example, a pressure lower than the security pressure of the compressor 3 or the like and higher than the detection pressure of the terminal pressure sensor 6 or the like.
  • the maximum pressure loss, the total pipe capacity, and the current predicted pressure loss required for the terminal pressure prediction control are calculated.
  • process 39 terminal pressure prediction control is performed based on the calculation result of process 38.
  • Steps 40 and 41 as in Steps 35 and 36, it is confirmed whether the value of the terminal pressure sensor has been normally obtained. If the value has been obtained normally, the process proceeds to Step 34 and the control is restarted. . If it has not been acquired normally, the process proceeds to step 38, and the terminal pressure prediction control is continued.
  • FIG. 5 is a flowchart showing the flow of the “communication determination process” in the process 35 of FIG.
  • processing 55 to 59 if the value of the terminal pressure sensor cannot be received for a certain period of time or more, the value of the terminal pressure sensor cannot be received intermittently, or if the obtained value of the terminal pressure sensor is abnormal, it is determined that a communication failure has occurred. If the value of the terminal pressure sensor has been received within a certain period of time, there is no intermittent reception of the terminal pressure sensor value, and if there is no abnormality in the obtained value of the terminal pressure sensor, the value of the terminal pressure sensor can be obtained normally. And the end pressure sensor communication determination process ends.
  • the terminal pressure sensor control is continued when the communication impeding factor generated on the communication path is extremely short-time and transient. It can be said that it is preferable in terms of equipment maintenance and system continuity.
  • FIG. 6 shows a flowchart for performing the “forced boost control” of the process 37 in FIG.
  • process 60 the discharge pressure of the compressor unit is compared with the upper limit pressure, and if the discharge pressure of the unit exceeds the upper limit pressure, the forced pressure increase control ends.
  • the discharge pressure of the unit is equal to or lower than the upper limit pressure
  • the process proceeds to step 61.
  • the compressor unit when the compressor unit is in the stopped or unloaded state, the operation is forcibly switched to the load operation, and the process proceeds to the process 60. If the road operation has already been performed, the road operation is continued, and the process proceeds to step S60.
  • the terminal pressure becomes unknown due to communication failure, the required terminal pressure is prevented from falling below a predetermined pressure by forcibly increasing the pressure to the upper limit pressure. For example, when a communication failure occurs, the amount of air used in each load 7 or the like may increase more than before. On the other hand, a desired pressure on the terminal side can be sufficiently secured. Furthermore, it can be said that it also contributes to securing the operation time and the like of the control devices 13 and 25 and the like necessary for the terminal pressure prediction control described below.
  • FIG. 7 shows a flowchart for performing the “end pressure prediction control” of FIG.
  • the process proceeds to the process 65. If the calculation of the maximum pressure loss required for the terminal pressure prediction control is not completed, The maximum pressure loss necessary for the terminal pressure prediction control is calculated from the trend data, and the process proceeds to step 65.
  • process 65 to 67 if the machine is not a constant speed machine or if the calculation of the total pipe capacity necessary for the terminal pressure prediction control of the constant speed machine has been completed, the process shifts to process 68, where the constant speed machine and the constant speed machine If the calculation of the total pipe capacity required for the terminal pressure prediction control has not been completed, the total pipe capacity required for the terminal pressure prediction control of the constant speed machine is calculated from the trend data, and the process proceeds to step 68. In the process 68, the pressure loss necessary for the terminal pressure prediction control is calculated, and the calculation for the terminal pressure prediction control ends. (Modification) In the processing shown in FIG. 4, an example has been described in which the "terminal pressure prediction control" is started after the input from the terminal pressure sensor 6 or the like is interrupted or stopped (communication failure). In some cases, the control cannot be switched immediately due to the need.
  • terminal pressure prediction control and “terminal pressure sensor control” are executed in parallel, and “terminal pressure prediction control” can be executed immediately upon occurrence of a communication failure. (Background running point of "end pressure prediction operation").
  • FIG. 8 is a flowchart of performing a calculation necessary for the terminal pressure prediction control in parallel with the terminal pressure sensor control in the modified example, and performing the terminal pressure prediction control when communication between the compressor unit and the terminal pressure sensor becomes impossible. Show.
  • process 50 the discharge pressure of the compressor unit during operation is controlled with the terminal pressure sensor value as the target.
  • process 51 the maximum pressure loss, the total pipe capacity, and the current predicted pressure loss required for the terminal pressure prediction control are calculated.
  • processes 52 to 54 it is confirmed whether or not the value of the terminal pressure sensor has been normally obtained. If the value has been obtained normally, the process proceeds to step 50, and the control of the terminal pressure sensor is continued. If the information has not been acquired normally, it is determined that there is a communication failure, and the processing shifts to processing 54, where terminal pressure prediction control is performed. Then, the processing shifts to processing 51, where necessary calculations for the end pressure prediction control are performed, and it is confirmed whether or not the value of the end pressure sensor has been normally obtained. Restart to sensor control. If it has not been acquired normally, the process proceeds to step 54, and the terminal pressure prediction control is continued.
  • the reception interval from the terminal pressure sensor 6 or the like or the number of undiagnosis during the predetermined time interval is used as the failure occurrence condition. It is possible to execute stable control that does not immediately respond to occurrence of a communication failure factor.
  • the forced pressure-up operation is performed up to the upper limit pressure, so that it is possible to guarantee a certain pressure with respect to the terminal pressure from the occurrence of the failure to the switching of control and the return to the operation.
  • the “end pressure prediction control” after the occurrence of the communication failure also continues to check the communication state of the end pressure sensor 6 and the like, and switches to the “end pressure sensor control” when recovery is performed.
  • the reliability as a compressor system provided with backup control based on operation control based on the system is improved.
  • the configuration is switched to the “terminal pressure prediction operation control”.
  • the “P / PI / PID control” is replaced with the “P / PI / PID control”. It is a configuration example of switching.
  • FIG. 9 shows a flowchart of performing P / PI / PID control targeting a specific pressure value when communication between the compressor 33 and the terminal pressure sensor 6 or the like in the second embodiment becomes impossible.
  • any of P control, PI control, and PID control will be described.
  • process 46 the discharge pressure of the compressor unit during operation is controlled with the terminal pressure sensor value as the target. .
  • processes 47 to 49 it is confirmed whether or not the value of the terminal pressure sensor has been normally obtained. If the value has been obtained normally, the process proceeds to step 46, and the control of the terminal pressure sensor is continued.
  • step 49 the pressure sensor value of the compressor unit is input in advance as a fixed value, a target terminal pressure value immediately before the communication failure, or a communication failure.
  • the P / PI / PID control is performed so as to be one of the values obtained by adding the correction ground to the immediately preceding target terminal pressure.
  • the processing shifts to steps 47 to 49 to check whether the value of the terminal pressure sensor has been normally obtained. If the value has been obtained normally, the processing shifts to step 46, and control is performed with the terminal pressure sensor value as a target. If the data has not been acquired normally, it is determined that there is a communication failure, and the process shifts to step 49 to continue the P / PI / PID control.
  • the second embodiment it is possible to continuously operate the compressor system based on a specific set pressure with respect to a communication failure of the terminal pressure sensor 6 or the like.
  • the terminal pressure sensor 6 and the like are not limited to those arranged upstream near each load, and may be based on an intermediate terminal pressure such as upstream of a branch pipe.
  • the above control may be performed when all of the plurality of terminal pressure sensors arranged on the pipe have a communication failure, or the above control may be performed when some of the terminal pressure sensors have a communication failure.
  • the compressor is taken as an example, but the present invention can also be applied to a pump device that pumps fluid. Further, various types of compressors such as a turbo type and a displacement type can be applied. Further, the compressor is not limited to air, and may be a compressor that compresses other gases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

流体を圧送する流体機械と、前記流体機械に接続する配管と、前記配管に接続する末端負荷と、前記配管の末端圧力を検出する末端圧力センサとを備える流体機械システムであって、前記末端圧力センサが、前記流体機械と通信可能に接続するものであり、前記流体機械が、前記末端圧力からの入力値に基づいて運転する末端圧力センサ制御運転と、所定の設定圧力に、前記配管の容量及び該配管の圧損値に基づく差分を加えた圧力での末端圧力予測制御運転とを行うものであり、前記末端圧力センサからの入力が中断又は停止したときに、末端圧力センサ制御運転から末端圧力予測制御運転に切り替えるものである。

Description

流体機械システム及び流体機械
 本発明は流体機械システム及び流体機械に関し、外部配管経路上の圧力値に基づいて運転制御を行う流体機械システム及び流体機械に関する。
 流体機械としては圧縮機やポンプ装置を始め種々のものが知られている。例えば、空気といった種々の気体を圧縮する圧縮機を例にすれば、吐き出された圧縮気体はリザーバタンクに貯留され、リザーバタンクから施設配管等を介して各末端(負荷)に供給される。圧縮気体の圧力は、各末端での圧縮気体の仕様状況や施設配管等の膨張により圧損が生ずる。
 このような圧損等に対して各末端で所望の圧力を得る技術として、施設配管途中等に配置する圧力センサ値の入力に基づいて、気体圧縮機の駆動を制御する技術や、特許文献1から4に開示するように、施設配管途中等に圧力センサを設置することなしに、気体圧縮機が吐出圧力の変動から各末端での圧力を予測して駆動を制御する技術が知られている。
特許4425768号 特許4756081号 特許4786443号 特許5091787号
 ここで、施設配管途中に配置する末端圧力センサからの入力に基づいて流体機械の駆動制御をする構成について考える。圧力センサは、流体機械と、有線又は無線で通信可能に接続される。有線であれば断線等、無線であれば通信障害により、流体機械に末端圧値の入力が中断する場合も考えられる。特に、無線の場合、通信経路上の環境(高温や高湿等)の影響を受けやすく、中断が発生しやすい傾向にあるとも云える。通信の停止や中断は、流体機械の駆動に影響を及ぼし、所望の末端圧を確保することができない虞がある。
 このような課題に対し、例えば以下の構成を適用する。即ち流体を圧送する流体機械と、前記流体機械に接続する配管と、前記配管に接続する末端負荷と、前記配管の末端圧力を検出する末端圧力センサとを備える流体機械システムであって、前記末端圧力センサが、前記流体機械と通信可能に接続するものであり、前記流体機械が、前記末端圧力からの入力値に基づいて運転する末端圧力センサ制御運転と、所定の設定圧力に、前記配管の容量及び該配管の圧損値に基づく差分を加えた圧力での末端圧力予測制御運転とを行うものであり、前記末端圧力センサからの入力が中断又は停止したときに、末端圧力センサ制御運転から末端圧力予測制御運転に切り替える構成である。
 また、他の態様としては、流体を圧送する流体機械と、前記流体機械に接続する配管と、前記配管に接続する末端負荷と、前記配管の末端圧力を検出する末端圧力センサとを備える流体機械システムであって、前記末端圧力センサが、前記流体機械と通信可能に接続するものであり、前記流体機械が、前記末端圧力からの入力値に基づいて運転する末端圧力センサ制御運転と、所定の設定圧力に応じたP制御、PI制御又はPID制御のいずれかでの運転制御とを行うものであり、前記末端圧力センサからの入力が中断又は停止したときに、末端圧力センサ制御運転からP制御、PI制御又はPID制御のいずれかに切り替える構成である。
 本発明によれば、末端圧力センサからの通信障害が生じても、適正な末端圧力の圧縮気体を供給することができる。
 本発明の他の課題、構成、効果は以下の記載から明らかになる。
本発明を適用した実施例1による空気圧縮機システムの構成を示す模式図である。 実施例1による、一定速圧縮機の構成を示す模式図である。 実施例1による、可変速圧縮機の構成を示す模式図である。 実施例1による、末端圧力センサ制御及び末端圧力予測制御を行うフローチャートである。 実施例1による、通信障害判定制御を行うフローチャートである。 実施例1による、強制昇圧制御を行うフローチャートである。 実施例1による、末端圧力予測制御を行うフローチャートである。 変形例による、末端圧力センサ制御及び末端圧力予測制御を行うフローチャートである。 本発明を適用した実施例2による末端圧力センサ制御及びP/PI/ PID制御を行うフローチャートである。
 以下、図面を用いて、本発明を実施するための形態について説明する。
 図1に、本発明を適用した実施例1による空気圧縮機システムの構成を模式的に示す。空気圧縮機システムは、圧縮機本体1及び吐出管路上に配置する圧力センサP4を備える圧縮機3と、空気槽4と、エアフィルタ5と、各末端機器(負荷7・9・11)に分岐する末端配管と、各末端配管に配置する末端圧力センサ6、8、10とを備える。
 圧縮機3より吐き出された(圧送された)圧縮空気は、圧縮機3の下流側に設置された空気槽4に送られ、空気槽4は圧縮空気を貯留する。空気槽4が貯留した圧縮空気は、空気槽4の下流側に設置されたエアフィルタ5を介して、圧縮空気を必要とする末端装置である負荷7、負荷9、負荷11に供給される。負荷7、負荷9、負荷11に接続する各末端配管上に配置する末端圧力センサ6、8、10は、検出した圧力を所定時間間隔で圧縮機3に送信するようになっている。
 図2に圧縮機3の構成を模式的に示す。圧縮機3は、圧縮機本体1、制御装置13、吸込み絞り弁14、吸込みフィルタ15、逆止弁17、圧力センサ2を含む吐出空気系統16の一部、配管19及び制御弁20を備え、これらが筐体内に収容された所謂パッケージ型圧縮機として提供される。
 圧縮機本体1は、駆動源(例えば、電動機や内燃機関等)から駆動力を受け、吸込側から吸込みフィルタ15を介して空気を吸気し、圧縮空気を吐出空気系統16に吐き出す。吐出空気系統16には逆止弁17を配置し、その下流に圧力センサ2を配置する。圧力センサ2は、検出した圧力値を制御装置13に送信し、制御装置13が種々の運転制御をするようになっている。吐出空気系統16から分岐する配管19には、電磁弁などからなる制御弁20を配置する。制御弁20は、制御装置13からの指令に応じて弁の開閉を行い、配管19における圧縮空気の流通を許可・制限するようになっている。
 配管19の更に下流には、吸込み絞り弁14を配置する。吸込み絞り弁14は、圧縮空気による制御圧力によって、吸込経路の開閉動作を行うピストンからなる。例えば、圧縮空気の消費量が減少したときに、吸込み絞り弁14を閉弁し、圧縮機本体1への大気の流入を制限することで動力消費を低減する無負荷運転を実行するようになっている。
 制御装置13は、例えば、CPUとプログラムとの協働によって制御機能部が実現される構成である(一部又は全部がアナログ回路による制御構成であってもよい。)。制御装置は、所定の設定圧力に応じて運転制御を行う。本実施例において、設定圧力は例えばユーザ操作や外部からの入力指定によって設定される値である。制御装置13は、末端圧力センサ6、8、10からの圧力値を監視し、これに基づいて運転を制御する。即ち設定圧力として、末端側で所望する末端圧力値を設定することで、制御装置13は、末端圧力センサ6、8、10からの圧力値と、設定圧力(所望の末端圧力)とを監視することで、所望する末端圧力の圧縮空気を供給することができるようになっている。
 上記圧縮機3の構成は、一定速機の構成であるが、本発明は可変速機に適用することもできる。図3に可変速機の場合における圧縮機33の構成について模式的に示す。圧縮機33は、圧縮機本体22と、この圧縮機本体22を駆動する電動機23と、この電動機23の回転数を可変制御するインバータ24と、このインバータ24を制御する制御装置25と、圧縮機本体22の吸込み側に設けた吸込み絞り弁26と、この吸込み絞り弁26の上流側に設けられた大気中の粉塵等を除去する吸込みフィルタ27と、圧縮機本体22の吐出側に接続され、圧縮機本体22から吐出された圧縮空気を供給先に供給する吐出空気系統28を備える。
 吐出空気系統28には、逆止弁29と、この逆止弁29の下流側に、圧縮機本体22の吐出圧力を検出する手段として圧力センサ30を配置する。また、吐出空気系統28の逆止弁29の上流側には、圧縮機本体22から吐出された圧縮空気の一部を吸込み絞り弁26の操作用空気として導くための配管31が接続されており、この配管31には制御装置25から制御信号に応じて連通・遮断状態に切替え可能な制御弁32が設けられている。そして、例えば制御弁32が遮断状態から連通状態に切り換えられた場合は、吸込み絞り弁26が駆動して圧縮機本体22の吸気を遮断し、圧縮機本体22を負荷運転から無負荷運転に切り換えるようになっている。
 なお、制御装置25が末端圧力センサ6等の値を監視して運転制御を行う構成は、図2に示す圧縮機3と同様である。
 次いで、本実施例の特徴の1つとして、制御装置13が末端圧力センサ6、8、10からの入力が中断又は停止した場合には、自動的に末端圧予測運転に切り替える制御について説明する。
 例えば、末端圧センサの電断や故障、有線の場合の通信線の切断を始め、圧縮機システムが工場の構内に設置されている場合に、末端圧力センサ6、8、10の全て又は一部と圧縮機3との通信経路上に、通信の阻害要因となる事象が発生すれば、圧縮機3は末端圧力の実測値を知ることができない。通信阻害要因とは、無線通信の場合であれば、通信経路上にトラック等の大型の車両や鉄骨等の遮蔽物が横断したり、電気炉等の高温体から高熱が放射される場合等があげられよう。
 このような場合には、制御装置13等は、末端圧力センサ6等の実測圧力に基づく運転から、特許文献1等に開示される末端圧力予測運転の制御に切り替えるようになっている。これにより、適正な末端圧力となる圧縮空気を提供し続けることができる。
 なお、通信阻害要因は、一時的場合もある。そこで、本実施例では、末端圧力センサ6等からの通信が中断してから所定の時間の経過をもって末端圧予測制御に切り替えるようになっている。あるいは、所定時間における通信中断の回数や累積中断時間に基づいて制御を切り替えるようにしてもよい。
 以上の構成において、圧縮機3等が行う制御の流れを説明する。
 図4に、圧縮機3等と末端圧力センサ6等の通信が中断乃至切断した際に、上限圧力まで昇圧してから末端圧力予測制御を行うフローチャートを示す。なお、以下の処理は制御装置13や25によって行われる。
 処理34で、運転時における圧縮機ユニットの吐出圧力は末端圧力センサ値を目標に制御する。
 処理35で、制御装置13等は、所定の条件で末端圧力センサ6等から入力があるかを管理する。そして、処理36で、条件通りの入力があれば処理34に戻り(NO)、条件に合う入力がない場合には通信障害発生とみなして処理37に進む(YES)。この「通信判定処理」については後述する。
 処理37では、末端の空気圧力が降圧しないように圧縮機ユニットが持つ圧力センサ値が上限圧力となるまで負荷運転を行い昇圧させる「強制昇圧制御」を実行する。上限圧力とは、末端圧力センサ制御における圧力値よりも高い圧力であり、例えば圧縮機3等の保安圧力よりも低く、末端圧力センサ6等の検出圧力よりも高い圧力である。
 処理38では、末端圧力予測制御に必要な最大圧力損失、全配管容量、現在予測圧力損失の演算を行う。
 処理39では、処理38の演算結果を元に末端圧力予測制御を行う。
 処理40、41では、処理35、36と同様に、末端圧力センサの値が正常に取得できているか確認し、正常に取得できている場合は処理34へ移行し、末端圧力センサ制御に再開する。正常に取得できていない場合は、処理38へ移行し、末端圧力予測制御を継続する。
 次いで図5に、図4の処理35における「通信判定処理」の流れを示すフローチャートである。
 処理55~59では、一定時間以上末端圧力センサの値を受信できない、断続的に末端圧力センサの値が受信できないまたは、取得した末端圧力センサの値に異常がある場合は、通信障害発生とし、一定時間以内に末端圧力センサの値を受信できており、断続的な末端圧力センサ値未受信が無く、取得した末端圧力センサの値に異常が無い場合は末端圧力センサの値を正常に取得できているとし、末端圧力センサ通信判定処理を終了する。
 このように、入力時間や未受診回数等の条件を考慮することは、通信経路上に発生した通信阻害要因が極短時間且つ一過性のものである場合に、末端圧力センサ制御を継続する方が機器保守やシステムの運転継続性の上でも好ましいともいえる。
 図6に、図4の処理37の「強制昇圧制御」を行うフローチャートを表している。
処理60では、圧縮機ユニットの吐出圧力と上限圧力を比較し、ユニットの吐出圧力が上限圧力を超えた場合は強制昇圧制御を終了する。ユニットの吐出圧力が上限圧力以下の場合は処理61へ移行する。処理61、62では、圧縮機ユニットが停止またはアンロード状態の場合は、強制的にロード運転に切替え、処理60へ移行する。既にロード運転をしている場合は、ロード運転を継続し、処理60へ移行する。
 通信障害によって末端圧力が不明となるため、強制的に上限圧まで昇圧させることで、必要とする末端圧力が所定圧力より下がらないようにするためである。例えば、通信障害が発生した場合、各負荷7等での空気使用量がその前よりも増加する場合もある。これに対して所望する末端側での圧力を十分に確保することができる。更には、以下で説明する末端圧力予測制御に必要な制御装置13、25等の演算時間等を確保することにも寄与するともいえる。
 図7に、図4の「末端圧力予測制御」を行うフローチャートを示す。
  処理63、64では、末端圧力予測制御に必要な最大圧力損失の算出が完了していれば処理65へ移行し、末端圧力予測制御に必要な最大圧力損失の算出が完了していない場合は、トレンドデータより末端圧力予測制御に必要な最大圧力損失を算出し、処理65へ移行する。処理65~67では、一定速機でないまたは、一定速機の末端圧力予測制御に必要な全配管容量の算出が完了していれば、処理68へ移行し、一定速機かつ、一定速機の末端圧力予測制御に必要な全配管容量の算出が完了していない場合は、トレンドデータより一定速機の末端圧力予測制御に必要な全配管容量を算出し、処理68へ移行する。処理68では末端圧力予測制御に必要な圧力損失の演算を行い、末端圧力予測制御用演算を終了する。
 〔変形例〕
 上記図4に示す処理では、末端圧力センサ6等からの入力が中断・停止(通信障害)してから「末端圧予測制御」を開始する例について説明したが、制御の切り替えは種々プログラムの起動等の必要からすぐに制御切替ができない場合もある。
 そこで、変形例として、「末端圧予測制御」と「末端圧力センサ制御」とを並列で実行し、通信障害の発生を契機にすぐに「末端圧予測制御」を実行可能とする構成としてもよい(「末端圧予測運転」のバックグラウンド運点)。
 図8に、変形例における末端圧力センサ制御と同時に末端圧力予測制御に必要な演算を並列に行い、圧縮機ユニットと末端圧力センサの通信ができなくなった際に、末端圧力予測制御を行うフローチャートを示す。
 処理50では、運転時における圧縮機ユニットの吐出圧力は末端圧力センサ値を目標に制御する。処理51では、末端圧力予測制御に必要な最大圧力損失、全配管容量、現在予測圧力損失の演算を行う。処理52~54では末端圧力センサの値が正常に取得できているか確認し、正常に取得できている場合は処理50へ移行し、末端圧力センサ制御を継続する。正常に取得できていない場合は、通信障害ありとして、処理54へ移行し、末端圧力予測制御を行う。そして、処理51に移行し、末端圧力予測制御に必要な演算を行い、末端圧力センサの値が正常に取得できているか確認し、正常に取得できている場合は処理50へ移行し、末端圧力センサ制御に再開する。正常に取得できていない場合は、処理54へ移行し、末端圧力予測制御を継続する。
 このように、実施例1及び変形例によれば、末端圧力センサ6等の通信障害が発生しても、末端圧力の降圧を抑制した継続的な運転が可能となる。
 また、上記例では、通信障害の判定において、末端圧力センサ6等からの受信間隔や所定時間間隔中での未受診回数等を障害発生の条件とすることから、瞬間的や一過性のある通信障害要因が発生に対して即応しない安定的な制御を実行することができる。
 また、上記例では、通信障害発生時に、上限圧力まで強制昇圧運転をすることから、障害発生から制御の切替及びその運転復帰までの末端圧力に対して一定の圧力保障をすることができる。
 また、上記例では通信障害発生後の「末端圧力予測制御」実行も、末端圧力センサ6等の通信状態を確認し続け、回復となったときに「末端圧力センサ制御」に切り替えるため、実測圧力に基づく運転制御を基調としたバックアップ制御を備える圧縮機システムとしての信頼性が向上する。
 実施例1等では、末端圧力センサ6等との通信障害時に、「末端圧予測運転制御」に切り替える構成であったが、実施例2は、これに変えて「P/PI/PID制御」に切り替える構成例である。
 図9に、実施例2における圧縮機33と末端圧力センサ6等の通信ができなくなった際に、特定の圧力値を目標にP/PI/PID制御を行うフローチャートを示す。なお、本実施例では、P制御、PI制御、PID制御のいずれかの制御を適用できるものとして説明する
 処理46では、運転時における圧縮機ユニットの吐出圧力は末端圧力センサ値を目標に制御する。処理47~49では、末端圧力センサの値が正常に取得できているか確認し、正常に取得できている場合は処理46へ移行し、末端圧力センサ制御を継続する。正常に取得できていない場合は、通信障害ありとして、処理49へ移行し、圧縮機ユニットが持つ圧力センサ値が予め入力されている固定値、通信障害直前の目標末端圧力値、または、通信障害直前の目標末端圧力に補正地を加えた値のいずれかになるようにP/PI/PID制御を行う。
 そして、処理47~49に移行し、末端圧力センサの値が正常に取得できているか確認し、正常に取得できている場合は処理46へ移行し、末端圧力センサ値を目標に制御を行う。正常に取得できていない場合は、通信障害ありとして、処理49へ移行し、P/PI/PID制御を継続する。
 実施例2によれば、末端圧力センサ6等の通信障害に対して、特定の設定圧力に基づく圧縮機システムの継続的運転が可能である。
 なお、「末端圧力センサ制御」から「P/PI/PID制御」に切り替える際、実施例1の処理37「強制昇圧運転」を実行してもよい。また、実施例1の変形例と同様に、「P/PI/PID制御」を「末端圧力センサ制御」のバックグラウンドとして運転しておき、通信障害発生時に制御をすぐに切り替えるようにしてもよい。
 以上、本発明を実施するための実施例について説明したが、本発明は上記種々の例に限定されるものではなく、その趣旨に反しない範囲で種々の変更・置換が可能である。例えば、末端圧力センサ6等は、各負荷の近傍上流に配置するものに限らず、分岐配管の上流など中間末端圧力を基準としてもよい。
 また、配管上に配置された複数の末端圧力センサの全てが通信障害となった場合に上記制御を行ってもよいし、一部が通信障害となった場合に上記制御を行うようにしてもよい。
 また、上記例では圧縮機を例としたが、流体を圧送するポンプ装置などにも適用することができる。また、圧縮機の形式はターボ型や容積型など種々のものを適用できるものである。また、圧縮機は空気に限らず他の気体を圧縮するものであってもよい。
1・22…圧縮機本体、空気槽…4、エアフィルタ…5、6・8・10…末端圧力センサ、7・9・11…負荷、13…制御装置、14・26…吸込み絞り弁、15・27…吸込みフィルタ、16・28…吐出空気系統、17・29…逆止弁、18・30…圧力センサ、19…配管、20…制御弁、23…電動機、24…インバータ、31…配管、32…制御弁、33…圧縮機

Claims (14)

  1.  流体を圧送する流体機械と、前記流体機械に接続する配管と、前記配管に接続する末端負荷と、前記配管の末端圧力を検出する末端圧力センサとを備える流体機械システムであって、
     前記末端圧力センサが、前記流体機械と通信可能に接続するものであり、
     前記流体機械が、前記末端圧力からの入力値に基づいて運転する末端圧力センサ制御運転と、
     所定の設定圧力に、前記配管の容量及び該配管の圧損値に基づく差分を加えた圧力での末端圧力予測制御運転とを行うものであり、
     前記末端圧力センサからの入力が中断又は停止したときに、末端圧力センサ制御運転から末端圧力予測制御運転に切り替えるものである流体機械システム。
  2.  請求項1に記載の流体機械システムであって、
     前記流体機械が、
     前記末端圧力センサ制御運転から末端圧力予測制御運転に切り替えるまえに、前記末端圧力及び前記所定の設定圧力よりも高い圧力まで昇圧運転するものである流体機械システム。
  3.  請求項1に記載の流体機械システムであって、
     前記末端圧力センサからの受信が所定時間無い場合及び所定時間間隔中で未受診の回数が一定回数を上回る場合の少なくとも1つのとき、前記末端圧力センサからの入力が中断又は停止したとするものである流体機械システム。
  4.  請求項1に記載の流体機械システムであって、
     前記流体機械が圧縮機又はポンプである流体機械システム。
  5.  流体を圧送する流体機械と、前記流体機械に接続する配管と、前記配管に接続する末端負荷と、前記配管の末端圧力を検出する末端圧力センサとを備える流体機械システムであって、
     前記末端圧力センサが、前記流体機械と通信可能に接続するものであり、
     前記流体機械が、前記末端圧力からの入力値に基づいて運転する末端圧力センサ制御運転と、
     所定の設定圧力に応じたP制御、PI制御又はPID制御のいずれかでの運転制御とを行うものであり、
     前記末端圧力センサからの入力が中断又は停止したときに、末端圧力センサ制御運転からP制御、PI制御又はPID制御のいずれかに切り替えるものである流体機械システム。
  6.  請求項5に記載の流体機械システムであって、
     前記流体機械が、
     前記末端圧力センサ制御運転からP制御、PI制御又はPID制御のいずれかに切り替える前に、前記末端圧力及び前記所定の設定圧力よりも高い圧力まで昇圧運転するものである流体機械システム。
  7.  請求項5に記載の流体機械システムであって、
     前記末端圧力センサからの受信が所定時間無い場合及び所定時間間隔中で未受診の回数が一定回数を上回る場合の少なくとも1つのとき、前記末端圧力センサからの入力が中断又は停止したとするものである流体機械システム。
  8.  請求項5に記載の流体機械システムであって、
     前記流体機械が圧縮機又はポンプである流体機械システム。
  9.  流体を圧送する流体機械本体と、流体機械の外部に圧送された流体が流通する配管に配置して該配管の末端圧力を検出する末端圧力センサからの圧力値を有線又は無線で受信する制御装置とを備える流体機械であって、
     前記制御装置が、
     前記末端圧力からの入力値に基づいて運転する末端圧力センサ制御運転と、
     該制御装置に予め設定された所定の設定圧力又は該制御装置が記憶する既知の値及所定の演算によって得られた演算圧力に基づいて運転するいずれかの制御運転とを行うものであり、
     前記末端圧力センサからの入力が中断又は停止したときに、末端圧力センサ制御運転から前記いずれかの制御運転の1つに切り替えるものである流体機械。
  10.  請求項9に記載の流体機械であって、
     該制御装置に予め設定された所定の設定圧力に基づく制御運転が、P制御、PI制御又はPID制御のいずれかの運転制御を含むものである流体機械。
  11.  請求項9に記載の流体機械であって、
     該制御装置が記憶する既知の値及所定の演算によって得られた演算圧力に基づく運転が、前記所定の圧力に、前記配管の容量及び該配管の圧損値に基づく差分を加えた圧力での末端圧力予測制御運転である流体機械。
  12.  請求項9に記載の流体機械であって、
     前記制御装置が、
     前記末端圧力センサ制御運転から前記いずれかの制御運転に切り替える前に、前記末端圧力、前記所定の設定圧力及び前記演算圧力よりも高い圧力まで昇圧運転するものである流体機械。
  13.  請求項9に記載の流体機械であって、
     前記末端圧力センサからの受信が所定時間無い場合及び所定時間間隔中で未受診の回数が一定回数を上回る場合の少なくとも1つのとき、前記末端圧力センサからの入力が中断又は停止したとするものである流体機械。
  14.  請求項9に記載の流体機械であって、
     前記流体機械が圧縮機又はポンプである流体機械。
PCT/JP2019/029194 2018-09-21 2019-07-25 流体機械システム及び流体機械 WO2020059293A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980054966.4A CN112585355B (zh) 2018-09-21 2019-07-25 流体机械系统和流体机械
JP2020548059A JP7052063B2 (ja) 2018-09-21 2019-07-25 流体機械システム及び流体機械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018176791 2018-09-21
JP2018-176791 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020059293A1 true WO2020059293A1 (ja) 2020-03-26

Family

ID=69888713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029194 WO2020059293A1 (ja) 2018-09-21 2019-07-25 流体機械システム及び流体機械

Country Status (4)

Country Link
JP (1) JP7052063B2 (ja)
CN (1) CN112585355B (ja)
TW (1) TWI734160B (ja)
WO (1) WO2020059293A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767693B (zh) * 2021-05-10 2022-06-11 復盛股份有限公司 流體機械及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161337A (ja) * 2004-12-03 2006-06-22 Ebara Corp 圧力タンクの異常検知方法および給水装置
JP2014101854A (ja) * 2012-11-22 2014-06-05 Azbil Corp 圧縮空気計測システム
JP2017141771A (ja) * 2016-02-12 2017-08-17 株式会社荏原製作所 給水装置、及び、給水装置の制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108355194B (zh) * 2006-02-09 2021-02-12 德卡产品有限公司 用于分配流体的设备
CN101649631B (zh) * 2009-09-09 2011-06-22 中国石油化工集团公司 压力信号有线远传变频供水系统
JP2012154286A (ja) * 2011-01-28 2012-08-16 Hitachi Industrial Equipment Systems Co Ltd 給水装置
CN103362178B (zh) * 2012-04-09 2015-03-18 株式会社日立产机系统 供水系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161337A (ja) * 2004-12-03 2006-06-22 Ebara Corp 圧力タンクの異常検知方法および給水装置
JP2014101854A (ja) * 2012-11-22 2014-06-05 Azbil Corp 圧縮空気計測システム
JP2017141771A (ja) * 2016-02-12 2017-08-17 株式会社荏原製作所 給水装置、及び、給水装置の制御方法

Also Published As

Publication number Publication date
JPWO2020059293A1 (ja) 2021-08-30
CN112585355A (zh) 2021-03-30
JP7052063B2 (ja) 2022-04-11
TWI734160B (zh) 2021-07-21
CN112585355B (zh) 2022-12-02
TW202012790A (zh) 2020-04-01

Similar Documents

Publication Publication Date Title
JP4786443B2 (ja) 圧縮空気製造設備
JP2754079B2 (ja) コンプレッサシステムの制御方法及び制御装置
RU2454570C2 (ru) Усовершенствования в регулировании компрессоров
US20090151369A1 (en) Malfunction detection for fan or pump refrigerant system
EP3500757A1 (en) A method for controlling the outlet temperature of an oil injected compressor or vacuum pump and oil injected compressor or vacuum pump implementing such method
WO2018033827A1 (en) A method for controlling the outlet temperature of an oil injected compressor or vacuum pump and oil injected compressor or vacuum pump implementing such method
WO2021084821A1 (ja) 圧縮機、監視システム、及び圧縮機の監視方法
WO2020059293A1 (ja) 流体機械システム及び流体機械
CN111828362A (zh) 真空泵系统
JP2012052444A (ja) 給水装置
JP2012097618A (ja) 圧縮装置及びその運転制御方法
JP6997648B2 (ja) 圧縮機システム
CN108386974B (zh) 风冷磁悬浮空调机组及其控制方法
CN110709607B (zh) 用于监视泵送装置的运转状态的方法
KR102537407B1 (ko) 진공펌프용 스마트 인공지능 모듈
CN115704601A (zh) 空调器的控制方法、空调器、电子设备、存储介质
JP2007232321A (ja) 空気調和機
JP4351623B2 (ja) 圧縮機設備およびその制御方法
JP2007327368A (ja) 自動給水装置のポンプ渇水保護装置
CN112594186B (zh) 一种无油螺杆压缩机智能控制系统及控制方法
JP4399655B2 (ja) 圧縮空気製造設備
US20220252065A1 (en) Fluid Machine Device
CZ2002425A3 (cs) Regulační zařízení pro elektrický motor s proměnnými otáčkami a způsob jeho provozu
JPH09195982A (ja) 遠心圧縮機の保護方法
JP4693502B2 (ja) 冷凍装置の運転制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861490

Country of ref document: EP

Kind code of ref document: A1