WO2020058648A1 - Etancheite d'une turbine - Google Patents

Etancheite d'une turbine Download PDF

Info

Publication number
WO2020058648A1
WO2020058648A1 PCT/FR2019/052206 FR2019052206W WO2020058648A1 WO 2020058648 A1 WO2020058648 A1 WO 2020058648A1 FR 2019052206 W FR2019052206 W FR 2019052206W WO 2020058648 A1 WO2020058648 A1 WO 2020058648A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
seal
radial
radially
longitudinal dimension
Prior art date
Application number
PCT/FR2019/052206
Other languages
English (en)
Inventor
Frédéric Philippe Jean-Jacques PARDO
Original Assignee
Safran Helicopter Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines filed Critical Safran Helicopter Engines
Priority to CN201980066825.4A priority Critical patent/CN112840105B/zh
Priority to EP19791320.5A priority patent/EP3853445B1/fr
Priority to US17/277,873 priority patent/US11408298B2/en
Priority to CA3113137A priority patent/CA3113137A1/fr
Publication of WO2020058648A1 publication Critical patent/WO2020058648A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/28Three-dimensional patterned
    • F05D2250/283Three-dimensional patterned honeycomb

Definitions

  • the present invention relates to the general field of devices ensuring a sealing function in a turbine stage in a turbomachine, such as a turbojet or an airplane turboprop.
  • a turbine 10 comprises a plurality of stages 12 each formed of an annular row of fixed vanes 14 carried externally by an external casing 16 and an annular row of movable vanes 18.
  • a radially external annular platform 20 is mounted at the radially external end of the fixed vanes 14.
  • Each annular row of fixed vanes 14 forms a distributor 22.
  • the movable vanes 18 comprise a radially external annular platform 24 comprising wipers 26 intended to cooperate with a ring 28 of abradable material.
  • the terms radially inward or radially outward are to be understood in relation to a radial direction relative to the axis of rotation of the bladed wheel 18 which is the axis of rotation of the rotor of the turbine 10.
  • a first technical solution would be to have a seal between an external casing of the turbine and the platform radially external to the distributor.
  • the integration of the seal makes it possible to limit the flow rates of hot air outside the vein.
  • the integration of the seal can cause thermal conduction problems between the distributor and the external casing of the turbine. This thermal problem is due to the difficulty in achieving perfect contact between three separate parts, namely the distributor, the seal and the external turbine casing. This optimal contact between the three parts makes it possible to limit the leakage of hot air but implies significant thermal conduction between the distributor and the external casing which mechanically weakens the latter.
  • the radially external platform 20 of the distributor 22 has an upstream end extending substantially longitudinally in the direction of the radially external platform 24 of the bladed wheel 18 provided with movable vanes.
  • the downstream end of the radially outer platform 20 has a radial flange 30 extending radially outward.
  • the radially external platform 20 further comprises on its radially external face a shoulder 32.
  • An additional annular part 34 is fixed to the radially external platform 20 at the shoulder 32.
  • the additional annular part 34 thus has a base 36.
  • the radially internal surface of the base 36 is in radial contact with the radially external face of the platform 20 and the longitudinally downstream surface of the base 36 is in longitudinal contact with the shoulder 32 of the radially external platform 20.
  • From a radially external end of the base 36 of the part additional annular 34 extend first and second annular walls 38, 40.
  • the first annular wall 38 extends from the radially external end upstream of the base 36 and the second annular wall 40 extends from the radially external end downstream of the base 36.
  • the first and second annular walls 38, 40 respectively comprise a first part 38a, 40a and a second part 38b, 40b.
  • the first annular wall 38 comprises a first part 38a which extends along a radial component towards the outside and a longitudinal component upstream and the second part 38b which extends only along a longitudinal component towards the upstream.
  • the second annular wall 40 comprises a first part 40a which extends along a radial component outwards and a longitudinal component downstream and the second part 40b extends only along a longitudinal component downstream .
  • the external casing 16 has an annular groove 42 opening radially inwardly, facing the distributor 22 and more specifically the additional annular part 34 fixed to the distributor 22.
  • An annular seal 44 is inserted in the annular groove 42.
  • the seal 44 has an upstream end in contact with an upstream radial wall defining the annular groove 42 upstream.
  • the annular seal 44 also has a downstream end in contact with a downstream wall defining the annular groove 42 downstream.
  • the annular groove 42 of the outer casing 16 also has a bottom. However, the seal 44 has no radial contact with the bottom of the annular groove 42.
  • a portion of the seal 44 inserted in the annular groove 42 projects radially inwards relative to the radially internal ends of the upstream and downstream walls delimiting the annular groove 42.
  • the radially internal end of the seal portion 44 in projection of the annular groove 42 comes radially into abutment with the radially external surface of the second part 40b of the second annular wall 40 of the additional annular part 34, so as to form an annular surface contact.
  • part of the hot air flows out of the vein between the downstream end of the radially external platform 24 of an upstream paddlewheel18 and an upstream end of the platform radially external of a distributor 22 arranged downstream of the bladed wheel 18.
  • baffle 46 formed using the first annular wall 38 of the additional annular part 34 This baffle 46 makes it possible to divert part of the air intended to direct downstream of the first annular wall 38 of the additional annular part 34, in the part outside the vein.
  • the use of the additional annular part 34 makes it possible to limit the heat conduction from the distributor 22 to the external casing 16 of the turbine 10, so that the temperature of the external casing 16 is acceptable.
  • this additional annular part 34 is complex and the production of the latter is expensive.
  • the integration of this annular part 34 does not guarantee a good contact surface between the annular seal 44 and the second annular wall 40 of said annular part 34.
  • the invention aims to provide a sealing device for limiting the thermal conduction between the distributor 22 and the outer casing 16 of the turbine while overcoming the problems mentioned above and this at a lower cost.
  • the present invention relates to an assembly for a stepped turbine of a turbomachine, the assembly comprising a static sealing device, a turbine distributor having a radially external end and an external casing surrounding the distributor, the static sealing device being disposed radially between a radially external end of the distributor and the external casing, and comprising an annular seal carried by the distributor and an annular structure defining a plurality of radial annular walls spaced axially from each other, at least one first wall of said annular walls radial being in annular contact radially inwardly with the annular seal, the longitudinal dimension of said at least one first wall being less than the longitudinal dimension of the seal.
  • At least one of the radial annular walls of the annular structure has a smaller longitudinal dimension than that of the seal, at the level of the contact zone between the seal and said radial annular wall, which makes it possible to reduce the contact surface. between the joint and the annular structure. When this contact surface is reduced, it is easier to guarantee that the seal between the distributor and the external casing by means of the annular seal is ensured.
  • leakage paths may appear between the annular seal and an annular structure of the external casing. These leaks can be caused by a defect in the flatness of the surface in contact with the annular seal. The presence of leakage paths impairs the seal between the distributor and the external casing of the turbine and reduces the heat conduction between these parts.
  • the reduction of the contact surface makes it possible to improve the control. and limit the possibility of the existence of escape routes. Sealing is thus improved if the contact surface between the seal and one of the radial walls of the annular structure is reduced.
  • the annular seal may be in annular linear contact with said at least one first annular radial wall of the annular structure.
  • the annular structure may have a hollow shape shaped so as to include at least two radial annular walls whose spacing in the longitudinal direction is less than the longitudinal dimension of the joint.
  • the fact that the spacing in the longitudinal direction of two adjacent radial annular walls of the annular structure is less than the longitudinal dimension of the seal makes it possible to guarantee that the annular seal is in contact, over the whole of the circumferentiality, with at least one of the radial annular walls of the annular structure. In this way, regardless of the shape and the longitudinal dimension between an upstream end and a downstream end of the radial annular wall in contact with the seal, the seal comes annularly into continuous contact with the radially internal end of the radial wall. annular of the annular structure.
  • the dispenser may comprise a radial annular part comprising an annular groove opening radially outward and receiving said annular seal.
  • the seal is housed in an annular groove which comprises an upstream annular flank and a downstream annular flank.
  • the air flow in the turbine induces an overpressure on an upstream surface of the seal.
  • the seal is then compressed axially, at its downstream surface, against the downstream annular flank of the annular groove. In this state of axial compression, the seal abuts on the annular flank downstream of the annular groove. In operation, the effects of pressure keep the seal in contact with the downstream side of the groove.
  • the radially outer end of the dispenser in contact with the annular seal preferably has a groove opening radially outward, more precisely facing the annular structure, in order to receive the seal.
  • This groove makes it possible to prevent any displacement of the joint in a longitudinal direction. In this way, the annular contact between the seal and the radially inner end of at least one radial annular wall is guaranteed.
  • the dispenser comprises a radial annular part, in the thickness of which the groove is formed.
  • the annular seal may include at least two rings, and more particularly two rings, arranged longitudinally in abutment against one another.
  • the rings are split.
  • the slot in these split rings is dimensioned to form a leak at the lowest possible split portion of the ring when the turbine is in operation.
  • the split rings have elastic compression radially inward or elastic expansion radially outward depending on the desired cylindrical seat. If a joint comprising two split rings is used, the rings are angularly mounted so that the slots are spaced from each other in order to avoid even partial overlapping of these which would allow an air leak. hot.
  • the slots are positioned diametrically opposite.
  • each of the rings can be in annular contact with at least one radial annular wall of the annular structure.
  • the fact that the joint has at least two structurally independent rings arranged longitudinally in abutment allows each of these rings to be respectively in contact with at least one radially internal end of at least one radial annular wall.
  • the annular structure may have a plurality of cells opening radially inwardly formed at least in part by the radial annular walls of the annular structure.
  • the static parts of a turbine have relative axial and radial movements between them.
  • the seal can move axially while ensuring radial contact with at least one of the radial annular walls of the annular structure.
  • the annular structure provided with radial annular walls forming cells is more abradable than conventional devices and the seal will adapt perfectly well to the radial annular wall opposite.
  • Each of the cells may have a hexagonal shape.
  • the cells could also have a triangular, square, rectangular or octagonal shape.
  • the longitudinal dimension of the joint is greater than or equal to half of the longitudinal dimension of a cell.
  • the longitudinal dimension of the joint is greater than or equal to the longitudinal dimension of a cell.
  • the precise positioning of the groove receiving the seal and the radial annular walls of the annular structure is not necessary to ensure annular contact of the seal with at least one of the radial annular walls partially defining a plurality of cells.
  • the longitudinal dimension of each of the rings of the joint is greater than or equal to half of the longitudinal dimension of a cell.
  • the precise positioning of the groove receiving the seal and the radial annular walls of the annular structure is necessary so that at least one of the two rings of the seal and at least one of the radial annular walls are in annular contact.
  • the longitudinal dimension of each of the rings of the joint is greater than or equal to the longitudinal dimension of a cell.
  • the precise positioning of the groove receiving the seal and of the radial annular walls of the annular structure is not necessarily necessary to guarantee annular contact between the at least one of the two rings of the seal and the at least one radial annular walls of the annular structure.
  • the annular structure can be formed of several structurally independent sectors arranged circumferentially end to end.
  • the annular contact between the annular seal or a ring, and the radially inner end of one of the radial annular walls is linear.
  • FIG. 1 is a partial section view of a turbomachine turbine according to the prior art
  • Figure 2 is a partial sectional view of a turbomachine turbine according to the invention.
  • FIG. 3A is a sectional view at the level of the contact zone between the seal and the annular structure
  • Figure 3B is a sectional view of two radial annular walls intended to be brazed together.
  • FIG. 4A is a sectional view at the contact area between the seal and the annular structure
  • Figure 4B is a sectional view at the contact area between the rings forming the seal and the annular structure.
  • Figure 2 illustrates a turbine comprising a sealing device according to the invention.
  • the dispenser 22 has at its outer radial end a radially outer platform 20. From the radially outer platform 20, an annular projection 50 extends radially outward.
  • the annular projection 50 has a connecting zone 52 from which extend upstream and downstream radial annular walls 54, 56 parallel radially outward.
  • the upstream and downstream radial annular walls 54, 56 as well as the connection zone 52 of the projection 50 form an annular groove 58.
  • the upstream and downstream radial annular walls 54, 56 define the sides of the annular groove while the connecting zone 50 defines a bottom of the groove 58.
  • the annular groove 58 receives the annular seal 44.
  • the annular seal 44 is disposed in the groove so that a portion of the latter projects radially from the radially external ends of the upstream and downstream radial annular walls 54, 56 defining the groove 58.
  • the annular seal 44 has an upstream longitudinal surface in abutment with the upstream radial annular wall 54 of the groove 58 and a downstream longitudinal surface in abutment with the downstream radial annular wall 56 of the groove 58. These longitudinal abutments of the seal 44 keep the annular seal 44 in position, without having to be radially in abutment with the bottom of the groove 58.
  • the outer casing 16 has an annular groove 62 provided with a bottom 64 and two sides opening radially.
  • the groove 62 opens radially inwardly facing the groove 58 of the distributor 22.
  • the groove 62 of the external casing 16 receives the annular structure 60 which is fixed to the bottom wall 64 of the groove 62 by the through an annular cylindrical 66.
  • the annular structure 60 thus has an annular cylindrical wall 66, from which extend a plurality of radial annular walls 68.
  • the radial annular walls 68 of the annular structure 60 are longitudinally spaced from one another.
  • the radial annular walls 68 of the annular structure 60 could be directly formed by laser fusion on the bottom wall 64 of the groove 62.
  • the radially outer end of the seal 44 is radially in abutment with a radially inner end of the at least one of the radial annular walls 68 of the annular structure 60.
  • the contact between the seal 44 and a radial annular wall 68 of the annular structure 60 is annular and without discontinuity.
  • the radial annular walls 68 have common sections 70 of walls.
  • the common sections 70 of walls are spaced circumferentially from each other.
  • the radial annular walls 68 having common sections 58 form cells 72.
  • the annular structure 60 thus has a cellular structure 74 formed by the plurality of radial annular walls 68.
  • the plurality of cells 72 have a hexagonal structure.
  • the cells 72 could have a triangular, square, rectangular or octagonal shape.
  • Figure 3B illustrates two longitudinally adjacent radial annular walls 68a, 68b of the annular structure 60 obtained by stamping a sheet. These longitudinally adjacent radial annular walls 68a, 68b have portions of walls intended to be welded or brazed together at the level of the common sections 70.
  • the radial annular walls 68 of the annular structure 60 are obtained by additive manufacturing.
  • the annular seal 44 is arranged annularly in contact with the internal radial end of a radial annular wall 68.
  • the longitudinal dimension of the annular seal 44 must be sufficient to come into radial support at the level of the upstream and downstream ends of the radial annular wall 68 with which it is in contact.
  • the spacing in a longitudinal direction between two longitudinally adjacent radial annular walls 68a, 68b is less than the longitudinal dimension of the annular seal 44. In this way, the annular seal 44 annularly comes into annular contact with the radially internal ends of the two longitudinally adjacent walls 68a, 68b.
  • the longitudinal dimension of the annular seal 44 must be at least equal to half the longitudinal dimension of a cell 72. In this way, by precise positioning of the annular walls radial 68 of the annular structure 60 and of the groove 58 receiving the annular seal 44 makes it possible to guarantee annular contact of the seal with at least one of said radial annular walls 68.
  • the annular seal 44 may then have annularly radial contact with the internal radial ends of two annular walls adjacent radials 68a, 68b.
  • the annular seal 44 has two rings 76a, 76b longitudinally in abutment against each other. These rings are preferably split.
  • the first ring 76a has an upstream end in longitudinal abutment with the upstream annular wall 54 of the annular groove 58 of the distributor 22 and a downstream end in longitudinal abutment with the upstream end of the second ring 76b.
  • the downstream end of the second ring 76b is in longitudinal abutment with the downstream radial annular wall 56 of the groove 58 of the distributor 22.
  • annular seal 44 has two rings 76a, 76b arranged longitudinally in abutment, it is advantageous that each of them annularly has radial contact with one of the radial annular walls 68 of the annular structure 60.
  • a ring 76a, 76b may have a longitudinal dimension greater than the longitudinal spacing between two longitudinally adjacent radial annular walls 68a, 68b.
  • a ring 76a, 76b may have a longitudinal dimension greater than or equal to half of the longitudinal dimension of a cell 72 or to the longitudinal dimension of a cell 72.
  • the annular seal 44 or each ring 76a, 76b is annularly in contact with the radially internal end of a radial annular wall 68 of the annular structure 60.
  • the contact between the annular seal 44 or one of the rings 76a, 76b forming part of an annular seal 44 and a radial annular wall 68 is linear, so as to allow the reduction of the contact surface. between these.

Abstract

L'invention concerne un ensemble pour une turbine (10) étagée de turbomachine, l'ensemble comprenant un dispositif d'étanchéité statique, un distributeur (22) de turbine comportant une extrémité radialement externe et un carter externe (16) entourant le distributeur (22), le dispositif d'étanchéité statique étant disposé radialement entre une extrémité radialement externe du distributeur (22) et le carter externe (16), et comprenant un joint (44) annulaire porté par le distributeur (22) et une structure annulaire (60) définissant une pluralité de parois annulaires radiales (68) espacées axialement les unes des autres, au moins une première paroi desdites parois annulaires radiales (68) étant en contact annulaire radialement vers l'intérieur avec le joint (44) annulaire et sa dimension longitudinale étant inférieure à la dimension longitudinale du joint (44).

Description

ETANCHEITE D’UNE TURBINE
DOMAINE
[001] La présente invention concerne le domaine général des dispositifs assurant une fonction d'étanchéité dans un étage de turbine dans une turbomachine, telle qu’un turboréacteur ou un turbopropulseur d'avion.
CONTEXTE
[002] Classiquement, comme illustré en figure 1 , une turbine 10 comprend une pluralité d’étages 12 formés chacun d'une rangée annulaire d'aubes fixes 14 portées extérieurement par un carter externe 16 et d’une rangée annulaire d’aubes mobiles 18. Une plate-forme annulaire radialement externe 20 est montée à l’extrémité radialement externe des aubes fixes 14. Chaque rangée annulaire d'aubes fixes 14 forme un distributeur 22. Les aubes mobiles 18 comprennent une plate-forme annulaire radialement externe 24 comportant des léchettes 26 destinées à coopérer avec un anneau 28 en matériau abradable. Les termes radialement vers l’intérieur ou radialement vers l’extérieur sont à comprendre en relation avec une direction radiale par rapport à l'axe de rotation de la roue aubagée 18 qui est l’axe de rotation du rotor de la turbine 10.
[003] En fonctionnement, il est nécessaire de limiter les fuites d’air chaud hors veine, plus précisément les circulations d’air chaud s’écoulant radialement vers l’extérieur au niveau d’un espace annulaire entre l’extrémité aval de la plateforme annulaire externe d’une roue aubagée amont AM et l’extrémité amont de la plateforme d’un distributeur agencé en aval AV. Cette fuite d’air chaud réduit les performances de la turbomachine et peut aussi conduire à échauffer le carter et de manière générale toutes les pièces environnantes.
[004] Une première solution technique consisterait à disposer un joint d’étanchéité entre un carter externe de la turbine et la plate-forme radialement externe du distributeur. L’intégration du joint d’étanchéité permet de limiter les débits de fuite d’air chaud hors veine. Toutefois, l’intégration du joint d’étanchéité peut engendrer des problèmes de conduction thermique entre le distributeur et le carter externe de la turbine. Ce problème thermique est dû à la difficulté à réaliser un contact parfait entre trois pièces distinctes, à savoir le distributeur, le joint et le carter externe de turbine. Ce contact optimal entre les trois pièces permet de limiter les fuites d’air chaud mais implique une importante conduction thermique entre le distributeur et le carter externe qui fragilise mécaniquement ce dernier.
[005] Ainsi, il a été proposé comme en figure 1 , une technologie permettant de remédier aux problèmes technologiques mentionnés précédemment.
[006] La plate-forme radialement externe 20 du distributeur 22 présente une extrémité amont s’étendant sensiblement longitudinalement en direction de la plate-forme radialement externe 24 de la roue aubagée 18 munie d’aubes mobiles. L’extrémité aval de la plateforme radialement externe 20 présente une bride radiale 30 s’étendant radialement vers l’extérieur.
[007] La plateforme radialement externe 20 comprend en outre sur sa face radialement externe un épaulement 32.
[008] Une pièce annulaire additionnelle 34 est fixée à la plate-forme radialement externe 20 au niveau de l’épaulement 32. La pièce annulaire additionnelle 34 présente ainsi une base 36. La surface radialement interne de la base 36 est en contact radial avec la face radialement externe de la plateforme 20 et la surface longitudinalement aval de la base 36 est en contact longitudinal avec l’épaulement 32 de la plate-forme radialement externe 20. A partir d’une extrémité radialement externe de la base 36 de la pièce additionnelle 34 annulaire s’étendent une première et une seconde parois annulaires 38, 40.
[009] La première paroi annulaire 38 s’étend à partir de l’extrémité radialement externe amont de la base 36 et la seconde paroi annulaire 40 s’étend à partir de l’extrémité radialement externe aval de la base 36. Les première et seconde parois annulaires 38, 40 comprennent respectivement une première partie 38a, 40a et une seconde partie 38b, 40b.
[010] La première paroi annulaire 38 comprend une première partie 38a qui s’étend selon une composante radiale vers l’extérieur et une composante longitudinale vers l’amont et la seconde partie 38b qui s’étend uniquement selon une composante longitudinale vers l’amont.
[011] La seconde paroi annulaire 40 comprend une première partie 40a qui s’étend selon une composante radiale vers l’extérieur et une composante longitudinale vers l’aval et la seconde partie 40b s’étend uniquement selon un composant longitudinale vers l’aval.
[012] L’ extrémité aval de la seconde paroi annulaire 40 vient longitudinalement à proximité, sans contact, ou en butée sur la bride radiale 30 de la plate-forme radialement externe 20 du distributeur 22.
[013] Le carter externe 16 présente une gorge annulaire 42 débouchant radialement vers l’intérieur, en vis-à-vis du distributeur 22 et plus précisément de la pièce annulaire additionnelle 34 fixée au distributeur 22. Un joint 44 annulaire est inséré dans la gorge annulaire 42. Le joint 44 présente une extrémité amont en contact avec une paroi radiale amont délimitant la gorge annulaire 42 vers l’amont. Le joint 44 annulaire présente également une extrémité aval en contact avec une paroi aval délimitant la gorge annulaire 42 vers l’aval.
[014] La gorge annulaire 42 du carter externe 16 présente également un fond. Toutefois, le joint 44 est dépourvu de contact radial avec le fond de la gorge annulaire 42.
[015] Une portion du joint 44 inséré dans la gorge annulaire 42 fait saillie radialement vers l’intérieur par rapport aux extrémités radialement internes des parois amont et aval délimitant la gorge annulaire 42. L’extrémité radialement interne de la portion de joint 44 en saillie de la gorge annulaire 42 vient radialement en butée avec la surface radialement externe de la seconde partie 40b de la seconde paroi annulaire 40 de la pièce annulaire additionnelle 34, de manière à former un contact annulaire surfacique. [016] En fonctionnement, une partie de l’air chaud s’écoule hors veine entre l’extrémité aval de la plate-forme radialement externe 24 d’une roue d’aubes aubagée18 amont et une extrémité amont de la plate-forme radialement externe d’un distributeur 22 agencé en aval de la roue aubagée 18. Le déplacement de cet air chaud hors veine est limité par la présence d’une chicane 46 formée à l’aide de la première paroi annulaire 38 de la pièce annulaire additionnelle 34. Cette chicane 46 permet de détourner une partie de l’air destiné à se diriger en aval de la première paroi annulaire 38 de la pièce annulaire additionnelle 34, dans la partie hors veine.
[017] En outre, l’air qui s’est quand même écoulé hors veine en aval de la première paroi annulaire 38 de la pièce annulaire additionnelle 34 est bloqué par le biais du joint 44 agencé radialement entre le carter externe 16 et la seconde paroi annulaire 40 de la pièce annulaire additionnelle 34.
[018] Enfin, l’usage de la pièce annulaire additionnelle 34 permet de limiter la conduction de chaleur du distributeur 22 vers le carter externe 16 de la turbine 10, de manière à ce que la température du carter externe 16 soit acceptable.
[019] Néanmoins, si le gain en conduction thermique est notable, il s’avère toutefois être limité et nécessite l’usage d’une pièce annulaire additionnelle 34 dont la masse est non négligeable. Cette masse additionnelle augmente la consommation de la turbomachine.
[020] En outre, la forme de cette pièce annulaire additionnelle 34 est complexe et la production de cette dernière est coûteuse. Au surplus, l’intégration de cette pièce annulaire 34 ne permet pas de garantir une bonne surface de contact entre le joint 44 annulaire et la seconde paroi annulaire 40 de ladite pièce annulaire 34.
[021] Enfin, cette pièce annulaire additionnelle 34 nécessite une solution d’assemblage onéreuse (soudure, brasure, usage de pions, ...).
[022] L'invention vise à réaliser un dispositif d’étanchéité permettant de limiter la conduction thermique entre le distributeur 22 et le carter externe 16 de la turbine tout en surmontant les problèmes mentionnés précédemment et ceci à un coût moindre.
RESUME DE L’INVENTION
[023] La présente invention concerne un ensemble pour une turbine étagée de turbomachine, l'ensemble comprenant un dispositif d'étanchéité statique, un distributeur de turbine comportant une extrémité radialement externe et un carter externe entourant le distributeur, le dispositif d'étanchéité statique étant disposé radialement entre une extrémité radialement externe du distributeur et le carter externe, et comprenant un joint annulaire porté par le distributeur et une structure annulaire définissant une pluralité de parois annulaires radiales espacées axialement les unes des autres, au moins une première paroi desdites parois annulaires radiales étant en contact annulaire radialement vers l’intérieur avec le joint annulaire, la dimension longitudinale de ladite au moins une première paroi étant inférieure à la dimension longitudinale du joint.
[024] Au moins une des parois annulaires radiales de la structure annulaire présente une dimension longitudinale plus faible que celle du joint, au niveau de la zone de contact entre le joint et ladite paroi annulaire radiale, ce qui permet de réduire la surface de contact entre le joint et la structure annulaire. Lorsque cette surface de contact est réduite, il est plus facile de garantir que l’étanchéité entre le distributeur et le carter externe par le biais du joint annulaire est assurée.
[025] Dans le cas où la surface de contact est importante, des chemins de fuite peuvent apparaître entre le joint annulaire et une structure annulaire du carter externe. Ces fuites peuvent être causées par un défaut de planéité de la surface en contact du joint annulaire. La présence de chemins de fuite altère l’étanchéité entre le distributeur et le carter externe de la turbine et la réduction de la conduction de chaleur entre ces pièces. Toutefois, dans cette invention, la réduction de la surface de contact permet d’améliorer le contrôle et de limiter la possibilité d’existence de chemins de fuite. L’étanchéité est ainsi améliorée si la surface de contact entre le joint et l’une des parois radiales de la structure annulaire est réduite.
[026] Le joint annulaire peut être en contact linéique annulaire avec ladite au moins une première paroi annulaire radiale de la structure annulaire.
[027] La surface de contact étant à réduire entre le joint annulaire et l’extrémité radialement interne de la paroi annulaire radiale, il est alors préférable que ce contact soit linéique.
[028] La structure annulaire peut présenter une forme creuse conformée de manière à comprendre au moins deux parois annulaires radiales dont l’espacement dans la direction longitudinale est inférieur à la dimension longitudinale du joint.
[029] Avantageusement, le fait que l’espacement dans la direction longitudinale de deux parois annulaires radiales adjacentes de la structure annulaire soit inférieur à la dimension longitudinale du joint permet de garantir que le joint annulaire est en contact, sur l’intégralité de la circonférentialité, avec au moins l’une des parois annulaires radiales de la structure annulaire. De cette manière, indépendamment de la forme et de la dimension longitudinale entre une extrémité amont et une extrémité aval de la paroi annulaire radiale en contact avec le joint, le joint vient annulairement en contact sans discontinuité avec l’extrémité radialement interne de la paroi radiale annulaire de la structure annulaire.
[030] Le distributeur peut comprendre une partie annulaire radiale comportant une gorge annulaire débouchant radialement vers l’extérieur et recevant ledit joint annulaire.
[031] Le joint est logé dans une gorge annulaire qui comprend un flanc annulaire amont et un flanc annulaire aval. En fonctionnement, l’écoulement d’air dans la turbine induit une surpression sur une surface amont du joint. Le joint est alors comprimé axialement, au niveau de sa surface aval, contre le flanc annulaire aval de la gorge annulaire. Dans cet état de compression axiale, le joint est en butée sur le flanc annulaire aval de la gorge annulaire. En fonctionnement, les effets de la pression maintiennent le joint en appui sur le flanc aval de la gorge.
[032] L’extrémité radialement externe du distributeur en contact avec le joint annulaire présente préférentiellement une gorge débouchant radialement vers l’extérieur, plus précisément en regard de la structure annulaire, afin de recevoir le joint. Cette gorge permet d’empêcher tout déplacement du joint dans une direction longitudinale. De cette manière, le contact annulaire entre le joint et l’extrémité radialement interne d’au moins une paroi annulaire radiale est garantie.
[033] Dans un mode de réalisation particulier, le distributeur comprend une partie annulaire radiale, dans l’épaisseur de laquelle est formée la gorge.
[034] Le joint annulaire peut comprendre au moins deux anneaux, et plus particulièrement deux anneaux, disposés longitudinalement en butée l’un contre l’autre.
[035] Préférentiellement, les anneaux sont fendus. La fente de ces anneaux fendus est dimensionnée pour former une fuite au niveau de la partie fendue de l’anneau la plus faible possible lorsque la turbine est en fonctionnement. Les anneaux fendus présentent une compression élastique radialement vers l’intérieur ou une expansion élastique radialement vers l’extérieur en fonction de la portée cylindrique souhaitée. Si un joint comprenant deux anneaux fendus est utilisé, les anneaux sont montés angulairement de manière à ce que les fentes soient espacées l’une de l’autre afin d’éviter un recouvrement même partiel de celles-ci qui autoriserait une fuite d’air chaud. Préférentiellement, les fentes sont positionnées diamétralement opposées.
[036] Préférentiellement, chacun des anneaux peut être en contact annulaire avec au moins une paroi annulaire radiale de la structure annulaire.
[037] Le fait que le joint présente au moins deux anneaux structurellement indépendants agencés longitudinalement en butée permet que chacun de ces anneaux soit respectivement en contact avec au moins une extrémité radialement interne d’au moins une paroi annulaire radiale. [038] La structure annulaire peut présenter une pluralité d’alvéoles débouchant radialement vers l’intérieur formées au moins pour partie par les parois annulaires radiales de la structure annulaire.
[039] La présence d’alvéoles débouchant radialement vers l’intérieur à partir de la structure annulaire permet, par une augmentation du nombre de surfaces espacées, de limiter d’avantage le transfert de chaleur issue du distributeur vers le carter externe de la turbine.
[040] Les pièces statiques d’une turbine présentent des mouvements relatifs axiaux et radiaux entre elles. De ce fait, le joint peut se déplacer axialement tout en garantissant un contact radial avec l’au moins une des parois annulaires radiales de la structure annulaire. La structure annulaire munie de parois annulaires radiales formant des alvéoles est plus abradable que les dispositifs classiques et le joint s’adaptera parfaitement bien à la paroi annulaire radiale en vis-à-vis.
[041] Chacune des alvéoles peut présenter une forme hexagonale.
[042] Dans un mode réalisation spécifique, les alvéoles pourraient également avoir une forme triangulaire, carrée, rectangulaire ou octogonale.
[043] Dans un premier mode de réalisation, la dimension longitudinale du joint est supérieure ou égale à la moitié de la dimension longitudinale d’une alvéole.
[044] Dans le cas où la dimension longitudinale du joint est supérieure ou égale à la dimension d’une demie alvéole, et plus particulièrement inférieure à la dimension d’une alvéole, un positionnement précis de la gorge recevant le joint et des parois annulaires radiales de la structure annulaire permet de garantir un contact annulaire sans discontinuité entre le joint annulaire et l’extrémité radialement interne de l’une des parois annulaires radiales.
[045] Dans un second mode de réalisation, la dimension longitudinale du joint est supérieure ou égale à la dimension longitudinale d’une alvéole.
[046] Dans ce cas, le positionnement précis de la gorge recevant le joint et des parois annulaires radiales de la structure annulaire n’est pas nécessaire pour garantir un contact annulaire du joint avec au moins une des parois annulaires radiales définissant partiellement une pluralité d’alvéoles.
[047] Avantageusement, si la dimension longitudinale du joint anneau est supérieure ou égale à la dimension longitudinale d’une alvéole, l’intégralité des extrémités inférieures des parois définissant l’alvéole sont en contact annulaire avec le joint.
[048] Dans un troisième mode de réalisation, la dimension longitudinale de chacun des anneaux du joint est supérieure ou égale à la moitié de la dimension longitudinale d’une alvéole. Le positionnement précis de la gorge recevant le joint et des parois annulaires radiales de la structure annulaire est nécessaire pour que l’au moins un des deux anneaux du joint et au moins une des parois annulaires radiales soient en contact annulaire.
[049] Dans un quatrième mode de réalisation, la dimension longitudinale de chacun des anneaux du joint est supérieure ou égale à la dimension longitudinale d’une alvéole. Dans ce cas, le positionnement précis de la gorge recevant le joint et des parois annulaires radiales de la structure annulaire n’est pas forcément nécessaire pour garantir un contact annulaire entre l’au moins un des deux anneaux du joint et l’au moins une des parois annulaires radiales de la structure annulaire.
[050] Préférentiellement, la structure annulaire peut être formée de plusieurs secteurs structurellement indépendants agencés circonférentiellement bout à bout.
[051] La sectorisation de la structure annulaire permet un montage simple et facile dans une gorge du carter externe débouchant radialement vers l’intérieur.
[052] Préférentiellement, le contact annulaire entre le joint annulaire ou un anneau, et l’extrémité radialement interne de l’une des parois annulaires radiales est linéique.
[053] L’invention sera mieux comprise et d’autres détails, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante faite à titre d’exemple non limitatif en référence aux dessins annexés. BREVE DESCRIPTION DES FIGURES la figure 1 est une vue en coupe partielle d’une turbine de turbomachine selon l’art antérieur ;
la figure 2 est une vue en coupe partielle d’une turbine de turbomachine selon l’invention ;
La figure 3A est une vue en coupe au niveau de la zone de contact entre le joint et la structure annulaire ;
la figure 3B est une vue en coupe de deux parois annulaires radiales destinées à être brasées ensemble.
- la figure 4A est une vue en coupe au niveau de la zone de contact entre le joint et la structure annulaire ;
la figure 4B est une vue en coupe au niveau de la zone de contact entre les anneaux formant le joint et la structure annulaire.
DESCRIPTION DETAILLEE [054] La figure 1 illustrant un dispositif d’étanchéité selon l’art antérieur agencé dans une turbine 10 de turbomachine a été décrite précédemment.
[055] La figure 2 illustre une turbine comprenant un dispositif d’étanchéité selon l’invention.
[056] Le distributeur 22 présente en son extrémité radiale externe une plate- forme radialement externe 20. A partir de la plate-forme radialement externe 20, une saillie 50 annulaire s’étend radialement vers l’extérieur. La saillie 50 annulaire présente une zone de liaison 52 à partir de laquelle s’étendent parallèlement des parois annulaires radiales amont et aval 54, 56 radialement vers l’extérieur.
[057] Les parois annulaires radiales amont et aval 54, 56 ainsi que la zone de liaison 52 de la saillie 50 forment une gorge 58 annulaire. Les parois annulaires radiales amont et aval 54, 56 définissent des flancs de la gorge annulaire tandis que la zone de liaison 50 définit un fond de la gorge 58. La gorge 58 annulaire reçoit le joint 44 annulaire. Le joint 44 annulaire est disposé dans la rainure de manière à ce qu’une portion de ce dernier soit radialement en saillie par rapport aux extrémités radialement externes des parois annulaires radiales amont et aval 54, 56 définissant la gorge 58.
[058] Le joint 44 annulaire présente une surface longitudinale amont en butée avec la paroi annulaire radiale amont 54 de la gorge 58 et une surface longitudinale aval en butée avec la paroi annulaire radiale aval 56 de la gorge 58. Ces butées longitudinales du joint 44 permettent de maintenir le joint 44 annulaire en position, sans avoir à être radialement en butée avec le fond de la gorge 58.
[059] L’extrémité radiale externe du joint 44 annulaire s’étendant en saillie vient radialement en butée contre une surface radialement interne d’une structure annulaire 60 fixée au carter externe 16 de la turbine 10.
[060] Le carter externe 16 présente une gorge 62 annulaire munie d’un fond 64 et de deux flancs débouchant radialement. La gorge 62 débouche radialement vers l’intérieur en vis-à-vis de la gorge 58 du distributeur 22. La gorge 62 du carter externe 16 reçoit la structure annulaire 60 qui est fixée à la paroi de fond 64 de la rainure 62 par le biais d’une cylindrique annulaire 66.
[061] La fixation de la structure annulaire 60 à la paroi de fond 64 de la gorge 62 formée sur le carter externe 16, peut être réalisée par brasage.
[062] La structure annulaire 60 présente ainsi une paroi cylindrique annulaire 66, à partir de laquelle s’étendent une pluralité de parois annulaires radiales 68. Les parois annulaires radiales 68 de la structure annulaire 60 sont espacées longitudinalement les unes des autres.
[063] Dans un autre mode de réalisation, les parois annulaires radiales 68 de la structure annulaire 60 pourraient être directement formées par fusion laser sur la paroi de fond 64 de la gorge 62.
[064] L’extrémité radialement externe du joint 44 est radialement en butée avec une extrémité radialement interne de l’au moins une des parois annulaires radiales 68 de la structure annulaire 60. Le contact entre le joint 44 et une paroi annulaire radiale 68 de la structure annulaire 60 est annulaire et sans discontinuité.
[065] Dans un mode de réalisation particulier, illustré en figure 3A, 4A et 4B, les parois annulaires radiales 68 présentent des tronçons communs 70 de parois. Les tronçons communs 70 de parois sont espacés circonférentiellement les uns des autres.
[066] Les parois annulaires radiales 68 présentant des tronçons communs 58 forment des alvéoles 72. La structure annulaire 60 présente ainsi une structure alvéolaire 74 formée par la pluralité de parois annulaires radiales 68.
[067] La pluralité d’alvéoles 72 présente une structure hexagonale.
[068] Dans un mode de réalisation différent, les alvéoles 72 pourraient avoir une forme triangulaire, carrée, rectangulaire ou octogonales.
[069] La figure 3B illustre deux parois annulaires radiales longitudinalement adjacentes 68a, 68b de la structure annulaire 60 obtenues par emboutissage d’une tôle. Ces parois annulaires radiales longitudinalement adjacentes 68a, 68b présentent des portions de parois destinées à être soudées ou brasées ensemble au niveau des tronçons communs 70.
[070] Dans un mode de réalisation alternatif, les parois annulaires radiales 68 de la structure annulaire 60 sont obtenues par fabrication additive.
[071] Comme illustré en figure 3A, le joint 44 annulaire est disposé annulairement en contact avec l’extrémité radiale interne d’une paroi annulaire radiale 68. La dimension longitudinale du joint 44 annulaire doit être suffisante pour venir en appui radiale au niveau des extrémités amont et aval de la paroi annulaire radiale 68 avec laquelle il est en contact.
[072] Dans un mode de réalisation alternatif, l’espacement dans une direction longitudinale entre deux parois annulaires radiales longitudinalement adjacentes 68a, 68b est inférieur à la dimension longitudinale du joint 44 annulaire. De cette manière, le joint 44 annulaire vient annulairement en contact annulaire avec les extrémités radialement internes des deux parois longitudinalement adjacentes 68a, 68b. [073] Si la structure annulaire 60 présente une structure 74 alvéolaire, la dimension longitudinale du joint 44 annulaire doit être au moins égale à la moitié de la dimension longitudinale d’une alvéole 72. De cette manière, par un positionnement précis des parois annulaires radiales 68 de la structure annulaire 60 et de la gorge 58 recevant le joint 44 annulaire permet de garantir un contact annulaire du joint avec au moins une desdites parois annulaires radiales 68.
[074] Si la dimension longitudinale du joint 44 annulaire est supérieure à la dimension longitudinale d’une alvéole 72, alors un positionnement précis des parois annulaires radiales 68 de la structure annulaire 60 et de la gorge 58 recevant le joint 44 annulaire n’est pas nécessaire pour garantir un contact annulaire entre le joint annulaire et l’au moins une des extrémités radialement internes des parois annulaires radiales 68 de la structure annulaire 60.
[075] Plus particulièrement, comme illustré en figure 4A, si la dimension longitudinale du joint 44 annulaire est supérieure à la dimension longitudinale des alvéoles 72, le joint 44 annulaire peut alors présenter annulairement un contact radial avec les extrémités radiales internes de deux parois annulaires radiales adjacentes 68a, 68b.
[076] Dans un mode de réalisation particulier illustré en figures 2 et 4B, le joint 44 annulaire présente deux anneaux 76a, 76b longitudinalement en butée l’un contre l’autre. Ces anneaux sont préférentiellement fendus. Le premier anneau 76a présente une extrémité amont en butée longitudinale avec la paroi annulaire amont 54 de la gorge 58 annulaire du distributeur 22 et une extrémité aval en butée longitudinale avec l’extrémité amont du second anneau 76b. L’extrémité aval du second anneau 76b est en butée longitudinale avec la paroi annulaire radiale aval 56 de la gorge 58 du distributeur 22.
[077] Lorsque le joint 44 annulaire présente deux anneaux 76a, 76b disposés longitudinalement en butée, il est avantageux que chacun d’eux présente annulairement un contact radial avec l’une des parois annulaires radiales 68 de la structure annulaire 60.
[078] Les parois annulaires radiales 68a, 68c en contact avec les anneaux 76a, 76b formant le joint 44 annulaire ne sont pas nécessairement longitudinalement adjacentes, comme cela est représenté en figure 4B.
[079] De la même manière que décrit précédemment, un anneau 76a, 76b peut présenter une dimension longitudinale supérieure à l’espacement longitudinale entre deux parois annulaires radiales longitudinalement adjacentes 68a, 68b.
[080] Plus particulièrement, un anneau 76a, 76b peut présenter une dimension longitudinale supérieure ou égale à la moitié de la dimension longitudinale d’une alvéole 72 ou à la dimension longitudinale d’une alvéole 72.
[081] Préférentiellement, le joint 44 annulaire ou chaque anneau 76a, 76b est annulairement en contact avec l’extrémité radialement interne d’une paroi annulaire radiale 68 de la structure annulaire 60.
[082] Avantageusement, le contact entre le joint 44 annulaire ou l’un des anneaux 76a, 76b formant une partie d’un joint 44 annulaire et une paroi annulaire radiale 68 est linéique, de manière à permettre la réduction de la surface de contact entre ces derniers.
[083] La réduction de la surface de contact permet de faciliter le contrôle de la surface de contact du joint 44 annulaire et de limiter la présence de chemins de fuite. Ainsi, l’étanchéité est garantie entre le distributeur 22 et le carter externe 16 de la turbine 10.
[084] En outre, la réduction de la surface de contact permet de réduire la conduction thermique entre le distributeur 22 et le carter externe 16 de manière efficiente.
[085] Enfin, l’absence de discontinuité au niveau du contact entre le joint 44 annulaire et au moins une des parois annulaires radiale 68 de la structure annulaire 60 permet d’éviter la réduction des performances de la turbine 10 et de réduire échauffement du carter externe 16 et des pièces environnantes.
[086] Ladite structure annulaire 60 est préférentiellement composée d’une pluralité de secteurs structurellement indépendants agencés circonférentiellement en butée. Une telle sectorisation de la structure annulaire 60 permet de l’agencer dans la gorge 62 annulaire du carter externe 16 et de la fixer à ce dernier.

Claims

REVENDICATIONS
1 . Ensemble pour une turbine (10) étagée de turbomachine, l'ensemble comprenant un dispositif d'étanchéité statique, un distributeur (22) de turbine comportant une extrémité radialement externe et un carter externe (16) entourant le distributeur (22), le dispositif d'étanchéité statique étant disposé radialement entre une extrémité radialement externe du distributeur (22) et le carter externe (16), et comprenant un joint (44) annulaire porté par le distributeur (22) et une structure annulaire (60) définissant une pluralité de parois annulaires radiales (68) espacées axialement les unes des autres, au moins une première paroi desdites parois annulaires radiales (68) étant en contact annulaire radialement vers l’intérieur avec le joint (44) annulaire, la dimension longitudinale de ladite au moins une première paroi étant inférieure à la dimension longitudinale du joint (44).
2. Ensemble selon la revendication 1 , dans lequel le joint (44) annulaire est en contact linéique annulaire avec ladite au moins une première paroi annulaire radiale (68) de la structure annulaire (60).
3. Ensemble selon la revendication 1 ou 2, dans lequel la structure annulaire (60) présente une forme creuse conformée de manière à comprendre au moins deux parois annulaires radiales (68) dont l’espacement dans la direction longitudinale est inférieur à la dimension longitudinale du joint (44).
4. Ensemble selon l’une des revendications précédentes, dans lequel le distributeur (22) comprend une partie annulaire radiale comportant une gorge (58) annulaire débouchant radialement vers l’extérieur et recevant ledit joint annulaire (44).
5. Ensemble selon l’une des revendications précédentes, dans lequel le joint (44) annulaire comprend au moins deux anneaux (76a, 76b), et plus particulièrement deux anneaux (76a, 76b), disposés longitudinalement en butée l’un contre l’autre.
6. Ensemble selon la revendication 5, dans lequel chacun des anneaux (76a, 76b) est en contact linéique annulaire avec au moins une paroi annulaire radiale (68) de la structure annulaire (60).
7. Ensemble selon l’une des revendications précédentes, dans lequel la structure annulaire (60) présente une pluralité d’alvéoles (72) débouchant radialement vers l’intérieur formées au moins pour partie par les parois annulaires radiales (68) de la structure annulaire (60).
8. Ensemble selon la revendication 7, dans lequel chacune des alvéoles (72) présente une forme hexagonale.
9. Ensemble selon l’une des revendications 7 ou 8, dans lequel la dimension longitudinale du joint (44) est supérieure ou égale à la moitié de la dimension longitudinale d’une alvéole (72).
10. Ensemble l’une des revendications 7 à 9, dans lequel la dimension longitudinale du joint (44) est supérieure ou égale à la dimension longitudinale d’une alvéole (72).
11. Ensemble selon l’une des revendications précédentes, dans lequel la structure annulaire (60) est formée de plusieurs secteurs structurellement indépendants agencés circonférentiellement bout à bout.
PCT/FR2019/052206 2018-09-20 2019-09-20 Etancheite d'une turbine WO2020058648A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980066825.4A CN112840105B (zh) 2018-09-20 2019-09-20 涡轮的密封
EP19791320.5A EP3853445B1 (fr) 2018-09-20 2019-09-20 Etancheite d'une turbine
US17/277,873 US11408298B2 (en) 2018-09-20 2019-09-20 Sealing of a turbine
CA3113137A CA3113137A1 (fr) 2018-09-20 2019-09-20 Etancheite d'une turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1858527A FR3086324B1 (fr) 2018-09-20 2018-09-20 Etancheite d'une turbine
FR1858527 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020058648A1 true WO2020058648A1 (fr) 2020-03-26

Family

ID=64049423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052206 WO2020058648A1 (fr) 2018-09-20 2019-09-20 Etancheite d'une turbine

Country Status (6)

Country Link
US (1) US11408298B2 (fr)
EP (1) EP3853445B1 (fr)
CN (1) CN112840105B (fr)
CA (1) CA3113137A1 (fr)
FR (1) FR3086324B1 (fr)
WO (1) WO2020058648A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219014A1 (en) * 2003-04-29 2004-11-04 Remy Synnott Diametrically energized piston ring
EP2469043A2 (fr) * 2010-12-22 2012-06-27 United Technologies Corporation Elément de rétention axiale pour aubes de moteur à turbine à gaz
EP3363994A1 (fr) * 2017-02-17 2018-08-22 MTU Aero Engines GmbH Agencement d'étanchéité pour une turbine à gaz

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045304B2 (ja) * 2007-08-16 2012-10-10 株式会社Ihi ターボチャージャ
FR2949810B1 (fr) * 2009-09-04 2013-06-28 Turbomeca Dispositif de support d'un anneau de turbine, turbine avec un tel dispositif et turbomoteur avec une telle turbine
FR2989724B1 (fr) * 2012-04-20 2015-12-25 Snecma Etage de turbine pour une turbomachine
US9797515B2 (en) * 2012-09-28 2017-10-24 United Technologies Corporation Radially coacting ring seal
WO2017198916A1 (fr) * 2016-05-18 2017-11-23 Safran Aircraft Engines Procédé de fabrication d'une structure alvéolaire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219014A1 (en) * 2003-04-29 2004-11-04 Remy Synnott Diametrically energized piston ring
EP2469043A2 (fr) * 2010-12-22 2012-06-27 United Technologies Corporation Elément de rétention axiale pour aubes de moteur à turbine à gaz
EP3363994A1 (fr) * 2017-02-17 2018-08-22 MTU Aero Engines GmbH Agencement d'étanchéité pour une turbine à gaz

Also Published As

Publication number Publication date
FR3086324B1 (fr) 2020-11-06
EP3853445A1 (fr) 2021-07-28
EP3853445B1 (fr) 2024-04-17
CA3113137A1 (fr) 2020-03-26
CN112840105B (zh) 2023-06-09
FR3086324A1 (fr) 2020-03-27
US11408298B2 (en) 2022-08-09
CN112840105A (zh) 2021-05-25
US20210348518A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
EP2334909B1 (fr) Etanchéité entre une chambre de combustion et un distributeur de turbine dans une turbomachine
EP2053200B1 (fr) Contrôle du jeu en sommet d'aubes dans une turbine haute-pression de turbomachine
EP3781794B1 (fr) Ensemble d'anneau de turbine avec étanchéité inter-secteurs
CA2925438C (fr) Ensemble rotatif pour turbomachine
FR2897417A1 (fr) Chambre de combustion annulaire d'une turbomachine
EP3591178B1 (fr) Module d'étanchéité de turbomachine
WO2018065739A1 (fr) Assemblage d'anneau mobile de turbine de turbomachine
EP2504529A1 (fr) Isolation d'un rebord circonférentiel d'un carter externe de turbomachine vis-à-vis d'un secteur d'anneau correspondant
EP3049637A1 (fr) Ensemble rotatif pour turbomachine
EP3421730B1 (fr) Turbine pour turbomachine avec anneau d'étanchéité comportant deux parties
FR2961848A1 (fr) Etage de turbine
EP3874131B1 (fr) Secteur d'anneau de turbine a languettes d'etancheite refroidies
EP3824221B1 (fr) Ensemble pour une turbomachine
FR3071273A1 (fr) Ensemble d'etancheite de turbine pour turbomachine
EP3880939A1 (fr) Étanchéité entre une roue mobile et un distributeur d'une turbomachine
EP3853445B1 (fr) Etancheite d'une turbine
FR3049307B1 (fr) Ensemble rotatif pour turbomachine
FR3055145A1 (fr) Secteur angulaire d'aube de stator de turbomachine
WO2022223905A1 (fr) Ensemble d'anneau de turbine monté sur entretoise
FR3113419A1 (fr) Distributeur d’une turbine de turbomachine
EP3906357A1 (fr) Distributeur pour turbine, turbine de turbomachine équipée de ce distributeur et turbomachine équipée de cette turbine
FR3111964A1 (fr) Assemblage d’une pièce de chambre de combustion par recouvrement par une autre pièce
FR3085991A1 (fr) Element de turbomachine d'aeronef et son procede de controle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3113137

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019791320

Country of ref document: EP

Effective date: 20210420