WO2020059011A1 - Substrate processing apparatus, semiconductor device manufacturing method, and program - Google Patents

Substrate processing apparatus, semiconductor device manufacturing method, and program Download PDF

Info

Publication number
WO2020059011A1
WO2020059011A1 PCT/JP2018/034419 JP2018034419W WO2020059011A1 WO 2020059011 A1 WO2020059011 A1 WO 2020059011A1 JP 2018034419 W JP2018034419 W JP 2018034419W WO 2020059011 A1 WO2020059011 A1 WO 2020059011A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate processing
correlation curve
component
processing apparatus
monitored
Prior art date
Application number
PCT/JP2018/034419
Other languages
French (fr)
Japanese (ja)
Inventor
加我 友紀直
一良 山本
秀元 林原
一秀 浅井
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2018/034419 priority Critical patent/WO2020059011A1/en
Priority to CN201880097796.3A priority patent/CN112740358B/en
Priority to JP2020547492A priority patent/JP7186236B2/en
Priority to KR1020217000321A priority patent/KR102512456B1/en
Publication of WO2020059011A1 publication Critical patent/WO2020059011A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • G05B23/027Alarm generation, e.g. communication protocol; Forms of alarm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present disclosure relates to a substrate processing apparatus, a method of manufacturing a semiconductor device, and a program.
  • Patent Literature 1 discloses a technique for identifying an abnormality factor using a plurality of monitor data in an abnormality analysis.
  • Patent Literature 2 discloses a technique for displaying a plurality of monitor data and event data in an abnormality analysis.
  • the present disclosure has an object to provide a configuration capable of preventing defective production of a substrate due to a temporal change in a correlation of a plurality of data and improving a production yield.
  • a configuration that includes a control unit that operates a substrate processing system by executing a process recipe including a plurality of steps,
  • the control unit includes: During the execution of the process recipe, for a step that satisfies a predetermined collection condition, collects component data on a component to be monitored in the substrate processing system, Generate a correlation curve showing the correlation of the collected component data, Comparing the generated correlation curve with an initial correlation curve serving as a reference stored in advance, to determine whether the difference between the correlation curve and the initial correlation curve exceeds a predetermined threshold, A configuration is provided for generating an alarm when the threshold is exceeded.
  • FIG. 1 is a side sectional view showing a substrate processing apparatus suitably used in one embodiment.
  • FIG. 3 is a diagram illustrating a functional configuration of a control unit suitably used in one embodiment.
  • FIG. 3 is a diagram illustrating a functional configuration of a main controller suitably used in one embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a substrate processing system including a component to be monitored, which is preferably used in one embodiment.
  • FIG. 7 is an explanatory diagram showing a specific example illustrating a component to be collected, a component data collection condition, and a method of calculating component data for generating correlation data in each step of a process recipe performed in an embodiment. is there.
  • FIG. 1 is a side sectional view showing a substrate processing apparatus suitably used in one embodiment.
  • FIG. 3 is a diagram illustrating a functional configuration of a control unit suitably used in one embodiment.
  • FIG. 3 is a diagram illustrating a functional configuration of a main controller suitably used in one
  • FIG. 4 is an explanatory diagram illustrating a specific example of a correlation curve generated in one embodiment.
  • FIG. 4 is an explanatory diagram illustrating a specific example of a screen displayed in one embodiment. It is an illustration example of a cause judgment table for each combination pattern of each sensor information used in one embodiment.
  • FIG. 11 is a diagram illustrating a configuration example of a substrate processing system including a component to be monitored, which is suitably used in a modification of the embodiment. It is an illustration example of a cause judgment table for each combination pattern of each sensor information used in a modification of one embodiment.
  • a substrate processing apparatus (hereinafter, also simply referred to as an apparatus) 1 to which the present disclosure is applied includes a housing 2, and a lower part of a front wall 3 of the housing 2 can be maintained. (Front maintenance opening) 4 is provided, and the opening 4 is opened and closed by a front maintenance door 5.
  • a pod loading / unloading port 6 is opened on the front wall 3 of the casing 2 so as to communicate between the inside and the outside of the casing 2, and the pod loading / unloading port 6 is opened and closed by a front shutter 7.
  • a load port 8 is installed on the front side, and the load port 8 is configured to position the mounted pod 9.
  • the pod 9 is a hermetically sealed substrate transfer container, which is carried into and out of the load port 8 by an in-process transfer device (not shown).
  • a rotatable pod shelf 11 is provided at an upper portion in a substantially central portion in the front-rear direction in the housing 2, and the rotatable pod shelf 11 is configured to store a plurality of pods 9. .
  • the rotary pod shelf 11 includes a column 12 that is vertically erected and is intermittently rotated, and a plurality of stages of shelves 13 radially supported by the column 12 at respective positions of upper, middle, and lower stages.
  • the shelf 13 is configured to store a plurality of pods 9 in a state of being placed thereon.
  • a pod opener 14 is provided below the rotary pod shelf 11, and the pod opener 14 has a configuration on which the pod 9 can be placed and a lid of the pod 9 can be opened and closed.
  • a pod transport mechanism 15 is provided between the load port 8 and the rotary pod shelf 11 and the pod opener 14.
  • the pod transport mechanism 15 can hold the pod 9 and can move up and down, and can move forward and backward in the horizontal direction.
  • the pod 9 is transported between the load port 8, the rotary pod shelf 11, and the pod opener 14.
  • a sub-housing 16 is provided at a lower portion in a substantially central portion in the front-rear direction in the housing 2 over the rear end.
  • a pair of wafer loading / unloading ports 19 for loading / unloading a wafer (hereinafter, also referred to as a substrate) 18 into / from the sub-casing 16 is vertically arranged on the front wall 17 of the sub-casing 16 in two vertical stages.
  • the pod openers 14 are respectively provided for the upper and lower wafer loading / unloading ports 19.
  • the pod opener 14 includes a mounting table 21 on which the pod 9 is mounted, and an opening / closing mechanism 22 for opening and closing the lid of the pod 9.
  • the pod opener 14 is configured to open and close a wafer entrance of the pod 9 by opening and closing a lid of the pod 9 mounted on the mounting table 21 by an opening and closing mechanism 22.
  • the sub-housing 16 constitutes a transfer chamber 23 which is airtight from a space (pod transfer space) in which the pod transfer mechanism 15 and the rotary pod shelf 11 are provided.
  • a wafer transfer mechanism (substrate transfer mechanism) 24 is installed in the front area of the transfer chamber 23.
  • the substrate transfer mechanism 24 has a required number (five in the drawing) of the substrates 18 to be mounted.
  • a wafer mounting plate 25 is provided. The wafer mounting plate 25 can be moved directly in the horizontal direction, can be rotated in the horizontal direction, and can be moved up and down.
  • the substrate transfer mechanism 24 is configured to load and unload the substrate 18 to and from the boat (substrate holder) 26.
  • a standby unit 27 that accommodates and stands by the boat 26 is configured.
  • a vertical processing furnace 28 is provided above the standby unit 27, a vertical processing furnace 28 is provided.
  • the processing furnace 28 has a processing chamber (reaction chamber) 29 formed therein.
  • the lower end of the processing chamber 29 is a furnace port, and the furnace port is opened and closed by a furnace port shutter 31. ing.
  • a boat elevator 32 as an elevating mechanism for elevating the boat 26 is installed between the right end of the housing 2 and the right end of the standby section 27 of the sub-housing 16.
  • a seal cap 34 as a cover is horizontally mounted on an arm 33 connected to the elevator of the boat elevator 32.
  • the cover 34 vertically supports the boat 26, and transfers the boat 26 to the processing chamber 29.
  • the furnace port can be hermetically closed in a state where the furnace is charged.
  • the boat 26 is configured so that a plurality of (for example, about 50 to 125) substrates 18 are aligned in the center thereof and held in multiple stages in a horizontal posture.
  • a clean unit 35 is disposed at a position facing the boat elevator 32 side.
  • the clean unit 35 is configured by a supply fan and a dustproof filter for supplying a clean atmosphere or clean air 36 that is an inert gas. I have. Between the substrate transfer mechanism 24 and the clean unit 35, a notch aligning device (not shown) as a substrate aligning device for aligning the circumferential position of the substrate 18 is provided.
  • the clean air 36 blown from the clean unit 35 flows through the notch alignment device (not shown), the substrate transfer mechanism 24, and the boat 26, and is then sucked by a duct (not shown) and exhausted to the outside of the housing 2. Or is blown into the transfer chamber 23 by the clean unit 35.
  • the pod 9 When the pod 9 is supplied to the load port 8, the pod loading / unloading port 6 is opened by the front shutter 7.
  • the pod 9 on the load port 8 is carried into the housing 2 through the pod carry-in / out port 6 by the pod transport device 15 and is placed on the designated shelf 13 of the rotary pod shelf 11.
  • the pod 9 After the pod 9 is temporarily stored on the rotary pod shelf 11, the pod 9 is transferred from the shelf 13 to one of the pod openers 14 by the pod transfer device 15 and transferred to the mounting table 21, or 8 and transferred directly to the mounting table 21.
  • the wafer loading / unloading port 19 is closed by the opening / closing mechanism 22, and the transfer chamber 23 is filled with the clean air 36 flowing therethrough. Since the transfer chamber 23 is filled with nitrogen gas as clean air 36, the oxygen concentration in the transfer chamber 23 is lower than the oxygen concentration inside the housing 2.
  • the pod 9 placed on the mounting table 21 has its opening-side end face pressed against the edge of the opening of the wafer loading / unloading port 19 on the front wall 17 of the sub-housing 16, and the lid is removed by the opening / closing mechanism 22. , The wafer entrance is opened.
  • the substrate 18 is taken out of the pod 9 by the substrate transfer mechanism 24, transferred to a notch aligning device (not shown), and aligned with the notch aligning device. Thereafter, the substrate transfer mechanism 24 carries the substrate 18 into the standby section 27 located behind the transfer chamber 23 and charges (charges) the boat 26.
  • the substrate transfer mechanism 24 that has transferred the substrate 18 to the boat 26 returns to the pod 9, and loads the next substrate 18 into the boat 26. While the substrate transfer mechanism 24 in one (upper or lower) pod opener 14 is loading the substrate 18 into the boat 26, the other (lower or upper) pod opener 14 is separated from the rotary pod shelf 11 by another. The pod 9 is transported and transferred by the pod transport device 15, and the opening of the pod 9 by the other pod opener 14 proceeds simultaneously.
  • a purge step in which the processing chamber 29 is replaced with an inert gas at this timing (after loading) is provided.
  • the processing chamber 29 is evacuated to a desired pressure (degree of vacuum) by a gas exhaust mechanism (not shown) such as a vacuum pump. Further, the processing chamber 29 is heated to a predetermined temperature by a heater driving unit (not shown) so as to have a desired temperature distribution.
  • a processing gas controlled at a predetermined flow rate is supplied by a gas supply mechanism (not shown), and the processing gas contacts the surface of the substrate 18 in the process of flowing through the processing chamber 29, and A predetermined process is performed. Further, the processing gas after the reaction is exhausted from the processing chamber 29 by the gas exhaust mechanism.
  • an inert gas is supplied from an inert gas supply source (not shown) by a gas supply mechanism, and the processing chamber 29 is replaced with the inert gas. Is returned to normal pressure (after-purge step). Then, the boat 26 is lowered by the boat elevator 32 via the seal cap 34.
  • the substrate 18 and the pod 9 are discharged to the outside of the housing 2 in a procedure reverse to the above description.
  • the unprocessed substrate 18 is further loaded into the boat 26, and the processing of the substrate 18 is repeated.
  • control unit 200 includes a main controller 201, a transport controller 211 as a transport controller, a process controller 212 as a processing controller, an apparatus management controller 215 as a data monitoring unit, It has.
  • the device management controller 215 functions as a data collection controller, collects device data inside and outside the device 1, and monitors the soundness of the device data DD inside the device 1.
  • the control unit 200 is housed in the device 1.
  • the transport system controller 211, the process system controller 212, and the device management controller 215 have the same configuration as the main controller 201.
  • the apparatus data DD refers to data (hereinafter, also referred to as control parameters) relating to substrate processing such as a processing temperature, a processing pressure, and a flow rate of a processing gas when the apparatus 1 processes the substrate 18, and the quality of a manufactured product substrate.
  • control parameters data relating to substrate processing such as a processing temperature, a processing pressure, and a flow rate of a processing gas when the apparatus 1 processes the substrate 18, and the quality of a manufactured product substrate.
  • the component data e.g., the quartz reaction tube, heater, valve, mass flow controller (hereinafter, MFC), etc.
  • MFC mass flow controller
  • the main controller 201 is electrically connected to the transport controller 211 and the process controller 212 by a LAN line LAN1 such as 100BASE-T, for example, so that transmission / reception of each device data DD and download / upload of each file can be performed. It has a possible configuration.
  • An external host computer 300 and management device 310 are connected to the main controller 201 via a communication network LAN2 such as 100BASE-T. For this reason, even when the device 1 is installed in a clean room, the host computer 300 and the management device 310 can be arranged in an office or the like outside the clean room.
  • a communication network LAN2 such as 100BASE-T.
  • the device management controller 215 is connected to the main controller 201 via a LAN line, is configured to collect device data DD from the main controller 201, quantify the operation state of the device, and display it on a screen.
  • the device management controller 215 will be described later in detail.
  • the transport system controller 211 is connected to a substrate transport system 211A mainly including the rotary pod shelf 11, the boat elevator 32, the pod transport device 15, the substrate transfer mechanism 24, the boat 26, and a rotation mechanism (not shown). ing.
  • the transport system controller 211 is configured to control transport operations of the rotary pod shelf 11, the boat elevator 32, the pod transport device 15, the substrate transfer mechanism 24, the boat 26, and a rotation mechanism (not shown). .
  • the process controller 212 includes a temperature controller 212a, a pressure controller 212b, a gas flow controller 212c, and a sequencer 212d.
  • the temperature controller 212a, the pressure controller 212b, the gas flow controller 212c, and the sequencer 212d constitute a sub-controller and are electrically connected to the process system controller 212. Uploading is possible.
  • a heating mechanism 212A mainly composed of a heater, a temperature sensor, and the like is connected to the temperature controller 212a.
  • the temperature controller 212a is configured to control the temperature inside the processing furnace 28 by controlling the temperature of the heater of the processing furnace 28.
  • the temperature controller 212a is configured to perform switching (on / off) control of the thyristor, and to control electric power supplied to the heater element wire.
  • a gas exhaust mechanism 212B mainly composed of a pressure sensor, an APC valve as a pressure valve, and a vacuum pump is connected to the pressure controller 212b.
  • the pressure controller 212b controls the opening degree of the APC valve and the switching (on / off) of the vacuum pump based on the pressure value detected by the pressure sensor so that the pressure in the processing chamber 29 becomes a desired pressure at a desired timing. It is configured to control.
  • the gas flow controller 212c is configured by the MFC 212c.
  • the sequencer 212d is configured to control the supply and stop of the gas from the processing gas supply pipe and the purge gas supply pipe by opening and closing the valve 212D.
  • the process controller 212 having such a configuration is configured to control the MFC 212c and the valve 212D so that the flow rate of the gas supplied to the processing chamber 29 becomes a desired flow rate at a desired timing.
  • the main controller 201, the transport system controller 211, the process system controller 212, and the device management controller 215 according to the present embodiment can be realized using an ordinary computer system without using a dedicated system. For example, by installing the program from a recording medium (such as a USB key) that stores the program for executing the above-described process in a general-purpose computer, each controller that executes a predetermined process can be configured.
  • a recording medium such as a USB key
  • each controller including the main controller 201, the transport system controller 211, the process system controller 212, the device management controller 215, and the like starts the provided program and executes it under the control of the OS in the same manner as other application programs. Thereby, a predetermined process can be executed.
  • the main controller 201 includes an operation display unit 227 including a main controller control unit 220, a hard disk 222 as a main control storage unit, a display unit for displaying various information, and an input unit for receiving various instructions from an operator. It is configured to include a transmission / reception module 228 as a main controller communication unit that communicates with inside and outside.
  • the main controller 220 includes a CPU (Central Processing Unit) 224 and a memory (RAM, ROM, etc.) 226 as a temporary storage unit, and is configured as a computer having a clock function (not shown).
  • the hard disk 222 includes recipe files such as recipes in which processing conditions and processing procedures of the substrate are defined, a control program file for executing these recipe files, a parameter file in which parameters for executing the recipes are defined, Further, in addition to an error processing program file and an error processing parameter file, various screen files including an input screen for inputting process parameters, various icon files, and the like (all not shown) are stored.
  • each operation as an input unit for inputting operation instructions to the substrate transfer system 211A, the heating mechanism 212A, the gas exhaust mechanism 212B, and the gas supply system 212C shown in FIG. Buttons can also be provided.
  • the operation display unit 227 is configured to display an operation screen for operating the device 1.
  • the operation display unit 227 displays information based on device data DD generated in the device 1 via the operation screen on the operation screen.
  • the operation screen of the operation display unit 227 is, for example, a touch panel using liquid crystal.
  • the operation display unit 227 receives input data (input instruction) of the operator from the operation screen and transmits the input data to the main controller 201. Further, the operation display unit 227 provides an instruction to execute an arbitrary substrate processing recipe (hereinafter, also referred to as a process recipe) among a plurality of recipes stored in the hard disk 222 or a recipe developed in the memory (RAM) 226 or the like. Control instruction) and transmits it to the main controller 220.
  • the device management controller 215 when the device management controller 215 starts up, by executing various programs and the like, each stored screen file and data table are expanded, and by reading the device data DD, the operating state of the device is read. Are configured to be displayed on the operation display unit 227.
  • a switching hub or the like is connected to the main controller communication unit 228, and the main controller 201 communicates with the external computer 300 and other controllers (211 212, and 215) in the apparatus 1 and the like via a network. Is configured to perform transmission and reception.
  • the main controller 201 also transmits device data DD such as the status of the device 1 to an external host computer 300, for example, a host computer via a network (not shown).
  • device data DD such as the status of the device 1
  • an external host computer 300 for example, a host computer via a network (not shown).
  • the substrate processing operation of the apparatus 1 is controlled by the control unit 200 based on each recipe file, each parameter file, and the like stored in the main controller storage unit 222.
  • the process recipe is developed in a memory such as a RAM in the process controller 212, for example. Then, an operation instruction is given from the main controller 201 to the process controller 212 and the transport controller 211 as needed.
  • the substrate processing step performed in this manner includes at least a loading step, a film forming step, and a discharging step.
  • the main controller 201 issues an instruction to drive the substrate transfer mechanism 24 to the transport system controller 211. Then, while following instructions from the transport system controller 211, the substrate transfer mechanism 24 starts the transfer processing of the substrate 18 from the pod 9 on the mounting table 21 to the boat 26. This transfer processing is performed until the loading (wafer charging) of all the planned substrates 18 into the boat 26 is completed.
  • the inside of the processing chamber 29 is evacuated by a vacuum exhaust device such as a vacuum pump so as to have a predetermined film forming pressure (degree of vacuum) while following instructions from the pressure control unit 212b. Further, the inside of the processing chamber 29 is heated by a heater to a predetermined temperature while following an instruction from the temperature control unit 212a. Subsequently, the rotation of the boat 26 and the substrate 18 by the rotation mechanism is started while following instructions from the transport system controller 211. Then, while maintaining a predetermined pressure and a predetermined temperature, a predetermined gas (processing gas) is supplied to the plurality of substrates 18 held by the boat 26 to perform predetermined processing (for example, film formation) on the substrates 18. Processing) is performed. Before the next unloading step, the temperature may be lowered from the processing temperature (predetermined temperature).
  • a predetermined film forming pressure degree of vacuum
  • the boat 26 holding the processed substrate 18 is cooled very effectively by the clean air 36 blown out from the clean unit 35.
  • the processed substrate 18 is removed from the boat 26 (wafer discharge) and transferred to the pod 9, and then the new unprocessed substrate 18 is transferred to the boat 26. Is performed.
  • a plurality of types of processing gases N2-1, N2-2, and N2-3 are adjusted in a flow rate by a corresponding gas flow rate controller (MFC) 212c.
  • the substrate 18 is supplied to the processing chamber (reaction chamber) 29 into which the substrate 18 has been loaded at the timing set for each.
  • the plurality of types of processing gases N2-1, N2-2, and N2-3 include a first element-containing gas that is a source gas, a second element-containing gas that is a reactive gas or a reforming gas, and a gas that acts as a purge gas. There are active gases and the like.
  • the gas is exhausted from the processing chamber 29 by an APC valve (hereinafter simply referred to as a valve) 212B-1 and a vacuum pump (hereinafter simply referred to as a pump) 212B-2 of the gas exhaust mechanism 212B.
  • APC valve hereinafter simply referred to as a valve
  • a vacuum pump hereinafter simply referred to as a pump
  • the pressure inside is adjusted.
  • the pressure in the reaction chamber 29 is detected by the pressure sensor PG1.
  • the substrate 18 carried into the reaction chamber 29 is processed by a substrate processing system including at least the reaction chamber 29, the MFC 212c, the valve 212B-1, the pump 212B-2, the pressure sensor PG1, and the like. Then, in the film forming process, the process controller 212 controls the MFC 212c, the valve 212B-1, and the pump 212B-2 such that the flow rates of various gases supplied to the reaction chamber 29 become desired at desired timings. I do.
  • the device management controller 215 can function as a data collection controller and collect device data DD inside and outside the device 1. More specifically, the device management controller 215 includes, as device data DD, at least data on the total actual flow rate (unit: slm) of various gases after flow rate adjustment in each MFC 212c in order to monitor the operation state of each MFC 212c. From each MFC 212c, and from the pressure sensor PG1, data on the actual pressure (unit: Pa) of the reaction chamber 29 in order to monitor the operation state of the valve 212B-1 and the pump 212B-2. Is possible.
  • At least one component on the gas supply side of the reaction chamber 29 and one component on the gas exhaust side of the reaction chamber 29 are each selected as one or more components to be monitored.
  • each MFC 212c which is a component on the gas supply side
  • a pressure sensor PG1 which is directly affected by the operation state of the valve 212B-1 and the pump 212B-2, which are components on the gas exhaust side
  • the device management controller 215 collects data on the total actual flow rate obtained by each MFC 212c and data on the actual pressure obtained by the pressure sensor PG1 as component data on the component to be monitored. I have.
  • component data by the device management controller 215 may be performed as needed.
  • component data is collected only for steps that satisfy a predetermined collection condition.
  • a process recipe in which a procedure, conditions, and the like when executing a substrate processing step including a film forming step is formed of a plurality of steps (recipes in the figure) See step #).
  • the device management controller 215 collects component data only for steps that satisfy predetermined collection conditions.
  • the predetermined collection conditions include, for example, the processing time of each step constituting the process recipe to be executed, the open / closed state of the valve 212B-1, and the operating state of the pump 212B-2. More specifically, for example, the device management controller 215 determines that the processing time of the step is equal to or longer than a predetermined time (5 seconds in the present embodiment) (see Time [sec] in the figure), and the valve 212B-1 is opened (Open). ) State (see Valve in the figure) and the pump 212B-2 is in the operation (ON) state (see Pump in the figure), and the total data obtained by each MFC 212c for each step as part data is shown. Data on the actual flow rate and data on the actual pressure obtained by the pressure sensor PG1 are collected (see a bold frame in the figure).
  • the device management controller 215 After collecting the component data of each step satisfying the collection condition in this way, the device management controller 215 subsequently generates a correlation curve indicating the correlation between the collected component data as shown in FIG. .
  • the correlation curve indicates a relational expression indicating a relationship between the component data on the input side of the reaction chamber 29 and the component data on the output side of the reaction chamber 29.
  • a relational expression between the actual gas flow rate controlled by each MFC 212c supplied to the reaction chamber 29 and the pressure sensor PG1 for detecting the pressure in the reaction chamber 29 is shown.
  • the apparatus management controller 215 determines the total actual value of each MFC 212c collected in each step satisfying the collection condition in a coordinate space in which the measured value of the pressure sensor PG1 is the vertical axis and the actual gas flow rate to the reaction chamber 29 is the horizontal axis.
  • the correlation curve is generated by plotting the data on the flow rate and the data on the actual pressure by the pressure sensor PG1 in association with each other. Also, depending on the process recipe, a large amount of data may be collected, and simply plotting the data may not be enough to draw a correlation curve.
  • the device management controller 215 may be configured in advance to generate a correlation curve (relational expression) by obtaining an approximate curve using, for example, the least square method. Then, by referring to the correlation curve generated in this way, the device management controller 215 determines, for each step, the total data by each MFC 212c with respect to the data on the actual pressure by the pressure sensor PG1 (ie, the actual measurement value of the pressure sensor PG1). Data on the actual flow rate (that is, the actual gas flow rate to the reaction chamber 29) can be calculated.
  • a correlation curve correlational expression
  • the correlation curve is generated each time the process recipe is executed.
  • the device management controller 215 then compares the generated correlation curve with an initial correlation curve stored in advance as a reference. The comparison with the initial correlation curve is performed each time the process recipe is executed.
  • the initial correlation curve is a correlation curve serving as a reference for judging abnormality of the generated correlation curve (presence or absence of a change in the correlation curve).
  • the initial correlation curve indicates a state in which the substrate processing unit including the reaction chamber 29 and the like is exhibiting a predetermined film forming performance (that is, in a reference batch, for example, the substrate processing unit exhibits the film forming performance without any problem. (Corresponding state). It is assumed that the initial correlation curve is stored in advance in a storage unit accessible by the device management controller 215 (for example, the main control storage unit 222 of the main controller 201).
  • the device management controller 215 determines whether or not the difference between the correlation curve and the initial correlation curve exceeds a predetermined threshold. Specifically, for example, for the pressure in the reaction chamber 29 at an arbitrary flow rate, a difference between a value calculated from the correlation curve and a value calculated from the initial correlation curve is obtained, and the difference is set to a predetermined threshold. It is determined whether or not it has exceeded.
  • the arbitrary flow rate does not necessarily have to be at one point, but may be at a plurality of points. In that case, the differences at the respective points are obtained, and it is determined whether or not the total value of the respective differences exceeds a predetermined threshold. It is assumed that the threshold value on which the determination is based is stored in advance in the storage unit 222 accessible by the device management controller 215, similarly to the initial correlation curve.
  • the device management controller 215 requests the main controller 201 to generate an alarm. In response to this, the main controller 201 outputs an alarm on the screen of the operation display unit 227, or outputs an alarm to the external computer 300 via the network. Note that the device management controller 215 determines that the correlation curve is normal when the difference between the correlation curve and the initial correlation curve falls within the threshold value.
  • each component including a component to be monitored is displayed on the screen as a schematic configuration diagram (apparatus schematic diagram), and the component to be monitored is displayed in a list format. It is displayed on the screen by a table table (part management table or the like). Then, on the display screen, the location determined to be the cause of the change of the correlation curve can be distinguished from other locations by, for example, changing the display color.
  • the display color of the MFC design or the corresponding column is changed to a predetermined color (for example, error display). Change the color to yellow) so that it can be distinguished from other parts.
  • a predetermined color for example, error display
  • the display color of the design of the pump or the corresponding column is changed to a predetermined color (for example, yellow which is an error display color) so that it can be distinguished from other parts. I do.
  • the specific mode of the alarm output is not limited to the example given here, but may be another mode as long as it is a preset mode.
  • a predetermined symbol for example, an! Mark
  • the operator of the apparatus 1 can recognize a portion requiring repair or maintenance. For example, even when repair or maintenance is performed as a countermeasure against defective production of the substrate 18 that may occur with aging, downtime of the apparatus 1 can be reduced as much as possible.
  • the operator of the apparatus 1 has a temporal change in the correlation between the plurality of component data as compared with the case defined by the initial correlation curve. You can recognize that. Therefore, for example, even if a situation occurs in which defective production of the substrate 18 may occur due to a change over time, this can be determined and recognized each time the process recipe is executed. It is possible to improve the production yield by preventing it before it happens.
  • a cause determination table for each combination pattern of the sensor information (hereinafter, also simply referred to as a cause determination table) is prepared in advance.
  • the cause determination table is configured by a table in which a combination pattern of error items for a component to be monitored is defined, and is stored in the storage unit 222 accessible by the device management controller 215.
  • an error item relating to the gas supply side component of the reaction chamber 29 and an error item relating to the gas exhaust side component of the reaction chamber 29 are included as error items for the monitored component. Items are provided. More specifically, the error items related to the components on the gas supply side include, for example, the zero point voltage of each MFC 212c and the deviation between the set flow rate and the actual flow rate in each MFC 212c. Further, as an error item related to the components on the gas exhaust side of the reaction chamber 29, for example, there is a leak rate of the reaction chamber 29 that can be obtained from the detection result by the pressure sensor PG1. Then, a cause determination table is configured by a combination of the zero point voltage of each MFC 212c, the deviation between the set flow rate and the actual flow rate in each MFC 212c, and the leak rate of the reaction chamber 29.
  • the device management controller 215 When the difference between the correlation curve and the initial correlation curve exceeds the threshold, the device management controller 215 generates an alarm as described above, while generating an error item for each monitored component (for example, there is a change / None). Each error item can be confirmed by monitoring sensor information from the corresponding monitoring target component. Then, the result of the check is compared with a corresponding combination pattern in a cause determination table (table), and a part to be monitored that has an abnormality is identified, thereby performing a determination process on the cause of the alarm. I have.
  • the device management controller 215 determines the cause of the change in the correlation curve (described above). Can be concluded as a change in the actual flow rate of the supplied gas due to a change in the MFC zero point voltage.
  • the device management controller 215 determines that the cause of the change (alarm) in the correlation curve is And the change in the actual flow rate of the supply gas due to the MFC failure. Further, for example, as shown in Case 3 in FIG.
  • the device management controller 215 determines that the correlation curve change (alarm) is caused in the furnace. It can be concluded that the leak amount has changed.
  • the device management controller 215 determines that the cause of the change in the correlation curve is deterioration of the pump 212B-2 or by-products. It can be determined that exhaust pipe blockage occurs due to this.
  • the device management controller 215 determines that the MFC has failed and an abnormality has occurred.
  • the main controller 201 is instructed to stop the MFC (transmit a stop signal). Further, when the error items of both the MFC zero point voltage and the leak rate occur, it is concluded that the cause of the alarm is both of them. The same applies to the case of the MFC deviation and the leak rate.
  • the cause of the abnormality due to the combination of error items including parts on the exhaust side is unknown. Accordingly, when a cause other than the leak rate of the MFC 212c or the reaction chamber 29 is considered as in Case 4 of FIG. 9, it is determined that the pump 212B-2 is deteriorated or the exhaust pipe is blocked by a by-product.
  • the cause determination table according to the present embodiment is an example, and an error item can be added, and an error item relating to the valve 212B-1 or the pump 212B-2 can be added in the future. When the combination pattern of the error items increases in this way, the cause can be determined by the cause determination table for any abnormality, and the recovery processing can be performed.
  • the device management controller 215 requests the main controller 201 to report a cause determined based on the cause determination table together with the alarm output.
  • the main controller 201 issues a report on the screen of the operation display unit 227, or issues a report to the external computer 300 via the network.
  • a screen shown in FIG. 8 can be used.
  • the display color of the MFC design or the corresponding column is changed to a predetermined color (for example, yellow which is an error display color)
  • a predetermined color for example, yellow which is an error display color
  • the display color of the design of the pump or the corresponding column is changed to a predetermined color (for example, yellow which is an error display color) so that it can be distinguished from other parts.
  • the information including the cause of the pump abnormality is displayed according to the touch operation on (the design of) the pump in the apparatus schematic diagram.
  • the specific mode of report notification is not limited to the example described here, but may be another mode as long as the mode is a preset mode.
  • data may be transmitted to a computer (PC) installed in a place (for example, an office) separated from the device 1 (not shown).
  • PC computer
  • the error of the component whose cause is specified for example, the MFC or the pump
  • the identifiable display displayed on the device outline diagram or the component management table is returned to the original. You may.
  • the operator or the like of the apparatus 1 can quickly and accurately execute repair or maintenance. Therefore, for example, even when repair or maintenance is performed as a countermeasure against defective production of the substrate 18 which may occur with aging, downtime of the apparatus 1 can be reduced as much as possible.
  • a correlation curve indicating a correlation between component data collected during execution of a process recipe is generated, and a difference between the correlation curve and an initial correlation curve serving as a reference is determined in advance.
  • the threshold value is exceeded, an alarm is generated. Therefore, it is possible to prevent defective production of the board 18 due to a temporal change in the correlation of each component data (plural data), and to improve the production yield of the board 18.
  • a table of cause determination tables is prepared in advance, and when a difference between the correlation curve and the initial correlation curve exceeds a threshold value, occurrence of an error item for each component to be monitored is performed. Is checked and checked against the combination pattern in the cause determination table to perform a determination process for specifying the cause of the abnormality that causes the alarm. Therefore, the cause of the abnormality (that is, the part requiring repair or maintenance) can be quickly and accurately recognized. For example, even when repair or maintenance of the part where the abnormality occurs due to aging is performed, the downtime of the apparatus 1 is reduced. Can be reduced as much as possible, and as a result, the operation rate of the apparatus can be improved.
  • the modified example described here is an example in which a plurality of pressure sensors are installed at various locations, and it is possible to narrow down the exhaust pipe blockage position by a by-product.
  • the distance between the reaction chamber 29 and the valve 212B-1 is increased.
  • Pressure sensor PG4 With such a configuration, in addition to the actual pressure in the reaction chamber 29, the actual pressure at various points in the exhaust pipe can be measured.
  • a corresponding cause determination table for alarm cause determination processing is prepared in advance.
  • the cause determination table also defines the detection results of the pressure sensors PG1 to PG4 as error items. Prepare one composed of combinations.
  • the device management controller 215 can perform the following determination process regarding the cause of the alarm. For example, in Case 1 in FIG. 11, the change in the supply gas actual flow rate due to the change in the MFC zero point voltage, in Case 2, the change in the supply gas actual flow rate due to the MFC failure, and in Case 3, the change in the in-furnace leak rate are the correlation curve changes. Can be determined as the cause. Further, in Case 4 in FIG. 11, it can be concluded that the occurrence of the blockage of the pipe due to the accumulation of by-products between the reaction chamber 29 and the pressure sensor PG2 is the cause of the correlation curve change.
  • a plurality of pressure sensors PG1 to PG4 are installed at various locations, and a cause determination table corresponding to the pressure sensors PG1 to PG4 is prepared in advance. It is possible to narrow down the location of the pipe blockage due to the by-product. Therefore, downtime can be further reduced, which is very preferable in improving the operation rate of the apparatus.
  • the device management controller 215 compares the operation state of each MFC, which is a component on the gas supply side, and the APC valve and the vacuum pump, which are components on the gas exhaust side, with respect to a cause determination table prepared in advance (FIG. 9).
  • the pressure sensor PG1 that is directly affected is automatically selected as each monitored component, and the device management controller 215 creates or selects an initial correlation curve for the selected monitored component and performs the initial correlation. It is conceivable to set a threshold value for a curve and automatically set component data collection conditions for creating a correlation curve in the present embodiment.
  • the device management controller 215 selects a monitoring target component, collects collected component data, creates a correlation curve, and compares the correlation curve with the initial correlation curve according to the cause determination table.
  • the component to be monitored can be automatically monitored. It is possible to select an optimal component from the components constituting the substrate processing apparatus 1 and efficiently manage necessary components.
  • the substrate processing apparatus and the semiconductor device manufacturing method used in the semiconductor manufacturing process have been mainly described.
  • the present invention is not limited to these.
  • a liquid crystal display (LCD) The present invention is also applicable to a substrate processing apparatus for processing a glass substrate, such as an apparatus, and a method of manufacturing the same.
  • any method may be used as long as the liquid material is vaporized and supplied to a processing chamber (reaction chamber) 29 in a processing furnace 28 to form a film on the surface of the substrate (wafer) 18.
  • the type of film to be formed is not particularly limited.
  • the type of film formed in the film formation step may be a film containing a silicon compound (SiN, Si, etc.) or a film containing a metal compound (W, Ti, Hf, etc.) Can also be suitably applied.
  • the film forming process performed in the film forming step includes, for example, a process for forming a CVD (chemical vapor deposition), a PVD (Physical Vapor Deposition), an oxide film, a nitride film, a process for forming a metal-containing film, and the like.
  • CVD chemical vapor deposition
  • PVD Physical Vapor Deposition
  • oxide film oxide film
  • nitride film oxide film
  • metal-containing film a metal-containing film
  • the substrate processing apparatus for performing the film forming process and the method for manufacturing the semiconductor device have been described.
  • the present invention is not limited to these.
  • another substrate processing apparatus Exposure apparatus, lithography apparatus, coating apparatus, CVD apparatus using plasma, etc.
  • Exposure apparatus, lithography apparatus, coating apparatus, CVD apparatus using plasma, etc. can also be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)

Abstract

Provided is a configuration which: includes a control unit which causes a substrate processing system to execute a process recipe including a plurality of steps; and during the execution of the process recipe, for a step satisfying a predetermined collection condition, collects component data on a component to be monitored in the substrate processing system, generates a correlation curve indicating a correlation between the collected component data, compares the generated correlation curve with an initial correlation curve as a reference stored in advance to determine whether or not a difference between the correlation curve and the initial correlation curve exceeds a predetermined threshold value, and generates an alarm, when the difference exceeds the threshold value.

Description

基板処理装置、半導体装置の製造方法およびプログラムSubstrate processing apparatus, semiconductor device manufacturing method and program
 本開示は、基板処理装置、半導体装置の製造方法およびプログラムに関する。 The present disclosure relates to a substrate processing apparatus, a method of manufacturing a semiconductor device, and a program.
 半導体製造分野では、装置の稼働率や生産効率の向上を図るため、装置の情報を蓄積し、その情報を使い装置の異常の解析や装置の状態監視を行っている。例えば、特許文献1には、異常解析において、複数のモニタデータを用いて異常要因を特定する技術が記載されている。また、例えば、特許文献2には、異常解析において、複数のモニタデータとイベントデータを表示する技術が記載されている。 In the semiconductor manufacturing field, in order to improve the operation rate and production efficiency of equipment, information on equipment is accumulated, and the information is used to analyze equipment abnormalities and monitor equipment status. For example, Patent Literature 1 discloses a technique for identifying an abnormality factor using a plurality of monitor data in an abnormality analysis. Further, for example, Patent Literature 2 discloses a technique for displaying a plurality of monitor data and event data in an abnormality analysis.
特開2018-078271号公報JP 2018-078271 A 国際公開第2017/168676号WO 2017/168676
 しかしながら、異常解析において、単に複数データを用いても、各データの相関関係の経時的な変化に依らなければ、把握することが困難な異常があり得る。 However, in the abnormality analysis, even if a plurality of data are simply used, there may be an abnormality that is difficult to grasp unless the correlation of each data changes over time.
 本開示は、複数データの相関関係の経時変化に伴う基板の不良生産を防止して、生産歩留まりを向上させることを可能にする構成を提供することを目的とする。 The present disclosure has an object to provide a configuration capable of preventing defective production of a substrate due to a temporal change in a correlation of a plurality of data and improving a production yield.
 本開示の一態様によれば、
 複数のステップで構成されるプロセスレシピを実行して、基板処理系を動作させる制御部を含む構成であって、
 前記制御部は、
 前記プロセスレシピの実行中に、予め決められた収集条件を満たすステップについて、前記基板処理系における監視対象の部品についての部品データを収集し、
 収集した前記部品データの相関関係を示す相関カーブを生成し、
 生成した前記相関カーブと予め記憶させていた基準となる初期相関カーブとを比較して、前記相関カーブと前記初期相関カーブとの差分が予め決められた閾値を超えているか判定し、
 前記閾値を超えた場合に、アラームを発生させる構成が提供される。
According to one aspect of the present disclosure,
A configuration that includes a control unit that operates a substrate processing system by executing a process recipe including a plurality of steps,
The control unit includes:
During the execution of the process recipe, for a step that satisfies a predetermined collection condition, collects component data on a component to be monitored in the substrate processing system,
Generate a correlation curve showing the correlation of the collected component data,
Comparing the generated correlation curve with an initial correlation curve serving as a reference stored in advance, to determine whether the difference between the correlation curve and the initial correlation curve exceeds a predetermined threshold,
A configuration is provided for generating an alarm when the threshold is exceeded.
 本開示によれば、複数データの相関関係の経時変化に伴う基板の不良生産を防止して、生産歩留まりを向上させることを可能にする技術を提供することができる。 According to the present disclosure, it is possible to provide a technique capable of preventing defective production of a substrate due to a temporal change in a correlation of a plurality of data and improving a production yield.
一実施形態に好適に用いられる基板処理装置を示す斜視図である。It is a perspective view showing the substrate processing device used suitably for one embodiment. 一実施形態に好適に用いられる基板処理装置を示す側断面図である。FIG. 1 is a side sectional view showing a substrate processing apparatus suitably used in one embodiment. 一実施形態に好適に用いられる制御部の機能構成を示す図である。FIG. 3 is a diagram illustrating a functional configuration of a control unit suitably used in one embodiment. 一実施形態に好適に用いられる主コントローラの機能構成を示す図である。FIG. 3 is a diagram illustrating a functional configuration of a main controller suitably used in one embodiment. 一実施形態に好適に用いられる、監視対象となる部品を含む基板処理系の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a substrate processing system including a component to be monitored, which is preferably used in one embodiment. 一実施形態で実施されるプロセスレシピの各ステップにおいて、収集される対象となる部品、部品データの収集条件、相関データ生成のための部品データの算出方法を説明する一具体例を示す説明図である。FIG. 7 is an explanatory diagram showing a specific example illustrating a component to be collected, a component data collection condition, and a method of calculating component data for generating correlation data in each step of a process recipe performed in an embodiment. is there. 一実施形態で生成される相関カーブの一具体例を示す説明図である。FIG. 4 is an explanatory diagram illustrating a specific example of a correlation curve generated in one embodiment. 一実施形態で表示される画面の一具体例を示す説明図である。FIG. 4 is an explanatory diagram illustrating a specific example of a screen displayed in one embodiment. 一実施形態で利用される各センサ情報の組み合わせパターン別原因判定表の図示例である。It is an illustration example of a cause judgment table for each combination pattern of each sensor information used in one embodiment. 一実施形態の変形例で好適に用いられる、監視対象となる部品を含む基板処理系の構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of a substrate processing system including a component to be monitored, which is suitably used in a modification of the embodiment. 一実施形態の変形例で利用される各センサ情報の組み合わせパターン別原因判定表の図示例である。It is an illustration example of a cause judgment table for each combination pattern of each sensor information used in a modification of one embodiment.
<一実施形態>
 以下、本開示の一実施形態について図1から図9を参照しながら説明する。
<One embodiment>
Hereinafter, an embodiment of the present disclosure will be described with reference to FIGS. 1 to 9.
(1)基板処理装置の構成
 まず、一実施形態に係る基板処理装置の構成例について、図面を用いて説明する。ただし、以下の説明において、同一構成要素には同一符号を付し繰り返しの説明を省略することがある。なお、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
(1) Configuration of Substrate Processing Apparatus First, a configuration example of a substrate processing apparatus according to an embodiment will be described with reference to the drawings. However, in the following description, the same components will be denoted by the same reference symbols, and repeated description may be omitted. In addition, in order to make the description clearer, the width, thickness, shape, and the like of each part may be schematically illustrated in comparison with an actual embodiment, but this is merely an example, and the interpretation of the present invention is not described. It is not limited.
(基板処理装置の概要)
 図1および図2に示すように、本開示が適用される基板処理装置(以後、単に装置ともいう)1は筐体2を備え、該筐体2の正面壁3の下部にはメンテナンス可能な様に設けられた開口部(正面メンテナンス口)4が開設され、該開口部4は正面メンテナンス扉5によって開閉される。
(Overview of substrate processing equipment)
As shown in FIGS. 1 and 2, a substrate processing apparatus (hereinafter, also simply referred to as an apparatus) 1 to which the present disclosure is applied includes a housing 2, and a lower part of a front wall 3 of the housing 2 can be maintained. (Front maintenance opening) 4 is provided, and the opening 4 is opened and closed by a front maintenance door 5.
 筐体2の正面壁3にはポッド搬入搬出口6が筐体2の内外を連通する様に開設されており、ポッド搬入搬出口6はフロントシャッタ7によって開閉され、ポッド搬入搬出口6の正面前方側にはロードポート8が設置されており、該ロードポート8は載置されたポッド9を位置合せする様に構成されている。該ポッド9は密閉式の基板搬送容器であり、図示しない工程内搬送装置によってロードポート8上に搬入され、また、該ロードポート8上から搬出される様になっている。 A pod loading / unloading port 6 is opened on the front wall 3 of the casing 2 so as to communicate between the inside and the outside of the casing 2, and the pod loading / unloading port 6 is opened and closed by a front shutter 7. A load port 8 is installed on the front side, and the load port 8 is configured to position the mounted pod 9. The pod 9 is a hermetically sealed substrate transfer container, which is carried into and out of the load port 8 by an in-process transfer device (not shown).
 筐体2内の前後方向の略中央部に於ける上部には、回転式ポッド棚11が設置されており、該回転式ポッド棚11は複数個のポッド9を格納する様に構成されている。回転式ポッド棚11は垂直に立設されて間欠回転される支柱12と、該支柱12に上中下段の各位置に於いて放射状に支持された複数段の棚板13とを備えており、該棚板13はポッド9を複数個宛載置した状態で格納する様に構成されている。回転式ポッド棚11の下方には、ポッドオープナ14が設けられ、該ポッドオープナ14はポッド9を載置し、又該ポッド9の蓋を開閉可能な構成を有している。 A rotatable pod shelf 11 is provided at an upper portion in a substantially central portion in the front-rear direction in the housing 2, and the rotatable pod shelf 11 is configured to store a plurality of pods 9. . The rotary pod shelf 11 includes a column 12 that is vertically erected and is intermittently rotated, and a plurality of stages of shelves 13 radially supported by the column 12 at respective positions of upper, middle, and lower stages. The shelf 13 is configured to store a plurality of pods 9 in a state of being placed thereon. A pod opener 14 is provided below the rotary pod shelf 11, and the pod opener 14 has a configuration on which the pod 9 can be placed and a lid of the pod 9 can be opened and closed.
 ロードポート8と回転式ポッド棚11、ポッドオープナ14との間には、ポッド搬送機構15が設置されており、該ポッド搬送機構15は、ポッド9を保持して昇降可能、水平方向に進退可能となっており、ロードポート8、回転式ポッド棚11、ポッドオープナ14との間でポッド9を搬送する様に構成されている。 A pod transport mechanism 15 is provided between the load port 8 and the rotary pod shelf 11 and the pod opener 14. The pod transport mechanism 15 can hold the pod 9 and can move up and down, and can move forward and backward in the horizontal direction. The pod 9 is transported between the load port 8, the rotary pod shelf 11, and the pod opener 14.
 筐体2内の前後方向の略中央部に於ける下部には、サブ筐体16が後端に亘って設けられている。該サブ筐体16の正面壁17にはウエハ(以後、基板ともいう)18をサブ筐体16内に対して搬入搬出する為のウエハ搬入搬出口19が一対、垂直方向に上下2段に並べられて開設されており、上下段のウエハ搬入搬出口19に対してポッドオープナ14がそれぞれ設けられている。 サ ブ A sub-housing 16 is provided at a lower portion in a substantially central portion in the front-rear direction in the housing 2 over the rear end. A pair of wafer loading / unloading ports 19 for loading / unloading a wafer (hereinafter, also referred to as a substrate) 18 into / from the sub-casing 16 is vertically arranged on the front wall 17 of the sub-casing 16 in two vertical stages. The pod openers 14 are respectively provided for the upper and lower wafer loading / unloading ports 19.
 ポッドオープナ14はポッド9を載置する載置台21と、ポッド9の蓋を開閉する開閉機構22とを備えている。ポッドオープナ14は載置台21に載置されたポッド9の蓋を開閉機構22によって開閉することにより、ポッド9のウエハ出入口を開閉する様に構成されている。 The pod opener 14 includes a mounting table 21 on which the pod 9 is mounted, and an opening / closing mechanism 22 for opening and closing the lid of the pod 9. The pod opener 14 is configured to open and close a wafer entrance of the pod 9 by opening and closing a lid of the pod 9 mounted on the mounting table 21 by an opening and closing mechanism 22.
 サブ筐体16はポッド搬送機構15や回転式ポッド棚11が配設されている空間(ポッド搬送空間)から気密となっている移載室23を構成している。該移載室23の前側領域にはウエハ移載機構(基板移載機構)24が設置されており、該基板移載機構24は、基板18を載置する所要枚数(図示では5枚)のウエハ載置プレート25を具備し、該ウエハ載置プレート25は水平方向に直動可能、水平方向に回転可能、又昇降可能となっている。基板移載機構24はボート(基板保持体)26に対して基板18を装填および払出しする様に構成されている。 The sub-housing 16 constitutes a transfer chamber 23 which is airtight from a space (pod transfer space) in which the pod transfer mechanism 15 and the rotary pod shelf 11 are provided. A wafer transfer mechanism (substrate transfer mechanism) 24 is installed in the front area of the transfer chamber 23. The substrate transfer mechanism 24 has a required number (five in the drawing) of the substrates 18 to be mounted. A wafer mounting plate 25 is provided. The wafer mounting plate 25 can be moved directly in the horizontal direction, can be rotated in the horizontal direction, and can be moved up and down. The substrate transfer mechanism 24 is configured to load and unload the substrate 18 to and from the boat (substrate holder) 26.
 移載室23の後側領域には、ボート26を収容して待機させる待機部27が構成され、該待機部27の上方には縦型の処理炉28が設けられている。該処理炉28は内部に処理室(反応室)29を形成し、該処理室29の下端部は炉口部となっており、該炉口部は炉口シャッタ31により開閉される様になっている。 (4) In the rear area of the transfer chamber 23, a standby unit 27 that accommodates and stands by the boat 26 is configured. Above the standby unit 27, a vertical processing furnace 28 is provided. The processing furnace 28 has a processing chamber (reaction chamber) 29 formed therein. The lower end of the processing chamber 29 is a furnace port, and the furnace port is opened and closed by a furnace port shutter 31. ing.
 筐体2の右側端部とサブ筐体16の待機部27の右側端部との間にはボート26を昇降させる為の昇降機構としてのボートエレベータ32が設置されている。該ボートエレベータ32の昇降台に連結されたアーム33には蓋体としてのシールキャップ34が水平に取付けられており、該蓋体34はボート26を垂直に支持し、該ボート26を処理室29に装入した状態で炉口部を気密に閉塞可能となっている。 ボ ー ト A boat elevator 32 as an elevating mechanism for elevating the boat 26 is installed between the right end of the housing 2 and the right end of the standby section 27 of the sub-housing 16. A seal cap 34 as a cover is horizontally mounted on an arm 33 connected to the elevator of the boat elevator 32. The cover 34 vertically supports the boat 26, and transfers the boat 26 to the processing chamber 29. The furnace port can be hermetically closed in a state where the furnace is charged.
 ボート26は、複数枚(例えば、50枚~125枚程度)の基板18をその中心に揃えて水平姿勢で多段に保持する様に構成されている。 The boat 26 is configured so that a plurality of (for example, about 50 to 125) substrates 18 are aligned in the center thereof and held in multiple stages in a horizontal posture.
 ボートエレベータ32側と対向した位置にはクリーンユニット35が配設され、該クリーンユニット35は、清浄化した雰囲気若しくは不活性ガスであるクリーンエア36を供給する様供給ファンおよび防塵フィルタで構成されている。基板移載機構24とクリーンユニット35との間には、基板18の円周方向の位置を整合させる基板整合装置としてのノッチ合せ装置(図示せず)が設置されている。 A clean unit 35 is disposed at a position facing the boat elevator 32 side. The clean unit 35 is configured by a supply fan and a dustproof filter for supplying a clean atmosphere or clean air 36 that is an inert gas. I have. Between the substrate transfer mechanism 24 and the clean unit 35, a notch aligning device (not shown) as a substrate aligning device for aligning the circumferential position of the substrate 18 is provided.
 クリーンユニット35から吹出されたクリーンエア36は、ノッチ合せ装置(図示せず)および基板移載機構24、ボート26に流通された後に、図示しないダクトにより吸込まれて、筐体2の外部に排気がなされるか、若しくはクリーンユニット35によって移載室23内に吹出されるように構成されている。 The clean air 36 blown from the clean unit 35 flows through the notch alignment device (not shown), the substrate transfer mechanism 24, and the boat 26, and is then sucked by a duct (not shown) and exhausted to the outside of the housing 2. Or is blown into the transfer chamber 23 by the clean unit 35.
 次に、装置1の作動について説明する。
 ポッド9がロードポート8に供給されると、ポッド搬入搬出口6がフロントシャッタ7によって開放される。ロードポート8上のポッド9はポッド搬送装置15によって筐体2の内部へポッド搬入搬出口6を通して搬入され、回転式ポッド棚11の指定された棚板13へ載置される。ポッド9は回転式ポッド棚11で一時的に保管された後、ポッド搬送装置15により棚板13からいずれか一方のポッドオープナ14に搬送されて載置台21に移載されるか、若しくはロードポート8から直接載置台21に移載される。
Next, the operation of the device 1 will be described.
When the pod 9 is supplied to the load port 8, the pod loading / unloading port 6 is opened by the front shutter 7. The pod 9 on the load port 8 is carried into the housing 2 through the pod carry-in / out port 6 by the pod transport device 15 and is placed on the designated shelf 13 of the rotary pod shelf 11. After the pod 9 is temporarily stored on the rotary pod shelf 11, the pod 9 is transferred from the shelf 13 to one of the pod openers 14 by the pod transfer device 15 and transferred to the mounting table 21, or 8 and transferred directly to the mounting table 21.
 この際、ウエハ搬入搬出口19は開閉機構22によって閉じられ、移載室23はクリーンエア36が流通され、充満している。移載室23にはクリーンエア36として窒素ガスが充満されるため、移載室23の酸素濃度は、筐体2の内部の酸素濃度よりも低い。 At this time, the wafer loading / unloading port 19 is closed by the opening / closing mechanism 22, and the transfer chamber 23 is filled with the clean air 36 flowing therethrough. Since the transfer chamber 23 is filled with nitrogen gas as clean air 36, the oxygen concentration in the transfer chamber 23 is lower than the oxygen concentration inside the housing 2.
 載置台21に載置されたポッド9はその開口側端面がサブ筐体16の正面壁17に於けるウエハ搬入搬出口19の開口縁辺部に押付けられると共に、蓋が開閉機構22によって取外され、ウエハ出入口が開放される。 The pod 9 placed on the mounting table 21 has its opening-side end face pressed against the edge of the opening of the wafer loading / unloading port 19 on the front wall 17 of the sub-housing 16, and the lid is removed by the opening / closing mechanism 22. , The wafer entrance is opened.
 ポッド9がポッドオープナ14によって開放されると、基板18はポッド9から基板移載機構24によって取出され、ノッチ合せ装置(図示せず)に移送され、該ノッチ合せ装置にて基板18を整合した後、基板移載機構24は基板18を移載室23の後方にある待機部27へ搬入し、ボート26に装填(チャージング)する。 When the pod 9 is opened by the pod opener 14, the substrate 18 is taken out of the pod 9 by the substrate transfer mechanism 24, transferred to a notch aligning device (not shown), and aligned with the notch aligning device. Thereafter, the substrate transfer mechanism 24 carries the substrate 18 into the standby section 27 located behind the transfer chamber 23 and charges (charges) the boat 26.
 ボート26に基板18を受渡した基板移載機構24はポッド9に戻り、次の基板18をボート26に装填する。一方(上端又は下段)のポッドオープナ14に於ける基板移載機構24により基板18のボート26への装填作業中に、他方(下段又は上段)のポッドオープナ14には回転式ポッド棚11から別のポッド9がポッド搬送装置15によって搬送されて移載され、他方のポッドオープナ14によるポッド9の開放作業が同時進行される。 (4) The substrate transfer mechanism 24 that has transferred the substrate 18 to the boat 26 returns to the pod 9, and loads the next substrate 18 into the boat 26. While the substrate transfer mechanism 24 in one (upper or lower) pod opener 14 is loading the substrate 18 into the boat 26, the other (lower or upper) pod opener 14 is separated from the rotary pod shelf 11 by another. The pod 9 is transported and transferred by the pod transport device 15, and the opening of the pod 9 by the other pod opener 14 proceeds simultaneously.
 予め指定された枚数の基板18がボート26に装填されると炉口シャッタ31によって閉じられていた処理炉28の炉口部が炉口シャッタ31によって開放される。続いて、ボート26はボートエレベータ32によって上昇され、処理室29に搬入(ローディング)される。 (4) When a predetermined number of substrates 18 are loaded into the boat 26, the furnace port of the processing furnace 28 that has been closed by the furnace port shutter 31 is opened by the furnace port shutter 31. Subsequently, the boat 26 is lifted by the boat elevator 32 and is loaded (loaded) into the processing chamber 29.
 ローディング後は、シールキャップ34によって炉口部が気密に閉塞される。なお、本実施の形態において、このタイミングで(ローディング後)、処理室29が不活性ガスに置換されるパージ工程(プリパージ工程)を有する。 After loading, the furnace opening is hermetically closed by the seal cap 34. In this embodiment, a purge step (pre-purge step) in which the processing chamber 29 is replaced with an inert gas at this timing (after loading) is provided.
 処理室29が所望の圧力(真空度)となる様に、真空ポンプなどのガス排気機構(図示せず)によって真空排気される。また、処理室29が所望の温度分布となる様にヒータ駆動部(図示せず)によって所定温度迄加熱される。また、ガス供給機構(図示せず)により、所定の流量に制御された処理ガスが供給され、処理ガスが処理室29を流通する過程で、基板18の表面と接触し、基板18の表面上に所定の処理が実施される。更に、反応後の処理ガスは、ガス排気機構により処理室29から排気される。 (4) The processing chamber 29 is evacuated to a desired pressure (degree of vacuum) by a gas exhaust mechanism (not shown) such as a vacuum pump. Further, the processing chamber 29 is heated to a predetermined temperature by a heater driving unit (not shown) so as to have a desired temperature distribution. In addition, a processing gas controlled at a predetermined flow rate is supplied by a gas supply mechanism (not shown), and the processing gas contacts the surface of the substrate 18 in the process of flowing through the processing chamber 29, and A predetermined process is performed. Further, the processing gas after the reaction is exhausted from the processing chamber 29 by the gas exhaust mechanism.
 予め設定された処理時間が経過すると、ガス供給機構により不活性ガス供給源(図示せず)から不活性ガスが供給され、処理室29が不活性ガスに置換されると共に、処理室29の圧力が常圧に復帰される(アフターパージ工程)。そして、ボートエレベータ32によりシールキャップ34を介してボート26が降下される。 When a preset processing time has elapsed, an inert gas is supplied from an inert gas supply source (not shown) by a gas supply mechanism, and the processing chamber 29 is replaced with the inert gas. Is returned to normal pressure (after-purge step). Then, the boat 26 is lowered by the boat elevator 32 via the seal cap 34.
 処理後の基板18の搬出については、上記説明と逆の手順で、基板18およびポッド9は筐体2の外部へ払出される。未処理の基板18が、更にボート26に装填され、基板18の処理が繰返される。 (4) Regarding unloading of the substrate 18 after the processing, the substrate 18 and the pod 9 are discharged to the outside of the housing 2 in a procedure reverse to the above description. The unprocessed substrate 18 is further loaded into the boat 26, and the processing of the substrate 18 is repeated.
(制御部の機能構成)
 次に、図3を参照して、操作部としての主コントローラ201を中心とした制御部(制御システム)200の機能構成について説明する。
 図3に示すように、制御部200は、主コントローラ201と、搬送制御部としての搬送系コントローラ211と、処理制御部としてのプロセス系コントローラ212と、データ監視部としての装置管理コントローラ215と、を備えている。装置管理コントローラ215は、データ収集コントローラとして機能して、装置1内外の装置データを収集し、装置1内の装置データDDの健全性を監視する。本実施形態では、制御部200は、装置1内に収容されている。また、搬送系コントローラ211、プロセス系コントローラ212、装置管理コントローラ215は、主コントローラ201の構成と同様である。
(Functional configuration of control unit)
Next, a functional configuration of a control unit (control system) 200 centering on a main controller 201 as an operation unit will be described with reference to FIG.
As shown in FIG. 3, the control unit 200 includes a main controller 201, a transport controller 211 as a transport controller, a process controller 212 as a processing controller, an apparatus management controller 215 as a data monitoring unit, It has. The device management controller 215 functions as a data collection controller, collects device data inside and outside the device 1, and monitors the soundness of the device data DD inside the device 1. In the present embodiment, the control unit 200 is housed in the device 1. Further, the transport system controller 211, the process system controller 212, and the device management controller 215 have the same configuration as the main controller 201.
 ここで、装置データDDとは、装置1が基板18を処理するときの処理温度、処理圧力、処理ガスの流量など基板処理に関するデータ(以後、制御パラメータともいう)や、製造した製品基板の品質(例えば、成膜した膜厚、および該膜厚の累積値など)に関するデータや、装置1の構成部品(石英反応管、ヒータ、バルブ、マスフローコントローラ(以後、MFC)等)に関する部品データ(例えば、設定値、実測値)など、装置1が基板18を処理する際に各構成部品を動作させることにより発生するデータである。 Here, the apparatus data DD refers to data (hereinafter, also referred to as control parameters) relating to substrate processing such as a processing temperature, a processing pressure, and a flow rate of a processing gas when the apparatus 1 processes the substrate 18, and the quality of a manufactured product substrate. (E.g., the film thickness of the formed film and the accumulated value of the film thickness) and the component data (e.g., the quartz reaction tube, heater, valve, mass flow controller (hereinafter, MFC), etc.) of the apparatus 1 , Set values, measured values, etc., which are data generated by operating each component when the apparatus 1 processes the substrate 18.
 主コントローラ201は、例えば100BASE-T等のLAN回線LAN1により、搬送系コントローラ211およびプロセス系コントローラ212と電気的に接続されているため、各装置データDDの送受信や各ファイルのダウンロードおよびアップロード等が可能な構成となっている。 The main controller 201 is electrically connected to the transport controller 211 and the process controller 212 by a LAN line LAN1 such as 100BASE-T, for example, so that transmission / reception of each device data DD and download / upload of each file can be performed. It has a possible configuration.
 主コントローラ201には、外部の上位コンピュータ300や管理装置310が、例えば100BASE-T等の通信ネットワークLAN2を介して接続される。このため、装置1がクリーンルーム内に設置されている場合であっても、上位コンピュータ300や管理装置310がクリーンルーム外の事務所等に配置されることが可能である。 (4) An external host computer 300 and management device 310 are connected to the main controller 201 via a communication network LAN2 such as 100BASE-T. For this reason, even when the device 1 is installed in a clean room, the host computer 300 and the management device 310 can be arranged in an office or the like outside the clean room.
 装置管理コントローラ215は、主コントローラ201とLAN回線で接続され、主コントローラ201から装置データDDを収集し、装置の稼働状態を定量化して画面に表示するように構成されている。なお、装置管理コントローラ215については、後で詳しく説明する。 The device management controller 215 is connected to the main controller 201 via a LAN line, is configured to collect device data DD from the main controller 201, quantify the operation state of the device, and display it on a screen. The device management controller 215 will be described later in detail.
 搬送系コントローラ211は、主に回転式ポッド棚11、ボートエレベータ32、ポッド搬送装置15、基板移載機構24、ボート26および回転機構(図示せず)により構成される基板搬送系211Aに接続されている。搬送系コントローラ211は、回転式ポッド棚11、ボートエレベータ32、ポッド搬送装置15、基板移載機構24、ボート26および回転機構(図示せず)の搬送動作をそれぞれ制御するように構成されている。 The transport system controller 211 is connected to a substrate transport system 211A mainly including the rotary pod shelf 11, the boat elevator 32, the pod transport device 15, the substrate transfer mechanism 24, the boat 26, and a rotation mechanism (not shown). ing. The transport system controller 211 is configured to control transport operations of the rotary pod shelf 11, the boat elevator 32, the pod transport device 15, the substrate transfer mechanism 24, the boat 26, and a rotation mechanism (not shown). .
 プロセス系コントローラ212は、温度コントローラ212a、圧力コントローラ212b、ガス流量コントローラ212c、シーケンサ212dを備えている。これら温度コントローラ212a、圧力コントローラ212b、ガス流量コントローラ212c、シーケンサ212dは、サブコントローラを構成し、プロセス系コントローラ212と電気的に接続されているため、各装置データDDの送受信や各ファイルのダウンロードおよびアップロード等が可能となっている。 The process controller 212 includes a temperature controller 212a, a pressure controller 212b, a gas flow controller 212c, and a sequencer 212d. The temperature controller 212a, the pressure controller 212b, the gas flow controller 212c, and the sequencer 212d constitute a sub-controller and are electrically connected to the process system controller 212. Uploading is possible.
 温度コントローラ212aには、主にヒータおよび温度センサ等により構成される加熱機構212Aが接続されている。温度コントローラ212aは、処理炉28のヒータの温度を制御することで処理炉28内の温度を調節するように構成されている。なお、温度コントローラ212aは、サイリスタのスイッチング(オンオフ)制御を行い、ヒータ素線に供給する電力を制御するように構成されている。
 圧力コントローラ212bには、主に圧力センサ、圧力バルブとしてのAPCバルブおよび真空ポンプにより構成されるガス排気機構212Bが接続されている。圧力コントローラ212bは、圧力センサにより検知された圧力値に基づいて、処理室29の圧力が所望のタイミングにて所望の圧力となるように、APCバルブの開度および真空ポンプのスイッチング(オンオフ)を制御するように構成されている。
 ガス流量コントローラ212cは、MFC212cにより構成される。
 シーケンサ212dは、処理ガス供給管やパージガス供給管からのガスの供給や停止を、バルブ212Dを開閉させることにより制御するように構成されている。
A heating mechanism 212A mainly composed of a heater, a temperature sensor, and the like is connected to the temperature controller 212a. The temperature controller 212a is configured to control the temperature inside the processing furnace 28 by controlling the temperature of the heater of the processing furnace 28. The temperature controller 212a is configured to perform switching (on / off) control of the thyristor, and to control electric power supplied to the heater element wire.
A gas exhaust mechanism 212B mainly composed of a pressure sensor, an APC valve as a pressure valve, and a vacuum pump is connected to the pressure controller 212b. The pressure controller 212b controls the opening degree of the APC valve and the switching (on / off) of the vacuum pump based on the pressure value detected by the pressure sensor so that the pressure in the processing chamber 29 becomes a desired pressure at a desired timing. It is configured to control.
The gas flow controller 212c is configured by the MFC 212c.
The sequencer 212d is configured to control the supply and stop of the gas from the processing gas supply pipe and the purge gas supply pipe by opening and closing the valve 212D.
 このような構成のプロセス系コントローラ212は、処理室29に供給するガスの流量が所望のタイミングにて所望の流量となるように、MFC212c、バルブ212Dを制御するように構成されている。 The process controller 212 having such a configuration is configured to control the MFC 212c and the valve 212D so that the flow rate of the gas supplied to the processing chamber 29 becomes a desired flow rate at a desired timing.
 なお、本実施形態にかかる主コントローラ201、搬送系コントローラ211、プロセス系コントローラ212、装置管理コントローラ215は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。例えば、汎用コンピュータに、上述の処理を実行するためのプログラムを格納した記録媒体(USBキーなど)から当該プログラムをインストールすることにより、所定の処理を実行する各コントローラを構成することができる。 Note that the main controller 201, the transport system controller 211, the process system controller 212, and the device management controller 215 according to the present embodiment can be realized using an ordinary computer system without using a dedicated system. For example, by installing the program from a recording medium (such as a USB key) that stores the program for executing the above-described process in a general-purpose computer, each controller that executes a predetermined process can be configured.
 そして、主コントローラ201、搬送系コントローラ211、プロセス系コントローラ212、装置管理コントローラ215他を含む各コントローラは、提供されたプログラムを起動し、OSの制御下で、他のアプリケーションプログラムと同様に実行することにより、所定の処理を実行することができる。 Then, each controller including the main controller 201, the transport system controller 211, the process system controller 212, the device management controller 215, and the like starts the provided program and executes it under the control of the OS in the same manner as other application programs. Thereby, a predetermined process can be executed.
(主コントローラの構成)
 次に、主コントローラ201の構成を、図4を参照しながら説明する。
 主コントローラ201は、主コント制御部220、主コント記憶部としてのハードディスク222、各種情報を表示する表示部と、操作者からの各種指示を受け付ける入力部と、を含む操作表示部227、装置1内外と通信する主コント通信部としての送受信モジュール228とを含むように構成される。主コント制御部220は、CPU(中央処理装置)224や、一時記憶部としてのメモリ(RAM、ROM等)226を含み、時計機能(図示せず)を備えたコンピュータとして構成されている。
(Configuration of main controller)
Next, the configuration of the main controller 201 will be described with reference to FIG.
The main controller 201 includes an operation display unit 227 including a main controller control unit 220, a hard disk 222 as a main control storage unit, a display unit for displaying various information, and an input unit for receiving various instructions from an operator. It is configured to include a transmission / reception module 228 as a main controller communication unit that communicates with inside and outside. The main controller 220 includes a CPU (Central Processing Unit) 224 and a memory (RAM, ROM, etc.) 226 as a temporary storage unit, and is configured as a computer having a clock function (not shown).
 ハードディスク222には、基板の処理条件および処理手順が定義されたレシピ等の各レシピファイル、これら各レシピファイルを実行させるための制御プログラムファイル、レシピを実行するためのパラメータが定義されたパラメータファイル、また、エラー処理プログラムファイルおよびエラー処理のパラメータファイルの他、プロセスパラメータを入力する入力画面を含む各種画面ファイル、各種アイコンファイル等(いずれも図示せず)が格納されている。 The hard disk 222 includes recipe files such as recipes in which processing conditions and processing procedures of the substrate are defined, a control program file for executing these recipe files, a parameter file in which parameters for executing the recipes are defined, Further, in addition to an error processing program file and an error processing parameter file, various screen files including an input screen for inputting process parameters, various icon files, and the like (all not shown) are stored.
 また、操作表示部227の操作画面には、図3に示す、基板搬送系211A、加熱機構212A、ガス排気機構212Bおよびガス供給系212Cへの動作指示を入力したりする入力部としての各操作ボタンを設けることも可能である。 In addition, on the operation screen of the operation display unit 227, each operation as an input unit for inputting operation instructions to the substrate transfer system 211A, the heating mechanism 212A, the gas exhaust mechanism 212B, and the gas supply system 212C shown in FIG. Buttons can also be provided.
 操作表示部227には、装置1を操作するための操作画面が表示されるように構成されている。操作表示部227は、操作画面を介して装置1内で生成される装置データDDに基づいた情報を操作画面に表示する。操作表示部227の操作画面は、例えば液晶を用いたタッチパネルである。操作表示部227は、操作画面からの作業者の入力データ(入力指示)を受け付け、入力データを主コントローラ201に送信する。また、操作表示部227は、メモリ(RAM)226等に展開されたレシピ、若しくはハードディスク222に格納された複数のレシピのうち任意の基板処理レシピ(以後、プロセスレシピともいう)を実行させる指示(制御指示)を受け付け、主コント制御部220に送信する。 The operation display unit 227 is configured to display an operation screen for operating the device 1. The operation display unit 227 displays information based on device data DD generated in the device 1 via the operation screen on the operation screen. The operation screen of the operation display unit 227 is, for example, a touch panel using liquid crystal. The operation display unit 227 receives input data (input instruction) of the operator from the operation screen and transmits the input data to the main controller 201. Further, the operation display unit 227 provides an instruction to execute an arbitrary substrate processing recipe (hereinafter, also referred to as a process recipe) among a plurality of recipes stored in the hard disk 222 or a recipe developed in the memory (RAM) 226 or the like. Control instruction) and transmits it to the main controller 220.
 なお、本実施形態においては、装置管理コントローラ215が起動時に、各種プログラム等を実行することにより、格納された各画面ファイルおよびデータテーブルを展開し、装置データDDを読み込むことにより、装置の稼働状態が示される各画面が、操作表示部227に表示されるよう構成される。 In the present embodiment, when the device management controller 215 starts up, by executing various programs and the like, each stored screen file and data table are expanded, and by reading the device data DD, the operating state of the device is read. Are configured to be displayed on the operation display unit 227.
 主コント通信部228には、スイッチングハブ等が接続されており、主コントローラ201が、ネットワークを介して、外部のコンピュータ300や装置1内の他のコントローラ(211、212、215)等と、データの送信および受信を行うように構成されている。 A switching hub or the like is connected to the main controller communication unit 228, and the main controller 201 communicates with the external computer 300 and other controllers (211 212, and 215) in the apparatus 1 and the like via a network. Is configured to perform transmission and reception.
 また、主コントローラ201は、図示しないネットワークを介して外部の上位コンピュータ300、例えば、ホストコンピュータに対して装置1の状態など装置データDDを送信する。なお、装置1の基板処理動作は、主コント記憶部222に記憶されている各レシピファイル、各パラメータファイル等に基づいて、制御部200により制御される。 The main controller 201 also transmits device data DD such as the status of the device 1 to an external host computer 300, for example, a host computer via a network (not shown). The substrate processing operation of the apparatus 1 is controlled by the control unit 200 based on each recipe file, each parameter file, and the like stored in the main controller storage unit 222.
(2)基板処理方法の手順
 次に、本実施形態に係る装置1を用いて実施する、所定の処理工程を有する基板処理方法について説明する。ここで、所定の処理工程は、半導体デバイスの製造工程の一工程である基板処理工程を実施する場合を例に挙げる。
(2) Procedure of Substrate Processing Method Next, a substrate processing method having a predetermined processing step, which is performed using the apparatus 1 according to the present embodiment, will be described. Here, the case where the predetermined processing step is a substrate processing step, which is one step of a semiconductor device manufacturing process, will be described as an example.
 基板処理工程の実施にあたって、プロセスレシピが、例えば、プロセス系コントローラ212内のRAM等のメモリに展開される。そして、必要に応じて、主コントローラ201からプロセス系コントローラ212や搬送系コントローラ211へ動作指示が与えられる。このようにして実施される基板処理工程は、搬入工程と、成膜工程と、搬出工程と、を少なくとも有する。 (4) In performing the substrate processing process, the process recipe is developed in a memory such as a RAM in the process controller 212, for example. Then, an operation instruction is given from the main controller 201 to the process controller 212 and the transport controller 211 as needed. The substrate processing step performed in this manner includes at least a loading step, a film forming step, and a discharging step.
(移載工程)
 主コントローラ201からは、搬送系コントローラ211に対して、基板移載機構24の駆動指示が発せられる。そして、搬送系コントローラ211からの指示に従いつつ、基板移載機構24は載置台21上のポッド9からボート26への基板18の移載処理を開始する。この移載処理は、予定された全ての基板18のボート26への装填(ウエハチャージ)が完了するまで行われる。
(Transfer process)
The main controller 201 issues an instruction to drive the substrate transfer mechanism 24 to the transport system controller 211. Then, while following instructions from the transport system controller 211, the substrate transfer mechanism 24 starts the transfer processing of the substrate 18 from the pod 9 on the mounting table 21 to the boat 26. This transfer processing is performed until the loading (wafer charging) of all the planned substrates 18 into the boat 26 is completed.
(搬入工程)
 所定枚数の基板18がボート26に装填されると、ボート26は、搬送系コントローラ211からの指示に従って動作するボートエレベータ32によって上昇されて、処理炉28内に形成される処理室29に装入(ボートロード)される。ボート26が完全に装入されると、ボートエレベータ32のシールキャップ34は、処理炉28のマニホールドの下端を気密に閉塞する。
(Loading process)
When a predetermined number of substrates 18 are loaded in the boat 26, the boat 26 is lifted by the boat elevator 32 that operates according to an instruction from the transfer system controller 211, and is loaded into the processing chamber 29 formed in the processing furnace 28. (Boat road). When the boat 26 is completely loaded, the seal cap 34 of the boat elevator 32 hermetically closes the lower end of the manifold of the processing furnace 28.
(成膜工程)
 次に、処理室29内は、圧力制御部212bからの指示に従いつつ、所定の成膜圧力(真空度)となるように、真空ポンプなどの真空排気装置によって真空排気される。また処理室29内は、温度制御部212aからの指示に従いつつ、所定の温度となるようにヒータによって加熱される。続いて、搬送系コントローラ211からの指示に従いつつ、回転機構によるボート26および基板18の回転を開始する。そして、所定の圧力、所定の温度に維持された状態で、ボート26に保持された複数枚の基板18に所定のガス(処理ガス)を供給して、基板18に所定の処理(例えば成膜処理)がなされる。なお、次の搬出工程前に、処理温度(所定の温度)から温度を降下させる場合がある。
(Deposition process)
Next, the inside of the processing chamber 29 is evacuated by a vacuum exhaust device such as a vacuum pump so as to have a predetermined film forming pressure (degree of vacuum) while following instructions from the pressure control unit 212b. Further, the inside of the processing chamber 29 is heated by a heater to a predetermined temperature while following an instruction from the temperature control unit 212a. Subsequently, the rotation of the boat 26 and the substrate 18 by the rotation mechanism is started while following instructions from the transport system controller 211. Then, while maintaining a predetermined pressure and a predetermined temperature, a predetermined gas (processing gas) is supplied to the plurality of substrates 18 held by the boat 26 to perform predetermined processing (for example, film formation) on the substrates 18. Processing) is performed. Before the next unloading step, the temperature may be lowered from the processing temperature (predetermined temperature).
(搬出工程)
 ボート26に載置された基板18に対する成膜工程が完了すると、搬送系コントローラ211からの指示に従いつつ、その後、回転機構によるボート26および基板18の回転を停止させ、ボートエレベータ32によりシールキャップ34を下降させてマニホールドの下端を開口させるとともに、処理済の基板18を保持したボート26を処理炉28の外部に搬出(ボートアンロード)する。
(Unloading process)
When the film forming process on the substrate 18 placed on the boat 26 is completed, the rotation of the boat 26 and the substrate 18 by the rotation mechanism is stopped, and the seal cap 34 is Is lowered to open the lower end of the manifold, and the boat 26 holding the processed substrate 18 is carried out of the processing furnace 28 (boat unloading).
(回収工程)
 そして、処理済の基板18を保持したボート26は、クリーンユニット35から吹出されるクリーンエア36によって極めて効果的に冷却される。そして、例えば150℃以下に冷却されると、ボート26から処理済の基板18を脱装(ウエハディスチャージ)してポッド9に移載した後に、新たな未処理基板18のボート26への移載が行われる。
(Recovery process)
Then, the boat 26 holding the processed substrate 18 is cooled very effectively by the clean air 36 blown out from the clean unit 35. When the substrate 18 is cooled to, for example, 150 ° C. or lower, the processed substrate 18 is removed from the boat 26 (wafer discharge) and transferred to the pod 9, and then the new unprocessed substrate 18 is transferred to the boat 26. Is performed.
(3)装置状態の監視処理
 次に、基板処理工程を実施する過程で制御部200が行う制御処理について、ここでは成膜工程を行うときに制御部200の装置管理コントローラ215が行う装置状態の監視処理を例に挙げて、具体的に説明する。
(3) Monitoring Process of Apparatus State Next, regarding the control processing performed by the control unit 200 in the course of performing the substrate processing step, here, the control of the apparatus state performed by the apparatus management controller 215 of the control unit 200 when performing the film forming step A specific description will be given using a monitoring process as an example.
 成膜工程においては、図5に示すように、複数種類の処理ガスN2-1,N2-2,N2-3が、それぞれに対応するガス流量コントローラ(MFC)212cで流量が調整された状態で、それぞれについて設定されたタイミングで、基板18が搬入された処理室(反応室)29に供給される。複数種類の処理ガスN2-1,N2-2,N2-3としては、例えば、原料ガスである第一元素含有ガス、反応ガスまたは改質ガスである第二元素含有ガス、パージガスとして作用する不活性ガス等がある。また、処理室29からは、ガス排気機構212BのAPCバルブ(以後、単にバルブともいう)212B-1および真空ポンプ(以後、単にポンプともいう)212B-2によりガスが排気されて、反応室29内の圧力が調整される。反応室29の圧力は、圧力センサPG1によって検知される。 In the film forming process, as shown in FIG. 5, a plurality of types of processing gases N2-1, N2-2, and N2-3 are adjusted in a flow rate by a corresponding gas flow rate controller (MFC) 212c. The substrate 18 is supplied to the processing chamber (reaction chamber) 29 into which the substrate 18 has been loaded at the timing set for each. Examples of the plurality of types of processing gases N2-1, N2-2, and N2-3 include a first element-containing gas that is a source gas, a second element-containing gas that is a reactive gas or a reforming gas, and a gas that acts as a purge gas. There are active gases and the like. Further, the gas is exhausted from the processing chamber 29 by an APC valve (hereinafter simply referred to as a valve) 212B-1 and a vacuum pump (hereinafter simply referred to as a pump) 212B-2 of the gas exhaust mechanism 212B. The pressure inside is adjusted. The pressure in the reaction chamber 29 is detected by the pressure sensor PG1.
 つまり、反応室29に搬入された基板18は、少なくとも反応室29、MFC212c、バルブ212B-1、ポンプ212B-2、圧力センサPG1等を備えた基板処理系によって処理される。そして、成膜工程において、プロセス系コントローラ212は、反応室29に供給する各種ガスの流量が所望のタイミングにて所望の流量となるように、MFC212c、バルブ212B-1およびポンプ212B-2を制御する。 That is, the substrate 18 carried into the reaction chamber 29 is processed by a substrate processing system including at least the reaction chamber 29, the MFC 212c, the valve 212B-1, the pump 212B-2, the pressure sensor PG1, and the like. Then, in the film forming process, the process controller 212 controls the MFC 212c, the valve 212B-1, and the pump 212B-2 such that the flow rates of various gases supplied to the reaction chamber 29 become desired at desired timings. I do.
 このとき、装置管理コントローラ215は、データ収集コントローラとして機能して、装置1内外の装置データDDを収集することが可能である。さらに詳しくは、装置管理コントローラ215は、装置データDDとして、少なくとも、各MFC212cの動作状態を監視するために、各MFC212cでの流量調整後の各種ガスのトータル実流量(単位:slm)についてのデータを、各MFC212cから取得するとともに、バルブ212B-1およびポンプ212B-2の動作状態を監視するために、反応室29の実圧力(単位:Pa)についてのデータを、圧力センサPG1から取得することが可能である。 At this time, the device management controller 215 can function as a data collection controller and collect device data DD inside and outside the device 1. More specifically, the device management controller 215 includes, as device data DD, at least data on the total actual flow rate (unit: slm) of various gases after flow rate adjustment in each MFC 212c in order to monitor the operation state of each MFC 212c. From each MFC 212c, and from the pressure sensor PG1, data on the actual pressure (unit: Pa) of the reaction chamber 29 in order to monitor the operation state of the valve 212B-1 and the pump 212B-2. Is possible.
 つまり、少なくとも反応室29のガス供給側の部品と、反応室29のガス排気側の部品が、それぞれ一つ以上監視対象の部品として選択される。具体的には、ガス供給側の部品である各MFC212cと、ガス排気側の部品であるバルブ212B-1およびポンプ212B-2の動作状態に直接的な影響を受ける圧力センサPG1が、それぞれ監視対象の部品として選択される。そして、装置管理コントローラ215は、各MFC212cで得られるトータル実流量についてのデータと、圧力センサPG1で得られる実圧力についてのデータとを、監視対象の部品についての部品データとして収集するようになっている。 That is, at least one component on the gas supply side of the reaction chamber 29 and one component on the gas exhaust side of the reaction chamber 29 are each selected as one or more components to be monitored. Specifically, each MFC 212c, which is a component on the gas supply side, and a pressure sensor PG1, which is directly affected by the operation state of the valve 212B-1 and the pump 212B-2, which are components on the gas exhaust side, are monitored. Selected as a part. Then, the device management controller 215 collects data on the total actual flow rate obtained by each MFC 212c and data on the actual pressure obtained by the pressure sensor PG1 as component data on the component to be monitored. I have.
 ただし、装置管理コントローラ215による部品データの収集は、必要に応じて行えばよい。本実施形態においては、以下に説明するように、プロセスレシピの実行中に、予め決められた収集条件を満たすステップについてのみ、部品データの収集を行うものとする。 However, collection of component data by the device management controller 215 may be performed as needed. In the present embodiment, as described below, during execution of a process recipe, component data is collected only for steps that satisfy a predetermined collection condition.
 具体的には、成膜工程を含む基板処理工程を実行する際の手順や条件等が規定されるプロセスレシピは、図6に示すように、複数のステップで構成されている(図中のレシピstep#参照)。その場合に、装置管理コントローラ215は、予め決められた収集条件を満たすステップについてのみ、部品データの収集を行うようになっている。 Specifically, as shown in FIG. 6, a process recipe in which a procedure, conditions, and the like when executing a substrate processing step including a film forming step is formed of a plurality of steps (recipes in the figure) See step #). In this case, the device management controller 215 collects component data only for steps that satisfy predetermined collection conditions.
 予め決められた収集条件は、例えば、実行するプロセスレシピを構成する各ステップの処理時間、バルブ212B-1の開閉状態、および、ポンプ212B-2の動作状態を含む。さらに詳しくは、装置管理コントローラ215は、例えば、ステップの処理時間が所定時間(本実施形態では、5秒)以上であり(図中のTime[sec]参照)、バルブ212B-1が開(Open)状態であり(図中のValve参照)、かつ、ポンプ212B-2が動作(ON)状態である(図中のPump参照)場合に、部品データとして、ステップ毎に、各MFC212cで得られるトータル実流量についてのデータと、圧力センサPG1で得られる実圧力についてのデータと、を収集する(図中の太線枠内参照)。 The predetermined collection conditions include, for example, the processing time of each step constituting the process recipe to be executed, the open / closed state of the valve 212B-1, and the operating state of the pump 212B-2. More specifically, for example, the device management controller 215 determines that the processing time of the step is equal to or longer than a predetermined time (5 seconds in the present embodiment) (see Time [sec] in the figure), and the valve 212B-1 is opened (Open). ) State (see Valve in the figure) and the pump 212B-2 is in the operation (ON) state (see Pump in the figure), and the total data obtained by each MFC 212c for each step as part data is shown. Data on the actual flow rate and data on the actual pressure obtained by the pressure sensor PG1 are collected (see a bold frame in the figure).
 このようにして、収集条件を満たす各ステップの部品データを収集したら、装置管理コントローラ215は、続いて、図7に示すように、収集した部品データの同士の相関関係を示す相関カーブを生成する。ここで本明細書において、相関カーブとは、反応室29の入力側の部品データと反応室29の出力側の部品データとの関係を示す関係式のことを示す。特に、本実施形態では、反応室29に供給される各MFC212cにて流量制御された実ガス流量と反応室29の圧力を検出する圧力センサPG1との関係式のことを示す。図7に示す相関カーブは、圧力センサPG1の実測値が縦軸に、反応室29に供給されたガスの実流量が横軸に、それぞれプロットされて構成されている。つまり、装置管理コントローラ215は、圧力センサPG1の実測値を縦軸とし、反応室29へのガス実流量を横軸とする座標空間において、収集条件を満たす各ステップで収集した各MFC212cによるトータル実流量についてのデータと、圧力センサPG1による実圧力についてのデータとを、互いに対応付けてプロットすることで、相関カーブを生成するようになっている。また、プロセスレシピによっては、大量のデータが収集されることがあり、単にデータをプロットするのでは相関カーブがうまく描けないことがある。このような場合もあるため、予め装置管理コントローラ215は、例えば、最小二乗法を用いて近似曲線を求めることにより相関カーブ(関係式)を生成するように構成されてもよい。
 そして、このように生成された相関カーブを参照することにより、装置管理コントローラ215は、ステップ毎に、圧力センサPG1による実圧力についてのデータ(すなわち、圧力センサPG1の実測値)に対する各MFC212cによるトータル実流量についてのデータ(すなわち、反応室29へのガス実流量)を算出することが可能となる。
After collecting the component data of each step satisfying the collection condition in this way, the device management controller 215 subsequently generates a correlation curve indicating the correlation between the collected component data as shown in FIG. . Here, in the present specification, the correlation curve indicates a relational expression indicating a relationship between the component data on the input side of the reaction chamber 29 and the component data on the output side of the reaction chamber 29. In particular, in the present embodiment, a relational expression between the actual gas flow rate controlled by each MFC 212c supplied to the reaction chamber 29 and the pressure sensor PG1 for detecting the pressure in the reaction chamber 29 is shown. The correlation curve shown in FIG. 7 is configured by plotting the actual measurement value of the pressure sensor PG1 on the vertical axis and the actual flow rate of the gas supplied to the reaction chamber 29 on the horizontal axis. That is, the apparatus management controller 215 determines the total actual value of each MFC 212c collected in each step satisfying the collection condition in a coordinate space in which the measured value of the pressure sensor PG1 is the vertical axis and the actual gas flow rate to the reaction chamber 29 is the horizontal axis. The correlation curve is generated by plotting the data on the flow rate and the data on the actual pressure by the pressure sensor PG1 in association with each other. Also, depending on the process recipe, a large amount of data may be collected, and simply plotting the data may not be enough to draw a correlation curve. In such a case, the device management controller 215 may be configured in advance to generate a correlation curve (relational expression) by obtaining an approximate curve using, for example, the least square method.
Then, by referring to the correlation curve generated in this way, the device management controller 215 determines, for each step, the total data by each MFC 212c with respect to the data on the actual pressure by the pressure sensor PG1 (ie, the actual measurement value of the pressure sensor PG1). Data on the actual flow rate (that is, the actual gas flow rate to the reaction chamber 29) can be calculated.
 相関カーブの生成は、プロセスレシピを実行する毎に都度行う。相関カーブを生成したら、装置管理コントローラ215は、続いて、生成した相関カーブと予め記憶させていた基準となる初期相関カーブとを比較する。初期相関カーブとの比較についても、プロセスレシピを実行する毎に都度行うことになる。 The correlation curve is generated each time the process recipe is executed. After generating the correlation curve, the device management controller 215 then compares the generated correlation curve with an initial correlation curve stored in advance as a reference. The comparison with the initial correlation curve is performed each time the process recipe is executed.
 ここで、初期相関カーブは、生成される相関カーブの異常(相関カーブの変化の有無)を判定するための基準となる相関カーブである。該初期相関カーブは、反応室29等を含む基板処理部が所定の成膜性能を発揮している状態(すなわち、基準となるバッチにおいて、例えば基板処理部が問題なく成膜性能を発揮している状態)で生成される相関カーブに相当するものである。初期相関カーブは、予め装置管理コントローラ215がアクセス可能な記憶部(例えば、主コントローラ201の主コント記憶部222)に記憶されているものとする。 Here, the initial correlation curve is a correlation curve serving as a reference for judging abnormality of the generated correlation curve (presence or absence of a change in the correlation curve). The initial correlation curve indicates a state in which the substrate processing unit including the reaction chamber 29 and the like is exhibiting a predetermined film forming performance (that is, in a reference batch, for example, the substrate processing unit exhibits the film forming performance without any problem. (Corresponding state). It is assumed that the initial correlation curve is stored in advance in a storage unit accessible by the device management controller 215 (for example, the main control storage unit 222 of the main controller 201).
 そして、装置管理コントローラ215は、相関カーブと初期相関カーブとの差分が予め決められた閾値を超えているか否かを判定する。具体的には、例えば、任意の流量における反応室29内の圧力について、相関カーブから算出される値と初期相関カーブから算出される値との差分を求め、その差分が予め決められた閾値を超えているか否かを判定する。このとき、任意の流量は、必ずしも一点である必要はなく、複数点についてであってもよい。その場合には、各点における差分をそれぞれ求め、それぞれの差分の合計値が予め決められた閾値を超えているか否かを判定することになる。なお、判定の基になる閾値についても、初期相関カーブと同様に、予め装置管理コントローラ215がアクセス可能な記憶部222に記憶されているものとする。 {Circle around (7)} Then, the device management controller 215 determines whether or not the difference between the correlation curve and the initial correlation curve exceeds a predetermined threshold. Specifically, for example, for the pressure in the reaction chamber 29 at an arbitrary flow rate, a difference between a value calculated from the correlation curve and a value calculated from the initial correlation curve is obtained, and the difference is set to a predetermined threshold. It is determined whether or not it has exceeded. At this time, the arbitrary flow rate does not necessarily have to be at one point, but may be at a plurality of points. In that case, the differences at the respective points are obtained, and it is determined whether or not the total value of the respective differences exceeds a predetermined threshold. It is assumed that the threshold value on which the determination is based is stored in advance in the storage unit 222 accessible by the device management controller 215, similarly to the initial correlation curve.
 判定の結果、相関カーブと初期相関カーブとの差分が閾値を超えた場合に、装置管理コントローラ215は、アラームを発生させるように、主コントローラ201に依頼する。これを受けて、主コントローラ201は、操作表示部227の画面上でのアラーム出力を行ったり、またはネットワークを介して外部のコンピュータ300に対するアラーム出力を行ったりする。なお、装置管理コントローラ215は、相関カーブと初期相関カーブとの差分が閾値内に収まった場合は正常と判定する。 (4) As a result of the determination, when the difference between the correlation curve and the initial correlation curve exceeds the threshold, the device management controller 215 requests the main controller 201 to generate an alarm. In response to this, the main controller 201 outputs an alarm on the screen of the operation display unit 227, or outputs an alarm to the external computer 300 via the network. Note that the device management controller 215 determines that the correlation curve is normal when the difference between the correlation curve and the initial correlation curve falls within the threshold value.
 アラーム出力の具体的な態様について、図8を用いて説明する。図8によれば、どの部品にエラーが発生しているかを装置概要図で色分け表示することができる。 The specific mode of the alarm output will be described with reference to FIG. According to FIG. 8, which component has an error can be color-coded and displayed in the device schematic diagram.
 図8に示すように、監視対象の部品を含む各構成要素については、これらが模式的な構成図(装置概要図)として画面上に表示されており、監視対象の部品については、一覧形式のテーブル表(部品管理テーブル等)によって画面上に表示されている。そして、その表示画面上において、相関カーブの変化の原因と断定した箇所を、例えば表示色を変更することで、他の箇所と識別可能にする。 As shown in FIG. 8, each component including a component to be monitored is displayed on the screen as a schematic configuration diagram (apparatus schematic diagram), and the component to be monitored is displayed in a list format. It is displayed on the screen by a table table (part management table or the like). Then, on the display screen, the location determined to be the cause of the change of the correlation curve can be distinguished from other locations by, for example, changing the display color.
 具体的には、例えば、MFCゼロ点電圧にズレが生じている場合やMFC流量偏差異常が生じている場合であれば、そのMFCの図柄や該当欄等の表示色を所定色(例えばエラー表示色である黄色)に変更して、他の箇所と識別可能にする。また、例えば、ポンプ異常が生じている場合であれば、そのポンプの図柄や該当欄等の表示色を所定色(例えばエラー表示色である黄色)に変更して、他の箇所と識別可能にする。 Specifically, for example, when the MFC zero point voltage is deviated or the MFC flow rate deviation is abnormal, the display color of the MFC design or the corresponding column is changed to a predetermined color (for example, error display). Change the color to yellow) so that it can be distinguished from other parts. Further, for example, when a pump abnormality has occurred, the display color of the design of the pump or the corresponding column is changed to a predetermined color (for example, yellow which is an error display color) so that it can be distinguished from other parts. I do.
 なお、アラーム出力の具体的な態様については、ここで挙げた例に限定されることはなく、予め設定された態様によるものであれば、他の態様によるものであってもよい。例えば、上述したように表示色を変更するのではなく、注意喚起を促す所定図柄(例えば!マーク)を併せて表示する、といったものであってもよい。 Note that the specific mode of the alarm output is not limited to the example given here, but may be another mode as long as it is a preset mode. For example, instead of changing the display color as described above, a predetermined symbol (for example, an! Mark) that calls attention may be displayed together.
 また、図8に示すように、表示変更をした箇所(アラーム発生個所)を示すアイコン(例えば、!マーク)をタッチすると、その箇所の異常履歴の情報表示画面に遷移するように構成されている。 Further, as shown in FIG. 8, when an icon (for example,! Mark) indicating a place where the display has been changed (an alarm occurrence place) is touched, the screen is changed to an abnormality history information display screen of the place. .
 このようなアラーム出力を行うことで、装置1の操作者等は、修理またはメンテナンスが必要な箇所を認識することができる。例えば、経時変化に伴って生じ得る基板18の不良生産の対策として修理またはメンテナンスを行う場合であっても、装置1のダウンタイムを極力短縮させることが可能となる。 行 う By performing such an alarm output, the operator of the apparatus 1 can recognize a portion requiring repair or maintenance. For example, even when repair or maintenance is performed as a countermeasure against defective production of the substrate 18 that may occur with aging, downtime of the apparatus 1 can be reduced as much as possible.
 また、このようなアラーム出力を行うことで、装置1の操作者等は、初期相関カーブで規定される場合に比べて、複数の部品データの間における相関関係に経時的な変化が生じていることを認識することができる。したがって、例えば、経時変化に伴って基板18の不良生産が生じ得る状況になっても、そのことがプロセスレシピを実行する度に判定されて認識し得るようになるので、基板18の不良生産を未然に防止して生産歩留まりを向上させることが可能になる。 Further, by performing such an alarm output, the operator of the apparatus 1 has a temporal change in the correlation between the plurality of component data as compared with the case defined by the initial correlation curve. You can recognize that. Therefore, for example, even if a situation occurs in which defective production of the substrate 18 may occur due to a change over time, this can be determined and recognized each time the process recipe is executed. It is possible to improve the production yield by preventing it before it happens.
(4)アラーム原因の判定処理
 次に、上述した装置状態の監視処理において、アラーム出力を行うと判定した場合に、さらに装置管理コントローラ215が行うアラーム原因の判定処理について具体的に説明する。
(4) Alarm Cause Determination Process Next, in the above-described device state monitoring process, when it is determined that an alarm output is to be performed, the alarm cause determination process performed by the device management controller 215 will be specifically described.
 上述したようなアラーム出力を行えば、装置1の操作者等は、相関カーブの経時的な変化を認識し得るようになる。しかしながら、アラーム出力のみでは、相関カーブが変化した原因を特定することが困難である。そこで、本実施形態においては、アラーム出力に加えて、相関カーブが変化した原因を特定するための判定処理を行うようになっている。 え ば By performing the above-described alarm output, the operator of the apparatus 1 can recognize the temporal change of the correlation curve. However, it is difficult to specify the cause of the change in the correlation curve only by the alarm output. Therefore, in the present embodiment, in addition to the alarm output, a determination process for specifying the cause of the change in the correlation curve is performed.
 具体的には、アラーム原因の判定処理のために、各センサ情報の組み合わせパターン別原因判定表(以後、単に原因判定表ともいう)を予め用意しておく。原因判定表は、図9に示すように、監視対象の部品についてのエラー項目の組合せパターンが定義されたテーブルによって構成されたもので、装置管理コントローラ215がアクセス可能な記憶部222に記憶されているものとする。 Specifically, for the alarm cause determination process, a cause determination table for each combination pattern of the sensor information (hereinafter, also simply referred to as a cause determination table) is prepared in advance. As shown in FIG. 9, the cause determination table is configured by a table in which a combination pattern of error items for a component to be monitored is defined, and is stored in the storage unit 222 accessible by the device management controller 215. Shall be
 このような原因判定表(テーブル)では、監視対象の部品についてのエラー項目として、反応室29のガス供給側の部品に関連するエラー項目と、反応室29のガス排気側の部品に関連するエラー項目とが、それぞれ設けられている。さらに詳しくは、ガス供給側の部品に関連するエラー項目として、例えば、各MFC212cのゼロ点電圧と、各MFC212cにおける設定流量と実流量との偏差と、が挙げられる。また、反応室29のガス排気側の部品に関連するエラー項目として、例えば、圧力センサPG1による検出結果からわかる反応室29のリークレートが挙げられる。そして、各MFC212cのゼロ点電圧、各MFC212cにおける設定流量と実流量との偏差、および、反応室29のリークレートの組み合わせで、原因判定表が構成されている。 In such a cause determination table, an error item relating to the gas supply side component of the reaction chamber 29 and an error item relating to the gas exhaust side component of the reaction chamber 29 are included as error items for the monitored component. Items are provided. More specifically, the error items related to the components on the gas supply side include, for example, the zero point voltage of each MFC 212c and the deviation between the set flow rate and the actual flow rate in each MFC 212c. Further, as an error item related to the components on the gas exhaust side of the reaction chamber 29, for example, there is a leak rate of the reaction chamber 29 that can be obtained from the detection result by the pressure sensor PG1. Then, a cause determination table is configured by a combination of the zero point voltage of each MFC 212c, the deviation between the set flow rate and the actual flow rate in each MFC 212c, and the leak rate of the reaction chamber 29.
 装置管理コントローラ215は、相関カーブと初期相関カーブとの差分が閾値を超えた場合に、上述したようにアラームを発生させる一方で、監視対象の部品毎にエラー項目の発生(例えば、変化あり/なしの別)を確認する。各エラー項目は、対応する監視対象の部品からのセンサ情報を監視することで確認できる。そして、その確認結果を原因判定表(テーブル)の該当する組合せパターンと照合し、異常が発生した監視対象の部品を特定することで、アラームの発生原因についての判定処理を行うように構成されている。 When the difference between the correlation curve and the initial correlation curve exceeds the threshold, the device management controller 215 generates an alarm as described above, while generating an error item for each monitored component (for example, there is a change / None). Each error item can be confirmed by monitoring sensor information from the corresponding monitoring target component. Then, the result of the check is compared with a corresponding combination pattern in a cause determination table (table), and a part to be monitored that has an abnormality is identified, thereby performing a determination process on the cause of the alarm. I have.
 具体的には、例えば、図9中のCase1に示すように、MFCゼロ点電圧にのみ異常があり、その他に変化が見られない場合、装置管理コントローラ215は、相関カーブの変化の原因(上述のアラームの原因)は、MFCゼロ点電圧の変化による供給ガス実流量の変化と断定することができる。これと同様に、例えば、図9中のCase2に示すように、MFC偏差にのみ異常があり、その他に変化が見られない場合、装置管理コントローラ215は、相関カーブの変化(アラーム)の原因は、MFC故障による供給ガス実流量の変化と断定することができる。また、例えば、図9中のCase3に示すように、リークレートにのみ異常があり、その他に異常が見られない場合、装置管理コントローラ215は、相関カーブの変化(アラーム)の原因は、炉内リーク量変化と断定することができる。また、例えば、図9中のCase4に示すように、いずれにも異常が見られない場合、装置管理コントローラ215は、相関カーブの変化の原因は、ポンプ212B-2の劣化、または、副生成物による排気配管閉塞発生、と断定することができる。 Specifically, for example, as shown in Case 1 in FIG. 9, when there is an abnormality only in the MFC zero point voltage and there is no other change, the device management controller 215 determines the cause of the change in the correlation curve (described above). Can be concluded as a change in the actual flow rate of the supplied gas due to a change in the MFC zero point voltage. Similarly, for example, as shown in Case 2 in FIG. 9, when there is an abnormality only in the MFC deviation and no other change is observed, the device management controller 215 determines that the cause of the change (alarm) in the correlation curve is And the change in the actual flow rate of the supply gas due to the MFC failure. Further, for example, as shown in Case 3 in FIG. 9, when there is only an abnormality in the leak rate and no other abnormality is found, the device management controller 215 determines that the correlation curve change (alarm) is caused in the furnace. It can be concluded that the leak amount has changed. In addition, for example, as shown in Case 4 in FIG. 9, when no abnormality is found in any of the cases, the device management controller 215 determines that the cause of the change in the correlation curve is deterioration of the pump 212B-2 or by-products. It can be determined that exhaust pipe blockage occurs due to this.
 図9では省略されているが、他のケース(Case)として、MFCゼロ点電圧とMFC偏差の両方のエラー項目が発生した場合、装置管理コントローラ215は、MFC故障と断定し、異常の発生したMFCを停止させるよう主コントローラ201に指示する(停止信号を送信する)。また、MFCゼロ点電圧とリークレートの両方のエラー項目が発生した場合、アラームの原因がこれらの両方にあると断定する。MFC偏差とリークレートの場合も同様である。 Although omitted in FIG. 9, as another case (Case), when an error item of both the MFC zero point voltage and the MFC deviation occurs, the device management controller 215 determines that the MFC has failed and an abnormality has occurred. The main controller 201 is instructed to stop the MFC (transmit a stop signal). Further, when the error items of both the MFC zero point voltage and the leak rate occur, it is concluded that the cause of the alarm is both of them. The same applies to the case of the MFC deviation and the leak rate.
 現状では、排気側の部品を含むエラー項目の組合せによる異常原因が不明である。従い、図9のCase4のようにMFC212cや反応室29のリークレート以外の原因が考えられるとき、ポンプ212B-2の劣化、または、副生成物による排気配管閉塞発生、と断定している。本実施形態の原因判定表は一例であって、エラー項目を追加することができ、将来的に、バルブ212B-1やポンプ212B-2に関するエラー項目の追加にも対応できる。このようにエラー項目の組合せパターンが増えると、あらゆる異常にも原因判定表による要因判定が可能となり、併せて復旧処理などの対応もできるようになる。 で は At present, the cause of the abnormality due to the combination of error items including parts on the exhaust side is unknown. Accordingly, when a cause other than the leak rate of the MFC 212c or the reaction chamber 29 is considered as in Case 4 of FIG. 9, it is determined that the pump 212B-2 is deteriorated or the exhaust pipe is blocked by a by-product. The cause determination table according to the present embodiment is an example, and an error item can be added, and an error item relating to the valve 212B-1 or the pump 212B-2 can be added in the future. When the combination pattern of the error items increases in this way, the cause can be determined by the cause determination table for any abnormality, and the recovery processing can be performed.
 このように、原因判定表に基づいて断定された原因について、装置管理コントローラ215は、アラーム出力と合わせてレポート報知するように、主コントローラ201に依頼する。これを受けて、主コントローラ201は、操作表示部227の画面上でレポート報知を行ったり、またはネットワークを介して外部のコンピュータ300に対するレポート報知を行ったりする。 (4) As described above, the device management controller 215 requests the main controller 201 to report a cause determined based on the cause determination table together with the alarm output. In response to this, the main controller 201 issues a report on the screen of the operation display unit 227, or issues a report to the external computer 300 via the network.
 レポート報知の具体的な態様としては、例えば、図8に示す画面を用いることができる。具体的には、例えば、MFCゼロ点電圧にズレが生じている場合であれば、そのMFCの図柄や該当欄等の表示色を所定色(例えばエラー表示色である黄色)に変更して、他の箇所と識別可能にしつつ、相関カーブの変化の原因が判明したら、装置概要図におけるMFC(の図柄)へのタッチ操作に応じて、そのゼロ点ズレの原因を含む情報が表示されるようにする。また、例えば、ポンプ異常が生じている場合であれば、そのポンプの図柄や該当欄等の表示色を所定色(例えばエラー表示色である黄色)に変更して、他の箇所と識別可能にしつつ、相関カーブの変化の原因が判明したら、装置概要図におけるポンプ(の図柄)へのタッチ操作に応じて、そのポンプ異常の原因を含む情報が表示されるようにする。なお、レポート報知の具体的な態様については、ここで挙げた例に限定されることはなく、予め設定された態様によるものであれば、他の態様によるものであってもよい。例えば、図示しない装置1から離間された場所(例えば、事務所)に設置されているコンピュータ装置(PC)にデータ送信されるようにしてもよい。なお、原因が特定された部品(例えば、上記MFCやポンプ等)のエラーが解除されると、装置概要図や部品管理テーブル上に表示された識別可能な表示が元に戻されるように構成してもよい。 As a specific mode of report notification, for example, a screen shown in FIG. 8 can be used. Specifically, for example, if a deviation occurs in the MFC zero point voltage, the display color of the MFC design or the corresponding column is changed to a predetermined color (for example, yellow which is an error display color), When the cause of the change of the correlation curve is found while being distinguishable from other places, the information including the cause of the zero point shift is displayed according to a touch operation on (the symbol of) the MFC in the device schematic diagram. To Further, for example, when a pump abnormality occurs, the display color of the design of the pump or the corresponding column is changed to a predetermined color (for example, yellow which is an error display color) so that it can be distinguished from other parts. On the other hand, when the cause of the change of the correlation curve is found, the information including the cause of the pump abnormality is displayed according to the touch operation on (the design of) the pump in the apparatus schematic diagram. The specific mode of report notification is not limited to the example described here, but may be another mode as long as the mode is a preset mode. For example, data may be transmitted to a computer (PC) installed in a place (for example, an office) separated from the device 1 (not shown). When the error of the component whose cause is specified (for example, the MFC or the pump) is released, the identifiable display displayed on the device outline diagram or the component management table is returned to the original. You may.
 このようなレポート報知を行うことで、装置1の操作者等は、修理またはメンテナンスの内容を迅速かつ的確に実行することができる。したがって、例えば、経時変化に伴って生じ得る基板18の不良生産の対策として修理またはメンテナンスを行う場合であっても、装置1のダウンタイムを極力短縮させることが可能となる。 レ ポ ー ト By performing such a report notification, the operator or the like of the apparatus 1 can quickly and accurately execute repair or maintenance. Therefore, for example, even when repair or maintenance is performed as a countermeasure against defective production of the substrate 18 which may occur with aging, downtime of the apparatus 1 can be reduced as much as possible.
(5)本実施形態による効果
 本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(5) Effects of the present embodiment According to the present embodiment, one or more effects described below can be obtained.
(a)本実施形態によれば、プロセスレシピの実行中に収集した各部品データの相関関係を示す相関カーブを生成し、その相関カーブと基準となる初期相関カーブとの差分が予め決められた閾値を超えた場合に、アラームを発生させるようになっている。したがって、各部品データ(複数データ)の相関関係の経時変化に伴う基板18の不良生産を未然に防止して、基板18の生産歩留まりを向上させることが可能になる。 (A) According to the present embodiment, a correlation curve indicating a correlation between component data collected during execution of a process recipe is generated, and a difference between the correlation curve and an initial correlation curve serving as a reference is determined in advance. When the threshold value is exceeded, an alarm is generated. Therefore, it is possible to prevent defective production of the board 18 due to a temporal change in the correlation of each component data (plural data), and to improve the production yield of the board 18.
(b)また、本実施形態では、相関カーブの生成に必要な各部品データの収集を、予め決められた収集条件を満たすステップについて行う。したがって、相関カーブへの影響が大きいと考えられるステップのみデータ収集を行えばよく、データ収集のための処理負荷軽減が図れるようになる。 (B) In the present embodiment, collection of each component data required for generating a correlation curve is performed for a step that satisfies a predetermined collection condition. Therefore, data collection only needs to be performed for steps that are considered to have a large effect on the correlation curve, and the processing load for data collection can be reduced.
(c)本実施形態によれば、テーブル形式の原因判定表を予め用意しておき、相関カーブと初期相関カーブとの差分が閾値を超えた場合に、監視対象の部品毎にエラー項目の発生を確認して原因判定表の組合せパターンと照合することで、アラームを発生させる異常の発生原因を特定する判定処理を行うようになっている。したがって、異常発生原因(すなわち、修理またはメンテナンスが必要な箇所)を迅速かつ的確に認識でき、例えば、経時変化に伴う異常発生箇所の修理またはメンテナンスを行う場合であっても、装置1のダウンタイムを極力短縮させ、その結果として装置稼働率を向上させることが可能となる。 (C) According to the present embodiment, a table of cause determination tables is prepared in advance, and when a difference between the correlation curve and the initial correlation curve exceeds a threshold value, occurrence of an error item for each component to be monitored is performed. Is checked and checked against the combination pattern in the cause determination table to perform a determination process for specifying the cause of the abnormality that causes the alarm. Therefore, the cause of the abnormality (that is, the part requiring repair or maintenance) can be quickly and accurately recognized. For example, even when repair or maintenance of the part where the abnormality occurs due to aging is performed, the downtime of the apparatus 1 is reduced. Can be reduced as much as possible, and as a result, the operation rate of the apparatus can be improved.
<変形例>
 次に、本実施形態の変形例を図10および図11を参照しながら説明する。なお、ここでは、上述した実施形態と異なる部分のみ以下に説明し、同様の部分については説明を省略する。
<Modification>
Next, a modified example of the present embodiment will be described with reference to FIGS. Here, only the portions different from the above-described embodiment will be described below, and the description of the same portions will be omitted.
 ここで説明する変形例は、圧力センサを各所に複数設置し、副生成物による排気配管閉塞箇所の絞り込みを行うことを可能にした例である。
 具体的には、図10に示すように、上述した実施形態の場合と同様に反応室29内の実圧力を直接測定する圧力センサPG1に加えて、反応室29とバルブ212B-1との間に設置された圧力センサPG2と、バルブ212B-1とポンプ212B-2との間の上流側に設置された圧力センサPG3と、バルブ212B-1とポンプ212B-2との間の上流側に設置された圧力センサPG4と、が設けられている。このような構成により、反応室29内の実圧力に加えて、排気配管内の各所における実圧力についても、測定し得るようになっている。
The modified example described here is an example in which a plurality of pressure sensors are installed at various locations, and it is possible to narrow down the exhaust pipe blockage position by a by-product.
Specifically, as shown in FIG. 10, in addition to the pressure sensor PG1 for directly measuring the actual pressure in the reaction chamber 29 as in the case of the above-described embodiment, the distance between the reaction chamber 29 and the valve 212B-1 is increased. , A pressure sensor PG3 disposed upstream between the valve 212B-1 and the pump 212B-2, and a pressure sensor PG3 disposed upstream between the valve 212B-1 and the pump 212B-2. Pressure sensor PG4. With such a configuration, in addition to the actual pressure in the reaction chamber 29, the actual pressure at various points in the exhaust pipe can be measured.
 このように、圧力センサPG1~PG4を各所に複数設置した場合には、アラーム原因の判定処理のための原因判定表(テーブル)についても、これに対応したものを予め用意しておく。具体的には、原因判定表として、図11に示すように、上述した実施形態で説明した各エラー項目に加えて、各圧力センサPG1~PG4による検出結果についてもエラー項目として規定され、これらの組み合わせで構成されたものを用意しておく。 In the case where a plurality of pressure sensors PG1 to PG4 are installed in each place as described above, a corresponding cause determination table (table) for alarm cause determination processing is prepared in advance. Specifically, as shown in FIG. 11, in addition to the error items described in the above-described embodiment, the cause determination table also defines the detection results of the pressure sensors PG1 to PG4 as error items. Prepare one composed of combinations.
 かかる原因判定表を用いれば、装置管理コントローラ215は、以下のようなアラーム原因についての判定処理を行うことができる。
 例えば、図11中のCase1ではMFCゼロ点電圧の変化による供給ガス実流量の変化、同Case2ではMFC故障による供給ガス実流量の変化、同Case3では炉内リーク量変化が、それぞれ相関カーブ変化の原因と断定することができる。
 また、図11中のCase4では、副生成物堆積による配管閉塞が、反応室29と圧力センサPG2との間に発生していることが、相関カーブ変化の原因と断定することができる。また、同Case5では圧力センサPG2と圧力センサPG3との間、同Case6では圧力センサPG3と圧力センサPG4との間において、それぞれ発生した副生成物堆積による配管閉塞が相関カーブ変化の原因と断定することができる。また、同Case7では、圧力センサPG4とポンプ212B-2との間に発生した副生成物堆積による配管閉塞、もしくは、ポンプ212B-2の劣化が、相関カーブ変化の原因と断定することができる。
By using such a cause determination table, the device management controller 215 can perform the following determination process regarding the cause of the alarm.
For example, in Case 1 in FIG. 11, the change in the supply gas actual flow rate due to the change in the MFC zero point voltage, in Case 2, the change in the supply gas actual flow rate due to the MFC failure, and in Case 3, the change in the in-furnace leak rate are the correlation curve changes. Can be determined as the cause.
Further, in Case 4 in FIG. 11, it can be concluded that the occurrence of the blockage of the pipe due to the accumulation of by-products between the reaction chamber 29 and the pressure sensor PG2 is the cause of the correlation curve change. Further, in Case 5, between the pressure sensor PG2 and the pressure sensor PG3, and in Case 6, between the pressure sensor PG3 and the pressure sensor PG4, it is concluded that pipe clogging caused by by-product accumulation has caused a change in the correlation curve. be able to. Further, in Case 7, it is possible to conclude that the blockage of the pipe due to the accumulation of by-products generated between the pressure sensor PG4 and the pump 212B-2 or the deterioration of the pump 212B-2 is the cause of the correlation curve change.
 このように、ここで説明する変形例によれば、圧力センサPG1~PG4を各所に複数設置するとともに、これに対応する原因判定表を予め用意しておくことで、アラーム原因の判定処理にあたり、副生成物による配管閉塞の個所を絞り込むことができる。したがって、さらなるダウンタイム短縮が可能となり、装置稼働率を向上させる上で非常に好ましいものとなる。 As described above, according to the modified example described above, a plurality of pressure sensors PG1 to PG4 are installed at various locations, and a cause determination table corresponding to the pressure sensors PG1 to PG4 is prepared in advance. It is possible to narrow down the location of the pipe blockage due to the by-product. Therefore, downtime can be further reduced, which is very preferable in improving the operation rate of the apparatus.
<他の実施形態>
 以上、本発明の一実施形態およびその変形例について具体的に説明したが、本発明は上述の実施形態または変形例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば将来的な部品の自動管理に関して以下簡潔に記載する。
<Other embodiments>
As mentioned above, although one Embodiment of this invention and its modification were specifically described, this invention is not limited to said Embodiment or modification, and can be variously changed in the range which does not deviate from the summary. . For example, the automatic management of future parts will be briefly described below.
 例えば、装置管理コントローラ215が、予め用意された原因判定表(図9)に対して、ガス供給側の部品である各MFCと、ガス排気側の部品であるAPCバルブおよび真空ポンプの動作状態に直接的な影響を受ける圧力センサPG1を、それぞれ監視対象の部品として自動的に選択し、そして、装置管理コントローラ215が、選択された監視対象の部品に関する初期相関カーブの作成若しくは選択及びこの初期相関カーブに対する閾値の設定を行い、本実施例における相関カーブを作成するための部品データ収集条件を、自動的に設定するよう構成することが考えられる。 For example, the device management controller 215 compares the operation state of each MFC, which is a component on the gas supply side, and the APC valve and the vacuum pump, which are components on the gas exhaust side, with respect to a cause determination table prepared in advance (FIG. 9). The pressure sensor PG1 that is directly affected is automatically selected as each monitored component, and the device management controller 215 creates or selects an initial correlation curve for the selected monitored component and performs the initial correlation. It is conceivable to set a threshold value for a curve and automatically set component data collection conditions for creating a correlation curve in the present embodiment.
 このようにすると、原因判定表に応じて、装置管理コントローラ215が、監視対象部品の選択、収集された部品のデータ収集、相関カーブの作成および相関カーブと初期相関カーブとの比較、をそれぞれ行うことにより、監視対象の部品を、自動的に監視することができる。基板処理装置1を構成する部品から最適な部品を選択し、必要な部品の管理を効率よく行うことができる。 In this way, the device management controller 215 selects a monitoring target component, collects collected component data, creates a correlation curve, and compares the correlation curve with the initial correlation curve according to the cause determination table. Thus, the component to be monitored can be automatically monitored. It is possible to select an optimal component from the components constituting the substrate processing apparatus 1 and efficiently manage necessary components.
 上述の実施形態または変形例では、主に、半導体製造工程で用いられる基板処理装置および半導体装置の製造方法について説明したが、本発明がこれらに限定されることはなく、例えば、液晶表示(LCD)装置のようなガラス基板を処理する基板処理装置およびその製造方法にも適用可能である。 In the above-described embodiment or modification, the substrate processing apparatus and the semiconductor device manufacturing method used in the semiconductor manufacturing process have been mainly described. However, the present invention is not limited to these. For example, a liquid crystal display (LCD) The present invention is also applicable to a substrate processing apparatus for processing a glass substrate, such as an apparatus, and a method of manufacturing the same.
 また、成膜工程については、液体原料を気化した状態で処理炉28内の処理室(反応室)29に供給して基板(ウエハ)18の面上への成膜を行うものであればよく、成膜する膜種が特に限定されることはない。例えば、成膜工程で成膜する膜種は、シリコン化合物(SiN、Si等)を含む膜であっても、金属化合物(W、Ti、Hf等)を含む膜であっても、いずれの場合も好適に適用可能である。 In the film forming process, any method may be used as long as the liquid material is vaporized and supplied to a processing chamber (reaction chamber) 29 in a processing furnace 28 to form a film on the surface of the substrate (wafer) 18. The type of film to be formed is not particularly limited. For example, the type of film formed in the film formation step may be a film containing a silicon compound (SiN, Si, etc.) or a film containing a metal compound (W, Ti, Hf, etc.) Can also be suitably applied.
 また、成膜工程で行う成膜処理には、例えば、CVD(chemical vapordeposition)、PVD(Physical Vapor Deposition)、酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理等を含む。 成膜 In addition, the film forming process performed in the film forming step includes, for example, a process for forming a CVD (chemical vapor deposition), a PVD (Physical Vapor Deposition), an oxide film, a nitride film, a process for forming a metal-containing film, and the like.
 また、上述の実施形態または変形例では、成膜処理を行う基板処理装置および半導体装置の製造方法について説明したが、本発明がこれらに限定されることはなく、例えば、他の基板処理装置(露光装置、リソグラフィ装置、塗布装置、プラズマを利用したCVD装置等)にも適用できる。 Further, in the above-described embodiment or the modified example, the substrate processing apparatus for performing the film forming process and the method for manufacturing the semiconductor device have been described. However, the present invention is not limited to these. For example, another substrate processing apparatus ( Exposure apparatus, lithography apparatus, coating apparatus, CVD apparatus using plasma, etc.) can also be applied.
 1…基板処理装置、18…基板(ウエハ)、29…処理室(反応室)、200…制御部、201…主コントローラ、212B…ガス排気機構、212B-1…APCバルブ、212B-2…真空ポンプ、212c…ガス流量コントローラ(MFC)、215…装置管理コントローラ、DD…装置データ、PG1~PG4…圧力センサ DESCRIPTION OF SYMBOLS 1 ... Substrate processing apparatus, 18 ... Substrate (wafer), 29 ... Processing chamber (reaction chamber), 200 ... Control part, 201 ... Main controller, 212B ... Gas exhaust mechanism, 212B-1 ... APC valve, 212B-2 ... Vacuum Pump, 212c: Gas flow controller (MFC), 215: Device management controller, DD: Device data, PG1 to PG4: Pressure sensors

Claims (15)

  1.  複数のステップで構成されるプロセスレシピを実行して、基板処理系を動作させる制御部を含む基板処理装置であって、
     前記制御部は、
     前記プロセスレシピの実行中に、予め決められた収集条件を満たすステップについて、前記基板処理系における監視対象の部品についての部品データを収集し、
     収集した前記部品データの相関関係を示す相関カーブを生成し、
     生成した前記相関カーブと予め記憶させていた基準となる初期相関カーブとを比較して、前記相関カーブと前記初期相関カーブとの差分が予め決められた閾値を超えているか判定し、
     前記閾値を超えた場合に、アラームを発生させるように構成されている、
     基板処理装置。
    A substrate processing apparatus that includes a control unit that executes a process recipe including a plurality of steps to operate a substrate processing system,
    The control unit includes:
    During the execution of the process recipe, for a step that satisfies a predetermined collection condition, collects component data on a component to be monitored in the substrate processing system,
    Generate a correlation curve showing the correlation of the collected component data,
    Comparing the generated correlation curve with an initial correlation curve serving as a reference stored in advance, to determine whether the difference between the correlation curve and the initial correlation curve exceeds a predetermined threshold,
    When the threshold is exceeded, it is configured to generate an alarm,
    Substrate processing equipment.
  2.  前記制御部は、
     前記監視対象の部品についてのエラー項目の組合せパターンが定義されたテーブルを有しており、
     前記閾値を超えた場合に、前記監視対象の部品毎に収集した前記部品データから前記エラー項目の発生を確認し、前記テーブルの該当する組合せパターンと照合し、異常が発生した前記監視対象の部品と該部品に発生した異常の原因とを特定するように構成されている、
     請求項1に記載の基板処理装置。
    The control unit includes:
    It has a table in which a combination pattern of error items for the component to be monitored is defined,
    When the threshold value is exceeded, the occurrence of the error item is confirmed from the component data collected for each of the monitoring target components, the error item is checked against a corresponding combination pattern in the table, and the monitoring target component in which an error has occurred is detected. And a cause of the abnormality occurring in the part.
    The substrate processing apparatus according to claim 1.
  3.  前記監視対象の部品は、少なくとも前記基板処理系に含まれる反応室のガス供給側の部品と、前記反応室のガス排気側の部品とが、それぞれ一つ以上選択されるように構成されている請求項1に記載の基板処理装置。 The components to be monitored are configured such that at least one or more components on the gas supply side of the reaction chamber and components on the gas exhaust side of the reaction chamber included in the substrate processing system are selected. The substrate processing apparatus according to claim 1.
  4.  前記監視対象の部品は、流量制御器と圧力センサである、
     請求項3に記載の基板処理装置。
    The components to be monitored are a flow controller and a pressure sensor,
    The substrate processing apparatus according to claim 3.
  5.  前記予め決められた収集条件は、前記ステップの処理時間、前記基板処理系に含まれる排気バルブの開閉状態、および、前記基板処理系に含まれる排気装置の動作状態を含む請求項1に記載の基板処理装置。 2. The method according to claim 1, wherein the predetermined collection conditions include a processing time of the step, an open / close state of an exhaust valve included in the substrate processing system, and an operating state of an exhaust device included in the substrate processing system. 3. Substrate processing equipment.
  6.  前記相関カーブは、前記基板処理系に含まれる圧力センサの実測値が縦軸に、前記基板処理系に含まれる反応室に供給されたガスの実流量が横軸に、それぞれプロットされて構成されている請求項1に記載の基板処理装置。 The correlation curve is formed by plotting an actual measurement value of a pressure sensor included in the substrate processing system on a vertical axis and an actual flow rate of gas supplied to a reaction chamber included in the substrate processing system on a horizontal axis. The substrate processing apparatus according to claim 1, wherein:
  7.  前記制御部は、前記ステップ毎に前記収集条件と合致しているか確認し、合致したステップにおいて、前記反応室の圧力を測定する圧力センサの実測値に対する前記前記反応室に供給されるガスの実流量が算出するように構成されている請求項1に記載の基板処理装置。 The control unit checks whether the collection condition is satisfied for each step, and in the matched step, the actual value of the gas supplied to the reaction chamber with respect to the actual measurement value of the pressure sensor that measures the pressure of the reaction chamber. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is configured to calculate a flow rate.
  8.  前記初期相関カーブは、前記基板処理部が所定の成膜性能を発揮している状態での前記相関カーブに相当する請求項1に記載の基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein the initial correlation curve corresponds to the correlation curve when the substrate processing unit is exhibiting a predetermined film forming performance. 3.
  9.  前記監視対象の部品についてのエラー項目として、前記基板処理系に含まれる前記反応室のガス供給側の部品に関連するエラー項目と、前記反応室のガス排気側の部品に関連するエラー項目とが、それぞれ設けられている請求項2に記載の基板処理装置。 As error items for the monitored component, there are an error item related to a gas supply side component of the reaction chamber included in the substrate processing system and an error item related to a gas exhaust side component of the reaction chamber. 3. The substrate processing apparatus according to claim 2, wherein each of the substrate processing apparatuses is provided.
  10.  前記監視対象の部品についてのエラー項目は、前記基板処理系に含まれるマスフローコントローラのゼロ点電圧、前記マスフローコントローラにおける設定流量と実流量との偏差、および、前記反応室のリークレートの組み合わせで構成されている請求項9に記載の基板処理装置。 The error item for the monitored component is configured by a combination of a zero point voltage of a mass flow controller included in the substrate processing system, a deviation between a set flow rate and an actual flow rate in the mass flow controller, and a leak rate of the reaction chamber. The substrate processing apparatus according to claim 9, wherein:
  11.  前記制御部は、前記プロセスレシピを実行させる毎に、前記相関カーブを生成して、前記初期相関カーブとの比較を行うように構成されている請求項1に記載の基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein the control unit is configured to generate the correlation curve each time the process recipe is executed and to compare the correlation curve with the initial correlation curve. 3.
  12.  前記制御部は、任意の複数点の前記実流量における前記実測値の差分の合計が前記閾値を超えたときにアラームを発生させるよう構成されている請求項9に記載の基板処理装置。 10. The substrate processing apparatus according to claim 9, wherein the control unit is configured to generate an alarm when a sum of differences between the measured values at the plurality of arbitrary points exceeds the threshold.
  13.  前記監視対象の部品を一覧形式のテーブル表として、前記監視対象の部品を含む前記基板処理系を装置概要図として、画面上に表示するように構成されている表示部を備え、
     前記制御部は、前記閾値を超えた場合に、アラームを発生させるとともに、該アラームを発生させた異常を生じさせた監視対象の部品と該異常が発生していない部品と識別可能に前記表示部に表示させるよう構成されている請求項1に記載の基板処理装置。
    A display unit configured to display on the screen the component to be monitored as a table table in a list format, the substrate processing system including the component to be monitored as an apparatus schematic diagram,
    The control unit is configured to, when the threshold value is exceeded, generate an alarm, and display the display unit so as to be able to discriminate between the component to be monitored that has caused the abnormality that caused the alarm and the component where the abnormality has not occurred. 2. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is configured to display the information.
  14.  複数のステップで構成されるプロセスレシピを実行して基板処理系を動作させる基板処理工程を有する半導体装置の製造方法であって、
     前記基板処理工程は、
     前記プロセスレシピの実行中に、予め決められた収集条件を満たすステップについて、前記基板処理系における監視対象の部品についての部品データを収集する工程と、
     収集した前記部品データの相関関係を示す相関カーブを生成する工程と、
     生成した前記相関カーブと予め記憶させていた基準となる初期相関カーブとを比較して、前記相関カーブと前記初期相関カーブとの差分が予め決められた閾値を超えているか判定する工程と、
     前記閾値を超えた場合に、アラームを発生させる工程と、
     を有する半導体装置の製造方法。
    A method of manufacturing a semiconductor device having a substrate processing step of operating a substrate processing system by executing a process recipe including a plurality of steps,
    The substrate processing step includes:
    During the execution of the process recipe, for a step that satisfies a predetermined collection condition, a step of collecting component data on a component to be monitored in the substrate processing system,
    Generating a correlation curve indicating a correlation between the collected component data;
    Comparing the generated correlation curve and an initial correlation curve serving as a reference stored in advance, and determining whether a difference between the correlation curve and the initial correlation curve exceeds a predetermined threshold value,
    Generating an alarm when the threshold is exceeded;
    A method for manufacturing a semiconductor device having:
  15.  複数のステップで構成されるプロセスレシピを実行して基板処理系を動作させる手順と、
     前記プロセスレシピの実行中に、予め決められた収集条件を満たすステップについて、前記基板処理系における監視対象の部品についての部品データを収集する手順と、
     収集した前記部品データの相関関係を示す相関カーブを生成する手順と、
     生成した前記相関カーブと予め記憶させていた基準となる初期相関カーブとを比較して、前記相関カーブと前記初期相関カーブとの差分が予め決められた閾値を超えているか判定する手順と、
     前記閾値を超えた場合に、アラームを発生させる手順と、
     をコンピュータを介して基板処理装置に実行させるプログラム。
    A procedure for operating a substrate processing system by executing a process recipe including a plurality of steps;
    During the execution of the process recipe, for a step that satisfies a predetermined collection condition, a procedure of collecting component data on a component to be monitored in the substrate processing system,
    A procedure for generating a correlation curve indicating a correlation between the collected component data,
    Comparing the generated correlation curve with an initial correlation curve serving as a reference stored in advance, and determining whether a difference between the correlation curve and the initial correlation curve exceeds a predetermined threshold value,
    A procedure for generating an alarm when the threshold value is exceeded;
    That causes a substrate processing apparatus to execute the above through a computer.
PCT/JP2018/034419 2018-09-18 2018-09-18 Substrate processing apparatus, semiconductor device manufacturing method, and program WO2020059011A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/034419 WO2020059011A1 (en) 2018-09-18 2018-09-18 Substrate processing apparatus, semiconductor device manufacturing method, and program
CN201880097796.3A CN112740358B (en) 2018-09-18 2018-09-18 Substrate processing apparatus, method for manufacturing semiconductor device, and recording medium
JP2020547492A JP7186236B2 (en) 2018-09-18 2018-09-18 SUBSTRATE PROCESSING APPARATUS, SEMICONDUCTOR DEVICE MANUFACTURING METHOD AND PROGRAM
KR1020217000321A KR102512456B1 (en) 2018-09-18 2018-09-18 Substrate processing device, semiconductor device manufacturing method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034419 WO2020059011A1 (en) 2018-09-18 2018-09-18 Substrate processing apparatus, semiconductor device manufacturing method, and program

Publications (1)

Publication Number Publication Date
WO2020059011A1 true WO2020059011A1 (en) 2020-03-26

Family

ID=69887049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034419 WO2020059011A1 (en) 2018-09-18 2018-09-18 Substrate processing apparatus, semiconductor device manufacturing method, and program

Country Status (4)

Country Link
JP (1) JP7186236B2 (en)
KR (1) KR102512456B1 (en)
CN (1) CN112740358B (en)
WO (1) WO2020059011A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135990A1 (en) * 2022-01-13 2023-07-20 株式会社Screenホールディングス Appropriateness determination device and appropriateness determination method
WO2023171446A1 (en) * 2022-03-11 2023-09-14 株式会社Screenホールディングス Substrate processing device management system, management device, substrate processing device, substrate processing device management method, and substrate processing device management program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200879A (en) * 2021-12-08 2022-03-18 长江存储科技有限责任公司 Gas leakage monitoring method and device and computer storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228911A (en) * 2005-02-16 2006-08-31 Tokyo Electron Ltd Equipment for producing semiconductor, computer program and storage medium
JP2007088035A (en) * 2005-09-20 2007-04-05 Toshiba Corp Process control system, process control method, and manufacturing method of electronic device
JP2011014658A (en) * 2009-06-30 2011-01-20 Canon Anelva Corp Electronic component manufacturing apparatus, alarm notification program, and alarm notification system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152999A (en) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd Method and system for plasma processing
WO2006070689A1 (en) * 2004-12-28 2006-07-06 Tokyo Electron Limited Semiconductor manufacturing apparatus, abnormality detection in such semiconductor manufacturing apparatus, method for specifying abnormality cause or predicting abnormality, and recording medium wherein computer program for executing such method is recorded
KR20150055180A (en) * 2013-11-12 2015-05-21 (주)플러스비젼 Monitoring system and method of mass flow controller trerefor
JP2016115738A (en) * 2014-12-12 2016-06-23 東京エレクトロン株式会社 Etching method and bevel etching device
JP6484525B2 (en) * 2015-08-03 2019-03-13 東芝三菱電機産業システム株式会社 Alarm device and process control system
CN108885970B (en) 2016-03-31 2024-02-02 株式会社国际电气 Substrate processing apparatus, apparatus management controller, and recording medium
JP6594931B2 (en) 2016-10-31 2019-10-23 株式会社Kokusai Electric Substrate processing apparatus, monitoring program, and semiconductor device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228911A (en) * 2005-02-16 2006-08-31 Tokyo Electron Ltd Equipment for producing semiconductor, computer program and storage medium
JP2007088035A (en) * 2005-09-20 2007-04-05 Toshiba Corp Process control system, process control method, and manufacturing method of electronic device
JP2011014658A (en) * 2009-06-30 2011-01-20 Canon Anelva Corp Electronic component manufacturing apparatus, alarm notification program, and alarm notification system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135990A1 (en) * 2022-01-13 2023-07-20 株式会社Screenホールディングス Appropriateness determination device and appropriateness determination method
WO2023171446A1 (en) * 2022-03-11 2023-09-14 株式会社Screenホールディングス Substrate processing device management system, management device, substrate processing device, substrate processing device management method, and substrate processing device management program

Also Published As

Publication number Publication date
KR102512456B1 (en) 2023-03-20
CN112740358A (en) 2021-04-30
KR20210019057A (en) 2021-02-19
CN112740358B (en) 2024-03-08
JPWO2020059011A1 (en) 2021-08-30
JP7186236B2 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP7291255B2 (en) PROCESSING APPARATUS, EQUIPMENT MANAGEMENT CONTROLLER, PROGRAM, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP6446537B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
WO2006070689A1 (en) Semiconductor manufacturing apparatus, abnormality detection in such semiconductor manufacturing apparatus, method for specifying abnormality cause or predicting abnormality, and recording medium wherein computer program for executing such method is recorded
JP6905107B2 (en) Manufacturing methods and programs for substrate processing equipment, equipment management controllers, and semiconductor equipment
WO2020059011A1 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
US10937676B2 (en) Substrate processing apparatus and device management controller
JP4882239B2 (en) Semiconductor manufacturing apparatus, computer program, and storage medium
JP2015115540A (en) Management apparatus, management method of substrate processing device, substrate processing system and recording medium
JP4607576B2 (en) Semiconductor manufacturing equipment
JP6833048B2 (en) Substrate processing equipment, abnormality monitoring method for substrate processing equipment, and programs
JP2013033967A (en) Substrate processing apparatus abnormality detection method and substrate processing apparatus
TWI796622B (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP5142353B2 (en) Substrate processing apparatus, substrate processing apparatus abnormality detection method, substrate processing system, substrate processing apparatus abnormality detection program, and semiconductor device manufacturing method
JP6864705B2 (en) Manufacturing method of substrate processing equipment, control system and semiconductor equipment
JP5273961B2 (en) Substrate processing system and substrate processing method
WO2020059070A1 (en) Substrate treatment device, method for manufacturing semiconductor device and program
JP2007243015A (en) Substrate processing apparatus
TW202129792A (en) Substrate processing device, method for manufacturing semiconductor device, and sign detection program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547492

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217000321

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934305

Country of ref document: EP

Kind code of ref document: A1