WO2020059100A1 - Measuring device and measuring method - Google Patents

Measuring device and measuring method Download PDF

Info

Publication number
WO2020059100A1
WO2020059100A1 PCT/JP2018/034955 JP2018034955W WO2020059100A1 WO 2020059100 A1 WO2020059100 A1 WO 2020059100A1 JP 2018034955 W JP2018034955 W JP 2018034955W WO 2020059100 A1 WO2020059100 A1 WO 2020059100A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
measured
concentration
pressure
cell
Prior art date
Application number
PCT/JP2018/034955
Other languages
French (fr)
Japanese (ja)
Inventor
修一 山田
将徳 中野
亮介 辻尾
Original Assignee
大塚電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚電子株式会社 filed Critical 大塚電子株式会社
Priority to JP2020547562A priority Critical patent/JP7108327B2/en
Priority to PCT/JP2018/034955 priority patent/WO2020059100A1/en
Publication of WO2020059100A1 publication Critical patent/WO2020059100A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the present technology relates to a measuring device and a measuring method for measuring a concentration ratio of two kinds of component gases of a first gas to be measured and a second gas to be measured.
  • measuring devices that use infrared detectors for diagnosing diseases have been developed.
  • the measuring device diagnoses a disease or the like based on a concentration ratio of two types of component gases contained in a gas to be measured (expired gas of the subject) from a living body (a subject).
  • the two component gases have an isotope relationship with each other.
  • the measurement device is configured to measure the concentration ratio of two types of component gases contained in the first measured gas before administering the drug to the living body, and the concentration ratio between the two component gases contained in the first measuring gas after administering the drug to the living body.
  • the concentration ratio of the two kinds of component gases contained is measured.
  • the measuring device causes the first gas to be measured to be accommodated in the cell and the second gas to be measured to be accommodated in the cell.
  • the measuring device is configured to determine a concentration ratio between two kinds of component gases contained in the first gas to be measured contained in the cell and a concentration ratio of two kinds of component gases contained in the second gas to be measured contained in the cell. Based on this, a diagnosis of a disease or the like is made.
  • Patent Literature 1 proposes a technique in which a measuring device pumps a gas to be measured into a cell and pressurizes the gas to be measured in the cell in order to improve the accuracy of measuring the concentration ratio of the component gas. I have. Further, in Patent Document 2, in order to improve the accuracy of measuring the concentration ratio of the component gas, the measuring device sets the concentration of the component gas to be the same in the first gas to be measured and the second gas to be measured in the cell. As such, it has been proposed to dilute the measured gas having a higher component gas concentration with the outside air.
  • the present technology aims to provide a measuring device and a measuring method that improve the accuracy of measuring the concentration ratio of component gases.
  • a measuring device includes a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, and measures the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell.
  • a measuring device for measuring the concentrations of the two types of component gases of the gas to be measured in the cell on the basis of the absorbance, wherein the first gas and the second gas to be measured are collected as the gas to be measured.
  • a first measuring unit that measures the concentration of the component gas
  • a second measuring unit that measures the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas that are measured by the first measuring unit.
  • a concentration adjusting section for adjusting the concentration of at least one of the component gas of the first measurement gas and the second measurement gas, and a first measurement gas and a second measurement gas which have been adjusted by the concentration adjustment section are accommodated.
  • At least one of the first gas to be measured and the second gas to be measured based on the pressure difference to be applied and the concentration difference between the component gases of the first gas to be measured and the second gas to be measured measured by the first measuring unit.
  • a pressure compensating section for compensating the pressure in the pressurizing section, and a second compensating section for measuring the concentration ratios of the two types of component gases with respect to each of the first gas to be measured and the second gas to be measured after being corrected by the pressure compensating section And two measuring units.
  • a measuring device includes a cell containing a gas to be measured containing two kinds of component gases having an isotope relationship with each other, and measures the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell.
  • a measuring device for measuring the concentrations of the two types of component gases of the gas to be measured in the cell on the basis of the absorbance, wherein the first gas and the second gas to be measured are collected as the gas to be measured.
  • a first measuring unit that measures the concentration of the component gas
  • a second measuring unit that measures the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas that are measured by the first measuring unit.
  • a concentration adjusting section for adjusting the concentration of at least one of the component gas of the first measurement gas and the second measurement gas, and a first measurement gas and a second measurement gas which have been adjusted by the concentration adjustment section are accommodated.
  • Predetermined force in a closed cell A pressurizing unit for pressurizing, and a pressure for measuring a pressure value of a gas to be measured having a higher concentration of at least a component gas among the first gas to be measured and the second gas to be measured in the cell pressurized by the pressurizing unit.
  • a measuring unit based on a pressure difference between the first gas to be measured and the second gas to be measured measured by the pressure measuring unit, at least one of the first gas to be measured and the second gas to be measured;
  • a pressure correction unit for correcting the pressure;
  • a second measurement unit for measuring the concentration ratio of the two types of component gases with respect to each of the first measured gas and the second measured gas that have been corrected by the pressure correction unit.
  • the pressure correction unit is configured such that a higher pressure value of the pressure value of the first measured gas and the pressure value of the second measured gas in the cell pressurized by the pressurizing unit is a lower pressure value.
  • the pressure in the pressurizing section is corrected as described above.
  • the concentration adjusting unit is configured to set the higher concentration of the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas measured by the first measuring unit to be the lower concentration.
  • the higher concentration of the gas to be measured is diluted with outside air.
  • the pressure correcting unit corrects the pressure in the pressurizing unit for one of the first gas to be measured and the second gas to be measured diluted with the outside air in the concentration adjusting unit.
  • the pressurizing unit further includes a cylinder for pressure-feeding the gas to be measured to the cell, a piston inserted into the cylinder, and a driving unit for driving the piston, and the driving unit is provided in the cell containing the gas to be measured.
  • the piston is driven with a predetermined force so that the pressure value becomes the pressure value when measuring the concentration of the component gas.
  • the pressure correcting unit corrects the pressure in the pressurizing unit based on the amount of the gas to be measured which is pumped from the cylinder into the cell.
  • the pressure compensating unit reduces the amount of pumping of one of the first gas to be measured and the second gas to be measured, which has a higher pressure value in the cell pressurized by the pressurizing unit, from the cylinder into the cell.
  • the pressure compensating unit reduces the amount of pumping in the process of accommodating a predetermined amount of gas to be measured to be pumped into the cell by the pressurizing unit.
  • a measurement method includes a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, and measures the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell.
  • the measured first Correcting the pressure in at least one pressurizing section of the first gas to be measured and the second gas to be measured based on the concentration difference between the component gases of the constant gas and the second gas to be measured; Measuring the concentration ratio of the two types of component gases to each of the first measured gas and the second measured gas.
  • a measurement method includes a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, and measures the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell.
  • FIG. 2 is a block diagram illustrating a configuration of an arithmetic circuit according to the embodiment. It is a schematic diagram for explaining the composition of the gas injector concerning this embodiment.
  • FIG. 3 is a block diagram for explaining a functional configuration example of an arithmetic circuit according to the embodiment. It is a flowchart of the measuring device concerning this embodiment. It is a diagram for explaining the like CO 2 transition of the measuring apparatus according to the present embodiment. It is a figure for explaining the 1st correspondence table. It is a figure for explaining the 2nd correspondence table. It is a figure for explaining main processing of a measuring device concerning this embodiment. It is a figure for explaining the 3rd correspondence table.
  • FIG. 9 is a diagram for explaining driving of a piston according to another embodiment.
  • FIG. 9 is a diagram for describing main processing of a measurement device according to another embodiment.
  • the measuring device after administering a drug containing an isotope to a living body, measures the change in the concentration ratio of the isotope by the light absorption characteristics of the isotope, obtains the metabolic rate of the living body, and obtains the disease.
  • An apparatus used for diagnosis will be described as an example. Specifically, a measurement device used for diagnosing whether or not Helicobacter pylori (HP), which is said to cause gastric ulcer and gastritis, is present in the stomach of the subject will be described.
  • HP Helicobacter pylori
  • the urea marked with the isotope 13 C administered to the subject is decomposed by utilizing the property of HP to decompose urea into carbon dioxide and ammonia by the strong urease activity. Diagnosis of the presence or absence of HP is made from the change in the concentration ratio of 13 CO 2 obtained.
  • carbon has a mass number of 12 and isotopes with mass numbers of 13 and 14 in addition to those having a mass number of 12.
  • an isotope 13 C having a mass number of 13 has no radioactivity. It is easy to handle because it exists stably. Therefore, the urea to be administered to the subject is marked with the isotope 13 C, and when HP is present in the stomach of the subject, the urea is decomposed into 13 CO 2 and ammonia by the HP. Since the decomposed 13 CO 2 is contained in and exhaled from the subject's breath, by measuring the concentration ratio of 13 CO 2 contained in the subject's exhalation, the HP can reduce It is possible to make a diagnosis as to whether or not it is present inside.
  • the concentration ratio between 13 CO 2 and 12 CO 2 contained in the air is 1: 100. Therefore, the measuring device according to the present embodiment is required to accurately measure the concentration ratio between 13 CO 2 and 12 CO 2 .
  • infrared spectroscopy is used as a method for determining the concentration ratio between 13 CO 2 and 12 CO 2, and the absorption of 13 CO 2 in one cell and the other cell And two short and long cells, which have the same absorption of 12 CO 2 at the same time.
  • the measuring device irradiates each cell with infrared light of a wavelength suitable for each analysis, measures the amount of transmitted light (the amount of transmitted light), and includes the concentration ratio in air in the breath of the subject. The change in concentration ratio is required.
  • the method of obtaining the concentration ratio between 13 CO 2 and 12 CO 2 is disclosed in Japanese Patent Publication No. Sho 61-42219 and Japanese Patent Publication No. Sho 61-42220.
  • the breath of the subject before administration of the urea diagnostic agent is collected in a breath bag as a first measurement gas (also referred to as a base gas).
  • a first measurement gas also referred to as a base gas
  • the urea diagnostic agent is orally administered to the subject, and after about 20 minutes, the breath of the subject is collected in a breath bag as a second gas to be measured (also referred to as a sample gas).
  • the exhalation bag of the first gas to be measured and the exhalation bag of the second gas to be measured are set on predetermined nozzles of the measuring device, respectively, and the concentration ratio between 13 CO 2 and 12 CO 2 is measured.
  • FIG. 1 is a schematic diagram for explaining the configuration of the measuring device 100 according to the first embodiment.
  • the exhalation bag B of the first measured gas and the exhalation bag S of the second measured gas are set in the nozzles N1 and N2, respectively.
  • the nozzle N1 is connected to a filter F1 and a valve (for example, an electromagnetic valve) V2 through a pipe (for example, a metal pipe).
  • the filter F1 is a filter for removing foreign substances other than the first gas to be measured contained in the breath bag B.
  • the nozzle N2 is connected to the filter F2 and the valve V3 through a pipe.
  • the valve V2 and the valve V3 are connected to the gas injector 21 through one pipe.
  • the filter F2 is a filter for removing foreign substances other than the first gas to be measured contained in the breath bag S.
  • the valve V1 is connected to the filter F5 and the reference gas supply unit 30 through a pipe.
  • the reference gas supply unit 30 includes a carbon dioxide gas absorption unit that uses, for example, soda lime (a mixture of sodium hydroxide and calcium hydroxide) as a carbon dioxide gas absorbent. Therefore, the reference gas supply unit 30 can supply the gas injector 21 with a reference gas that has absorbed carbon dioxide from air taken in from the outside.
  • the filter F5 is a dustproof filter that removes foreign matter from the reference gas supplied to the gas injector 21.
  • the valve V4 is connected to the filter F4 and the cell 11 through a pipe.
  • the valve V5 is connected to the filter F3 through a pipe.
  • the filter F3 is provided at an intake port for taking in air from the outside, and is a filter for removing foreign matter from the taken-in air.
  • the filter F4 is a dry filter that removes moisture from the reference gas, the second measured gas, and the second measured gas supplied to the gas injector 21.
  • the other end of the valve V4 is connected to a first sample cell 11a for measuring the absorption of 12 CO 2 .
  • the first sample cell 11a is a short cell for measuring the absorption of 12 CO 2 in one of the cells 11.
  • the cell 11 further includes a long second sample cell 11b and an auxiliary cell 11c for measuring the absorption of 13 CO 2 .
  • the first sample cell 11a and the second sample cell 11b communicate with each other, and the gas guided to the first sample cell 11a enters the second sample cell 11b as it is and is exhausted through the valve V6.
  • the auxiliary cell 11c is filled with a reference gas that does not absorb infrared rays and is sealed. Note that the auxiliary cell 11c may not always be filled with the reference gas and sealed, but may guide the reference gas from the reference gas supply unit 30 and constantly flow the same at a constant flow rate.
  • the capacity of the first sample cell 11a is about 0.1 ml, and the capacity of the second sample cell 11b is about 3.7 ml.
  • a sapphire transmission window for transmitting infrared light is provided on an end face of the cell 11.
  • the cell 11 is connected to a pressure gauge 31 through a pipe.
  • the pressure gauge 31 can measure the pressure of the gas introduced into the cell 11 by the gas injector 21.
  • a cylinder 21 b described later is connected to the pressure gauge 33.
  • the pressure gauge 33 can measure the pressure of the gas introduced into the cylinder 21b.
  • light source devices L1 and L2 that emit infrared light are provided.
  • the light source devices L1 and L2 are provided with two waveguides (not shown) for irradiating infrared rays.
  • the method of generating infrared light by the light source devices L1 and L2 may be any method, for example, a ceramic heater (surface temperature of 450 ° C.) or the like can be used.
  • An optical chopper 22 is provided between the light source devices L1 and L2 and the cell 11 to block and pass infrared light at a constant period.
  • the optical chopper 22 can cause the cell 11 to emit infrared light at a constant cycle (for example, 600 Hz) by being rotated by the motor 22a. That is, the optical chopper 22 is an optical modulator that modulates the intensity of the infrared light emitted from the light source devices L1 and L2 into a sine wave shape.
  • the infrared light emitted from the light source device L1 passes through the second sample cell 11b, and the amount of light is detected by the first detection element 25a.
  • a wavelength filter 24a is provided between the second sample cell 11b and the first detection element 25a.
  • the amount of infrared light emitted from the light source device L2 passes through the first sample cell 11a and the auxiliary cell 11c, and the amount of light is detected by the second detection element 25b.
  • a wavelength filter 24b is provided between the first sample cell 11a and the auxiliary cell 11c and the second detection element 25b.
  • the wavelength filter 24a is designed to pass infrared light having a wavelength of about 4412 nm to measure absorption of 13 CO 2
  • the wavelength filter 24b is designed to pass infrared light having a wavelength of about 4280 nm to measure absorption of 12 CO 2.
  • the first detection element 25a and the second detection element 25b are elements that detect the amount of infrared light.
  • the entire first detection element 25a and second detection element 25b are maintained at a constant temperature by a heater and a Peltier element 27. Further, fans 28 and 29 for ventilating the air inside the measuring device 100 are provided. Further, the measuring apparatus 100 includes a drive circuit 50 that drives the valves V1 to V6, the gas injector 21, and the like.
  • the valve V1 is a valve that is opened when the reference gas is taken into the cylinder 21b.
  • the valve V2 is a valve that is opened when the first measured gas is taken into the cylinder 21b from the expiration bag B of the first measured gas.
  • the valve V3 is a valve that is opened when the second measured gas is taken into the cylinder 21b from the second measured gas expiration bag S.
  • the valve V4 is a valve that is opened when the gas (measured gas, reference gas) in the cylinder 21b is pumped to the cell 11.
  • the valve V5 is a valve that is opened when the gas to be measured is discharged to the outside before the gas to be measured is pumped into the cell 11 (before the gas to be measured is stored in the cell 11).
  • the valve V6 is a valve that is opened when the measured gas (the measured gas that has passed through the cell 11) is discharged to the outside when the measured gas is pumped into the cell 11.
  • FIG. 2 is a block diagram for explaining the configuration of the drive circuit 50 according to the first embodiment.
  • drive circuit 50 includes a microprocessor 51, a chipset 52, a main memory 54, a non-volatile memory 56, a system timer 58, a display controller 60, and an I / O controller 70.
  • the chipset 52 and other components are respectively connected via various buses.
  • the microprocessor 51 and the chip set 52 are typically configured according to a general-purpose computer architecture. That is, the microprocessor 51 interprets and executes instruction codes sequentially supplied from the chipset 52 according to the internal clock. The chipset 52 exchanges internal data with various connected components and generates an instruction code required for the microprocessor 51. Further, the chipset 52 has a function of caching data and the like obtained as a result of execution of arithmetic processing in the microprocessor 51.
  • the drive circuit 50 has a main memory 54 and a nonvolatile memory 56 as storage means.
  • the main memory 54 is a volatile storage area (RAM), and holds various programs to be executed by the microprocessor 51 after the power supply to the drive circuit 50 is turned on.
  • the main memory 54 is also used as a working memory when the microprocessor 51 executes various programs.
  • a device such as a DRAM (Dynamic Random Access Memory) or an SRAM (Static Random Access Memory) is used.
  • the non-volatile memory 56 non-volatilely stores data such as a real-time OS (Operating System), a system program of the measuring apparatus 100, a user program, a calculation program, and setting parameters. These programs and data are copied to the main memory 54 so that the microprocessor 51 can access them as necessary.
  • a nonvolatile memory 56 a semiconductor memory such as a flash memory can be used.
  • a magnetic recording medium such as a hard disk drive or an optical recording medium such as a DVD-RAM (Digital Versatile Disk Random Access Memory) can be used.
  • the system timer 58 generates an interrupt signal at regular intervals and provides it to the microprocessor 51.
  • an interrupt signal is generated at a plurality of different cycles depending on hardware specifications.
  • an interrupt signal is generated at an arbitrary cycle by an OS (Operating System) or a BIOS (Basic Input Output System). It can also be set to generate a signal.
  • OS Operating System
  • BIOS Basic Input Output System
  • the display controller 60 is connected to the display unit provided in the measuring device 100 via the connection unit 68, and controls the display unit.
  • the display controller 60 includes a memory operation circuit 62, a display operation circuit 64, and a buffer memory 66.
  • the buffer memory 66 functions as a transmission buffer for display data output to the display unit via the display controller 60 and a reception buffer for input data input from the display unit (for example, a touch panel).
  • the memory operation circuit 62 transfers output data from the main memory 54 to the buffer memory 66, and transfers input data from the buffer memory 66 to the main memory 54.
  • the display operation circuit 64 performs a process of transmitting display data of the buffer memory 66 and a process of receiving input data and storing the received data in the buffer memory 66 with a display unit connected thereto.
  • the I / O controller 70 is connected to a control device such as valves V1 to V6 and a pulse motor 21f provided in the measurement device 100 via a connection unit 78, and outputs control signals to the valves V1 to V6 and the pulse motor 21f. It controls the input of digital signals from the pressure gauge 31 and the like.
  • the I / O controller 70 includes a memory operation circuit 72, a signal operation circuit 74, and a buffer memory 76.
  • the buffer memory 76 functions as a transmission buffer for control signals output to the valves V1 to V6 and the pulse motor 21f via the I / O controller 70, and as a reception buffer for digital signals input from the pressure gauge 31.
  • the memory operation circuit 72 transfers a control signal from the main memory 54 to the buffer memory 76 and transfers a digital signal from the buffer memory 76 to the main memory 54.
  • the signal operation circuit 74 performs a process of transmitting a control signal of the buffer memory 76 and a digital signal to and from a control device such as the valves V1 to V6 and the pulse motor 21f connected to the I / O controller 70 and receives the digital signal. Then, a process of storing the data in the file 76 is performed.
  • FIG. 3 is a diagram showing a gas injector 21 for quantitatively pumping the gas to be measured.
  • FIG. 3A is a plan view of the gas injector 21, and
  • FIG. 3B is a front view of the gas injector 21.
  • a base 21a, a cylinder 21b, and a piston 21c are shown.
  • the piston 21c is inserted inside the cylinder 21b.
  • the cylinder 21b is disposed on the base 21a.
  • the gas injector 21 includes a nut 21d, a screw 21e, and a pulse motor 21f.
  • the nut 21d, the screw 21e, and the pulse motor 21f are arranged below the base 21a.
  • the nut 21d is connected to the piston 21c and is movable in the X1 direction or the X2 direction.
  • the screw 21e is engaged with the nut 21d. Further, the pulse motor 21f rotates the feed screw 21e.
  • the pulse motor 21f is driven forward or reverse by the drive circuit 50 (see FIG. 4).
  • the screw 21e is rotated by the rotation of the pulse motor 21f, the nut 21d and the piston 21c move integrally in the X1 direction or the X2 direction according to the rotation direction.
  • the drive circuit 50 drives the piston 21c.
  • the drive circuit 50 performs a process of pumping the gas to be measured into the cylinder 21b to the first sample cell 11a and the second sample cell 11b in accordance with the driving of the piston 21c and the opening and closing of each of the valves V1 to V6. For example, a process of introducing a gas to be measured can be performed.
  • the initial position of the piston 21c is referred to as “initial position H”.
  • a position that is moved by driving the piston 21c by the maximum amount in the X2 direction is referred to as a “maximum position M”.
  • the measurement device 100 returns the piston 21c to the initial position H when performing a process of pumping the gas to be measured to the cell.
  • the X2 direction is also referred to as a “pressure feeding direction”.
  • the drive circuit 50 returns the piston 21c to the initial position H.
  • the drive circuit 50 returns the piston 21c to the initial position H
  • the piston 21c is located on the X2 direction side of the initial position H
  • the piston 21c is located on the X1 direction side of the initial position H. It is once moved to the back position B (see FIG. 11A).
  • the drive circuit 50 returns the piston 21c to the X2 direction side, and returns the position of the piston 21c to the initial position H.
  • a backlash may occur at a point A shown in FIG. If the drive circuit 50 does not execute the “process of temporarily moving to the back position B”, the backlash remains generated. When the drive circuit 50 attempts to move the piston 21c to the X2 side from the initial position H in a state where the backlash is still generated, the driving amount of the piston 21c is absorbed by the generated backlash. . Then, the drive amount of the piston 21c is different from the drive amount intended by the developer or the like when the measuring device 100 is designed.
  • the piston 21c when returning the position of the piston 21c to the initial position H, after performing the process of temporarily moving the piston 21c to the back position B (the process shown in FIG. 11A), the piston 21c is moved in the X2 direction. Then, the process of returning to the side (the process shown in FIG. 11B) is executed. Thereby, the measuring device 100 can return the piston 21c to the initial position H while eliminating the backlash that has occurred. Such processing is called “backlash elimination processing". In addition, even if it is another process, when returning the piston 21c to the initial position H, the measuring apparatus 100 commonly performs the backlash elimination process. Other parts in FIG. 11 will be described later.
  • the initial position H, the back position B, and the maximum position M are predetermined positions. At least one of these positions can be changed by a user or the like.
  • the moving speed of the piston 21c is also predetermined, and the moving speed can be changed by a user or the like.
  • FIG. 4 is a diagram showing main functions of the drive circuit 50.
  • the drive circuit 50 includes functions of a first measuring unit 502, a density adjusting unit 504, a pressurizing control unit 506, a pressure correcting unit 508, a second measuring unit 510, and a pressure measuring unit 512.
  • First measuring unit 502 the preliminary measurement of the first measurement gas and the second measurement gas, to measure the concentration of CO 2 in the CO 2 concentration and the first measurement gas in the first measurement gas.
  • the concentration adjuster 504 controls the concentration of CO 2 of the first gas to be measured measured by the first measuring unit 502 to be the same as the concentration of CO 2 of the second gas to be measured measured by the first measuring unit 502. Then, take in the outside air.
  • the pressurization control unit 506 pressurizes the gas (measured gas, reference gas) in the cell 11 so that the pressure of the gas is set as a reference pressure.
  • the pressure correction unit 508 pressurizes at least one of the first measured gas and the second measured gas based on the pressure difference between the first measured gas and the second measured gas measured by the pressure measuring unit 512. The pressure in the control unit 506 (the pressure of the gas in the cell 11) is corrected.
  • FIG. 5 is a flowchart showing main processing of the drive circuit 50.
  • the drive circuit 50 executes the pre-measurement and the main measurement after the execution of the pre-measurement.
  • the drive circuit 50 is referred to as reference gas measurement (step S1 in FIG. 5), preliminary measurement of the first measured gas (step S2), reference gas measurement (step S3), and preliminary measurement of the second measured gas (step S4). Perform each measurement in sequence as a pre-measurement.
  • the drive circuit 50 executes the processing of steps S6 to S28 as the main measurement.
  • the reference measurement process (such as the operation of the piston 21c) in step S1 is the same as the reference measurement in steps S3, S7, and S13 described below. Further, the processing of step S8, step S9, and step S10 (such as the operation of the piston 21c) is the same as the processing of step S18, step S19, and step S20.
  • the first measuring unit 502 measures the concentration of the component gas of the first measured gas by performing a preliminary measurement of the first measured gas.
  • the concentration of 12 CO 2 is measured as a component gas of the first gas to be measured.
  • the first measuring unit 502 opens the valve V2, closes the other valves, and moves the piston 21c in the X1 direction, so that the first gas to be measured is 21b. Thereafter, the first measuring unit 502 opens the valve V4, closes the other valves, and moves the piston 21c in the X2 direction, thereby pumping the first gas to be measured in the cylinder 21b to the cell 11. .
  • the first measuring unit 502 measures the light quantity of the first gas to be measured contained in the cell 11 by the first detecting element 25a, and measures the CO 2 concentration using the calibration curve (described later) based on the absorbance.
  • the first measurement unit 502 stores the CO 2 concentration of the first gas to be measured measured in step S2 in a predetermined storage area (for example, the RAM of the main memory 54).
  • the drive circuit 50 measures the light amount of the reference gas without using the calibration curve.
  • the drive circuit 50 may measure the light amount of the reference gas using the calibration curve in each reference measurement.
  • step S3 the drive circuit 50 discharges the first gas to be measured and executes the reference measurement.
  • step S4 the first measuring unit 502 measures the concentration of the component gas of the second measured gas by performing the preliminary measurement of the second measured gas.
  • step S6 the drive circuit 50 compares the concentration of 12 CO 2 of the first measured gas with the concentration of 12 CO 2 of the second measured gas.
  • the drive circuit 50 a direction of 12 CO 2 concentration of the second gas to be measured, was determined to be higher than the concentration of 12 CO 2 in the first measurement gas.
  • step S7 the drive circuit 50 discharges the second gas to be measured and executes the reference measurement.
  • the drive circuit 50 measures the amount of light with the respective detection elements 25a and 25b while the reference gas is stored in the cell 11.
  • the drive circuit 50 stores the light amount 12 R1 obtained by the first detecting element 25a and the light amount 13 R1 obtained by the second detecting element 25b in a predetermined storage area.
  • step S8 the drive circuit 50 executes a process of pumping the first gas to be measured.
  • the drive circuit 50 takes in the first measured gas from the breath bag B into the cylinder 21b by moving the piston 21c in the X1 direction.
  • the intake amount of the first gas to be measured is a predetermined amount, and is assumed to be Vm 3 in the present embodiment.
  • the pressure measuring unit 512 measures the pressure P1 of the first gas to be measured in the cylinder 21b.
  • the pressure measurement unit 512 acquires the pressure value P1 measured by the pressure gauge 33.
  • the measured pressure of the first gas to be measured is stored in a predetermined area.
  • the drive circuit 50 pumps the first gas to be measured in the cylinder 21 b into the cell 11.
  • the drive circuit 50 typically opens the valve V4 and the valve V6 and moves the piston 21c in the X2 direction in a state where the other valves are closed, so that the first measured gas in the cell 11 is moved. Pump.
  • the pressurization control unit 506 pressurizes the first gas to be measured in the accommodated cell 11 with a predetermined force.
  • the “predetermined force” is typically a pressure corresponding to a calibration curve. This force is also called “reference pressure”.
  • the "predetermined force” is typically a force such that the pressure value in the cell 11 containing the gas to be measured becomes the pressure value when measuring the concentration of the component gas.
  • the reference pressure is, for example, 0.2 megapascal (Mpa).
  • the pressurization control unit 506 opens the valve V4 and moves the piston 21c in the X2 direction with the other valves including the valve V6 closed, so that the first measured object in the cell 11 is Pressurize the gas.
  • the pressure of the outside air may be different depending on the measuring place of the measuring device 100.
  • the pressure of the outside air is different between the case where the measurement location of the measurement device 100 is at a low altitude and the case where the measurement location of the measurement device 100 is at an altitude.
  • the pressurization control unit 506 of the present embodiment has the reference pressure unit that can use the pressure in the cell 11 as the reference pressure.
  • the pressure gauge 33 measures the pressure in the cylinder 21b, and estimates the outside air pressure from the pressure in the cylinder 21b using a predetermined conversion formula.
  • FIG. 7 is a diagram illustrating an example of the first correspondence table.
  • the estimated outside air pressure OP1 is associated with the first driving distance L1
  • the outside air pressure OP2 is associated with the first driving distance L2.
  • FIG. 7 shows a three-point reader, and indicates that the three-point reader omits associating another external pressure with the first driving distance.
  • the pressure control unit 506 may use the first correspondence expression instead of the correspondence table in FIG.
  • the first correspondence equation is an equation for calculating the first driving distance T when the external pressure OP is input.
  • the pressurization control unit 506 acquires the first driving distance corresponding to the estimated outside air pressure with reference to the correspondence table shown in FIG.
  • the pressurization control unit 506 opens the valves V4 and V6, closes the other valves, and starts moving the piston 21c.
  • the pressurization control unit 506 closes the valve V6 while maintaining the valve V4 open. Thereafter, the pressurization control unit 506 drives the piston 21c to the maximum position M.
  • step S9 the pressurization control unit 506 pressurizes the first measured gas in the cell 11 so that the first measured gas in the cell 11 has the reference pressure value.
  • the method of pressurization is not limited to this, and another method may be used. The details of this pressurizing method are disclosed in, for example, “Japanese Patent Application Laid-Open No. 2002-98629”.
  • step S13 the drive circuit 50 discharges the first gas to be measured and performs reference measurement.
  • the drive circuit 50 measures the amount of light with the respective detection elements 25a and 25b while the reference gas is stored in the cell 11.
  • the drive circuit 50 stores the light amount 12 R2 obtained by the first detecting element 25a and the light amount 13 R2 obtained by the second detecting element 25b in a predetermined storage area.
  • the concentration adjusting unit 504 makes the CO 2 concentration of the first measured gas measured in step S2 equal to the CO 2 concentration of the second measured gas measured in step S4. So, take in outside air.
  • the outside air refers to “air outside the measuring apparatus 100 and air that has passed through the reference gas supply unit 30”. That is, “outside air” is a gas that does not contain CO 2 (component gas).
  • the concentration of CO 2 is higher in the second measured gas than in the first measured gas. Therefore, the concentration adjusting unit 504 takes in outside air for the second gas to be measured. On the other hand, the concentration adjusting unit 504 does not take in outside air for the first gas to be measured.
  • V is the amount of the first gas to be measured as described above.
  • step S16 the drive circuit 50 executes the reciprocating drive of the piston 21c in the X1 direction and the X2 direction with all the valves closed. Accordingly, the concentration adjusting unit 504 in the cylinder 21b, it is possible to mix the second and the measurement gas in V / 2m 3, and an outside air V / 2m 3.
  • step S16 the drive circuit 50 pressurizes the mixed second gas to be measured by the reciprocating motion in a state where all the valves are closed.
  • the concentration adjusting unit 504 controls the first measurement gas and the second measurement gas such that the concentration of the component gas of the first measurement gas and the concentration of the component gas of the second measurement gas measured by the first measurement unit 502 are the same. The concentration of at least one of the two component gases is adjusted. Further, in the present embodiment, the concentration adjusting unit 504 determines the higher one of the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas measured by the first measuring unit 502 (FIG. 5). In the example, the measurement gas having the higher concentration is diluted with the outside air so that the concentration of the second measurement gas is lower (the first measurement gas in the example of FIG. 5). The details of the diluting method are disclosed in, for example, "Japanese Patent Application Laid-Open No. 10-197444".
  • the measurement apparatus 100 can eliminate such an error by making the first measurement gas and the second measurement gas have the same CO 2 concentration.
  • step S17 the pressure measuring unit 512 measures the pressure value P2 of the second gas to be measured.
  • the pressure measurement unit 512 acquires the pressure value P2 measured by the pressure gauge 33.
  • the measured pressure value P2 of the second gas to be measured is stored in a predetermined area. Note that the pressure value P2> the pressure value P1.
  • step S17 the pressure correction unit 508 corrects the pressure of the second gas to be measured.
  • the pressure correction unit 508 determines the first pressure value of the first measured gas in the cylinder 21b (see the description of Step S8) and the second pressure value P2 of the second measured gas in the cylinder 21b based on the pressure difference.
  • the pressure in at least one of the first measured gas and the second measured gas in the pressurization control unit 506 (in the present embodiment, the pressure in the pressurization control unit 506 of the second measured gas having a high pressure value) is corrected. I do.
  • the pressure correction unit 508 performs correction so as to reduce the pressure value of the second gas to be measured.
  • the pressure correction unit 508 sets the piston 21c to X2 while the valve V4 and the valve V6 are opened and the other valves are closed in a state where the second gas to be measured is accommodated in the cylinder 21b. Drive in the direction. Then, the pressure correction unit 508 can discharge the second gas to be measured in the cylinder 21b to the outside through the route of the valve V4, the cell 11, and the valve V6. Accordingly, the pressure correction unit 508 corrects the pressure value of the second measured gas so as to decrease according to the value based on the pressure value P1 and the pressure value P2.
  • the pressure correction processing in step S17 will be described later with reference to FIG.
  • step S18 the pressurization control unit 506 executes a pressure feeding process of the diluted second gas to be measured.
  • step S19 the pressurization control unit 506 pressurizes the second gas to be measured in the accommodated cell 11 with a predetermined force.
  • pressure is applied twice in the dilution process in step S16 and the pressurization process in step S19.
  • the processing in step S18 and the processing in step S19 are the same as those in steps S8 and S9. Further, the processing of steps S8 and S9 is executed by one movement of the piston 21c at the initial position in the X2 direction. Further, the pressure correction processing in step S17 and the processing in steps S18 and S19 are executed by one movement in the direction of the piston 21cX2 existing at the initial position.
  • step S24 the second measuring unit 510 measures the light amount of the second gas to be measured.
  • the measuring device 100 measures the light amount by the respective detection elements 25a and 25b in the pressurized state in step S19.
  • the measuring device 100 stores the light quantity 12 S obtained by the first detection element 25 a and the light quantity 13 S obtained by the second detection element 25 b in a predetermined storage area.
  • step S26 the drive circuit 50 executes the reference measurement while discharging the first gas to be measured.
  • the drive circuit 50 measures the amount of light with the respective detection elements 25a and 25b while the reference gas is stored in the cell 11.
  • the drive circuit 50 stores the light quantity 12 R3 obtained by the first detection element 25a and the light quantity 13 R3 obtained by the second detection element 25b in a predetermined storage area.
  • step S28 the second measuring unit 510 determines the concentration ratios of the two types of component gases with respect to each of the first measured gas and the second measured gas that have been corrected by the pressure correcting unit 508 in step S22. Is measured.
  • the second measuring unit 510 the following equation (3), (4), and the second 12 CO 2 absorbance 12 Abs of the measurement gas (S), 13 CO 2 absorbance 13 Abs (S) and Ask for.
  • the second measuring unit 510 uses the calibration curve to determine the concentration ratio between 12 CO 2 and 13 CO 2 of the first gas to be measured, and 12 CO 2 and 13 CO 2 of the second gas to be measured.
  • the concentration ratio is determined.
  • the measurement device 100 creates the calibration curve using the measured gas having a known 12 CO 2 concentration and the measured gas having a known 13 CO 2 concentration at the above-described reference pressure value. Since the measurement device 100 measures the gas to be measured by pressurizing it to the reference pressure value, the calibration curve also measures the gas to be measured by pressurizing the gas to be measured to the reference pressure value.
  • the drive circuit 50 measures the absorbance of 12 CO 2 while changing the concentration of 12 CO 2 in a range of about 0% to 6%.
  • the driving circuit 50 plots the horizontal axis at 12 CO 2 concentration and the vertical axis at 12 CO 2 absorbance, and determines a curve for 12 CO 2 concentration using the least squares method. Since the curve approximated by the quadratic equation has a relatively small error curve, the calibration curve approximated by the quadratic equation is employed in the present embodiment.
  • the drive circuit 50 measures the absorbance of 13 CO 2 while changing the 13 CO 2 concentration in a range of about 0% to 0.07%.
  • the drive circuit 50 plots the horizontal axis at 13 CO 2 concentration and the vertical axis at 13 CO 2 absorbance, and determines a curve for 13 CO 2 concentration using the least squares method. Since the curve approximated by the quadratic equation has a relatively small error curve, the calibration curve approximated by the quadratic equation is employed in the present embodiment.
  • the 12 CO 2 concentration in the first measured gas is 12 Conc (B)
  • the 13 CO 2 concentration in the first measured gas is 13 Conc (B)
  • the 12 CO 2 concentration in the second measured gas is 12 Conc (S).
  • the 13 CO 2 concentration in the second gas to be measured is 13 Conc (S).
  • the second measuring unit 510 calculates the concentration ratio X (B) of the first measured gas and the concentration ratio X (S) of the second measured gas by the following equations (5) and (6), respectively.
  • the second measuring section 510 calculates the concentration ratio X (B) of the first measured gas and the concentration ratio X (S) of the second measured gas by the following equations (7) and (8), respectively. ) May be obtained.
  • ⁇ C [concentration ratio of second measured gas X (S) ⁇ concentration ratio of first measured gas X (B)] ⁇ 1000 / [concentration ratio of first measured gas X (B)] (9)
  • the unit of the formula (9) is per mille per thousand.
  • the measuring device 100 may cause the display unit to display the concentration ratio X (B) of the first measured gas and the concentration ratio X (S) of the second measured gas. Good.
  • the measuring device 100 may cause the display unit to display the change ⁇ C under the control of the display controller 60. Note that the measuring device 100 determines that the HP is highly likely to be present in the stomach of the subject if the obtained 13 CO 2 concentration change ⁇ 13 CO 2 is 2.5 permil or more, and determines that the HP is positive. I do.
  • the measuring device 100 measures the 12 CO 2 concentration but does not measure the 13 CO 2 concentration. On the other hand, in this measurement, both the 12 CO 2 concentration and the 13 CO 2 concentration are measured. Therefore, the pre-measurement described in steps S2 and S4 requires less processing amount (computation amount) than the main measurement described in step S24.
  • another method may be adopted as a method of performing the preliminary measurement with a smaller amount of calculation than the main measurement. For example, the amount (arithmetic amount) of the arithmetic expression used in the preliminary measurement may be made smaller than the amount (arithmetic amount) of the arithmetic expression used in the main measurement.
  • CO 2 is, 12 CO 2 and 13 CO 2 and a mixture of, or to summarize the 12 CO 2 and 13 CO 2.
  • 6 (a) to 6 (f) show the concentration of CO 2 in each step
  • FIG. 6 (A) shows the first gas to be measured
  • FIG. 6 (B) shows the second gas to be measured. Show.
  • the CO 2 concentration of the first gas to be measured is measured to be 2% in the pre-measurement step (step S2) of FIG. 6A. Further, it is assumed that the CO 2 concentration of the second gas to be measured is measured to be 4% in the preliminary measurement step (step S4) of FIG. 6A.
  • step S14 the pressurization control unit 506 takes in the outside air for the second gas to be measured. Then, the dilution step of FIG. 6 (c) (step S16), and the concentration adjusting unit 504 in the cylinder 21b, for mixing the second and the measurement gas in V / 2m 3, and an outside air V / 2m 3 . Thereby, the pressurization control unit 506 can set the CO 2 concentration of the second measured gas to 2%, which is the same as the first measured gas. Also in the pressurizing step (step S19) of FIG. 6C, the CO 2 concentration of the second measured gas is maintained at 2%.
  • the pressure value P1 of the first gas to be measured of the pressure measuring unit 512 in step S10 is measured.
  • the pressure value A in the example of FIG. 6D is a pressure value when the first gas to be measured having the pressure value P1 is sent to the cell 11 by pressure.
  • the pressurization control unit 506 applies the same load to both the first measured gas in the cell 11 and the second measured gas in the cell 11 as described in steps S9 and S19.
  • a pressurization process is performed at a pressure ratio. Therefore, the pressure value of the first measured gas in the cell 11 and the pressure value of the second measured gas in the cell 11 should be the same.
  • the pressure value of the second gas to be measured is higher than the pressure value of the first gas to be measured.
  • the pressure value B of the second measured gas of the pressure measurement unit 512 in step S20 is 0.24 megapascal.
  • the reason why the pressure value of the second measured gas becomes higher than the pressure value of the first measured gas will be described below.
  • the first gas to be measured and the second gas to be measured are exhalation of the subject, and the exhalation humidity is generally 100% or about 100%. Further, the humidity of the gas to be measured in which the outside air is mixed (the second gas to be measured in the example of FIG. 6) decreases. It has been experimentally found that when the humidity of a gas decreases, the pressure value of the gas increases. That is, the pressure value of the second measured gas in which the outside air is mixed is higher than that of the first measured gas. As described above, the pressure value of the second measured gas becomes higher than the pressure value of the first measured gas.
  • the pressure correction unit 508 determines the pressure difference between the first measured gas and the second measured gas measured by the pressure measuring unit 512. The pressure in at least one of the first measured gas and the second measured gas in the pressurization control unit 506 is corrected.
  • the pressure correction unit 508 first calculates a pressure difference ⁇ P between the pressure value P1 of the first measured gas in the cylinder 21b and the pressure value P2 of the second measured gas in the cylinder 21b. I do.
  • the pressure difference ⁇ P P1 ⁇ P2.
  • the measuring device 100 stores a second correspondence table in which the second driving distance of the piston (in the pressure correction process) in a state where the valve V6 is opened and the pressure difference ⁇ P are stored in the storage area.
  • FIG. 8 is a diagram illustrating an example of the second correspondence table.
  • the pressure difference ⁇ P1 is associated with the second drive distance M1
  • the pressure difference ⁇ P2 is associated with the second drive distance M2.
  • FIG. 8 illustrates a three-point reader, and indicates that the three-point reader omits associating another pressure difference ⁇ P with the second driving distance.
  • the pressure correction unit 508 may use the second correspondence expression instead of the correspondence table in FIG.
  • the second correspondence equation is an equation for calculating the second driving distance T when the pressure difference ⁇ P is input.
  • the pressure correction unit 508 drives the piston 21c with the second drive distance T (the valve V4 and the valve V6 are opened, based on the calculated pressure difference ⁇ P using the second correspondence table or the second correspondence expression. Distance).
  • the pressure correction unit 508 drives the piston 21c in the X2 direction from the initial position H with the valve V4 and the valve V6 opened in a state where the second gas to be measured is accommodated in the cylinder 21b. Therefore, while the valve V6 is open, the second gas to be measured is pumped into the cell 11, but is discharged to the outside via the valve V6 as it is.
  • the pressure of the second measured gas in the cylinder 21b becomes equal to the pressure of the first measured gas.
  • the pressure value of the first measured gas in the cell 11 and the pressure value of the second measured gas in the cell 11 may be set as the reference pressure value. it can.
  • the pressure of the second measured gas in the cylinder 21b does not have to be the same as the pressure of the first measured gas in the cylinder 21b. If the pressure values of the first gas to be measured in the cell 11 and the second gas to be measured in the cell 11 can be set as the reference pressure values after the pressurizing process of step S19 and the pressurizing process of step S19, another configuration is used. You may.
  • the second drive distance is determined such that the pressure of the measured gas having the higher pressure value matches the pressure of the measured gas having the lower pressure value. Is designed in advance. As a result, the pressure value of the second gas to be measured in the cell 11 and the pressure value of the first gas to be measured in the cell 11 both become the reference pressure value and become the same by the pressurizing step.
  • the second measuring unit 510 executes the light quantity measurement of the second gas to be measured. That is, in the light quantity measuring step, the light quantity measurement can be performed in a state where the pressure value of the second measured gas in the cell 11 is the same as the pressure value of the first measured gas in the cell 11. Therefore, as a result, the second measurement unit 510 of the measurement apparatus 100 can measure the concentration ratio of the two types of component gases with respect to the second measurement gas that has been corrected by the pressure correction unit 508.
  • FIG. 9 is a diagram illustrating the driving of the piston 21c in the pressure correction processing, the pressure feeding processing, and the pressurization processing of each embodiment and the open / closed state of each valve for the second gas to be measured.
  • FIG. 9A is a diagram illustrating the driving of the piston 21c and the open / closed state of each valve in the pressure correction processing, the pressure feeding processing, and the pressurization processing according to the first embodiment.
  • FIGS. 9B, 12A, and 12B will be described in other embodiments (second to fourth embodiments) described later. 9 and 12, the order of the pressure feeding process and the pressurizing process may be reversed for the first gas to be measured and the second gas to be measured, as a modification.
  • the measuring apparatus 100 can make the pressure value of the first measured gas equal to the pressure value of the second measured gas.
  • the second drive distance M is a distance obtained from the second correspondence table (see FIG. 8).
  • the drive circuit 50 drives the piston 21c in the X2 direction after the pressure correction process with the valves V4 and V6 opened.
  • the drive amount at this time is the drive amount L described with reference to FIG.
  • the pressurization control unit 506 drives the piston 21c in the X2 direction following the pressure correction process with the valve V6 closed and the valve V4 opened.
  • FIG. 11 is a diagram for explaining the pressure correction processing, the pressure feeding processing, and the pressure processing.
  • the driving circuit 50 of the present embodiment houses the second measurement gas in the first measurement gas and Vm 3 of Vm 3 into the cylinder 21b. Note that ⁇ is a predetermined amount.
  • the pressure correction unit 508 moves the piston 21c to the initial position with the valve V5 closed as backlash elimination processing. It is moved to the back position B which is on the X1 direction side of H.
  • the pressure correction unit 508 opens the valve V5 and moves the piston 21c from the back position B in the X2 direction to the initial position H as backlash elimination processing. Position.
  • the second gas to be measured in the cylinder 21b is discharged to the outside via ⁇ m 3 and the opened valve V6 together with the backlash elimination processing.
  • the cylinder 21b is continuously driven in the X2 direction even after the backlash elimination process is completed (after the backlash is eliminated) as shown in FIG.
  • the pressure feeding process and the pressure process can be executed.
  • the drive distance M determined in FIG. 8 is the distance from FIG. 11B to FIG. 11C. Thereafter, as shown in FIG. 11D, the pressurization control unit 506 executes the pressure feeding process and the pressurization process with the valve V5 closed.
  • a measuring device that does not consider backlash, that is, the processing of FIGS. 11A and 11B may not be executed.
  • the second gas to be measured is diluted (step S16) and the first gas to be measured is And pressurizing processing of the second gas to be measured (step S9, step S19).
  • the pressure value of the second measured gas becomes larger than the pressure value of the first measured gas. That is, the pressure value of the second gas to be measured becomes larger than the reference pressure value. Therefore, in the process using the calibration curve for the second measured gas, the pressure value of the second measured gas is different from the reference pressure value associated with the calibration curve. As a result, in the process using the calibration curve, the measurement accuracy of the concentration ratio between 12 CO 2 and 13 CO 2 of the second gas to be measured decreases.
  • a configuration using a plurality of calibration curves according to the pressure value of the second gas to be measured is also conceivable.
  • the process of preparing a plurality of calibration curves in advance increases, and the storage capacity of the plurality of calibration curves also increases.
  • the pressure correction unit 508 determines at least one of the first measured gas in the cylinder 21b and the second measured gas in the cylinder 21b. Correct the pressure value of.
  • the pressure correction unit 508 performs the first measurement gas and the second measurement gas so that the pressure value of the first measurement gas in the cylinder 21b is equal to the pressure value of the second measurement gas in the cylinder 21b.
  • the pressure value of at least one of the measured gas and the measured gas is corrected.
  • the pressure correction unit 508 can set the pressure value of the first measured gas in the cell 11 and the pressure value of the second measured gas in the cell 11 to be the same reference pressure value. Therefore, the measuring device 100 improves the accuracy of measuring the concentration ratio of the component gas.
  • the pressure correction unit 508 determines the pressure value P1 of the first measured gas and the pressure value P2 of the second measured gas in the cylinder 21b.
  • the higher pressure value in this embodiment, the pressure value P2 which is the pressure value of the second measured gas
  • the pressure value (the pressure value in the cylinder 21b) in the pressurization control unit 506 is corrected so as to be the pressure value P1).
  • a method of increasing the pressure value of the first measured gas to match the pressure value of the second measured gas is also conceivable.
  • a measuring apparatus employing this technique requires a calibration curve corresponding to a pressure value larger than the reference pressure value, in addition to the calibration curve corresponding to the reference pressure value, and the data capacity of the calibration curve increases. I will.
  • the pressure correction unit 508 reduces the pressure value of the second measured gas so that the pressure value of the second measured gas becomes equal to the pressure value of the first measured gas (reference pressure value). Correct the pressure value. Therefore, the measuring apparatus 100 only needs to hold a calibration curve corresponding to the reference pressure value, and does not need to hold a calibration curve corresponding to a pressure value different from the reference pressure value. Therefore, the measuring device 100 can prevent an increase in the data capacity related to the calibration curve.
  • the concentration adjusting unit 504 calculates the concentration of the component gas (CO 2 ) of the first measured gas measured by the first measuring unit 502 and the component of the second measured gas measured by the first measuring unit 502.
  • the gas to be measured having a higher concentration is diluted with the outside air so that the higher concentration of the gas (CO 2 ) becomes the lower concentration. (Step S16).
  • a method of increasing the CO 2 concentration of the first measured gas to match the CO 2 concentration of the second measured gas can be considered.
  • a measuring device employing this method needs to mix pure CO 2 (a gas composed of only CO 2 ) with the first gas to be measured, and requires a device for producing pure CO 2 , The cost of the measuring device 100 increases.
  • the concentration adjusting unit 504 using the outside air, second by reducing the CO 2 concentration in the measurement gas, the CO 2 concentration in the first measurement gas. Therefore, the CO 2 concentration of the first gas to be measured and the second gas to be measured can be matched with an inexpensive configuration.
  • the pressure correction unit 508 corrects the pressure value of the second gas to be measured diluted with the outside air. As described above, it has been found that the second measured gas diluted with the outside air has a higher pressure value than the first measured gas. Therefore, the pressure value of the first measured gas and the second measured gas can be determined without executing a process of determining which of the first measured gas and the second measured gas has a higher pressure value. Can be the same as the pressure value.
  • the pressurizing section for increasing the pressure value of the gas to be measured in the cell 11 is constituted by the cylinder 21b, the piston 21c, and the like. Therefore, the measuring device 100 can increase the pressure value of the gas to be measured in the cell 11 with an inexpensive configuration. Further, the drive circuit 50 moves the predetermined movement amount (ie, the reference pressure value) so that the pressure value in the cell 11 containing the gas to be measured becomes the pressure value when measuring the concentration of the component gas (that is, the reference pressure value). The driving amount) drives the piston 21c. The driving is executed commonly for the first measured gas and the second measured gas (see steps S8 and S18). Therefore, compared to a measuring device in which the driving is performed differently for the first gas to be measured and the second gas to be measured, it is possible to reduce the program capacity related to the driving process of the piston 21c.
  • the predetermined movement amount ie, the reference pressure value
  • the driving amount drives the piston 21c.
  • the driving is executed commonly for the first measured gas and the second measured gas (see steps S
  • the pressure correction unit 508 corrects the pressure (for example, the pressure in the cylinder 21b) in the pressurization control unit 506 by driving the piston 21c.
  • the piston 21c performs various processes such as taking in the gas to be measured and the outside air.
  • the measurement device 100 corrects the pressure of the second gas to be measured using the piston 21 that performs various processes. Therefore, the number of parts can be reduced as compared with “a measuring device using different components for various processes such as taking in the gas to be measured and the outside air and correcting the pressure of the second gas to be measured”.
  • the pressure correction unit 508 sends the second gas to be measured diluted with the outside air, that is, the second gas to be measured having a higher pressure value in the cell 11, from the cylinder 21b.
  • the pumping amount to be pumped into the cell 11 is reduced based on the pressure difference ⁇ P.
  • the pressure correction unit 508 discharges a part of the second measured gas before pressure-feeding the second measured gas into the cell 11 (decreases the pressure value of the second measured gas). .
  • the pressure value of the first measured gas when accommodated in the cell 11 and the pressure value of the second measured gas when accommodated in the cell 11 are increased by increasing the pumping amount of the first measured gas.
  • a large amount of the first gas to be measured is used. Then, an event such as a shortage of the first gas to be measured in the expiration bag may occur. Therefore, the pressure correction unit 508 of the present embodiment discharges a part of the second measured gas before pumping the second measured gas into the cell 11.
  • the measurement device 100 of the present embodiment can store the pressure value of the first gas to be measured in the case where the gas to be measured is stored in the cell 11 and the gas stored in the cell 11 without occurrence of an event such as a shortage of the gas to be measured.
  • the pressure value of the second gas to be measured can be appropriately made equal.
  • the pressurization control unit 506 of the present embodiment accommodates a predetermined amount of pumped gas (for example, Vm 3 in the present embodiment) to be pumped into the cell 11 in the cylinder 21b.
  • the accommodation process is the process shown in FIGS. 11A and 11B.
  • the predetermined pumping amount is the amount of the gas to be measured contained in the cylinder 21b when the piston 21c is located at the initial position H (Vm 3 in the present embodiment).
  • the measuring device 100 of the present embodiment reduces the amount of pumping in the accommodation process. Therefore, in a series of processes after the backlash elimination process (see FIGS. 11B and 11C), the second gas to be measured in the cylinder 21b can be discharged to the outside.
  • the pressure value of the second measured gas (the pressure value of the second measured gas stored in the cell 11 in the future) can be adjusted (decreased) in the flow of the process for eliminating the backlash. Therefore, the number of processing steps can be reduced as compared with a measuring apparatus in which the processing for eliminating backlash and the processing for adjusting the pressure value of the second measured gas are not a series of processing.
  • the valve to be opened (the valve V6 in the present embodiment) can be shared between the pressure correction processing and the pressure feeding processing. Therefore, as compared with a measuring device that opens a different valve in the pressure correction process and the pressure feeding process, the load of the valve control process can be reduced and the wear of the valve can be reduced.
  • the measuring device 100 can diagnose whether or not Helicobacter pylori (HP) exists in the stomach of the subject.
  • FIG. 9B is a diagram illustrating the driving of the piston 21c and the open / closed state of each valve in the pressure correction processing, the pressure feeding processing, and the pressurization processing according to the second embodiment.
  • the pressure correction unit 508 opens the valve V5 and closes the valves V1 to V4 and the valve V6. In this state, the cylinder 21b is driven in the X2 direction. According to such a configuration, it is possible to discharge from the valve V5 by the pressure correction processing.
  • the measuring device 100 of the second embodiment also has the same effect as the measuring device 100 of the first embodiment.
  • the measuring device 100 of the first embodiment and the second embodiment measures the pressure difference ⁇ P between the pressure value of the first gas to be measured in the cylinder 21b and the pressure value of the second gas to be measured in the cylinder 21b. It has been described that the pressure of the second gas to be measured is corrected. However, the measuring device 100 according to the third embodiment calculates the pressure value of the second measured gas based on the concentration value of the first measured gas and the concentration difference ⁇ C of the second measured gas instead of the pressure difference ⁇ P. to correct.
  • the concentration difference ⁇ C is the difference between the CO 2 concentration in the first measurement gas measured by the preliminary measurement in step S2, and the 2 CO 2 concentration in the measurement gas measured by the preliminary measurement in step S4.
  • the pressure correction unit 508 calculates the difference between the CO 2 concentration of the first gas to be measured measured in advance in step S2 and the CO 2 concentration of the second gas to be measured measured in advance in step S4. Is calculated.
  • CO 2 concentration in the first measurement gas is 2% CO 2 concentration of the first gas to be measured, since it is 4%, as [Delta] C, 2% is calculated.
  • the measuring apparatus 100 stores a third correspondence table in which the third driving distance of the piston (in the pressure correction process) in a state where the valve V6 is opened and the concentration difference ⁇ C are associated. Is stored.
  • FIG. 10 is a diagram illustrating an example of the third correspondence table.
  • the third correspondence table is obtained by replacing the pressure difference ⁇ P in FIG. 8 with the concentration difference ⁇ C.
  • the density difference ⁇ C1 is associated with the third drive distance N1
  • the density difference ⁇ C2 is associated with the third drive distance N2.
  • a three-point reader is shown, and this three-point reader omits the association between the other density difference ⁇ C and the third drive distance.
  • the pressure correction unit 508 may use the third correspondence expression instead of the correspondence table in FIG.
  • the third correspondence equation is an equation for calculating the third driving distance N when the density difference ⁇ C is input.
  • the pressure correction unit 508 drives the third driving distance N (the cylinder 21b in a state where the valves V4 and V6 are opened, based on the calculated density difference ⁇ C using the third correspondence table or the third correspondence expression. Distance).
  • FIG. 12A is a diagram illustrating the driving of the piston 21c and the open / closed state of each valve in the pressure correction processing, the pressure feeding processing, and the pressurization processing according to the third embodiment.
  • the pressure correction unit 508 acquires the third drive amount N according to the concentration difference ⁇ C.
  • the piston 21c is moved from the initial position H in the X2 direction over the third drive distance N shown in FIG. 12A with the valves V4 and V6 opened. Drive. Then, it is discharged outside via the valve V4, the cell 11, and the valve V6. By this discharge, the measuring apparatus 100 can make the pressure value of the first measured gas equal to the pressure value of the second measured gas.
  • the pressure correction unit 508 of the present embodiment acquires the third drive amount N based on the density difference ⁇ C. Therefore, unlike the first and second embodiments, it is not necessary to provide the pressure gauge 33 for measuring the pressure in the cylinder 21b. Therefore, the number of components can be reduced as compared with the measuring apparatus 100 of the first embodiment.
  • FIG. 12B is a diagram illustrating the driving of the piston 21c and the open / closed state of each valve in the pressure correction processing, the pressure feeding processing, and the pressurization processing according to the second embodiment.
  • the pressure correction unit 508 opens the valve V5 and closes the valves V1 to V4 and the valve V6. In this state, the cylinder 21b is driven in the X2 direction. According to such a configuration, it is possible to discharge from the valve V5 by the pressure correction processing.
  • the measuring device 100 of the fourth embodiment also has the same effect as the measuring device 100 of the third embodiment.
  • Modification (1)
  • the pre-measurement has been described on the assumption that the amount of calculation in the measurement is smaller than the main measurement.
  • the measurement processing may be shared between the preliminary measurement and the main measurement.
  • the measurement program can be shared between the preliminary measurement and the main measurement, so that the program capacity can be reduced.
  • the measuring apparatus of the present embodiment reduces (dilutes) the concentration of the gas to be measured which has a higher component gas, out of the first gas to be measured and the second gas to be measured, to thereby dilute the first gas to be measured.
  • concentrations of the component gases are the same in the measurement gas and the second measurement gas.
  • any processing may be executed.
  • the measuring device adjusts the concentration of at least one component gas of the first measured gas and the second measured gas.
  • the measuring device sends a component to the measured gas (in the present embodiment, the first measured gas) having the lower concentration of the component gas of the first measured gas and the second measured gas.
  • the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas may be made the same.
  • the measurement device adds the component gas to the first measurement gas and dilutes the second measurement gas, and adjusts the concentration of the component gas of the first measurement gas and the component gas of the second measurement gas. May be made the same as the density.
  • the measurement apparatus of the present embodiment reduces the first measured gas and the second measured gas by decreasing the pressure value of the measured gas having the higher pressure value in the cell 11 to thereby obtain the first measured gas and the second measured gas.
  • the description has been made assuming that the pressure value of the gas to be measured and the second gas to be measured are the same. However, if the pressure value of the component gas of the first measured gas and the pressure value of the second measured gas are the same, any processing may be executed.
  • the measuring device adjusts the pressure value of at least one of the first measured gas and the second measured gas.
  • the measuring device pressurizes the measured gas (in the present embodiment, the first measured gas) having the lower pressure value of the first measured gas and the second measured gas to reduce the pressure value.
  • the pressure value of the first measured gas and the pressure value of the second measured gas may be made equal. Further, the measuring device increases the pressure value of the first measured gas and decreases the pressure value of the second measured gas so that the first measured gas and the second measured gas have the same pressure value. You may make it.
  • the pressurizing section has been described as being configured by the cylinder 21b, the piston 21c, and the like.
  • the pressurizing section may have any configuration as long as the gas to be measured in the cell can be pressurized.
  • the two types of component gases are 12 CO 2 and 13 CO 2 .
  • the two types of component gases may be other component gases as long as they are preferably in an isotope relationship with each other.
  • the drive circuit 50 has been described as measuring the pressure values of both the first measured gas and the second measured gas.
  • the measuring apparatus 100 measures the pressure value of the measured gas (in the present embodiment, the second measured gas) having the higher concentration of the component gas of the first measured gas and the second measured gas, The pressure value of the gas to be measured having the lower concentration of the component gas (the first gas to be measured in this embodiment) may not be measured.
  • the measuring device of the present embodiment has a pressure maintaining unit (pressure maintaining function) that keeps the pressure value in the cell 11 constant, as shown in FIG.
  • the pressure maintaining unit sets the pressure value of the gas to be measured in the cell 11 to a reference pressure value.
  • the pressure value of the gas to be measured which is the thinner of the component gases, becomes the reference pressure value without being measured. That is, even if the drive circuit 50 measures at least the pressure value of the measured gas having the higher concentration of the component gas, the same effect as that of the present embodiment can be obtained.
  • a cell containing a gas to be measured containing two kinds of component gases having an isotope relationship with each other is included, and the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell is determined.
  • a program that causes a measuring device that measures the concentrations of the two types of component gases of the gas to be measured in the cell to execute the following steps may be executed.
  • This program includes a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, and measures the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell.
  • the first measured gas collected as a measured gas is obtained by a measuring device (computer) that is executed by a measuring device that measures the concentrations of the two types of component gases of the measured gas in the cell based on the absorbance.
  • a pressurizing function of pressurizing the measurement gas and the second measurement gas with a predetermined force in the accommodated cell, and at least a component gas of the first measurement gas and the second measurement gas A pressure measurement function for measuring a pressure value of the gas to be measured having a higher concentration of the gas, and a pressure difference between the first gas to be measured and the second gas to be measured measured by the pressure measurement function.
  • a pressure correction function for correcting the pressure in at least one of the first measurement gas and the second measurement gas in the pressurization function; and the first measurement gas and the second measurement gas corrected by the pressure correction function.
  • This is a program for executing a second measurement function for measuring the concentration ratio of the two types of component gases for each measurement gas.
  • the program includes a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, and transmits transmitted light having a wavelength suitable for the gas to be measured in the cell.
  • a first measurement gas and a second measurement gas collected as measurement gases are measured by a measuring device for determining the absorbance and measuring the concentrations of the two types of component gases of the measurement gas in the cell based on the absorbance.
  • a first measuring function for measuring the concentration of each component gas, and the concentration of the component gas of the first measurement gas and the concentration of the component gas of the second measurement gas measured by the first measurement function are the same.
  • a concentration adjustment function for adjusting the concentration of at least one of the first measurement gas and the second measurement gas; and the first measurement gas and the concentration that have been adjusted by the concentration adjustment function.
  • Second measured A pressurizing function for pressurizing the gas with a predetermined force in the cell accommodated therein, and a measurement target having a higher concentration of at least a component gas of the first measurement target gas and the second measurement target gas.
  • a pressure measurement function for measuring a pressure value of the gas; and a first measurement gas and a second measurement gas based on a pressure difference between the first measurement gas and the second measurement gas measured by the pressure measurement function.
  • the pressure correction unit of the present embodiment has been described as correcting the pressure value of the second measured gas in the cylinder 21b.
  • the location for correcting the pressure value of the second gas to be measured may be another location, for example, inside the cell 11.
  • the measuring device 100 is configured such that the pressure value of the gas to be measured when injected into the cell 11 is equal to the reference pressure value, regardless of the measurement location of the measuring device 100 and the concentration of the component gas. Any configuration may be used as long as the correction is performed.
  • the pressure correction unit reduces the pressure (degree of pressurization) by the pressurization control unit for the second gas to be measured, the pressure of which increases.
  • the pressure value of the two measured gases may be the same.
  • ⁇ 100 ⁇ measuring device 502 ⁇ first measuring unit, 504 ⁇ concentration adjusting unit, 506 ⁇ pressurizing control unit, 508 ⁇ pressure correcting unit, 510 ⁇ second measuring unit, 512 ⁇ pressure measuring unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention comprises: a first measuring unit (502) which measures a concentration of a component gas of each of a first gas to be measured and a second gas to be measured collected as gases to be measured; a concentration adjusting unit (504) which adjusts the concentration of the second gas to be measured such that the concentration of the component gas of the first gas to be measured and the concentration of the component gas of the second gas to be measured by the first measuring unit are the same; a pressurizing control unit (506) which performs pressurization with a predetermined force; a pressure measuring unit (508) which measures a pressure value of a gas to be measured having at least a higher concentration of the component gas; a pressure correction unit (508) which corrects the pressure of the second gas to be measured in the cell on the basis of a pressure difference; and a second measuring unit (510) which measures a concentration ratio of two types of component gases of the first gas to be measured and the second gas to be measured after being corrected by the pressure correction unit.

Description

測定装置、および測定方法Measuring device and measuring method
 本技術は、第1被測定ガスおよび第2被測定ガスそれぞれの2種類の成分ガスの濃度比を測定する測定装置、および測定方法に関する。 The present technology relates to a measuring device and a measuring method for measuring a concentration ratio of two kinds of component gases of a first gas to be measured and a second gas to be measured.
 従来、医療の分野において、赤外線検出器を病気の診断に利用する測定装置が開発されている。測定装置は、生体(被検者)からの被測定ガス(被検者の呼気)に含まれる2種類の成分ガスの濃度比に基づいて、病気等を診断する。2種類の成分ガスはお互いに同位体の関係である。 測定 Conventionally, in the medical field, measuring devices that use infrared detectors for diagnosing diseases have been developed. The measuring device diagnoses a disease or the like based on a concentration ratio of two types of component gases contained in a gas to be measured (expired gas of the subject) from a living body (a subject). The two component gases have an isotope relationship with each other.
 測定装置は、典型的には、薬物を生体に投与する前の第1被測定ガスに含まれる2種類の成分ガスの濃度比と、該薬物を生体に投与した後の第2被測定ガスに含まれる2種類の成分ガスの濃度比とを測定する。測定装置は、第1被測定ガスをセルに収容させるとともに、第2被測定ガスをセルに収容させる。測定装置は、セル内に収容された第1被測定ガスに含まれる2種類の成分ガスの濃度比と、セル内に収容された第2被測定ガスに含まれる2種類の成分ガスの濃度比とに基づいて、病気等の診断を行う。 Typically, the measurement device is configured to measure the concentration ratio of two types of component gases contained in the first measured gas before administering the drug to the living body, and the concentration ratio between the two component gases contained in the first measuring gas after administering the drug to the living body. The concentration ratio of the two kinds of component gases contained is measured. The measuring device causes the first gas to be measured to be accommodated in the cell and the second gas to be measured to be accommodated in the cell. The measuring device is configured to determine a concentration ratio between two kinds of component gases contained in the first gas to be measured contained in the cell and a concentration ratio of two kinds of component gases contained in the second gas to be measured contained in the cell. Based on this, a diagnosis of a disease or the like is made.
 例えば、特許文献1では、測定装置が、セル内に被測定ガスを圧送し、成分ガスの濃度比の測定の精度を向上させるために、セル内の被測定ガスを加圧する技術が提案されている。また、特許文献2では、測定装置が、成分ガスの濃度比の測定の精度を向上させるために、セル内の第1被測定ガスと、第2被測定ガスとで成分ガスの濃度を同一にするように、成分ガスの濃度が高い方の被測定ガスを外気で希釈することが提案されている。 For example, Patent Literature 1 proposes a technique in which a measuring device pumps a gas to be measured into a cell and pressurizes the gas to be measured in the cell in order to improve the accuracy of measuring the concentration ratio of the component gas. I have. Further, in Patent Document 2, in order to improve the accuracy of measuring the concentration ratio of the component gas, the measuring device sets the concentration of the component gas to be the same in the first gas to be measured and the second gas to be measured in the cell. As such, it has been proposed to dilute the measured gas having a higher component gas concentration with the outside air.
特開2002-98629号公報JP-A-2002-98629 特開平10-197444号公報JP-A-10-197444
 このように、成分ガスの濃度比の測定の精度を向上させる測定装置が提案されているが、医療機器の技術が進歩した昨今、成分ガスの濃度比の測定の精度をさらに向上させることが望まれている。 As described above, a measuring device that improves the accuracy of the measurement of the concentration ratio of the component gas has been proposed. However, in recent years, as the technology of medical equipment has advanced, it is desired to further improve the accuracy of the measurement of the concentration ratio of the component gas. It is rare.
 本技術は、成分ガスの濃度比の測定の精度を向上させる測定装置、および測定方法を提供することを目的とする。 技術 The present technology aims to provide a measuring device and a measuring method that improve the accuracy of measuring the concentration ratio of component gases.
 本発明のある局面に従う測定装置は、互いに同位体の関係である2種類の成分ガスを含む被測定ガスを収容するセルを含み、セル内の被測定ガスに適した波長の透過光の吸光度を求め、該吸光度に基づいて、セル内の被測定ガスの2種類の成分ガスの濃度を測定する測定装置であって、被測定ガスとして収集した第1被測定ガスおよび第2被測定ガスそれぞれの成分ガスの濃度を測定する第1測定部と、第1測定部で測定した第1被測定ガスの成分ガスの濃度と第2被測定ガスの成分ガスの濃度とが同じになるように、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整する濃度調整部と、濃度調整部による調整を経た第1被測定ガスおよび第2被測定ガスに対して、収容したセル内で予め定められた力で加圧する加圧部と、第1測定部で測定した第1被測定ガスと第2被測定ガスとの成分ガスの濃度差に基づいて、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の加圧部での圧力を補正する圧力補正部と、圧力補正部による補正を経た第1被測定ガスおよび第2被測定ガスそれぞれに対して、2種類の成分ガスの濃度比を測定する第2測定部とを備える。 A measuring device according to an aspect of the present invention includes a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, and measures the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell. A measuring device for measuring the concentrations of the two types of component gases of the gas to be measured in the cell on the basis of the absorbance, wherein the first gas and the second gas to be measured are collected as the gas to be measured. A first measuring unit that measures the concentration of the component gas, and a second measuring unit that measures the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas that are measured by the first measuring unit. A concentration adjusting section for adjusting the concentration of at least one of the component gas of the first measurement gas and the second measurement gas, and a first measurement gas and a second measurement gas which have been adjusted by the concentration adjustment section are accommodated. With a predetermined force in the cell At least one of the first gas to be measured and the second gas to be measured, based on the pressure difference to be applied and the concentration difference between the component gases of the first gas to be measured and the second gas to be measured measured by the first measuring unit. A pressure compensating section for compensating the pressure in the pressurizing section, and a second compensating section for measuring the concentration ratios of the two types of component gases with respect to each of the first gas to be measured and the second gas to be measured after being corrected by the pressure compensating section And two measuring units.
 本発明の異なる局面に従う測定装置は、互いに同位体の関係である2種類の成分ガスを含む被測定ガスを収容するセルを含み、セル内の被測定ガスに適した波長の透過光の吸光度を求め、該吸光度に基づいて、セル内の被測定ガスの2種類の成分ガスの濃度を測定する測定装置であって、被測定ガスとして収集した第1被測定ガスおよび第2被測定ガスそれぞれの成分ガスの濃度を測定する第1測定部と、第1測定部で測定した第1被測定ガスの成分ガスの濃度と第2被測定ガスの成分ガスの濃度とが同じになるように、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整する濃度調整部と、濃度調整部による調整を経た第1被測定ガスおよび第2被測定ガスに対して、収容したセル内で予め定められた力で加圧する加圧部と、加圧部で加圧したセル内での第1被測定ガスおよび第2被測定ガスのうち少なくとも成分ガスの濃度が高い方の被測定ガスの圧力値を測定する圧力測定部と、圧力測定部で測定した第1被測定ガスと第2被測定ガスとの圧力差に基づいて、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の加圧部での圧力を補正する圧力補正部と、圧力補正部による補正を経た第1被測定ガスおよび第2被測定ガスそれぞれに対して、2種類の成分ガスの濃度比を測定する第2測定部とを備える。 A measuring device according to a different aspect of the present invention includes a cell containing a gas to be measured containing two kinds of component gases having an isotope relationship with each other, and measures the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell. A measuring device for measuring the concentrations of the two types of component gases of the gas to be measured in the cell on the basis of the absorbance, wherein the first gas and the second gas to be measured are collected as the gas to be measured. A first measuring unit that measures the concentration of the component gas, and a second measuring unit that measures the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas that are measured by the first measuring unit. A concentration adjusting section for adjusting the concentration of at least one of the component gas of the first measurement gas and the second measurement gas, and a first measurement gas and a second measurement gas which have been adjusted by the concentration adjustment section are accommodated. Predetermined force in a closed cell A pressurizing unit for pressurizing, and a pressure for measuring a pressure value of a gas to be measured having a higher concentration of at least a component gas among the first gas to be measured and the second gas to be measured in the cell pressurized by the pressurizing unit. A measuring unit, based on a pressure difference between the first gas to be measured and the second gas to be measured measured by the pressure measuring unit, at least one of the first gas to be measured and the second gas to be measured; A pressure correction unit for correcting the pressure; and a second measurement unit for measuring the concentration ratio of the two types of component gases with respect to each of the first measured gas and the second measured gas that have been corrected by the pressure correction unit. .
 圧力補正部は、加圧部で加圧したセル内での第1被測定ガスの圧力値と第2被測定ガスの圧力値とのうち高い方の圧力値が、低い方の圧力値となるように加圧部での圧力を補正する。 The pressure correction unit is configured such that a higher pressure value of the pressure value of the first measured gas and the pressure value of the second measured gas in the cell pressurized by the pressurizing unit is a lower pressure value. The pressure in the pressurizing section is corrected as described above.
 濃度調整部は、第1測定部で測定した第1被測定ガスの成分ガスの濃度と第2被測定ガスの成分ガスの濃度とのうち高い方の濃度が、低い方の濃度となるように、高い方の濃度の被測定ガスを外気で希釈する。 The concentration adjusting unit is configured to set the higher concentration of the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas measured by the first measuring unit to be the lower concentration. , The higher concentration of the gas to be measured is diluted with outside air.
 圧力補正部は、濃度調整部において外気で希釈した第1被測定ガスおよび第2被測定ガスのいずれか一方に対して加圧部での圧力を補正する。 (4) The pressure correcting unit corrects the pressure in the pressurizing unit for one of the first gas to be measured and the second gas to be measured diluted with the outside air in the concentration adjusting unit.
 加圧部は、被測定ガスをセルに圧送するシリンダと、シリンダに挿入されているピストンと、ピストンを駆動する駆動部とをさらに有し、駆動部は、被測定ガスを収容したセル内の圧力値が成分ガスの濃度を測定する場合の圧力値となるように、予め定められた力でピストンを駆動する。 The pressurizing unit further includes a cylinder for pressure-feeding the gas to be measured to the cell, a piston inserted into the cylinder, and a driving unit for driving the piston, and the driving unit is provided in the cell containing the gas to be measured. The piston is driven with a predetermined force so that the pressure value becomes the pressure value when measuring the concentration of the component gas.
 圧力補正部は、シリンダからセル内に圧送される被測定ガスの圧送量により加圧部での圧力を補正する。 The pressure correcting unit corrects the pressure in the pressurizing unit based on the amount of the gas to be measured which is pumped from the cylinder into the cell.
 圧力補正部は、加圧部で加圧したセル内での圧力値が高くなる方の第1被測定ガスおよび第2被測定ガスの一方をシリンダからセル内に圧送する圧送量を低減する。 (4) The pressure compensating unit reduces the amount of pumping of one of the first gas to be measured and the second gas to be measured, which has a higher pressure value in the cell pressurized by the pressurizing unit, from the cylinder into the cell.
 圧力補正部は、加圧部がセル内に圧送する予め定められた圧送量の被測定ガスをシリンダに収容する処理において、圧送量を低減する。 (4) The pressure compensating unit reduces the amount of pumping in the process of accommodating a predetermined amount of gas to be measured to be pumped into the cell by the pressurizing unit.
 2種類の成分ガスは、12COおよび13COである。
 本発明のある局面に従う測定方法は、互いに同位体の関係である2種類の成分ガスを含む被測定ガスを収容するセルを含み、セル内の被測定ガスに適した波長の透過光の吸光度を求め、該吸光度に基づいて、セル内の被測定ガスの2種類の成分ガスの濃度を測定する測定方法であって、被測定ガスとして収集した第1被測定ガスおよび第2被測定ガスそれぞれの成分ガスの濃度を測定するステップと、測定した第1被測定ガスの成分ガスの濃度と第2被測定ガスの成分ガスの濃度とが同じになるように、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整するステップと、調整を経た第1被測定ガスおよび第2被測定ガスに対して、収容したセル内で予め定められた力で加圧するステップと、測定した第1被測定ガスと第2被測定ガスとの成分ガスの濃度差に基づいて、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の加圧部での圧力を補正するステップと、補正を経た第1被測定ガスおよび第2被測定ガスそれぞれに対して、2種類の成分ガスの濃度比を測定するステップとを有する。
The two component gases are 12 CO 2 and 13 CO 2 .
A measurement method according to an aspect of the present invention includes a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, and measures the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell. A measurement method for measuring the concentrations of two types of component gases in the gas to be measured in the cell based on the absorbance, wherein the first gas and the second gas to be measured are collected as the gas to be measured. The step of measuring the concentration of the component gas; and the step of measuring the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas so as to be the same. Adjusting the concentration of at least one component gas of the measurement gas, and pressurizing the adjusted first and second measurement gases with a predetermined force in the accommodated cell. , The measured first Correcting the pressure in at least one pressurizing section of the first gas to be measured and the second gas to be measured based on the concentration difference between the component gases of the constant gas and the second gas to be measured; Measuring the concentration ratio of the two types of component gases to each of the first measured gas and the second measured gas.
 本発明の異なる局面に従う測定方法は、互いに同位体の関係である2種類の成分ガスを含む被測定ガスを収容するセルを含み、セル内の被測定ガスに適した波長の透過光の吸光度を求め、該吸光度に基づいて、セル内の被測定ガスの2種類の成分ガスの濃度を測定する測定方法であって、被測定ガスとして収集した第1被測定ガスおよび第2被測定ガスそれぞれの成分ガスの濃度を測定するステップと、測定した第1被測定ガスの成分ガスの濃度と第2被測定ガスの成分ガスの濃度とが同じになるように、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整するステップと、調整を経た第1被測定ガスおよび第2被測定ガスに対して、収容したセル内で予め定められた力で加圧するステップと、加圧したセル内での第1被測定ガスおよび第2被測定ガスそれぞれの圧力値を測定するステップと、測定した第1被測定ガスと第2被測定ガスとの圧力差に基づいて、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の加圧部での圧力を補正するステップと、補正を経た第1被測定ガスおよび第2被測定ガスそれぞれに対して、2種類の成分ガスの濃度比を測定するステップとを備える。 A measurement method according to a different aspect of the present invention includes a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, and measures the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell. A measurement method for measuring the concentrations of two types of component gases in the gas to be measured in the cell based on the absorbance, wherein the first gas and the second gas to be measured are collected as the gas to be measured. The step of measuring the concentration of the component gas; and the step of measuring the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas so as to be the same. Adjusting the concentration of at least one component gas of the measurement gas, and pressurizing the adjusted first and second measurement gases with a predetermined force in the accommodated cell. , Pressurized Measuring the pressure value of each of the first measured gas and the second measured gas within the first gas, and the first measured gas based on the measured pressure difference between the first measured gas and the second measured gas. Correcting the pressure in at least one of the pressurizing units of the first and second measured gases, and the concentration ratio of the two types of component gases to the corrected first and second measured gases, respectively. Measuring.
 本発明のある実施の形態によれば、成分ガスの濃度比の測定の精度を向上させる測定装置、および測定方法を提供できる。 According to an embodiment of the present invention, it is possible to provide a measuring device and a measuring method for improving the accuracy of measuring the concentration ratio of component gases.
本実施形態に係る測定装置の構成を説明するための概略図である。It is a schematic diagram for explaining the composition of the measuring device concerning this embodiment. 本実施形態に係る演算回路の構成を説明するためのブロック図である。FIG. 2 is a block diagram illustrating a configuration of an arithmetic circuit according to the embodiment. 本実施形態に係るガス注入器の構成を説明するための概略図である。It is a schematic diagram for explaining the composition of the gas injector concerning this embodiment. 本実施形態に係る演算回路の機能構成例を説明するためのブロック図である。FIG. 3 is a block diagram for explaining a functional configuration example of an arithmetic circuit according to the embodiment. 本実施形態に係る測定装置のフローチャートである。It is a flowchart of the measuring device concerning this embodiment. 本実施形態に係る測定装置でのCOの推移などを説明するための図である。It is a diagram for explaining the like CO 2 transition of the measuring apparatus according to the present embodiment. 第1対応テーブルを説明するための図である。It is a figure for explaining the 1st correspondence table. 第2対応テーブルを説明するための図である。It is a figure for explaining the 2nd correspondence table. 本実施形態に係る測定装置の主な処理を説明するための図である。It is a figure for explaining main processing of a measuring device concerning this embodiment. 第3対応テーブルを説明するための図である。It is a figure for explaining the 3rd correspondence table. 別の実施の形態に係るピストンの駆動などを説明するための図である。FIG. 9 is a diagram for explaining driving of a piston according to another embodiment. 別の実施の形態に係る測定装置の主な処理を説明するための図である。FIG. 9 is a diagram for describing main processing of a measurement device according to another embodiment.
 [第1実施形態]
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
[First Embodiment]
Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions have the same reference characters allotted, and description thereof will not be repeated.
 (適用例)
 本実施形態に係る測定装置は、同位体の入った薬物を生体に投与した後、同位体の光吸収特性により同位体の濃度比の変化を測定して、生体の代謝率を求めて病気の診断に利用する装置を例に説明する。具体的に、胃潰瘍、胃炎の原因であると言われているヘリコバクタピロリー(HP)が被検者の胃の中に存在するか否かの診断に利用する測定装置について説明する。
(Application example)
The measuring device according to the present embodiment, after administering a drug containing an isotope to a living body, measures the change in the concentration ratio of the isotope by the light absorption characteristics of the isotope, obtains the metabolic rate of the living body, and obtains the disease. An apparatus used for diagnosis will be described as an example. Specifically, a measurement device used for diagnosing whether or not Helicobacter pylori (HP), which is said to cause gastric ulcer and gastritis, is present in the stomach of the subject will be described.
 被検者にHPが存在するか否かを診断する方法としては、様々な方法が提案されている。本実施形態に係る測定装置では、HPが持つ強いウレアーゼ活性により尿素を二酸化炭素とアンモニアとに分解する性質を利用して、被検者に投与した同位体13Cでマーキングした尿素が分解されて得られる13COの濃度比の変化から、HPの有無の診断を行っている。 Various methods have been proposed as a method for diagnosing whether or not HP exists in a subject. In the measuring device according to the present embodiment, the urea marked with the isotope 13 C administered to the subject is decomposed by utilizing the property of HP to decompose urea into carbon dioxide and ammonia by the strong urease activity. Diagnosis of the presence or absence of HP is made from the change in the concentration ratio of 13 CO 2 obtained.
 ここで、炭素には、質量数が12のものの他、質量数が13や14の同位体が存在するが、これらの同位体の中で質量数が13の同位体13Cは、放射性がなく、安定して存在するため取り扱い易い。そのため、被検者に投与する尿素は、同位体13Cでマーキングされ、被検者の胃の中にHPが存在する場合、当該HPにより13COとアンモニアとに分解される。分解された13COは、被検者の呼気に含まれて排出されるため、被検者の呼気に含まれる13COの濃度比を測定することで、HPが被検者の胃の中に存在するか否かの診断が可能となる。 Here, carbon has a mass number of 12 and isotopes with mass numbers of 13 and 14 in addition to those having a mass number of 12. Among these isotopes, an isotope 13 C having a mass number of 13 has no radioactivity. It is easy to handle because it exists stably. Therefore, the urea to be administered to the subject is marked with the isotope 13 C, and when HP is present in the stomach of the subject, the urea is decomposed into 13 CO 2 and ammonia by the HP. Since the decomposed 13 CO 2 is contained in and exhaled from the subject's breath, by measuring the concentration ratio of 13 CO 2 contained in the subject's exhalation, the HP can reduce It is possible to make a diagnosis as to whether or not it is present inside.
 空気中に含まれる13CO12COとの濃度比は、1:100である。そのため、本実施形態に係る測定装置は、13CO12COとの濃度比を精度よく測定することが求められる。なお、本実施形態に係る測定装置においては、13CO12COとの濃度比を求める方法として赤外分光を用いており、一方のセルでの13COの吸収と、他方のセルでの12COの吸収とが等しくなる長短2本のセルを備えている。測定装置では、各セルに、それぞれの分析に適した波長の赤外光を当てて、透過光の光量(透過光量)を測定し、空気中の濃度比に対して被検者の呼気に含まれる濃度比の変化を求めている。なお、13CO12COとの濃度比を求める方法については、特公昭61-42219号公報や、特公昭61-42220号公報などに開示されている。 The concentration ratio between 13 CO 2 and 12 CO 2 contained in the air is 1: 100. Therefore, the measuring device according to the present embodiment is required to accurately measure the concentration ratio between 13 CO 2 and 12 CO 2 . In the measuring apparatus according to the present embodiment, infrared spectroscopy is used as a method for determining the concentration ratio between 13 CO 2 and 12 CO 2, and the absorption of 13 CO 2 in one cell and the other cell And two short and long cells, which have the same absorption of 12 CO 2 at the same time. The measuring device irradiates each cell with infrared light of a wavelength suitable for each analysis, measures the amount of transmitted light (the amount of transmitted light), and includes the concentration ratio in air in the breath of the subject. The change in concentration ratio is required. The method of obtaining the concentration ratio between 13 CO 2 and 12 CO 2 is disclosed in Japanese Patent Publication No. Sho 61-42219 and Japanese Patent Publication No. Sho 61-42220.
 以下、同位体13Cでマーキングしたウレア診断薬を被検者に投与した後、呼気中の13COの濃度比を分光測定する場合について、図面を参照しながら詳細に説明する。まず、ウレア診断薬を投与する前の被検者の呼気を第1被測定ガス(ベースガスともいう。)として呼気バッグに採集する。その後、被検者にウレア診断薬を経口投与し、約20分後、被検者の呼気を第2被測定ガス(サンプルガスともいう。)として呼気バッグに採集する。 Hereinafter, the case where the concentration ratio of 13 CO 2 in exhaled breath is spectroscopically measured after administering the urea diagnostic agent marked with the isotope 13 C to the subject will be described in detail with reference to the drawings. First, the breath of the subject before administration of the urea diagnostic agent is collected in a breath bag as a first measurement gas (also referred to as a base gas). Thereafter, the urea diagnostic agent is orally administered to the subject, and after about 20 minutes, the breath of the subject is collected in a breath bag as a second gas to be measured (also referred to as a sample gas).
 第1被測定ガスの呼気バッグと、第2被測定ガスの呼気バッグとをそれぞれ測定装置の所定のノズルにセットし、13CO12COとの濃度比を測定する。 The exhalation bag of the first gas to be measured and the exhalation bag of the second gas to be measured are set on predetermined nozzles of the measuring device, respectively, and the concentration ratio between 13 CO 2 and 12 CO 2 is measured.
 (測定装置)
 図1は、第1実施形態に係る測定装置100の構成を説明するための概略図である。測定装置100では、第1被測定ガスの呼気バッグBと第2被測定ガスの呼気バッグSとを、それぞれノズルN1,N2にセットする。ノズルN1は、パイプ(例えば、金属パイプ)を通してフィルタF1およびバルブ(例えば、電磁バルブ)V2につながっている。なお、フィルタF1は、呼気バッグBに含まれる第1被測定ガス以外の異物を除去するためのフィルタである。ノズルN2は、パイプを通してフィルタF2およびバルブV3につながっている。バルブV2およびバルブV3は、1本のパイプを通してガス注入器21につながっている。なお、フィルタF2は、呼気バッグSに含まれる第1被測定ガス以外の異物を除去するためのフィルタである。
(measuring device)
FIG. 1 is a schematic diagram for explaining the configuration of the measuring device 100 according to the first embodiment. In the measuring apparatus 100, the exhalation bag B of the first measured gas and the exhalation bag S of the second measured gas are set in the nozzles N1 and N2, respectively. The nozzle N1 is connected to a filter F1 and a valve (for example, an electromagnetic valve) V2 through a pipe (for example, a metal pipe). The filter F1 is a filter for removing foreign substances other than the first gas to be measured contained in the breath bag B. The nozzle N2 is connected to the filter F2 and the valve V3 through a pipe. The valve V2 and the valve V3 are connected to the gas injector 21 through one pipe. The filter F2 is a filter for removing foreign substances other than the first gas to be measured contained in the breath bag S.
 ガス注入器21につながるパイプには、バルブV1,V4,V5がそれぞれつながっている。バルブV1は、パイプを通してフィルタF5、およびリファレンスガス供給部30につながっている。リファレンスガス供給部30には、例えばソーダライム(水酸化ナトリウムと水酸化カルシウムとを混合したもの)を炭酸ガス吸収剤として用いる炭酸ガス吸収部を含んでいる。そのため、リファレンスガス供給部30は、外部から取り込んだ空気から二酸化炭素を吸収したリファレンスガスをガス注入器21に供給することができる。なお、フィルタF5は、ガス注入器21に供給するリファレンスガスから異物を取り除く防塵フィルタである。 パ イ プ Valves V1, V4, and V5 are connected to the pipe connected to the gas injector 21. The valve V1 is connected to the filter F5 and the reference gas supply unit 30 through a pipe. The reference gas supply unit 30 includes a carbon dioxide gas absorption unit that uses, for example, soda lime (a mixture of sodium hydroxide and calcium hydroxide) as a carbon dioxide gas absorbent. Therefore, the reference gas supply unit 30 can supply the gas injector 21 with a reference gas that has absorbed carbon dioxide from air taken in from the outside. Note that the filter F5 is a dustproof filter that removes foreign matter from the reference gas supplied to the gas injector 21.
 バルブV4は、パイプを通してフィルタF4、およびセル11につながっている。バルブV5は、パイプを通してフィルタF3につながっている。フィルタF3は、外部から空気を取り込み口に設けられており、取り込んだ空気から異物を取り除くフィルタである。フィルタF4は、ガス注入器21に供給するリファレンスガス、第2被測定ガス、および第2被測定ガスから水分を取り除くドライフィルタである。 The valve V4 is connected to the filter F4 and the cell 11 through a pipe. The valve V5 is connected to the filter F3 through a pipe. The filter F3 is provided at an intake port for taking in air from the outside, and is a filter for removing foreign matter from the taken-in air. The filter F4 is a dry filter that removes moisture from the reference gas, the second measured gas, and the second measured gas supplied to the gas injector 21.
 バルブV4の他方は、12COの吸収を測定するための第1サンプルセル11aにつながっている。第1サンプルセル11aは、セル11の1つのセルで12COの吸収を測定するため短いセルである。セル11には、他に13COの吸収を測定するための長い第2サンプルセル11bおよび補助セル11cが含まれている。第1サンプルセル11aと第2サンプルセル11bとは連通しており、第1サンプルセル11aに導かれたガスは、そのまま第2サンプルセル11bに入り、バルブV6を通して排気される。補助セル11cには赤外線の吸収のないリファレンスガスが充填され、密閉されている。なお、補助セル11cは、リファレンスガスを充填して密閉するのではなく、リファレンスガス供給部30からリファレンスガスを導いて、一定の流速で常時流してもよい。 The other end of the valve V4 is connected to a first sample cell 11a for measuring the absorption of 12 CO 2 . The first sample cell 11a is a short cell for measuring the absorption of 12 CO 2 in one of the cells 11. The cell 11 further includes a long second sample cell 11b and an auxiliary cell 11c for measuring the absorption of 13 CO 2 . The first sample cell 11a and the second sample cell 11b communicate with each other, and the gas guided to the first sample cell 11a enters the second sample cell 11b as it is and is exhausted through the valve V6. The auxiliary cell 11c is filled with a reference gas that does not absorb infrared rays and is sealed. Note that the auxiliary cell 11c may not always be filled with the reference gas and sealed, but may guide the reference gas from the reference gas supply unit 30 and constantly flow the same at a constant flow rate.
 第1サンプルセル11aの容量は約0.1ml、第2サンプルセル11bの容量は約3.7mlである。セル11の端面には、赤外線を透過させるサファイヤ透過窓が設けられている。また、セル11は、パイプを通して圧力計31とつながっている。圧力計31は、ガス注入器21によってセル11内に導入されたガスの圧力を測定することができる。また、後述するシリンダ21bは、圧力計33とつながっている。圧力計33は、シリンダ21b内に導入されたガスの圧力を測定することができる。 容量 The capacity of the first sample cell 11a is about 0.1 ml, and the capacity of the second sample cell 11b is about 3.7 ml. A sapphire transmission window for transmitting infrared light is provided on an end face of the cell 11. The cell 11 is connected to a pressure gauge 31 through a pipe. The pressure gauge 31 can measure the pressure of the gas introduced into the cell 11 by the gas injector 21. Further, a cylinder 21 b described later is connected to the pressure gauge 33. The pressure gauge 33 can measure the pressure of the gas introduced into the cylinder 21b.
 セル11の一方の端面側には、赤外光を発する光源装置L1,L2が設けられている。光源装置L1,L2には、赤外線を照射するための2つの導波管(図示せず)を備えている。光源装置L1,L2による赤外光の発生方式は、任意のものでよく、例えばセラミックスヒータ(表面温度450℃)等が使用可能である。また、光源装置L1,L2とセル11との間には、赤外光を一定周期で遮断して通過させる光チョッパ22が設けられている。光チョッパ22は、モータ22aで回転させることで、セル11に一定の周期(例えば、600Hz)で赤外光を出射させることができる。つまり、光チョッパ22は、光源装置L1,L2から出射した赤外光の強度を正弦波状に変調させる光変調器である。 光源 On one end face side of the cell 11, light source devices L1 and L2 that emit infrared light are provided. The light source devices L1 and L2 are provided with two waveguides (not shown) for irradiating infrared rays. The method of generating infrared light by the light source devices L1 and L2 may be any method, for example, a ceramic heater (surface temperature of 450 ° C.) or the like can be used. An optical chopper 22 is provided between the light source devices L1 and L2 and the cell 11 to block and pass infrared light at a constant period. The optical chopper 22 can cause the cell 11 to emit infrared light at a constant cycle (for example, 600 Hz) by being rotated by the motor 22a. That is, the optical chopper 22 is an optical modulator that modulates the intensity of the infrared light emitted from the light source devices L1 and L2 into a sine wave shape.
 光源装置L1から出射された赤外光は、第2サンプルセル11bを通り、第1検出素子25aで光量が検出される。第2サンプルセル11bと第1検出素子25aとの間には、波長フィルタ24aが設けられている。光源装置L2から出射された赤外光は、第1サンプルセル11aおよび補助セル11cを通り、第2検出素子25bで光量が検出される。第1サンプルセル11aおよび補助セル11cと第2検出素子25bとの間には、波長フィルタ24bが設けられている。 赤 外 The infrared light emitted from the light source device L1 passes through the second sample cell 11b, and the amount of light is detected by the first detection element 25a. A wavelength filter 24a is provided between the second sample cell 11b and the first detection element 25a. The amount of infrared light emitted from the light source device L2 passes through the first sample cell 11a and the auxiliary cell 11c, and the amount of light is detected by the second detection element 25b. A wavelength filter 24b is provided between the first sample cell 11a and the auxiliary cell 11c and the second detection element 25b.
 波長フィルタ24aは、13COの吸収を測定するため約4412nmの波長の赤外光を通し、波長フィルタ24bは、12COの吸収を測定するため約4280nmの波長の赤外線を通すように設計されている。第1検出素子25a,および第2検出素子25bは赤外光の光量を検出する素子である。 The wavelength filter 24a is designed to pass infrared light having a wavelength of about 4412 nm to measure absorption of 13 CO 2 , and the wavelength filter 24b is designed to pass infrared light having a wavelength of about 4280 nm to measure absorption of 12 CO 2. Have been. The first detection element 25a and the second detection element 25b are elements that detect the amount of infrared light.
 第1検出素子25a,および第2検出素子25bの全体は、ヒータおよびペルチェ素子27により一定温度に保たれている。また、測定装置100内部の空気を換気するファン28,29が設けられている。さらに、測定装置100は、バルブV1~バルブV6、およびガス注入器21などを駆動する駆動回路50を備える。 The entire first detection element 25a and second detection element 25b are maintained at a constant temperature by a heater and a Peltier element 27. Further, fans 28 and 29 for ventilating the air inside the measuring device 100 are provided. Further, the measuring apparatus 100 includes a drive circuit 50 that drives the valves V1 to V6, the gas injector 21, and the like.
 バルブV1は、リファレンスガスをシリンダ21b内に取り込む場合に開放されるバルブである。バルブV2は、第1被測定ガスの呼気バッグBから、第1被測定ガスをシリンダ21b内に取り込む場合に開放されるバルブである。バルブV3は、第2被測定ガスの呼気バッグSから、第2被測定ガスをシリンダ21b内に取り込む場合に開放されるバルブである。バルブV4は、シリンダ21b内のガス(被測定ガス、リファレンスガス)をセル11に圧送する場合に開放されるバルブである。バルブV5は、セル11に被測定ガスを圧送する前(セル11に被測定ガスを収容する前)に、該被測定ガスを外部に排出させる場合に、開放されるバルブである。バルブV6は、セル11に被測定ガスを圧送したときに、該被測定ガス(セル11を通過した被測定ガス)を外部に排出させる場合に、開放されるバルブである。 The valve V1 is a valve that is opened when the reference gas is taken into the cylinder 21b. The valve V2 is a valve that is opened when the first measured gas is taken into the cylinder 21b from the expiration bag B of the first measured gas. The valve V3 is a valve that is opened when the second measured gas is taken into the cylinder 21b from the second measured gas expiration bag S. The valve V4 is a valve that is opened when the gas (measured gas, reference gas) in the cylinder 21b is pumped to the cell 11. The valve V5 is a valve that is opened when the gas to be measured is discharged to the outside before the gas to be measured is pumped into the cell 11 (before the gas to be measured is stored in the cell 11). The valve V6 is a valve that is opened when the measured gas (the measured gas that has passed through the cell 11) is discharged to the outside when the measured gas is pumped into the cell 11.
 (駆動回路)
 図2は、第1実施形態に係る駆動回路50の構成を説明するためのブロック図である。図2を参照して、駆動回路50は、マイクロプロセッサ51と、チップセット52と、メインメモリ54と、不揮発性メモリ56と、システムタイマ58と、表示コントローラ60と、I/Oコントローラ70とを含む。チップセット52と他のコンポーネントとの間は、各種のバスを介してそれぞれ結合されている。
(Drive circuit)
FIG. 2 is a block diagram for explaining the configuration of the drive circuit 50 according to the first embodiment. 2, drive circuit 50 includes a microprocessor 51, a chipset 52, a main memory 54, a non-volatile memory 56, a system timer 58, a display controller 60, and an I / O controller 70. Including. The chipset 52 and other components are respectively connected via various buses.
 マイクロプロセッサ51およびチップセット52は、典型的には、汎用的なコンピュータアーキテクチャに準じて構成される。すなわち、マイクロプロセッサ51は、チップセット52から内部クロックに従って順次供給される命令コードを解釈して実行する。チップセット52は、接続されている各種コンポーネントとの間で内部的なデータを遣り取りするとともに、マイクロプロセッサ51に必要な命令コードを生成する。さらに、チップセット52は、マイクロプロセッサ51での演算処理の実行の結果得られたデータなどをキャッシュする機能を有する。 The microprocessor 51 and the chip set 52 are typically configured according to a general-purpose computer architecture. That is, the microprocessor 51 interprets and executes instruction codes sequentially supplied from the chipset 52 according to the internal clock. The chipset 52 exchanges internal data with various connected components and generates an instruction code required for the microprocessor 51. Further, the chipset 52 has a function of caching data and the like obtained as a result of execution of arithmetic processing in the microprocessor 51.
 駆動回路50は、記憶手段として、メインメモリ54および不揮発性メモリ56を有する。 The drive circuit 50 has a main memory 54 and a nonvolatile memory 56 as storage means.
 メインメモリ54は、揮発性の記憶領域(RAM)であり、駆動回路50への電源投入後にマイクロプロセッサ51で実行されるべき各種プログラムを保持する。また、メインメモリ54は、マイクロプロセッサ51による各種プログラムの実行時の作業用メモリとしても使用される。このようなメインメモリ54としては、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)といったデバイスが用いられる。 The main memory 54 is a volatile storage area (RAM), and holds various programs to be executed by the microprocessor 51 after the power supply to the drive circuit 50 is turned on. The main memory 54 is also used as a working memory when the microprocessor 51 executes various programs. As such a main memory 54, a device such as a DRAM (Dynamic Random Access Memory) or an SRAM (Static Random Access Memory) is used.
 一方、不揮発性メモリ56は、リアルタイムOS(Operating System)、測定装置100のシステムプログラム、ユーザプログラム、演算プログラム、設定パラメータといったデータを不揮発的に保持する。これらのプログラムやデータは、必要に応じて、マイクロプロセッサ51がアクセスできるようにメインメモリ54にコピーされる。このような不揮発性メモリ56としては、フラッシュメモリのような半導体メモリを用いることができる。あるいは、ハードディスクドライブのような磁気記録媒体や、DVD-RAM(Digital Versatile Disk Random Access Memory)のような光学記録媒体などを用いることもできる。 On the other hand, the non-volatile memory 56 non-volatilely stores data such as a real-time OS (Operating System), a system program of the measuring apparatus 100, a user program, a calculation program, and setting parameters. These programs and data are copied to the main memory 54 so that the microprocessor 51 can access them as necessary. As such a nonvolatile memory 56, a semiconductor memory such as a flash memory can be used. Alternatively, a magnetic recording medium such as a hard disk drive or an optical recording medium such as a DVD-RAM (Digital Versatile Disk Random Access Memory) can be used.
 システムタイマ58は、一定周期ごとに割り込み信号を発生してマイクロプロセッサ51に提供する。典型的には、ハードウェアの仕様によって、複数の異なる周期でそれぞれ割り込み信号を発生するように構成されるが、OS(Operating System)やBIOS(Basic Input Output System)などによって、任意の周期で割り込み信号を発生するように設定することもできる。 (4) The system timer 58 generates an interrupt signal at regular intervals and provides it to the microprocessor 51. Typically, an interrupt signal is generated at a plurality of different cycles depending on hardware specifications. However, an interrupt signal is generated at an arbitrary cycle by an OS (Operating System) or a BIOS (Basic Input Output System). It can also be set to generate a signal.
 表示コントローラ60は、接続部68を介して測定装置100に設けた表示部と接続され、当該表示部を制御している。表示コントローラ60は、メモリ演算回路62、表示演算回路64、およびバッファメモリ66を備えている。 The display controller 60 is connected to the display unit provided in the measuring device 100 via the connection unit 68, and controls the display unit. The display controller 60 includes a memory operation circuit 62, a display operation circuit 64, and a buffer memory 66.
 バッファメモリ66は、表示コントローラ60を介して表示部へ出力される表示データの送信バッファ、および、表示部(例えば、タッチパネルなど)から入力される入力データの受信バッファとして機能する。 The buffer memory 66 functions as a transmission buffer for display data output to the display unit via the display controller 60 and a reception buffer for input data input from the display unit (for example, a touch panel).
 メモリ演算回路62は、メインメモリ54からバッファメモリ66への出力データの転送、および、バッファメモリ66からメインメモリ54への入力データの転送を行う。 The memory operation circuit 62 transfers output data from the main memory 54 to the buffer memory 66, and transfers input data from the buffer memory 66 to the main memory 54.
 表示演算回路64は、接続される表示部との間で、バッファメモリ66の表示データを送信する処理および入力データを受信してバッファメモリ66に格納する処理を行う。 The display operation circuit 64 performs a process of transmitting display data of the buffer memory 66 and a process of receiving input data and storing the received data in the buffer memory 66 with a display unit connected thereto.
 I/Oコントローラ70は、接続部78を介して測定装置100に設けたバルブV1~V6やパルスモータ21fなど制御装置と接続され、バルブV1~V6やパルスモータ21fなどへの制御信号の出力、圧力計31からのデジタル信号の入力などを制御している。I/Oコントローラ70は、メモリ演算回路72、信号演算回路74、およびバッファメモリ76を備えている。 The I / O controller 70 is connected to a control device such as valves V1 to V6 and a pulse motor 21f provided in the measurement device 100 via a connection unit 78, and outputs control signals to the valves V1 to V6 and the pulse motor 21f. It controls the input of digital signals from the pressure gauge 31 and the like. The I / O controller 70 includes a memory operation circuit 72, a signal operation circuit 74, and a buffer memory 76.
 バッファメモリ76は、I/Oコントローラ70を介してバルブV1~V6やパルスモータ21fなどへ出力される制御信号の送信バッファ、および、圧力計31から入力されるデジタル信号の受信バッファとして機能する。 The buffer memory 76 functions as a transmission buffer for control signals output to the valves V1 to V6 and the pulse motor 21f via the I / O controller 70, and as a reception buffer for digital signals input from the pressure gauge 31.
 メモリ演算回路72は、メインメモリ54からバッファメモリ76への制御信号の転送、および、バッファメモリ76からメインメモリ54へのデジタル信号の転送を行なう。 The memory operation circuit 72 transfers a control signal from the main memory 54 to the buffer memory 76 and transfers a digital signal from the buffer memory 76 to the main memory 54.
 信号演算回路74は、I/Oコントローラ70に接続されるバルブV1~V6やパルスモータ21fなど制御装置との間で、バッファメモリ76の制御信号を送信する処理およびデジタル信号を受信してバッファメモリ76に格納する処理を行う。 The signal operation circuit 74 performs a process of transmitting a control signal of the buffer memory 76 and a digital signal to and from a control device such as the valves V1 to V6 and the pulse motor 21f connected to the I / O controller 70 and receives the digital signal. Then, a process of storing the data in the file 76 is performed.
 (ガス注入器について)
 図3は、被測定ガスを定量的に圧送するためのガス注入器21を示す図である。図3(A)は、ガス注入器21の平面図であり、図3(B)は、ガス注入器21の正面図であるガス注入器21において、基台21aと、シリンダ21bと、ピストン21cとを含む。ピストン21cは、シリンダ21bの内部に挿入されている。また、シリンダ21bは基台21aの上に配置される。
(About gas injector)
FIG. 3 is a diagram showing a gas injector 21 for quantitatively pumping the gas to be measured. FIG. 3A is a plan view of the gas injector 21, and FIG. 3B is a front view of the gas injector 21. In the gas injector 21, a base 21a, a cylinder 21b, and a piston 21c are shown. And The piston 21c is inserted inside the cylinder 21b. The cylinder 21b is disposed on the base 21a.
 さらに、ガス注入器21は、ナット21dと、ネジ21eと、パルスモータ21fとを含む。ナット21dと、ネジ21eと、パルスモータ21fとは、基台21aの下部に配置されている。ナット21dは、ピストン21cと連結しており、かつX1方向またはX2方向に移動可能である。ネジ21eは、ナット21dと噛み合っている。また、パルスモータ21fは、送りネジ21eを回転させる。 Furthermore, the gas injector 21 includes a nut 21d, a screw 21e, and a pulse motor 21f. The nut 21d, the screw 21e, and the pulse motor 21f are arranged below the base 21a. The nut 21d is connected to the piston 21c and is movable in the X1 direction or the X2 direction. The screw 21e is engaged with the nut 21d. Further, the pulse motor 21f rotates the feed screw 21e.
 パルスモータ21fは、駆動回路50(図4参照)により正転駆動、または逆転駆動される。パルスモータ21fの回転によってネジ21eが回転すると、回転方向に応じてナット21dとピストン21cが一体的に、X1方向またはX2方向に移動する。このように、駆動回路50は、ピストン21cを駆動する。駆動回路50は、ピストン21cの駆動、および各バルブV1~V6の開閉に応じて、シリンダ21b内に被測定ガスを第1サンプルセル11aおよび第2サンプルセル11bに対して圧送する処理、シリンダ21b内に被測定ガスを導入する処理などを実行できる。 The pulse motor 21f is driven forward or reverse by the drive circuit 50 (see FIG. 4). When the screw 21e is rotated by the rotation of the pulse motor 21f, the nut 21d and the piston 21c move integrally in the X1 direction or the X2 direction according to the rotation direction. Thus, the drive circuit 50 drives the piston 21c. The drive circuit 50 performs a process of pumping the gas to be measured into the cylinder 21b to the first sample cell 11a and the second sample cell 11b in accordance with the driving of the piston 21c and the opening and closing of each of the valves V1 to V6. For example, a process of introducing a gas to be measured can be performed.
 また、後述の図11に示すように、ピストン21cの初期の位置を「初期位置H」という。また、X2方向において最大量、ピストン21cが駆動されることにより移動する位置を、「最大位置M」という。測定装置100は、被測定ガスのセルへの圧送処理などを実行する場合には、ピストン21cを初期位置Hに戻す。また、X2方向を「圧送方向」ともいう。 Also, as shown in FIG. 11 described later, the initial position of the piston 21c is referred to as “initial position H”. In addition, a position that is moved by driving the piston 21c by the maximum amount in the X2 direction is referred to as a “maximum position M”. The measurement device 100 returns the piston 21c to the initial position H when performing a process of pumping the gas to be measured to the cell. Further, the X2 direction is also referred to as a “pressure feeding direction”.
 駆動回路50は、ピストン21cを用いた処理が終了すると、ピストン21cを初期位置Hに戻す。本実施形態では、駆動回路50がピストン21cを初期位置Hに戻す場合において、ピストン21cが、初期位置HよりもX2方向側に位置している場合には、初期位置HよりもX1方向側のバック位置Bに、一旦移動させる(図11(A)参照)。その後、駆動回路50は、ピストン21cをX2方向側に戻して、ピストン21cの位置を初期位置Hに戻す。 When the process using the piston 21c is completed, the drive circuit 50 returns the piston 21c to the initial position H. In the present embodiment, when the drive circuit 50 returns the piston 21c to the initial position H, when the piston 21c is located on the X2 direction side of the initial position H, the piston 21c is located on the X1 direction side of the initial position H. It is once moved to the back position B (see FIG. 11A). Thereafter, the drive circuit 50 returns the piston 21c to the X2 direction side, and returns the position of the piston 21c to the initial position H.
 例えば、ネジ21eとナット21dなどの機械要素において、図3に示すAの箇所でバックラッシュが生じている場合がある。仮に、駆動回路50が、「バック位置Bに、一旦移動させる処理」を実行しないと、バックラッシュが生じたままとなる。バックラッシュが生じたままの状態で、駆動回路50が、ピストン21cを、初期位置HよりもX2側に移動させようとすると、生じていたバックラッシュにより、ピストン21cの駆動量が吸収されてしまう。そうすると、測定装置100の設計時に、開発者等が意図していたピストン21cの駆動量とは異なる駆動量となってしまう。 For example, in a mechanical element such as the screw 21e and the nut 21d, a backlash may occur at a point A shown in FIG. If the drive circuit 50 does not execute the “process of temporarily moving to the back position B”, the backlash remains generated. When the drive circuit 50 attempts to move the piston 21c to the X2 side from the initial position H in a state where the backlash is still generated, the driving amount of the piston 21c is absorbed by the generated backlash. . Then, the drive amount of the piston 21c is different from the drive amount intended by the developer or the like when the measuring device 100 is designed.
 そこで、本実施形態では、ピストン21cの位置を初期位置Hに戻す際には、バック位置Bに、一旦移動させる処理(図11(A)に示す処理)を実行した後に、ピストン21cをX2方向側に戻す処理(図11(B)に示す処理)を実行する。これにより、測定装置100は、生じていたバックラッシュを解消しつつ、ピストン21cを初期位置Hに戻すことができる。このような処理を「バックラッシュ解消処理」という。なお、測定装置100は、他の工程であっても、ピストン21cを初期位置Hに戻す場合には、バックラッシュ解消処理を共通して実行する。図11のその他の箇所については後述する。 Therefore, in the present embodiment, when returning the position of the piston 21c to the initial position H, after performing the process of temporarily moving the piston 21c to the back position B (the process shown in FIG. 11A), the piston 21c is moved in the X2 direction. Then, the process of returning to the side (the process shown in FIG. 11B) is executed. Thereby, the measuring device 100 can return the piston 21c to the initial position H while eliminating the backlash that has occurred. Such processing is called "backlash elimination processing". In addition, even if it is another process, when returning the piston 21c to the initial position H, the measuring apparatus 100 commonly performs the backlash elimination process. Other parts in FIG. 11 will be described later.
 また、初期位置H、バック位置B、および最大位置Mは予め定められた位置である。これらの位置の少なくとも1つは、ユーザなどにより変更可能である。また、ピストン21cの移動速度も予め定められており、この移動速度もユーザなどにより変更可能である。 The initial position H, the back position B, and the maximum position M are predetermined positions. At least one of these positions can be changed by a user or the like. The moving speed of the piston 21c is also predetermined, and the moving speed can be changed by a user or the like.
 (測定装置の主な処理について)
 図4は、駆動回路50の主な機能を示した図である。駆動回路50は、第1測定部502と、濃度調整部504と、加圧制御部506と、圧力補正部508と、第2測定部510と、圧力測定部512との機能を含む。第1測定部502は、第1被測定ガスおよび第2被測定ガスの事前測定により、第1被測定ガスのCOの濃度および第1被測定ガスのCOの濃度を測定する。濃度調整部504は、第1測定部502で測定した第1被測定ガスのCOの濃度と、第1測定部502で測定した第2被測定ガスのCOの濃度とが同じになるように、外気を取り込む。加圧制御部506は、セル11内のガス(被測定ガス、リファレンスガス)に対して、該ガスの圧力を基準圧力とするように加圧する。圧力補正部508は、圧力測定部512で測定した第1被測定ガスと第2被測定ガスとの圧力差に基づいて、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の加圧制御部506での圧力(セル11内のガスの圧力)を補正する。
(Main processing of the measuring device)
FIG. 4 is a diagram showing main functions of the drive circuit 50. The drive circuit 50 includes functions of a first measuring unit 502, a density adjusting unit 504, a pressurizing control unit 506, a pressure correcting unit 508, a second measuring unit 510, and a pressure measuring unit 512. First measuring unit 502, the preliminary measurement of the first measurement gas and the second measurement gas, to measure the concentration of CO 2 in the CO 2 concentration and the first measurement gas in the first measurement gas. The concentration adjuster 504 controls the concentration of CO 2 of the first gas to be measured measured by the first measuring unit 502 to be the same as the concentration of CO 2 of the second gas to be measured measured by the first measuring unit 502. Then, take in the outside air. The pressurization control unit 506 pressurizes the gas (measured gas, reference gas) in the cell 11 so that the pressure of the gas is set as a reference pressure. The pressure correction unit 508 pressurizes at least one of the first measured gas and the second measured gas based on the pressure difference between the first measured gas and the second measured gas measured by the pressure measuring unit 512. The pressure in the control unit 506 (the pressure of the gas in the cell 11) is corrected.
 図5は、駆動回路50の主な処理を示したフローチャートである。図5を大略して説明すると、駆動回路50は、事前測定と、該事前測定の実行後に本測定とを実行する。駆動回路50は、リファレンスガス測定(図5のステップS1)、第1被測定ガスの事前測定(ステップS2)、リファレンスガス測定(ステップS3)、第2被測定ガスの事前測定(ステップS4)という順序で各測定を事前測定として実行する。 FIG. 5 is a flowchart showing main processing of the drive circuit 50. When FIG. 5 is roughly described, the drive circuit 50 executes the pre-measurement and the main measurement after the execution of the pre-measurement. The drive circuit 50 is referred to as reference gas measurement (step S1 in FIG. 5), preliminary measurement of the first measured gas (step S2), reference gas measurement (step S3), and preliminary measurement of the second measured gas (step S4). Perform each measurement in sequence as a pre-measurement.
 駆動回路50は、事前測定の終了後、ステップS6~ステップS28の処理を本測定として実行する。 (4) After the completion of the preliminary measurement, the drive circuit 50 executes the processing of steps S6 to S28 as the main measurement.
 まず、ステップS1において、駆動回路50は、リファレンス測定を実行する。ここで、リファレンスガス測定について説明する。駆動回路50は、ガス流路及びセル11に、清浄なリファレンスガスを流してガス流路及びセル11の洗浄をするとともに、リファレンス光量を測定する。典型的には、駆動回路50は、バルブV1を開放するとともに、他のバルブを閉塞して、ピストン21cをX1方向に移動させる。これにより、駆動回路50は、リファレンスガスをシリンダ21b内に取り込む。この後、駆動回路50は、バルブV4を開放するとともに、その他のバルブを閉塞して、ピストン21cをX2方向に移動させることにより、シリンダ21b内のリファレンスガスをセル11に圧送する。このリファレンスガスが、第1サンプルセル11aと第2サンプルセル11bを洗浄する。 First, in step S1, the drive circuit 50 performs reference measurement. Here, reference gas measurement will be described. The drive circuit 50 cleans the gas flow path and the cell 11 by flowing a clean reference gas through the gas flow path and the cell 11, and measures the reference light amount. Typically, the drive circuit 50 opens the valve V1, closes the other valves, and moves the piston 21c in the X1 direction. Thereby, the drive circuit 50 takes in the reference gas into the cylinder 21b. Thereafter, the drive circuit 50 opens the valve V4, closes the other valves, and moves the piston 21c in the X2 direction, thereby sending the reference gas in the cylinder 21b to the cell 11 by pressure. This reference gas cleans the first sample cell 11a and the second sample cell 11b.
 なお、本実施形態では、このステップS1のリファレンス測定の処理(ピストン21cの動作など)は、後述のステップS3、ステップS7、およびステップS13それぞれのリファレンス測定と同一である。また、ステップS8、ステップS9、およびステップS10の処理(ピストン21cの動作など)は、ステップS18、ステップS19、およびステップS20の処理と同一である。 In the present embodiment, the reference measurement process (such as the operation of the piston 21c) in step S1 is the same as the reference measurement in steps S3, S7, and S13 described below. Further, the processing of step S8, step S9, and step S10 (such as the operation of the piston 21c) is the same as the processing of step S18, step S19, and step S20.
 次に、ステップS2において、第1測定部502は、第1被測定ガスの事前測定により、第1被測定ガスの成分ガスの濃度を測定する。本実施形態では、事前測定では、第1被測定ガスの成分ガスとして、12COの濃度を測定する。 Next, in step S2, the first measuring unit 502 measures the concentration of the component gas of the first measured gas by performing a preliminary measurement of the first measured gas. In the present embodiment, in the preliminary measurement, the concentration of 12 CO 2 is measured as a component gas of the first gas to be measured.
 典型的には、第1測定部502は、バルブV2を開放するとともに、他のバルブを閉塞して、ピストン21cをX1方向に移動させることにより、ガス注入器21で第1被測定ガスをシリンダ21b内に取り込む。この後、第1測定部502は、バルブV4を開放するとともに、その他のバルブを閉塞して、ピストン21cをX2方向に移動させることにより、シリンダ21bの第1被測定ガスをセル11に圧送する。第1測定部502は、第1検出素子25aにより、セル11に収容された第1被測定ガスの光量を測定し、その吸光度により検量線(後述する)を用いてCO濃度を測定する。第1測定部502は、ステップS2で測定された第1被測定ガスのCOの濃度を、所定の記憶領域(例えば、メインメモリ54のRAM)に記憶する。 Typically, the first measuring unit 502 opens the valve V2, closes the other valves, and moves the piston 21c in the X1 direction, so that the first gas to be measured is 21b. Thereafter, the first measuring unit 502 opens the valve V4, closes the other valves, and moves the piston 21c in the X2 direction, thereby pumping the first gas to be measured in the cylinder 21b to the cell 11. . The first measuring unit 502 measures the light quantity of the first gas to be measured contained in the cell 11 by the first detecting element 25a, and measures the CO 2 concentration using the calibration curve (described later) based on the absorbance. The first measurement unit 502 stores the CO 2 concentration of the first gas to be measured measured in step S2 in a predetermined storage area (for example, the RAM of the main memory 54).
 なお、駆動回路50は、各リファレンス測定においては、検量線を用いずに、リファレンスガスの光量を測定する。なお、変形例として、駆動回路50は、各リファレンス測定においても、検量線を用いて、リファレンスガスの光量を測定するようにしてもよい。 In addition, in each reference measurement, the drive circuit 50 measures the light amount of the reference gas without using the calibration curve. As a modification, the drive circuit 50 may measure the light amount of the reference gas using the calibration curve in each reference measurement.
 次に、ステップS3において、駆動回路50は、第1被測定ガスを排出すると共に、リファレンス測定を実行する。次に、ステップS4において、第1測定部502は、第2被測定ガスの事前測定により、第2被測定ガスの成分ガスの濃度を測定する。 Next, in step S3, the drive circuit 50 discharges the first gas to be measured and executes the reference measurement. Next, in step S4, the first measuring unit 502 measures the concentration of the component gas of the second measured gas by performing the preliminary measurement of the second measured gas.
 典型的には、第1測定部502は、バルブV3を開放するとともに、他のバルブを閉塞して、ピストン21cをX1方向に移動させることにより、ガス注入器21で第2被測定ガスをシリンダ21b内に取り込む。この後、第1測定部502は、バルブV4を開放するとともに、その他のバルブを閉塞して、ピストン21cをX2方向に移動させることにより、シリンダ21bの第2被測定ガスをセル11に圧送する。第1測定部502は、第1検出素子25aにより、セル11に収容された第2被測定ガスの光量を測定し、その吸光度により検量線を用いてCO濃度を測定する。駆動回路50は、ステップS4で測定された第2被測定ガスのCOの濃度を、所定の記憶領域に記憶する。 Typically, the first measuring unit 502 opens the valve V3, closes the other valves, and moves the piston 21c in the X1 direction, so that the second gas to be measured is cylinderized by the gas injector 21. 21b. Thereafter, the first measuring unit 502 opens the valve V4, closes the other valves, and moves the piston 21c in the X2 direction, thereby pumping the second gas to be measured in the cylinder 21b to the cell 11. . The first measuring section 502 measures the light quantity of the second gas to be measured stored in the cell 11 by the first detecting element 25a, and measures the CO 2 concentration using the calibration curve based on the absorbance. The drive circuit 50 stores the CO 2 concentration of the second gas to be measured measured in step S4 in a predetermined storage area.
 次に、ステップS6において、駆動回路50は、第1被測定ガスの12COの濃度と、第2被測定ガスの12COの濃度とを比較する。図5の例では、駆動回路50は、第2被測定ガスの12COの濃度の方が、第1被測定ガスの12COの濃度よりも高いと判断したとする。 Next, in step S6, the drive circuit 50 compares the concentration of 12 CO 2 of the first measured gas with the concentration of 12 CO 2 of the second measured gas. In the example of FIG. 5, the drive circuit 50, a direction of 12 CO 2 concentration of the second gas to be measured, was determined to be higher than the concentration of 12 CO 2 in the first measurement gas.
 以下で説明するステップS7~ステップS12は、12COの濃度が低いと判断された第1被測定ガスについての処理である。ステップS13~ステップS24は、12COの濃度が高いと判断された第2被測定ガスについての処理である。 Steps S7 to S12 described below are processing for the first gas to be measured for which the concentration of 12 CO 2 is determined to be low. Steps S13 to S24 are processing for the second gas to be measured for which it has been determined that the concentration of 12 CO 2 is high.
 ステップS7において、駆動回路50は、第2被測定ガスを排出させるとともに、リファレンス測定を実行する。駆動回路50は、リファレンスガスが、セル11に収容されている状態で、それぞれの検出素子25a,25bにより、光量測定をする。駆動回路50は、第1検出素子25aで得られた光量12R1、第2検出素子25bで得られた光量13R1とを、所定の記憶領域に記憶させる。 In step S7, the drive circuit 50 discharges the second gas to be measured and executes the reference measurement. The drive circuit 50 measures the amount of light with the respective detection elements 25a and 25b while the reference gas is stored in the cell 11. The drive circuit 50 stores the light amount 12 R1 obtained by the first detecting element 25a and the light amount 13 R1 obtained by the second detecting element 25b in a predetermined storage area.
 次に、ステップS8において、駆動回路50は、第1被測定ガスの圧送処理を実行する。典型的には、駆動回路50は、ピストン21cをX1方向に移動させることにより、呼気バッグBからの第1被測定ガスをシリンダ21b内に取り込む。第1被測定ガスの取込量は、予め定められた量であり、本実施形態では、Vmであるとする。また、ステップS8においては、圧力測定部512は、シリンダ21b内の第1被測定ガスの圧力P1を測定する。典型的には、圧力測定部512は、圧力計33が測定した圧力値P1を取得する。該測定された第1被測定ガスの圧力は、予め定められた領域に記憶される。 Next, in step S8, the drive circuit 50 executes a process of pumping the first gas to be measured. Typically, the drive circuit 50 takes in the first measured gas from the breath bag B into the cylinder 21b by moving the piston 21c in the X1 direction. The intake amount of the first gas to be measured is a predetermined amount, and is assumed to be Vm 3 in the present embodiment. In step S8, the pressure measuring unit 512 measures the pressure P1 of the first gas to be measured in the cylinder 21b. Typically, the pressure measurement unit 512 acquires the pressure value P1 measured by the pressure gauge 33. The measured pressure of the first gas to be measured is stored in a predetermined area.
 その後、駆動回路50は、シリンダ21b内の第1被測定ガスをセル11内に圧送する。駆動回路50は、典型的には、バルブV4と、バルブV6とを開放し、他のバルブを閉塞した状態で、ピストン21cをX2方向に移動させることにより、セル11内の第1被測定ガスを圧送する。 Then, the drive circuit 50 pumps the first gas to be measured in the cylinder 21 b into the cell 11. The drive circuit 50 typically opens the valve V4 and the valve V6 and moves the piston 21c in the X2 direction in a state where the other valves are closed, so that the first measured gas in the cell 11 is moved. Pump.
 次に、ステップS9において、加圧制御部506は、収容したセル11内で第1被測定ガスを予め定められた力で加圧する。ここで、「予め定められた力」とは、典型的には、検量線に対応した圧力である。この力を「基準圧力」ともいう。換言すると、「予め定められた力」とは、典型的には、被測定ガスを収容したセル11内の圧力値が成分ガスの濃度を測定する場合の圧力値となるような力である。基準圧力は、例えば、0.2メガパスカル(Mpa)である。 Next, in step S9, the pressurization control unit 506 pressurizes the first gas to be measured in the accommodated cell 11 with a predetermined force. Here, the “predetermined force” is typically a pressure corresponding to a calibration curve. This force is also called “reference pressure”. In other words, the "predetermined force" is typically a force such that the pressure value in the cell 11 containing the gas to be measured becomes the pressure value when measuring the concentration of the component gas. The reference pressure is, for example, 0.2 megapascal (Mpa).
 典型的には、加圧制御部506は、バルブV4を開放し、バルブV6を含む他のバルブを閉塞した状態で、ピストン21cをX2方向に移動させることにより、セル11内の第1被測定ガスを加圧する。 Typically, the pressurization control unit 506 opens the valve V4 and moves the piston 21c in the X2 direction with the other valves including the valve V6 closed, so that the first measured object in the cell 11 is Pressurize the gas.
 ところで、測定装置100の測定場所によっては、外気の圧力が異なる場合がある。例えば、測定装置100の測定場所が低地である場合と、測定装置100の測定場所が高地である場合とでは、外気の圧力が異なる。このように、外気の圧力が異なる場合であっても、本実施形態の加圧制御部506は、セル11内の圧力を基準圧力とすることができる基準圧力手段を有する。セル11内の圧力を基準圧力に調整する方法として、外気の圧力に応じてピストン21cの駆動量を変更する方法や、ピストン21cの移動させる位置をそのままで、外気の圧力に応じてバルブV6から排出するガス量を変更する方法などがある。以下、ピストン21cの駆動量を変更する方法について説明する。 By the way, the pressure of the outside air may be different depending on the measuring place of the measuring device 100. For example, the pressure of the outside air is different between the case where the measurement location of the measurement device 100 is at a low altitude and the case where the measurement location of the measurement device 100 is at an altitude. As described above, even when the pressure of the outside air is different, the pressurization control unit 506 of the present embodiment has the reference pressure unit that can use the pressure in the cell 11 as the reference pressure. As a method of adjusting the pressure in the cell 11 to the reference pressure, a method of changing the driving amount of the piston 21c according to the pressure of the outside air, or a method of changing the position of the piston 21c to be moved from the valve V6 according to the pressure of the outside air There is a method of changing the amount of gas to be discharged. Hereinafter, a method of changing the driving amount of the piston 21c will be described.
 圧力計33は、シリンダ21b内の圧力を測定し、所定の換算式を用いて、シリンダ21b内の圧力から外気圧を推定する。図7は、第1対応テーブルの一例を示した図である。図7の例では、推定された外気圧OP1と、第1駆動距離L1とが対応付けられており、外気圧OP2と、第1駆動距離L2とが対応付けられている。なお、図7では、3点リーダが示されており、この3点リーダは、他の外気圧と第1駆動距離との対応付けを省略していることを示している。なお、変形例として、図7の対応テーブルではなく、加圧制御部506は、第1対応式を用いるようにしてもよい。この第1対応式は、外気圧OPが入力されると、第1駆動距離Tが算出される式である。 The pressure gauge 33 measures the pressure in the cylinder 21b, and estimates the outside air pressure from the pressure in the cylinder 21b using a predetermined conversion formula. FIG. 7 is a diagram illustrating an example of the first correspondence table. In the example of FIG. 7, the estimated outside air pressure OP1 is associated with the first driving distance L1, and the outside air pressure OP2 is associated with the first driving distance L2. FIG. 7 shows a three-point reader, and indicates that the three-point reader omits associating another external pressure with the first driving distance. Note that, as a modification, the pressure control unit 506 may use the first correspondence expression instead of the correspondence table in FIG. The first correspondence equation is an equation for calculating the first driving distance T when the external pressure OP is input.
 加圧制御部506は、図7に示す対応テーブルを参照して、推定された外気圧に対応する第1駆動距離を取得する。加圧制御部506は、ピストン21cが初期位置Hの時点でバルブV4とバルブV6とを開放し他のバルブを閉塞して、ピストン21cの移動を開始する。加圧制御部506は、ピストン21cの移動の開始時点から、第1駆動距離が経過したと判断した時にバルブV4の開放を維持したまま、バルブV6を閉塞する。その後も、加圧制御部506は、ピストン21cを最大位置Mまで駆動する。 The pressurization control unit 506 acquires the first driving distance corresponding to the estimated outside air pressure with reference to the correspondence table shown in FIG. When the piston 21c is at the initial position H, the pressurization control unit 506 opens the valves V4 and V6, closes the other valves, and starts moving the piston 21c. When determining that the first drive distance has elapsed since the start of the movement of the piston 21c, the pressurization control unit 506 closes the valve V6 while maintaining the valve V4 open. Thereafter, the pressurization control unit 506 drives the piston 21c to the maximum position M.
 このように、ステップS9では、加圧制御部506は、セル11内の第1被測定ガスが基準圧力値となるように、該セル11内の第1被測定ガスを加圧する。加圧の手法をこれに限らず、他の手法を用いてもよい。この加圧の手法の詳細については、例えば、「特開2002-98629号公報」などに開示されている。 As described above, in step S9, the pressurization control unit 506 pressurizes the first measured gas in the cell 11 so that the first measured gas in the cell 11 has the reference pressure value. The method of pressurization is not limited to this, and another method may be used. The details of this pressurizing method are disclosed in, for example, “Japanese Patent Application Laid-Open No. 2002-98629”.
 次に、ステップS12において、第2測定部510は、第1被測定ガスの光量を測定する。第2測定部510は、ステップS9での加圧状態で、それぞれの検出素子25a,25bにより、光量測定をする。第2測定部510は、第1検出素子25aで得られた光量12B、第2検出素子25bで得られた光量13Bとを、所定の記憶領域に記憶させる。 Next, in step S12, the second measuring unit 510 measures the light amount of the first gas to be measured. The second measuring unit 510 measures the light amount by the respective detection elements 25a and 25b in the pressurized state in step S9. The second measuring unit 510, the amount of light 12 B obtained in the first detection element 25a, the amount of light 13 B obtained by the second detection element 25b, is stored in a predetermined storage area.
 次に、ステップS13において、駆動回路50は、第1被測定ガスを排出させるとともに、リファレンス測定を実行する。駆動回路50は、リファレンスガスが、セル11に収容されている状態で、それぞれの検出素子25a,25bにより、光量測定をする。駆動回路50は、第1検出素子25aで得られた光量12R2、第2検出素子25bで得られた光量13R2とを、所定の記憶領域に記憶させる。 Next, in step S13, the drive circuit 50 discharges the first gas to be measured and performs reference measurement. The drive circuit 50 measures the amount of light with the respective detection elements 25a and 25b while the reference gas is stored in the cell 11. The drive circuit 50 stores the light amount 12 R2 obtained by the first detecting element 25a and the light amount 13 R2 obtained by the second detecting element 25b in a predetermined storage area.
 次に、ステップS14において、濃度調整部504は、ステップS2で測定した第1被測定ガスのCOの濃度と、ステップS4で測定した第2被測定ガスのCOの濃度とが同じになるように、外気を取り込む。ここで、外気は、「測定装置100の外部の空気であって、リファレンスガス供給部30を経由した空気」をいう。つまり、「外気」は、CO(成分ガス)を含まない気体である。 Next, in step S14, the concentration adjusting unit 504 makes the CO 2 concentration of the first measured gas measured in step S2 equal to the CO 2 concentration of the second measured gas measured in step S4. So, take in outside air. Here, the outside air refers to “air outside the measuring apparatus 100 and air that has passed through the reference gas supply unit 30”. That is, “outside air” is a gas that does not contain CO 2 (component gas).
 本実施形態では、第2被測定ガスの方が、第1被測定ガスよりもCOの濃度は高い。したがって、濃度調整部504は、第2被測定ガスについて外気を取込む。一方、濃度調整部504は、第1被測定ガスについては外気を取込まない。 In the present embodiment, the concentration of CO 2 is higher in the second measured gas than in the first measured gas. Therefore, the concentration adjusting unit 504 takes in outside air for the second gas to be measured. On the other hand, the concentration adjusting unit 504 does not take in outside air for the first gas to be measured.
 例えば、後述の図6に示すように、ステップS2でのCOの濃度が4%であり、ステップS4でのCOの濃度が2%である場合には、加圧制御部506は、V/2mの第2被測定ガス(COの濃度が高いガス)を呼気バッグSからセル11内に取り込み、その後、V/2mの外気を、リファレンスガス供給部30からシリンダ21b内に取り込む。なお、Vは、前述のように、第1被測定ガスの取込量である。 For example, as shown in FIG. 6 described later, a 4% CO 2 concentration in the step S2, when the concentration of CO 2 in step S4 is 2%, the pressurization control unit 506, V / 2 m 3 of the second gas to be measured (gas having a high concentration of CO 2 ) is taken into the cell 11 from the expiration bag S, and thereafter, outside air of V / 2 m 3 is taken into the cylinder 21 b from the reference gas supply unit 30. . V is the amount of the first gas to be measured as described above.
 次に、ステップS16において、駆動回路50は、全てのバルブを閉めた状態において、ピストン21cをX1方向およびX2方向への往復駆動を実行する。これにより、濃度調整部504は、シリンダ21b内において、V/2mの第2被測定ガスと、V/2mの外気とを混合させることができる。また、ステップS16において、駆動回路50は、全てのバルブを閉めた状態におけるこの往復運動により、混合された第2被測定ガスを加圧する。 Next, in step S16, the drive circuit 50 executes the reciprocating drive of the piston 21c in the X1 direction and the X2 direction with all the valves closed. Accordingly, the concentration adjusting unit 504 in the cylinder 21b, it is possible to mix the second and the measurement gas in V / 2m 3, and an outside air V / 2m 3. In step S16, the drive circuit 50 pressurizes the mixed second gas to be measured by the reciprocating motion in a state where all the valves are closed.
 濃度調整部504は、第1測定部502で測定した第1被測定ガスの成分ガスの濃度と第2被測定ガスの成分ガスの濃度とが同じになるように、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整する。さらに、本実施形態では、濃度調整部504は、第1測定部502で測定した第1被測定ガスの成分ガスの濃度と第2被測定ガスの成分ガスの濃度とのうち高い方(図5の例では、第2被測定ガス)の濃度が、低い方(図5の例では、第1被測定ガス)の濃度となるように、高い方の濃度の被測定ガスを外気で希釈する。この希釈する手法の詳細については、例えば、「特開平10-197444号公報」などに開示されている。 The concentration adjusting unit 504 controls the first measurement gas and the second measurement gas such that the concentration of the component gas of the first measurement gas and the concentration of the component gas of the second measurement gas measured by the first measurement unit 502 are the same. The concentration of at least one of the two component gases is adjusted. Further, in the present embodiment, the concentration adjusting unit 504 determines the higher one of the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas measured by the first measuring unit 502 (FIG. 5). In the example, the measurement gas having the higher concentration is diluted with the outside air so that the concentration of the second measurement gas is lower (the first measurement gas in the example of FIG. 5). The details of the diluting method are disclosed in, for example, "Japanese Patent Application Laid-Open No. 10-197444".
 仮に、第1被測定ガスのCOの濃度と、第2被測定ガスのCOの濃度とが異なると、13CO12COとの濃度比の測定結果に誤差が生じることが実験により判明している。測定装置100は、第1被測定ガスと、第2被測定ガスとのCOの濃度を同じにすることで、このような誤差を解消できる。 If the concentration of CO 2 in the first gas to be measured is different from the concentration of CO 2 in the second gas to be measured, an error may occur in the measurement result of the concentration ratio between 13 CO 2 and 12 CO 2. Is known. The measurement apparatus 100 can eliminate such an error by making the first measurement gas and the second measurement gas have the same CO 2 concentration.
 次に、ステップS17において、圧力測定部512は、第2被測定ガスの圧力値P2を測定する。典型的には、圧力測定部512は、圧力計33が測定した圧力値P2を取得する。該測定された第2被測定ガスの圧力値P2は、予め定められた領域に記憶される。なお、圧力値P2>圧力値P1となる。 Next, in step S17, the pressure measuring unit 512 measures the pressure value P2 of the second gas to be measured. Typically, the pressure measurement unit 512 acquires the pressure value P2 measured by the pressure gauge 33. The measured pressure value P2 of the second gas to be measured is stored in a predetermined area. Note that the pressure value P2> the pressure value P1.
 また、ステップS17では、圧力補正部508は第2被測定ガスの圧力を補正する。圧力補正部508は、シリンダ21b内の第1被測定ガスの圧力値P1(ステップS8の説明参照)と、シリンダ21b内の第2被測定ガスの圧力値P2との圧力差に基づいて、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の加圧制御部506での圧力(本実施形態では、圧力値が高い第2被測定ガスの加圧制御部506での圧力)を補正する。典型的には、圧力補正部508は、第2被測定ガスの圧力値を低下させるように補正する。典型的には、圧力補正部508は、シリンダ21b内に第2被測定ガスが収容されている状態で、バルブV4とバルブV6とを開放し他のバルブを閉塞した状態で、ピストン21cをX2方向に駆動する。そうすると、圧力補正部508は、シリンダ21b内の第2被測定ガスを、バルブV4、セル11、バルブV6という順路で外部に排出できる。これにより、圧力値P1と圧力値P2とに基づいた値に応じて、圧力補正部508は、第2被測定ガスの圧力値を低下させるように補正する。このステップS17の圧力補正処理については、図6で後述する。 (4) In step S17, the pressure correction unit 508 corrects the pressure of the second gas to be measured. The pressure correction unit 508 determines the first pressure value of the first measured gas in the cylinder 21b (see the description of Step S8) and the second pressure value P2 of the second measured gas in the cylinder 21b based on the pressure difference. The pressure in at least one of the first measured gas and the second measured gas in the pressurization control unit 506 (in the present embodiment, the pressure in the pressurization control unit 506 of the second measured gas having a high pressure value) is corrected. I do. Typically, the pressure correction unit 508 performs correction so as to reduce the pressure value of the second gas to be measured. Typically, the pressure correction unit 508 sets the piston 21c to X2 while the valve V4 and the valve V6 are opened and the other valves are closed in a state where the second gas to be measured is accommodated in the cylinder 21b. Drive in the direction. Then, the pressure correction unit 508 can discharge the second gas to be measured in the cylinder 21b to the outside through the route of the valve V4, the cell 11, and the valve V6. Accordingly, the pressure correction unit 508 corrects the pressure value of the second measured gas so as to decrease according to the value based on the pressure value P1 and the pressure value P2. The pressure correction processing in step S17 will be described later with reference to FIG.
 次に、ステップS18において、加圧制御部506は、希釈後の第2被測定ガスの圧送処理を実行する。次に、ステップS19において、加圧制御部506は、収容したセル11内で第2被測定ガスを予め定められた力で加圧する。なお、本実施形態では、ステップS16での希釈処理と、ステップS19での加圧処理とで2回加圧することになる。ステップS18の処理およびステップS19の処理(加圧率と、ピストン21cの駆動量など)は、ステップS8およびステップS9と同一である。また、ステップS8およびステップS9の処理は、初期位置に存在するピストン21cのX2方向への1回の移動で実行される。また、ステップS17の圧力補正処理と、ステップS18、およびステップS19の処理は、初期位置に存在するピストン21cX2方向への1回の移動で実行される。 Next, in step S18, the pressurization control unit 506 executes a pressure feeding process of the diluted second gas to be measured. Next, in step S19, the pressurization control unit 506 pressurizes the second gas to be measured in the accommodated cell 11 with a predetermined force. In the present embodiment, pressure is applied twice in the dilution process in step S16 and the pressurization process in step S19. The processing in step S18 and the processing in step S19 (the pressurization rate, the driving amount of the piston 21c, etc.) are the same as those in steps S8 and S9. Further, the processing of steps S8 and S9 is executed by one movement of the piston 21c at the initial position in the X2 direction. Further, the pressure correction processing in step S17 and the processing in steps S18 and S19 are executed by one movement in the direction of the piston 21cX2 existing at the initial position.
 次に、ステップS24において、第2測定部510は、第2被測定ガスの光量を測定する。測定装置100は、ステップS19での加圧状態で、それぞれの検出素子25a,25bにより、光量測定をする。測定装置100は、第1検出素子25aで得られた光量12S、第2検出素子25bで得られた光量13Sとを、所定の記憶領域に記憶させる。 Next, in step S24, the second measuring unit 510 measures the light amount of the second gas to be measured. The measuring device 100 measures the light amount by the respective detection elements 25a and 25b in the pressurized state in step S19. The measuring device 100 stores the light quantity 12 S obtained by the first detection element 25 a and the light quantity 13 S obtained by the second detection element 25 b in a predetermined storage area.
 次に、ステップS26において、駆動回路50は、第1被測定ガスを排出させるとともに、リファレンス測定を実行する。駆動回路50は、リファレンスガスが、セル11に収容されている状態で、それぞれの検出素子25a,25bにより、光量測定をする。駆動回路50は、第1検出素子25aで得られた光量12R3と、第2検出素子25bで得られた光量13R3を所定の記憶領域に記憶させる。 Next, in step S26, the drive circuit 50 executes the reference measurement while discharging the first gas to be measured. The drive circuit 50 measures the amount of light with the respective detection elements 25a and 25b while the reference gas is stored in the cell 11. The drive circuit 50 stores the light quantity 12 R3 obtained by the first detection element 25a and the light quantity 13 R3 obtained by the second detection element 25b in a predetermined storage area.
 次に、ステップS28において、第2測定部510は、ステップS22での圧力補正部508による補正を経た第1被測定ガスおよび第2被測定ガスそれぞれに対して、2種類の成分ガスの濃度比を測定する。 Next, in step S28, the second measuring unit 510 determines the concentration ratios of the two types of component gases with respect to each of the first measured gas and the second measured gas that have been corrected by the pressure correcting unit 508 in step S22. Is measured.
 典型的には、第2測定部510は、以下の式(1)、(2)により、第1被測定ガスの12COの吸光度12Abs(B)と、13COの吸光度13Abs(B)とを求める。 Typically, the second measuring unit 510, the following equation (1), (2), the 1 12 CO 2 absorbance 12 Abs of the measurement gas (B), and the 13 CO 2 absorbance 13 Abs ( B).
 12Abs(B)=-log[2・12B/(1212)]  (1)
 13Abs(B)=-log[2・13B/(1313)]  (2)
 なお、12と、13とは、ステップS7で求められ、12と、13とは、ステップS13で求められ、12Bと、13Bとは、ステップS12で求められる。
12 Abs (B) = - log [2 · 12 B / (12 R 1 + 12 R 2)] (1)
13 Abs (B) = - log [2 · 13 B / (13 R 1 + 13 R 2)] (2)
Note that the 12 R 1, and 13 R 1, obtained in step S7, and 12 R 2, and 13 R 2, determined in the step S13, and 12 B, and 13 B, determined in step S12 .
 また、第2測定部510は、以下の式(3)、(4)により、第2被測定ガスの12COの吸光度12Abs(S)と、13COの吸光度13Abs(S)とを求める。 The second measuring unit 510, the following equation (3), (4), and the second 12 CO 2 absorbance 12 Abs of the measurement gas (S), 13 CO 2 absorbance 13 Abs (S) and Ask for.
 12Abs(S)=-log[2・12S/(1212)]  (3)
 13Abs(S)=-log[2・13S/(1313)]  (4)
 なお、12と、13とは、ステップS26で求められ、12Sと、13Sとは、ステップS24で求められる。
12 Abs (S) = - log [2 · 12 S / (12 R 2 + 12 R 3)] (3)
13 Abs (S) = - log [2 · 13 S / (13 R 2 + 13 R 3)] (4)
Note that the 12 R 3, A 13 R 3, obtained in step S26, and 12 S, and 13 S, determined in step S24.
 次に、第2測定部510は、検量線を用いて、第1被測定ガスの12COと、13COとの濃度比、および第2被測定ガスの12COと、13COとの濃度比を求める。測定装置100は、検量線は、上述の基準圧力値において、12CO濃度の分かっている被測定ガスと、13CO濃度の分かっている被測定ガスを用いて、作成する。測定装置100は、被測定ガスを基準圧力値に加圧して測定するので、検量線についても、被測定ガスを基準圧力値に加圧して測定する。 Next, the second measuring unit 510 uses the calibration curve to determine the concentration ratio between 12 CO 2 and 13 CO 2 of the first gas to be measured, and 12 CO 2 and 13 CO 2 of the second gas to be measured. The concentration ratio is determined. The measurement device 100 creates the calibration curve using the measured gas having a known 12 CO 2 concentration and the measured gas having a known 13 CO 2 concentration at the above-described reference pressure value. Since the measurement device 100 measures the gas to be measured by pressurizing it to the reference pressure value, the calibration curve also measures the gas to be measured by pressurizing the gas to be measured to the reference pressure value.
 検量線を求めるには、駆動回路50は、12CO濃度を0%~6%程度の範囲で変えて、12COの吸光度を測定する。駆動回路50は、横軸を12CO濃度にとり、縦軸を12CO吸光度とし、プロットし、最小自乗法を用いて12CO濃度についての曲線を決定する。2次式で近似したものが、比較的誤差の少ない曲線となったので、本実施形態では、2次式で近似した検量線を採用している。 To obtain the calibration curve, the drive circuit 50 measures the absorbance of 12 CO 2 while changing the concentration of 12 CO 2 in a range of about 0% to 6%. The driving circuit 50 plots the horizontal axis at 12 CO 2 concentration and the vertical axis at 12 CO 2 absorbance, and determines a curve for 12 CO 2 concentration using the least squares method. Since the curve approximated by the quadratic equation has a relatively small error curve, the calibration curve approximated by the quadratic equation is employed in the present embodiment.
 同様に、駆動回路50は、13CO濃度を0%~0.07%程度の範囲で変えて、13COの吸光度を測定する。駆動回路50は、横軸を13CO濃度にとり、縦軸を13CO吸光度とし、プロットし、最小自乗法を用いて13CO濃度についての曲線を決定する。2次式で近似したものが、比較的誤差の少ない曲線となったので、本実施形態では、2次式で近似した検量線を採用している。 Similarly, the drive circuit 50 measures the absorbance of 13 CO 2 while changing the 13 CO 2 concentration in a range of about 0% to 0.07%. The drive circuit 50 plots the horizontal axis at 13 CO 2 concentration and the vertical axis at 13 CO 2 absorbance, and determines a curve for 13 CO 2 concentration using the least squares method. Since the curve approximated by the quadratic equation has a relatively small error curve, the calibration curve approximated by the quadratic equation is employed in the present embodiment.
 第1被測定ガスにおける12CO濃度を12Conc(B)とし、第1被測定ガスにおける13CO濃度13Conc(B)とし、第2被測定ガスにおける12CO濃度を12Conc(S)とし、第2被測定ガスにおける13CO濃度13Conc(S)とする。 The 12 CO 2 concentration in the first measured gas is 12 Conc (B), the 13 CO 2 concentration in the first measured gas is 13 Conc (B), and the 12 CO 2 concentration in the second measured gas is 12 Conc (S). ), And the 13 CO 2 concentration in the second gas to be measured is 13 Conc (S).
 第2測定部510は、第1被測定ガスの濃度比X(B)、および第2被測定ガスの濃度比X(S)をそれぞれ以下の式(5)、(6)で求める。 {Circle around (2)} The second measuring unit 510 calculates the concentration ratio X (B) of the first measured gas and the concentration ratio X (S) of the second measured gas by the following equations (5) and (6), respectively.
 X(B)=13Conc(B)/12Conc(B)  (5)
 X(S)=13Conc(S)/12Conc(S)  (6)
 なお、変形例として、第2測定部510は、第1被測定ガスの濃度比X(B)、および第2被測定ガスの濃度比X(S)をそれぞれ以下の式(7)、(8)で求めるようにしてもよい。
X (B) = 13 Conc (B) / 12 Conc (B) (5)
X (S) = 13 Conc (S) / 12 Conc (S) (6)
As a modification, the second measuring section 510 calculates the concentration ratio X (B) of the first measured gas and the concentration ratio X (S) of the second measured gas by the following equations (7) and (8), respectively. ) May be obtained.
 X(B)=13Conc(B)/[13Conc(B)+12Conc(B)]  (7)
 X(S)=13Conc(S)/[13Conc(S)+12Conc(S)]  (8)
 これは12CO濃度は、13CO濃度よりはるかに大きいので、いずれもほぼ同じ値となるからである。
X (B) = 13 Conc ( B) / [13 Conc (B) + 12 Conc (B)] (7)
X (S) = 13 Conc ( S) / [13 Conc (S) + 12 Conc (S)] (8)
This is because the 12 CO 2 concentration is much higher than the 13 CO 2 concentration, so that both have substantially the same value.
 また、第2測定部510は、第1被測定ガスのCO濃度と、第2被測定ガス13のCO濃度と変化分ΔCを、例えば、以下の式(9)により求めるようにしてもよい。 The second measuring unit 510, and CO 2 concentration in the first measurement gas, the CO 2 concentration variation ΔC of the second measurement gas 13, for example, be calculated by the following equation (9) Good.
 ΔC=[第2被測定ガスの濃度比X(S)-第1被測定ガスの濃度比X(B)〕×1000/〔第1被測定ガスの濃度比X(B)〕  (9)
 式(9)の単位は、パーミル千分率となる。
ΔC = [concentration ratio of second measured gas X (S) −concentration ratio of first measured gas X (B)] × 1000 / [concentration ratio of first measured gas X (B)] (9)
The unit of the formula (9) is per mille per thousand.
 測定装置100は、表示コントローラ60の制御の元、表示部に、第1被測定ガスの濃度比X(B)、および第2被測定ガスの濃度比X(S)を表示させるようにしてもよい。また、測定装置100は、表示コントローラ60の制御の元、表示部に、変化分ΔCを表示させるようにしてもよい。なお、測定装置100は、求めた13COの濃度変化量Δ13COが2.5パーミル以上であれば、HPが被検者の胃の中に存在する可能性が高いとして陽性と判定する。 Under the control of the display controller 60, the measuring device 100 may cause the display unit to display the concentration ratio X (B) of the first measured gas and the concentration ratio X (S) of the second measured gas. Good. The measuring device 100 may cause the display unit to display the change ΔC under the control of the display controller 60. Note that the measuring device 100 determines that the HP is highly likely to be present in the stomach of the subject if the obtained 13 CO 2 concentration change Δ 13 CO 2 is 2.5 permil or more, and determines that the HP is positive. I do.
 なお、測定装置100は、事前測定では、12CO濃度を測定する一方、13CO濃度を測定しない。一方、本測定では、12CO濃度と、13CO濃度との双方を測定している。したがって、ステップS2およびステップS4で説明した事前測定は、ステップS24で説明した本測定よりも処理量(演算量)が少ない。なお、変形例として、事前測定を、本測定よりも演算量を少なくする手法として、他の手法を採用するようにしてもよい。例えば、事前測定で用いる演算式の量(演算量)を、本測定で用いる演算式の量(演算量)よりも少なくするようにしてもよい。 In the preliminary measurement, the measuring device 100 measures the 12 CO 2 concentration but does not measure the 13 CO 2 concentration. On the other hand, in this measurement, both the 12 CO 2 concentration and the 13 CO 2 concentration are measured. Therefore, the pre-measurement described in steps S2 and S4 requires less processing amount (computation amount) than the main measurement described in step S24. As a modified example, another method may be adopted as a method of performing the preliminary measurement with a smaller amount of calculation than the main measurement. For example, the amount (arithmetic amount) of the arithmetic expression used in the preliminary measurement may be made smaller than the amount (arithmetic amount) of the arithmetic expression used in the main measurement.
 (各工程でのCOの推移)
 次に、図6を用いて、各工程でのCOの濃度の推移などを説明する。図6の例においては、COは、12CO13COとを混合したもの、または、12CO13COとをまとめたものとする。図6(a)~図6(f)は各工程でのCOの濃度を示し、図6(A)が第1被測定ガスを示し、図6(B)が、第2被測定ガスを示す。
(Change of CO 2 in each process)
Next, transition of the concentration of CO 2 in each step will be described with reference to FIG. In the example of FIG. 6, CO 2 is, 12 CO 2 and 13 CO 2 and a mixture of, or to summarize the 12 CO 2 and 13 CO 2. 6 (a) to 6 (f) show the concentration of CO 2 in each step, FIG. 6 (A) shows the first gas to be measured, and FIG. 6 (B) shows the second gas to be measured. Show.
 図6(a)の事前測定工程(ステップS2)において第1被測定ガスのCOの濃度は、2%であると測定されたとする。また、図6(a)の事前測定工程(ステップS4)において第2被測定ガスのCOの濃度は、4%であると測定されたとする。 It is assumed that the CO 2 concentration of the first gas to be measured is measured to be 2% in the pre-measurement step (step S2) of FIG. 6A. Further, it is assumed that the CO 2 concentration of the second gas to be measured is measured to be 4% in the preliminary measurement step (step S4) of FIG. 6A.
 次に、図6(b)の外気取込工程では、ステップS14において、加圧制御部506は、第2被測定ガスについて外気を取り込む。次に、図6(c)の希釈工程(ステップS16)では、濃度調整部504は、シリンダ21b内において、V/2mの第2被測定ガスと、V/2mの外気とを混合させる。これにより、加圧制御部506は、第2被測定ガスのCO濃度を、第1被測定ガスと同じ2%とすることができる。また、図6(c)の加圧工程(ステップS19)においても、第2被測定ガスのCO濃度は、2%が維持される。 Next, in the outside air intake step of FIG. 6B, in step S14, the pressurization control unit 506 takes in the outside air for the second gas to be measured. Then, the dilution step of FIG. 6 (c) (step S16), and the concentration adjusting unit 504 in the cylinder 21b, for mixing the second and the measurement gas in V / 2m 3, and an outside air V / 2m 3 . Thereby, the pressurization control unit 506 can set the CO 2 concentration of the second measured gas to 2%, which is the same as the first measured gas. Also in the pressurizing step (step S19) of FIG. 6C, the CO 2 concentration of the second measured gas is maintained at 2%.
 次に、図6(d)の圧力測定工程(ステップS8の説明参照)では、ステップS10での圧力測定部512の第1被測定ガスの圧力値P1を測定する。なお、図6(d)の例での圧力値Aは、この圧力値P1の第1被測定ガスが、セル11に圧送されたときの圧力値である。第1被測定ガスの圧力値は、=0.2メガパスカル)である。これは、ステップS8において、加圧制御部506が、第1被測定ガスの圧力値が基準圧力となるように加圧処理を行ったことに基づく。 Next, in the pressure measuring step (see the description of step S8) in FIG. 6D, the pressure value P1 of the first gas to be measured of the pressure measuring unit 512 in step S10 is measured. The pressure value A in the example of FIG. 6D is a pressure value when the first gas to be measured having the pressure value P1 is sent to the cell 11 by pressure. The pressure value of the first gas to be measured is = 0.2 megapascal). This is based on the fact that the pressurization control unit 506 has performed the pressurization process so that the pressure value of the first measured gas becomes the reference pressure in step S8.
 ここで、加圧制御部506は、ステップS9およびステップS19でも説明したように、セル11内の第1被測定ガスおよびセル11内の第2被測定ガスのいずれに対しても、同一の加圧率での加圧処理を実行する。したがって、セル11内の第1被測定ガスの圧力値と、セル11内の第2被測定ガスの圧力値とは同一になる筈である。 Here, the pressurization control unit 506 applies the same load to both the first measured gas in the cell 11 and the second measured gas in the cell 11 as described in steps S9 and S19. A pressurization process is performed at a pressure ratio. Therefore, the pressure value of the first measured gas in the cell 11 and the pressure value of the second measured gas in the cell 11 should be the same.
 しかしながら、第2被測定ガスの圧力値は、第1被測定ガスの圧力値よりも高くなってしまう。図6(d)の例に示すように、ステップS20での圧力測定部512の第2被測定ガスの圧力値Bは、0.24メガパスカルになるとする。 However, the pressure value of the second gas to be measured is higher than the pressure value of the first gas to be measured. As shown in the example of FIG. 6D, it is assumed that the pressure value B of the second measured gas of the pressure measurement unit 512 in step S20 is 0.24 megapascal.
 以下に、第2被測定ガスの圧力値が、第1被測定ガスの圧力値よりも高くなる理由を説明する。第1被測定ガス、および第2被測定ガスは、被検者の呼気であり、一般的に呼気の湿度は100%または約100%である。また、被測定ガスのうち外気が混在された方のガス(図6の例では、第2被測定ガス)は湿度が低下する。気体の湿度が低下すると該気体の圧力値は高くなることが実験的に判明している。つまり、外気が混在されている第2被測定ガスの方が、第1被測定ガスよりも圧力値は大きくなる。以上により、第2被測定ガスの圧力値が、第1被測定ガスの圧力値よりも高くなる。 The reason why the pressure value of the second measured gas becomes higher than the pressure value of the first measured gas will be described below. The first gas to be measured and the second gas to be measured are exhalation of the subject, and the exhalation humidity is generally 100% or about 100%. Further, the humidity of the gas to be measured in which the outside air is mixed (the second gas to be measured in the example of FIG. 6) decreases. It has been experimentally found that when the humidity of a gas decreases, the pressure value of the gas increases. That is, the pressure value of the second measured gas in which the outside air is mixed is higher than that of the first measured gas. As described above, the pressure value of the second measured gas becomes higher than the pressure value of the first measured gas.
 なお、図6(d)の例では、圧力値P1および圧力値P2は記載されていない。
 次に、図6(e)の圧力補正工程(ステップS17)において、圧力補正部508は、圧力測定部512で測定した第1被測定ガスと第2被測定ガスとの圧力差に基づいて、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の加圧制御部506での圧力を補正する。
In the example of FIG. 6D, the pressure value P1 and the pressure value P2 are not described.
Next, in the pressure correction step (Step S17) of FIG. 6E, the pressure correction unit 508 determines the pressure difference between the first measured gas and the second measured gas measured by the pressure measuring unit 512. The pressure in at least one of the first measured gas and the second measured gas in the pressurization control unit 506 is corrected.
 典型的には、圧力補正部508は、まず、シリンダ21b内での第1被測定ガスの圧力値P1と、シリンダ21b内での第2被測定ガスの圧力値P2との圧力差ΔPを算出する。図6の例では、圧力差ΔP=P1-P2となる。 Typically, the pressure correction unit 508 first calculates a pressure difference ΔP between the pressure value P1 of the first measured gas in the cylinder 21b and the pressure value P2 of the second measured gas in the cylinder 21b. I do. In the example of FIG. 6, the pressure difference ΔP = P1−P2.
 また、測定装置100は、バルブV6を開放した状態での(圧力補正処理での)ピストンの第2駆動距離と、圧力差ΔPとが対応付けられた第2対応テーブルとを記憶領域に記憶させている。図8は、第2対応テーブルの一例を示した図である。図8の例では、圧力差ΔP1と、第2駆動距離M1とが対応付けられており、圧力差ΔP2と、第2駆動距離M2とが対応付けられている。なお、図8では、3点リーダが示されており、この3点リーダは、他の圧力差ΔPと第2駆動距離との対応付けを省略していることを示している。なお、変形例として、図8の対応テーブルではなく、圧力補正部508は、第2対応式を用いるようにしてもよい。この第2対応式は、圧力差ΔPが入力されると、第2駆動距離Tが算出される式である。 In addition, the measuring device 100 stores a second correspondence table in which the second driving distance of the piston (in the pressure correction process) in a state where the valve V6 is opened and the pressure difference ΔP are stored in the storage area. ing. FIG. 8 is a diagram illustrating an example of the second correspondence table. In the example of FIG. 8, the pressure difference ΔP1 is associated with the second drive distance M1, and the pressure difference ΔP2 is associated with the second drive distance M2. FIG. 8 illustrates a three-point reader, and indicates that the three-point reader omits associating another pressure difference ΔP with the second driving distance. As a modification, the pressure correction unit 508 may use the second correspondence expression instead of the correspondence table in FIG. The second correspondence equation is an equation for calculating the second driving distance T when the pressure difference ΔP is input.
 圧力補正部508は、第2対応テーブルまたは第2対応式を用いて、算出された圧力差ΔPに基づいて、第2駆動距離T(バルブV4とバルブV6を開放した状態でピストン21cを駆動させる距離)を取得する。圧力補正部508は、シリンダ21b内に第2被測定ガスが収容されている状態において、バルブV4およびバルブV6を開放した状態で、初期位置HからX2方向にピストン21cを駆動する。したがって、バルブV6が開放されている状態では、第2被測定ガスは、セル11内に圧送されるが、そのまま、バルブV6を経由して外部に排出される。第2駆動距離T、バルブV6が開放されることにより、シリンダ21b内の第2被測定ガスの圧力は、第1被測定ガスの圧力と同一となる。その結果、ステップS9の加圧処理、およびステップS19の加圧処理において、セル11内の第1被測定ガス、およびセル11内の第2被測定ガスの圧力値を基準圧力値とすることができる。なお、第2被測定ガスへの圧力補正処理において、シリンダ21b内の第2被測定ガスの圧力と、シリンダ21b内の第1被測定ガスの圧力とは同一にならなくてもよく、ステップS9の加圧処理、およびステップS19の加圧処理の後に、セル11内の第1被測定ガス、およびセル11内の第2被測定ガスの圧力値を基準圧力値とできれば、他の構成であってもよい。 The pressure correction unit 508 drives the piston 21c with the second drive distance T (the valve V4 and the valve V6 are opened, based on the calculated pressure difference ΔP using the second correspondence table or the second correspondence expression. Distance). The pressure correction unit 508 drives the piston 21c in the X2 direction from the initial position H with the valve V4 and the valve V6 opened in a state where the second gas to be measured is accommodated in the cylinder 21b. Therefore, while the valve V6 is open, the second gas to be measured is pumped into the cell 11, but is discharged to the outside via the valve V6 as it is. By opening the second drive distance T and the valve V6, the pressure of the second measured gas in the cylinder 21b becomes equal to the pressure of the first measured gas. As a result, in the pressurizing process in step S9 and the pressurizing process in step S19, the pressure value of the first measured gas in the cell 11 and the pressure value of the second measured gas in the cell 11 may be set as the reference pressure value. it can. In the pressure correction process for the second measured gas, the pressure of the second measured gas in the cylinder 21b does not have to be the same as the pressure of the first measured gas in the cylinder 21b. If the pressure values of the first gas to be measured in the cell 11 and the second gas to be measured in the cell 11 can be set as the reference pressure values after the pressurizing process of step S19 and the pressurizing process of step S19, another configuration is used. You may.
 このように、第2対応テーブルまたは第2対応式は、圧力値の高い方の被測定ガスの圧力が、圧力が低い方の被測定ガスの圧力に一致するような第2駆動距離が求められるように予め設計されている。その結果、加圧工程により、セル11内の第2被測定ガスの圧力値と、セル11内の第1被測定ガスの圧力値とはいずれも基準圧力値となり、同一となる。 As described above, in the second correspondence table or the second correspondence expression, the second drive distance is determined such that the pressure of the measured gas having the higher pressure value matches the pressure of the measured gas having the lower pressure value. Is designed in advance. As a result, the pressure value of the second gas to be measured in the cell 11 and the pressure value of the first gas to be measured in the cell 11 both become the reference pressure value and become the same by the pressurizing step.
 次に、図6(f)の光量測定工程(ステップS24)において、第2測定部510は、第2被測定ガスの光量測定を実行する。つまり、光量測定工程では、セル11内の第2被測定ガスの圧力値と、セル11内の第1被測定ガスの圧力値とが同じ状態で、光量測定を実行できる。したがって、結果的に、測定装置100の第2測定部510は、圧力補正部508による補正を経た第2被測定ガスに対して、2種類の成分ガスの濃度比を測定することができる。 Next, in the light quantity measuring step (step S24) of FIG. 6F, the second measuring unit 510 executes the light quantity measurement of the second gas to be measured. That is, in the light quantity measuring step, the light quantity measurement can be performed in a state where the pressure value of the second measured gas in the cell 11 is the same as the pressure value of the first measured gas in the cell 11. Therefore, as a result, the second measurement unit 510 of the measurement apparatus 100 can measure the concentration ratio of the two types of component gases with respect to the second measurement gas that has been corrected by the pressure correction unit 508.
 (シリンダおよびバルブの駆動について)
 図9は、第2被測定ガスについての、各実施形態の圧力補正処理、圧送処理、および加圧処理のピストン21cの駆動、および各バルブの開閉状態を示した図である。図9(A)は、第1実施形態の圧力補正処理、圧送処理、および加圧処理のピストン21cの駆動、および各バルブの開閉状態を示した図である。図9(B)、図12(A)、および図12(B)については、後述する他の実施形態(第2実施形態~第4実施形態)で説明する。また、図9、図12において、第1被測定ガスおよび第2被測定ガスについて、変形例として、圧送処理と加圧処理との順序を逆にしてもよい。
(About cylinder and valve drive)
FIG. 9 is a diagram illustrating the driving of the piston 21c in the pressure correction processing, the pressure feeding processing, and the pressurization processing of each embodiment and the open / closed state of each valve for the second gas to be measured. FIG. 9A is a diagram illustrating the driving of the piston 21c and the open / closed state of each valve in the pressure correction processing, the pressure feeding processing, and the pressurization processing according to the first embodiment. FIGS. 9B, 12A, and 12B will be described in other embodiments (second to fourth embodiments) described later. 9 and 12, the order of the pressure feeding process and the pressurizing process may be reversed for the first gas to be measured and the second gas to be measured, as a modification.
 第1実施形態の圧力補正処理において、バルブV4とバルブV6を開放した状態で、図8に示した第2駆動距離M(図9(A)の圧力差ΔPに応じた距離)に亘って、ピストン21cを初期位置HからX2方向に向かって駆動させる。そうすると、バルブV4と、セル11と、バルブV6とを経由して、外部に排出される。この排出により、測定装置100は、第1被測定ガスと第2被測定ガスとの圧力値を同一にすることができる。この第2駆動距離Mは、第2対応テーブル(図8参照)により求められた距離である。 In the pressure correction process of the first embodiment, in a state where the valves V4 and V6 are opened, over the second drive distance M (the distance corresponding to the pressure difference ΔP in FIG. 9A) shown in FIG. The piston 21c is driven from the initial position H in the X2 direction. Then, it is discharged outside via the valve V4, the cell 11, and the valve V6. By this discharge, the measuring apparatus 100 can make the pressure value of the first measured gas equal to the pressure value of the second measured gas. The second drive distance M is a distance obtained from the second correspondence table (see FIG. 8).
 次に、第1実施形態の圧送処理においては、バルブV4とバルブV6とを開放した状態で、駆動回路50は、圧力補正処理から続けてピストン21cをX2方向に向かって駆動させる。また、このときの駆動量は、図7で説明した駆動量Lとなる。 Next, in the pressure feeding process of the first embodiment, the drive circuit 50 drives the piston 21c in the X2 direction after the pressure correction process with the valves V4 and V6 opened. The drive amount at this time is the drive amount L described with reference to FIG.
 次に、加圧処理において、加圧制御部506は、バルブV6を閉塞して、バルブV4を開放した状態で、圧力補正処理から続けてピストン21cをX2方向に向かって駆動させる。 Next, in the pressurization process, the pressurization control unit 506 drives the piston 21c in the X2 direction following the pressure correction process with the valve V6 closed and the valve V4 opened.
 図11は、圧力補正処理、圧送処理、および加圧処理を説明するための図である。また、本実施形態の駆動回路50は、Vmの第1被測定ガスおよびVmの第2被測定ガスをシリンダ21b内に収容する。なお、αは予め定められた量であるとする。図11(A)に示すように、圧力補正部508は、第2被測定ガスの希釈処理(ステップS16)の後、バックラッシュ解消処理として、バルブV5を閉塞した状態で、ピストン21cを初期位置HよりもX1方向側であるバック位置Bに移動させる。次に、図11(B)に示すように、圧力補正部508は、バルブV5を開放すると共に、バックラッシュ解消処理として、バック位置Bから、ピストン21cをX2方向に移動させて初期位置Hに位置させる。 FIG. 11 is a diagram for explaining the pressure correction processing, the pressure feeding processing, and the pressure processing. The driving circuit 50 of the present embodiment houses the second measurement gas in the first measurement gas and Vm 3 of Vm 3 into the cylinder 21b. Note that α is a predetermined amount. As shown in FIG. 11A, after the second measurement gas dilution processing (step S16), the pressure correction unit 508 moves the piston 21c to the initial position with the valve V5 closed as backlash elimination processing. It is moved to the back position B which is on the X1 direction side of H. Next, as shown in FIG. 11B, the pressure correction unit 508 opens the valve V5 and moves the piston 21c from the back position B in the X2 direction to the initial position H as backlash elimination processing. Position.
 これにより、図11(B)の矢印に示すように、バックラッシュ解消処理と共に、シリンダ21b内の第2被測定ガスを、αm、開放されたバルブV6を経由して外部に排出する。その後、第2被測定ガスについては、図11(C)に示すように、バックラッシュ解消処理が終了後(バックラッシュが解消した後)も、継続して、シリンダ21bをX2方向に駆動することにより、圧送処理および加圧処理を実行できる。 Thereby, as shown by the arrow in FIG. 11B, the second gas to be measured in the cylinder 21b is discharged to the outside via αm 3 and the opened valve V6 together with the backlash elimination processing. Thereafter, as shown in FIG. 11C, the cylinder 21b is continuously driven in the X2 direction even after the backlash elimination process is completed (after the backlash is eliminated) as shown in FIG. Thereby, the pressure feeding process and the pressure process can be executed.
 本実施形態では、図8で定められた駆動距離Mが、図11(B)~図11(C)までの距離となる。その後、図11(D)に示すように、加圧制御部506は、バルブV5を閉塞した状態で圧送処理、および加圧処理を実行する。 で は In the present embodiment, the drive distance M determined in FIG. 8 is the distance from FIG. 11B to FIG. 11C. Thereafter, as shown in FIG. 11D, the pressurization control unit 506 executes the pressure feeding process and the pressurization process with the valve V5 closed.
 なお、変形例として、バックラッシュを考慮しない測定装置、つまり、図11(A)および図11(B)の処理を実行しないようにしてもよい。 As a modified example, a measuring device that does not consider backlash, that is, the processing of FIGS. 11A and 11B may not be executed.
 (本実施形態の測定装置の奏する効果)
 次に、本実施形態の測定装置100が奏する効果について説明する。
(Effects of the measuring device of the present embodiment)
Next, the effects of the measuring apparatus 100 according to the present embodiment will be described.
 (1) 本実施形態では、第1被測定ガスおよび第2被測定ガスの成分ガスの測定精度を向上させるために、第2被測定ガスの希釈処理(ステップS16)と、第1被測定ガスおよび第2被測定ガスの加圧処理(ステップS9、ステップS19)とを実行する。ここで、第2被測定ガスについて、希釈処理と、加圧処理とを実行すると、第2被測定ガスの圧力値は、第1被測定ガスの圧力値よりも大きくなってしまう。つまり、第2被測定ガスの圧力値は、基準圧力値よりも、大きくなってしまう。したがって、第2被測定ガスについての検量線を用いた処理において、第2被測定ガスの圧力値は、検量線に対応付けられた基準圧力値とは異なる圧力値となってしまう。その結果、該検量線を用いた処理においては、第2被測定ガスの12COと、13COとの濃度比の測定精度が低下してしまう。 (1) In the present embodiment, in order to improve the measurement accuracy of the component gases of the first gas to be measured and the second gas to be measured, the second gas to be measured is diluted (step S16) and the first gas to be measured is And pressurizing processing of the second gas to be measured (step S9, step S19). Here, when the dilution process and the pressurization process are performed on the second measured gas, the pressure value of the second measured gas becomes larger than the pressure value of the first measured gas. That is, the pressure value of the second gas to be measured becomes larger than the reference pressure value. Therefore, in the process using the calibration curve for the second measured gas, the pressure value of the second measured gas is different from the reference pressure value associated with the calibration curve. As a result, in the process using the calibration curve, the measurement accuracy of the concentration ratio between 12 CO 2 and 13 CO 2 of the second gas to be measured decreases.
 また、第2被測定ガスの圧力値に応じて、複数の検量線を用いる構成も考えられる。しかしながら、このような構成を採用した場合には、複数の検量線を予め作成する処理が増大するとともに、該複数の検量線の記憶容量も増大してしまう。 構成 Alternatively, a configuration using a plurality of calibration curves according to the pressure value of the second gas to be measured is also conceivable. However, when such a configuration is adopted, the process of preparing a plurality of calibration curves in advance increases, and the storage capacity of the plurality of calibration curves also increases.
 そこで、圧力補正部508は、ステップS17および図6(e)に示したように、シリンダ21b内の第1被測定ガスとシリンダ21b内の第2被測定ガスとのうち少なくとも一方の被測定ガスの圧力値を補正する。好ましくは、圧力補正部508は、シリンダ21b内の第1被測定ガスの圧力値とシリンダ21b内の第2被測定ガスの圧力値とが同一となるように、第1被測定ガスと第2被測定ガスとのうち少なくとも一方の被測定ガスの圧力値を補正する。その結果、圧力補正部508は、セル11内の第1被測定ガスの圧力値とセル11の第2被測定ガスの圧力値とを同一の基準圧力値とすることができる。したがって、測定装置100は、成分ガスの濃度比の測定の精度を向上させる。 Therefore, as shown in step S17 and FIG. 6E, the pressure correction unit 508 determines at least one of the first measured gas in the cylinder 21b and the second measured gas in the cylinder 21b. Correct the pressure value of. Preferably, the pressure correction unit 508 performs the first measurement gas and the second measurement gas so that the pressure value of the first measurement gas in the cylinder 21b is equal to the pressure value of the second measurement gas in the cylinder 21b. The pressure value of at least one of the measured gas and the measured gas is corrected. As a result, the pressure correction unit 508 can set the pressure value of the first measured gas in the cell 11 and the pressure value of the second measured gas in the cell 11 to be the same reference pressure value. Therefore, the measuring device 100 improves the accuracy of measuring the concentration ratio of the component gas.
 (2) また、圧力補正部508は、ステップS22および図6(e)で示したように、シリンダ21b内での第1被測定ガスの圧力値P1と第2被測定ガスの圧力値P2とのうち高い方の圧力値(本実施形態では、第2被測定ガスの圧力値である圧力値P2)が、低い方の圧力値(本実施形態では、第1被測定ガスの圧力値である圧力値P1)となるように加圧制御部506での圧力値(シリンダ21b内の圧力値)を補正する。 (2) Further, as shown in step S22 and FIG. 6E, the pressure correction unit 508 determines the pressure value P1 of the first measured gas and the pressure value P2 of the second measured gas in the cylinder 21b. The higher pressure value (in this embodiment, the pressure value P2 which is the pressure value of the second measured gas) is the lower pressure value (in this embodiment, the pressure value of the first measured gas). The pressure value (the pressure value in the cylinder 21b) in the pressurization control unit 506 is corrected so as to be the pressure value P1).
 例えば、第1被測定ガスの圧力値を増加させて、第2被測定ガスの圧力値に合わせる手法も考えられる。しかしながら、この手法を採用した測定装置は、基準圧力値に対応する検量線の他に、該基準圧力値より大きい圧力値に対応する検量線も必要となり、検量線に係るデータ容量が増大してしまう。 For example, a method of increasing the pressure value of the first measured gas to match the pressure value of the second measured gas is also conceivable. However, a measuring apparatus employing this technique requires a calibration curve corresponding to a pressure value larger than the reference pressure value, in addition to the calibration curve corresponding to the reference pressure value, and the data capacity of the calibration curve increases. I will.
 そこで、本実施形態では、圧力補正部508は、第2被測定ガスの圧力値を減少させて、第1被測定ガスの圧力値(基準圧力値)となるように、第2被測定ガスの圧力値を補正する。したがって、測定装置100は、基準圧力値に対応する検量線を保持しておけばよく、基準圧力値とは異なる圧力値に対応する検量線を保持する必要はない。よって、測定装置100は、検量線に係るデータ容量の増大化を防止できる。 Therefore, in the present embodiment, the pressure correction unit 508 reduces the pressure value of the second measured gas so that the pressure value of the second measured gas becomes equal to the pressure value of the first measured gas (reference pressure value). Correct the pressure value. Therefore, the measuring apparatus 100 only needs to hold a calibration curve corresponding to the reference pressure value, and does not need to hold a calibration curve corresponding to a pressure value different from the reference pressure value. Therefore, the measuring device 100 can prevent an increase in the data capacity related to the calibration curve.
 (3) また、濃度調整部504は、第1測定部502で測定した第1被測定ガスの成分ガス(CO)の濃度と、第1測定部502で測定した第2被測定ガスの成分ガス(CO)の濃度とのうち高い方の濃度が、低い方の濃度となるように、高い方の濃度の被測定ガス(図6の例では、第2被測定ガス)を外気で希釈する(ステップS16)。 (3) In addition, the concentration adjusting unit 504 calculates the concentration of the component gas (CO 2 ) of the first measured gas measured by the first measuring unit 502 and the component of the second measured gas measured by the first measuring unit 502. The gas to be measured having a higher concentration (in the example of FIG. 6, the second gas to be measured) is diluted with the outside air so that the higher concentration of the gas (CO 2 ) becomes the lower concentration. (Step S16).
 例えば、第1被測定ガスのCO濃度を増加させて、第2被測定ガスのCO濃度に合わせる手法も考えられる。しかしながら、この手法を採用した測定装置は、純粋なCO(COのみで構成される気体)を第1被測定ガスに混合させる必要があり、純粋なCOを製造する装置が必要となり、測定装置100のコストが増大してしまう。 For example, a method of increasing the CO 2 concentration of the first measured gas to match the CO 2 concentration of the second measured gas can be considered. However, a measuring device employing this method needs to mix pure CO 2 (a gas composed of only CO 2 ) with the first gas to be measured, and requires a device for producing pure CO 2 , The cost of the measuring device 100 increases.
 そこで、本実施形態では、濃度調整部504は、外気を用いて、第2被測定ガスのCO濃度を低下させて、第1被測定ガスのCO濃度とする。したがって、安価な構成により、第1被測定ガスと第2被測定ガスとのCO濃度を合わせることができる。 Therefore, in this embodiment, the concentration adjusting unit 504, using the outside air, second by reducing the CO 2 concentration in the measurement gas, the CO 2 concentration in the first measurement gas. Therefore, the CO 2 concentration of the first gas to be measured and the second gas to be measured can be matched with an inexpensive configuration.
 (4) また、圧力補正部508は、外気で希釈された第2被測定ガスの圧力値を補正する。前述のように、外気で希釈された第2被測定ガスは、第1被測定ガスよりも圧力値が大きくなることが判明している。したがって、第1被測定ガスおよび第2被測定ガスのうちいずれの被測定ガスの圧力値が大きいのかといった判断処理を実行することなく、第1被測定ガスの圧力値と、第2被測定ガスの圧力値とを同じにすることができる。 {(4)} The pressure correction unit 508 corrects the pressure value of the second gas to be measured diluted with the outside air. As described above, it has been found that the second measured gas diluted with the outside air has a higher pressure value than the first measured gas. Therefore, the pressure value of the first measured gas and the second measured gas can be determined without executing a process of determining which of the first measured gas and the second measured gas has a higher pressure value. Can be the same as the pressure value.
 (5) また、セル11内の被測定ガスの圧力値を高める加圧部は、シリンダ21bとピストン21cなどにより構成される。したがって、測定装置100は、安価な構成で、セル11内の被測定ガスの圧力値を高めることができる。さらに、駆動回路50は、被測定ガスを収容したセル11内の圧力値が成分ガスの濃度を測定する場合の圧力値(つまり、基準圧力値)となるように、予め定められた移動量(駆動量)でピストン21cを駆動する。該駆動は、第1被測定ガスおよび第2被測定ガスで共通して実行される(ステップS8とステップS18参照)。したがって、該駆動が、第1被測定ガスと第2被測定ガスとで異なるように実行される測定装置と比較して、ピストン21cの駆動処理に関するプログラム容量を低減できる。 {(5)} The pressurizing section for increasing the pressure value of the gas to be measured in the cell 11 is constituted by the cylinder 21b, the piston 21c, and the like. Therefore, the measuring device 100 can increase the pressure value of the gas to be measured in the cell 11 with an inexpensive configuration. Further, the drive circuit 50 moves the predetermined movement amount (ie, the reference pressure value) so that the pressure value in the cell 11 containing the gas to be measured becomes the pressure value when measuring the concentration of the component gas (that is, the reference pressure value). The driving amount) drives the piston 21c. The driving is executed commonly for the first measured gas and the second measured gas (see steps S8 and S18). Therefore, compared to a measuring device in which the driving is performed differently for the first gas to be measured and the second gas to be measured, it is possible to reduce the program capacity related to the driving process of the piston 21c.
 (6) また、圧力補正部508は、ピストン21cの駆動により、加圧制御部506での圧力(例えば、シリンダ21b内の圧力)を補正する。ピストン21cは、被測定ガスや外気の取込など種々の処理を行うものである。測定装置100は、種々の処理を行うピストン21を用いて、第2被測定ガスの圧力を補正する。したがって、「被測定ガスや外気の取込など種々の処理と、第2被測定ガスの圧力の補正処理とで異なる構成部を用いる測定装置」と比較して、部品点数を削減できる。 {(6)} Further, the pressure correction unit 508 corrects the pressure (for example, the pressure in the cylinder 21b) in the pressurization control unit 506 by driving the piston 21c. The piston 21c performs various processes such as taking in the gas to be measured and the outside air. The measurement device 100 corrects the pressure of the second gas to be measured using the piston 21 that performs various processes. Therefore, the number of parts can be reduced as compared with “a measuring device using different components for various processes such as taking in the gas to be measured and the outside air and correcting the pressure of the second gas to be measured”.
 (7) また、圧力補正部508は、図11に示すように、外気で希釈された第2被測定ガス、つまり、セル11内での圧力値が高くなる第2被測定ガスをシリンダ21bからセル11内に圧送する圧送量を、圧力差ΔPに基づいて低減する。換言すれば、圧力補正部508は、第2被測定ガスをセル11内に圧送する前に、該第2被測定ガスの一部を排出する(第2被測定ガスの圧力値を低下する)。 (7) As shown in FIG. 11, the pressure correction unit 508 sends the second gas to be measured diluted with the outside air, that is, the second gas to be measured having a higher pressure value in the cell 11, from the cylinder 21b. The pumping amount to be pumped into the cell 11 is reduced based on the pressure difference ΔP. In other words, the pressure correction unit 508 discharges a part of the second measured gas before pressure-feeding the second measured gas into the cell 11 (decreases the pressure value of the second measured gas). .
 例えば、第1被測定ガスの圧送量を増加させて、セル11に収容された場合の第1被測定ガスの圧力値と、セル11に収容された場合の第2被測定ガスの圧力値とを同一にする構成が考えられる。このような構成である場合には、第1被測定ガスを多く使用することになる。そうすると、呼気バッグの第1被測定ガスが足りない等の事象が発生する場合がある。そこで、本実施形態の圧力補正部508は、第2被測定ガスをセル11内に圧送する前に、該第2被測定ガスの一部を排出する。これにより、本実施形態の測定装置100は、被測定ガスが足りない等の事象が発生することなく、セル11に収容された場合の第1被測定ガスの圧力値と、セル11に収容された場合の第2被測定ガスの圧力値とを適切に、同一にできる。 For example, the pressure value of the first measured gas when accommodated in the cell 11 and the pressure value of the second measured gas when accommodated in the cell 11 are increased by increasing the pumping amount of the first measured gas. Are conceivable. In the case of such a configuration, a large amount of the first gas to be measured is used. Then, an event such as a shortage of the first gas to be measured in the expiration bag may occur. Therefore, the pressure correction unit 508 of the present embodiment discharges a part of the second measured gas before pumping the second measured gas into the cell 11. As a result, the measurement device 100 of the present embodiment can store the pressure value of the first gas to be measured in the case where the gas to be measured is stored in the cell 11 and the gas stored in the cell 11 without occurrence of an event such as a shortage of the gas to be measured. In this case, the pressure value of the second gas to be measured can be appropriately made equal.
 (8) また、本実施形態の加圧制御部506は、セル11内に圧送する予め定められた圧送量(本実施形態では、例えば、Vm)の被測定ガスをシリンダ21bに収容する収容処理を実行する。ここで、収容処理は、図11(A)および図11(B)で示した処理である。また、予め定められた圧送量は、ピストン21cが初期位置Hに位置しているときに、シリンダ21bに収容されている被測定ガスの量(本実施形態では、Vm)である。本実施形態の測定装置100は、収容処理において、圧送量を低減する。したがって、バックラッシュ解消処理後の一連の処理(図11(B)、図11(C)参照)において、シリンダ21b内の第2被測定ガスを外部に排出できる。つまり、バックラッシュを解消する処理の流れで、第2被測定ガスの圧力値(将来的にセル11に収容される第2被測定ガスの圧力値)を調整(低下)できる。したがって、バックラッシュを解消する処理と、第2被測定ガスの圧力値を調整する処理とが一連の処理となっていない測定装置と比較して、処理工程の数を削減できる。 (8) In addition, the pressurization control unit 506 of the present embodiment accommodates a predetermined amount of pumped gas (for example, Vm 3 in the present embodiment) to be pumped into the cell 11 in the cylinder 21b. Execute the process. Here, the accommodation process is the process shown in FIGS. 11A and 11B. The predetermined pumping amount is the amount of the gas to be measured contained in the cylinder 21b when the piston 21c is located at the initial position H (Vm 3 in the present embodiment). The measuring device 100 of the present embodiment reduces the amount of pumping in the accommodation process. Therefore, in a series of processes after the backlash elimination process (see FIGS. 11B and 11C), the second gas to be measured in the cylinder 21b can be discharged to the outside. That is, the pressure value of the second measured gas (the pressure value of the second measured gas stored in the cell 11 in the future) can be adjusted (decreased) in the flow of the process for eliminating the backlash. Therefore, the number of processing steps can be reduced as compared with a measuring apparatus in which the processing for eliminating backlash and the processing for adjusting the pressure value of the second measured gas are not a series of processing.
 (9) また、本実施形態の測定装置100は、圧力補正処理と、圧送処理とで、開放するバルブ(本実施形態では、バルブV6)を共通化できる。したがって、圧力補正処理と、圧送処理とで、開放するバルブが異なる測定装置と比較して、バルブの制御処理の負担を軽減できるとともに、バルブの摩耗を軽減できる。 {(9)} In the measuring apparatus 100 of the present embodiment, the valve to be opened (the valve V6 in the present embodiment) can be shared between the pressure correction processing and the pressure feeding processing. Therefore, as compared with a measuring device that opens a different valve in the pressure correction process and the pressure feeding process, the load of the valve control process can be reduced and the wear of the valve can be reduced.
 (10) また、本測定において、濃度比が測定される2種類の成分ガスは、12COおよび13COである。したがって、測定装置100は、ヘリコバクタピロリー(HP)が被検者の胃の中に存在するか否かを診断することができる。 (10) In this measurement, the two types of component gases whose concentration ratios are measured are 12 CO 2 and 13 CO 2 . Therefore, the measuring device 100 can diagnose whether or not Helicobacter pylori (HP) exists in the stomach of the subject.
 [第2実施形態]
 次に、第2実施形態の測定装置100を説明する。第1実施形態の測定装置100は、シリンダ11内の第2被測定ガスをバルブV6を経由して排出させるとして説明した。第2実施形態の測定装置100は、シリンダ11内の第2被測定ガスをバルブV5を経由して排出させる。図9(B)は、第2実施形態の圧力補正処理、圧送処理、および加圧処理のピストン21cの駆動、および各バルブの開閉状態を示した図である。
[Second embodiment]
Next, a measuring apparatus 100 according to a second embodiment will be described. The measurement apparatus 100 of the first embodiment has been described as discharging the second gas to be measured in the cylinder 11 via the valve V6. The measuring device 100 of the second embodiment discharges the second gas to be measured in the cylinder 11 via the valve V5. FIG. 9B is a diagram illustrating the driving of the piston 21c and the open / closed state of each valve in the pressure correction processing, the pressure feeding processing, and the pressurization processing according to the second embodiment.
 第2実施形態は、図9(B)に示すように、第2被測定ガスの圧力補正処理において、圧力補正部508は、バルブV5を開放し、バルブV1~V4、およびバルブV6を閉塞した状態で、シリンダ21bをX2方向に駆動する。このような構成によれば、圧力補正処理により、バルブV5から排出できる。 In the second embodiment, as shown in FIG. 9B, in the pressure correction process for the second gas to be measured, the pressure correction unit 508 opens the valve V5 and closes the valves V1 to V4 and the valve V6. In this state, the cylinder 21b is driven in the X2 direction. According to such a configuration, it is possible to discharge from the valve V5 by the pressure correction processing.
 この第2実施形態の測定装置100であっても、第1実施形態の測定装置100と同様の効果を奏する。 っ て も The measuring device 100 of the second embodiment also has the same effect as the measuring device 100 of the first embodiment.
 [第3実施形態]
 第1実施形態および第2実施形態の測定装置100は、シリンダ21b内の第1被測定ガスの圧力値と、シリンダ21b内の第2被測定ガスの圧力値との圧力差ΔPに基づいて、第2被測定ガスの圧力を補正するとして説明した。しかしながら、第3実施形態の測定装置100は、圧力差ΔPではなく、第1被測定ガスの濃度値と、第2被測定ガスの濃度差ΔCに基づいて、第2被測定ガスの圧力値を補正する。ここで、濃度差ΔCは、ステップS2において事前測定で測定した第1被測定ガスのCO濃度と、ステップS4において事前測定で測定した第2被測定ガスのCO濃度との差分である。
[Third embodiment]
The measuring device 100 of the first embodiment and the second embodiment measures the pressure difference ΔP between the pressure value of the first gas to be measured in the cylinder 21b and the pressure value of the second gas to be measured in the cylinder 21b. It has been described that the pressure of the second gas to be measured is corrected. However, the measuring device 100 according to the third embodiment calculates the pressure value of the second measured gas based on the concentration value of the first measured gas and the concentration difference ΔC of the second measured gas instead of the pressure difference ΔP. to correct. The concentration difference ΔC is the difference between the CO 2 concentration in the first measurement gas measured by the preliminary measurement in step S2, and the 2 CO 2 concentration in the measurement gas measured by the preliminary measurement in step S4.
 第2実施形態の圧力補正部508は、ステップS2において事前測定で測定した第1被測定ガスのCO濃度と、ステップS4において事前測定で測定した第2被測定ガスのCO濃度との差分を算出する。図6の例では、第1被測定ガスのCO濃度は、2%であり、第1被測定ガスのCO濃度は、4%であることから、ΔCとして、2%が算出される。 The pressure correction unit 508 according to the second embodiment calculates the difference between the CO 2 concentration of the first gas to be measured measured in advance in step S2 and the CO 2 concentration of the second gas to be measured measured in advance in step S4. Is calculated. In the example of FIG. 6, CO 2 concentration in the first measurement gas is 2% CO 2 concentration of the first gas to be measured, since it is 4%, as [Delta] C, 2% is calculated.
 第2実施形態の測定装置100は、バルブV6を開放した状態での(圧力補正処理での)ピストンの第3駆動距離と、濃度差ΔCとが対応付けられた第3対応テーブルとを記憶領域に記憶させている。図10は、第3対応テーブルの一例を示した図である。第3対応テーブルは、図8の圧力差ΔPが、濃度差ΔCに代替されたものである。図10の例では、濃度差ΔC1と、第3駆動距離N1とが対応付けられており、濃度差ΔC2と、第3駆動距離N2とが対応付けられている。なお、図8では、3点リーダが示されており、この3点リーダは、他の濃度差ΔCと第3駆動距離との対応付けを省略していることを示している。なお、変形例として、図10の対応テーブルではなく、圧力補正部508は、第3対応式を用いるようにしてもよい。この第3対応式は、濃度差ΔCが入力されると、第3駆動距離Nが算出される式である。 The measuring apparatus 100 according to the second embodiment stores a third correspondence table in which the third driving distance of the piston (in the pressure correction process) in a state where the valve V6 is opened and the concentration difference ΔC are associated. Is stored. FIG. 10 is a diagram illustrating an example of the third correspondence table. The third correspondence table is obtained by replacing the pressure difference ΔP in FIG. 8 with the concentration difference ΔC. In the example of FIG. 10, the density difference ΔC1 is associated with the third drive distance N1, and the density difference ΔC2 is associated with the third drive distance N2. In FIG. 8, a three-point reader is shown, and this three-point reader omits the association between the other density difference ΔC and the third drive distance. As a modified example, the pressure correction unit 508 may use the third correspondence expression instead of the correspondence table in FIG. The third correspondence equation is an equation for calculating the third driving distance N when the density difference ΔC is input.
 圧力補正部508は、第3対応テーブルまたは第3対応式を用いて、算出された濃度差ΔCに基づいて、第3駆動距離N(バルブV4とバルブV6を開放した状態でシリンダ21bを駆動させる距離)を取得する。圧力補正部508は、シリンダ21b内に第2被測定ガスが収容されている状態において、バルブV4およびバルブ6を開放した状態で、初期位置HからX2方向にピストン21cを駆動する。したがって、バルブV6が開放されている状態では、第2被測定ガスは、セル11内に圧送されるが、そのまま、バルブV6を経由して外部に排出される。第2駆動距離T、バルブV6が開放されることにより、セル11内の第2被測定ガスの圧力は、第1被測定ガスの圧力(=基準圧力値)と同一となる。 The pressure correction unit 508 drives the third driving distance N (the cylinder 21b in a state where the valves V4 and V6 are opened, based on the calculated density difference ΔC using the third correspondence table or the third correspondence expression. Distance). The pressure correction unit 508 drives the piston 21c in the X2 direction from the initial position H with the valve V4 and the valve 6 opened in a state where the second gas to be measured is accommodated in the cylinder 21b. Therefore, while the valve V6 is open, the second gas to be measured is pumped into the cell 11, but is discharged to the outside via the valve V6 as it is. By opening the second drive distance T and the valve V6, the pressure of the second measured gas in the cell 11 becomes equal to the pressure of the first measured gas (= reference pressure value).
 図12(A)は、第3実施形態の圧力補正処理、圧送処理、および加圧処理のピストン21cの駆動、および各バルブの開閉状態を示した図である。 FIG. 12A is a diagram illustrating the driving of the piston 21c and the open / closed state of each valve in the pressure correction processing, the pressure feeding processing, and the pressurization processing according to the third embodiment.
 第3実施形態は、図12(A)に示すように、第2被測定ガスの圧力補正処理において、圧力補正部508は、濃度差ΔCに応じた第3駆動量Nを取得する。第3実施形態の圧力補正処理において、バルブV4とバルブV6を開放した状態で、図12(A)に示した第3駆動距離Nに亘って、ピストン21cを初期位置HからX2方向に向かって駆動させる。そうすると、バルブV4と、セル11と、バルブV6とを経由して、外部に排出される。この排出により、測定装置100は、第1被測定ガスと第2被測定ガスとの圧力値を同一にすることができる。 In the third embodiment, as shown in FIG. 12A, in the pressure correction process for the second gas to be measured, the pressure correction unit 508 acquires the third drive amount N according to the concentration difference ΔC. In the pressure correction process of the third embodiment, the piston 21c is moved from the initial position H in the X2 direction over the third drive distance N shown in FIG. 12A with the valves V4 and V6 opened. Drive. Then, it is discharged outside via the valve V4, the cell 11, and the valve V6. By this discharge, the measuring apparatus 100 can make the pressure value of the first measured gas equal to the pressure value of the second measured gas.
 本実施形態の圧力補正部508は、濃度差ΔCに基づいて第3駆動量Nを取得する。したがって、第1実施形態および第2実施形態のように、シリンダ21b内の圧力を測定する圧力計33を備える必要がない。よって、第1実施形態の測定装置100と比較して部品点数を削減できる。 圧 力 The pressure correction unit 508 of the present embodiment acquires the third drive amount N based on the density difference ΔC. Therefore, unlike the first and second embodiments, it is not necessary to provide the pressure gauge 33 for measuring the pressure in the cylinder 21b. Therefore, the number of components can be reduced as compared with the measuring apparatus 100 of the first embodiment.
 [第4実施形態]
 次に、第4実施形態の測定装置100を説明する。第3実施形態の測定装置100は、シリンダ11内の第2被測定ガスをバルブV6を経由して排出させるとして説明した。第4実施形態の測定装置100は、シリンダ11内の第2被測定ガスをバルブV5を経由して排出させる。図12(B)は、第2実施形態の圧力補正処理、圧送処理、および加圧処理のピストン21cの駆動、および各バルブの開閉状態を示した図である。
[Fourth embodiment]
Next, a measuring apparatus 100 according to a fourth embodiment will be described. The measuring device 100 of the third embodiment has been described as discharging the second gas to be measured in the cylinder 11 via the valve V6. The measuring device 100 of the fourth embodiment discharges the second gas to be measured in the cylinder 11 via the valve V5. FIG. 12B is a diagram illustrating the driving of the piston 21c and the open / closed state of each valve in the pressure correction processing, the pressure feeding processing, and the pressurization processing according to the second embodiment.
 第2実施形態は、図12(B)に示すように、第2被測定ガスの圧力補正処理において、圧力補正部508は、バルブV5を開放し、バルブV1~V4、およびバルブV6を閉塞した状態で、シリンダ21bをX2方向に駆動する。このような構成によれば、圧力補正処理により、バルブV5から排出できる。 In the second embodiment, as shown in FIG. 12B, in the pressure correction process for the second gas to be measured, the pressure correction unit 508 opens the valve V5 and closes the valves V1 to V4 and the valve V6. In this state, the cylinder 21b is driven in the X2 direction. According to such a configuration, it is possible to discharge from the valve V5 by the pressure correction processing.
 この第4実施形態の測定装置100であっても、第3実施形態の測定装置100と同様の効果を奏する。 っ て も The measuring device 100 of the fourth embodiment also has the same effect as the measuring device 100 of the third embodiment.
 (変形例)
 (1) 本実施形態においては、事前測定は、本測定よりも、測定での演算量が少ないとして説明した。しかしながら、事前測定と、本測定とで測定処理を共通化させるようにしてもよい。このような構成であれば、事前測定と、本測定とで測定プログラムを共通化できることから、プログラムの容量を削減できる。
(Modification)
(1) In the present embodiment, the pre-measurement has been described on the assumption that the amount of calculation in the measurement is smaller than the main measurement. However, the measurement processing may be shared between the preliminary measurement and the main measurement. With such a configuration, the measurement program can be shared between the preliminary measurement and the main measurement, so that the program capacity can be reduced.
 (2) 本実施形態の測定装置は、第1被測定ガスと第2被測定ガスとのうち、成分ガスが濃い方の被測定ガスの濃度を低下させる(希釈させる)ことにより、第1被測定ガスと第2被測定ガスとで成分ガスの濃度を同じにするとして説明した。しかしながら、第1被測定ガスの成分ガスの濃度と第2被測定ガスの成分ガスの濃度とが同じになるのであれば、如何なる処理を実行するようにしてもよい。例えば、測定装置は、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整する。典型的には、測定装置は、第1被測定ガスおよび第2被測定ガスのうち成分ガスの濃度が低い方の被測定ガス(本実施形態では、第1被測定ガス)に対して、成分ガスを加味することにより、第1被測定ガスの成分ガスの濃度と第2被測定ガスの成分ガスの濃度とを同じにするようにしてもよい。また、測定装置は、第1被測定ガスに対して成分ガスを加味し、かつ第2被測定ガスを希釈して、第1被測定ガスの成分ガスの濃度と第2被測定ガスの成分ガスの濃度とを同じにするようにしてもよい。 (2) The measuring apparatus of the present embodiment reduces (dilutes) the concentration of the gas to be measured which has a higher component gas, out of the first gas to be measured and the second gas to be measured, to thereby dilute the first gas to be measured. The description has been made assuming that the concentrations of the component gases are the same in the measurement gas and the second measurement gas. However, if the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas are the same, any processing may be executed. For example, the measuring device adjusts the concentration of at least one component gas of the first measured gas and the second measured gas. Typically, the measuring device sends a component to the measured gas (in the present embodiment, the first measured gas) having the lower concentration of the component gas of the first measured gas and the second measured gas. By adding the gas, the concentration of the component gas of the first measured gas and the concentration of the component gas of the second measured gas may be made the same. In addition, the measurement device adds the component gas to the first measurement gas and dilutes the second measurement gas, and adjusts the concentration of the component gas of the first measurement gas and the component gas of the second measurement gas. May be made the same as the density.
 (3) 本実施形態の測定装置は、第1被測定ガスと第2被測定ガスとのうち、セル11内の圧力値が高い方の被測定ガスの圧力値を低下させることにより、第1被測定ガスと第2被測定ガスとで圧力値を同じにするとして説明した。しかしながら、第1被測定ガスの成分ガスの圧力値と第2被測定ガスの圧力値とが同じになるのであれば、如何なる処理を実行するようにしてもよい。例えば、測定装置は、第1被測定ガスおよび第2被測定ガスのうち少なくとも一方の圧力値を調整する。典型的には、測定装置は、第1被測定ガスおよび第2被測定ガスのうち圧力値が低い方の被測定ガス(本実施形態では、第1被測定ガス)を加圧して圧力値を増加させることにより第1被測定ガスの圧力値と第2被測定ガスの圧力値とを同じにするようにしてもよい。また、測定装置は、第1被測定ガスの圧力値を増加し、かつ第2被測定ガスの圧力値を低下させることにより、第1被測定ガスと第2被測定ガスと圧力値を同じにするようにしてもよい。 (3) The measurement apparatus of the present embodiment reduces the first measured gas and the second measured gas by decreasing the pressure value of the measured gas having the higher pressure value in the cell 11 to thereby obtain the first measured gas and the second measured gas. The description has been made assuming that the pressure value of the gas to be measured and the second gas to be measured are the same. However, if the pressure value of the component gas of the first measured gas and the pressure value of the second measured gas are the same, any processing may be executed. For example, the measuring device adjusts the pressure value of at least one of the first measured gas and the second measured gas. Typically, the measuring device pressurizes the measured gas (in the present embodiment, the first measured gas) having the lower pressure value of the first measured gas and the second measured gas to reduce the pressure value. By increasing the pressure, the pressure value of the first measured gas and the pressure value of the second measured gas may be made equal. Further, the measuring device increases the pressure value of the first measured gas and decreases the pressure value of the second measured gas so that the first measured gas and the second measured gas have the same pressure value. You may make it.
 (4) 本実施形態では、加圧部は、シリンダ21bとピストン21cなどにより構成されるとして説明した。しかしながら、加圧部はセル内の被測定ガスを加圧できれば、如何なる構成であってもよい。 {(4)} In the present embodiment, the pressurizing section has been described as being configured by the cylinder 21b, the piston 21c, and the like. However, the pressurizing section may have any configuration as long as the gas to be measured in the cell can be pressurized.
 (5) 本実施形態では、2種類の成分ガスは、12COおよび13COであるとして説明した。しかしながら、2種類の成分ガスは、好ましくは互いに同位体の関係であれば、他の成分ガスであってもよい。 (5) In the present embodiment, it has been described that the two types of component gases are 12 CO 2 and 13 CO 2 . However, the two types of component gases may be other component gases as long as they are preferably in an isotope relationship with each other.
 (6) また、第1実施形態では、駆動回路50は、第1被測定ガスと第2被測定ガスの双方の圧力値を測定するとして説明した。しかしながら、測定装置100は、第1被測定ガスおよび第2被測定ガスのうち成分ガスの濃度が高い方の被測定ガス(本実施形態では、第2被測定ガス)の圧力値を測定し、成分ガスの濃度が薄い方の被測定ガス(本実施形態では、第1被測定ガス)の圧力値を測定しないようにしてもよい。本実施形態の測定装置は、外気圧の大小にかかわらず、図7などに示したように、セル11内の圧力値を一定にする圧力維持部(圧力維持機能)を有する。圧力維持部は、セル11内の被測定ガスの圧力値を基準圧力値にする。したがって、成分ガスの薄い方の被測定ガスの圧力値は測定せずとも、基準圧力値となる。つまり、駆動回路50は、少なくとも成分ガスの濃度が高い方の被測定ガスの圧力値を測定するようにしても、本実施形態と同様の効果を奏する。 {(6)} In the first embodiment, the drive circuit 50 has been described as measuring the pressure values of both the first measured gas and the second measured gas. However, the measuring apparatus 100 measures the pressure value of the measured gas (in the present embodiment, the second measured gas) having the higher concentration of the component gas of the first measured gas and the second measured gas, The pressure value of the gas to be measured having the lower concentration of the component gas (the first gas to be measured in this embodiment) may not be measured. The measuring device of the present embodiment has a pressure maintaining unit (pressure maintaining function) that keeps the pressure value in the cell 11 constant, as shown in FIG. The pressure maintaining unit sets the pressure value of the gas to be measured in the cell 11 to a reference pressure value. Therefore, the pressure value of the gas to be measured, which is the thinner of the component gases, becomes the reference pressure value without being measured. That is, even if the drive circuit 50 measures at least the pressure value of the measured gas having the higher concentration of the component gas, the same effect as that of the present embodiment can be obtained.
 (7) また、互いに同位体の関係である2種類の成分ガスを含む被測定ガスを収容するセルを含み、前記セル内の被測定ガスに適した波長の透過光の吸光度を求め、該吸光度に基づいて、前記セル内の被測定ガスの前記2種類の成分ガスの濃度を測定する測定装置に以下の工程を実行させるプログラムを実施するようにしてもよい。 (7) Also, a cell containing a gas to be measured containing two kinds of component gases having an isotope relationship with each other is included, and the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell is determined. Based on the above, a program that causes a measuring device that measures the concentrations of the two types of component gases of the gas to be measured in the cell to execute the following steps may be executed.
 (7-1) このプログラムは、互いに同位体の関係である2種類の成分ガスを含む被測定ガスを収容するセルを含み、前記セル内の被測定ガスに適した波長の透過光の吸光度を求め、該吸光度に基づいて、前記セル内の被測定ガスの前記2種類の成分ガスの濃度を測定する測定装置に実行させる測定装置(コンピュータ)に、被測定ガスとして収集した第1被測定ガスおよび第2被測定ガスそれぞれの成分ガスの濃度を測定する第1測定機能と、前記第1測定機能で測定した前記第1被測定ガスの成分ガスの濃度と前記第2被測定ガスの成分ガスの濃度とが同じになるように、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整する濃度調整機能と、前記濃度調整機能による調整を経た前記第1被測定ガスおよび前記第2被測定ガスに対して、収容した前記セル内で予め定められた力で加圧する加圧機能と、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも成分ガスの濃度が高い方の被測定ガスの圧力値を測定する圧力測定機能と、前記圧力測定機能で測定した前記第1被測定ガスと前記第2被測定ガスとの圧力差に基づいて、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の前記加圧機能での圧力を補正する圧力補正機能と、前記圧力補正機能による補正を経た前記第1被測定ガスおよび前記第2被測定ガスそれぞれに対して、前記2種類の成分ガスの濃度比を測定する第2測定機能とを実行させるためのプログラムである。 (7-1) This program includes a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, and measures the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell. The first measured gas collected as a measured gas is obtained by a measuring device (computer) that is executed by a measuring device that measures the concentrations of the two types of component gases of the measured gas in the cell based on the absorbance. A first measuring function for measuring the concentration of each of the component gases of the first and second measurement gases; the concentration of the component gas of the first measurement gas and the component gas of the second measurement gas measured by the first measurement function And a concentration adjusting function for adjusting the concentration of at least one component gas of the first measurement gas and the second measurement gas so that the concentration of the first measurement gas and the second measurement gas is the same. 1 A pressurizing function of pressurizing the measurement gas and the second measurement gas with a predetermined force in the accommodated cell, and at least a component gas of the first measurement gas and the second measurement gas A pressure measurement function for measuring a pressure value of the gas to be measured having a higher concentration of the gas, and a pressure difference between the first gas to be measured and the second gas to be measured measured by the pressure measurement function. A pressure correction function for correcting the pressure in at least one of the first measurement gas and the second measurement gas in the pressurization function; and the first measurement gas and the second measurement gas corrected by the pressure correction function. This is a program for executing a second measurement function for measuring the concentration ratio of the two types of component gases for each measurement gas.
 (7-2) また、このプログラムは、互いに同位体の関係である2種類の成分ガスを含む被測定ガスを収容するセルを含み、前記セル内の被測定ガスに適した波長の透過光の吸光度を求め、該吸光度に基づいて、前記セル内の被測定ガスの前記2種類の成分ガスの濃度を測定する測定装置に、被測定ガスとして収集した第1被測定ガスおよび第2被測定ガスそれぞれの成分ガスの濃度を測定する第1測定機能と、前記第1測定機能で測定した前記第1被測定ガスの成分ガスの濃度と前記第2被測定ガスの成分ガスの濃度とが同じになるように、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整する濃度調整機能と、前記濃度調整機能による調整を経た前記第1被測定ガスおよび前記第2被測定ガスに対して、収容した前記セル内で予め定められた力で加圧する加圧機能と、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも成分ガスの濃度が高い方の被測定ガスの圧力値を測定する圧力測定機能と、前記圧力測定機能で測定した前記第1被測定ガスと前記第2被測定ガスとの圧力差に基づいて、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の前記加圧機能での圧力を補正する圧力補正機能と、前記圧力補正機能による補正を経た前記第1被測定ガスおよび前記第2被測定ガスそれぞれに対して、前記2種類の成分ガスの濃度比を測定する第2測定機能とを実行させるためのプログラムである。 (7-2) The program includes a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, and transmits transmitted light having a wavelength suitable for the gas to be measured in the cell. A first measurement gas and a second measurement gas collected as measurement gases are measured by a measuring device for determining the absorbance and measuring the concentrations of the two types of component gases of the measurement gas in the cell based on the absorbance. A first measuring function for measuring the concentration of each component gas, and the concentration of the component gas of the first measurement gas and the concentration of the component gas of the second measurement gas measured by the first measurement function are the same. A concentration adjustment function for adjusting the concentration of at least one of the first measurement gas and the second measurement gas; and the first measurement gas and the concentration that have been adjusted by the concentration adjustment function. Second measured A pressurizing function for pressurizing the gas with a predetermined force in the cell accommodated therein, and a measurement target having a higher concentration of at least a component gas of the first measurement target gas and the second measurement target gas. A pressure measurement function for measuring a pressure value of the gas; and a first measurement gas and a second measurement gas based on a pressure difference between the first measurement gas and the second measurement gas measured by the pressure measurement function. A pressure correction function for correcting the pressure in at least one of the pressurized functions of the measured gas, and the first measured gas and the second measured gas, each of which has been corrected by the pressure correction function, It is a program for executing a second measurement function for measuring the concentration ratio of two types of component gases.
 (8) 本実施形態の圧力補正部は、第2被測定ガスの圧力値をシリンダ21b内で補正するとして説明した。しかしながら、第2被測定ガスの圧力値を補正する箇所は、他の箇所であってもよく、例えば、セル11内としてもよい。また、前述した構成に限られず、測定装置100は、該測定装置100の測定場所および成分ガスの濃度などに関わらず、セル11に注入されたときの被測定ガスの圧力値が基準圧力値とする補正を行うものであれば、如何なる構成を有していてもよい。 {(8)} The pressure correction unit of the present embodiment has been described as correcting the pressure value of the second measured gas in the cylinder 21b. However, the location for correcting the pressure value of the second gas to be measured may be another location, for example, inside the cell 11. In addition, without being limited to the above-described configuration, the measuring device 100 is configured such that the pressure value of the gas to be measured when injected into the cell 11 is equal to the reference pressure value, regardless of the measurement location of the measuring device 100 and the concentration of the component gas. Any configuration may be used as long as the correction is performed.
 例えば、圧力補正部は、圧力が高くなる第2被測定ガスについて、加圧制御部による加圧させる圧力(加圧させる度合)を低減させることにより、セル11内の第1被測定ガスと第2被測定ガスとの圧力値を同じとなるようにしてもよい。 For example, the pressure correction unit reduces the pressure (degree of pressurization) by the pressurization control unit for the second gas to be measured, the pressure of which increases. The pressure value of the two measured gases may be the same.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 100 測定装置、502 第1測定部、504 濃度調整部、506 加圧制御部、508 圧力補正部、510 第2測定部、512 圧力測定部。 {100} measuring device, 502 {first measuring unit, 504} concentration adjusting unit, 506} pressurizing control unit, 508} pressure correcting unit, 510} second measuring unit, 512} pressure measuring unit.

Claims (12)

  1.  互いに同位体の関係である2種類の成分ガスを含む被測定ガスを収容するセルを含み、前記セル内の被測定ガスに適した波長の透過光の吸光度を求め、該吸光度に基づいて、前記セル内の被測定ガスの前記2種類の成分ガスの濃度を測定する測定装置であって、
     被測定ガスとして収集した第1被測定ガスおよび第2被測定ガスそれぞれの成分ガスの濃度を測定する第1測定部と、
     前記第1測定部で測定した前記第1被測定ガスの成分ガスの濃度と前記第2被測定ガスの成分ガスの濃度とが同じになるように、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整する濃度調整部と、
     前記濃度調整部による調整を経た前記第1被測定ガスおよび前記第2被測定ガスに対して、収容した前記セル内で予め定められた力で加圧する加圧部と、
     前記第1測定部で測定した前記第1被測定ガスと前記第2被測定ガスとの成分ガスの濃度差に基づいて、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の前記加圧部での圧力を補正する圧力補正部と、
     前記圧力補正部による補正を経た前記第1被測定ガスおよび前記第2被測定ガスそれぞれに対して、前記2種類の成分ガスの濃度比を測定する第2測定部とを備える測定装置。
    Including a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, determining the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell, based on the absorbance, A measurement device for measuring the concentrations of the two types of component gases of the gas to be measured in the cell,
    A first measuring unit that measures the concentration of each of the component gases of the first measured gas and the second measured gas collected as the measured gas;
    The first measurement target gas and the second measurement target gas are measured such that the concentration of the component gas of the first measurement target gas and the concentration of the component gas of the second measurement target gas measured by the first measurement unit are the same. A concentration adjusting unit for adjusting the concentration of at least one component gas of the measurement gas,
    A pressurizing unit that pressurizes the first measured gas and the second measured gas that have been adjusted by the concentration adjusting unit with a predetermined force in the accommodated cell;
    At least one of the first gas to be measured and the second gas to be measured based on a concentration difference between component gases of the first gas to be measured and the second gas to be measured measured by the first measuring unit. A pressure correction unit for correcting the pressure in the pressurizing unit,
    A measuring apparatus comprising: a second measuring unit that measures a concentration ratio of the two types of component gases to each of the first gas to be measured and the second gas to be measured that have been corrected by the pressure correcting unit.
  2.  互いに同位体の関係である2種類の成分ガスを含む被測定ガスを収容するセルを含み、前記セル内の被測定ガスに適した波長の透過光の吸光度を求め、該吸光度に基づいて、前記セル内の被測定ガスの前記2種類の成分ガスの濃度を測定する測定装置であって、
     被測定ガスとして収集した第1被測定ガスおよび第2被測定ガスそれぞれの成分ガスの濃度を測定する第1測定部と、
     前記第1測定部で測定した前記第1被測定ガスの成分ガスの濃度と前記第2被測定ガスの成分ガスの濃度とが同じになるように、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整する濃度調整部と、
     前記濃度調整部による調整を経た前記第1被測定ガスおよび前記第2被測定ガスに対して、収容した前記セル内で予め定められた力で加圧する加圧部と、
     前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも成分ガスの濃度が高い方の被測定ガスの圧力値を測定する圧力測定部と、
     前記圧力測定部で測定した前記第1被測定ガスと前記第2被測定ガスとの圧力差に基づいて、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の前記加圧部での圧力を補正する圧力補正部と、
     前記圧力補正部による補正を経た前記第1被測定ガスおよび前記第2被測定ガスそれぞれに対して、前記2種類の成分ガスの濃度比を測定する第2測定部とを備える測定装置。
    Including a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, determining the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell, based on the absorbance, A measurement device for measuring the concentrations of the two types of component gases of the gas to be measured in the cell,
    A first measuring unit that measures the concentration of each of the component gases of the first measured gas and the second measured gas collected as the measured gas;
    The first measurement target gas and the second measurement target gas are measured such that the concentration of the component gas of the first measurement target gas and the concentration of the component gas of the second measurement target gas measured by the first measurement unit are the same. A concentration adjusting unit for adjusting the concentration of at least one component gas of the measurement gas,
    A pressurizing unit that pressurizes the first measured gas and the second measured gas that have been adjusted by the concentration adjusting unit with a predetermined force in the accommodated cell;
    A pressure measuring unit that measures a pressure value of a gas to be measured having a higher concentration of at least a component gas among the first gas to be measured and the second gas to be measured;
    The pressurizing unit of at least one of the first measured gas and the second measured gas based on a pressure difference between the first measured gas and the second measured gas measured by the pressure measuring unit. A pressure compensator for compensating the pressure at
    A measuring apparatus comprising: a second measuring unit that measures a concentration ratio of the two types of component gases to each of the first gas to be measured and the second gas to be measured that have been corrected by the pressure correcting unit.
  3.  前記圧力補正部は、前記加圧部で加圧した前記セル内での前記第1被測定ガスの圧力値と前記第2被測定ガスの圧力値とのうち高い方の圧力値が、低い方の圧力値となるように前記加圧部での圧力を補正する、請求項1または請求項2に記載の測定装置。 The pressure correction unit is configured to determine that the higher one of the pressure value of the first measured gas and the pressure value of the second measured gas in the cell pressurized by the pressurizing unit is the lower one. The measuring device according to claim 1, wherein the pressure at the pressurizing unit is corrected so as to have a pressure value of:
  4.  前記濃度調整部は、前記第1測定部で測定した前記第1被測定ガスの成分ガスの濃度と前記第2被測定ガスの成分ガスの濃度とのうち高い方の濃度が、低い方の濃度となるように、高い方の濃度の被測定ガスを外気で希釈する、請求項1~請求項3いずれか1項に記載の測定装置。 The concentration adjusting section is configured such that a higher one of a concentration of the component gas of the first measured gas and a concentration of the component gas of the second measured gas measured by the first measuring section is a lower concentration. The measuring device according to any one of claims 1 to 3, wherein the gas to be measured having a higher concentration is diluted with outside air so that
  5.  前記圧力補正部は、前記濃度調整部において外気で希釈した前記第1被測定ガスおよび前記第2被測定ガスのいずれか一方に対して前記加圧部での圧力を補正する、請求項4に記載の測定装置。 5. The pressure correction unit according to claim 4, wherein the pressure adjustment unit corrects a pressure in the pressurizing unit with respect to one of the first measurement gas and the second measurement gas diluted with outside air in the concentration adjustment unit. 6. The measuring device as described.
  6.  前記加圧部は、
      被測定ガスを前記セルに圧送するシリンダと、
      前記シリンダに挿入されているピストンと、
      前記ピストンを駆動する駆動部とをさらに有し、
      前記駆動部は、被測定ガスを収容した前記セル内の圧力値が成分ガスの濃度を測定する場合の圧力値となるように、予め定められた移動量で前記ピストンを駆動する、請求項1~請求項5いずれか1項に記載の測定装置。
    The pressurizing unit is
    A cylinder for pumping the gas to be measured into the cell,
    A piston inserted into the cylinder;
    A driving unit for driving the piston,
    The said drive part drives the said piston by the predetermined moving amount so that the pressure value in the said cell containing the to-be-measured gas may become the pressure value at the time of measuring the density | concentration of a component gas. The measuring device according to any one of claims 5 to 5.
  7.  前記圧力補正部は、前記ピストンの移動量により前記加圧部での圧力を補正する、請求項6に記載の測定装置。 The measuring device according to claim 6, wherein the pressure correction unit corrects the pressure at the pressurizing unit based on a movement amount of the piston.
  8.  前記圧力補正部は、前記加圧部で加圧した前記セル内での圧力値が高くなる方の前記第1被測定ガスおよび前記第2被測定ガスの一方に対して前記ピストンの移動量を調整する、請求項7に記載の測定装置。 The pressure compensating unit is configured to adjust a movement amount of the piston with respect to one of the first measured gas and the second measured gas, which has a higher pressure value in the cell pressurized by the pressurizing unit. The measuring device according to claim 7, which adjusts.
  9.  前記圧力補正部は、セル内に圧送する被測定ガスを前記シリンダに収容する処理において、前記ピストンの移動量を調整する、請求項8に記載の測定装置。 The measurement apparatus according to claim 8, wherein the pressure correction unit adjusts a movement amount of the piston in a process of accommodating a gas to be measured to be pressure-fed into a cell in the cylinder.
  10.  前記2種類の成分ガスは、12CO2および13CO2である、請求項1~請求項9いずれか1項に記載の測定装置。 (10) The measuring device according to any one of (1) to (9), wherein the two types of component gases are 12CO2 and 13CO2.
  11.  互いに同位体の関係である2種類の成分ガスを含む被測定ガスを収容するセルを含み、前記セル内の被測定ガスに適した波長の透過光の吸光度を求め、該吸光度に基づいて、前記セル内の被測定ガスの前記2種類の成分ガスの濃度を測定する測定方法であって、
     被測定ガスとして収集した第1被測定ガスおよび第2被測定ガスそれぞれの成分ガスの濃度を測定するステップと、
     測定した前記第1被測定ガスの成分ガスの濃度と前記第2被測定ガスの成分ガスの濃度とが同じになるように、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整するステップと、
     調整を経た前記第1被測定ガスおよび前記第2被測定ガスに対して、収容した前記セル内で予め定められた力で加圧するステップと、
     測定した前記第1被測定ガスと前記第2被測定ガスとの成分ガスの濃度差に基づいて、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の前記セル内での圧力を補正するステップと、
     補正を経た前記第1被測定ガスおよび前記第2被測定ガスそれぞれに対して、前記2種類の成分ガスの濃度比を測定するステップとを有する測定方法。
    Including a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, determining the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell, based on the absorbance, A measurement method for measuring the concentrations of the two types of component gases of a gas to be measured in a cell,
    Measuring the concentration of the component gas of each of the first measured gas and the second measured gas collected as the measured gas;
    At least one of the first gas to be measured and the second gas to be measured so that the measured concentration of the component gas of the first gas to be measured is equal to the concentration of the component gas of the second gas to be measured. Adjusting the concentration of the component gases of
    Pressurizing the adjusted first gas to be measured and the second gas to be measured with a predetermined force in the accommodated cell;
    The pressure in the cell of at least one of the first gas to be measured and the second gas to be measured based on the measured concentration difference of the component gas between the first gas to be measured and the second gas to be measured. Correcting
    Measuring the concentration ratio of the two types of component gases for each of the first measured gas and the second measured gas that have been corrected.
  12.  互いに同位体の関係である2種類の成分ガスを含む被測定ガスを収容するセルを含み、前記セル内の被測定ガスに適した波長の透過光の吸光度を求め、該吸光度に基づいて、前記セル内の被測定ガスの前記2種類の成分ガスの濃度を測定する測定方法であって、
     被測定ガスとして収集した第1被測定ガスおよび第2被測定ガスそれぞれの成分ガスの濃度を測定するステップと、
     測定した前記第1被測定ガスの成分ガスの濃度と前記第2被測定ガスの成分ガスの濃度とが同じになるように、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の成分ガスの濃度を調整するステップと、
     調整を経た前記第1被測定ガスおよび前記第2被測定ガスに対して、収容した前記セル内で予め定められた力で加圧するステップと、
     前記第1被測定ガスおよび前記第2被測定ガスそれぞれの圧力値を測定するステップと、
     測定した前記第1被測定ガスと前記第2被測定ガスとの圧力差に基づいて、前記第1被測定ガスおよび前記第2被測定ガスのうち少なくとも一方の前記セル内での圧力を補正するステップと、
     補正を経た前記第1被測定ガスおよび前記第2被測定ガスそれぞれに対して、前記2種類の成分ガスの濃度比を測定するステップとを備える測定方法。
    Including a cell containing a gas to be measured containing two types of component gases having an isotope relationship with each other, determining the absorbance of transmitted light having a wavelength suitable for the gas to be measured in the cell, based on the absorbance, A measurement method for measuring the concentrations of the two types of component gases of a gas to be measured in a cell,
    Measuring the concentration of the component gas of each of the first measured gas and the second measured gas collected as the measured gas;
    At least one of the first gas to be measured and the second gas to be measured so that the measured concentration of the component gas of the first gas to be measured is equal to the concentration of the component gas of the second gas to be measured. Adjusting the concentration of the component gases of
    Pressurizing the adjusted first gas to be measured and the second gas to be measured with a predetermined force in the accommodated cell;
    Measuring a pressure value of each of the first measured gas and the second measured gas;
    Based on the measured pressure difference between the first measured gas and the second measured gas, the pressure in the cell of at least one of the first measured gas and the second measured gas is corrected. Steps and
    Measuring the concentration ratio of the two types of component gases for each of the first measured gas and the second measured gas that have been corrected.
PCT/JP2018/034955 2018-09-21 2018-09-21 Measuring device and measuring method WO2020059100A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020547562A JP7108327B2 (en) 2018-09-21 2018-09-21 Measuring device and measuring method
PCT/JP2018/034955 WO2020059100A1 (en) 2018-09-21 2018-09-21 Measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034955 WO2020059100A1 (en) 2018-09-21 2018-09-21 Measuring device and measuring method

Publications (1)

Publication Number Publication Date
WO2020059100A1 true WO2020059100A1 (en) 2020-03-26

Family

ID=69888676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034955 WO2020059100A1 (en) 2018-09-21 2018-09-21 Measuring device and measuring method

Country Status (2)

Country Link
JP (1) JP7108327B2 (en)
WO (1) WO2020059100A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021156813A (en) * 2020-03-30 2021-10-07 株式会社島津製作所 Gas detector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098629A (en) * 2000-09-25 2002-04-05 Otsuka Pharmaceut Co Ltd Analytically measuring apparatus for isotope gas
JP2003232732A (en) * 2002-02-06 2003-08-22 Shimadzu Corp Isotopic gas measuring instrument
EP1508794A1 (en) * 2003-08-18 2005-02-23 Halliburton Energy Services, Inc. Method and apparatus for performing rapid isotopic analysis via laser spectroscopy
JP2007510131A (en) * 2003-10-31 2007-04-19 大塚製薬株式会社 Method for determining gas injection amount in isotope gas analysis, and method and apparatus for isotope gas analysis measurement
WO2007088885A1 (en) * 2006-02-03 2007-08-09 Otsuka Pharmaceutical Co., Ltd. Method of exhaled gas measuring and analysis and apparatus therefor
US20090124918A1 (en) * 2006-03-17 2009-05-14 Freie Universitaetsmedizin Berlin, Apparatus For Spectroscopically Analyzing A Gas
JP2017173162A (en) * 2016-03-24 2017-09-28 株式会社東芝 Gas analysis method and gas measurement device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098629A (en) * 2000-09-25 2002-04-05 Otsuka Pharmaceut Co Ltd Analytically measuring apparatus for isotope gas
JP2003232732A (en) * 2002-02-06 2003-08-22 Shimadzu Corp Isotopic gas measuring instrument
EP1508794A1 (en) * 2003-08-18 2005-02-23 Halliburton Energy Services, Inc. Method and apparatus for performing rapid isotopic analysis via laser spectroscopy
JP2007510131A (en) * 2003-10-31 2007-04-19 大塚製薬株式会社 Method for determining gas injection amount in isotope gas analysis, and method and apparatus for isotope gas analysis measurement
WO2007088885A1 (en) * 2006-02-03 2007-08-09 Otsuka Pharmaceutical Co., Ltd. Method of exhaled gas measuring and analysis and apparatus therefor
US20090124918A1 (en) * 2006-03-17 2009-05-14 Freie Universitaetsmedizin Berlin, Apparatus For Spectroscopically Analyzing A Gas
JP2017173162A (en) * 2016-03-24 2017-09-28 株式会社東芝 Gas analysis method and gas measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021156813A (en) * 2020-03-30 2021-10-07 株式会社島津製作所 Gas detector
JP7388269B2 (en) 2020-03-30 2023-11-29 株式会社島津製作所 gas detection device

Also Published As

Publication number Publication date
JPWO2020059100A1 (en) 2021-08-30
JP7108327B2 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
US9591992B2 (en) Method of exhaled gas measurement and analysis and apparatus therefor
KR100772291B1 (en) A stable isotope measurement method for spectrometrically analyzing an isotopic gas
JP4435782B2 (en) Method for determining gas injection amount in isotope gas analysis, and method and apparatus for isotope gas analysis measurement
US20090137055A1 (en) Measuring nitrogen oxides and other gases by ozone formation
PT797765E (en) Method of spectrometrically measuring the concentration ratio of two isotopes in a gas
WO2020059100A1 (en) Measuring device and measuring method
JP3176302B2 (en) Isotope gas spectrometry method and measuring device
JP4460134B2 (en) Isotope gas analysis measurement method
JPWO2020059102A1 (en) Signal processing circuits, measuring devices, and signal processing methods
JP4481469B2 (en) Capability determination method of carbon dioxide absorbent in isotope gas analysis measurement
JPH09152401A (en) Spectroscopic measuring method and equipment for isotope gas
JP2003065950A (en) Determination method for 12co2-13co2 isotope ratio

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934329

Country of ref document: EP

Kind code of ref document: A1