WO2020059089A1 - Transmission system, transmission device and directing system - Google Patents

Transmission system, transmission device and directing system Download PDF

Info

Publication number
WO2020059089A1
WO2020059089A1 PCT/JP2018/034874 JP2018034874W WO2020059089A1 WO 2020059089 A1 WO2020059089 A1 WO 2020059089A1 JP 2018034874 W JP2018034874 W JP 2018034874W WO 2020059089 A1 WO2020059089 A1 WO 2020059089A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
antenna
penlight
area
color
Prior art date
Application number
PCT/JP2018/034874
Other languages
French (fr)
Japanese (ja)
Inventor
央 丸山
弘樹 萩原
めぐみ 川田
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Publication of WO2020059089A1 publication Critical patent/WO2020059089A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H30/00Remote-control arrangements specially adapted for toys, e.g. for toy vehicles
    • A63H30/02Electrical arrangements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/22Optical, colour, or shadow toys
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63JDEVICES FOR THEATRES, CIRCUSES, OR THE LIKE; CONJURING APPLIANCES OR THE LIKE
    • A63J5/00Auxiliaries for producing special effects on stages, or in circuses or arenas
    • A63J5/02Arrangements for making stage effects; Auxiliary stage appliances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21LLIGHTING DEVICES OR SYSTEMS THEREOF, BEING PORTABLE OR SPECIALLY ADAPTED FOR TRANSPORTATION
    • F21L4/00Electric lighting devices with self-contained electric batteries or cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant

Definitions

  • the present invention relates to a transmission system, a transmission device, and an effect system.
  • Patent Literature 1 discloses a lighting effect method executed by a plurality of light emitting devices and a control system, wherein the control system transmits position information on a position at which each of the plurality of light emitting devices is arranged.
  • the light emission data storage unit Registered in the position data storage unit in association with the identification information, stores a plurality of different light emission data according to the position where the light emitting device is arranged, and in the step of transmitting the light emission data,
  • the system discloses a lighting effect method for determining, for each of a plurality of light emitting devices, light emission data to be read from the light emission data storage means and transmitted based on the position information and the identification information registered in the position data storage means. .
  • various effects are performed at venues of various events such as concerts and live performances.
  • data to be transmitted to the receiving device may be determined based on position information and identification information of the receiving device registered in advance.
  • An object of the present invention is to make it possible to change the appearance corresponding to the position after movement, even when the reception device moves, when the appearance of the reception device is changed by radiating radio waves from the transmission device. is there.
  • the invention according to claim 1 irradiates a plurality of receiving devices in a predetermined area with radio waves by a plurality of transmitting devices, and each of the plurality of transmitting devices transmits the radio wave
  • the radio wave characteristics can be set so as to irradiate a radio wave toward a specific part of a predetermined region, and the radio wave is radiated based on the radio wave characteristic and the radio wave is radiated based on the radio wave characteristic.
  • a transmission system characterized by changing the appearance of the receiving device.
  • the invention according to claim 2 wherein each of the transmitting devices sets, as the radio wave characteristic, an intensity of a radio wave to be irradiated according to the partial area. It is a transmission system.
  • the invention according to claim 3 is characterized in that, as the radio wave characteristics, the directivity of irradiating a radio wave in a specific direction is set as the radio wave characteristic according to the partial area.
  • the invention according to claim 4 is characterized in that each of the transmitting devices instructs the receiving device in the partial area to emit light emitted by the receiving device.
  • the individual transmitting devices are switched from a radio wave transmitting side to a radio wave receiving side by an instruction from a control device, and receive radio waves received from another of the plurality of transmitting devices.
  • the invention according to claim 6 is an individual transmitting device among a plurality of transmitting devices that irradiate a plurality of receiving devices within a predetermined area with radio waves, wherein the individual transmitting devices are: Radio wave characteristics can be set so as to irradiate radio waves toward a specific part of the predetermined area, and irradiate radio waves based on the radio characteristics, and within the part of the area.
  • An effect system including a control device.
  • the appearance of the receiving device when the appearance of the receiving device is changed by radiating radio waves from the transmitting device, even if the receiving device moves, the appearance can be changed to the position corresponding to the position after the movement. become.
  • the second aspect of the invention it is possible to irradiate a radio wave to a part of a predetermined area based on the set radio wave intensity.
  • the third aspect of the invention it is possible to irradiate a radio wave to a part of a predetermined area based on the set directivity.
  • the fifth aspect of the present invention it is possible to grasp the intensity of the radio wave emitted from the plurality of transmitting devices.
  • the appearance of the receiving device when the appearance of the receiving device is changed by radiating radio waves from the transmitting device, even if the receiving device moves, the appearance can be changed to the position corresponding to the position after the movement. become.
  • the light emitting device when the light emitting device emits light by radiating radio waves from the transmitting device, even if the light emitting device moves, the light emitting device can emit light in the emission color corresponding to the position after the movement. Become.
  • the appearance of the receiving device when the appearance of the receiving device is changed by radiating radio waves from the transmitting device, even if the receiving device moves, the appearance can be changed to the appearance corresponding to the position after the movement. become.
  • FIG. 1 is a diagram illustrating the concept of a communication system to which the present embodiment is applied.
  • FIG. 3 is a diagram illustrating a hardware configuration example of an antenna.
  • (A) is a plan view of a plurality of antennas
  • (B) is a plan view of an individual antenna
  • (C) is a cross-sectional view of the antenna along the line IIC-IIC in (B).
  • FIG. 2 is a diagram illustrating a hardware configuration example of a penlight.
  • FIG. 3 is a diagram illustrating a hardware configuration example of a host computer.
  • FIG. 3 is a block diagram illustrating a functional configuration example of a control unit of a penlight.
  • FIG. 3 is a block diagram illustrating a functional configuration example of a host computer.
  • FIG. 4 is a diagram illustrating an example of a case where the emission color of a penlight is controlled in accordance with movement of an object.
  • FIG. 1 is a diagram illustrating the concept of an effect system 1 to which the present embodiment is applied.
  • the effect system 1 according to the present embodiment is a system for effecting using a plurality of penlights 20 in a predetermined area such as an event venue (that is, in a predetermined area).
  • the effect system 1 includes an antenna 10 (five in the illustrated example), a plurality of penlights 20 (15 in the illustrated example), and a host computer 30.
  • the five antennas 10 are distinguished from each other, they are described as antennas 10-1 to 10-5.
  • the 15 penlights 20 are distinguished from each other, they are described as penlights 20-1 to 20-15.
  • the number of antennas 10 is not limited to the five illustrated.
  • the number of penlights 20 is not limited to the 15 shown.
  • the predetermined area where the effect system 1 is configured is not limited to the indoor area, but may be the outdoor area.
  • the antenna 10 is an antenna that radiates radio waves in a predetermined area.
  • each of the antennas 10-1 to 10-5 is arranged side by side on a wall surface in a width direction of a stage in an event venue.
  • the antenna 10 has a directivity for concentrating radio wave radiation in a specific direction (that is, irradiating a radio wave in a specific direction), for example, a planar antenna, a parabolic antenna, a Yagi antenna, and a sector.
  • An antenna and the like are exemplified.
  • the signal transmitted by the antenna 10 by radio waves includes information indicating the emission color of the penlight 20 (hereinafter, referred to as color instruction information).
  • the color instruction information is for changing the appearance by controlling the emission color of the penlight 20 and instructing the penlight 20 existing in the radio wave irradiation area to change the appearance.
  • color instruction information is used as an example of instruction information for instructing the emission color of the light emitting device.
  • the antenna 10 uses a broadcast communication method, which is one of the communication methods of Bluetooth (registered trademark) LE (Low Energy).
  • the broadcast communication method of Bluetooth @ LE uses an advertisement packet, which is a signal for searching for a device to be connected, to transmit a signal to an unspecified target without establishing a connection with a specific device. This is a transmission method.
  • the advertisement packet has a payload portion, and the data of the above-described color instruction information is stored in the payload portion.
  • the antenna 10 is connected to another adjacent antenna 10 via a data line, and data is transmitted and received between the antennas 10 via the data line.
  • transmission and reception of data between the antennas 10 are not limited to the configuration performed via the data line, and data transmission and reception may be performed by wireless communication, for example.
  • power is supplied to the antenna 10 from an AC power supply unit or a battery power supply unit (not shown).
  • the AC power supply unit is an outlet of an AC power supply (AC power supply), and power is supplied to the antenna 10 from the AC power supply when connected.
  • the battery power supply unit has a built-in battery, and when connected, power is supplied from the battery to the antenna 10.
  • the antenna 10 may be supplied with power from a computer device such as the host computer 30 via a communication cable as a bus power system.
  • power is supplied from the host computer 30 to the antenna 10 via a USB (Universal Serial Bus) cable.
  • USB Universal Serial Bus
  • the penlight 20 is a portable light-emitting device, and is used by a spectator at a venue of various events such as a concert or a live by holding and emitting light.
  • the penlight 20 receives a radio wave from the antenna 10 and emits light based on color indication information transmitted by the radio wave.
  • the penlight 20 emits light based on the color instruction information transmitted by the radio wave.
  • the penlight 20 when the penlight 20 receives radio waves from the plurality of antennas 10, the penlight 20 emits light based on the color indication information included in the radio wave with the highest intensity among the received radio waves. Further, when the intensity of the radio wave having the highest intensity among the radio waves received from the plurality of antennas 10 exceeds a predetermined threshold (hereinafter, referred to as a radio field intensity threshold), based on the color indication information included in the radio wave. Light may be emitted. Further, when the penlight 20 receives a radio wave from one antenna 10, the penlight 20 emits light based on the color instruction information included in the received radio wave. Further, when the intensity of the radio wave received from one antenna 10 exceeds the radio field intensity threshold, the light may be emitted based on the color indication information included in the radio wave.
  • a predetermined threshold hereinafter, referred to as a radio field intensity threshold
  • the host computer 30 is a computer device that controls the irradiation of the antenna 10 with radio waves.
  • the host computer 30 controls, for example, the content of the color instruction information included in the radio wave, and controls the area of the antenna 10 where the radio wave is irradiated.
  • the control of the radio wave irradiation area is performed by, for example, controlling the stop of the radio wave to be irradiated, the irradiation direction of the radio wave, the intensity of the radio wave, and the beam width of the radio wave.
  • the host computer 30 is connected to the antenna 10-5. Then, the host computer 30 collectively transmits control signals for the respective antennas 10 to the antenna 10-5.
  • control signal from the host computer 30 is transmitted to each antenna 10 in the order of the antenna 10-5, the antenna 10-4, the antenna 10-3, the antenna 10-2, and the antenna 10-1.
  • the method by which the host computer 30 transmits the control signal is not limited to such a configuration.
  • the host computer 30 may be connected to each antenna 10 by wire, and the host computer 30 may directly transmit a control signal to each antenna 10.
  • the host computer 30 may transmit a control signal to each of the antennas by wireless communication.
  • antenna 10 is used as an example of a transmission device.
  • the antennas 10-1 to 10-5 are used as an example of a transmission system.
  • the penlight 20 is used as an example of a receiving device and a light emitting device.
  • the host computer 30 is used as an example of a control device.
  • the antenna 10, the penlight 20, and the host computer 30 are used as an example of an effect system.
  • FIG. 2 is a diagram illustrating a hardware configuration example of the antenna 10.
  • 2A is a plan view of a plurality of antennas 10-1 to 10-5
  • FIG. 2B is a plan view of each antenna 10
  • FIG. 2C is a IIC of FIG. 2B
  • FIG. 3 is a cross-sectional view of the antenna 10 taken along a line IIC.
  • FIG. 2 illustrates an example of a hardware configuration of a planar antenna, as described above, the antenna 10 according to the present embodiment is not limited to a planar antenna.
  • Each of the antennas 10-1 to 10-5 is arranged in a row and connected to a wiring board 40 having flexibility (flexibility).
  • the wiring board 40 is, for example, a flexible printed circuit (FPC).
  • a power supply line and a data line are provided in the wiring board 40, and power is supplied to the antennas 10-1 to 10-5 by the power supply line, and data is transmitted between the adjacent antennas 10 by the data line. Is transmitted and received.
  • the antenna 10 includes an antenna unit 110 and a communication control unit 120, as shown in FIG. FIG. 2B shows an example in which another antenna 10 is present on both sides, such as the antennas 10-2 to 10-4.
  • the antenna unit 110 includes an insulating substrate 111, a ground (GND) electrode 112 provided on one surface (back surface) of the insulating substrate 111, and the other surface (front surface) of the insulating substrate 111.
  • the radiation electrode 113 has a square outer shape. When the four radiation electrodes 113 are distinguished from each other, they are described as radiation electrodes 113-1, 113-2, 113-3, and 113-4.
  • the front side of the insulating substrate 111 is the front side of the antenna unit 110 and the front side of the antenna 10.
  • the back side of the insulating substrate 111 is the back side of the antenna unit 110 and the back side of the antenna 10.
  • the insulating substrate 111 includes, for example, a copper layer (copper foil) and a silver layer (silver foil) in which the base material is formed of a resin film such as polyimide, and the ground electrode 112, the radiation electrode 113, and the signal distribution wiring 114 are provided on the base material. ) And the like. Further, the radiation electrode 113 and the signal distribution wiring 114 are formed of one conductive material layer and are continuous.
  • the antenna unit 110 includes a ground electrode 112 provided on the back surface of the insulating substrate 111 and a radiation electrode 113 provided on the surface of the insulating substrate 111. That is, the antenna section 110 includes four planar antennas (plane antennas I, II, III, and III) each including the ground electrode 112 and the radiation electrodes 113-1, 113-2, 113-3, and 113-4. IV).
  • the communication control unit 120 transmits and receives signals to and from the antenna unit 110, processes data, and exchanges data with another antenna 10 or the host computer 30.
  • the communication control unit 120 includes, for example, a one-chip semiconductor component having a Bluetooth LE function. That is, the communication control unit 120 includes a microprocessor for processing data, a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. Then, in addition to the program for realizing the function of Bluetooth LE, a program developed by an application developer is implemented. The program developed by the application developer is for performing processing based on the control signal transmitted from the host computer 30. In other words, the communication control unit 120 generates the color instruction information, and controls to radiate the radio wave including the color instruction information by the Bluetooth LE broadcast communication. In the present embodiment, communication control unit 120 is used as an example of an acquisition unit and an irradiation unit.
  • the communication control unit 120 is mounted on the insulating substrate 111 of the antenna unit 110 by a technique such as CSP (Chip Size Package).
  • the communication control unit 120 has a plurality of terminals, and terminals for transmitting and receiving signals to and from the antenna unit 110 are connected to the signal distribution wiring 114 of the antenna unit 110 provided on the surface of the insulating substrate 111.
  • a terminal for supplying a power supply voltage (+ side) for supplying power to the communication control unit 120 and a ground voltage (GND), and a terminal for exchanging data with another antenna 10 or the host computer 30 are Are connected to one terminal of a wiring (not shown) provided through the insulating substrate 111.
  • the other terminal of this wiring is a terminal for connecting to a power supply line and a data line of the wiring board 40 on the back surface of the insulating substrate 111. Then, these terminals provided on the back surface of the insulating substrate 111 are connected to the terminals provided on the power supply lines and the data lines of the wiring board 40. Thereby, the antenna 10 is fixed to the wiring board 40.
  • the antenna 10 is provided with an identifiable address (ID), and radio waves (or data) emitted from the antenna 10 can be identified for each antenna 10 by the address.
  • ID identifiable address
  • FIG. 3 is a diagram illustrating a hardware configuration example of the penlight 20.
  • the penlight 20 includes a grip portion 21 that is gripped when used, a light emitting portion 22 that can emit a plurality of emission colors, a control portion 23 that controls the entire penlight 20, and an external device. It includes a data receiving unit 24 for receiving data, a power supply 25 for supplying power, and a light transmitting unit 26 attached to the grip unit 21 and transmitting light emitted from the light emitting unit 22 to the outside.
  • the control unit 23, the data receiving unit 24, and the power supply 25 are built in the grip unit 21.
  • the light emitting unit 22 is incorporated in the light transmitting unit 26 and provided so as to emit light from the light emitting element to the outside through the light transmitting unit 26.
  • a full color LED light emitting diode
  • the full-color LED includes red (R), green (G), and blue (B) LED elements of three colors (RGB), and emits light in a plurality of emission colors by controlling the brightness of each color LED element. I do.
  • the control unit 23 includes a CPU (Central Processing Unit) that controls the entire penlight 20 through execution of a program (including basic software), a ROM that is a storage area for storing various programs, a RAM that is an execution area of the program, and an LED. It has a control circuit. The emission color of the light emitting unit 22 is controlled by the control unit 23.
  • a CPU Central Processing Unit
  • the data receiving unit 24 has a function of Bluetooth ⁇ LE, and has an antenna capable of receiving radio waves emitted from the antenna 10. Data such as an advertisement packet received by the data receiving unit 24 is output to the control unit 23 and processed by the control unit 23.
  • the power supply 25 supplies power to each unit in the penlight 20 such as the control unit 23.
  • a chargeable or replaceable drive source such as a battery or a dry battery is used so as to be able to cope with repeated use.
  • the light transmitting portion 26 is formed of a light transmitting material such as polyethylene terephthalate, for example.
  • FIG. 4 is a diagram illustrating an example of a hardware configuration of the host computer 30.
  • the host computer 30 includes a CPU 31 that is an arithmetic unit, a ROM 32 that is a storage area for storing a program such as a BIOS (Basic Input Output System), and a RAM 33 that is an execution area of the program. Further, the host computer 30 includes an HDD (Hard Disk Drive) 34 that is a storage area for storing various programs such as an OS (Operating System) and applications, input data for the various programs, output data from the various programs, and the like.
  • a CPU 31 that is an arithmetic unit
  • ROM 32 that is a storage area for storing a program such as a BIOS (Basic Input Output System)
  • a RAM 33 that is an execution area of the program.
  • the host computer 30 includes an HDD (Hard Disk Drive) 34 that is a storage area for storing various programs such as an OS (Operating System) and applications, input data for the various programs, output data from the various programs, and the like.
  • an OS Operating System
  • the host computer 30 further includes a communication interface (communication I / F) 35 for performing communication with the outside, a display mechanism 36 such as a display, and an input device 37 such as a keyboard, a mouse, and a touch panel.
  • a communication interface communication I / F
  • a display mechanism 36 such as a display
  • an input device 37 such as a keyboard, a mouse, and a touch panel.
  • FIG. 5 is a block diagram showing an example of a functional configuration of the control unit 23 of the penlight 20.
  • the control unit 23 of the penlight 20 according to the present embodiment includes a radio wave information acquisition unit 231, a radio wave intensity determination unit 232, and a light emission color control unit 233.
  • the radio wave information acquisition unit 231 acquires information on the intensity of a radio wave received from the antenna 10.
  • the radio wave intensity determination unit 232 determines whether the intensity of the radio wave received from the antenna 10 satisfies a predetermined condition. Here, the radio wave intensity determination unit 232 determines whether the intensity of the radio wave received from the antenna 10 is the highest intensity radio wave as compared with the intensity of the radio wave received from another antenna 10. Further, the radio wave intensity determination unit 232 determines whether or not the intensity of the radio wave having the highest intensity exceeds the radio field intensity threshold. Furthermore, when a radio wave is received from one antenna 10, the radio wave strength determination unit 232 determines whether the strength of the received radio wave exceeds a radio wave strength threshold.
  • the emission color control unit 233 transmits the color indication information included in the advertisement packet transmitted by the radio wave, for the radio wave determined to be the highest in intensity and exceeding the radio field intensity threshold among the radio waves received from the plurality of antennas 10. get. Then, the emission color control unit 233 controls the light emitting unit 22 based on the acquired color instruction information so as to emit light in the emission color indicated by the color instruction information. In addition, when a radio wave is received from one antenna 10, the emission color control unit 233 includes an advertisement packet transmitted by the radio wave when it is determined that the intensity of the received radio wave exceeds the radio field intensity threshold. To obtain the color instruction information to be displayed. Then, the emission color control unit 233 controls the light emitting unit 22 based on the acquired color instruction information so as to emit light in the emission color indicated by the color instruction information.
  • the ratio of each component of red (R), green (G), and blue (B) is expressed as a value in a range of 0% to 100% as an instruction of the emission color. Have been. More specifically, for example, it is represented by a ratio when the maximum value of each component is 100%, such as (R10%, G10%, B10%), (R100%, G100%, B50%). Further, for example, each color may be represented by 256 levels of 0 to 255 (for example, R180, G200, B80).
  • the control unit 23 reads various programs stored in a ROM or the like into the RAM and executes the programs by the CPU. 5 are realized, such as a radio wave information acquisition unit 231, a radio wave intensity determination unit 232, a light emission color control unit 233, and the like.
  • FIG. 6 is a block diagram illustrating a functional configuration example of the host computer 30.
  • the host computer 30 according to the present embodiment has a control signal generation unit 301 and a control signal transmission unit 302.
  • the control signal generation unit 301 generates a control signal for controlling the irradiation of the antenna 10 with radio waves.
  • the control signal includes a control signal for controlling the content of the color instruction information and a control signal for controlling a region where the antenna 10 emits a radio wave.
  • the control signal for controlling the content of the color instruction information indicates the color of the light emitted from the penlight 20. With this control signal, the antenna 10 starts to emit radio waves, and the penlight 20 is controlled to emit light in the designated emission color. When the penlight 20 has already emitted light, control is performed to maintain the light emission or change the emission color.
  • the control signal for controlling the radio wave irradiation area includes, for example, a control signal for instructing to stop radio wave irradiation (that is, a control signal for instructing to turn off the penlight 20) and a radio wave irradiation direction. These are a control signal to be changed, a control signal to change the intensity of radio waves, and a control signal to change the beam width of radio waves. With this control signal, the irradiation area of the radio wave by the antenna 10 is controlled.
  • the control signal instructing to stop the irradiation of the radio wave stops the irradiation of the radio wave from the antenna 10 and turns off the penlight 20.
  • the control signal for changing the irradiation direction of the radio wave for example, instructs to physically change the direction of the antenna 10 or a plurality of antennas inside the antenna 10 (four planar antennas in the example of FIG. 2).
  • the antenna 10 changes the direction of the antenna by a motor or the like (not shown) or changes the phase of each of a plurality of internal antennas by a phase shifter or the like (not shown). Is changed.
  • the irradiation direction of the radio wave is changed, the irradiation region of the radio wave by the antenna 10 changes, and the region in which the emission color of the penlight 20 is controlled moves.
  • control signal for changing the radio wave intensity is, for example, a control signal for instructing the radio wave intensity after the change in the antenna 10 or instructing the degree of increasing or decreasing the radio wave intensity.
  • the control signal for changing the beam width of the radio wave is, for example, a control signal for instructing the changed beam width in the antenna 10 or for instructing the degree of increasing or decreasing the beam width.
  • the antenna 10 stops, for example, irradiation of radio waves from two outer antennas among a plurality of antennas (four planar antennas in the example of FIG. 2) inside the antenna 10.
  • the beam width of the radio wave is changed by providing a difference between the radio wave intensity of the outer antenna and the radio wave intensity of the inner antenna.
  • the control signal generation unit 301 may generate a control signal for adjusting a transmission interval at which the antenna 10 transmits the color instruction information.
  • the transmission interval for transmitting the color instruction information may be changed for each antenna 10.
  • the control signal transmission unit 302 transmits the control signal generated by the control signal generation unit 301 to each antenna 10 according to the effect of the penlight 20. For example, by transmitting a control signal for controlling the content of the color instruction information to the antenna 10, the control signal transmission unit 302 irradiates the antenna 10 with a radio wave and causes the penlight 20 existing in the radio wave irradiation area to be irradiated. Instruct to emit light. In addition, for example, the control signal transmission unit 302 transmits a control signal for controlling the radio wave irradiation area to the antenna 10 to instruct the antenna 10 to change the radio wave irradiation area.
  • the host computer 30 stores a program for effecting with the penlight 20 at the event site (hereinafter referred to as an effect program).
  • an effect program a program for effecting with the penlight 20 at the event site
  • the host computer 30 is realized by, for example, the hardware configuration illustrated in FIG. 4, the effect program stored in the HDD 34 or the like is read into the RAM 33 and executed by the CPU 31 so that the control signal illustrated in FIG. Functional units such as the generation unit 301 and the control signal transmission unit 302 are realized.
  • the host computer 30 does not generate a control signal for the antenna 10 by executing the effect program, but, for example, transmits the control signal generated by a computer other than the host computer 30 to the host computer. 30 may be stored.
  • FIG. 7 is a flowchart illustrating an example of a procedure of a light emission process in the penlight 20. The process shown in FIG. 7 is repeatedly executed at predetermined time intervals.
  • the radio wave information acquisition unit 231 determines whether a radio wave has been received from the antenna 10 (S101). When a negative determination (NO) is made in S101, this processing flow ends. In this case, the emission color control by the emission color control unit 233 is not performed. That is, the light emitting unit 22 does not emit light, and the penlight 20 is turned off. On the other hand, when a positive determination (YES) is made in S101, the radio wave information acquisition unit 231 determines whether radio waves have been received from the plurality of antennas 10 (S102). When a positive determination (YES) is made in S102, the radio wave intensity determination unit 232 specifies the radio wave with the highest intensity among the radio waves received from the plurality of antennas 10 (S103).
  • the radio wave intensity determination unit 232 determines whether or not the intensity of the radio wave received from the antenna 10 exceeds the radio wave intensity threshold (S104).
  • the penlight 20 receives a radio wave from one antenna 10, so that the determination in S104 is performed on the radio wave.
  • the determination in S104 is performed on the radio wave specified in S103.
  • the process of S104 is performed, but the process of S104 may not be performed.
  • a negative determination NO is made in S102
  • the penlight 20 has received a radio wave from one antenna 10, so in S105, the color included in the advertisement packet transmitted by the radio wave is transmitted.
  • an affirmative determination YES is made in S102
  • color instruction information included in the advertisement packet transmitted by the radio wave specified in S103 is obtained in S105.
  • the antenna 10 can set radio wave characteristics so as to irradiate a radio wave to a specific partial area (or the entire area) within a predetermined area, and the radio wave is set based on the radio wave characteristic. To cause the penlight 20 in a part (or all) of the area to emit light.
  • the radio wave characteristics the irradiation direction of the radio wave, the intensity of the radio wave irradiated by the antenna 10, the directivity (that is, the beam width of the radio wave), and the like are set.
  • the antenna 10 emits a radio wave toward a specific area (in other words, a specific direction) depending on the directivity, but the radio wave itself spreads over the entire space although it is strong or weak. That is, the antenna 10 emits the strongest (that is, high radio wave intensity) radio waves to a specific area in a predetermined area. In other words, the antenna 10 irradiates a specific area of the predetermined area with a stronger radio wave than other areas excluding the specific area of the predetermined area.
  • the radio characteristics of the antenna 10 installed in a predetermined area are adjusted according to the frequency of the communication system to be used, the area size, the number of spectators, the effect contents, and the like. For example, when using the Bluetooth @ LE broadcast communication system, a 2.4 GHz frequency band is used. Further, the location where the antenna 10 is installed, the radiation direction of the radio wave of the antenna 10, the radio wave intensity, the directivity, and other radio characteristics are determined by the area size, the number of spectators, the contents of the performance, and the like.
  • irradiation area is divided into a predetermined area and the effect is determined based on the content of the effect.
  • a predetermined area is divided into ten places (hereinafter, the divided area is referred to as a unit area)
  • a color effect is produced for each of ten unit areas
  • ten antennas 10 are prepared. You. Then, an antenna 10 is allocated to each unit area, and a radio wave is emitted from each of the antennas 10 to the unit area to produce an effect.
  • the number of antennas 10 to be prepared also takes into account the size of the unit area and the number of spectators in the unit area.
  • the radio wave emitted by the antenna 10 is vertically polarized, the radio wave intensity is 0 dBm, and the beam width is 30 to 40 degrees, the distance to the penlight 20 held by the spectator is 1 m, and the spectator density is 2.5.
  • the antennas 10 are arranged at intervals of 3 m with respect to the size of the unit area.
  • the antennas 10 are arranged at intervals of 6 m. You.
  • the antenna 10 is installed in a place where the unit area can be irradiated with radio waves and where the antenna 10 can be installed.
  • the communicable distance can be set from 1 m to several tens of meters depending on the strength of the radio wave.
  • detailed setting of the radio wave characteristics is performed.
  • adjustment of the direction of radio wave irradiation of the antenna 10, intensity of radio wave, directivity, and the like are performed.
  • FIG. 8 is a diagram illustrating a specific example for describing the flow of the processing performed in the effect system 1.
  • the host computer 30 generates a control signal for the antenna 10 for each antenna 10 by executing the production program.
  • the host computer 30 generates a control signal for controlling the content of the color instruction information and a control signal for controlling the irradiation area of the radio wave by the antenna 10 for each antenna 10 according to the effect by the penlight 20.
  • the host computer 30 When generating a control signal for each antenna 10, the host computer 30 transmits the generated control signal to the antenna 10-5.
  • the antenna 10-5 Upon receiving the control signal from the host computer 30, the antenna 10-5 performs processing based on the control signal addressed to itself, and transmits the control signal addressed to the antennas 10-1 to 10-4 to the antenna 10-4. . More specifically, when receiving a control signal for controlling the content of the color instruction information from the host computer 30, the antenna 10-5 generates the color instruction information based on the control signal. Then, the antenna 10-5 radiates a radio wave in a specific direction, and transmits an advertisement packet including the generated color instruction information by a broadcast communication method. Here, the antenna 10-5 periodically (for example, ten times per second) transmits an advertisement packet including color indication information.
  • the advertisement packet also includes device information of the antenna 10, such as the address (ID) of the antenna (here, the antenna 10-5).
  • the advertisement packet also includes information indicating that the signal is a signal in the effect system 1 (for example, the
  • the antennas 10-2 to 10-4 also generate color instruction information based on a control signal addressed to themselves. Then, the antennas 10-2 to 10-4 radiate radio waves in a specific direction, and transmit an advertisement packet including the generated color instruction information by a broadcast communication method. In addition, a control signal from the host computer 30 is transmitted to the adjacent antenna 10. When receiving the control signal from the host computer 30, the antenna 10-1 also generates color instruction information based on the control signal addressed to itself. Then, radio waves are emitted in a specific direction, and an advertisement packet including the generated color instruction information is transmitted by a broadcast communication method.
  • Bluetooth LE communication is performed by switching 40 channels obtained by dividing a frequency band from 2.400 GHz to 2.4835 GHz for each 2 MHz.
  • three channels are advertisement channels used for transmitting advertisement packets.
  • the channel index 37 has a center frequency of 2.402 GHz
  • the channel index 38 has a center frequency of 2.426 GHz
  • the channel index 39 has a center frequency of 2.480 GHz. That is, the upper limit, the lower limit and the approximate center of the frequency band from 2.400 GHz to 2.4835 GHz used by Bluetooth LE are set.
  • the other channels are data channels.
  • the antenna 10 transmits an advertisement packet using an advertisement channel as a broadcaster.
  • the antenna 10 sequentially transmits the advertisement packets to three advertisement channels having different center frequencies.
  • the frequency of the radio wave changes depending on the advertisement channel used, one or two of the three advertisement channels may be used based on an instruction from the host computer 30 or the like.
  • the area 205 is a unit area to which the antenna 10-5 is assigned, and is an area where the antenna 10-5 radiates radio waves. Therefore, the penlights 20-13 to 20-15 existing in the area 205 receive the radio wave from the antenna 10-5.
  • the penlight 20-13 also receives radio waves from other antennas 10 such as the antennas 10-1 to 10-4 in addition to the antenna 10-5, the penlights 20-13 receive from the plurality of antennas 10.
  • the radio wave with the highest intensity is specified from the radio waves obtained.
  • the radio wave received from the antenna 10-5 is specified as the radio wave having the highest intensity.
  • the penlight 20-13 When determining that the intensity of the radio wave received from the antenna 10-5 exceeds the radio field intensity threshold, the penlight 20-13 emits light based on the color indication information included in the advertisement packet transmitted from the antenna 10-5.
  • the emission color of the unit 22 is controlled.
  • the color instruction information from the antenna 10-5 includes an instruction to change the emission color to red.
  • the emission color of the light emitting section 22 is controlled to be red, and the penlights 20-13 emit red light.
  • the penlights 20-14 and 20-15 also emit red light by radio waves received from the antenna 10-5, similarly to the penlights 20-13.
  • a connection is usually established by exchanging data between the devices using an advertisement channel, but in the present embodiment, when controlling the emission color of the penlight 20, an antenna is used. No connection is established between 10 and penlight 20.
  • the penlight 20 controls the color of the light emitted from the light emitting unit 22 based on the color instruction information included in the advertisement packet.
  • the antennas 10-1 to 10-4 also perform processing based on a control signal from the host computer 30, similarly to the antenna 10-5.
  • the radio waves of the antennas 10-1 to 10-4 are applied to the areas 201 to 204, respectively.
  • the color instruction information from the antennas 10-1 to 10-4 includes an instruction to change the emission color to purple, blue, green, and yellow, respectively.
  • the penlights 20-1 to 20-3 existing in the area 201 emit purple light according to the color instruction information transmitted from the antenna 10-1.
  • the penlights 20-4 to 20-6 existing in the area 202 emit blue light according to the color instruction information transmitted from the antenna 10-2.
  • the penlights 20-7 to 20-9 existing in the area 203 emit green light according to the color instruction information transmitted from the antenna 10-3.
  • the penlights 20-10 to 20-12 existing in the area 204 emit yellow light according to the color instruction information transmitted from the antenna 10-4.
  • the antennas 10-1 to 10-5 radiate radio waves to the areas 201 to 205, respectively.
  • the penlights 20 existing in the regions 201 to 205 emit light based on the color instruction information transmitted from each antenna 10.
  • the radio wave of each antenna 10 is radiated to a specific area by the directivity of the antenna 10, so that the effect by the penlight 20 is performed for each radio wave irradiation area.
  • the host computer 30 controls the penlight 20 to emit different colors for each of the radio wave irradiation areas of the antennas 10-1 to 10-5, but the present invention is not limited to such a configuration.
  • the emission colors may be all common colors or different emission colors may be included.
  • the antenna 10 when changing the emission color of the penlight 20, the antenna 10 generates color instruction information indicating the changed emission color based on a control signal from the host computer 30. Then, an advertisement packet including the generated color instruction information is transmitted. Further, for example, when receiving a control signal from the host computer 30 instructing to stop emitting radio waves, the antenna 10 stops transmitting the advertisement packet including the color instruction information. Further, information for instructing to turn off the light may be stored in the payload portion of the advertisement packet and transmitted.
  • the antenna 10 when the antenna 10 receives, from the host computer 30, a control signal for controlling the radio wave irradiation area by the antenna 10, the radio wave irradiation area is changed based on the control signal.
  • the antenna 10 receives a control signal for changing the irradiation direction of the radio wave, a control signal for changing the intensity of the radio wave, a control signal for changing the beam width of the radio wave, and the like from the host computer 30, the antenna 10 is configured based on the received control signal.
  • the radio wave irradiation direction, the radio wave intensity, the beam width, and the like are changed.
  • the position information of the position where the penlight 20 is arranged and the address (ID) of the penlight 20 are registered in advance, and light emission is performed based on the position information and the address (ID).
  • the emission color does not change even if the position of the penlight 20 changes.
  • the address (ID) of the penlight 20-1 is designated to emit light in purple, even if the spectator carrying the penlight 20-1 moves from the area 201 to the area 202, the light of the penlight 20-1 is The emission color does not change.
  • the penlight 20-1 emits purple light regardless of whether it exists in the region 201 or the region 202.
  • the penlight 20-1 when the penlight 20-1 is present in the area 201, the penlight 20-1 emits purple light according to the color instruction information transmitted from the antenna 10-1.
  • the emission color of the penlight 20-1 changes from purple to blue according to the color instruction information transmitted from the antenna 10-2. . That is, when performing an effect such that the color of the penlight 20 is divided for each specific area, for example, when the penlight 20-1 moves from the area 201 to the area 202, the penlights 20-4 to 20 existing in the area 202 Similarly to -6, the penlight 20-1 also emits blue light.
  • the position information of the position where the penlight 20 is arranged and the address (ID) of the penlight 20 do not need to be registered in advance.
  • a spectator may bring in a penlight 20 used in another event.
  • the host computer 30 instead of the antenna 10 generating the color instruction information based on the control signal transmitted from the host computer 30, for example, the host computer 30 or the like may generate the color instruction information. . In this case, the host computer 30 transmits the color instruction information to the antenna 10, and the antenna 10 stores the transmitted color instruction information in the advertisement packet.
  • the timing at which the penlight 20 emits light may be different for each area where the penlight 20 exists.
  • the antennas 10-1 to 10-5 sequentially transmit color instruction information
  • the penlights 20 existing in the areas 201 to 205 emit light in order, and a wave-like effect is performed.
  • the antennas 10-1 to 10-5 sequentially transmit color instruction information
  • the penlights 20 existing in the areas 201 to 205 emit light in order, and a wave-like effect is performed.
  • by increasing the number of antennas 10 and finely dividing the irradiation area of the radio waves by the antennas 10 it is possible to produce an effect such as drawing a picture with the penlight 20 of the audience.
  • another threshold for determining whether to change the emission color of the penlight 20 may be provided as the threshold in addition to the radio field intensity threshold.
  • the intensity of the radio wave from the antenna 10-1 may be the highest, or the intensity of the radio wave from the antenna 10-2 may be highest. May be the highest. Therefore, it is conceivable that the light emission color of the penlight 20 becomes purple or blue and the light emission color is not stable. Therefore, as long as the received radio wave does not have a certain level of radio wave intensity, the penlight 20 may hold the luminous color at that time without changing the luminous color.
  • the penlight 20 receives a radio wave from the antenna 10-1 for controlling emission of purple light and emits purple light.
  • the penlight 20 receives a radio wave for controlling emission of blue light from the antenna 10-2.
  • the penlight 20 has a radio wave intensity (radio wave intensity A1 in this example) from the antenna 10-1 and a radio wave intensity (radio wave intensity A2 in this example) from the antenna 10-2.
  • the penlight 20 determines whether a difference obtained by subtracting the radio wave intensity A1 from the radio wave intensity A2 exceeds a predetermined threshold (hereinafter, referred to as a difference intensity threshold).
  • the penlight 20 determines that the difference obtained by subtracting the radio wave intensity A1 from the radio wave intensity A2 exceeds the difference intensity threshold, the penlight 20 emits a luminescent color using the radio wave of the radio wave intensity A2 (ie, the radio wave received from the antenna 10-2). Change from purple to blue.
  • the penlight 20 keeps the emission color purple.
  • the radio wave intensity threshold and the difference intensity threshold may use preset default values, or may be set or changed by the antenna 10 based on an instruction from the host computer 30 or the like. .
  • the host computer 30 determines whether or not the irradiation area of the radio wave by the antenna 10 satisfies a predetermined condition.
  • the radio wave irradiation area may be adjusted so as to satisfy the above conditions.
  • a condition is defined in which the area of the radio wave irradiation area by the antennas 10-1 to 10-5 is set within a predetermined range.
  • the areas 203 to 205 have an area within a predetermined range, but the area 201 has an area larger than the predetermined range. It is assumed that the area of 202 has become smaller than a predetermined range. In this case, the host computer 30 determines that the area 201 and the area 202 do not satisfy the predetermined condition, and adjusts them so as to satisfy the predetermined condition.
  • the host computer 30 generates a control signal instructing, for example, to lower the radio wave intensity of the antenna 10-1 and increase the radio wave intensity of the antenna 10-2.
  • the radio wave intensity of the antenna 10-1 decreases, and the area of the region 201 decreases.
  • the radio wave intensity of the antenna 10-2 increases, and the area of the region 202 increases.
  • the host computer 30 does not change the radio wave intensity of both the antenna 10-1 and the antenna 10-2, but lowers only the radio wave intensity of the antenna 10-1 or only the radio wave intensity of the antenna 10-2. It may be higher. In this way, the host computer 30 adjusts the intensity of radio waves emitted by the antenna 10-1 and the antenna 10-2 to adjust the areas of the region 201 and the region 202.
  • the host computer 30 may generate, for example, a control signal instructing to change the beam width of the radio wave emitted from the antenna 10-1 or the antenna 10-2. That is, the host computer 30 may adjust the beam widths of the radio waves emitted by the antennas 10-1 and 10-2 to adjust the areas of the region 201 and the region 202.
  • the information of the areas 201 to 205 is obtained by, for example, capturing the emission color distribution of the penlight 20 with a camera provided in the host computer 30 or a camera provided separately.
  • the host computer 30 determines whether the radio wave irradiation area satisfies a predetermined condition based on the acquired information. In this case, it can be considered that the host computer 30 performs a process of acquiring information on the irradiation area of the radio wave.
  • antenna 10 may be switched from the transmitting side of the radio wave to the receiving side, and the intensity of the radio wave emitted from another antenna 10 may be detected.
  • the range of the radio wave is narrowed due to the large number of penlights 20, or an obstacle that blocks the radio wave of the antenna 10 appears. Therefore, for example, when each antenna 10 is installed, the intensity of the radio wave received from another antenna 10 is detected for each antenna 10. Then, before or after the effect is started, the host computer 30 transmits a control signal for controlling any one of the antennas 10 to switch from the radio wave transmitting side to the radio wave receiving side.
  • the antenna 10 receiving the control signal switches from the transmission side of the radio wave to the reception side, and detects the intensity of the radio wave received from the other antenna 10.
  • the antenna 10 (or the host computer 30) compares the intensity of the radio wave detected here with the intensity of the radio wave detected in advance in the installation stage of the antenna 10 to determine the difference in the radio wave intensity from the previous stage. Figure out.
  • the host computer 30 instructs the antenna 10 to reduce the difference. More specifically, for example, the host computer 30 instructs the antenna 10 to change the radio field intensity.
  • antenna 10 may be arranged at any position as long as it can radiate radio waves to penlight 20, and may be installed on the ceiling or floor, for example.
  • FIGS. 9A and 9B are diagrams illustrating an example of a case where the antenna 10 is installed on a ceiling. In this example, one antenna 10 is installed on the ceiling, and radio waves are emitted from the antenna 10 to the area 206. Then, the penlights 20-13 to 20-15 existing in the area 206 receive the radio wave from the antenna 10.
  • the color instruction information from the antenna 10 includes an instruction to change the emission color to red
  • the penlights 20-13 to 20-15 emit red light.
  • the position of the region 206 moves as shown in FIG. 9B.
  • the penlights 20-1 to 20-3 existing in the area 206 receive the radio wave from the antenna 10 and emit red light.
  • the penlights 20-13 to 20-15 do not receive radio waves from the antenna 10 and do not emit red light but go out. In this way, when the antenna 10 is installed on the ceiling, the emission color of the penlight 20 in a limited area is controlled as if a spotlight was used.
  • FIG. 10 is a diagram illustrating an example of a case where a person carries the antenna 10.
  • a person carries the antenna 10.
  • the performer of the concert carries the antenna 10 and points it in an arbitrary direction
  • radio waves are emitted to the area 207 in the direction in which the antenna 10 is turned.
  • the penlights 20-1 and 20-2 existing in the area 207 receive the radio wave from the antenna 10.
  • the color instruction information from the antenna 10 includes an instruction to change the emission color to red
  • the penlights 20-1 and 20-2 emit red light.
  • the performer points the antenna 10 in a different direction
  • the position of the area 207 moves, and the penlight 20 existing in the area 207 after the movement emits red light.
  • an effect that gives the performer and the audience a sense of unity is achieved. Will be possible.
  • the antenna 10 may be provided with a button for receiving start / stop of radio wave irradiation, a button for receiving a change in radio wave intensity, a button for receiving a change in the emission color of the penlight 20, and the like.
  • start / stop of radio wave irradiation change of radio wave intensity, change of emission color, and the like are performed.
  • antennas 10-1 to 10-5 may be provided on a wall surface, another antenna 10 may be installed on a ceiling, or a performer may carry another antenna 10.
  • the intensity of radio waves emitted by the antenna 10 installed on the ceiling or the antenna 10 carried by the performer is set to be higher than the intensity of radio waves emitted by the antennas 10-1 to 10-5.
  • the emission colors of the penlight 20 are controlled for each of the areas 201 to 205 by the antennas 10-1 to 10-5, and the emission of the penlight 20 is performed by the antenna 10 installed on the ceiling or the antenna 10 carried by the performer. Color is controlled.
  • the light emission color of the penlight 20 may be controlled in accordance with the movement of an object such as a car.
  • FIGS. 11A and 11B are diagrams illustrating an example of a case where the emission color of the penlight 20 is controlled in accordance with the movement of the target.
  • six antennas 10-1 to 10-6 are installed, and a plurality of penlights 20 exist.
  • the objects 50-1 and 50-2 move in the directions indicated by the arrows.
  • the appearance of the object 50-1 is red
  • the host computer 30 uses the antenna to change the color of the penlight 20 around the object 50-1 to red.
  • a control signal is transmitted to the penlights 10-3 and 10-4 to make the emission color of the penlight 20 red.
  • the antennas 10-3 and 10-4 transmit an advertisement packet including color instruction information for instructing the emission color to be red.
  • the advertisement packets from the antennas 10-3 and 10-4 are controlled so that the emission color of the penlight 20 existing in the area 208 becomes red.
  • the appearance of the target object 50-2 is blue
  • the antennas 10-1 and 10-2 advertise including color instruction information for instructing the emission color to be blue according to a control signal from the host computer 30.
  • Send a packet The advertisement packets of the antennas 10-1 and 10-2 are controlled so that the emission color of the penlight 20 existing in the area 209 becomes blue.
  • the host computer 30 sets the emission color of the penlight 20 to the antennas 10-4 and 10-5 in red to make the emission color of the penlight 20 around the object 50-1 red. Is transmitted.
  • the antennas 10-4 and 10-5 transmit an advertisement packet including color instruction information for instructing the emission color to be red.
  • the advertisement packets from the antennas 10-4 and 10-5 are controlled so that the emission color of the penlight 20 existing in the area 210 becomes red.
  • the antennas 10-2 and 10-3 transmit an advertisement packet including color instruction information for instructing the emission color to be blue.
  • the advertisement packets from the antennas 10-2 and 10-3 are controlled so that the emission color of the penlight 20 existing in the area 211 becomes blue. In this way, the emission color of the penlight 20 is controlled in accordance with the movement of the object.
  • the positions of the objects 50-1 and 50-2 can be obtained, for example, by acquiring position information by GPS (Global Positioning System) or photographing the range in which the objects 50-1 and 50-2 move using a camera. It is grasped by doing.
  • the installation location of the antenna 10 is known in advance. Therefore, the host computer 30 specifies the antenna 10 around the objects 50-1 and 50-2 based on the positions of the objects 50-1 and 50-2 and the installation location of the antenna 10. Further, the color of the appearance of the objects 50-1 and 50-2 may be changed. In this case, the host computer 30 grasps the color of the appearance of the objects 50-1 and 50-2, for example, from a photograph obtained by regularly photographing the objects 50-1 and 50-2. Then, the host computer 30 causes the antenna 10 around the objects 50-1 and 50-2 to change the emission color of the penlight 20 to the appearance color of the objects 50-1 and 50-2. Send a control signal.
  • GPS Global Positioning System
  • the state in a predetermined area where the effect system 1 is configured may be grasped, and the emission color of the penlight 20 may be controlled according to the grasped state.
  • the host computer 30 takes an image of a predetermined area with a camera, and grasps an area where the audience is crowded or an empty area. Then, the host computer 30 transmits a control signal for setting the emission color of the penlight 20 in the area where the audience is crowded to a specific color, or sets the emission color of the penlight 20 in the empty area to the specific color. Is generated.
  • the host computer 30 knows the installation location of the antenna 10 in advance, and transmits a control signal to the antenna 10 that radiates radio waves to a location where the emission color of the penlight 20 is to be controlled.
  • a plurality of sensors for sensing environmental information such as vibration, sound, light, temperature, and humidity are provided in a predetermined area where the effect system 1 is configured, and the host computer 30 Environment information sensed by each sensor may be acquired.
  • the host computer 30 controls the light emission color of the penlight 20 by grasping a state in a predetermined area based on environmental information sensed by each sensor.
  • the host computer 30 determines the degree of excitement of the venue at the event venue based on information on vibration, sound, and temperature detected by a plurality of sensors.
  • the host computer 30 determines, in the event venue, places with particularly large vibrations, loud sounds, and places with high temperatures as more exciting places, and the light emission of the penlights 20 present in these places.
  • a control signal for making a color a specific color is generated.
  • the host computer 30 knows the installation location of the antenna 10 in advance, and transmits a control signal to the antenna 10 that radiates radio waves to a location where the emission color of the penlight 20 is to be controlled.
  • the penlight 20 may be provided with various sensors.
  • a plurality of antenna units 110 are provided for one antenna 10, and the same color instruction information is transmitted from each antenna unit 110 toward a specific area, and the light emission accuracy of penlight 20 Can also be increased.
  • This utilizes the so-called diversity effect.
  • a plurality of antenna units 110 are required.
  • Each radiates radio waves with different properties. More specifically, for example, a method of irradiating radio waves with different polarization planes (polarization diversity) and a method of irradiating radio waves with different frequencies (frequency diversity) from each of the plurality of antenna units 110 are exemplified.
  • the emission color of penlight 20 is controlled, but the control target is not limited to penlight 20 as long as it is a receiving device that can receive radio waves from antenna 10. .
  • the emission color of the provided lighting device may be controlled by the color instruction information transmitted from the antenna 10.
  • the present embodiment is not limited to the configuration for controlling the emission color.
  • a pattern drawn on the penlight 20 may be controlled by a signal transmitted from the antenna 10.
  • the color and pattern of the screen of a portable information terminal such as a smartphone may be controlled.
  • a portable information terminal compatible with Bluetooth LE is used, and a dedicated application is installed on the portable terminal.
  • the screen displayed on the portable information terminal is controlled by the signal transmitted from the antenna 10.
  • the signal transmitted by antenna 10 only needs to include instruction information for instructing to change the appearance of the receiving device such as penlight 20.
  • the receiving device such as the penlight 20 changes its appearance by a signal transmitted from the antenna 10.
  • the radio wave with the highest intensity is specified, but the present invention is not limited to such a configuration.
  • the penlight 20 receives radio waves from a plurality of antennas 10, for example, the penlight 20 does not perform the process of specifying the radio wave with the highest intensity, and emits light of the color indicated by the color indication information contained in any of the received radio waves. May emit light.
  • the communication between the antenna 10 and the penlight 20 is performed by Bluetooth LE, but the present invention is not limited to such a configuration.
  • the antenna 10 may transmit a signal by radio waves, and may transmit a signal by a wireless communication method other than Bluetooth LE, such as Wi-Fi (registered trademark) based on the IEEE 802.11 standard. Good.
  • the antenna 10 has directivity, but the antenna 10 may be non-directional.
  • the antenna 10 When the antenna 10 is omnidirectional, radio waves are emitted from the antenna 10 in all directions around 360 degrees. Therefore, for example, in the example shown in FIG. 8, not only the penlight 20 existing in the area 206 but also all the penlights 20 receive the radio wave from the antenna 10 and emit light as long as the radio wave from the antenna 10 reaches.
  • the example illustrated in FIG. 9 not only the penlight 20 existing in the area 207 but also all the penlights 20 receive the radio wave from the antenna 10 and emit light as long as the radio wave from the antenna 10 reaches.
  • a program for realizing the function of the host computer 30 may be executed by the antenna 10 so that the antenna 10 functions as the host computer 30.
  • the antenna 10 executes a production program to generate color instruction information or change the radio wave irradiation area.
  • the program for realizing the embodiment of the present invention can be provided not only by communication means but also stored in a recording medium such as a CD-ROM.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Toys (AREA)

Abstract

A system for emitting radio waves at a plurality of receiving devices located within a preset region by using a plurality of transmission devices, wherein: each device among the plurality of transmission devices is capable of setting radio wave properties so as to emit the radio waves toward a specific partial region within the preset region; the radio waves are emitted on the basis of the radio wave properties; and the appearance of the receiving devices within the partial region is changed.

Description

送信システム、送信装置及び演出システムTransmission system, transmission device and effect system
 本発明は、送信システム、送信装置及び演出システムに関する。 The present invention relates to a transmission system, a transmission device, and an effect system.
 例えば、引用文献1には、複数の発光装置と制御システムとによって実行される照明演出方法であって、制御システムが、複数の発光装置のそれぞれが配置される位置に関する位置情報を、発光装置の識別情報に関連付けて位置データ記憶手段に登録し、発光データ記憶手段には、発光装置の配置される位置に応じて異なる複数の発光データが記憶されており、発光データを送信する工程において、制御システムは、位置データ記憶手段に登録されている位置情報と識別情報に基づいて、複数の発光装置ごとに、発光データ記憶手段から読み出して送信する発光データを決定する照明演出方法が開示されている。 For example, Patent Literature 1 discloses a lighting effect method executed by a plurality of light emitting devices and a control system, wherein the control system transmits position information on a position at which each of the plurality of light emitting devices is arranged. Registered in the position data storage unit in association with the identification information, the light emission data storage unit stores a plurality of different light emission data according to the position where the light emitting device is arranged, and in the step of transmitting the light emission data, The system discloses a lighting effect method for determining, for each of a plurality of light emitting devices, light emission data to be read from the light emission data storage means and transmitted based on the position information and the identification information registered in the position data storage means. .
特開2015-11981号公報JP 2015-11981 A
 例えばコンサートやライブなどの各種イベントの会場では、様々な演出が行われる。例えば、観客が携帯する受信装置の外観を変化させるような演出では、事前に登録した受信装置の位置情報と識別情報とに基づいて、受信装置に送信するデータを決定する場合がある。この場合、観客が移動して受信装置の位置が変わったとしても、移動前の位置に対応するデータを受信装置に送信して、受信装置の外観を変化させてしまう。
 本発明の目的は、送信装置から電波を照射して受信装置の外観を変化させる場合に、受信装置が移動しても、移動後の位置に対応する外観に変化させることを可能にすることにある。
For example, various effects are performed at venues of various events such as concerts and live performances. For example, in an effect that changes the appearance of a receiving device carried by an audience, data to be transmitted to the receiving device may be determined based on position information and identification information of the receiving device registered in advance. In this case, even if the audience moves and the position of the receiving device changes, data corresponding to the position before the movement is transmitted to the receiving device, and the appearance of the receiving device changes.
An object of the present invention is to make it possible to change the appearance corresponding to the position after movement, even when the reception device moves, when the appearance of the reception device is changed by radiating radio waves from the transmission device. is there.
 請求項1に記載の発明は、複数の送信装置により、予め定められた領域内にある複数の受信装置に対して電波を照射し、前記複数の送信装置のうちの個々の送信装置は、前記予め定められた領域内の特定の一部の領域に向けて電波を照射するように電波特性を設定可能であり、当該電波特性に基づいて電波を照射して、当該一部の領域内にある前記受信装置の外観を変化させることを特徴とする送信システムである。
 請求項2に記載の発明は、前記個々の送信装置は、前記電波特性として、前記一部の領域に応じて、照射する電波の強度が設定されることを特徴とする請求項1に記載の送信システムである。
 請求項3に記載の発明は、前記個々の送信装置は、前記電波特性として、前記一部の領域に応じて、特定の方向に対して電波を照射する指向性が設定されることを特徴とする請求項1に記載の送信システムである。
 請求項4に記載の発明は、前記個々の送信装置は、前記一部の領域内にある前記受信装置に対して、当該受信装置が発光する発光色を指示することを特徴とする請求項1に記載の送信システムである。
 請求項5に記載の発明は、前記個々の送信装置は、制御装置からの指示によって、電波の送信側から受信側に切り替わり、前記複数の送信装置のうちの他の送信装置から受信する電波の強度を検知することを特徴とする請求項1に記載の送信システムである。
 請求項6に記載の発明は、予め定められた領域内にある複数の受信装置に対して電波を照射する複数の送信装置のうちの個々の送信装置であって、前記個々の送信装置は、前記予め定められた領域内の特定の一部の領域に向けて電波を照射するように電波特性を設定可能であり、前記電波特性に基づいて電波を照射して、前記一部の領域内にある前記受信装置の外観を変化させることを特徴とする送信装置である。
 請求項7に記載の発明は、発光装置の発光色を指示する指示情報を取得する取得手段と、Bluetooth Low Energyのブロードキャスト通信によって、取得された前記指示情報を含む電波を照射する照射手段とを備える送信装置である。
 請求項8に記載の発明は、予め定められた領域内での演出に用いられる複数の受信装置と、前記予め定められた領域に対して電波を照射し、当該電波の照射領域に存在する前記受信装置の外観を変化させる複数の送信装置と、前記演出に応じて、前記複数の送信装置のそれぞれに対して、前記電波の照射領域に存在する前記受信装置の外観を変化させるように指示する制御装置とを備える演出システムである。
The invention according to claim 1 irradiates a plurality of receiving devices in a predetermined area with radio waves by a plurality of transmitting devices, and each of the plurality of transmitting devices transmits the radio wave, The radio wave characteristics can be set so as to irradiate a radio wave toward a specific part of a predetermined region, and the radio wave is radiated based on the radio wave characteristic and the radio wave is radiated based on the radio wave characteristic. A transmission system characterized by changing the appearance of the receiving device.
The invention according to claim 2, wherein each of the transmitting devices sets, as the radio wave characteristic, an intensity of a radio wave to be irradiated according to the partial area. It is a transmission system.
The invention according to claim 3 is characterized in that, as the radio wave characteristics, the directivity of irradiating a radio wave in a specific direction is set as the radio wave characteristic according to the partial area. The transmission system according to claim 1.
The invention according to claim 4 is characterized in that each of the transmitting devices instructs the receiving device in the partial area to emit light emitted by the receiving device. The transmission system according to item 1.
According to a fifth aspect of the present invention, the individual transmitting devices are switched from a radio wave transmitting side to a radio wave receiving side by an instruction from a control device, and receive radio waves received from another of the plurality of transmitting devices. The transmission system according to claim 1, wherein intensity is detected.
The invention according to claim 6 is an individual transmitting device among a plurality of transmitting devices that irradiate a plurality of receiving devices within a predetermined area with radio waves, wherein the individual transmitting devices are: Radio wave characteristics can be set so as to irradiate radio waves toward a specific part of the predetermined area, and irradiate radio waves based on the radio characteristics, and within the part of the area. A transmitting device characterized by changing the appearance of a certain receiving device.
According to a seventh aspect of the present invention, an acquisition unit for acquiring instruction information indicating an emission color of a light emitting device and an irradiation unit for irradiating a radio wave including the acquired instruction information by broadcast communication of Bluetooth Low Energy. It is a transmission device provided.
The invention according to claim 8, wherein a plurality of receiving devices used for producing effects in a predetermined area, and irradiates a radio wave to the predetermined area, wherein the radio wave exists in an irradiation area of the radio wave. A plurality of transmitting devices that change the appearance of the receiving device, and in accordance with the effect, instruct each of the plurality of transmitting devices to change the appearance of the receiving device that is present in the radio wave irradiation area. An effect system including a control device.
 請求項1記載の発明によれば、送信装置から電波を照射して受信装置の外観を変化させる場合に、受信装置が移動しても、移動後の位置に対応する外観に変化させることが可能になる。
 請求項2記載の発明によれば、設定された電波の強度に基づいて、予め定められた領域内の一部の領域に電波を照射することができる。
 請求項3記載の発明によれば、設定された指向性に基づいて、予め定められた領域内の一部の領域に電波を照射することができる。
 請求項4記載の発明によれば、一部の領域内にある受信装置を発光させる演出を行うことができる。
 請求項5記載の発明によれば、複数の送信装置にて照射されている電波の強度を把握することができる。
 請求項6記載の発明によれば、送信装置から電波を照射して受信装置の外観を変化させる場合に、受信装置が移動しても、移動後の位置に対応する外観に変化させることが可能になる。
 請求項7記載の発明によれば、送信装置から電波を照射して発光装置を発光させる場合に、発光装置が移動しても、移動後の位置に対応する発光色で発光させることが可能になる。
 請求項8記載の発明によれば、送信装置から電波を照射して受信装置の外観を変化させる場合に、受信装置が移動しても、移動後の位置に対応する外観に変化させることが可能になる。
According to the first aspect of the present invention, when the appearance of the receiving device is changed by radiating radio waves from the transmitting device, even if the receiving device moves, the appearance can be changed to the position corresponding to the position after the movement. become.
According to the second aspect of the invention, it is possible to irradiate a radio wave to a part of a predetermined area based on the set radio wave intensity.
According to the third aspect of the invention, it is possible to irradiate a radio wave to a part of a predetermined area based on the set directivity.
According to the fourth aspect of the invention, it is possible to perform an effect of causing the receiving device in a part of the area to emit light.
According to the fifth aspect of the present invention, it is possible to grasp the intensity of the radio wave emitted from the plurality of transmitting devices.
According to the invention of claim 6, when the appearance of the receiving device is changed by radiating radio waves from the transmitting device, even if the receiving device moves, the appearance can be changed to the position corresponding to the position after the movement. become.
According to the seventh aspect of the present invention, when the light emitting device emits light by radiating radio waves from the transmitting device, even if the light emitting device moves, the light emitting device can emit light in the emission color corresponding to the position after the movement. Become.
According to the invention of claim 8, when the appearance of the receiving device is changed by radiating radio waves from the transmitting device, even if the receiving device moves, the appearance can be changed to the appearance corresponding to the position after the movement. become.
本実施の形態が適用される通信システムの概念を説明する図である。FIG. 1 is a diagram illustrating the concept of a communication system to which the present embodiment is applied. アンテナのハードウェア構成例を示す図である。(A)は、複数のアンテナの平面図、(B)は、個々のアンテナの平面図、(C)は、(B)のIIC-IIC線でのアンテナの断面図である。FIG. 3 is a diagram illustrating a hardware configuration example of an antenna. (A) is a plan view of a plurality of antennas, (B) is a plan view of an individual antenna, and (C) is a cross-sectional view of the antenna along the line IIC-IIC in (B). ペンライトのハードウェア構成例を示す図である。FIG. 2 is a diagram illustrating a hardware configuration example of a penlight. ホストコンピュータのハードウェア構成例を示す図である。FIG. 3 is a diagram illustrating a hardware configuration example of a host computer. ペンライトの制御部の機能構成例を示したブロック図である。FIG. 3 is a block diagram illustrating a functional configuration example of a control unit of a penlight. ホストコンピュータの機能構成例を示したブロック図である。FIG. 3 is a block diagram illustrating a functional configuration example of a host computer. ペンライトにおける発光処理の手順の一例を示したフローチャートである。It is the flowchart which showed an example of the procedure of the light emission process in a penlight. 演出システムで行われる処理の流れを説明するための具体例を示す図である。It is a figure which shows the specific example for demonstrating the flow of the process performed by the effect system. (A)、(B)は、アンテナを天井に設置した場合の一例を示す図である。(A), (B) is a figure which shows an example at the time of installing an antenna on a ceiling. 人がアンテナを携帯した場合の一例を示す図である。It is a figure showing an example when a person carries an antenna. 対象物の移動に合わせてペンライトの発光色を制御する場合の一例を示す図である。FIG. 4 is a diagram illustrating an example of a case where the emission color of a penlight is controlled in accordance with movement of an object.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<通信システムの全体構成>
 図1は、本実施の形態が適用される演出システム1の概念を説明する図である。本実施の形態に係る演出システム1は、イベント会場などの予め定められたエリア内(即ち、予め定められた領域内)にある複数のペンライト20を用いて演出を行うためのシステムである。演出システム1は、アンテナ10(図示の例では、5台)、複数のペンライト20(図示の例では、15台)、及びホストコンピュータ30を備える。
<Overall configuration of communication system>
FIG. 1 is a diagram illustrating the concept of an effect system 1 to which the present embodiment is applied. The effect system 1 according to the present embodiment is a system for effecting using a plurality of penlights 20 in a predetermined area such as an event venue (that is, in a predetermined area). The effect system 1 includes an antenna 10 (five in the illustrated example), a plurality of penlights 20 (15 in the illustrated example), and a host computer 30.
 以下では、5台のアンテナ10をそれぞれ区別する場合には、アンテナ10-1~10-5と表記する。また、15台のペンライト20をそれぞれ区別する場合には、ペンライト20-1~20-15と表記する。ただし、本実施の形態において、アンテナ10の台数は図示の5台には限定されない。同様に、ペンライト20の台数は図示の15台には限定されない。また、演出システム1が構成される予め定められたエリアは、屋内に限らず、屋外であってもよい。 In the following, when the five antennas 10 are distinguished from each other, they are described as antennas 10-1 to 10-5. When the 15 penlights 20 are distinguished from each other, they are described as penlights 20-1 to 20-15. However, in the present embodiment, the number of antennas 10 is not limited to the five illustrated. Similarly, the number of penlights 20 is not limited to the 15 shown. Further, the predetermined area where the effect system 1 is configured is not limited to the indoor area, but may be the outdoor area.
 アンテナ10は、予め定められたエリア内に電波を照射するアンテナである。図1に示す例では、アンテナ10-1~10-5のそれぞれは、壁面に貼るようにして、イベント会場内の舞台の幅方向に並べて設置される。アンテナ10は、特定の方向に対して電波の放射を集中させる(即ち、特定の方向に対して電波を照射する)指向性を有しており、例えば、平面アンテナやパラボラアンテナ、八木アンテナ、セクターアンテナなどが例示される。 The antenna 10 is an antenna that radiates radio waves in a predetermined area. In the example shown in FIG. 1, each of the antennas 10-1 to 10-5 is arranged side by side on a wall surface in a width direction of a stage in an event venue. The antenna 10 has a directivity for concentrating radio wave radiation in a specific direction (that is, irradiating a radio wave in a specific direction), for example, a planar antenna, a parabolic antenna, a Yagi antenna, and a sector. An antenna and the like are exemplified.
 また、アンテナ10が電波によって送信する信号には、ペンライト20の発光色を指示する情報(以下、色指示情報と称する)が含まれる。この色指示情報は、ペンライト20の発光色を制御して外観を変化させるものであり、電波の照射領域に存在するペンライト20に対して外観を変化させることを指示するものである。本実施の形態では、発光装置の発光色を指示する指示情報の一例として、色指示情報が用いられる。 {Circle around (4)} The signal transmitted by the antenna 10 by radio waves includes information indicating the emission color of the penlight 20 (hereinafter, referred to as color instruction information). The color instruction information is for changing the appearance by controlling the emission color of the penlight 20 and instructing the penlight 20 existing in the radio wave irradiation area to change the appearance. In the present embodiment, color instruction information is used as an example of instruction information for instructing the emission color of the light emitting device.
 さらに説明すると、アンテナ10は、Bluetooth(登録商標)LE(Low Energy)の通信方式の1つであるブロードキャスト通信方式を使用する。Bluetooth LEのブロードキャスト通信方式は、接続する機器を探索するための信号であるアドバタイズパケットを利用することで、特定の機器との間で接続を確立することなく、不特定の対象に向けて信号を送信する方式である。アドバタイズパケットはペイロード部を有しており、このペイロード部に、上述した色指示情報のデータが格納される。 To explain further, the antenna 10 uses a broadcast communication method, which is one of the communication methods of Bluetooth (registered trademark) LE (Low Energy). The broadcast communication method of Bluetooth @ LE uses an advertisement packet, which is a signal for searching for a device to be connected, to transmit a signal to an unspecified target without establishing a connection with a specific device. This is a transmission method. The advertisement packet has a payload portion, and the data of the above-described color instruction information is stored in the payload portion.
 また、アンテナ10は、隣接する他のアンテナ10とデータ線で接続されており、データ線を介してアンテナ10間でデータの送受信が行われる。ただし、アンテナ10間のデータの送受信は、データ線を介して行う構成に限られず、例えば、無線通信によってデータの送受信を行ってもよい。
 さらに、アンテナ10には、不図示のAC給電部や電池給電部によって電力が供給される。例えば、AC給電部は、交流電源(AC電源)のコンセントであって、接続されることにより交流電源からアンテナ10に電力が供給される。また、例えば、電池給電部は、電池を内蔵し、接続されることにより電池からアンテナ10に電力が供給される。また、アンテナ10には、バスパワー方式として、ホストコンピュータ30等のコンピュータ装置から通信ケーブルを経由して電力を供給してもよい。例えば、ホストコンピュータ30からUSB(Universal Serial Bus)ケーブルを介して、アンテナ10に電力が供給される。
The antenna 10 is connected to another adjacent antenna 10 via a data line, and data is transmitted and received between the antennas 10 via the data line. However, transmission and reception of data between the antennas 10 are not limited to the configuration performed via the data line, and data transmission and reception may be performed by wireless communication, for example.
Further, power is supplied to the antenna 10 from an AC power supply unit or a battery power supply unit (not shown). For example, the AC power supply unit is an outlet of an AC power supply (AC power supply), and power is supplied to the antenna 10 from the AC power supply when connected. In addition, for example, the battery power supply unit has a built-in battery, and when connected, power is supplied from the battery to the antenna 10. The antenna 10 may be supplied with power from a computer device such as the host computer 30 via a communication cable as a bus power system. For example, power is supplied from the host computer 30 to the antenna 10 via a USB (Universal Serial Bus) cable.
 ペンライト20は、携帯可能な発光器具であり、例えばコンサートやライブなどの各種イベントの会場で観客が手で持ち、発光して利用される。このペンライト20は、アンテナ10からの電波を受信し、電波によって送信された色指示情報に基づいて発光する。ここで、ペンライト20は、アンテナ10から受信した電波の強度が予め定められた条件を満たす場合に、電波によって送信された色指示情報に基づいて発光する。 The penlight 20 is a portable light-emitting device, and is used by a spectator at a venue of various events such as a concert or a live by holding and emitting light. The penlight 20 receives a radio wave from the antenna 10 and emits light based on color indication information transmitted by the radio wave. Here, when the intensity of the radio wave received from the antenna 10 satisfies a predetermined condition, the penlight 20 emits light based on the color instruction information transmitted by the radio wave.
 より具体的には、ペンライト20は、複数のアンテナ10から電波を受信した場合に、受信した電波のうち最も強度の高い電波に含まれる色指示情報に基づいて発光する。さらに、複数のアンテナ10から受信した電波のうち最も強度の高い電波の強度が予め定められた閾値(以下、電波強度閾値と称する)を超える場合に、その電波に含まれる色指示情報に基づいて発光することとしてもよい。また、ペンライト20は、1つのアンテナ10から電波を受信した場合には、受信した電波に含まれる色指示情報に基づいて発光する。さらに、1つのアンテナ10から受信した電波の強度が電波強度閾値を超える場合に、その電波に含まれる色指示情報に基づいて発光することとしてもよい。 More specifically, when the penlight 20 receives radio waves from the plurality of antennas 10, the penlight 20 emits light based on the color indication information included in the radio wave with the highest intensity among the received radio waves. Further, when the intensity of the radio wave having the highest intensity among the radio waves received from the plurality of antennas 10 exceeds a predetermined threshold (hereinafter, referred to as a radio field intensity threshold), based on the color indication information included in the radio wave. Light may be emitted. Further, when the penlight 20 receives a radio wave from one antenna 10, the penlight 20 emits light based on the color instruction information included in the received radio wave. Further, when the intensity of the radio wave received from one antenna 10 exceeds the radio field intensity threshold, the light may be emitted based on the color indication information included in the radio wave.
 ホストコンピュータ30は、アンテナ10による電波の照射を制御するコンピュータ装置である。ホストコンピュータ30は、例えば、電波に含まれる色指示情報の内容を制御したり、アンテナ10による電波の照射領域を制御したりする。なお、電波の照射領域の制御は、例えば、照射する電波の停止、電波の照射方向、電波の強度、電波のビーム幅を制御することにより行われる。また、ホストコンピュータ30は、アンテナ10-5に接続される。そして、ホストコンピュータ30は、各アンテナ10に対する制御信号をまとめてアンテナ10-5に送信する。 The host computer 30 is a computer device that controls the irradiation of the antenna 10 with radio waves. The host computer 30 controls, for example, the content of the color instruction information included in the radio wave, and controls the area of the antenna 10 where the radio wave is irradiated. The control of the radio wave irradiation area is performed by, for example, controlling the stop of the radio wave to be irradiated, the irradiation direction of the radio wave, the intensity of the radio wave, and the beam width of the radio wave. The host computer 30 is connected to the antenna 10-5. Then, the host computer 30 collectively transmits control signals for the respective antennas 10 to the antenna 10-5.
 付言すると、ホストコンピュータ30からの制御信号は、アンテナ10-5、アンテナ10-4、アンテナ10-3、アンテナ10-2、アンテナ10-1の順番で、各アンテナ10に送信される。ただし、ホストコンピュータ30が制御信号を送信する手法は、このような構成に限られない。例えば、ホストコンピュータ30と各アンテナ10とを有線で接続して、ホストコンピュータ30が各アンテナ10のそれぞれに対して、直接、制御信号を送信してもよい。また、ホストコンピュータ30が各アンテナのそれぞれに対して、無線通信により、制御信号を送信してもよい。 Additionally, the control signal from the host computer 30 is transmitted to each antenna 10 in the order of the antenna 10-5, the antenna 10-4, the antenna 10-3, the antenna 10-2, and the antenna 10-1. However, the method by which the host computer 30 transmits the control signal is not limited to such a configuration. For example, the host computer 30 may be connected to each antenna 10 by wire, and the host computer 30 may directly transmit a control signal to each antenna 10. Alternatively, the host computer 30 may transmit a control signal to each of the antennas by wireless communication.
 本実施の形態において、アンテナ10は、送信装置の一例として用いられる。アンテナ10-1~10-5は、送信システムの一例として用いられる。また、ペンライト20は、受信装置、発光装置の一例として用いられる。さらに、ホストコンピュータ30は、制御装置の一例として用いられる。また、アンテナ10、ペンライト20、ホストコンピュータ30は、演出システムの一例として用いられる。 に お い て In the present embodiment, antenna 10 is used as an example of a transmission device. The antennas 10-1 to 10-5 are used as an example of a transmission system. The penlight 20 is used as an example of a receiving device and a light emitting device. Further, the host computer 30 is used as an example of a control device. In addition, the antenna 10, the penlight 20, and the host computer 30 are used as an example of an effect system.
<アンテナのハードウェア構成>
 次に、アンテナ10のハードウェア構成について説明する。図2は、アンテナ10のハードウェア構成例を示す図である。図2(A)は、複数のアンテナ10-1~10-5の平面図、図2(B)は、個々のアンテナ10の平面図、図2(C)は、図2(B)のIIC-IIC線でのアンテナ10の断面図である。
 なお、図2は平面アンテナのハードウェア構成例であるが、上述したように、本実施の形態に係るアンテナ10は平面アンテナに限られない。
<Hardware configuration of antenna>
Next, a hardware configuration of the antenna 10 will be described. FIG. 2 is a diagram illustrating a hardware configuration example of the antenna 10. 2A is a plan view of a plurality of antennas 10-1 to 10-5, FIG. 2B is a plan view of each antenna 10, and FIG. 2C is a IIC of FIG. 2B. FIG. 3 is a cross-sectional view of the antenna 10 taken along a line IIC.
Although FIG. 2 illustrates an example of a hardware configuration of a planar antenna, as described above, the antenna 10 according to the present embodiment is not limited to a planar antenna.
 アンテナ10-1~10-5のそれぞれは、可撓性(フレキシビリティ性)を有する配線板40に列状に配列されて接続されている。
 配線板40は、例えばフレキシブルプリント配線板(FPC:Flexible printed circuits)である。配線板40内には、電力供給線とデータ線とが設けられており、電力供給線によってアンテナ10-1~10-5に電力が供給されるとともに、データ線によって隣接するアンテナ10間でデータの送受信が行われる。
 また、アンテナ10は、図2(B)に示すように、アンテナ部110と通信制御部120とを備えている。なお、図2(B)は、アンテナ10-2~10-4のように、両隣に他のアンテナ10がある場合の例を示している。
Each of the antennas 10-1 to 10-5 is arranged in a row and connected to a wiring board 40 having flexibility (flexibility).
The wiring board 40 is, for example, a flexible printed circuit (FPC). A power supply line and a data line are provided in the wiring board 40, and power is supplied to the antennas 10-1 to 10-5 by the power supply line, and data is transmitted between the adjacent antennas 10 by the data line. Is transmitted and received.
The antenna 10 includes an antenna unit 110 and a communication control unit 120, as shown in FIG. FIG. 2B shows an example in which another antenna 10 is present on both sides, such as the antennas 10-2 to 10-4.
 アンテナ部110は、図2(C)に示すように、絶縁基板111、絶縁基板111の一方の面(裏面)に設けられた接地(GND)電極112、絶縁基板111の他方の面(表面)に設けられた複数(図示の例では、4個)の放射電極113、放射電極113と通信制御部120とを接続する信号分配配線114を備える。放射電極113は、外形が正方形である。なお、4個の放射電極113をそれぞれ区別する場合には、放射電極113-1、113-2、113-3、113-4と表記する。また、絶縁基板111の表面側は、アンテナ部110の表面側であり、アンテナ10の表面側である。絶縁基板111の裏面側は、アンテナ部110の裏面側であり、アンテナ10の裏面側である。 As shown in FIG. 2C, the antenna unit 110 includes an insulating substrate 111, a ground (GND) electrode 112 provided on one surface (back surface) of the insulating substrate 111, and the other surface (front surface) of the insulating substrate 111. (In the example shown), a plurality of (four in the illustrated example) radiation electrodes 113, and a signal distribution wiring 114 for connecting the radiation electrodes 113 to the communication control unit 120. The radiation electrode 113 has a square outer shape. When the four radiation electrodes 113 are distinguished from each other, they are described as radiation electrodes 113-1, 113-2, 113-3, and 113-4. The front side of the insulating substrate 111 is the front side of the antenna unit 110 and the front side of the antenna 10. The back side of the insulating substrate 111 is the back side of the antenna unit 110 and the back side of the antenna 10.
 絶縁基板111は、例えば、基材がポリイミドなどの樹脂フィルムで構成され、接地電極112、放射電極113及び信号分配配線114が基材上に設けられた銅層(銅箔)、銀層(銀箔)などの電導性材料で構成されている。そして、放射電極113及び信号分配配線114は、1つの電導性材料の層から構成され、連続している。
 そして、アンテナ部110は、絶縁基板111の裏面に設けられた接地電極112と絶縁基板111の表面に設けられた放射電極113とで構成される。即ち、アンテナ部110は、接地電極112と、放射電極113-1、113-2、113-3、113-4のそれぞれとで構成される4個の平面アンテナ(平面アンテナI、II、III、IV)で構成されていることになる。
The insulating substrate 111 includes, for example, a copper layer (copper foil) and a silver layer (silver foil) in which the base material is formed of a resin film such as polyimide, and the ground electrode 112, the radiation electrode 113, and the signal distribution wiring 114 are provided on the base material. ) And the like. Further, the radiation electrode 113 and the signal distribution wiring 114 are formed of one conductive material layer and are continuous.
The antenna unit 110 includes a ground electrode 112 provided on the back surface of the insulating substrate 111 and a radiation electrode 113 provided on the surface of the insulating substrate 111. That is, the antenna section 110 includes four planar antennas (plane antennas I, II, III, and III) each including the ground electrode 112 and the radiation electrodes 113-1, 113-2, 113-3, and 113-4. IV).
 通信制御部120は、アンテナ部110との間で信号の送受信を行うとともに、データの処理や、他のアンテナ10又はホストコンピュータ30との間でデータのやり取りを行う。通信制御部120は、例えば、Bluetooth LEの機能を搭載した1チップの半導体部品を含む。即ち、通信制御部120は、データを処理するマイクロプロセッサ、RAM(Random Access Memory)、ROM(Read Only Memory)などを備えている。そして、Bluetooth LEの機能を実現するためのプログラムに加えて、アプリケーション開発者が開発したプログラムが実装されている。アプリケーション開発者が開発したプログラムは、ホストコンピュータ30から送信された制御信号に基づく処理を行うためのものである。
 付言すると、通信制御部120は、色指示情報を生成し、Bluetooth LEのブロードキャスト通信によって、色指示情報を含む電波を照射するように制御する。本実施の形態では、通信制御部120は、取得手段、照射手段の一例として用いられる。
The communication control unit 120 transmits and receives signals to and from the antenna unit 110, processes data, and exchanges data with another antenna 10 or the host computer 30. The communication control unit 120 includes, for example, a one-chip semiconductor component having a Bluetooth LE function. That is, the communication control unit 120 includes a microprocessor for processing data, a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. Then, in addition to the program for realizing the function of Bluetooth LE, a program developed by an application developer is implemented. The program developed by the application developer is for performing processing based on the control signal transmitted from the host computer 30.
In other words, the communication control unit 120 generates the color instruction information, and controls to radiate the radio wave including the color instruction information by the Bluetooth LE broadcast communication. In the present embodiment, communication control unit 120 is used as an example of an acquisition unit and an irradiation unit.
 そして、通信制御部120は、CSP(Chip Size Package)などの技術により、アンテナ部110の絶縁基板111上に搭載されている。通信制御部120は、複数の端子を有しており、アンテナ部110との信号の送受信を行う端子は、絶縁基板111の表面に設けられたアンテナ部110の信号分配配線114に接続されている。また、通信制御部120に電力を供給するための電源電圧(+側)と接地電圧(GND)とを供給する端子、他のアンテナ10又はホストコンピュータ30との間でデータのやり取りを行う端子は、絶縁基板111を貫いて設けられた配線(不図示)の一方の端子に接続される。この配線の他方の端子は、絶縁基板111の裏面において、配線板40の電力供給線及びデータ線に接続するための端子となっている。そして、絶縁基板111の裏面に設けられたこれらの端子が、配線板40の電力供給線及びデータ線に設けられた端子と接続される。これにより、アンテナ10が配線板40に固定される。
 なお、アンテナ10には、識別可能なアドレス(ID)が付されており、アンテナ10から照射される電波(又は、データ)は、アドレスによりアンテナ10毎に識別可能である。
The communication control unit 120 is mounted on the insulating substrate 111 of the antenna unit 110 by a technique such as CSP (Chip Size Package). The communication control unit 120 has a plurality of terminals, and terminals for transmitting and receiving signals to and from the antenna unit 110 are connected to the signal distribution wiring 114 of the antenna unit 110 provided on the surface of the insulating substrate 111. . A terminal for supplying a power supply voltage (+ side) for supplying power to the communication control unit 120 and a ground voltage (GND), and a terminal for exchanging data with another antenna 10 or the host computer 30 are Are connected to one terminal of a wiring (not shown) provided through the insulating substrate 111. The other terminal of this wiring is a terminal for connecting to a power supply line and a data line of the wiring board 40 on the back surface of the insulating substrate 111. Then, these terminals provided on the back surface of the insulating substrate 111 are connected to the terminals provided on the power supply lines and the data lines of the wiring board 40. Thereby, the antenna 10 is fixed to the wiring board 40.
The antenna 10 is provided with an identifiable address (ID), and radio waves (or data) emitted from the antenna 10 can be identified for each antenna 10 by the address.
<ペンライトのハードウェア構成>
 次に、ペンライト20のハードウェア構成について説明する。図3は、ペンライト20のハードウェア構成例を示す図である。
<Hardware configuration of penlight>
Next, the hardware configuration of the penlight 20 will be described. FIG. 3 is a diagram illustrating a hardware configuration example of the penlight 20.
 本実施の形態に係るペンライト20は、利用に際して把持される把持部21と、複数の発光色を発光することのできる発光部22と、ペンライト20全体を制御する制御部23と、外部からデータを受信するデータ受信部24と、電力を供給する電源25と、把持部21に取り付けられて、発光部22から発光された光を外部に向けて透過させる透光部26とを備える。 The penlight 20 according to the present embodiment includes a grip portion 21 that is gripped when used, a light emitting portion 22 that can emit a plurality of emission colors, a control portion 23 that controls the entire penlight 20, and an external device. It includes a data receiving unit 24 for receiving data, a power supply 25 for supplying power, and a light transmitting unit 26 attached to the grip unit 21 and transmitting light emitted from the light emitting unit 22 to the outside.
 把持部21には、制御部23と、データ受信部24と、電源25とが内蔵される。
 発光部22は、透光部26に内蔵されており、発光素子から透光部26を通じて外部に発光できるように設けられる。発光部22としては、例えば、フルカラーLED(light emitting diode)が例示される。フルカラーLEDは、赤(R)、緑(G)、青(B)の3色(RGB)のLED素子を備え、各色のLED素子の明るさが制御されることにより、複数の発光色で発光する。
The control unit 23, the data receiving unit 24, and the power supply 25 are built in the grip unit 21.
The light emitting unit 22 is incorporated in the light transmitting unit 26 and provided so as to emit light from the light emitting element to the outside through the light transmitting unit 26. As the light emitting unit 22, for example, a full color LED (light emitting diode) is exemplified. The full-color LED includes red (R), green (G), and blue (B) LED elements of three colors (RGB), and emits light in a plurality of emission colors by controlling the brightness of each color LED element. I do.
 制御部23は、プログラム(基本ソフトウェアを含む)の実行を通じてペンライト20全体を制御するCPU(Central Processing Unit)、各種プログラムを格納する記憶領域であるROM、プログラムの実行領域であるRAM、LEDの制御回路を有している。制御部23により、発光部22の発光色が制御される。 The control unit 23 includes a CPU (Central Processing Unit) that controls the entire penlight 20 through execution of a program (including basic software), a ROM that is a storage area for storing various programs, a RAM that is an execution area of the program, and an LED. It has a control circuit. The emission color of the light emitting unit 22 is controlled by the control unit 23.
 データ受信部24は、Bluetooth LEの機能を備えており、アンテナ10から照射された電波を受信可能なアンテナを有している。データ受信部24が受信したアドバタイズパケット等のデータは制御部23に出力され、制御部23によって処理される。 The data receiving unit 24 has a function of Bluetooth 機能 LE, and has an antenna capable of receiving radio waves emitted from the antenna 10. Data such as an advertisement packet received by the data receiving unit 24 is output to the control unit 23 and processed by the control unit 23.
 電源25は、制御部23等のペンライト20内の各部に電力を供給する。電源25は、例えば、繰り返しの使用に対応できるように、バッテリーや乾電池等の充電又は交換可能な駆動源が用いられる。
 透光部26は、例えばポリエチレンテレフタレート等の透光性を有する材料から形成される。
The power supply 25 supplies power to each unit in the penlight 20 such as the control unit 23. As the power supply 25, for example, a chargeable or replaceable drive source such as a battery or a dry battery is used so as to be able to cope with repeated use.
The light transmitting portion 26 is formed of a light transmitting material such as polyethylene terephthalate, for example.
<ホストコンピュータのハードウェア構成>
 次に、ホストコンピュータ30のハードウェア構成について説明する。図4は、ホストコンピュータ30のハードウェア構成例を示す図である。
<Hardware configuration of host computer>
Next, the hardware configuration of the host computer 30 will be described. FIG. 4 is a diagram illustrating an example of a hardware configuration of the host computer 30.
 本実施の形態に係るホストコンピュータ30は、演算手段であるCPU31と、BIOS(Basic Input Output System)等のプログラムを格納する記憶領域であるROM32と、プログラムの実行領域であるRAM33とを備える。また、ホストコンピュータ30は、OS(Operating System)やアプリケーション等の各種プログラム、各種プログラムに対する入力データ、各種プログラムからの出力データ等を記憶する記憶領域であるHDD(Hard Disk Drive)34を備える。 The host computer 30 according to the present embodiment includes a CPU 31 that is an arithmetic unit, a ROM 32 that is a storage area for storing a program such as a BIOS (Basic Input Output System), and a RAM 33 that is an execution area of the program. Further, the host computer 30 includes an HDD (Hard Disk Drive) 34 that is a storage area for storing various programs such as an OS (Operating System) and applications, input data for the various programs, output data from the various programs, and the like.
 さらに、ホストコンピュータ30は、外部との通信を行うための通信インタフェース(通信I/F)35と、ディスプレイ等の表示機構36と、キーボードやマウス、タッチパネル等の入力デバイス37とを備える。 The host computer 30 further includes a communication interface (communication I / F) 35 for performing communication with the outside, a display mechanism 36 such as a display, and an input device 37 such as a keyboard, a mouse, and a touch panel.
<ペンライトの機能構成>
 次に、ペンライト20の制御部23の機能構成について説明する。図5は、ペンライト20の制御部23の機能構成例を示したブロック図である。本実施の形態に係るペンライト20の制御部23は、電波情報取得部231と、電波強度判定部232と、発光色制御部233とを有する。
<Functional configuration of penlight>
Next, a functional configuration of the control unit 23 of the penlight 20 will be described. FIG. 5 is a block diagram showing an example of a functional configuration of the control unit 23 of the penlight 20. The control unit 23 of the penlight 20 according to the present embodiment includes a radio wave information acquisition unit 231, a radio wave intensity determination unit 232, and a light emission color control unit 233.
 電波情報取得部231は、アンテナ10から受信した電波について、電波の強度の情報を取得する。 (4) The radio wave information acquisition unit 231 acquires information on the intensity of a radio wave received from the antenna 10.
 電波強度判定部232は、アンテナ10から受信した電波の強度が予め定められた条件を満たすか否かを判定する。
 ここで、電波強度判定部232は、アンテナ10から受信した電波の強度が、他のアンテナ10から受信した電波の強度と比較して、最も強度が高い電波であるか否かを判定する。また、電波強度判定部232は、最も強度の高い電波の強度が電波強度閾値を超えるか否かを判定する。さらに、電波強度判定部232は、1つのアンテナ10から電波を受信した場合には、受信した電波の強度が電波強度閾値を超えるか否かを判定する。
The radio wave intensity determination unit 232 determines whether the intensity of the radio wave received from the antenna 10 satisfies a predetermined condition.
Here, the radio wave intensity determination unit 232 determines whether the intensity of the radio wave received from the antenna 10 is the highest intensity radio wave as compared with the intensity of the radio wave received from another antenna 10. Further, the radio wave intensity determination unit 232 determines whether or not the intensity of the radio wave having the highest intensity exceeds the radio field intensity threshold. Furthermore, when a radio wave is received from one antenna 10, the radio wave strength determination unit 232 determines whether the strength of the received radio wave exceeds a radio wave strength threshold.
 発光色制御部233は、複数のアンテナ10から受信した電波のうち、最も強度が高く、電波強度閾値を超えると判定された電波について、その電波によって送信されたアドバタイズパケットに含まれる色指示情報を取得する。そして、発光色制御部233は、取得した色指示情報に基づいて、色指示情報により指示された発光色にて発光するように、発光部22を制御する。
 また、発光色制御部233は、1つのアンテナ10から電波を受信した場合には、受信した電波の強度が電波強度閾値を超えると判定された場合に、その電波によって送信されたアドバタイズパケットに含まれる色指示情報を取得する。そして、発光色制御部233は、取得した色指示情報に基づいて、色指示情報により指示された発光色にて発光するように、発光部22を制御する。
The emission color control unit 233 transmits the color indication information included in the advertisement packet transmitted by the radio wave, for the radio wave determined to be the highest in intensity and exceeding the radio field intensity threshold among the radio waves received from the plurality of antennas 10. get. Then, the emission color control unit 233 controls the light emitting unit 22 based on the acquired color instruction information so as to emit light in the emission color indicated by the color instruction information.
In addition, when a radio wave is received from one antenna 10, the emission color control unit 233 includes an advertisement packet transmitted by the radio wave when it is determined that the intensity of the received radio wave exceeds the radio field intensity threshold. To obtain the color instruction information to be displayed. Then, the emission color control unit 233 controls the light emitting unit 22 based on the acquired color instruction information so as to emit light in the emission color indicated by the color instruction information.
 ここで、色指示情報には、発光色の指示として、例えば、赤(R)、緑(G)、青(B)のそれぞれの成分の割合が、0%~100%の範囲の値で表現されている。より具体的には、例えば、(R10%,G10%,B10%)、(R100%,G100%,B50%)など、それぞれの成分の最大値を100%としたときの割合で表現される。また、例えば、各色を0~255の256段階(例えば、R180、G200、B80)で表現してもよい。 Here, in the color instruction information, for example, the ratio of each component of red (R), green (G), and blue (B) is expressed as a value in a range of 0% to 100% as an instruction of the emission color. Have been. More specifically, for example, it is represented by a ratio when the maximum value of each component is 100%, such as (R10%, G10%, B10%), (R100%, G100%, B50%). Further, for example, each color may be represented by 256 levels of 0 to 255 (for example, R180, G200, B80).
 そして、ペンライト20を、例えば図3に示したハードウェア構成にて実現した場合、制御部23において、ROM等に記憶された各種プログラムがRAMに読み込まれてCPUに実行されることにより、図5に示す電波情報取得部231、電波強度判定部232、発光色制御部233等の機能部が実現される。 When the penlight 20 is realized by, for example, the hardware configuration illustrated in FIG. 3, the control unit 23 reads various programs stored in a ROM or the like into the RAM and executes the programs by the CPU. 5 are realized, such as a radio wave information acquisition unit 231, a radio wave intensity determination unit 232, a light emission color control unit 233, and the like.
<ホストコンピュータの機能構成>
 次に、ホストコンピュータ30の機能構成について説明する。図6は、ホストコンピュータ30の機能構成例を示したブロック図である。本実施の形態に係るホストコンピュータ30は、制御信号生成部301と、制御信号送信部302とを有する。
<Functional configuration of host computer>
Next, a functional configuration of the host computer 30 will be described. FIG. 6 is a block diagram illustrating a functional configuration example of the host computer 30. The host computer 30 according to the present embodiment has a control signal generation unit 301 and a control signal transmission unit 302.
 制御信号生成部301は、アンテナ10による電波の照射を制御するための制御信号を生成する。この制御信号には、色指示情報の内容を制御する制御信号や、アンテナ10による電波の照射領域を制御する制御信号が含まれる。
 色指示情報の内容を制御する制御信号は、ペンライト20の発光色を指示するものである。この制御信号により、アンテナ10が電波の照射を開始し、指示された発光色でペンライト20が発光するように制御される。また、ペンライト20がすでに発光している場合には、発光を維持したり、発光色を変更したりするように制御される。
 また、電波の照射領域を制御する制御信号は、例えば、電波の照射を停止することを指示する制御信号(即ち、ペンライト20を消灯させることを指示する制御信号)や、電波の照射方向を変更する制御信号、電波の強度を変更する制御信号、電波のビーム幅を変更する制御信号である。この制御信号により、アンテナ10による電波の照射領域が制御される。
The control signal generation unit 301 generates a control signal for controlling the irradiation of the antenna 10 with radio waves. The control signal includes a control signal for controlling the content of the color instruction information and a control signal for controlling a region where the antenna 10 emits a radio wave.
The control signal for controlling the content of the color instruction information indicates the color of the light emitted from the penlight 20. With this control signal, the antenna 10 starts to emit radio waves, and the penlight 20 is controlled to emit light in the designated emission color. When the penlight 20 has already emitted light, control is performed to maintain the light emission or change the emission color.
The control signal for controlling the radio wave irradiation area includes, for example, a control signal for instructing to stop radio wave irradiation (that is, a control signal for instructing to turn off the penlight 20) and a radio wave irradiation direction. These are a control signal to be changed, a control signal to change the intensity of radio waves, and a control signal to change the beam width of radio waves. With this control signal, the irradiation area of the radio wave by the antenna 10 is controlled.
 さらに説明すると、電波の照射を停止することを指示する制御信号は、アンテナ10からの電波の照射を停止し、ペンライト20を消灯させるものである。
 また、電波の照射方向を変更する制御信号は、例えば、アンテナ10の向きを物理的に変化させることを指示したり、アンテナ10内部の複数のアンテナ(図2の例では、4個の平面アンテナ)の位相を変更することを指示したりする制御信号である。アンテナ10は、この制御信号に基づいて、不図示のモータ等によりアンテナの向きを変化させたり、不図示の移相器等により内部の複数のアンテナのそれぞれの位相を変更したりして、電波の照射方向を変化させる。電波の照射方向を変更すると、アンテナ10による電波の照射領域が変化し、ペンライト20の発光色が制御される領域が移動することになる。
More specifically, the control signal instructing to stop the irradiation of the radio wave stops the irradiation of the radio wave from the antenna 10 and turns off the penlight 20.
In addition, the control signal for changing the irradiation direction of the radio wave, for example, instructs to physically change the direction of the antenna 10 or a plurality of antennas inside the antenna 10 (four planar antennas in the example of FIG. 2). ) Is a control signal for instructing to change the phase. Based on this control signal, the antenna 10 changes the direction of the antenna by a motor or the like (not shown) or changes the phase of each of a plurality of internal antennas by a phase shifter or the like (not shown). Is changed. When the irradiation direction of the radio wave is changed, the irradiation region of the radio wave by the antenna 10 changes, and the region in which the emission color of the penlight 20 is controlled moves.
 また、電波の強度を変更する制御信号は、例えば、アンテナ10における変更後の電波強度を指示したり、電波強度を増加させる度合又は減少させる度合を指示したりする制御信号である。電波の強度を高くすると、例えば観客が密集しているような場所であっても電波が届き易くなり、電波の照射領域が大きくなる。また、電波の強度を低くすると、電波の照射領域が小さくなる。
 さらに、電波のビーム幅を変更する制御信号は、例えば、アンテナ10における変更後のビーム幅を指示したり、ビーム幅を増加させる度合又は減少させる度合を指示したりする制御信号である。アンテナ10は、この制御信号に基づいて、例えば、アンテナ10内部の複数のアンテナ(図2の例では、4個の平面アンテナ)のうち、外側の2つのアンテナからの電波の照射を停止したり、外側のアンテナの電波強度と内側のアンテナの電波強度との間に差分を設けたりして、電波のビーム幅を変化させる。電波のビーム幅を広くすると、電波の照射領域が大きくなり、電波のビーム幅を狭くすると、電波の照射領域が小さくなる。
Further, the control signal for changing the radio wave intensity is, for example, a control signal for instructing the radio wave intensity after the change in the antenna 10 or instructing the degree of increasing or decreasing the radio wave intensity. When the intensity of the radio wave is increased, for example, the radio wave can easily reach even in a place where the crowd is crowded, and the irradiation area of the radio wave becomes large. Further, when the intensity of the radio wave is reduced, the irradiation area of the radio wave becomes smaller.
Further, the control signal for changing the beam width of the radio wave is, for example, a control signal for instructing the changed beam width in the antenna 10 or for instructing the degree of increasing or decreasing the beam width. Based on this control signal, the antenna 10 stops, for example, irradiation of radio waves from two outer antennas among a plurality of antennas (four planar antennas in the example of FIG. 2) inside the antenna 10. The beam width of the radio wave is changed by providing a difference between the radio wave intensity of the outer antenna and the radio wave intensity of the inner antenna. When the beam width of the radio wave is widened, the irradiation area of the radio wave becomes large, and when the beam width of the radio wave is narrowed, the irradiation area of the radio wave becomes small.
 また、制御信号生成部301は、アンテナ10が色指示情報を送信する送信間隔を調整するための制御信号を生成してもよい。ここで、色指示情報を送信する送信間隔を、アンテナ10毎に変えてもよい。 (4) The control signal generation unit 301 may generate a control signal for adjusting a transmission interval at which the antenna 10 transmits the color instruction information. Here, the transmission interval for transmitting the color instruction information may be changed for each antenna 10.
 制御信号送信部302は、ペンライト20による演出に応じて、制御信号生成部301が生成した制御信号を各アンテナ10に送信する。
 例えば、制御信号送信部302は、色指示情報の内容を制御する制御信号をアンテナ10に送信することにより、アンテナ10に対して、電波を照射して電波の照射領域に存在するペンライト20を発光させるように指示する。
 また、例えば、制御信号送信部302は、電波の照射領域を制御する制御信号をアンテナ10に送信することにより、アンテナ10に対して、電波の照射領域を変更するように指示する。
The control signal transmission unit 302 transmits the control signal generated by the control signal generation unit 301 to each antenna 10 according to the effect of the penlight 20.
For example, by transmitting a control signal for controlling the content of the color instruction information to the antenna 10, the control signal transmission unit 302 irradiates the antenna 10 with a radio wave and causes the penlight 20 existing in the radio wave irradiation area to be irradiated. Instruct to emit light.
In addition, for example, the control signal transmission unit 302 transmits a control signal for controlling the radio wave irradiation area to the antenna 10 to instruct the antenna 10 to change the radio wave irradiation area.
 そして、ホストコンピュータ30には、イベント会場でペンライト20による演出を行うためのプログラム(以下、演出用プログラムと称する)が格納されている。ホストコンピュータ30を、例えば図4に示したハードウェア構成にて実現した場合、HDD34等に記憶された演出用プログラムが、RAM33に読み込まれてCPU31に実行されることにより、図6に示す制御信号生成部301、制御信号送信部302等の機能部が実現される。
 なお、本実施の形態では、ホストコンピュータ30が演出用プログラムを実行することによりアンテナ10に対する制御信号を生成するのではなく、例えば、ホストコンピュータ30以外のコンピュータ等により生成された制御信号をホストコンピュータ30に格納してもよい。
The host computer 30 stores a program for effecting with the penlight 20 at the event site (hereinafter referred to as an effect program). When the host computer 30 is realized by, for example, the hardware configuration illustrated in FIG. 4, the effect program stored in the HDD 34 or the like is read into the RAM 33 and executed by the CPU 31 so that the control signal illustrated in FIG. Functional units such as the generation unit 301 and the control signal transmission unit 302 are realized.
In the present embodiment, the host computer 30 does not generate a control signal for the antenna 10 by executing the effect program, but, for example, transmits the control signal generated by a computer other than the host computer 30 to the host computer. 30 may be stored.
<ペンライトにおける発光処理の手順>
 次に、ペンライト20における発光処理の手順について説明する。図7は、ペンライト20における発光処理の手順の一例を示したフローチャートである。図7に示す処理は、予め定められた時間間隔で繰り返し実行される。
<Emission procedure of penlight>
Next, the procedure of the light emission process in the penlight 20 will be described. FIG. 7 is a flowchart illustrating an example of a procedure of a light emission process in the penlight 20. The process shown in FIG. 7 is repeatedly executed at predetermined time intervals.
 電波情報取得部231は、アンテナ10から電波を受信したか否かを判定する(S101)。S101で否定の判断(NO)がされた場合、本処理フローは終了する。この場合、発光色制御部233による発光色の制御は行われない。即ち、発光部22は発光せずに、ペンライト20は消灯した状態である。
 一方、S101で肯定の判断(YES)がされた場合、電波情報取得部231は、複数のアンテナ10から電波を受信したか否かを判定する(S102)。S102で肯定の判断(YES)がされた場合、電波強度判定部232は、複数のアンテナ10から受信した電波のうち、最も強度の高い電波を特定する(S103)。
The radio wave information acquisition unit 231 determines whether a radio wave has been received from the antenna 10 (S101). When a negative determination (NO) is made in S101, this processing flow ends. In this case, the emission color control by the emission color control unit 233 is not performed. That is, the light emitting unit 22 does not emit light, and the penlight 20 is turned off.
On the other hand, when a positive determination (YES) is made in S101, the radio wave information acquisition unit 231 determines whether radio waves have been received from the plurality of antennas 10 (S102). When a positive determination (YES) is made in S102, the radio wave intensity determination unit 232 specifies the radio wave with the highest intensity among the radio waves received from the plurality of antennas 10 (S103).
 S102で否定の判断(NO)がされた場合、又はS103の後、電波強度判定部232は、アンテナ10から受信した電波の強度が電波強度閾値を超えるか否かを判定する(S104)。ここで、S102で否定の判断(NO)がされた場合、ペンライト20は1つのアンテナ10から電波を受信しているため、その電波を対象にして、S104の判定が行われる。また、S102で肯定の判断(YES)がされた場合、S103で特定した電波を対象にして、S104の判定が行われる。 場合 When a negative determination (NO) is made in S102 or after S103, the radio wave intensity determination unit 232 determines whether or not the intensity of the radio wave received from the antenna 10 exceeds the radio wave intensity threshold (S104). Here, if a negative determination (NO) is made in S102, the penlight 20 receives a radio wave from one antenna 10, so that the determination in S104 is performed on the radio wave. If an affirmative determination (YES) is made in S102, the determination in S104 is performed on the radio wave specified in S103.
 S104で否定の判断(NO)がされた場合、本処理フローは終了する。この場合、発光色制御部233による発光色の制御は行われない。即ち、発光部22は発光せずに、ペンライト20は消灯した状態である。
 一方、S104で肯定の判断(YES)がされた場合、発光色制御部233は、電波強度閾値を超えると判定された電波について、その電波によって送信されたアドバタイズパケットに含まれる色指示情報を取得する(S105)。次に、発光色制御部233は、取得した色指示情報に基づいて、発光部22の発光色を制御する(S106)。発光色制御部233の制御により、発光部22は、色指示情報により指示された発光色にて発光する。そして、本処理フローは終了する。
When a negative determination (NO) is made in S104, this processing flow ends. In this case, the emission color control by the emission color control unit 233 is not performed. That is, the light emitting unit 22 does not emit light, and the penlight 20 is turned off.
On the other hand, when a positive determination (YES) is made in S104, the emission color control unit 233 acquires the color instruction information included in the advertisement packet transmitted by the radio wave for the radio wave determined to exceed the radio field intensity threshold. (S105). Next, the emission color control unit 233 controls the emission color of the light emitting unit 22 based on the acquired color instruction information (S106). Under the control of the emission color control unit 233, the emission unit 22 emits light in the emission color specified by the color instruction information. Then, the processing flow ends.
 なお、図7に示す例では、S104の処理を行ったが、S104の処理を行わなくてもよい。この場合、S102で否定の判断(NO)がされた場合には、ペンライト20は1つのアンテナ10から電波を受信しているため、S105において、その電波によって送信されたアドバタイズパケットに含まれる色指示情報を取得する。また、S102で肯定の判断(YES)がされた場合には、S105において、S103で特定した電波によって送信されたアドバタイズパケットに含まれる色指示情報を取得する。 In the example shown in FIG. 7, the process of S104 is performed, but the process of S104 may not be performed. In this case, if a negative determination (NO) is made in S102, the penlight 20 has received a radio wave from one antenna 10, so in S105, the color included in the advertisement packet transmitted by the radio wave is transmitted. Obtain instruction information. If an affirmative determination (YES) is made in S102, color instruction information included in the advertisement packet transmitted by the radio wave specified in S103 is obtained in S105.
<アンテナの電波特性の設定>
 イベント会場などの予め定められたエリアでは、アンテナ10が照射する電波によってペンライト20の演出が行われる。ここで、アンテナ10は、予め定められたエリア内の特定の一部の領域(又は全部の領域)に向けて電波を照射するように電波特性を設定可能であり、この電波特性に基づいて電波を照射して、一部(又は全部)の領域内にあるペンライト20を発光させる。電波特性としては、電波の照射方向、アンテナ10が照射する電波の強度、指向性(即ち、電波のビーム幅)等が設定される。
 なお、アンテナ10は、指向性によって特定の領域(言い換えると、特定の方向)に向けて電波を照射するが、電波自体は強弱はありながらも全空間に広がることになる。即ち、アンテナ10は、予め定められたエリアにおいて、特定の領域に対して最も強い(即ち、電波強度の高い)電波を照射する。言い換えると、アンテナ10は、予め定められたエリアの特定の領域に対して、予め定められたエリアの特定の領域を除く他の領域よりも強い電波を照射する。
<Setting the radio wave characteristics of the antenna>
In a predetermined area such as an event venue, the effect of the penlight 20 is performed by radio waves emitted by the antenna 10. Here, the antenna 10 can set radio wave characteristics so as to irradiate a radio wave to a specific partial area (or the entire area) within a predetermined area, and the radio wave is set based on the radio wave characteristic. To cause the penlight 20 in a part (or all) of the area to emit light. As the radio wave characteristics, the irradiation direction of the radio wave, the intensity of the radio wave irradiated by the antenna 10, the directivity (that is, the beam width of the radio wave), and the like are set.
The antenna 10 emits a radio wave toward a specific area (in other words, a specific direction) depending on the directivity, but the radio wave itself spreads over the entire space although it is strong or weak. That is, the antenna 10 emits the strongest (that is, high radio wave intensity) radio waves to a specific area in a predetermined area. In other words, the antenna 10 irradiates a specific area of the predetermined area with a stronger radio wave than other areas excluding the specific area of the predetermined area.
 さらに説明すると、予め定められたエリア内に設置するアンテナ10の電波特性は、使用する通信方式の周波数、エリアの広さ、観客の数、演出内容等によって調整される。例えば、Bluetooth LEのブロードキャスト通信方式を使用する場合、2.4GHzの周波数帯が用いられる。また、エリアの広さや観客の数、演出内容等によって、アンテナ10の設置される場所や、アンテナ10の電波の照射方向、電波の強度、指向性などの電波特性が決定される。 To explain further, the radio characteristics of the antenna 10 installed in a predetermined area are adjusted according to the frequency of the communication system to be used, the area size, the number of spectators, the effect contents, and the like. For example, when using the Bluetooth @ LE broadcast communication system, a 2.4 GHz frequency band is used. Further, the location where the antenna 10 is installed, the radiation direction of the radio wave of the antenna 10, the radio wave intensity, the directivity, and other radio characteristics are determined by the area size, the number of spectators, the contents of the performance, and the like.
 より具体的には、例えば、演出の内容により、予め定められたエリアをどのような照射領域に区切って演出を行うかが決定される。例えば、予め定められたエリアを10箇所に区切り(以下、区切られた領域を単位領域と称する)、10箇所の単位領域毎に色の演出を行う場合には、10個のアンテナ10が用意される。そして、単位領域毎にアンテナ10を割り当てて、各アンテナ10のそれぞれから単位領域に対して電波を照射して、演出が行われる。 More specifically, for example, what kind of irradiation area is divided into a predetermined area and the effect is determined based on the content of the effect. For example, in a case where a predetermined area is divided into ten places (hereinafter, the divided area is referred to as a unit area), and a color effect is produced for each of ten unit areas, ten antennas 10 are prepared. You. Then, an antenna 10 is allocated to each unit area, and a radio wave is emitted from each of the antennas 10 to the unit area to produce an effect.
 ただし、用意するアンテナ10の数は、単位領域の大きさや単位領域内の観客の数も考慮される。例えば、アンテナ10が照射する電波が垂直偏波、電波強度が0dBm、ビーム幅が30~40度という条件で、観客の持つペンライト20までの距離が1mで、観客の密度が2.5人/m2の単位領域に向けて電波を照射する場合、アンテナ10は、単位領域の大きさに対して3m間隔で配置される。また、観客の数が少なくなり密度が小さくなるほど電波は届き易くなるため、例えば単位領域の観客の密度が2.5人/m2の1/2になれば、アンテナ10は6m間隔で配置される。 However, the number of antennas 10 to be prepared also takes into account the size of the unit area and the number of spectators in the unit area. For example, when the radio wave emitted by the antenna 10 is vertically polarized, the radio wave intensity is 0 dBm, and the beam width is 30 to 40 degrees, the distance to the penlight 20 held by the spectator is 1 m, and the spectator density is 2.5. When radiating radio waves toward the unit area of / m 2 , the antennas 10 are arranged at intervals of 3 m with respect to the size of the unit area. In addition, since the radio wave becomes easier to reach as the number of spectators decreases and the density decreases, for example, if the density of spectators in a unit area becomes 1 / of 2.5 / m 2 , the antennas 10 are arranged at intervals of 6 m. You.
 そして、アンテナ10は、単位領域に対して電波を照射可能な範囲であって、アンテナ10を設置可能な場所に設置される。Bluetooth LEの場合、電波の強度に応じて、通信可能距離は1mから数10mに設定可能である。また、アンテナ10を設置した後に、電波特性の詳細な設定が行われる。ここでは、アンテナ10が割り当てられた単位領域に応じて、アンテナ10の電波の照射方向、電波の強度、指向性などの調整が行われる。 {Circle around (5)} The antenna 10 is installed in a place where the unit area can be irradiated with radio waves and where the antenna 10 can be installed. In the case of Bluetooth @ LE, the communicable distance can be set from 1 m to several tens of meters depending on the strength of the radio wave. After the antenna 10 is installed, detailed setting of the radio wave characteristics is performed. Here, according to the unit area to which the antenna 10 is assigned, adjustment of the direction of radio wave irradiation of the antenna 10, intensity of radio wave, directivity, and the like are performed.
<通信システムで行われる処理の具体例>
 次に、演出システム1で行われる処理の流れについて、具体例を挙げて説明する。図8は、演出システム1で行われる処理の流れを説明するための具体例を示す図である。
<Specific example of processing performed in communication system>
Next, a flow of processing performed in the effect system 1 will be described with a specific example. FIG. 8 is a diagram illustrating a specific example for describing the flow of the processing performed in the effect system 1.
 ホストコンピュータ30は、演出用プログラムを実行することにより、アンテナ10毎に、アンテナ10に対する制御信号を生成する。ここで、ホストコンピュータ30は、ペンライト20による演出に応じて、アンテナ10毎に、色指示情報の内容を制御する制御信号や、アンテナ10による電波の照射領域を制御する制御信号を生成する。 The host computer 30 generates a control signal for the antenna 10 for each antenna 10 by executing the production program. Here, the host computer 30 generates a control signal for controlling the content of the color instruction information and a control signal for controlling the irradiation area of the radio wave by the antenna 10 for each antenna 10 according to the effect by the penlight 20.
 ホストコンピュータ30は、アンテナ10毎に制御信号を生成すると、生成した制御信号をアンテナ10-5に送信する。アンテナ10-5は、ホストコンピュータ30から制御信号を受信すると、自身を宛先とする制御信号に基づく処理を行うとともに、アンテナ10-1~10-4宛の制御信号をアンテナ10-4に送信する。
 より具体的には、アンテナ10-5は、ホストコンピュータ30から、色指示情報の内容を制御する制御信号を受信した場合、この制御信号に基づいて色指示情報を生成する。そして、アンテナ10-5は、特定の方向に電波を照射して、ブロードキャスト通信方式により、生成した色指示情報を含むアドバタイズパケットを送信する。ここで、アンテナ10-5は、定期的に(例えば、1秒間に10回)、色指示情報を含むアドバタイズパケットを送信する。アドバタイズパケットには、自身(ここでは、アンテナ10-5)のアドレス(ID)など、アンテナ10の機器情報も含まれる。また、アドバタイズパケットには、演出システム1における信号であることを示す情報(例えば、演出システム1のID)も含まれる。
When generating a control signal for each antenna 10, the host computer 30 transmits the generated control signal to the antenna 10-5. Upon receiving the control signal from the host computer 30, the antenna 10-5 performs processing based on the control signal addressed to itself, and transmits the control signal addressed to the antennas 10-1 to 10-4 to the antenna 10-4. .
More specifically, when receiving a control signal for controlling the content of the color instruction information from the host computer 30, the antenna 10-5 generates the color instruction information based on the control signal. Then, the antenna 10-5 radiates a radio wave in a specific direction, and transmits an advertisement packet including the generated color instruction information by a broadcast communication method. Here, the antenna 10-5 periodically (for example, ten times per second) transmits an advertisement packet including color indication information. The advertisement packet also includes device information of the antenna 10, such as the address (ID) of the antenna (here, the antenna 10-5). The advertisement packet also includes information indicating that the signal is a signal in the effect system 1 (for example, the ID of the effect system 1).
 アンテナ10-2~10-4についても、アンテナ10-5と同様に、自身を宛先とする制御信号に基づいて、色指示情報を生成する。そして、アンテナ10-2~10-4は、特定の方向に電波を照射して、ブロードキャスト通信方式により、生成した色指示情報を含むアドバタイズパケットを送信する。また、ホストコンピュータ30からの制御信号を隣接するアンテナ10に送信する。アンテナ10-1も、ホストコンピュータ30からの制御信号を受信すると、自身を宛先とする制御信号に基づいて、色指示情報を生成する。そして、特定の方向に電波を照射して、ブロードキャスト通信方式により、生成した色指示情報を含むアドバタイズパケットを送信する。 Similarly to the antenna 10-5, the antennas 10-2 to 10-4 also generate color instruction information based on a control signal addressed to themselves. Then, the antennas 10-2 to 10-4 radiate radio waves in a specific direction, and transmit an advertisement packet including the generated color instruction information by a broadcast communication method. In addition, a control signal from the host computer 30 is transmitted to the adjacent antenna 10. When receiving the control signal from the host computer 30, the antenna 10-1 also generates color instruction information based on the control signal addressed to itself. Then, radio waves are emitted in a specific direction, and an advertisement packet including the generated color instruction information is transmitted by a broadcast communication method.
 付言すると、Bluetooth LEでは、2.400GHzから2.4835GHzまでの周波数帯域を2MHz毎に区切った40チャネルを切り替えることで通信が行われる。この40チャネルのうち、3チャネル(チャネルインデックス37、38、39)が、アドバタイズパケットの送信に用いられるアドバタイズチャネルである。チャネルインデックス37は、中心周波数が2.402GHz、チャネルインデックス38は、中心周波数が2.426GHz、チャネルインデックス39は、中心周波数が2.480GHzに設定されている。つまり、Bluetooth LEが使用する2.400GHzから2.4835GHzまでの周波数帯域の上限、下限及びほぼ中央に設定されている。なお、他のチャネルは、データチャネルである。
 そして、アンテナ10は、ブロードキャスタとして、アドバタイズチャネルを用いてアドバタイズパケットを送信する。ここで、アンテナ10は、アドバタイズパケットを中心周波数の異なる3つのアドバタイズチャネルに順に送信する。ただし、使用するアドバタイズチャネルによって電波の周波数が変わるため、ホストコンピュータ30からの指示等に基づいて、3つのアドバタイズチャネルのうち1つ又は2つのアドバタイズチャネルを用いるようにしてもよい。
In addition, in Bluetooth LE, communication is performed by switching 40 channels obtained by dividing a frequency band from 2.400 GHz to 2.4835 GHz for each 2 MHz. Of these 40 channels, three channels (channel indexes 37, 38, and 39) are advertisement channels used for transmitting advertisement packets. The channel index 37 has a center frequency of 2.402 GHz, the channel index 38 has a center frequency of 2.426 GHz, and the channel index 39 has a center frequency of 2.480 GHz. That is, the upper limit, the lower limit and the approximate center of the frequency band from 2.400 GHz to 2.4835 GHz used by Bluetooth LE are set. Note that the other channels are data channels.
Then, the antenna 10 transmits an advertisement packet using an advertisement channel as a broadcaster. Here, the antenna 10 sequentially transmits the advertisement packets to three advertisement channels having different center frequencies. However, since the frequency of the radio wave changes depending on the advertisement channel used, one or two of the three advertisement channels may be used based on an instruction from the host computer 30 or the like.
 アンテナ10-5の場合、図8に示すように、領域205の範囲に電波が照射される。即ち、領域205は、アンテナ10-5が割り当てられた単位領域であり、アンテナ10―5による電波の照射領域である。よって、領域205に存在するペンライト20-13~20-15が、アンテナ10-5からの電波を受信することになる。
 ここで、ペンライト20-13は、アンテナ10-5の他に、アンテナ10-1~10-4等の他のアンテナ10からも電波を受信している場合には、複数のアンテナ10から受信した電波のうち、最も強度の高い電波を特定する。この例では、アンテナ10-5から受信した電波が最も強度の高い電波として特定される。そして、ペンライト20-13は、アンテナ10-5から受信した電波の強度が電波強度閾値を超えると判定すると、アンテナ10-5から送信されたアドバタイズパケットに含まれる色指示情報に基づいて、発光部22の発光色を制御する。この例では、アンテナ10-5からの色指示情報に、発光色を赤色にする指示が含まれているとする。この場合、発光部22の発光色は赤色に制御され、ペンライト20-13は赤色に発光する。
 また、ペンライト20-14、ペンライト20-15も、ペンライト20-13と同様に、アンテナ10-5から受信した電波によって、赤色に発光する。
In the case of the antenna 10-5, as shown in FIG. That is, the area 205 is a unit area to which the antenna 10-5 is assigned, and is an area where the antenna 10-5 radiates radio waves. Therefore, the penlights 20-13 to 20-15 existing in the area 205 receive the radio wave from the antenna 10-5.
Here, when the penlight 20-13 also receives radio waves from other antennas 10 such as the antennas 10-1 to 10-4 in addition to the antenna 10-5, the penlights 20-13 receive from the plurality of antennas 10. The radio wave with the highest intensity is specified from the radio waves obtained. In this example, the radio wave received from the antenna 10-5 is specified as the radio wave having the highest intensity. When determining that the intensity of the radio wave received from the antenna 10-5 exceeds the radio field intensity threshold, the penlight 20-13 emits light based on the color indication information included in the advertisement packet transmitted from the antenna 10-5. The emission color of the unit 22 is controlled. In this example, it is assumed that the color instruction information from the antenna 10-5 includes an instruction to change the emission color to red. In this case, the emission color of the light emitting section 22 is controlled to be red, and the penlights 20-13 emit red light.
The penlights 20-14 and 20-15 also emit red light by radio waves received from the antenna 10-5, similarly to the penlights 20-13.
 なお、Bluetooth LEにおける2つの機器間では、通常、アドバタイズチャネルにて機器間でデータのやり取りをして接続を確立するが、本実施の形態では、ペンライト20の発光色を制御するにあたり、アンテナ10とペンライト20との間で接続を確立しない。ペンライト20は、アドバタイズパケットに含まれる色指示情報により、発光部22の発光色を制御する。 It should be noted that, between the two devices in Bluetooth @ LE, a connection is usually established by exchanging data between the devices using an advertisement channel, but in the present embodiment, when controlling the emission color of the penlight 20, an antenna is used. No connection is established between 10 and penlight 20. The penlight 20 controls the color of the light emitted from the light emitting unit 22 based on the color instruction information included in the advertisement packet.
 さらに、アンテナ10-1~10-4も、アンテナ10-5と同様に、ホストコンピュータ30からの制御信号に基づく処理を行う。この例では、図8に示すように、アンテナ10-1~10-4の電波はそれぞれ、領域201~204の範囲に照射される。
 例えば、アンテナ10-1~10-4からの色指示情報にはそれぞれ、発光色を紫色、青色、緑色、黄色にする指示が含まれているとする。この場合、領域201に存在するペンライト20-1~20-3は、アンテナ10-1から送信される色指示情報により、紫色に発光する。また、領域202に存在するペンライト20-4~20-6は、アンテナ10-2から送信される色指示情報により、青色に発光する。領域203に存在するペンライト20-7~20-9は、アンテナ10-3から送信される色指示情報により、緑色に発光する。領域204に存在するペンライト20-10~20-12は、アンテナ10-4から送信される色指示情報により、黄色に発光する。
Further, the antennas 10-1 to 10-4 also perform processing based on a control signal from the host computer 30, similarly to the antenna 10-5. In this example, as shown in FIG. 8, the radio waves of the antennas 10-1 to 10-4 are applied to the areas 201 to 204, respectively.
For example, it is assumed that the color instruction information from the antennas 10-1 to 10-4 includes an instruction to change the emission color to purple, blue, green, and yellow, respectively. In this case, the penlights 20-1 to 20-3 existing in the area 201 emit purple light according to the color instruction information transmitted from the antenna 10-1. Further, the penlights 20-4 to 20-6 existing in the area 202 emit blue light according to the color instruction information transmitted from the antenna 10-2. The penlights 20-7 to 20-9 existing in the area 203 emit green light according to the color instruction information transmitted from the antenna 10-3. The penlights 20-10 to 20-12 existing in the area 204 emit yellow light according to the color instruction information transmitted from the antenna 10-4.
 このように、アンテナ10-1~10-5はそれぞれ、領域201~205に電波を照射する。そして、領域201~205に存在するペンライト20は、各アンテナ10から送信された色指示情報に基づいて発光する。各アンテナ10の電波は、アンテナ10の指向性によって特定の領域に照射されるため、ペンライト20による演出が、電波の照射領域毎に行われることになる。
 なお、この例では、ホストコンピュータ30は、アンテナ10-1~10-5の電波の照射領域毎に、ペンライト20の発光色を異ならせるように制御したが、このような構成に限られない。アンテナ10-1~10-5の電波の照射領域において、発光色を全て共通の色にしてもよいし、異なる発光色が含まれていてもよい。
As described above, the antennas 10-1 to 10-5 radiate radio waves to the areas 201 to 205, respectively. Then, the penlights 20 existing in the regions 201 to 205 emit light based on the color instruction information transmitted from each antenna 10. The radio wave of each antenna 10 is radiated to a specific area by the directivity of the antenna 10, so that the effect by the penlight 20 is performed for each radio wave irradiation area.
In this example, the host computer 30 controls the penlight 20 to emit different colors for each of the radio wave irradiation areas of the antennas 10-1 to 10-5, but the present invention is not limited to such a configuration. . In the radio wave irradiation area of the antennas 10-1 to 10-5, the emission colors may be all common colors or different emission colors may be included.
 また、例えば、アンテナ10は、ペンライト20の発光色を変更する場合、ホストコンピュータ30からの制御信号を基に、変更後の発光色を指示する色指示情報を生成する。そして、生成した色指示情報を含むアドバタイズパケットを送信する。
 さらに、例えば、アンテナ10は、ホストコンピュータ30から、電波の照射を停止することを指示する制御信号を受信した場合、色指示情報を含むアドバタイズパケットの送信を停止する。また、アドバタイズパケットのペイロード部に、消灯を指示する情報を格納して、送信してもよい。
Further, for example, when changing the emission color of the penlight 20, the antenna 10 generates color instruction information indicating the changed emission color based on a control signal from the host computer 30. Then, an advertisement packet including the generated color instruction information is transmitted.
Further, for example, when receiving a control signal from the host computer 30 instructing to stop emitting radio waves, the antenna 10 stops transmitting the advertisement packet including the color instruction information. Further, information for instructing to turn off the light may be stored in the payload portion of the advertisement packet and transmitted.
 また、例えば、アンテナ10は、ホストコンピュータ30から、アンテナ10による電波の照射領域を制御する制御信号を受信した場合、この制御信号に基づいて電波の照射領域を変更する。例えば、アンテナ10は、電波の照射方向を変更する制御信号や電波の強度を変更する制御信号、電波のビーム幅を変更する制御信号等をホストコンピュータ30から受信すると、受信した制御信号に基づいて、電波の照射方向の変更や電波強度の変更、ビーム幅の変更等を行う。 For example, when the antenna 10 receives, from the host computer 30, a control signal for controlling the radio wave irradiation area by the antenna 10, the radio wave irradiation area is changed based on the control signal. For example, when the antenna 10 receives a control signal for changing the irradiation direction of the radio wave, a control signal for changing the intensity of the radio wave, a control signal for changing the beam width of the radio wave, and the like from the host computer 30, the antenna 10 is configured based on the received control signal. In addition, the radio wave irradiation direction, the radio wave intensity, the beam width, and the like are changed.
 ここで、従来のように、例えば、ペンライト20が配置される位置の位置情報とペンライト20のアドレス(ID)とを事前に登録して、位置情報とアドレス(ID)とに基づいて発光色を制御する場合には、ペンライト20の位置が変化しても発光色は変わらない。例えば、ペンライト20-1のアドレス(ID)を指定して紫色に発光させる場合、ペンライト20-1を携帯する観客が、領域201から領域202に移動したとしても、ペンライト20-1の発光色は変化しない。ペンライト20-1は、領域201及び領域202の何れに存在する場合でも紫色に発光する。そのため、特定の領域毎にペンライト20の色を分けるような演出をする場合、例えば、ペンライト20-1が領域201から領域202に移動してしまうと、領域202に存在するペンライト20-4~20-6は青色に発光しているにもかかわらず、ペンライト20-1だけ紫色に発光してしまうという状況が生じる。 Here, as in the related art, for example, the position information of the position where the penlight 20 is arranged and the address (ID) of the penlight 20 are registered in advance, and light emission is performed based on the position information and the address (ID). When controlling the color, the emission color does not change even if the position of the penlight 20 changes. For example, when the address (ID) of the penlight 20-1 is designated to emit light in purple, even if the spectator carrying the penlight 20-1 moves from the area 201 to the area 202, the light of the penlight 20-1 is The emission color does not change. The penlight 20-1 emits purple light regardless of whether it exists in the region 201 or the region 202. For this reason, when performing an effect such as dividing the color of the penlight 20 for each specific area, for example, when the penlight 20-1 moves from the area 201 to the area 202, the penlight 20- Although 4 to 20-6 emit blue light, only the penlight 20-1 emits purple light.
 一方で、本実施の形態では、例えば、ペンライト20-1が領域201に存在する場合には、アンテナ10-1から送信される色指示情報により紫色に発光する。また、ペンライト20-1を携帯する観客が、領域201から領域202に移動すると、アンテナ10-2から送信される色指示情報により、ペンライト20-1の発光色は紫色から青色に変化する。即ち、特定の領域毎にペンライト20の色を分けるような演出をする場合、例えば、ペンライト20-1が領域201から領域202に移動すると、領域202に存在するペンライト20-4~20-6と同様に、ペンライト20-1も青色に発光する。
 また、本実施の形態では、ペンライト20の発光色を制御するにあたり、ペンライト20が配置される位置の位置情報とペンライト20のアドレス(ID)とを事前に登録しなくてもよい。よって、例えば、観客が別のイベントで使用したペンライト20を持ち込んでもよい。また、例えば、観客の位置が固定されていないようなイベントにおいても、特定の領域毎にペンライト20の発光色を分けるような演出が可能である。
On the other hand, in the present embodiment, for example, when the penlight 20-1 is present in the area 201, the penlight 20-1 emits purple light according to the color instruction information transmitted from the antenna 10-1. When the spectator carrying the penlight 20-1 moves from the area 201 to the area 202, the emission color of the penlight 20-1 changes from purple to blue according to the color instruction information transmitted from the antenna 10-2. . That is, when performing an effect such that the color of the penlight 20 is divided for each specific area, for example, when the penlight 20-1 moves from the area 201 to the area 202, the penlights 20-4 to 20 existing in the area 202 Similarly to -6, the penlight 20-1 also emits blue light.
Further, in the present embodiment, when controlling the emission color of the penlight 20, the position information of the position where the penlight 20 is arranged and the address (ID) of the penlight 20 do not need to be registered in advance. Thus, for example, a spectator may bring in a penlight 20 used in another event. Further, for example, even in an event where the position of the audience is not fixed, it is possible to produce an effect such that the emission color of the penlight 20 is divided for each specific area.
 なお、本実施の形態では、アンテナ10が、ホストコンピュータ30から送信された制御信号に基づいて色指示情報を生成するのではなく、例えば、ホストコンピュータ30等が色指示情報を生成してもよい。この場合、ホストコンピュータ30は、色指示情報をアンテナ10に送信し、アンテナ10は、送信された色指示情報をアドバタイズパケットに格納する。 In the present embodiment, instead of the antenna 10 generating the color instruction information based on the control signal transmitted from the host computer 30, for example, the host computer 30 or the like may generate the color instruction information. . In this case, the host computer 30 transmits the color instruction information to the antenna 10, and the antenna 10 stores the transmitted color instruction information in the advertisement packet.
 また、本実施の形態では、ペンライト20が発光するタイミングを、ペンライト20の存在する領域毎に異ならせてもよい。例えば、アンテナ10-1~10-5が順番に色指示情報を送信すると、領域201~205に存在するペンライト20が順番に発光し、ウェーブのような演出が行われる。また、アンテナ10の数を増やして、アンテナ10による電波の照射領域を細かく区切ることにより、観客のペンライト20によって絵を描くような演出が可能である。 In the present embodiment, the timing at which the penlight 20 emits light may be different for each area where the penlight 20 exists. For example, when the antennas 10-1 to 10-5 sequentially transmit color instruction information, the penlights 20 existing in the areas 201 to 205 emit light in order, and a wave-like effect is performed. In addition, by increasing the number of antennas 10 and finely dividing the irradiation area of the radio waves by the antennas 10, it is possible to produce an effect such as drawing a picture with the penlight 20 of the audience.
 さらに、本実施の形態では、閾値として、電波強度閾値の他に、ペンライト20の発光色を変化させるか否かを決定するための別の閾値を設けてもよい。
 例えば、図8に示す領域201と領域202との境界にペンライト20が存在する場合、アンテナ10-1からの電波の強度が最も高くなる場合もあれば、アンテナ10-2からの電波の強度が最も高くなる場合もある。そのため、ペンライト20の発光色が紫色になったり青色になったりして、発光色が安定しないことが考えられる。そこで、ペンライト20は、受信した電波がある一定程度の電波強度でない限り、発光色を変化させずに、その時点の発光色を保持してもよい。
Further, in the present embodiment, another threshold for determining whether to change the emission color of the penlight 20 may be provided as the threshold in addition to the radio field intensity threshold.
For example, when the penlight 20 exists at the boundary between the region 201 and the region 202 shown in FIG. 8, the intensity of the radio wave from the antenna 10-1 may be the highest, or the intensity of the radio wave from the antenna 10-2 may be highest. May be the highest. Therefore, it is conceivable that the light emission color of the penlight 20 becomes purple or blue and the light emission color is not stable. Therefore, as long as the received radio wave does not have a certain level of radio wave intensity, the penlight 20 may hold the luminous color at that time without changing the luminous color.
 例えば、ペンライト20が、アンテナ10-1から、紫色に発光するように制御する電波を受信し、紫色に発光したとする。次に、ペンライト20が、アンテナ10-2から、青色に発光するように制御する電波を受信したとする。ここで、ペンライト20は、アンテナ10-1からの電波の強度(この例では、電波強度A1とする)と、アンテナ10-2からの電波の強度(この例では、電波強度A2とする)とを比較する。そして、ペンライト20は、電波強度A2から電波強度A1を引いた差分が、予め定められた閾値(以下、差分強度閾値と称する)を超えるか否かを判定する。ペンライト20は、電波強度A2から電波強度A1を引いた差分が、差分強度閾値を超えると判定した場合、電波強度A2の電波(即ち、アンテナ10-2から受信した電波)によって、発光色を紫色から青色に変化させる。一方、電波強度A2から電波強度A1を引いた差分が、差分強度閾値を超えないと判定した場合、ペンライト20は、発光色を紫色のまま保持する。 For example, suppose that the penlight 20 receives a radio wave from the antenna 10-1 for controlling emission of purple light and emits purple light. Next, it is assumed that the penlight 20 receives a radio wave for controlling emission of blue light from the antenna 10-2. Here, the penlight 20 has a radio wave intensity (radio wave intensity A1 in this example) from the antenna 10-1 and a radio wave intensity (radio wave intensity A2 in this example) from the antenna 10-2. Compare with Then, the penlight 20 determines whether a difference obtained by subtracting the radio wave intensity A1 from the radio wave intensity A2 exceeds a predetermined threshold (hereinafter, referred to as a difference intensity threshold). If the penlight 20 determines that the difference obtained by subtracting the radio wave intensity A1 from the radio wave intensity A2 exceeds the difference intensity threshold, the penlight 20 emits a luminescent color using the radio wave of the radio wave intensity A2 (ie, the radio wave received from the antenna 10-2). Change from purple to blue. On the other hand, when it is determined that the difference obtained by subtracting the radio wave intensity A1 from the radio wave intensity A2 does not exceed the difference intensity threshold, the penlight 20 keeps the emission color purple.
 このようにして差分強度閾値を設けることにより、ペンライト20が複数のアンテナから同程度の強度の電波を受信する場合であっても、発光色が不安定になることが抑制される。
 なお、電波強度閾値や差分強度閾値は、予め設定されているデフォルト値を用いてもよいし、ホストコンピュータ30からの指示等に基づいて、アンテナ10にて設定したり変更したりしてもよい。
By providing the difference intensity threshold in this way, even when the penlight 20 receives radio waves of the same intensity from a plurality of antennas, it is possible to suppress the emission color from becoming unstable.
Note that the radio wave intensity threshold and the difference intensity threshold may use preset default values, or may be set or changed by the antenna 10 based on an instruction from the host computer 30 or the like. .
 また、本実施の形態では、ホストコンピュータ30は、アンテナ10による電波の照射領域が予め定められた条件を満たすか否かを判定し、予め定められた条件を満たさない場合には、予め定められた条件を満たすように電波の照射領域を調整してもよい。
 例えば、アンテナ10-1~10-5による電波の照射領域の面積を予め定められた範囲内にするという条件を定めておく。そして、アンテナ10-1~10-5から電波を照射したところ、領域203~205の面積は予め定められた範囲内であるが、領域201の面積は予め定められた範囲よりも大きくなり、領域202の面積は予め定められた範囲よりも小さくなったとする。この場合、ホストコンピュータ30は、領域201及び領域202が予め定められた条件を満たしていないと判断し、予め定められた条件を満たすように調整する。
Further, in the present embodiment, the host computer 30 determines whether or not the irradiation area of the radio wave by the antenna 10 satisfies a predetermined condition. The radio wave irradiation area may be adjusted so as to satisfy the above conditions.
For example, a condition is defined in which the area of the radio wave irradiation area by the antennas 10-1 to 10-5 is set within a predetermined range. When radio waves are emitted from the antennas 10-1 to 10-5, the areas 203 to 205 have an area within a predetermined range, but the area 201 has an area larger than the predetermined range. It is assumed that the area of 202 has become smaller than a predetermined range. In this case, the host computer 30 determines that the area 201 and the area 202 do not satisfy the predetermined condition, and adjusts them so as to satisfy the predetermined condition.
 より具体的には、ホストコンピュータ30は、例えば、アンテナ10-1の電波強度を低くして、アンテナ10-2の電波強度を高くするように指示する制御信号を生成する。この制御信号により、アンテナ10-1の電波強度は低くなり、領域201の面積が小さくなる。また、アンテナ10-2の電波強度は高くなり、領域202の面積が大きくなる。また、ホストコンピュータ30は、アンテナ10-1及びアンテナ10-2の両方の電波強度を変更するのではなく、アンテナ10-1の電波強度のみを低くしたり、アンテナ10-2の電波強度のみを高くしたりしてもよい。このようにして、ホストコンピュータ30は、アンテナ10-1やアンテナ10-2が照射する電波の強度を調整して、領域201及び領域202の面積を調整する。 More specifically, the host computer 30 generates a control signal instructing, for example, to lower the radio wave intensity of the antenna 10-1 and increase the radio wave intensity of the antenna 10-2. With this control signal, the radio wave intensity of the antenna 10-1 decreases, and the area of the region 201 decreases. Further, the radio wave intensity of the antenna 10-2 increases, and the area of the region 202 increases. Further, the host computer 30 does not change the radio wave intensity of both the antenna 10-1 and the antenna 10-2, but lowers only the radio wave intensity of the antenna 10-1 or only the radio wave intensity of the antenna 10-2. It may be higher. In this way, the host computer 30 adjusts the intensity of radio waves emitted by the antenna 10-1 and the antenna 10-2 to adjust the areas of the region 201 and the region 202.
 また、ホストコンピュータ30は、例えば、アンテナ10-1やアンテナ10-2が照射する電波のビーム幅を変化させることを指示する制御信号を生成してもよい。即ち、ホストコンピュータ30は、アンテナ10-1やアンテナ10-2が照射する電波のビーム幅を調整して、領域201及び領域202の面積を調整してもよい。
 なお、領域201~205の情報は、例えば、ホストコンピュータ30に設けられたカメラや別に設けられたカメラ等で、ペンライト20による発光色の分布を撮影することによって取得される。ホストコンピュータ30は、取得した情報により、電波の照射領域が予め定められた条件を満たすか否かを判定する。この場合、ホストコンピュータ30は、電波の照射領域の情報を取得する処理を行うものと捉えることができる。
Further, the host computer 30 may generate, for example, a control signal instructing to change the beam width of the radio wave emitted from the antenna 10-1 or the antenna 10-2. That is, the host computer 30 may adjust the beam widths of the radio waves emitted by the antennas 10-1 and 10-2 to adjust the areas of the region 201 and the region 202.
Note that the information of the areas 201 to 205 is obtained by, for example, capturing the emission color distribution of the penlight 20 with a camera provided in the host computer 30 or a camera provided separately. The host computer 30 determines whether the radio wave irradiation area satisfies a predetermined condition based on the acquired information. In this case, it can be considered that the host computer 30 performs a process of acquiring information on the irradiation area of the radio wave.
 さらに、本実施の形態では、アンテナ10が電波の送信側から受信側に切り替わり、他のアンテナ10から照射された電波の強度を検知してもよい。
 例えば、演出の際には、ペンライト20の数が多いために電波の届く範囲が狭くなったり、アンテナ10の電波を遮断する障害物が現れたりすることが考えられる。そこで、例えば各アンテナ10が設置された段階で、アンテナ10毎に、他のアンテナ10から受信する電波の強度がどれくらいであるかを検知しておく。そして、演出を開始する前や開始した後に、ホストコンピュータ30は、何れかのアンテナ10に対して、電波の送信側から受信側に切り替えるように制御する制御信号を送信する。制御信号を受信したアンテナ10は、電波の送信側から受信側に切り替わり、他のアンテナ10から受信する電波の強度を検知する。アンテナ10(又はホストコンピュータ30)は、ここで検知された電波の強度と、アンテナ10の設置段階で事前に検知した電波の強度とを比較することにより、事前段階との電波の強度の差分を把握する。差分を把握することにより、例えば、ホストコンピュータ30は、差分を小さくするようにアンテナ10に対して指示を行う。より具体的には、例えば、ホストコンピュータ30は、電波強度を変更するようにアンテナ10に対して指示を行う。
Further, in the present embodiment, antenna 10 may be switched from the transmitting side of the radio wave to the receiving side, and the intensity of the radio wave emitted from another antenna 10 may be detected.
For example, at the time of the production, it is conceivable that the range of the radio wave is narrowed due to the large number of penlights 20, or an obstacle that blocks the radio wave of the antenna 10 appears. Therefore, for example, when each antenna 10 is installed, the intensity of the radio wave received from another antenna 10 is detected for each antenna 10. Then, before or after the effect is started, the host computer 30 transmits a control signal for controlling any one of the antennas 10 to switch from the radio wave transmitting side to the radio wave receiving side. The antenna 10 receiving the control signal switches from the transmission side of the radio wave to the reception side, and detects the intensity of the radio wave received from the other antenna 10. The antenna 10 (or the host computer 30) compares the intensity of the radio wave detected here with the intensity of the radio wave detected in advance in the installation stage of the antenna 10 to determine the difference in the radio wave intensity from the previous stage. Figure out. By grasping the difference, for example, the host computer 30 instructs the antenna 10 to reduce the difference. More specifically, for example, the host computer 30 instructs the antenna 10 to change the radio field intensity.
<通信システムの他の構成例>
 次に、本実施の形態に係る演出システム1の他の構成例について説明する。
 本実施の形態では、アンテナ10は、ペンライト20に対して電波を照射可能な位置であればどのような位置に配置されてもよく、例えば、天井や床に設置してもよい。
 図9(A)、(B)は、アンテナ10を天井に設置した場合の一例を示す図である。この例では、天井に1つのアンテナ10が設置され、アンテナ10から領域206の範囲に電波が照射される。そして、領域206の範囲に存在するペンライト20-13~20-15が、アンテナ10からの電波を受信する。ここで、アンテナ10からの色指示情報に、発光色を赤色にする指示が含まれている場合、ペンライト20-13~20-15は赤色に発光する。
<Another configuration example of the communication system>
Next, another configuration example of the presentation system 1 according to the present embodiment will be described.
In the present embodiment, antenna 10 may be arranged at any position as long as it can radiate radio waves to penlight 20, and may be installed on the ceiling or floor, for example.
FIGS. 9A and 9B are diagrams illustrating an example of a case where the antenna 10 is installed on a ceiling. In this example, one antenna 10 is installed on the ceiling, and radio waves are emitted from the antenna 10 to the area 206. Then, the penlights 20-13 to 20-15 existing in the area 206 receive the radio wave from the antenna 10. Here, when the color instruction information from the antenna 10 includes an instruction to change the emission color to red, the penlights 20-13 to 20-15 emit red light.
 さらに、図9(A)の状態から、アンテナ10が電波を照射する方向を変えると、図9(B)に示すように、領域206の位置が移動する。そして、領域206の範囲に存在するペンライト20-1~20-3がアンテナ10からの電波を受信して、赤色に発光する。一方で、ペンライト20-13~20-15はアンテナ10からの電波を受信しないため、赤色には発光せず、消灯する。
 このように、アンテナ10を天井に設置した場合、スポットライトを使用したように、限られた領域のペンライト20の発光色が制御される。
Further, when the direction in which the antenna 10 emits radio waves is changed from the state of FIG. 9A, the position of the region 206 moves as shown in FIG. 9B. Then, the penlights 20-1 to 20-3 existing in the area 206 receive the radio wave from the antenna 10 and emit red light. On the other hand, the penlights 20-13 to 20-15 do not receive radio waves from the antenna 10 and do not emit red light but go out.
In this way, when the antenna 10 is installed on the ceiling, the emission color of the penlight 20 in a limited area is controlled as if a spotlight was used.
 また、人がアンテナ10を携帯してもよい。図10は、人がアンテナ10を携帯した場合の一例を示す図である。例えば、コンサートの演者がアンテナ10を携帯して任意の方向に向けると、アンテナ10を向けた方向にある領域207の範囲に電波が照射される。そして、領域207の範囲に存在するペンライト20-1,20-2が、アンテナ10からの電波を受信する。ここで、アンテナ10からの色指示情報に、発光色を赤色にする指示が含まれている場合、ペンライト20-1,20-2は赤色に発光する。また、演者がアンテナ10を異なる方向に向けると、領域207の位置が移動し、移動後の領域207に存在するペンライト20が赤色に発光する。
 このように、人がアンテナ10を携帯する場合、例えば演者がアンテナ10を向けた方向にあるペンライト20の発光色が制御されるため、演者と観客とに一体感を持たせるような演出が可能になる。
Also, a person may carry the antenna 10. FIG. 10 is a diagram illustrating an example of a case where a person carries the antenna 10. For example, when the performer of the concert carries the antenna 10 and points it in an arbitrary direction, radio waves are emitted to the area 207 in the direction in which the antenna 10 is turned. Then, the penlights 20-1 and 20-2 existing in the area 207 receive the radio wave from the antenna 10. Here, when the color instruction information from the antenna 10 includes an instruction to change the emission color to red, the penlights 20-1 and 20-2 emit red light. When the performer points the antenna 10 in a different direction, the position of the area 207 moves, and the penlight 20 existing in the area 207 after the movement emits red light.
In this way, when a person carries the antenna 10, for example, since the emission color of the penlight 20 in the direction in which the performer points the antenna 10 is controlled, an effect that gives the performer and the audience a sense of unity is achieved. Will be possible.
 なお、アンテナ10に対しては、無線通信により、ホストコンピュータ30から制御信号が送信される。また、アンテナ10に、電波の照射開始・停止を受け付けるボタンや、電波強度の変更を受け付けるボタン、ペンライト20の発光色の変更を受け付けるボタン等を設けてもよい。演者がこれらのボタンを押下することにより、電波の照射開始・停止や、電波強度の変更、発光色の変更等が行われる。 制 御 A control signal is transmitted from the host computer 30 to the antenna 10 by wireless communication. Further, the antenna 10 may be provided with a button for receiving start / stop of radio wave irradiation, a button for receiving a change in radio wave intensity, a button for receiving a change in the emission color of the penlight 20, and the like. When the performer presses these buttons, start / stop of radio wave irradiation, change of radio wave intensity, change of emission color, and the like are performed.
 また、図9及び図10に示す例では、アンテナ10を1つしか設けていないが、アンテナ10を複数設けてもよい。例えば、図8に示すように、アンテナ10-1~10-5を壁面に設けるとともに、別のアンテナ10を天井に設置したり、演者が別のアンテナ10を携帯したりしてもよい。この場合、例えば、天井に設置されたアンテナ10や演者が携帯するアンテナ10が照射する電波の強度は、アンテナ10-1~10-5が照射する電波の強度よりも高くなるように設定される。そして、アンテナ10-1~10-5により領域201~205毎にペンライト20の発光色が制御されるとともに、天井に設置されたアンテナ10や演者が携帯するアンテナ10によって、ペンライト20の発光色が制御される。 In the examples shown in FIGS. 9 and 10, only one antenna 10 is provided, but a plurality of antennas 10 may be provided. For example, as shown in FIG. 8, antennas 10-1 to 10-5 may be provided on a wall surface, another antenna 10 may be installed on a ceiling, or a performer may carry another antenna 10. In this case, for example, the intensity of radio waves emitted by the antenna 10 installed on the ceiling or the antenna 10 carried by the performer is set to be higher than the intensity of radio waves emitted by the antennas 10-1 to 10-5. . The emission colors of the penlight 20 are controlled for each of the areas 201 to 205 by the antennas 10-1 to 10-5, and the emission of the penlight 20 is performed by the antenna 10 installed on the ceiling or the antenna 10 carried by the performer. Color is controlled.
 また、本実施の形態では、自動車等の対象物の移動に合わせて、ペンライト20の発光色を制御してもよい。図11(A)、(B)は、対象物の移動に合わせてペンライト20の発光色を制御する場合の一例を示す図である。図示の例では、6台のアンテナ10-1~10-6が設置され、複数のペンライト20が存在する。また、対象物50-1、50-2が矢印で示す方向に移動する。 In the present embodiment, the light emission color of the penlight 20 may be controlled in accordance with the movement of an object such as a car. FIGS. 11A and 11B are diagrams illustrating an example of a case where the emission color of the penlight 20 is controlled in accordance with the movement of the target. In the illustrated example, six antennas 10-1 to 10-6 are installed, and a plurality of penlights 20 exist. The objects 50-1 and 50-2 move in the directions indicated by the arrows.
 図11(A)に示す例では、対象物50-1の外観が赤色であり、ホストコンピュータ30は、対象物50-1の周辺にあるペンライト20の発光色を赤色にするために、アンテナ10-3,10-4に対して、ペンライト20の発光色を赤色にするための制御信号を送信する。アンテナ10-3,10-4は、ホストコンピュータ30から制御信号を受信すると、発光色を赤色にすることを指示する色指示情報を含むアドバタイズパケットを送信する。このアンテナ10-3,10-4からのアドバタイズパケットにより、領域208に存在するペンライト20の発光色が赤色になるように制御される。
 同様に、対象物50-2の外観は青色であり、ホストコンピュータ30からの制御信号により、アンテナ10-1,10-2は、発光色を青色にすることを指示する色指示情報を含むアドバタイズパケットを送信する。このアンテナ10-1,10-2のアドバタイズパケットにより、領域209に存在するペンライト20の発光色が青色になるように制御される。
In the example shown in FIG. 11A, the appearance of the object 50-1 is red, and the host computer 30 uses the antenna to change the color of the penlight 20 around the object 50-1 to red. A control signal is transmitted to the penlights 10-3 and 10-4 to make the emission color of the penlight 20 red. Upon receiving the control signal from the host computer 30, the antennas 10-3 and 10-4 transmit an advertisement packet including color instruction information for instructing the emission color to be red. The advertisement packets from the antennas 10-3 and 10-4 are controlled so that the emission color of the penlight 20 existing in the area 208 becomes red.
Similarly, the appearance of the target object 50-2 is blue, and the antennas 10-1 and 10-2 advertise including color instruction information for instructing the emission color to be blue according to a control signal from the host computer 30. Send a packet. The advertisement packets of the antennas 10-1 and 10-2 are controlled so that the emission color of the penlight 20 existing in the area 209 becomes blue.
 次に、図11(B)に示すように、対象物50-1,50-2が矢印の方向に移動したとする。この場合、ホストコンピュータ30は、対象物50-1の周辺にあるペンライト20の発光色を赤色にするために、アンテナ10-4,10-5に対して、ペンライト20の発光色を赤色にするための制御信号を送信する。アンテナ10-4,10-5は、ホストコンピュータ30から制御信号を受信すると、発光色を赤色にすることを指示する色指示情報を含むアドバタイズパケットを送信する。このアンテナ10-4,10-5からのアドバタイズパケットにより、領域210に存在するペンライト20の発光色が赤色になるように制御される。同様に、ホストコンピュータ30からの制御信号により、アンテナ10-2,10-3は、発光色を青色にすることを指示する色指示情報を含むアドバタイズパケットを送信する。このアンテナ10-2,10-3からのアドバタイズパケットにより、領域211に存在するペンライト20の発光色が青色になるように制御される。
 このようにして、対象物が移動するのに合わせて、ペンライト20の発光色が制御される。
Next, as shown in FIG. 11B, it is assumed that the objects 50-1 and 50-2 have moved in the directions of the arrows. In this case, the host computer 30 sets the emission color of the penlight 20 to the antennas 10-4 and 10-5 in red to make the emission color of the penlight 20 around the object 50-1 red. Is transmitted. Upon receiving the control signal from the host computer 30, the antennas 10-4 and 10-5 transmit an advertisement packet including color instruction information for instructing the emission color to be red. The advertisement packets from the antennas 10-4 and 10-5 are controlled so that the emission color of the penlight 20 existing in the area 210 becomes red. Similarly, in response to a control signal from the host computer 30, the antennas 10-2 and 10-3 transmit an advertisement packet including color instruction information for instructing the emission color to be blue. The advertisement packets from the antennas 10-2 and 10-3 are controlled so that the emission color of the penlight 20 existing in the area 211 becomes blue.
In this way, the emission color of the penlight 20 is controlled in accordance with the movement of the object.
 なお、対象物50-1,50-2の位置は、例えば、GPS(Global Positioning System)により位置情報を取得したり、対象物50-1,50-2が移動する範囲をカメラで撮影したりすることによって把握される。また、アンテナ10の設置場所は予め把握されている。よって、ホストコンピュータ30は、対象物50-1,50-2の位置と、アンテナ10の設置場所とにより、対象物50-1,50-2の周辺にあるアンテナ10を特定する。
 また、対象物50-1,50-2の外観の色が変化することとしてもよい。この場合、ホストコンピュータ30は、例えば、定期的に対象物50-1,50-2を撮影して得られた写真により、対象物50-1,50-2の外観の色を把握する。そして、ホストコンピュータ30は、対象物50-1,50-2の周辺にあるアンテナ10に対して、ペンライト20の発光色を対象物50-1,50-2の外観の色にするための制御信号を送信する。
Note that the positions of the objects 50-1 and 50-2 can be obtained, for example, by acquiring position information by GPS (Global Positioning System) or photographing the range in which the objects 50-1 and 50-2 move using a camera. It is grasped by doing. The installation location of the antenna 10 is known in advance. Therefore, the host computer 30 specifies the antenna 10 around the objects 50-1 and 50-2 based on the positions of the objects 50-1 and 50-2 and the installation location of the antenna 10.
Further, the color of the appearance of the objects 50-1 and 50-2 may be changed. In this case, the host computer 30 grasps the color of the appearance of the objects 50-1 and 50-2, for example, from a photograph obtained by regularly photographing the objects 50-1 and 50-2. Then, the host computer 30 causes the antenna 10 around the objects 50-1 and 50-2 to change the emission color of the penlight 20 to the appearance color of the objects 50-1 and 50-2. Send a control signal.
 さらに、本実施の形態では、演出システム1が構成される予め定められたエリア内の状態を把握して、把握した状態に応じてペンライト20の発光色を制御してもよい。
 例えば、ホストコンピュータ30は、予め定められたエリアをカメラで撮影して、観客が密集している領域や空いている領域を把握する。そして、ホストコンピュータ30は、観客が密集している領域にあるペンライト20の発光色を特定の色にするための制御信号や、空いている領域にあるペンライト20の発光色を特定の色にするための制御信号を生成する。また、ホストコンピュータ30は、アンテナ10の設置場所を予め把握しており、ペンライト20の発光色を制御したい場所に電波を照射するアンテナ10に対して、制御信号を送信する。
Further, in the present embodiment, the state in a predetermined area where the effect system 1 is configured may be grasped, and the emission color of the penlight 20 may be controlled according to the grasped state.
For example, the host computer 30 takes an image of a predetermined area with a camera, and grasps an area where the audience is crowded or an empty area. Then, the host computer 30 transmits a control signal for setting the emission color of the penlight 20 in the area where the audience is crowded to a specific color, or sets the emission color of the penlight 20 in the empty area to the specific color. Is generated. In addition, the host computer 30 knows the installation location of the antenna 10 in advance, and transmits a control signal to the antenna 10 that radiates radio waves to a location where the emission color of the penlight 20 is to be controlled.
 また、例えば、演出システム1が構成される予め定められたエリア内に、振動、音、光、温度、湿度などの環境情報を感知するセンサ(不図示)を複数設けて、ホストコンピュータ30は、各センサで感知した環境情報を取得してもよい。この場合、ホストコンピュータ30は、各センサで感知した環境情報を基に予め定められたエリア内の状態を把握して、ペンライト20の発光色を制御する。
 例えば、ホストコンピュータ30は、イベント会場において、複数のセンサで感知した振動や音、温度の情報を基に、会場の盛り上がり具合を判断する。そして、ホストコンピュータ30は、イベント会場の中で、特に振動が大きい場所や音が大きい場所、温度の高い場所を、より盛り上がっている場所と判断し、これらの場所に存在するペンライト20の発光色を特定の色にするための制御信号を生成する。この場合も、ホストコンピュータ30は、アンテナ10の設置場所を予め把握しており、ペンライト20の発光色を制御したい場所に電波を照射するアンテナ10に対して、制御信号を送信する。なお、ペンライト20に各種センサを設けてもよい。
Further, for example, a plurality of sensors (not shown) for sensing environmental information such as vibration, sound, light, temperature, and humidity are provided in a predetermined area where the effect system 1 is configured, and the host computer 30 Environment information sensed by each sensor may be acquired. In this case, the host computer 30 controls the light emission color of the penlight 20 by grasping a state in a predetermined area based on environmental information sensed by each sensor.
For example, the host computer 30 determines the degree of excitement of the venue at the event venue based on information on vibration, sound, and temperature detected by a plurality of sensors. Then, the host computer 30 determines, in the event venue, places with particularly large vibrations, loud sounds, and places with high temperatures as more exciting places, and the light emission of the penlights 20 present in these places. A control signal for making a color a specific color is generated. Also in this case, the host computer 30 knows the installation location of the antenna 10 in advance, and transmits a control signal to the antenna 10 that radiates radio waves to a location where the emission color of the penlight 20 is to be controlled. Note that the penlight 20 may be provided with various sensors.
 さらに、本実施の形態では、1つのアンテナ10に複数のアンテナ部110を設けて、それぞれのアンテナ部110から特定の領域に向けて同一の色指示情報を送信して、ペンライト20の発光精度を高めることも可能である。これは、いわゆるダイバーシティ効果を利用するものであり、例えば、人の密度が高い環境や、壁が多かったり天井が低かったりするために電波の反射が発生し易い環境において、複数のアンテナ部110のそれぞれから性質の異なる電波を照射する。より具体的には、例えば、複数のアンテナ部110のそれぞれから、偏波面の異なる電波を照射する手法(偏波ダイバーシティ)、周波数の異なる電波を照射する手法(周波数ダイバーシティ)が例示される。 Further, in the present embodiment, a plurality of antenna units 110 are provided for one antenna 10, and the same color instruction information is transmitted from each antenna unit 110 toward a specific area, and the light emission accuracy of penlight 20 Can also be increased. This utilizes the so-called diversity effect. For example, in an environment where the density of people is high, or in an environment where reflection of radio waves is likely to occur due to a large number of walls or a low ceiling, a plurality of antenna units 110 are required. Each radiates radio waves with different properties. More specifically, for example, a method of irradiating radio waves with different polarization planes (polarization diversity) and a method of irradiating radio waves with different frequencies (frequency diversity) from each of the plurality of antenna units 110 are exemplified.
 また、本実施の形態では、ペンライト20の発光色を制御することとしたが、制御の対象は、アンテナ10からの電波を受信可能な受信装置であればよく、ペンライト20に限られない。例えば、アンテナ10から送信される色指示情報により、備え付けの照明装置の発光色を制御してもよい。
 さらに、本実施の形態では、発光色を制御する構成に限られない。例えば、アンテナ10から送信される信号により、ペンライト20に描かれた模様を制御してもよい。また、例えば、スマートフォン等の携帯情報端末の画面の色や模様を制御してもよい。この場合、Bluetooth LEに対応した携帯情報端末が用いられ、携帯端末に専用のアプリケーションがインストールされる。そして、アンテナ10から送信される信号により、携帯情報端末に表示される画面が制御される。
 このように、本実施の形態では、アンテナ10が送信する信号には、ペンライト20等の受信装置の外観を変化させることを指示する指示情報が含まれていればよい。ペンライト20等の受信装置は、アンテナ10から送信される信号によって外観を変化させる。
Further, in the present embodiment, the emission color of penlight 20 is controlled, but the control target is not limited to penlight 20 as long as it is a receiving device that can receive radio waves from antenna 10. . For example, the emission color of the provided lighting device may be controlled by the color instruction information transmitted from the antenna 10.
Further, the present embodiment is not limited to the configuration for controlling the emission color. For example, a pattern drawn on the penlight 20 may be controlled by a signal transmitted from the antenna 10. Further, for example, the color and pattern of the screen of a portable information terminal such as a smartphone may be controlled. In this case, a portable information terminal compatible with Bluetooth LE is used, and a dedicated application is installed on the portable terminal. The screen displayed on the portable information terminal is controlled by the signal transmitted from the antenna 10.
As described above, in the present embodiment, the signal transmitted by antenna 10 only needs to include instruction information for instructing to change the appearance of the receiving device such as penlight 20. The receiving device such as the penlight 20 changes its appearance by a signal transmitted from the antenna 10.
 また、本実施の形態では、複数のアンテナ10から電波を受信している場合、最も強度の高い電波を特定したが、このような構成に限られない。ペンライト20は、例えば、複数のアンテナ10から電波を受信した場合、最も強度の高い電波を特定する処理を行わずに、受信した何れかの電波に含まれる色指示情報で指示された発光色で発光してもよい。 Also, in the present embodiment, when radio waves are received from a plurality of antennas 10, the radio wave with the highest intensity is specified, but the present invention is not limited to such a configuration. When the penlight 20 receives radio waves from a plurality of antennas 10, for example, the penlight 20 does not perform the process of specifying the radio wave with the highest intensity, and emits light of the color indicated by the color indication information contained in any of the received radio waves. May emit light.
 さらに、本実施の形態では、アンテナ10とペンライト20との間の通信をBluetooth LEにより行うこととしたが、このような構成に限られない。アンテナ10は、電波によって信号を送信すればよく、国際標準規格であるIEEE 802.11規格に基づいたWi-Fi(登録商標)など、Bluetooth LE以外の無線の通信方式により信号を送信してもよい。 Further, in the present embodiment, the communication between the antenna 10 and the penlight 20 is performed by Bluetooth LE, but the present invention is not limited to such a configuration. The antenna 10 may transmit a signal by radio waves, and may transmit a signal by a wireless communication method other than Bluetooth LE, such as Wi-Fi (registered trademark) based on the IEEE 802.11 standard. Good.
 また、本実施の形態では、アンテナ10が指向性を有することとしたが、アンテナ10は無指向性であってもよい。アンテナ10が無指向性の場合、アンテナ10から周囲360度の全方向に向けて電波が照射される。よって、例えば、図8に示す例では、領域206に存在するペンライト20に限らず、アンテナ10からの電波が届く限り、全てのペンライト20がアンテナ10からの電波を受信して発光する。また、例えば、図9に示す例では、領域207に存在するペンライト20に限らず、アンテナ10からの電波が届く限り、全てのペンライト20がアンテナ10からの電波を受信して発光する。 In the present embodiment, the antenna 10 has directivity, but the antenna 10 may be non-directional. When the antenna 10 is omnidirectional, radio waves are emitted from the antenna 10 in all directions around 360 degrees. Therefore, for example, in the example shown in FIG. 8, not only the penlight 20 existing in the area 206 but also all the penlights 20 receive the radio wave from the antenna 10 and emit light as long as the radio wave from the antenna 10 reaches. For example, in the example illustrated in FIG. 9, not only the penlight 20 existing in the area 207 but also all the penlights 20 receive the radio wave from the antenna 10 and emit light as long as the radio wave from the antenna 10 reaches.
 また、本実施の形態では、ホストコンピュータ30の機能を実現するプログラムを、アンテナ10に実行させて、アンテナ10がホストコンピュータ30として機能してもよい。例えば、アンテナ10が演出用プログラムを実行することにより、色指示情報を生成したり、電波の照射領域を変更したりする。 In the present embodiment, a program for realizing the function of the host computer 30 may be executed by the antenna 10 so that the antenna 10 functions as the host computer 30. For example, the antenna 10 executes a production program to generate color instruction information or change the radio wave irradiation area.
 また、本発明の実施の形態を実現するプログラムは、通信手段により提供することはもちろん、CD-ROM等の記録媒体に格納して提供することも可能である。 The program for realizing the embodiment of the present invention can be provided not only by communication means but also stored in a recording medium such as a CD-ROM.
 なお、上記では種々の実施形態および変形例を説明したが、これらの実施形態や変形例どうしを組み合わせて構成してももちろんよい。
 また、本開示は上記の実施形態に何ら限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の形態で実施することができる。
Although various embodiments and modifications have been described above, these embodiments and modifications may be combined with each other.
Further, the present disclosure is not limited to the above-described embodiments at all, and can be implemented in various forms without departing from the gist of the present disclosure.
1…通信システム、10…アンテナ、20…ペンライト、22…発光部、23…制御部、30…ホストコンピュータ、110…アンテナ部、120…通信制御部、231…電波情報取得部、232…電波強度判定部、233…発光色制御部、301…制御信号生成部、302…制御信号送信部 DESCRIPTION OF SYMBOLS 1 ... Communication system, 10 ... Antenna, 20 ... Penlight, 22 ... Light emitting part, 23 ... Control part, 30 ... Host computer, 110 ... Antenna part, 120 ... Communication control part, 231 ... Radio wave information acquisition part, 232 ... Radio wave Intensity determination unit, 233: emission color control unit, 301: control signal generation unit, 302: control signal transmission unit

Claims (8)

  1.  複数の送信装置により、予め定められた領域内にある複数の受信装置に対して電波を照射し、
     前記複数の送信装置のうちの個々の送信装置は、前記予め定められた領域内の特定の一部の領域に向けて電波を照射するように電波特性を設定可能であり、当該電波特性に基づいて電波を照射して、当該一部の領域内にある前記受信装置の外観を変化させること
    を特徴とする送信システム。
    By a plurality of transmitting devices, radiate radio waves to a plurality of receiving devices within a predetermined area,
    Each transmission device of the plurality of transmission devices can set a radio wave characteristic so as to irradiate a radio wave toward a specific partial region in the predetermined region, and based on the radio wave characteristic, A radio wave to irradiate the radio wave to change the appearance of the receiving device in the partial area.
  2.  前記個々の送信装置は、前記電波特性として、前記一部の領域に応じて、照射する電波の強度が設定されること
    を特徴とする請求項1に記載の送信システム。
    2. The transmission system according to claim 1, wherein each of the transmission devices sets, as the radio wave characteristic, an intensity of a radio wave to be irradiated according to the partial area. 3.
  3.  前記個々の送信装置は、前記電波特性として、前記一部の領域に応じて、特定の方向に対して電波を照射する指向性が設定されること
    を特徴とする請求項1に記載の送信システム。
    2. The transmission system according to claim 1, wherein each of the transmission devices sets, as the radio wave characteristic, directivity for irradiating a radio wave in a specific direction according to the partial area. 3. .
  4.  前記個々の送信装置は、前記一部の領域内にある前記受信装置に対して、当該受信装置が発光する発光色を指示すること
    を特徴とする請求項1に記載の送信システム。
    The transmission system according to claim 1, wherein each of the transmission devices instructs the reception devices in the partial area to emit light emitted by the reception device.
  5.  前記個々の送信装置は、制御装置からの指示によって、電波の送信側から受信側に切り替わり、前記複数の送信装置のうちの他の送信装置から受信する電波の強度を検知すること
    を特徴とする請求項1に記載の送信システム。
    The individual transmission devices are switched from a radio wave transmission side to a reception side by an instruction from a control device, and detect the intensity of radio waves received from another transmission device of the plurality of transmission devices. The transmission system according to claim 1.
  6.  予め定められた領域内にある複数の受信装置に対して電波を照射する複数の送信装置のうちの個々の送信装置であって、
     前記個々の送信装置は、
     前記予め定められた領域内の特定の一部の領域に向けて電波を照射するように電波特性を設定可能であり、
     前記電波特性に基づいて電波を照射して、前記一部の領域内にある前記受信装置の外観を変化させること
    を特徴とする送信装置。
    An individual transmitting device among a plurality of transmitting devices that irradiates a plurality of receiving devices within a predetermined area with radio waves,
    The individual transmitting devices are:
    Radio wave characteristics can be set so as to irradiate a radio wave toward a specific part of the predetermined area,
    A transmitting device, wherein the transmitting device irradiates a radio wave based on the radio wave characteristic to change the appearance of the receiving device in the partial area.
  7.  発光装置の発光色を指示する指示情報を取得する取得手段と、
     Bluetooth Low Energyのブロードキャスト通信によって、取得された前記指示情報を含む電波を照射する照射手段と
    を備える送信装置。
    Acquiring means for acquiring instruction information for instructing the emission color of the light emitting device;
    A transmitting device comprising: an irradiating unit configured to irradiate a radio wave including the acquired instruction information by broadcast communication of Bluetooth Low Energy.
  8.  予め定められた領域内での演出に用いられる複数の受信装置と、
     前記予め定められた領域に対して電波を照射し、当該電波の照射領域に存在する前記受信装置の外観を変化させる複数の送信装置と、
     前記演出に応じて、前記複数の送信装置のそれぞれに対して、前記電波の照射領域に存在する前記受信装置の外観を変化させるように指示する制御装置と
    を備える演出システム。
    A plurality of receiving devices used for directing in a predetermined area,
    A plurality of transmitting devices that irradiate the predetermined region with radio waves and change the appearance of the receiving device present in the radio wave irradiation region,
    A production system comprising: a control device that instructs each of the plurality of transmission devices to change the appearance of the reception device existing in the radio wave irradiation area in accordance with the production.
PCT/JP2018/034874 2018-09-19 2018-09-20 Transmission system, transmission device and directing system WO2020059089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018175093A JP6473545B1 (en) 2018-09-19 2018-09-19 Transmission system, transmission device and production system
JP2018-175093 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059089A1 true WO2020059089A1 (en) 2020-03-26

Family

ID=65442957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034874 WO2020059089A1 (en) 2018-09-19 2018-09-20 Transmission system, transmission device and directing system

Country Status (2)

Country Link
JP (1) JP6473545B1 (en)
WO (1) WO2020059089A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020234999A1 (en) * 2019-05-21 2020-11-26
JP7144100B2 (en) * 2019-05-21 2022-09-29 日本電業工作株式会社 Light-emitting device, radio wave transmitter and control system
JP2022027224A (en) * 2020-07-31 2022-02-10 パナソニックIpマネジメント株式会社 Lighting control device, lighting control system, lighting system, lighting control method, and program
WO2022196076A1 (en) * 2021-03-19 2022-09-22 ソニーグループ株式会社 Information processing device and information processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011981A (en) * 2013-07-02 2015-01-19 チームラボ株式会社 Illumination presentation method and illumination presentation system
JP2017157549A (en) * 2016-02-29 2017-09-07 ハナムアーテック シーオー., エルティーディーHanam Artec Co., Ltd Master device and slave device constituting emission control system
JP2018005977A (en) * 2016-06-27 2018-01-11 Quicco Sound株式会社 Lighting apparatus control system and lighting apparatus control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201436642A (en) * 2013-03-06 2014-09-16 Wavien Inc Wireless controlled light source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011981A (en) * 2013-07-02 2015-01-19 チームラボ株式会社 Illumination presentation method and illumination presentation system
JP2017157549A (en) * 2016-02-29 2017-09-07 ハナムアーテック シーオー., エルティーディーHanam Artec Co., Ltd Master device and slave device constituting emission control system
JP2018005977A (en) * 2016-06-27 2018-01-11 Quicco Sound株式会社 Lighting apparatus control system and lighting apparatus control method

Also Published As

Publication number Publication date
JP2020047475A (en) 2020-03-26
JP6473545B1 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
JP6473545B1 (en) Transmission system, transmission device and production system
US10263476B2 (en) Transmitter board allowing for modular antenna configurations in wireless power transmission systems
US11652369B2 (en) Systems and methods of determining a location of a receiver device and wirelessly delivering power to a focus region associated with the receiver device
US10298024B2 (en) Wireless power transmitters for selecting antenna sets for transmitting wireless power based on a receiver&#39;s location, and methods of use thereof
US8314749B2 (en) Dual band dual polarization antenna array
CN103152905B (en) Illuminator
US9445483B2 (en) Lighting device and luminaire comprising an integrated antenna
KR20190098529A (en) Antenna using multi-feeding and electronic device including the same
KR101551567B1 (en) Method and System for Multi-band, dual-polarization, dual beam-switched antenna for small cell base station
KR102628968B1 (en) Electronic device comprising antenna and power backoff control method for the electronic device
KR20200028256A (en) An electronic device comprising a 5g antenna module
TW201730580A (en) A luminaire having a beacon and a directional antenna
KR20210101781A (en) Antenna and electronic device including the same
US20170309987A1 (en) Luminaire and illumination system
KR20210056000A (en) Antenna and electronic device including the same
JP6473544B1 (en) Rendering method, receiving apparatus and communication system
US10454316B2 (en) Antenna configurations for wireless power and communication, and supplemental visual signals
JP7144100B2 (en) Light-emitting device, radio wave transmitter and control system
WO2020234999A1 (en) Luminescent system
WO2017031741A1 (en) Antenna, antenna control method, antenna control apparatus and antenna system
JP6921441B2 (en) Antenna complex, antenna structure and communication system
JP5385755B2 (en) Lighting system
KR20200082947A (en) An electronic device including an antenna module
US20230352982A1 (en) Systems and methods of wirelessly delivering power to a receiver device
KR102016014B1 (en) Antenna for Radiation of Omni Directional

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933936

Country of ref document: EP

Kind code of ref document: A1