WO2020057605A2 - 一种葡萄糖类化合物、药物组合物及其应用 - Google Patents

一种葡萄糖类化合物、药物组合物及其应用 Download PDF

Info

Publication number
WO2020057605A2
WO2020057605A2 PCT/CN2019/106688 CN2019106688W WO2020057605A2 WO 2020057605 A2 WO2020057605 A2 WO 2020057605A2 CN 2019106688 W CN2019106688 W CN 2019106688W WO 2020057605 A2 WO2020057605 A2 WO 2020057605A2
Authority
WO
WIPO (PCT)
Prior art keywords
unsubstituted
substituted
heterocyclyl
group
independently
Prior art date
Application number
PCT/CN2019/106688
Other languages
English (en)
French (fr)
Other versions
WO2020057605A3 (zh
Inventor
惠永正
许祖盛
马兴泉
许林林
梁希
杨志奇
Original Assignee
凯惠科技发展(上海)有限公司
上海枫林糖类药物促进中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凯惠科技发展(上海)有限公司, 上海枫林糖类药物促进中心 filed Critical 凯惠科技发展(上海)有限公司
Publication of WO2020057605A2 publication Critical patent/WO2020057605A2/zh
Publication of WO2020057605A3 publication Critical patent/WO2020057605A3/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7004Monosaccharides having only carbon, hydrogen and oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/7056Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings

Definitions

  • the invention relates to a glucose compound, a pharmaceutical composition and an application thereof.
  • Tumor growth inhibitors are an important member of current anticancer drugs.
  • Sorafenib can directly inhibit tumor cell proliferation by blocking cell signaling pathways mediated by RAF / MEK / ERK.
  • VEGFR and platelet-derived growth factor (PDGF) receptors By inhibiting VEGFR and platelet-derived growth factor (PDGF) receptors, it can block tumor neovascularization and indirectly inhibit tumor cell growth.
  • PDGF platelet-derived growth factor
  • the anticancer drugs in the prior art usually have complicated structures, complicated synthetic processes, many impurities introduced in the synthesis, and high toxicity, which requires high quality testing; high drug costs and drug prices are not conducive to application and popularization. Therefore, no matter from the perspective of treatment, economic or social effects, how to provide an anticancer drug with simple structure, simple process, low toxicity, and high activity, especially tumor growth inhibitors, is still a research in the field. Direction one.
  • Warburg effect produces a large amount of lactic acid to reduce the local pH of the tumor microenvironment.
  • the pH of human blood is about 7.4
  • the extracellular pH of normal tissues is about 7.2-7.4
  • the extracellular pH of malignant tumors is about 6.5-6.8.
  • the glucose transporter protein GLUT plays an important role in glucose metabolism in mammalian cells.
  • Glucose is a water-soluble substance, which needs to be transported into the cytosol through the GLUT when passing through the phospholipid bilayer, which has also become the first rate-limiting step in glucose metabolism.
  • Thirteen members of the GLUT family have been identified, of which GLUT1, GLUT3, and GLUT4 have a higher affinity for glucose and efficiently transport glucose under normal physiological conditions. Based on the strong demand for glucose, GLUT1 or GLUT3 is typically overexpressed in malignant tumor cells.
  • the technical problem to be solved by the present invention is to overcome the defects that the existing tumor suppressing compounds have a complicated structure, high toxicity, and poor targeting, so as to provide a glucose compound, a pharmaceutical composition and applications thereof.
  • the glucose compound has almost no inhibitory effect on the proliferation of cancer cells in vitro, and it has been shown in vivo activity tests to have good anti-cancer effects, and has a good inhibitory effect on tumor metastasis, and has a good market application prospect.
  • the present invention solves the above technical problems through the following technical solutions.
  • the present invention provides a glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof:
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • M m + is an alkali metal ion or alkaline earth metal ion; when M m + is an alkali metal ion, the number of M m + is 2, and the two alkali metal ions are the same or different; when M m + is an alkaline earth metal ion, the number of M m + The number is 1;
  • R 1 and R 2 are independently H, unsubstituted or R 1-1 substituted C 1 -C 4 alkyl, unsubstituted or R 1-2 substituted allyl, unsubstituted or R 1-3 substituted C 3 -C 8 heterocyclyl- (CH 2 ) z- , unsubstituted or R 1-4 substituted C 3 to C 9 heteroaryl- (CH 2 ) q- , or, unsubstituted or R 1-5 substituted the C 6 -C 14 aryl, - (CH 2) p -; said C 3 -C 8 heterocyclyl is independently a "hetero atom selected from N, O and S in one or more heteroatoms A C 3 -C 8 heterocyclic group of 1 to 4 ", said C 3 to C 9 heteroaryl is independently" a heteroatom selected from one or more of N, O and S, hetero C 3 to C 9 heteroaryl having 1 to 4 atoms ";
  • z, q, and p are independently 0, 1, 2, 3, or 4;
  • the C 3 -C 8 heterocyclic group Is a "C 3 -C 8 heterocyclic group having a hetero atom selected from one or more of N, O, and S and containing at least one N, and having 1 to 4 hetero atoms", and the N atom and
  • the C 3 to C 9 heteroaryl "heteroatoms are selected from one or more of N, O, and S, and contain at least one N, and C 3 to 1-4 heteroatoms C 9 heteroaryl ", and through the N atom and ⁇ ⁇ ; Connected;
  • R 1-1 , R 1-2 , R 1-3 , R 1-4 , R 1-5 , R 1-6 and R 1-7 are independently a hydroxyl group or a C 1 -C 4 alkyl group.
  • the M m + is preferably independently a sodium ion, a potassium ion or a calcium ion; more preferably a sodium ion.
  • the number of the term “substitution” may be one or more (for example, 2, 3, 4 or 5), and when there are multiple “substitutions", the “substitutions" are the same or different.
  • substitution may be any position unless otherwise specified; for example, each position is independently located at the "position where the aryl group is connected to other groups” or the position where the "heteroaryl group is connected to other groups” Point "is ortho, meta or para, taking phenyl as an example, it means that the substituent is located at in Ortho, meta or para of the key.
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • ⁇ -D-glucopyranyl e.g.
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • n 0, 1, 2, 3, or 4.
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • the C 1 -C 4 alkyl is independently methyl, ethyl, n-propyl, isopropyl Base, n-butyl, sec-butyl, isobutyl or tert-butyl (e.g. methyl, ethyl or tert-butyl).
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • the C 3 -C 8 heterocyclyl is independently "heteroatom A C 4 to C 5 heterocyclic group selected from one or more of N, O, and S and containing at least one N and 1 to 2 heteroatoms ", such as piperidinyl (for example ), Piperazinyl (e.g. ), Or morphinyl (e.g. );
  • the C 4 to C 5 heterocyclic group is connected to-(CH 2 ) z -through an N atom.
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • z is independently 1 or 2.
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • the C 3 to C 9 heteroaryl group is independently From one or more of N, O, and S and containing at least one N and a C 3 to C 5 heteroaryl group having 1 to 2 heteroatoms ", such as pyridyl (for example ).
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • q is independently 0, 1, or 2.
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • p is independently 0, 1, or 2.
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • the C 3 -C 8 heterocyclyl is independently "a heteroatom selected from one or more of N, O and S "C 4 -C 5 heterocyclic group having 1 to 2 heteroatoms", such as pyrrolidinyl (for example ), Piperidinyl (e.g. ), Piperazinyl (e.g. ), Or morphinyl (e.g. ).
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • the C 3 to C 9 heteroaryl group is independently "a heteroatom selected from one or more of N, O and S C 3 to C 5 heteroaryl groups having 1 to 2 heteroatoms ", for example, pyrrolyl (for example ) Or imidazolyl (e.g. ).
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • R 1-1 , R 1-2 , R 1-3 , R 1-4 , R 1-5 , R 1-6 or R 1-7 is C 1 -C 4 alkyl
  • said C 1 -C 4 alkyl groups are independently methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl or tert-butyl (e.g. methyl).
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • R 1 or R 2 is R 1-1 substituted C 1 -C 4 alkyl
  • the R 1-1 substituted C 1 -C 4 alkyl is independently hydroxyethyl Trimethylolmethyl
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • R 1 or R 2 is unsubstituted or R 1-3 substituted C 3 -C 8 heterocyclyl- (CH 2 ) z- , the unsubstituted C 3 -C 8 heterocyclyl- (CH 2 ) z -independently piperazine ethyl (e.g. ), Or morpholinoethyl (e.g. ).
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • X is or n is 0 or 1, and R 1 is H, unsubstituted or R 1-1 substituted C 1 -C 4 alkyl, or, unsubstituted or R 1-3 substituted C 3 -C 8 heterocyclyl- (CH 2 ) z- ; R 2 is unsubstituted or R 1-1 substituted C 1 -C 4 alkyl, unsubstituted or R 1-3 substituted C 3 -C 8 heterocyclyl- (CH 2 ) z- , Unsubstituted or R 1-4 substituted C 3 to C 9 heteroaryl- (CH 2 ) q- , or unsubstituted or R 1-5 substituted C 6 -C 12 aryl- (CH 2 ) p- .
  • glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof are defined as follows, and the undefined groups are as described in any one of the preceding aspects:
  • X is n is 0, 1, 2, 3, or 4; preferably M m + is Na + .
  • the glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof is selected from the following compounds:
  • the glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof according to the present invention can be prepared according to conventional chemical synthesis methods in the art, and the steps and conditions thereof can refer to the steps and conditions of similar reactions in the art.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable excipients.
  • the amount of the glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof may be a therapeutically effective amount.
  • the pharmaceutically acceptable excipients refer to conventional pharmaceutical excipients in the field of pharmacy, and are all conventionally added except for the compounds of the present invention to solve the formability, effectiveness, stability, and safety of the formulation.
  • Medicinal materials mainly used to provide a safe, stable and functional pharmaceutical composition, and can also provide methods for the subject to dissolve the active ingredient at a desired rate after administration, or to promote the subject to accept the composition for Active ingredients are effectively absorbed after the medicine.
  • the pharmaceutical excipient may be an inert filler or provide a certain function, such as stabilizing the overall pH value of the composition or preventing degradation of the active ingredients of the composition.
  • the pharmaceutical excipient may include one or more of the following excipients: a binder (such as povidone, etc.), a suspending agent, an emulsifier, a diluent (such as sodium carboxymethyl starch, etc.), a filler, Granulating agents, adhesives, disintegrating agents (such as microcrystalline cellulose, etc.), lubricants (such as magnesium stearate, micronized silica gel, etc.), anti-adhesive agents, glidants, wetting agents, gelling agents, absorption delay Agents, dissolution inhibitors, enhancers, adsorbents, buffers, chelating agents, preservatives, colorants, flavoring and sweetening agents, and other adjuvants.
  • a binder such as povidone, etc.
  • a suspending agent such as povidone, etc.
  • an emulsifier such as sodium carboxymethyl starch, etc.
  • a filler such as sodium carboxymethyl starch,
  • the pharmaceutical composition of the present invention can be prepared according to the disclosed contents and according to needs, the above-mentioned auxiliary materials can be selected, and any method known to those skilled in the art can be used. For example, conventional mixing, dissolving, granulating, emulsifying, milling, encapsulating, embedding or lyophilizing processes.
  • the compound of the present invention is made into a pharmaceutical preparation; the pharmaceutical preparation is various conventional dosage forms in the art, such as tablets, powders, pills, capsules, granules, oral liquids, and dry suspensions. Or pills.
  • the pharmaceutical composition of the present invention can be administered in any form, including injection (intravenous), mucosa, oral (solid and liquid preparations), inhalation, eye, rectum, topical or parenteral (infusion, injection, implantation) (Subcutaneous, intravenous, intraarterial, intramuscular).
  • the pharmaceutical composition of the present invention may also be a controlled-release or delayed-release dosage form (such as a liposome or microsphere).
  • solid oral formulations include, but are not limited to, powders, capsules, caplets, soft capsules, and tablets.
  • liquid preparations for oral or mucosal administration include, but are not limited to, suspensions, emulsions, elixirs and solutions.
  • topical preparations include, but are not limited to, emulsions, gels, ointments, creams, patches, pastes, foams, lotions, drops, or serum preparations.
  • preparations for parenteral administration include, but are not limited to, solutions for injection, dry preparations that can be dissolved or suspended in a pharmaceutically acceptable carrier, suspensions for injection, and emulsions for injection.
  • suitable formulations of the pharmaceutical composition include, but are not limited to, eye drops and other ophthalmic formulations; aerosols: such as nasal sprays or inhalants; liquid dosage forms suitable for parenteral administration; suppositories and lozenges Agent.
  • the present invention also provides the application of the above-mentioned glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating and / or preventing cancer.
  • the cancer may be a conventional cancer in the art, including but not limited to breast cancer, lymphoma, lung cancer, liver cancer, colon cancer, head and neck cancer, bladder cancer, kidney cancer, esophageal cancer, gallbladder cancer , Ovarian cancer, pancreatic cancer, gastric cancer, cervical cancer, thyroid cancer, prostate cancer, skin cancer including squamous cell carcinoma; leukopenia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T Cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hair cell lymphoma, Burkitt's lymphoma, acute and chronic myelogenous leukemia, myelodysplastic syndrome, promyelocytic leukemia, fibrosarcoma, Rhabdomyosarcoma, astrocytoma, neurocytoma, glioma, schwannomas, melanoma,
  • the cancer cell may be a Hep3B2.1-7-Luc liver cancer cell.
  • the present invention also provides a therapeutic agent comprising the glucose compound represented by Formula I or a pharmaceutically acceptable salt thereof as described above.
  • the present invention also provides a method for treating and / or preventing cancer, which comprises administering to a subject an effective dose of a glucose compound as shown in Formula I or a pharmaceutically acceptable salt thereof as described above.
  • the present invention also provides a glucose compound as shown in Formula I or a pharmaceutically acceptable salt thereof as described above for use in the treatment and / or prevention of cancer.
  • the present invention also provides an application of glucose as a pharmaceutically acceptable carrier, wherein a glucose group and a basic functional group are directly connected through a glycosidic bond, or a glucose group and a basic functional group are indirectly connected through a glycosidic bond and a linking group.
  • the glucose group is preferably ⁇ -D-glucopyranyl (e.g. ).
  • the basic functional group may be a conventional basic functional group in the art, such as a basic group containing an alkali metal or an alkaline earth metal or a basic group containing nitrogen.
  • the basic group containing an alkali metal or an alkaline earth metal is, for example, as described above.
  • M m + is an alkali metal ion or an alkaline earth metal ion (such as sodium ion, potassium ion, or calcium ion; more preferably sodium ion); when M m + is an alkali metal ion, the number of M m + is two, and two alkalis
  • the metal ions are the same or different; when M m + is an alkaline earth metal ion, the number of M m + is one.
  • the nitrogen-containing basic group may be a conventional nitrogen-containing basic group, such as a quaternary ammonium group (for example, R 3-1 and R 3-2 are each independently an alkyl group, for example, an alkyl group of C 1 to C 4 ⁇ for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, Isobutyl or tert-butyl>), or, as described above
  • the present invention uses traditional methods of mass spectrometry, NMR, HPLC, protein chemistry, biochemistry, recombinant DNA technology, or pharmacological detection, and the steps and conditions can refer to the conventional operating steps and conditions in the art.
  • the present invention uses standard nomenclature and standard laboratory procedures and techniques for analytical chemistry, organic synthetic chemistry, and medicinal chemistry. In some cases, standard techniques are used in chemical synthesis, chemical analysis, drug preparation, formulation and drug delivery, and patient treatment.
  • pharmaceutically acceptable refers to those compounds, materials, compositions, and / or dosage forms that are within the scope of sound medical judgment and are suitable for use with humans and animals. Tissue use without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit / risk ratio.
  • pharmaceutically acceptable salt refers to a salt of a compound of the present invention, prepared from a compound having a specific substituent and a relatively non-toxic acid or base found in the present invention.
  • base addition salts can be obtained by contacting a sufficient amount of a base with a neutral form of such compounds in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic ammonia or magnesium salts or similar salts.
  • acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc .; and organic acid salts, such as acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid (see Berg et al., "Pharmaceutical
  • Certain specific compounds of the present invention contain basic and acidic functional groups, and thus can be converted into any base or acid addition salt.
  • the salt is contacted with a base or acid in a conventional manner, and the parent compound is then isolated, thereby regenerating the neutral form of the compound.
  • the parent form of a compound differs from its various salt forms in certain physical properties, such as different solubility in polar solvents.
  • the "pharmaceutically acceptable salt" of the present invention can be synthesized from a parent compound containing an acid group or a base by a conventional chemical method. Generally, such salts are prepared by reacting these compounds in the form of a free acid or base with a stoichiometric appropriate base or acid in water or an organic solvent or a mixture of the two. Generally, a non-aqueous medium such as ether, ethyl acetate, ethanol, isopropanol, or acetonitrile is preferred.
  • pharmaceutical composition refers to a formulation of a compound of the present invention and a medium generally accepted in the art for delivering a biologically active compound to a mammal (eg, a human).
  • the medium includes a pharmaceutically acceptable carrier.
  • the purpose of the pharmaceutical composition is to promote the administration of the organism, which is beneficial to the absorption of the active ingredient and then exerts the biological activity.
  • the “tumor” in the present invention includes, but is not limited to, brain tumors including neuroblastoma, glioma, glioblastoma and astrocytoma, sarcoma, melanoma, articular chondroma, cholangiomas, leukemia, gastrointestinal Stromal tumors, diffuse large B-cell lymphoma, follicular lymphoma and other lymphomas, histiocytic lymphoma, non-small cell lung cancer, small cell lung cancer, pancreatic cancer, lung squamous cell carcinoma, lung adenocarcinoma, breast cancer, prostate Cancer, liver cancer, skin cancer, epithelial cancer, cervical cancer, ovarian cancer, bowel cancer, nasopharyngeal cancer, brain cancer, bone cancer, esophageal cancer, melanoma, kidney cancer, oral cancer, multiple myeloma, mesothelioma , Malignant rhabdoid tumor, end
  • prevention include enabling a patient to reduce the likelihood of the occurrence or worsening of a disease or disorder.
  • treatment and other similar synonyms as used herein include the following meanings:
  • an "effective amount” for use in therapy is an amount of a composition comprising a compound disclosed herein that is required to provide a significant clinically alleviating effect on a condition.
  • An effective amount suitable for any individual case can be determined using techniques such as a dose escalation test.
  • the terms "taking,” “administering,” “administering,” and the like refer to a method capable of delivering a compound or composition to a desired site for a biological effect. These methods include, but are not limited to, the oral route, the duodenal route, parenteral injection (including intravenous, subcutaneous, intraperitoneal, intramuscular, intraarterial injection or infusion), topical administration and rectal administration.
  • parenteral injection including intravenous, subcutaneous, intraperitoneal, intramuscular, intraarterial injection or infusion
  • topical administration and rectal administration topical administration and rectal administration.
  • those skilled in the art are familiar with the application techniques that can be used for the compounds and methods described herein, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics, current .; Pergamon; and Remington's, Pharmaceutical Science (current), Mack Publishing Co., The ones discussed in Easton, Pa.
  • the compounds and compositions discussed herein are administered orally.
  • the compounds of the invention may contain atomic isotopes in unnatural proportions on one or more of the atoms constituting the compound.
  • compounds such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C) can be labeled with radioisotopes. Transformations of all isotopic compositions of the compounds of the invention, whether radioactive or not, are included within the scope of the invention.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive progress effect of the present invention is that the present invention provides a series of glucose compounds with novel structure, good water solubility and stability; it has almost no inhibition of cancer cell proliferation activity in vitro, and it has been shown to have good performance in vivo activity tests.
  • Figure 1 is a test of the biological activity of the compound of Example 1.
  • the room temperature refers to the ambient temperature and is 10 ° C to 35 ° C.
  • Step (1) Synthesis of 2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -bromoethane.
  • Step (2) Synthesis of 2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -diethylphosphonate.
  • Step (3) Synthesis of 2- ( ⁇ -D-glucopyranoside) -ethylphosphonate.
  • Step (1) Synthesis of sodium 2-hydroxy-ethylphosphonate.
  • Step (1) Synthesis of 2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -benzyloxyethane.
  • the reaction was quenched by cooling with 300 ml of saturated sodium bicarbonate in an ice-water bath, filtered, and the filtrate was collected. The filter residue was washed twice with 100 ml of dichloromethane. The dichloromethane phase was separated and the aqueous phase was extracted twice with 200 ml of dichloromethane.
  • Step (2) Synthesis of 2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -hydroxyethane.
  • reaction solution was filtered and spin-dried to obtain 8.5 g of 2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -hydroxyethane as a colorless liquid with a yield of 77%; C 16 H 24 O 11 , ESI-MS (EI + , m / z): 415.1 [M + Na] + .
  • Step (3) Synthesis of 2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -ethyl dibenzyl phosphate.
  • the reaction was quenched by adding 100 ml of dichloromethane and 150 ml of 5% sodium bisulfite.
  • the dichloromethane phase was separated, washed with water, dried, and spin-dried to obtain a crude product, and then purified by column chromatography to obtain a colorless liquid 2- ( ⁇ -D-2,3,4,6-tetra-O-acetylpyranose).
  • Glycoside) -ethyl dibenzyl phosphate 8.5 g, yield 60%; C 30 H 37 O 14 P, ESI-MS (EI + , m / z): 653.1 [M + H] + .
  • Step (4) Synthesis of 2- ( ⁇ -D-glucopyranoside) -ethyl dibenzyl phosphate.
  • reaction solution was spin-evaporated to obtain a crude product, which was purified by column chromatography to obtain a colorless viscous liquid 2- ( ⁇ -D-glucopyranoside) -ethyl dibenzyl phosphate 4.0 g, yield 63%; C 22 H 29 O 10 P, ESI-MS (EI + , m / z): 485.1 [M + H] + .
  • Step (5) Synthesis of 2- ( ⁇ -D-glucopyranoside) -ethyl phosphate.
  • Step (6) Synthesis of 2- ( ⁇ -D-glucopyranoside) -ethyl sodium phosphate.
  • Step (1) Synthesis of 5- (diethoxyphosphoryl) pentyl acetate.
  • Step (2) Synthesis of 5-hydroxypentylphosphonic acid diethyl ester.
  • Step (3) Synthesis of 5- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -pentylphosphonic acid diethyl.
  • the reaction was quenched by cooling with 30 ml of saturated sodium bicarbonate in an ice-water bath, filtered, and the filtrate was collected. The filter residue was washed twice with 10 ml of dichloromethane. The dichloromethane phase was separated and the aqueous phase was extracted twice with 30 ml of dichloromethane.
  • Step (4) Synthesis of 5- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -amylphosphonate.
  • Step (5) Synthesis of 5- ( ⁇ -D-glucopyranoside) -n-pentylphosphonate sodium.
  • Step (1) Synthesis of 3- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -bromopropane.
  • Step (2) Synthesis of 3- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -azidopropane.
  • Step (3) Synthesis of 3- ( ⁇ -D-glucopyranoside) -azidopropane.
  • Step (4) Synthesis of 3- ( ⁇ -D-glucopyranoside) -propylamine.
  • Step (1) Synthesis of 3- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -iodopropane.
  • Step (2) Synthesis of N-3- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -propyldiethanolamine.
  • Step (3) Synthesis of N-3- ( ⁇ -D-glucopyranoside) -propyldiethanolamine.
  • Step (1) Synthesis of 4- (diethoxyphosphonic acid) -butyl acetate.
  • Step (2) Synthesis of 4- (diethoxyphosphonic acid) -butanol.
  • Step (3) Synthesis of 4- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -dibutylphosphonic acid.
  • the reaction was quenched with 11 mL of triethylamine in an ice-water bath, cooled, filtered, and the filtrate was collected. The filter residue was washed twice with 10 mL of dichloromethane. The dichloromethane phase was separated and the aqueous phase was extracted twice with 30 mL of dichloromethane.
  • Step (4) Synthesis of 4- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -butylphosphonic acid.
  • reaction solution was subjected to rotary evaporation to obtain a crude product, which was dissolved in 40 ml of methanol in an ice-water bath, and the concentrated ammonia solution was adjusted to neutrality, and stirred at 25 ° C for 10 minutes.
  • Rotary evaporation at low temperature gave the crude product, which was purified by reverse phase column and lyophilized to give 4- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -butylphosphonic acid 0.35 as a white solid.
  • Step (5) Synthesis of 4- ( ⁇ -D-glucopyranoside) -butylphosphonate.
  • Step (1) Synthesis of trimethylol (tert-butoxycarbonylamino) methane.
  • reaction solution was subjected to rotary evaporation to obtain 25 g of trimethylol (tert-butoxycarbonylamino) methane as a white solid with a yield of 87%; C 9 H 19 NO 5 , ESI-MS (EI + , m / z): 244.1 [M + Na] + .
  • Step (2) Synthesis of tribenzyloxymethyl (t-butoxycarbonylamino) methane.
  • Step (3) Synthesis of tribenzyloxymethylaminomethane.
  • Step (4) Synthesis of (3- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -propylamino) tribenzyloxymethylmethane.
  • Step (5) Synthesis of (3- ( ⁇ -D-glucopyranoside) -propylamino) tribenzyloxymethylmethane.
  • reaction solution was lyophilized, and the crude product was purified by column chromatography to obtain a colorless liquid (3- ( ⁇ -D-glucopyranoside) -propylamino) tribenzyloxymethylmethane 220 mg, yield 80%; C 34 H 45 NO 9 , ESI-MS (EI + , m / z): 612.3 [M + H] + .
  • Step (6) Synthesis of 2-hydroxymethyl-2- (3- ( ⁇ -D-glucopyranoside) -propylamino) -1,3-propanediol.
  • Step (1) Synthesis of 4- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -benzyloxybutane.
  • Step (2) Synthesis of 4- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -hydroxybutane.
  • reaction solution was filtered and spin-dried to obtain colorless liquid 4- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -hydroxybutane 2.05 g, yield 83%; C 18 H 28 O 11 , ESI-MS (EI + , m / z): 443.1 [M + Na] + .
  • Step (3) Synthesis of 4- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) -butyl dibenzyl phosphate.
  • Step (4) Synthesis of 4- ( ⁇ -D-glucopyranoside) -butyl dibenzyl phosphate.
  • reaction solution was subjected to rotary evaporation to obtain a crude product, which was then purified by column chromatography to obtain a colorless viscous liquid 844 mg of 4- ( ⁇ -D-glucopyranoside) -butyl dibenzyl phosphate, yield 52%; C 24 H 33 O 10 P, ESI-MS (EI + , m / z): 513.1 [M + H] + .
  • Step (5) Synthesis of 4- ( ⁇ -D-glucopyranoside) -butyl sodium phosphate.
  • Step (1) (4-N- (2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) ethyl) piperazin-1-yl) carboxylic acid tert-butyl Synthesis of esters.
  • Step (2) Synthesis of tert-butyl (4-N- (2- ( ⁇ -D-glucopyranoside) ethyl) piperazin-1-yl) carboxylate.
  • Step (3) Synthesis of N- (2- ( ⁇ -D-glucopyranoside) ethyl) piperazine.
  • Step (1) ⁇ -D-1-O- (2- (4-N-methylpiperazin-1-yl) ethyl) -2,3,4,6-tetra-O-acetylpyran Synthesis of glucosides.
  • Step (2) Synthesis of ⁇ -D-1-O- (2- (4-N-methylpiperazin-1-yl) ethyl) glucopyranoside.
  • Step (1) Synthesis of N- (2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) ethyl) pyrrole.
  • Step (2) Synthesis of N- (2- ( ⁇ -D-glucopyranoside) ethyl) pyrrole.
  • Step (1) Synthesis of N- (2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) ethyl) aniline.
  • Step (2) Synthesis of N- (2- ( ⁇ -D-glucopyranoside) ethyl) aniline.
  • Step (1) Synthesis of N- (2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) ethyl) piperidine.
  • Step (2) Synthesis of N- (2- ( ⁇ -D-glucopyranoside) ethyl) piperidine.
  • Step (1) Synthesis of N- (2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) ethyl) imidazole.
  • Step (2) Synthesis of N- (2- ( ⁇ -D-glucopyranoside) ethyl) imidazole.
  • Step (1) Synthesis of 4- (N- (2- ( ⁇ -D-2,3,4,6-tetra-O-acetylglucopyranoside) ethyl) methylamino) pyridine.
  • Step (2) Synthesis of 4- (N- (2- ( ⁇ -D-glucopyranoside) ethyl) methylamino) pyridine.
  • Step (1) Synthesis of tert-butyl bis (2-morpholinylethyl) carbamate.
  • Step (2) Synthesis of bis (2-morpholinylethyl) amine.
  • Step (3) ⁇ -D-1-O- (3- (bis (2-morpholinylethyl) amino) propyl) -2,3,4,6-tetra-O-acetylpyranose Synthesis of glycosides.
  • Step (4) Synthesis of ⁇ -D-1-O- (3- (bis (2-morpholinylethyl) amino) propyl) -glucopyranoside.
  • IVIS Lumina XR small animal imager (Sorafenib group was administered by gavage).
  • mice in the control group and the TMER-002 200 mg / kg administration group were basically normal in weight and in good condition (see Table 1).
  • the mice in the control group and the TMER-002 200 mg / kg administration group were basically normal in weight and in good condition (see Table 1).
  • the mice in the control group and the TMER-002 200 mg / kg administration group were basically normal in weight and in good condition (see Table 1).
  • the mice in the control group and the TMER-002 200 mg / kg administration group were basically normal in weight and in good condition (see Table 1).
  • the mice in the control group and the TMER-002 200 mg / kg administration group were basically normal in weight and in good condition (see Table 1).
  • TGI% (TF control -TF treatment ) / TF control x 100% based on fluorescent signal
  • TF control control group mouse liver (tumor) fluorescence signal value
  • TF treatment The liver (tumor) fluorescence signal value of the treatment group was evaluated to show that the TGI of the TMER-002 200 mg / kg group on the 28th day was 62.29%, and that of the Sorafenib 30 mg / kg group on the 28th day was 66.25%.
  • TMER-002 200mg / kg has a certain tumor suppressive effect on orthotopic xenograft tumor models of Hep3B2.1-7-Luc liver cancer cells.
  • the experimental results are shown in Figure 1 and Tables 1 and 2.
  • test group 0 days 7 days 14 days 20 days 28 days vehicle ddH 2 O 22.65 22.67 22.81 23.05 23.18 Sorafenib 22.06 20.82 21.14 20.40 21.05 TMER-002 22.37 22.40 22.56 22.50 21.85
  • test group 0 days 7 days 14 days 20 days 28 days vehicle ddH 2 O - - - - - - Sorafenib (30mg / kg) - -4.95% 41.58% 57.98% 66.25% TMER-002 (200mg / kg) - 27.59% 36.08% 58.82% 62.29%
  • Examples 3 to 17 have similar design ideas and physico-chemical structures to the compounds in Example 1. Structurally, they are connected to basic groups through glucose. They have basic properties, good solubility, and other characteristics. The strong demand for glucose directs basic groups into the tumor microenvironment to neutralize its acidity. On the basis of the present invention, these compounds all have similar low toxicity and have a certain tumor suppressive effect on orthotopic xenograft tumor models of Hep3B2.1-7-Luc liver cancer cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明公开了一种葡萄糖类化合物、药物组合物及其应用。本发明提供了一种如式(I)所示的葡萄糖类化合物或其药学上可接受的盐,在体外几乎没有抑制癌细胞增殖活性,在体内活性测试中表明其具有良好的抗癌作用,且对肿瘤转移有良好的抑制效果,有良好的市场应用前景。

Description

一种葡萄糖类化合物、药物组合物及其应用
本申请要求申请日为2018/9/20的中国专利申请2018111015884的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种葡萄糖类化合物、药物组合物及其应用。
背景技术
肿瘤生长抑制剂是目前抗癌药物中的重要一员,例如索拉非尼(Sorafenib)既可通过阻断由RAF/MEK/ERK介导的细胞信号传导通路而直接抑制肿瘤细胞的增殖,还可通过抑制VEGFR和血小板衍生生长因子(PDGF)受体而阻断肿瘤新生血管的形成,间接地抑制肿瘤细胞的生长。
但是现有技术中的抗癌药物,通常结构复杂、合成工艺复杂,合成中引入的杂质多、且毒性大,对质量检测要求高;药物成本和药价高,不利于应用和普及。因此,无论从治疗角度、还是经济效应或社会效应角度来讲,如何提供一种结构简单、工艺简单、毒性低、活性高的抗癌药物,特别是肿瘤生长抑制剂,仍是本领域的研究方向之一。
大多数肿瘤细胞在有氧条件下仍表现活跃的葡萄糖摄取和糖酵解,这种现象被称为Warburg效应。该效应产生大量的乳酸让肿瘤微环境局部PH降低。正常生理状态下,人体血液的PH值为7.4左右,正常组织细胞外PH为7.2-7.4左右,恶性肿瘤细胞外PH为6.5-6.8左右。已有研究表明高度的酸性环境可以诱发细胞的凋亡,从而刺激肿瘤细胞发生浸润和转移。
葡萄糖转运体蛋白GLUT在哺乳动物细胞糖代谢中扮演了重要的角色。葡萄糖是水溶性物质,在通过细胞磷脂双分子层时需要借助GLUT转运进入胞浆,这也成为葡萄糖代谢过程中第一个限速步骤。GLUT家族已鉴定的成员有13个,其中GLUT1、GLUT3和GLUT4与葡萄糖有较高的亲和力,在正常生理条件下高效率地转运葡萄糖。而基于对葡萄糖的旺盛需求,恶性肿瘤细胞中常特征性地过表达GLUT1或GLUT3。
发明内容
本发明所要解决的技术问题是为了克服现有的肿瘤抑制化合物结构复杂、毒性高、靶向性差的缺陷,从而提供了一种葡萄糖类化合物、药物组合物及其应用。该葡萄糖类 化合物在体外几乎没有抑制癌细胞增殖活性,在体内活性测试中表明其具有良好的抗癌作用,且对肿瘤转移有良好的抑制效果,有良好的市场应用前景。
本发明是通过如下技术方案来解决上述技术问题的。
本发明提供了一种如式I所示的葡萄糖类化合物或其药学上可接受的盐:
Figure PCTCN2019106688-appb-000001
其中,n为0、1、2、3、4、5、6、7、8、9或10;
X为
Figure PCTCN2019106688-appb-000002
M m+为碱金属离子或碱土金属离子;当M m+为碱金属离子时,M m+的个数为2,两个碱金属离子相同或不同;当M m+为碱土金属离子时,M m+的个数为1;
R 1和R 2独立地为H、未取代或R 1-1取代的C 1-C 4烷基、未取代或R 1-2取代的烯丙基、未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-、未取代或R 1-4取代的C 3~C 9杂芳基-(CH 2) q-、或、未取代或R 1-5取代的C 6-C 14芳基-(CH 2) p-;所述的C 3-C 8杂环基独立地为“杂原子选自N、O和S中的一种或多种,杂原子数为1~4个的C 3-C 8杂环基”,所述的C 3~C 9杂芳基独立地为“杂原子选自N、O和S中的一种或多种,杂原子数为1~4个的C 3~C 9杂芳基”;
z、q和p独立地为0、1、2、3或4;
Figure PCTCN2019106688-appb-000003
为未取代或R 1-6取代的C 3-C 8杂环基、或、未取代或R 1-7取代的C 3~C 9杂芳基;所述的C 3-C 8杂环基为“杂原子选自N、O和S中的一种或多种,且至少含有一个N,杂原子数为1~4个的C 3-C 8杂环基”、且通过N原子与
Figure PCTCN2019106688-appb-000004
相连接;所述的C 3~C 9杂芳基“杂原子选自N、O和S中的一种或多种,且至少含有一个N,杂原子数为1~4个的C 3~C 9杂芳基”、且通过N原子与
Figure PCTCN2019106688-appb-000005
相连接;
所述的R 1-1、R 1-2、R 1-3、R 1-4、R 1-5、R 1-6和R 1-7独立地为羟基或C 1-C 4烷基。
所述的M m+较佳地独立地为钠离子、钾离子或钙离子;更佳地为钠离子。
本发明中,术语“取代”的个数可为一个或多个<例如2个、3个、4个或5个>,当存在多个“取代”时,所述“取代”相同或不同。
本发明中,术语“取代”的位置,如未做特别说明,位置可为任意;例如各自独立地位于“芳基与其它基团连接位点”、或“杂芳基与其它基团连接位点”的邻位、间位或对位,以苯基为例,是指取代基位于
Figure PCTCN2019106688-appb-000006
Figure PCTCN2019106688-appb-000007
键的邻位、间位或对位。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
Figure PCTCN2019106688-appb-000008
为β-D-吡喃葡萄基(例如
Figure PCTCN2019106688-appb-000009
)。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
n为0、1、2、3或4。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
当R 1或R 2为未取代或R 1-1取代的C 1-C 4烷基时,所述的C 1-C 4烷基独立地为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基(例如甲基、乙基或叔丁基)。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
当R 1或R 2为未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-时,所述的C 3-C 8杂环基独立地为“杂原子选自N、O和S中的一种或多种,且至少含有一个N,杂原子数为1~2个的C 4~C 5杂环基”,例如哌啶基(例如
Figure PCTCN2019106688-appb-000010
)、哌嗪基(例如
Figure PCTCN2019106688-appb-000011
)、或吗啡啉基(例如
Figure PCTCN2019106688-appb-000012
);较佳地,所述的C 4~C 5杂环基通过N原子与-(CH 2) z-连接。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
z独立地为1或2。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
当R 1或R 2为未取代或R 1-4取代的C 3~C 9杂芳基-(CH 2) q-时,所述C 3~C 9杂芳基独立地为“杂原子选自N、O和S中的一种或多种,且至少含有一个N,杂原子数为1~2个的C 3~C 5杂芳基”,例如吡啶基(例如
Figure PCTCN2019106688-appb-000013
)。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
q独立地为0、1或2。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
当R 1或R 2为未取代或R 1-5取代的C 6-C 14芳基-(CH 2) p-时,所述的C 6-C 14芳基为苯基。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
p独立地为0、1或2。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
Figure PCTCN2019106688-appb-000014
为未取代或R 1-6取代的C 3-C 8杂环基时,所述的C 3-C 8杂环基独立地为“杂原子选自N、O和S中的一种或多种,杂原子数为1~2个的C 4-C 5杂环基”,例如吡咯烷基(例如
Figure PCTCN2019106688-appb-000015
)、哌啶基(例如
Figure PCTCN2019106688-appb-000016
)、哌嗪基(例如
Figure PCTCN2019106688-appb-000017
)、或吗啡啉基(例如
Figure PCTCN2019106688-appb-000018
)。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
Figure PCTCN2019106688-appb-000019
为未取代或R 1-7取代的C 3~C 9杂芳基时,所述的C 3~C 9杂芳基独立地为“杂原子选自N、O和S中的一种或多种,杂原子数为1~2个的C 3~C 5杂芳基”,例如为吡咯基(例如
Figure PCTCN2019106688-appb-000020
)或咪唑基(例如
Figure PCTCN2019106688-appb-000021
)。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
当R 1-1、R 1-2、R 1-3、R 1-4、R 1-5、R 1-6或R 1-7为C 1-C 4烷基时,所述的C 1-C 4烷基独立地为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基(例如甲基)。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
当R 1或R 2为R 1-1取代的C 1-C 4烷基时,所述的R 1-1取代的C 1-C 4烷基独立地为羟基乙基
Figure PCTCN2019106688-appb-000022
或三羟甲基甲基
Figure PCTCN2019106688-appb-000023
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
当R 1或R 2为未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-时,所述的未取代的C 3-C 8杂环基-(CH 2) z-独立地为哌嗪乙基(例如
Figure PCTCN2019106688-appb-000024
)、或吗啡啉乙基(例如
Figure PCTCN2019106688-appb-000025
)。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
当X为
Figure PCTCN2019106688-appb-000026
时,所述的
Figure PCTCN2019106688-appb-000027
为-NH 2
Figure PCTCN2019106688-appb-000028
Figure PCTCN2019106688-appb-000029
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
当X为
Figure PCTCN2019106688-appb-000030
时,所述的
Figure PCTCN2019106688-appb-000031
Figure PCTCN2019106688-appb-000032
Figure PCTCN2019106688-appb-000033
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
当X为
Figure PCTCN2019106688-appb-000034
时,所述的
Figure PCTCN2019106688-appb-000035
Figure PCTCN2019106688-appb-000036
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
当X为
Figure PCTCN2019106688-appb-000037
时,所述的
Figure PCTCN2019106688-appb-000038
Figure PCTCN2019106688-appb-000039
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的某些基团的定义如下,未定义的基团如前任一方案所述:
X为
Figure PCTCN2019106688-appb-000040
Figure PCTCN2019106688-appb-000041
n为0或1,R 1为H、未取代或R 1-1取代的C 1-C 4烷基、或、未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-;R 2为未取代或R 1-1取代的C 1-C 4烷基、未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-、未取代或R 1-4取代的C 3~C 9杂芳基-(CH 2) q-、或未取代或R 1-5取代的C 6-C 12芳基-(CH 2) p-。
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的 盐的某些基团的定义如下,未定义的基团如前任一方案所述:
X为
Figure PCTCN2019106688-appb-000042
n为0、1、2、3或4;较佳地M m+为Na +
在本发明的某一方案中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐,所述的葡萄糖类化合物选自下述任一化合物:
Figure PCTCN2019106688-appb-000043
Figure PCTCN2019106688-appb-000044
本领域技术人员可以理解,根据本领域中使用的惯例,本申请描述基团的结构式中所使用的
Figure PCTCN2019106688-appb-000045
是指,相应的基团通过该位点与化合物I或化合物II中的其它片段、基团进行连接。
由此,在本说明书通篇中,本领域技术人员可对所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐中所述基团及其取代基进行选择,以提供稳定的所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐。
本发明所述式I所示的葡萄糖类化合物或其药学上可接受的盐可按照本领域常规的化学合成方法制备得到,其步骤和条件可参考本领域类似反应的步骤和条件。
本发明还提供了一种药物组合物,其包括如式I所示的葡萄糖类化合物或其药学上可接受的盐,以及一种或多种药学上可接受的辅料。
在所述的药物组合物中,所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐的用量可为治疗有效量。
本发明中,所述的药学上可接受的辅料是指药学领域常规的药用辅料,是为解决制剂的成型性、有效性、稳定性、安全性加入的除本发明的化合物以外的一切常规药用物料;主要用于提供一个安全、稳定和功能性的药物组合物,还可以提供方法,使受试者接受给药后活性成分以所期望速率溶出,或促进受试者接受组合物给药后活性成分得到有效吸收。所述的药用辅料可以是惰性填充剂,或者提供某种功能,例如稳定该组合物的整体pH值或防止组合物活性成分的降解。所述的药用辅料可以包括下列辅料中的一种或多种:粘合剂(如聚维酮等)、助悬剂、乳化剂、稀释剂(如羧甲淀粉钠等)、填充剂、成粒剂、胶粘剂、崩解剂(如微晶纤维素等)、润滑剂(如硬脂酸镁、微粉硅胶等)、抗粘着剂、助流剂、润湿剂、胶凝剂、吸收延迟剂、溶解抑制剂、增强剂、吸附剂、缓冲剂、螯合剂、防腐剂、着色剂、矫味剂和甜味剂,以及其它辅助剂。
本发明的药物组合物可根据公开的内容,根据需要,可选择上述辅料,使用本领域技术人员已知的任何方法来制备。例如,常规混合、溶解、造粒、乳化、磨细、包封、包埋或冻干工艺。按本领域常规方法,将本发明的化合物物制成药物制剂;所述的药物制剂为本领域各种常规剂型,如片剂、散剂、丸剂、胶囊剂、颗粒剂、口服液、干混悬剂或滴丸剂等。
本发明所述的药物组合物可以任何形式给药,包括注射(静脉内)、粘膜、口服(固体 和液体制剂)、吸入、眼部、直肠、局部或胃肠外(输注、注射、植入、皮下、静脉内、动脉内、肌内)给药。本发明的药物组合物还可以是控释或延迟释放剂型(例如脂质体或微球)。固体口服制剂的实例包括但不限于粉末、胶囊、囊片、软胶囊剂和片剂。口服或粘膜给药的液体制剂实例包括但不限于悬浮液、乳液、酏剂和溶液。局部用制剂的实例包括但不限于乳剂、凝胶剂、软膏剂、乳膏剂、贴剂、糊剂、泡沫剂、洗剂、滴剂或血清制剂。胃肠外给药的制剂实例包括但不限于注射用溶液、可以溶解或悬浮在药学上可接受载体中的干制剂、注射用悬浮液和注射用乳剂。所述的药物组合物的其它合适制剂的实例包括但不限于滴眼液和其他眼科制剂;气雾剂:如鼻腔喷雾剂或吸入剂;适于胃肠外给药的液体剂型;栓剂以及锭剂。
本发明还提供了上述的如式I所示的葡萄糖类化合物或其药学上可接受的盐在制备治疗和/或预防癌症的药物中的应用。
所述的应用中,所述的癌症可以为本领域中常规的癌症,包括但不限于乳腺癌、淋巴癌、肺癌、肝癌、结肠癌、头颈癌、膀胱癌、肾癌、食道癌、胆囊癌、卵巢癌、胰腺癌、胃癌、宫颈癌、甲状腺癌、前列腺癌、皮肤癌包括鳞状细胞癌;白细胞过多症、急性淋巴细胞性白血病、急性成淋巴细胞性白血病、B细胞淋巴瘤、T细胞淋巴瘤、霍奇金淋巴瘤、非霍奇金淋巴瘤、毛细胞淋巴瘤、伯基特淋巴瘤、急性和慢性髓细胞性白血病、骨髓增生异常综合征、前髓细胞白血病、纤维肉瘤、横纹肌肉瘤、星形细胞瘤、神经目细胞瘤、胶质瘤、神经鞘瘤、黑色素瘤、精原细胞瘤、畸胎癌、骨肉瘤、着色性干皮病、角质黄色瘤、甲状腺滤泡癌和卡波西肉瘤。
所述的应用中,所述的癌症的细胞可为Hep3B2.1-7-Luc肝癌细胞。
本发明还提供了一种治疗剂,其包括如上所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐。
本发明还提供了一种治疗和/或预防癌症的方法,其包括给受试者施用有效剂量的如上所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐。
本发明还提供了一种用于治疗和/或预防癌症的如上所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐。
本发明还提供了一种葡萄糖作为药用载体的应用,其中,葡萄糖基团与碱性官能团通过糖苷键直接连接,或者,葡萄糖基团与碱性官能团通过糖苷键和连接基团间接连接。
所述的葡萄糖基团较佳地为β-D-吡喃葡萄基(例如
Figure PCTCN2019106688-appb-000046
)。
所述的碱性官能团可为本领域常规的碱性官能团,例如含碱金属或碱土金属的碱性基团或含氮碱性基团。
所述的含碱金属或碱土金属的碱性基团例如如上所述的
Figure PCTCN2019106688-appb-000047
Figure PCTCN2019106688-appb-000048
其中M m+为碱金属离子或碱土金属离子(例如钠离子、钾离子或钙离子;更佳地为钠离子);当M m+为碱金属离子时,M m+的个数为2,两个碱金属离子相同或不同;当M m+为碱土金属离子时,M m+的个数为1。
所述的含氮碱性基团可为本领域常规的含氮碱性基团,例如季铵碱基团(例如
Figure PCTCN2019106688-appb-000049
R 3-1和R 3-2各自独立地为烷基,例如C 1~C 4的烷基<又例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基>),或者,如上所述的
Figure PCTCN2019106688-appb-000050
除非另有规定,本文使用的所有技术术语和科学术语具有要求保护主题所属领域的标准含义。倘若对于某术语存在多个定义,则以本文定义为准。
应该理解,上述的一般性说明和下面的详细说明仅是举例说明,对本发明并不受此限制。在本发明中使用的单数形式,如“一种”或“一个”,包括复数指代,除非另有规定。此外,术语“包括”是开放性限定并非封闭式。
除非另有说明,本发明采用质谱、NMR、HPLC、蛋白化学、生物化学、重组DNA技术或药理检测的传统方法,各步骤和条件可参照本领域常规的操作步骤和条件。
除非另有指明,本发明采用分析化学、有机合成化学和医药化学的标准命名及标准实验室步骤和技术。在某些情况下,标准技术被用于化学合成、化学分析、药物制备、配方和药物递送以及患者的治疗。
在本发明中所使用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用, 而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机氨或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸、碳酸氢根、磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐(参见Berge et al.,“Pharmaceutical Salts”,Journal of Pharmaceutical Science 66:1-19(1977))。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。优选地,以常规方式使盐与碱或酸接触,再分离母体化合物,由此再生化合物的中性形式。化合物的母体形式与其各种盐的形式的不同之处在于某些物理性质,例如在极性溶剂中的溶解度不同。
本发明的“药学上可接受的盐”可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。一般地,优选醚、乙酸乙酯、乙醇、异丙醇或乙腈等非水介质。
在本申请中,“药物组合物”是指本发明化合物与本领域通常接受的用于将生物活性化合物输送至哺乳动物(例如人)的介质的制剂。该介质包括药学上可接受的载体。药物组合物的目的是促进生物体的给药,利于活性成分的吸收进而发挥生物活性。
本发明所述“肿瘤”包括但不限于脑瘤包括神经母细胞瘤、胶质瘤、胶质母细胞瘤和星形细胞瘤、肉瘤、黑色素瘤、关节软骨瘤、胆管瘤、白血病、胃肠间质瘤、扩散大B细胞淋巴癌、滤泡性淋巴瘤等淋巴癌、组织细胞性淋巴瘤、非小细胞肺癌、小细胞肺癌、胰腺癌、肺鳞癌、肺腺癌、乳腺癌、前列腺癌、肝癌、皮肤癌、上皮细胞癌、宫颈癌、卵巢癌、肠癌、鼻咽癌、脑癌、骨癌、食道癌、黑色素瘤、肾癌、口腔癌、多发性骨髓瘤、间皮瘤、恶性横纹肌样瘤、子宫内膜癌、头颈癌、甲状腺癌、甲状旁腺肿瘤、子宫肿瘤和软 组织肉瘤等疾病。
本文所用术语“预防的”、“预防”和“防止”包括使病患减少疾病或病症的发生或恶化的可能性。
本文所用的术语“治疗”和其它类似的同义词包括以下含义:
(i)预防疾病或病症在哺乳动物中出现,特别是当这类哺乳动物易患有该疾病或病症,但尚未被诊断为已患有该疾病或病症时;
(ii)抑制疾病或病症,即遏制其发展;
(iii)缓解疾病或病症,即使该疾病或病症的状态消退;或者
(iv)减轻该疾病或病症所造成的症状。
本文所使用术语“有效量”、“治疗有效量”或“药学有效量”是指服用后足以在某种程度上缓解所治疗的疾病或病症的一个或多个症状的至少一种药剂或化合物的量。其结果可以为迹象、症状或病因的消减和/或缓解,或生物系统的任何其它所需变化。例如,用于治疗的“有效量”是在临床上提供显著的病症缓解效果所需的包含本文公开化合物的组合物的量。可使用诸如剂量递增试验的技术测定适合于任意个体病例中的有效量。本文所用术语“服用”、“施用”、“给药”等是指能够将化合物或组合物递送到进行生物作用的所需位点的方法。这些方法包括但不限于口服途径、经十二指肠途径、胃肠外注射(包括静脉内、皮下、腹膜内、肌内、动脉内注射或输注)、局部给药和经直肠给药。本领域技术人员熟知可用于本文所述化合物和方法的施用技术,例如在Goodman and Gilman,The Pharmacological Basis of Therapeutics,current ed.;Pergamon;and Remington’s,Pharmaceutical Sciences(current edition),Mack Publishing Co.,Easton,Pa中讨论的那些。在优选的实施方案中,本文讨论的化合物和组合物通过口服施用。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“包含”为开放式表达,即包括本发明所指明的内容,但并不排除其他方面的内容。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:本发明提供了一系列结构新颖、具有良好的水溶性和 稳定性的葡萄糖类化合物;其在体外几乎没有抑制癌细胞增殖活性,在体内活性测试中表明其具有良好的抗癌作用,且对肿瘤转移有良好的抑制效果,有良好的市场应用前景。
附图说明
图1为实施例1化合物的生物活性测试。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
本发明中,所述的室温指环境温度,为10℃~35℃。
实施例1:2-(β-D-吡喃葡萄糖苷)-乙基膦酸钠的合成
Figure PCTCN2019106688-appb-000051
步骤(1):2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴乙烷的合成。
Figure PCTCN2019106688-appb-000052
称量β-D-吡喃葡萄糖五乙酸酯60.0g(154mmol),干燥4A分子筛20g,2-溴-1-乙醇30.6g(184mmol),600ml二氯甲烷置于容积为2000毫升的三口圆底烧瓶中,冰水浴中滴加三氟化硼乙醚60ml(473mmol),0℃搅拌30分钟。反应液室温搅拌18小时。冰水浴下饱和碳酸氢钠300ml淬灭反应冷却,过滤,收集滤液,滤渣用100ml二氯甲烷洗涤两次。分出二氯甲烷相,水相二氯甲烷300ml萃取两次。合并萃取液,用饱和碳酸氢钠600ml洗涤,干燥,旋蒸得到粘稠液体,再经过柱层析纯化得到无色液体2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴乙烷44g,产率为53%;C 16H 23BrO 10,ESI-MS(EI +,m/z):477[M+Na] +
步骤(2):2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-乙基膦酸二乙酯的合成。
Figure PCTCN2019106688-appb-000053
称量2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴乙烷35.0g(76.9mmol),亚磷酸三乙酯80ml(470mmol)。反应液160℃搅拌4小时。反应液100-130℃减压蒸馏至大约80ml,再经过柱层析纯化得到无色液体2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-乙基膦酸二乙酯39g,产率为98%; 1H NMR(500MHz,CDCl 3)δ5.20(t,J=9.5Hz,1H),5.08(t,J=9.7Hz,1H),4.98(dd,J=9.6,8.0Hz,1H),4.53(d,J=8.0Hz,1H),4.28(dd,J=12.3,4.8Hz,1H),4.15–4.03(m,4H),3.84–3.76(m,1H),3.70(ddd,J=10.0,4.8,2.3Hz,1H),2.19–2.11(m,4H),2.10(s,3H),2.06(s,3H),2.03(s,3H),2.01(s,3H),1.33(t,J=7.1Hz,6H);C 20H 33O 13P,ESI-MS(EI +,m/z):535[M+Na] +
步骤(3):2-(β-D-吡喃葡萄糖苷)-乙基膦酸钠的合成。
Figure PCTCN2019106688-appb-000054
称量2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-乙基膦酸二乙酯39g(76.1mmol),120ml干燥二氯甲烷置于容积为500毫升的单口圆底烧瓶中,冰水浴中滴加三甲基溴硅烷45ml。反应液0-25℃搅拌18小时。反应液旋蒸得到粗品,冰水浴中加入二氯甲烷100ml,甲醇100ml,25℃搅拌30分钟。低温旋蒸得到粗品,冰水浴中加入氨甲醇(7M,100ml),25℃搅拌30分钟。旋蒸得到粗品,加入甲醇100ml,加入浓氨水100ml,反应液25℃搅拌6小时,50℃旋去溶剂。固体乙醇水重结晶得到粗品。强酸性树脂柱提纯,冻干,加入2N氢氧化钠水溶液,乙醇重结晶得到2-(β-D-吡喃葡萄糖苷)-乙基膦酸钠白色固体18.0g,产率73%; 1H NMR(500MHz,D 2O)δ4.40(d,J=8.0Hz,1H),3.98(ddd,J=16.7,10.7,6.1Hz,1H),3.80(dd,J=12.4,2.0Hz,1H),3.75(td,J=10.9,5.3Hz,1H),3.60(dd,J=12.4,6.0Hz,1H),3.42–3.33(m,2H),3.26(t,J=9.5Hz,1H),3.14(dd,J=9.2,8.2Hz,1H),1.82–1.65(m,2H)。C 8H 15Na 2O 9P,ESI-MS(EI +,m/z):289.1[M+H] +
实施例2:2-羟基-乙基膦酸钠的合成
Figure PCTCN2019106688-appb-000055
Figure PCTCN2019106688-appb-000056
步骤(1):2-羟基-乙基膦酸钠的合成。
称量2-羟基-乙基膦酸二甲酯2.0g(13.0mmol),20ml干燥二氯甲烷置于容积为100毫升的单口圆底烧瓶中,冰水浴中滴加三甲基溴硅烷8.0g(52.0mmol)。反应液0-25℃搅拌18小时。反应液旋蒸得到粗品,冰水浴中加入二氯甲烷10ml,甲醇10ml,25℃搅拌30分钟。旋干,加水冻干,加入2N氢氧化钠水溶液,乙醇重结晶得到2-羟基-乙基膦酸钠水合白色固体2.1g,产率53%; 1H NMR(500MHz,D 2O)δ3.72(dt,J=12.2,7.5Hz,2H),1.96(dt,J=18.4,7.5Hz,2H)。C 2H 5Na 2O 4P,ESI-MS(EI +,m/z):127.1[M+H] +
实施例3:2-(β-D-吡喃葡萄糖苷)-乙基磷酸钠的合成
Figure PCTCN2019106688-appb-000057
步骤(1):2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-苄氧基乙烷的合成。
Figure PCTCN2019106688-appb-000058
称量β-D-吡喃葡萄糖五乙酸酯50.0g(128mmol),干燥4A分子筛20g,2-苄氧基-1-乙醇27.3g(179mmol),500ml二氯甲烷置于容积为2000毫升的三口圆底烧瓶中,冰水浴中滴加三氟化硼乙醚50ml(394mmol),0℃搅拌30分钟。反应液室温搅拌18小时。冰水浴下饱和碳酸氢钠300ml淬灭反应冷却,过滤,收集滤液,滤渣用100ml二氯甲烷洗涤两次。分出二氯甲烷相,水相二氯甲烷200ml萃取两次。合并萃取液,用饱和碳酸氢钠300ml洗涤,干燥,旋蒸得到粘稠液体,再经过柱层析纯化得到无色液体2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-苄氧基乙烷40g,产率为64%;C 23H 30O 11,ESI-MS(EI +,m/z):505.1[M+Na] +
步骤(2):2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-羟基乙烷的合成。
Figure PCTCN2019106688-appb-000059
称量2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-苄氧基乙烷13.0g(128mmol),10%钯碳650mg,160ml甲醇和乙酸乙酯(1:1)置于容积为500毫升的单口圆底烧瓶中。反应液室温加氢搅拌18小时。反应液过滤,旋干得到无色液体2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-羟基乙烷8.5g,产率为77%;C 16H 24O 11,ESI-MS(EI +,m/z):415.1[M+Na] +
步骤(3):2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-乙基磷酸二苄酯的合成。
Figure PCTCN2019106688-appb-000060
称量2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-羟基乙烷8.5g(21.6mmol),四氮唑3.8g(54.2mmol),150ml二氯甲烷置于500ml单口瓶中。冰浴下加入二苄基二异丙基亚磷酰胺11.2g(32.4mmol)。反应液25℃搅拌18小时。冰浴下加入间氯过氧苯甲酸6.7g(38.9mmol),反应液0℃搅拌2小时。加入100ml二氯甲烷,5%亚硫酸氢钠150ml淬灭反应。分出二氯甲烷相,水洗,干燥,旋干得到粗品,再经过柱层析纯化得到无色液体2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-乙基磷酸二苄酯8.5g,产率为60%;C 30H 37O 14P,ESI-MS(EI +,m/z):653.1[M+H] +
步骤(4):2-(β-D-吡喃葡萄糖苷)-乙基磷酸二苄酯的合成。
Figure PCTCN2019106688-appb-000061
称量2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-乙基磷酸二苄酯8.5g(13.0mmol),甲醇100ml,浓氨水50ml置于容积为500毫升的单口圆底烧瓶中。反应液0-25℃搅拌6小时。反应液旋蒸得到粗品,再经过柱层析纯化得到无色粘稠液体2-(β-D-吡喃葡萄糖苷)-乙基磷酸二苄酯4.0g,产率63%;C 22H 29O 10P,ESI-MS(EI +,m/z):485.1[M+H] +
步骤(5):2-(β-D-吡喃葡萄糖苷)-乙基磷酸的合成。
Figure PCTCN2019106688-appb-000062
称量2-(β-D-吡喃葡萄糖苷)-乙基磷酸二苄酯4.0g(8.2mmol),10%钯碳400mg,80ml甲醇和乙酸乙酯(1:1)置于容积为250毫升的单口圆底烧瓶中。反应液室温加氢搅拌18小时。反应液过滤,旋干,得到粗品,冻干,得到2-(β-D-吡喃葡萄糖苷)-乙基磷酸无色固体2.2g,产率87%; 1H NMR(500MHz,D 2O)δ4.41(d,J=7.9Hz,1H),4.00–3.93 (m,3H),3.82–3.75(m,2H),3.60(dd,J=12.4,6.0Hz,1H),3.38(t,J=9.2Hz,1H),3.36–3.33(m,1H),3.30–3.24(m,1H),3.19(dd,J=9.3,8.0Hz,1H)。C 8H 17O 10P,ESI-MS(EI +,m/z):305.0[M+H] +
步骤(6):2-(β-D-吡喃葡萄糖苷)-乙基磷酸钠的合成。
Figure PCTCN2019106688-appb-000063
称量2-(β-D-吡喃葡萄糖苷)-乙基磷酸300mg,溶于10mL水中,加入1N的当量的NaOH,室温搅拌20min。冻干记得到2-(β-D-吡喃葡萄糖苷)-乙基磷酸钠。ESI-MS(EI +,m/z):248.3[M+Na] +
实施例4:5-(β-D-吡喃葡萄糖苷)-正戊基膦酸钠的合成
Figure PCTCN2019106688-appb-000064
步骤(1):5-(二乙氧基磷酰基)戊基乙酸酯的合成。
Figure PCTCN2019106688-appb-000065
称量5-溴戊基乙酸酯10.5g(50.0mmol),亚磷酸三乙酯12ml(71.2mmol)。反应液160℃搅拌5小时。反应液经过柱层析纯化得到无色液体5-(二乙氧基磷酰基)戊基乙酸酯10g,产率为75%;C 11H 23O 5P,ESI-MS(EI +,m/z):267[M+H] +
步骤(2):5-羟基戊基膦酸二乙酯的合成。
Figure PCTCN2019106688-appb-000066
称量5-(二乙氧基磷酰基)戊基乙酸酯10g(37.6mmol),100ml氨甲醇(7M)置于容积为500毫升的单口圆底烧瓶中。反应液20℃搅拌40小时。反应液旋蒸得到粗品,再经过柱层析纯化得到无色液体5-羟基戊基膦酸二乙酯3.0g,产率35%;C 9H 21O 4P,ESI-MS(EI +,m/z):225.1[M+H] +
步骤(3):5-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-戊基膦酸二乙酯的合成。
Figure PCTCN2019106688-appb-000067
称量β-D-吡喃葡萄糖五乙酸酯2.6g(6.7mmol),干燥4A分子筛2g,5-羟基戊基膦酸二乙酯3.0g(13.4mmol),20ml二氯甲烷置于容积为100毫升的单口圆底烧瓶中,冰水浴中滴加三氟化硼乙醚3ml(23.7mmol),0℃搅拌30分钟。反应液室温搅拌18小时。冰水浴下饱和碳酸氢钠30ml淬灭反应冷却,过滤,收集滤液,滤渣用10ml二氯甲烷洗涤两次。分出二氯甲烷相,水相二氯甲烷30ml萃取两次。合并萃取液,用饱和碳酸氢钠60ml洗涤,干燥,旋蒸得到粘稠液体,再经过柱层析纯化得到无色液体5-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-戊基膦酸二乙酯2.1g,产率为56%;C 23H 39O 13P,ESI-MS(EI +,m/z):555.2[M+H] +
步骤(4):5-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-戊基膦酸铵的合成。
Figure PCTCN2019106688-appb-000068
称量5-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-戊基膦酸二乙酯2.1g(3.8mmol),20ml二氯甲烷置于容积为100毫升的单口圆底烧瓶中,冰水浴中滴加三甲基溴硅烷3ml(22.7mmol),0℃搅拌30分钟。反应液室温搅拌18小时。反应液旋蒸得到粗品,冰水浴中加入二氯甲烷20ml,氨甲醇(7M,2ml),0℃搅拌30分钟。旋蒸得到粗品,再经过反相柱层析纯化得到白色固体5-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-戊基膦酸铵300mg,产率为14%;C 19H 37N 2O 13P,ESI-MS(EI +,m/z):499.1[M+H] +
步骤(5):5-(β-D-吡喃葡萄糖苷)-正戊基膦酸钠的合成。
Figure PCTCN2019106688-appb-000069
称量5-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-戊基膦酸铵300mg(0.56mmol),10ml甲醇置于容积为50毫升的单口圆底烧瓶中,冰水浴中加入甲醇钠183mg(3.4mol)。反应液25℃搅拌2小时。加入浓氨水(28%,3ml),反应液25℃搅拌4小时。反应液旋蒸得到粗品,加入2N氢氧化钠水溶液,乙醇重结晶得到5-(β-D-吡喃葡萄糖苷)-正戊基膦酸钠水合白色固体260mg,产率88%; 1H NMR(500MHz,D 2O)δ4.38(d,J=8.0Hz,1H),3.84(ddd,J=12.5,8.7,4.4Hz,2H),3.66–3.59(m,2H),3.38(ddd,J=12.1,8.1,5.6Hz,2H),3.32–3.26(m,1H),3.17(dd,J=9.2,8.1Hz,1H),1.61–1.53(m,2H),1.47–1.38(m,2H),1.37–1.27(m,4H);C 11H 21Na 2O 9P,ESI-MS(EI +,m/z):331.1[M+H] +
实施例5:3-(β-D-吡喃葡萄糖苷)-丙胺的合成
Figure PCTCN2019106688-appb-000070
步骤(1):3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴丙烷的合成。
Figure PCTCN2019106688-appb-000071
称量β-D-吡喃葡萄糖五乙酸酯100g(256mmol),干燥
Figure PCTCN2019106688-appb-000072
分子筛50g,3-溴-1-丙醇34.78mL(385mmol),1L二氯甲烷置于容积为2L的三口圆底烧瓶中,冰水浴中滴加三氟化硼乙醚222mL(1.80mol),0℃搅拌30分钟。反应液室温搅拌18小时。冰水浴下三乙胺250mL淬灭反应冷却,过滤,收集滤液,滤渣用100mL二氯甲烷洗涤两次。分出二氯甲烷相,水相二氯甲烷800mL萃取两次。合并萃取液,用饱和碳酸氢钠600mL洗涤,干燥,旋蒸得到粘稠液体,再经过柱层析纯化得到白色固体3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴丙烷61g,产率为51%; 1H NMR(500MHz,CDCl 3)δ5.22(t,J=9.5Hz,1H),5.09(t,J=9.7Hz,1H),4.99(dd,J=9.7,8.0Hz,1H),4.52(d,J=8.0Hz,1H),4.33–4.21(m,1H),4.18–4.13(m,1H),4.04–3.96(m,1H),3.75–3.64(m,2H),3.51–3.42(m,2H),2.22–2.12(m,1H),2.09(s,3H),2.07(s,3H),2.04–2.02(m,4H),2.01(s,3H).C 17H 25BrO 10,ESI-MS(EI +,m/z):486.0[M+H 2O] +.
步骤(2):3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-叠氮基丙烷的合成。
Figure PCTCN2019106688-appb-000073
称量3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴丙烷5.0g(10.66mmol),叠氮化钠1.04g(15.99mmol),30mL N,N-二甲基甲酰胺,65℃搅拌16小时。反应液用40mL乙酸乙酯萃取两次,合并有机相用40mL水洗,30mL饱和食盐水洗,干燥,旋干得黄色油状物3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-叠氮基丙烷4.123g,产率为90%; 1H NMR(500MHz,CDCl 3)δ5.21(t,J=9.5Hz,1H),5.09(t,J=9.7Hz,1H),4.99(dd,J=9.6,8.0Hz,1H),4.51(d,J=8.0Hz,1H),4.30–4.22(m,1H),4.17–4.12(m,1H),3.99–3.90(m,1H),3.74–3.67(m,1H),3.64–3.57(m,1H),3.41–3.32(m,2H),2.09(s,3H),2.06(s,3H),2.03(s,3H),2.01(s,3H),1.89–1.80(m,2H).C 17H 25N 3O 10,ESI-MS(EI +,m/z):449.0[M+H 2O] +.
步骤(3):3-(β-D-吡喃葡萄糖苷)-叠氮基丙烷的合成。
Figure PCTCN2019106688-appb-000074
称量3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-叠氮基丙烷4.123g(9.57mmol),30mL 7N氨甲醇溶液,室温搅拌16小时。反应液旋干,再经过柱层析纯化得到黄色粘稠液体3-(β-D-吡喃葡萄糖苷)-叠氮基丙烷3.156g,产率100%;C 9H 17N 3O 6,ESI-MS(EI +,m/z):264.1[M+H] +.
步骤(4):3-(β-D-吡喃葡萄糖苷)-丙胺的合成。
Figure PCTCN2019106688-appb-000075
称量3-(β-D-吡喃葡萄糖苷)-叠氮基丙烷1.4g(4.25mmol),19mL 0.1N氢氧化钠溶液置于100mL烧瓶中,冰水浴下加入钯炭40mg,硼氢化钠129mg(3.4mmol)水溶液8.5mL,室温搅拌16小时。反应液过滤,滤液用强酸型树脂提纯,加入1%氨水,冻干后得无色粘稠液体3-(β-D-吡喃葡萄糖苷)-丙胺0.84g,产率83%; 1H NMR(500MHz,D 2O)δ4.34(t,J=7.7Hz,1H),3.95–3.83(m,1H),3.83–3.77(m,1H),3.69–3.56(m,2H),3.40–3.31(m,2H),3.25(t,J=9.4Hz,1H),3.19–3.11(m,1H),3.03–2.95(m,0.5H),2.85(t,J=7.0Hz,1.5H),1.83–1.75(m,1.5H),1.68–1.63(m,0.5H).C 9H 19NO 6,ESI-MS(EI +,m/z):238.2[M+H] +.
实施例6:N-3-(β-D-吡喃葡萄糖苷)-丙基二乙醇胺的合成
Figure PCTCN2019106688-appb-000076
步骤(1):3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-碘丙烷的合成。
Figure PCTCN2019106688-appb-000077
称量3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴丙烷2g(4.26mmol),碘化钾0.78g(5.12mmol),30mL丙酮,室温下避光搅拌40小时。反应液过滤,滤液旋干得3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-碘丙烷粗品2.75g,产率为100%。 1H  NMR(500MHz,CDCl 3)δ5.22(t,J=9.5Hz,1H),5.08(t,J=9.7Hz,1H),4.99(dd,J=9.7,8.0Hz,1H),4.52(d,J=8.0Hz,1H),4.30–4.24(m,1H),4.19–4.13(m,1H),3.99–3.89(m,1H),3.77–3.69(m,2H),3.64–3.57(m,1H),3.31(t,J=6.7Hz,1H),3.29–3.20(m,2H),2.09(s,3H),2.08(s,3H),2.03(s,3H),2.01(s,3H),2.00–1.94(m,2H).C 17H 25IO 10,ESI-MS(EI +,m/z):534.0[M+H 2O] +.
步骤(2):N-3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丙基二乙醇胺的合成。
Figure PCTCN2019106688-appb-000078
称量3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-碘丙烷2.75g(4.26mmol),二乙醇胺0.761g(7.24mmol),碳酸钾0.941g(5.30mmol),40mL乙腈,50℃避光搅拌40小时。反应液过滤,滤液浓缩,经柱层析纯化得黄色粘稠液体N-3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丙基二乙醇胺1.443g,产率为69%。 1H NMR(500MHz,CDCl 3)δ5.21(t,J=9.5Hz,1H),5.09(t,J=9.7Hz,1H),5.00(dd,J=9.6,8.0Hz,1H),4.53(d,J=8.0Hz,1H),4.27–4.16(m,2H),4.06–3.97(m,1H),3.74–3.64(m,3H),3.62–3.53(m,3H),2.74–2.64(m,4H),2.60–2.51(m,3H),2.10(s,3H),2.06(s,3H),2.03(s,3H),2.01(s,3H),1.79–1.72(m,2H).C 21H 35NO 12,ESI-MS(EI +,m/z):494.2[M+H] +.
步骤(3):N-3-(β-D-吡喃葡萄糖苷)-丙基二乙醇胺的合成。
Figure PCTCN2019106688-appb-000079
称量N-3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丙基二乙醇胺0.32g(0.65mmol),10mL浓氨水,室温搅拌16小时。反应液旋干,强酸型树脂纯化得黄色粘稠液体N-3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丙基二乙醇胺0.128g,产率为61%。 1H NMR(400MHz,D 2O)δ4.33(d,J=8.0Hz,1H),3.91–3.72(m,2H),3.59(t,J=6.2Hz,6H),3.43–3.20(m,3H),3.20–3.05(m,1H),2.79–2.45(m,6H),1.86–1.60(m,2H).C 13H 27NO 8,ESI-MS(EI +,m/z):326.2[M+H] +.
实施例7:4-(β-D-吡喃葡萄糖苷)-丁基膦酸钠的合成
Figure PCTCN2019106688-appb-000080
步骤(1):4-(二乙氧基膦酸)-丁基乙酸酯的合成。
Figure PCTCN2019106688-appb-000081
称量4-溴丁基乙酸酯16g(82.05mmol),亚膦酸三乙酯27.24g(164mmol),160℃搅拌16小时。反应液经柱层析纯化得黄色粘稠液体4-(二乙氧基膦酸)-丁基乙酯粗品13.72g,产率为66%。 1H NMR(500MHz,CDCl 3)δ4.12–4.06(m,6H),2.05(d,J=2.3Hz,3H),1.83–1.69(m,6H),1.33(t,J=7.1Hz,7H).C 10H 21O 5P,ESI-MS(EI +,m/z):253.2[M+H] +.
步骤(2):4-(二乙氧基膦酸)-丁醇的合成。
Figure PCTCN2019106688-appb-000082
称量4-(二乙氧基膦酸)-丁基乙酯粗品3.8g(15.08mmol),乙醇15mL置于100mL烧瓶,滴加2N氢氧化钠溶液15.1mL(30.16mmol),室温搅拌16小时。反应液用1N盐酸中和,旋干,经柱层析纯化得黄色粘稠液体4-(二乙氧基膦酸)-丁醇粗品1.9g,产率为60%。 1H NMR(500MHz,CDCl 3)δ4.16–4.04(m,2H),3.67(t,J=6.0Hz,1H),1.83–1.65(m,4H),1.33(t,J=7.1Hz,3H).C 8H 19O 4P,ESI-MS(EI +,m/z):211.1[M+H] +.
步骤(3):4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丁基膦酸二乙酯的合成。
Figure PCTCN2019106688-appb-000083
称量β-D-吡喃葡萄糖五乙酸酯3.8g(9.74mmol),干燥
Figure PCTCN2019106688-appb-000084
分子筛1.5g,4-(二乙氧基膦酸)-丁醇2.5g(11.9mmol),20mL二氯甲烷置于容积为100mL的三口圆底烧瓶中,冰水浴中滴加三氟化硼乙醚9.6mL(77.8mmol),0℃搅拌30分钟。反应液室温搅拌18小时。冰水浴下三乙胺11mL淬灭反应冷却,过滤,收集滤液,滤渣用10mL二氯甲烷洗涤两次。分出二氯甲烷相,水相二氯甲烷30mL萃取两次。合并萃取液,用饱和碳酸氢钠20mL洗涤,干燥,旋蒸得到粘稠液体,再经过柱层析纯化得到黄色粘稠液体4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丁基膦酸二乙酯粗品1.7g,产率为32%。C 22H 37O 13P,ESI-MS(EI +,m/z):211.2[M+H] +.
步骤(4):4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丁基膦酸的合成。
Figure PCTCN2019106688-appb-000085
称量4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丁基膦酸二乙酯粗品1.7g(3.15mmol),30ml干燥二氯甲烷置于容积为100毫升的单口圆底烧瓶中,冰水浴中滴加三甲基溴硅烷4.1ml。反应液升至室温搅拌18小时。反应液旋蒸得到粗品,冰水浴中溶于甲醇40ml,浓氨水调至中性,25℃搅拌10分钟。低温旋蒸得到粗品,经反相柱纯化,冻干,得到4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丁基膦酸白色固体0.35,产率51%; 1H NMR(500MHz,D 2O)δ5.29(t,J=9.4Hz,1H),5.04(t,J=9.7Hz,1H),4.90–4.84(m,1H),4.79(d,J=8.1Hz,1H),4.32(dd,J=12.6,3.9Hz,1H),4.14(dd,J=12.6,2.0Hz,1H),4.01–3.94(m,1H),3.86–3.81(m,1H),3.65–3.59(m,1H),2.06(s,6H),2.02(s,3H),1.98(s,3H),1.68–1.49(m,6H).C 18H 29O 13P,ESI-MS(EI +,m/z):485.2[M+H] +
步骤(5):4-(β-D-吡喃葡萄糖苷)-丁基膦酸钠的合成。
Figure PCTCN2019106688-appb-000086
称量4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丁基膦酸0.35g(0.72mmol),10ml浓氨水置于100mL的单口圆底烧瓶中,室温搅拌2小时。反应液旋干,加氢氧化钠,冻干得到4-(β-D-吡喃葡萄糖苷)-丁基膦酸钠白色固体0.25g,产率96%; 1H NMR(500MHz,D 2O)δ4.36(d,J=8.0Hz,1H),3.87–3.79(m,2H),3.60(dt,J=10.5,6.3Hz,2H),3.42–3.32(m,2H),3.31–3.23(m,1H),3.16(t,J=8.7Hz,1H),1.68–1.43(m,6H).ESI-MS(EI +,m/z):339.1[M+Na] +
实施例8:2-羟甲基-2-(3-(β-D-吡喃葡萄糖苷)-丙氨基)-1,3-丙二醇的合成
Figure PCTCN2019106688-appb-000087
步骤(1):三羟甲基(叔丁氧羰基氨基)甲烷的合成。
Figure PCTCN2019106688-appb-000088
称量三羟甲基氨基甲烷15.7g(129mmol),350ml甲醇和35ml水置于容积为1000毫升的三口圆底烧瓶中,冰水浴中加入二碳酸二叔丁酯31.2g(143mmol)。反应液室温搅拌60小时。反应液旋蒸得到白色固体三羟甲基(叔丁氧羰基氨基)甲烷25g,产率为87%;C 9H 19NO 5,ESI-MS(EI +,m/z):244.1[M+Na] +
步骤(2):三苄氧甲基(叔丁氧羰基氨基)甲烷的合成。
Figure PCTCN2019106688-appb-000089
称量三羟甲基(叔丁氧羰基氨基)甲烷11.1g(50.0mmol),溴苄34g(200.0mmol),N,N-二甲基甲酰胺100ml置于容积为500毫升的三口圆底烧瓶中,冰水浴中加入碾碎的氢氧化钠8.0g(200mmol)。反应液室温搅拌18小时。反应液倒入400ml冰水中,乙酸乙酯400ml萃取,萃取液300ml水洗,饱和食盐水洗,干燥,旋干,粗品再经过柱层析纯化得到无色液体三苄氧甲基(叔丁氧羰基氨基)甲烷12g,产率为46%;C 30H 37NO 5,ESI-MS(EI +,m/z):514[M+Na] +
步骤(3):三苄氧甲基氨基甲烷的合成。
Figure PCTCN2019106688-appb-000090
三苄氧甲基(叔丁氧羰基氨基)甲烷7.4g(15.0mmol),20ml二氯甲烷置于容积为100毫升的单口圆底烧瓶中,冰水浴中加入三氟乙酸10ml。反应液室温搅拌2小时。反应液旋干,加入100ml饱和碳酸氢钠,50ml二氯甲烷萃取两次,合并有机相,干燥,旋干得到无色液体三苄氧甲基氨基甲烷5.0g,产率为85%;C 25H 29NO 3,ESI-MS(EI +,m/z):392.2[M+H] +
步骤(4):(3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丙氨基)三苄氧甲基甲烷的合成。
Figure PCTCN2019106688-appb-000091
称量3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴丙烷256mg(0.54mmol),三苄氧甲基氨基甲烷256mg(0.65mmol),碳酸钾112mg(0.81mmol),10mL乙腈,置于容积为50毫升的单口圆底烧瓶中。60℃避光搅拌44小时。反应液过滤,滤液浓缩得无 色液体3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丙氨基)三苄氧甲基甲烷350mg,产率为83%;C 42H 53NO 13,ESI-MS(EI +,m/z):780.3[M+H] +.
步骤(5):(3-(β-D-吡喃葡萄糖苷)-丙氨基)三苄氧甲基甲烷的合成。
Figure PCTCN2019106688-appb-000092
称量3-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丙氨基)三苄氧甲基甲烷350mg(0.45mmol),10mL浓氨水置于容积为50毫升的单口圆底烧瓶中。20℃搅拌18小时。反应液冻干,粗品经柱层析纯化得无色液体(3-(β-D-吡喃葡萄糖苷)-丙氨基)三苄氧甲基甲烷220mg,产率为80%;C 34H 45NO 9,ESI-MS(EI +,m/z):612.3[M+H] +.
步骤(6):2-羟甲基-2-(3-(β-D-吡喃葡萄糖苷)-丙氨基)-1,3-丙二醇的合成。
Figure PCTCN2019106688-appb-000093
称量(3-(β-D-吡喃葡萄糖苷)-丙氨基)三苄氧甲基甲烷220mg(0.36mmol),10%钯碳50mg,0.5ml醋酸,10mL甲醇置于容积为50毫升的单口圆底烧瓶中。反应液室温加氢搅拌18小时。反应液过滤,旋干,加入7M氨甲醇10ml,室温搅拌过夜。反应液旋干,残留物冻干,粗品强酸型树脂纯化得白色固体2-羟甲基-2-(3-(β-D-吡喃葡萄糖苷)-丙氨基)-1,3-丙二醇40mg,产率为32%; 1H NMR(500MHz,D 2O)δ4.36(d,J=8.0Hz,1H),3.95(dt,J=11.1,5.8Hz,1H),3.81(dd,J=12.3,2.0Hz,1H),3.72(dt,J=10.8,5.6Hz,1H),3.66(s,6H),3.61(dd,J=12.3,6.0Hz,1H),3.39(t,J=9.2Hz,1H),3.36–3.33(m,1H),3.26(t,J=9.4Hz,1H),3.18(dd,J=16.5,8.4Hz,3H),2.03–1.88(m,2H);C 13H 27NO 9,ESI-MS(EI +,m/z):342.1[M+H] +.
实施例9:4-(β-D-吡喃葡萄糖苷)-丁基磷酸钠的合成
Figure PCTCN2019106688-appb-000094
步骤(1):4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-苄氧基丁烷的合成。
Figure PCTCN2019106688-appb-000095
称量β-D-吡喃葡萄糖五乙酸酯5.0g(12.8mmol),干燥4A分子筛2.0g,4-苄氧基-1-丁醇3.24g(18.0mmol),50ml二氯甲烷置于容积为250毫升的三口圆底烧瓶中,冰水浴中滴加三氟化硼乙醚5.0ml(39.4mmol),0℃搅拌30分钟。反应液室温搅拌18小时。冰水浴下饱和碳酸氢钠30ml淬灭反应冷却,过滤,收集滤液,滤渣用10ml二氯甲烷洗涤两次。分出二氯甲烷相,水相二氯甲烷20ml萃取两次。合并萃取液,用饱和碳酸氢钠60ml洗涤,干燥,旋蒸得到粘稠液体,再经过柱层析纯化得到无色液体4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-苄氧基丁烷3.0g,产率为46%;C 25H 34O 11,ESI-MS(EI +,m/z):533.2[M+Na] +
步骤(2):4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-羟基丁烷的合成。
Figure PCTCN2019106688-appb-000096
称量4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-苄氧基丁烷3.0g(5.9mmol),10%钯碳300mg,60ml甲醇和乙酸乙酯(1:1)置于容积为250毫升的单口圆底烧瓶中。反应液室温加氢搅拌18小时。反应液过滤,旋干得到无色液体4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-羟基丁烷2.05g,产率为83%;C 18H 28O 11,ESI-MS(EI +,m/z):443.1[M+Na] +
步骤(3):4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丁基磷酸二苄酯的合成。
Figure PCTCN2019106688-appb-000097
称量4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-羟基丁烷2.05g(4.88mmol),四氮唑854mg(12.2mmol),30ml二氯甲烷置于100ml单口瓶中。冰浴下加入二苄基二异丙基亚磷酰胺2.36g(6.83mmol)。反应液25℃搅拌18小时。冰浴下加入间氯过氧苯甲酸1.51g(8.78mmol).反应液0℃搅拌2小时。加入20ml二氯甲烷,5%亚硫酸氢钠30ml淬灭反应。分出二氯甲烷相,水洗,干燥,旋干得到粗品,再经过柱层析纯化得到无色液体4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丁基磷酸二苄酯2.16g,产率为65%;C 32H 41O 14P,ESI-MS(EI +,m/z):681.2[M+H] +
步骤(4):4-(β-D-吡喃葡萄糖苷)-丁基磷酸二苄酯的合成。
Figure PCTCN2019106688-appb-000098
称量4-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-丁基磷酸二苄酯2.16g(3.17mmol),甲醇20ml,浓氨水10ml置于容积为100毫升的单口圆底烧瓶中。反应液0-25℃搅拌18小时。反应液旋蒸得到粗品,再经过柱层析纯化得到无色粘稠液体4-(β-D-吡喃葡萄糖苷)-丁基磷酸二苄酯844mg,产率52%;C 24H 33O 10P,ESI-MS(EI +,m/z):513.1[M+H] +
步骤(5):4-(β-D-吡喃葡萄糖苷)-丁基磷酸钠的合成。
Figure PCTCN2019106688-appb-000099
称量4-(β-D-吡喃葡萄糖苷)-丁基磷酸二苄酯500mg(0.97mmol),10%钯碳100mg,20ml甲醇和乙酸乙酯(1:1)置于容积为100毫升的单口圆底烧瓶中。反应液室温加氢搅拌18小时。反应液过滤,旋干,得到粗品,冻干,加入2N氢氧化钠水溶液,乙醇重结晶得到,得到4-(β-D-吡喃葡萄糖苷)-丁基磷酸钠水合白色固体240mg,产率49%; 1H NMR(500MHz,D 2O)δ4.43(d,J=7.9Hz,1H),4.15-3.80(m,4H),3.66–3.59(m,2H),3.45–3.36(m,2H),3.30–3.24(m,1H),3.19(dd,J=9.4,8.0Hz,1H),1.63–1.53(m,2H),1.51–1.43(m,2H)。C 10H 19Na 2O 10P,ESI-MS(EI +,m/z):333.0[M+H] +
实施例10:N-(2-(β-D-吡喃葡萄糖苷)乙基)哌嗪的合成
Figure PCTCN2019106688-appb-000100
步骤(1):(4-N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)哌嗪-1-基)甲酸叔丁酯的合成。
Figure PCTCN2019106688-appb-000101
称量N-叔丁氧羰基哌嗪447mg(2.4mmol),2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴乙烷1.0g(2.2mmol),碳酸钾460mg(3.3mmol),碘化钾183mg(1.1mmol),丙酮20ml置于容积为50毫升的单口圆底烧瓶中。反应液45℃加热回流搅拌18小时。反应液冷却,过滤,滤液旋蒸,粗品经过柱层析纯化得到白色固体(4-N-(2-(β-D-2,3, 4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)哌嗪-1-基)甲酸叔丁酯592mg,产率为48%;C 25H 40N 2O 12,ESI-MS(EI +,m/z):561.2[M+H] +
步骤(2):(4-N-(2-(β-D-吡喃葡萄糖苷)乙基)哌嗪-1-基)甲酸叔丁酯的合成。
Figure PCTCN2019106688-appb-000102
称量(4-N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)哌嗪-1-基)甲酸叔丁酯592mg(1.06mmol),4mL浓氨水,8ml甲醇置于50ml单口烧瓶中。反应液室温搅拌16小时。反应液旋干,经硅胶柱层析得到白色固体(4-N-(2-(β-D-吡喃葡萄糖苷)乙基)哌嗪-1-基)甲酸叔丁酯287mg,产率为69%。C 17H 32N 2O 8,ESI-MS(EI +,m/z):393.2[M+H] +.
步骤(3):N-(2-(β-D-吡喃葡萄糖苷)乙基)哌嗪的合成。
Figure PCTCN2019106688-appb-000103
称量(4-N-(2-(β-D-吡喃葡萄糖苷)乙基)哌嗪-1-基)甲酸叔丁酯287mg(0.73mmol),8ml二氯甲烷置于50ml单口烧瓶中。0℃加入三氟乙酸2ml。反应液0℃搅拌2小时。反应液旋干,强酸型树脂纯化得白色固体N-(2-(β-D-吡喃葡萄糖苷)乙基)哌嗪134mg,产率为63%。 1H NMR(500MHz,D 2O)δ4.32(d,J=7.9Hz,1H),4.06-3.97(m,1H),3.84-3.72(m,2H),3.60-3.51(m,1H),3.40–3.29(m,2H),3.20(t,J=9.0Hz,1H),3.15-3.05(m,1H),2.91-2.70(m,6H),2.68-2.50(m,4H).C 12H 24N 2O 6,ESI-MS(EI +,m/z):293.1[M+H] +.
实施例11:β-D-1-O-(2-(4-N-甲基哌嗪-1-基)乙基)吡喃葡萄糖苷的合成
Figure PCTCN2019106688-appb-000104
步骤(1):β-D-1-O-(2-(4-N-甲基哌嗪-1-基)乙基)-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷的合成。
Figure PCTCN2019106688-appb-000105
称量N-甲基哌嗪243mg(2.42mmol),2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴乙烷1.0g(2.2mmol),碳酸钾304mg(2.2mmol),碘化钾183mg(1.1mmol),丙酮20ml置于容积为50毫升的单口圆底烧瓶中。反应液45℃加热回流搅拌18小时。反应液冷却,过滤,滤液旋蒸,粗品经过柱层析纯化得到白色固体β-D-1-O-(2-(4-N-甲基哌嗪-1-基)乙基)-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷292mg,产率为28%;C 21H 34N 2O 10,ESI-MS(EI +,m/z):475.2[M+H] +
步骤(2):β-D-1-O-(2-(4-N-甲基哌嗪-1-基)乙基)吡喃葡萄糖苷的合成。
Figure PCTCN2019106688-appb-000106
称量β-D-1-O-(2-(4-N-甲基哌嗪-1-基)乙基)-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷292mg(0.62mmol),4mL浓氨水,8ml甲醇置于50ml单口烧瓶中。反应液室温搅拌18小时。反应液旋干,强酸型树脂纯化得白色固体β-D-1-O-(2-(4-N-甲基哌嗪-1-基)乙基)吡喃葡萄糖苷82mg,产率为43%。 1H NMR(500MHz,D 2O)δ4.36(d,J=8.1Hz,1H),4.08-3.96(m,1H),3.80-3.70(m,2H),3.61-3.50(m,1H),3.38–3.29(m,2H),3.26–3.19(m,1H),3.13-3.01(m,4H),2.89-2.64(m,6H),2.60-2.43(m,4H).C 13H 26N 2O 6,ESI-MS(EI +,m/z):307.1[M+H] +.
实施例12:N-(2-(β-D-吡喃葡萄糖苷)乙基)吡咯的合成
Figure PCTCN2019106688-appb-000107
步骤(1):N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)吡咯的合成。
Figure PCTCN2019106688-appb-000108
称量吡咯300mg(3.3mmol),2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴乙烷1.0g(2.2mmol),碳酸钾460mg(3.3mmol),碘化钾183mg(1.1mmol),丙酮20ml置于容积为50毫升的单口圆底烧瓶中。反应液45℃加热回流搅拌18小时。反应液冷却,过滤,滤液旋蒸,粗品经过柱层析纯化得到淡黄色固体N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)吡咯379mg,产率为39%;C 20H 27NO 10,ESI-MS(EI +,m/z):442.1[M+H] +
步骤(2):N-(2-(β-D-吡喃葡萄糖苷)乙基)吡咯的合成。
Figure PCTCN2019106688-appb-000109
称量N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)吡咯379mg(0.86mmol),5mL浓氨水,10ml甲醇置于50ml单口烧瓶中。反应液室温搅拌16小时。反应液旋干,强酸型树脂纯化得白色固体N-(2-(β-D-吡喃葡萄糖苷)乙基)吡咯141mg,产率为60%。 1H NMR(500MHz,D 2O)δ6.62(d,2H),6.05(d,2H),4.48(d,J=8.0Hz,1H),4.34–4.23(m,2H),4.15-3.98(m,3H),3.86-3.75(m,2H),3.66-3.36(m,2H),3.26-3.18(m,1H).C 12H 19NO 6,ESI-MS(EI +,m/z):274.1[M+H] +.
实施例13:N-(2-(β-D-吡喃葡萄糖苷)乙基)苯胺的合成
Figure PCTCN2019106688-appb-000110
步骤(1):N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)苯胺的合成。
Figure PCTCN2019106688-appb-000111
称量苯胺307mg(3.3mmol),2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴乙烷1.0g(2.2mmol),碳酸钾460mg(3.3mmol),碘化钾183mg(1.1mmol),乙腈20ml置于容积为50毫升的单口圆底烧瓶中。反应液65℃加热搅拌6小时。反应液冷却,过滤,滤液旋蒸,粗品经过柱层析纯化得到黄色固体N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)苯胺238mg,产率为23%;C 22H 29NO 10,ESI-MS(EI +,m/z):468.1[M+H] +
步骤(2):N-(2-(β-D-吡喃葡萄糖苷)乙基)苯胺的合成。
Figure PCTCN2019106688-appb-000112
称量N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)苯胺238mg(0.51mmol),5mL浓氨水,10ml甲醇置于50ml单口烧瓶中。反应液室温搅拌16小时。反应液旋干,强酸型树脂纯化得淡黄色固体N-(2-(β-D-吡喃葡萄糖苷)乙基)苯胺87mg, 产率为57%。 1H NMR(500MHz,D 2O)δ7.37-7.29(m,2H),6.92-6.86(m,1H),6.75(d,J=8.8Hz,2H),4.35(d,J=8.1Hz,1H),4.15-3.98(m,2H),3.86-3.75(m,2H),3.66-3.36(m,5H),3.26-3.18(m,1H).C 14H 21NO 6,ESI-MS(EI +,m/z):300.1[M+H] +.
实施例14:N-(2-(β-D-吡喃葡萄糖苷)乙基)哌啶的合成
Figure PCTCN2019106688-appb-000113
步骤(1):N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)哌啶的合成。
Figure PCTCN2019106688-appb-000114
称量哌啶225mg(2.64mmol),2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴乙烷1.0g(2.2mmol),碳酸钾460mg(3.3mmol),碘化钾183mg(1.1mmol),丙酮20ml置于容积为50毫升的单口圆底烧瓶中。反应液45℃加热回流搅拌18小时。反应液冷却,过滤,滤液旋蒸,粗品经过柱层析纯化得到粘稠液体N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)哌啶420mg,产率为34%;C 21H 33NO 10,ESI-MS(EI +,m/z):460.2[M+H] +
步骤(2):N-(2-(β-D-吡喃葡萄糖苷)乙基)哌啶的合成。
Figure PCTCN2019106688-appb-000115
称量N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)哌啶0.42g(0.92mmol),4mL浓氨水,12ml甲醇置于50ml单口烧瓶中。反应液室温搅拌6小时。反应液旋干,强酸型树脂纯化得黄色粘稠液体N-(2-(β-D-吡喃葡萄糖苷)乙基)哌啶150mg,产率为56%。 1H NMR(500MHz,D 2O)δ4.24(d,J=8.0Hz,1H),4.03-3.94(m,1H),3.82-3.70(m,2H),3.60-3.51(m,1H),3.43–3.31(m,2H),3.25(t,J=9.2Hz,1H),3.15-3.01(m,1H),2.90-2.74(m,2H),2.63-2.42(m,4H),1.79–1.45(m,6H).C 13H 25NO 6,ESI-MS(EI +,m/z):292.1[M+H] +.
实施例15:N-(2-(β-D-吡喃葡萄糖苷)乙基)咪唑的合成
Figure PCTCN2019106688-appb-000116
步骤(1):N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)咪唑的合成。
Figure PCTCN2019106688-appb-000117
称量咪唑300mg(4.4mmol),2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴乙烷1.0g(2.2mmol),碳酸钾460mg(3.3mmol),碘化钾183mg(1.1mmol),丙酮20ml置于容积为50毫升的单口圆底烧瓶中。反应液45℃加热回流搅拌18小时。反应液冷却,过滤,滤液旋蒸,粗品经过柱层析纯化得到淡黄色固体N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)咪唑516mg,产率为53%;C 19H 26N 2O 10,ESI-MS(EI +,m/z):443.1[M+H] +
步骤(2):N-(2-(β-D-吡喃葡萄糖苷)乙基)咪唑的合成。
Figure PCTCN2019106688-appb-000118
称量N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)咪唑0.52g(1.17mmol),4mL浓氨水,12ml甲醇置于50ml单口烧瓶中。反应液室温搅拌6小时。反应液旋干,强酸型树脂纯化得白色固体N-(2-(β-D-吡喃葡萄糖苷)乙基)咪唑212mg,产率为66%。 1H NMR(500MHz,D 2O)δ7.64(s,1H),6.95(s,1H),6.91(s,1H),4.36(d,J=8.1Hz,1H),4.23-3.98(m,5H),3.84-3.71(m,2H),3.62-3.34(m,2H),3.29-3.17(m,1H).C 11H 18N 2O 6,ESI-MS(EI +,m/z):275.1[M+H] +.
实施例16:4-(N-(2-(β-D-吡喃葡萄糖苷)乙基)甲氨基)吡啶的合成
Figure PCTCN2019106688-appb-000119
步骤(1):4-(N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)甲氨基)吡啶的合成。
Figure PCTCN2019106688-appb-000120
称量4-甲氨基吡啶260mg(2.4mmol),2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴乙烷1.0g(2.2mmol),碳酸钾460mg(3.3mmol),碘化钾183mg(1.1mmol),丙酮20ml置于容积为50毫升的单口圆底烧瓶中。反应液45℃加热回流搅拌18小时。反应液冷却,过滤,滤液旋蒸,粗品经过柱层析纯化得到黄色固体4-(N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)甲氨基)吡啶478mg,产率为45%;C 22H 30N 2O 10,ESI-MS(EI +,m/z):483.1[M+H] +
步骤(2):4-(N-(2-(β-D-吡喃葡萄糖苷)乙基)甲氨基)吡啶的合成。
Figure PCTCN2019106688-appb-000121
称量4-(N-(2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)乙基)甲氨基)吡啶0.48g(0.99mmol),4mL浓氨水,12ml甲醇置于50ml单口烧瓶中。反应液室温搅拌6小时。反应液旋干,强酸型树脂纯化得淡黄色固体4-(N-(2-(β-D-吡喃葡萄糖苷)乙基)甲氨基)吡啶168mg,产率为54%。 1H NMR(500MHz,D 2O)δ8.22(d,J=7.5Hz,2H),6.78(d,J=7.6Hz,2H),4.42(d,J=7.9Hz,1H),4.26–4.01(m,3H),3.91-3.74(m,2H),3.60-3.31(m,3H),3.29-3.13(m,2H),3.12(s,3H).C 14H 22N 2O 6,ESI-MS(EI +,m/z):315.1[M+H] +.
实施例17:β-D-1-O-(3-(二(2-吗啉基乙基)氨基)丙基)-吡喃葡萄糖苷的合成
Figure PCTCN2019106688-appb-000122
步骤(1):二(2-吗啉基乙基)氨基甲酸叔丁酯的合成。
Figure PCTCN2019106688-appb-000123
称量二(2-羟乙基)氨基甲酸叔丁酯1.76g(8.6mmol),三乙胺2.61g(25.8mmol), 二氯甲烷40ml置于容积为100毫升的单口圆底烧瓶中。5℃滴加甲磺酰氯2.2g(18.9mmol)反应液5℃搅拌1小时。反应液水洗,食盐水洗,干燥旋干,加入碳酸钾3.6g(25.8mmol)和乙腈30ml。5℃滴加吗啉1.80g(20.64mmol)。反应液70℃加热搅拌过夜。反应液冷却,过滤,滤液旋蒸,粗品经过柱层析纯化得到油状二(2-吗啉基乙基)氨基甲酸叔丁酯1.25g,产率为42%;C 17H 33N 3O 4,ESI-MS(EI +,m/z):344.2[M+H] +
步骤(2):二(2-吗啉基乙基)胺的合成。
Figure PCTCN2019106688-appb-000124
称量二(2-吗啉基乙基)氨基甲酸叔丁酯1.25g(3.6mmol),二氯甲烷10ml置于容积为50毫升的单口圆底烧瓶中。0℃滴加三氟乙酸5ml。反应液0℃搅拌1小时。反应液旋蒸,粗品用乙醇钠乙醇溶液0℃处理,二氯甲烷洗涤。洗涤液旋干得到油状液体二(2-吗啉基乙基)胺600mg,产率为68%;C 12H 25N 3O 2,ESI-MS(EI +,m/z):244.1[M+H] +
步骤(3):β-D-1-O-(3-(二(2-吗啉基乙基)氨基)丙基)-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷的合成。
Figure PCTCN2019106688-appb-000125
称量二(2-吗啉基乙基)胺590mg(2.4mmol),2-(β-D-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷)-溴乙烷1.0g(2.2mmol),碘化钾183mg(1.1mmol),丙酮20ml置于容积为50毫升的单口圆底烧瓶中。反应液45℃加热回流搅拌18小时。反应液冷却,过滤,滤液旋蒸,粗品经过柱层析纯化得到黄色固体β-D-1-O-(3-(二(2-吗啉基乙基)氨基)丙基)-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷320mg,产率为23%;C 29H 49N 3O 12,ESI-MS(EI +,m/z):632.3[M+H] +
步骤(4):β-D-1-O-(3-(二(2-吗啉基乙基)氨基)丙基)-吡喃葡萄糖苷的合成。
Figure PCTCN2019106688-appb-000126
称量β-D-1-O-(3-(二(2-吗啉基乙基)氨基)丙基)-2,3,4,6-四-O-乙酰基吡喃葡萄糖苷0.32g(0.50mmol),4mL浓氨水,12ml甲醇置于50ml单口烧瓶中。反应液室温搅拌6小时。反应液旋干,强酸型树脂纯化得白色固体β-D-1-O-(3-(二(2-吗啉基乙基)氨基)丙基)-吡喃葡萄糖苷92mg,产率为39%。 1H NMR(500MHz,D 2O)δ4.43(d,J=7.9Hz,1H),3.94–3.70(m,10H),3.65–3.53(m,2H),3.44–3.19(m,3H),3.18–3.03(m,1H),2.85–2.35(m,18H),1.92–1.65(m,2H).C 21H 41N 3O 8,ESI-MS(EI +,m/z):464.2[M+H] +.
生物活性测试
实施例1化合物(TMER-002)生物活性测试
Hep3B2.1-7-Luc(Hep3B2.1-7购于ATCC,HB-8064 TM)通过基因重组导入luciferase(简称Luc)基因并通过慢病毒进行转染获得后,将细胞1.25x 10 6个Hep3B2.1-7-luc细胞的25uL细胞悬液加入50%Matrigel(细胞悬于EMEM:Matrigel=12.5μl:12.5μl)原位接种于每只小鼠的左肝小叶,由腹腔注射给药后小鼠用IVIS Lumina XR小动物成像仪进行成像(Sorafenib组为灌胃给药)。
整个给药期间,对照组和TMER-002 200mg/kg给药组中的小鼠体重基本正常,状态良好(见表1)。Sorafenib 30mg/k组给药7天后,多数动物体重下降超过8%。而TMER-002 200mg/kg组给药7天后,多数动物体重没有明显变化;实验证明TMER-002毒性小。基于荧光信号的肿瘤生长抑制率(TGI%)(TGI(%)=(TF control-TF treatment)/TF control x 100%;TF control:对照组小鼠肝脏(肿瘤)荧光信号值,TF treatment:治疗组小鼠肝脏(肿瘤)荧光信号值)评价显示TMER-002 200mg/kg组第28天的TGI为62.29%,Sorafenib 30mg/kg组第28天的TGI为66.25%。实验证明TMER-002 200mg/kg对Hep3B2.1-7-Luc肝癌细胞原位异种移植肿瘤模型具有一定的抑瘤效果。实验结果见附图1及表1和2。
表1.小鼠体重(克)变化情况
实验组 0天 7天 14天 20天 28天
vehicle ddH 2O 22.65 22.67 22.81 23.05 23.18
Sorafenib 22.06 20.82 21.14 20.40 21.05
TMER-002 22.37 22.40 22.56 22.50 21.85
表2.肿瘤生长抑制率(TGI%)测试
实验组 0天 7天 14天 20天 28天
vehicle ddH 2O - - - - -
Sorafenib(30mg/kg) - -4.95% 41.58% 57.98% 66.25%
TMER-002(200mg/kg) - 27.59% 36.08% 58.82% 62.29%
vehicle ddH 2O为空白对照。
实施例3~17与实施例1中的化合物具有相似的设计思路以及物理化学结构,结构上都是通过葡萄糖连接碱性基团,具有碱性、溶解性好等特性,而且可以利用肿瘤细胞对葡萄糖旺盛的需求,把碱性基团导向带入肿瘤微环境里中和其酸性。在本发明的基础上,这些化合物都具有相似的低毒性和对Hep3B2.1-7-Luc肝癌细胞原位异种移植肿瘤模型具有一定的抑瘤效果。

Claims (13)

  1. 一种如式I所示的葡萄糖类化合物或其药学上可接受的盐:
    Figure PCTCN2019106688-appb-100001
    其中,n为0、1、2、3、4、5、6、7、8、9或10;
    X为
    Figure PCTCN2019106688-appb-100002
    M m+为碱金属离子或碱土金属离子;当M m+为碱金属离子时,M m+的个数为2,两个碱金属离子相同或不同;当M m+为碱土金属离子时,M m+的个数为1;
    R 1和R 2独立地为H、未取代或R 1-1取代的C 1-C 4烷基、未取代或R 1-2取代的烯丙基、未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-、未取代或R 1-4取代的C 3~C 9杂芳基-(CH 2) q-、或未取代或R 1-5取代的C 6-C 14芳基-(CH 2) p-;所述的C 3-C 8杂环基独立地为“杂原子选自N、O和S中的一种或多种,杂原子数为1~4个的C 3-C 8杂环基”,所述的C 3~C 9杂芳基独立地为“杂原子选自N、O和S中的一种或多种,杂原子数为1~4个的C 3~C 9杂芳基”;
    z、q和p独立地为0、1、2、3或4;
    Figure PCTCN2019106688-appb-100003
    为未取代或R 1-6取代的C 3-C 8杂环基、或未取代或R 1-7取代的C 3~C 9杂芳基;所述的C 3-C 8杂环基为“杂原子选自N、O和S中的一种或多种,且至少含有一个N,杂原子数为1~4个的C 3-C 8杂环基”、且通过N原子与
    Figure PCTCN2019106688-appb-100004
    相连接,所述的C 3~C 9杂芳基“杂原子选自N、O和S中的一种或多种,且至少含有一个N,杂原子数为1~4个的C 3~C 9杂芳基”、且通过N原子与
    Figure PCTCN2019106688-appb-100005
    相连接;
    所述的R 1-1、R 1-2、R 1-3、R 1-4、R 1-5、R 1-6和R 1-7独立地为羟基或C 1-C 4烷基。
  2. 如权利要求1所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐,其特征在于,所述的M m+独立地为钠离子、钾离子或钙离子;
    和/或,
    Figure PCTCN2019106688-appb-100006
    为β-D-吡喃葡萄基;
    和/或,n为0、1、2、3、或4;
    和/或,当R 1或R 2为未取代或R 1-1取代的C 1-C 4烷基时,所述的C 1-C 4烷基独立地为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基;
    和/或,当R 1或R 2为未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-时,所述的C 3-C 8杂环基独立地为“杂原子选自N、O和S中的一种或多种,且至少含有一个N,杂原子数为1~2个的C 4~C 5杂环基”;
    和/或,z为1或2;
    和/或,当R 1或R 2为未取代或R 1-4取代的C 3~C 9杂芳基-(CH 2) q-时,所述C 3~C 9杂芳基独立地为“杂原子选自N、O和S中的一种或多种,且至少含有一个N,杂原子数为1~2个的C 3~C 5杂芳基”;
    和/或,q为0、1或2;
    和/或,当R 1或R 2为未取代或R 1-5取代的C 6-C 14芳基-(CH 2) p-时,所述的C 6-C 14芳基为苯基;
    和/或,p为0、1或2;
    和/或,当
    Figure PCTCN2019106688-appb-100007
    为未取代或R 1-6取代的C 3-C 8杂环基时,所述的C 3-C 8杂环基为“杂原子选自N、O和S中的一种或多种,且至少含有一个N,杂原子数为1~2个的C 4-C 5杂环基”;
    和/或,当
    Figure PCTCN2019106688-appb-100008
    为未取代或R 1-7取代的C 3~C 9杂芳基时,所述的C 3~C 9杂芳基为“杂原子选自N、O和S中的一种或多种,且至少含有一个N,杂原子数为1~2个的C 3~C 5杂芳基”;
    和/或,当R 1-1、R 1-2、R 1-3、R 1-4、R 1-5、R 1-6或R 1-7为C 1-C 4烷基时,所述的C 1-C 4烷基独立地为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基。
  3. 如权利要求2所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐,其特征在于,所述的M m+为钠离子;
    和/或,当R 1或R 2为未取代或R 1-1取代的C 1-C 4烷基时,所述的C 1-C 4烷基独立地为甲基、乙基或叔丁基;
    和/或,当R 1或R 2为未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-时,所述的C 3-C 8杂环基独立地为哌啶基、哌嗪基或吗啡啉基;
    和/或,当R 1或R 2为未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-、所述的C 3-C 8杂环基独立地为“杂原子选自N、O和S中的一种或多种,且至少含有一个N,杂原子数为 1~2个的C 4~C 5杂环基”时,所述的C 4~C 5杂环基通过N原子与-(CH 2) z-连接;
    和/或,z为2;
    和/或,当R 1或R 2为未取代或R 1-4取代的C 3~C 9杂芳基-(CH 2) q-时,所述C 3~C 9杂芳基为吡啶基;
    和/或,q为0;
    和/或,p为0;
    和/或,当
    Figure PCTCN2019106688-appb-100009
    为未取代或R 1-6取代的C 3-C 8杂环基时,所述的C 3-C 8杂环基独立地为吡咯烷基、哌啶基、哌嗪基或吗啡啉基;
    和/或,当
    Figure PCTCN2019106688-appb-100010
    为未取代或R 1-7取代的C 3~C 9杂芳基时,所述的C 3~C 9杂芳基独立地为吡咯基或咪唑基;
    和/或,当R 1-1、R 1-2、R 1-3、R 1-4、R 1-5、R 1-6或R 1-7为C 1-C 4烷基时,所述的C 1-C 4烷基为甲基。
  4. 如权利要求3所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐,其特征在于,当R 1或R 2为未取代或R 1-1取代的C 1-C 4烷基时,所述的R 1-1取代的C 1-C 4烷基独立地为羟基乙基或三羟甲基甲基;
    和/或,当R 1或R 2为未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-时,所述的未取代的C 3-C 8杂环基-(CH 2) z-独立地为哌嗪乙基、或吗啡啉乙基。
  5. 如权利要求4所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐,其特征在于,当X为
    Figure PCTCN2019106688-appb-100011
    时,所述的
    Figure PCTCN2019106688-appb-100012
    为-NH 2
    Figure PCTCN2019106688-appb-100013
    Figure PCTCN2019106688-appb-100014
    和/或,当X为
    Figure PCTCN2019106688-appb-100015
    时,所述的
    Figure PCTCN2019106688-appb-100016
    Figure PCTCN2019106688-appb-100017
    Figure PCTCN2019106688-appb-100018
    和/或,当X为
    Figure PCTCN2019106688-appb-100019
    时,所述的
    Figure PCTCN2019106688-appb-100020
    Figure PCTCN2019106688-appb-100021
    和/或,当X为
    Figure PCTCN2019106688-appb-100022
    时,所述的
    Figure PCTCN2019106688-appb-100023
    Figure PCTCN2019106688-appb-100024
  6. 如权利要求1所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐,其特征在于,X为
    Figure PCTCN2019106688-appb-100025
    n为0、或1,R 1为H、未取代或R 1-1取代的C 1-C 4烷基、或、未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-;R 2为未取代或R 1-1取代的C 1-C 4烷基、未取代或R 1-3取代的C 3-C 8杂环基-(CH 2) z-、未取代或R 1-4取代的C 3~C 9杂芳基-(CH 2) q-、或未取代或R 1-5取代的C 6-C 12芳基-(CH 2) p-;
    和/或,X为
    Figure PCTCN2019106688-appb-100026
    n为0、1、2、3、或4。
  7. 如权利要求1所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐,所述的葡萄糖类化合物选自下述任一化合物:
    Figure PCTCN2019106688-appb-100027
    Figure PCTCN2019106688-appb-100028
  8. 一种药物组合物,其包括如权利要求1~7任一项所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐,以及一种或多种药学上可接受的辅料。
  9. 一种如权利要求1~7任一项所述的式I所示的葡萄糖类化合物或其药学上可接受的盐在制备治疗和/或预防癌症的药物中的应用。
  10. 一种葡萄糖作为药用载体的应用,其特征在于,葡萄糖基团与碱性官能团通过糖苷键直接连接,或者,葡萄糖基团与碱性官能团通过糖苷键和连接基团间接连接。
  11. 一种治疗剂,其包括如权利要求1~7任一项所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐。
  12. 一种治疗和/或预防癌症的方法,其包括给受试者施用有效剂量的如权利要求1~7任一项所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐。
  13. 一种用于治疗和/或预防癌症的如权利要求1~7任一项所述的如式I所示的葡萄糖类化合物或其药学上可接受的盐。
PCT/CN2019/106688 2018-09-20 2019-09-19 一种葡萄糖类化合物、药物组合物及其应用 WO2020057605A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811101588.4 2018-09-20
CN201811101588.4A CN110922437B (zh) 2018-09-20 2018-09-20 一种葡萄糖类化合物、药物组合物及其应用

Publications (2)

Publication Number Publication Date
WO2020057605A2 true WO2020057605A2 (zh) 2020-03-26
WO2020057605A3 WO2020057605A3 (zh) 2020-05-07

Family

ID=69855469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106688 WO2020057605A2 (zh) 2018-09-20 2019-09-19 一种葡萄糖类化合物、药物组合物及其应用

Country Status (2)

Country Link
CN (1) CN110922437B (zh)
WO (1) WO2020057605A2 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19524515A1 (de) * 1995-07-05 1997-01-09 Deutsches Krebsforsch Saccharid-Konjugate
KR20110110253A (ko) * 2009-01-28 2011-10-06 스마트쎌스, 인크. 결정질 인슐린-접합체
CN105418698B (zh) * 2015-12-21 2018-04-27 上海市第七人民医院 一种酰胺乙氧基-β-D-葡萄糖苷类化合物及其制备方法和应用

Also Published As

Publication number Publication date
CN110922437A (zh) 2020-03-27
CN110922437B (zh) 2023-11-03
WO2020057605A3 (zh) 2020-05-07

Similar Documents

Publication Publication Date Title
JP6947644B2 (ja) 重水素化ケノデオキシコール酸誘導体およびこの化合物を含む薬物組成物
CN103889984B (zh) 4-(8-甲氧基-1-(1-甲氧基丙烷-2-基)-2-(四氢-2H-吡喃-4-基)-1H-咪唑并[4,5-c]喹啉-7-基)-3,5-二甲基异噁唑及其作为溴结构域抑制剂的用途
BR112018004175B1 (pt) Composto pirazolo[3,4-d]pirimidina, composição farmacêutica, inibidor de her2 e agente antitumor contendo o dito composto e usos terapêuticos do dito composto
WO2021104461A1 (zh) 二氮杂吲哚类衍生物及其作为Chk1抑制剂的应用
WO2018130124A1 (zh) 作为选择性雌激素受体下调剂的三环类化合物及其应用
CN106565760B (zh) 氟硼二吡咯衍生物及其制备方法和在医药上的应用
BR112021015544A2 (pt) Derivados de 1-((2-(2,2,2-trifluoroetoxi)piridin-4-il)metil)ureia como potencializadores de kcnq
WO2017000379A1 (zh) 酞菁硅配合物、其制备方法及其在医药上的应用
WO2023125928A1 (zh) Menin抑制剂及其用途
CN107629077A (zh) 酸敏感的吉非替尼‑氟硼二吡咯衍生物及其制备方法和在医药上的应用
JP6850361B2 (ja) キナーゼを選択的に阻害する化合物及びその使用
WO2020020377A1 (zh) 用作fgfr4抑制剂的稠环衍生物
WO2018086242A1 (zh) pH敏感的轴向取代硅酞菁配合物及其制备方法和在医药上的应用
CN110088098A (zh) 喹唑啉酮类parp-1抑制剂及其制备方法、药物组合物和用途
EP3912976A1 (en) Salt of egfr inhibitor, crystal form, and preparation method therefor
CN111936470B (zh) 用作fgfr不可逆抑制剂的酰胺基吡唑类化合物
WO2020057605A2 (zh) 一种葡萄糖类化合物、药物组合物及其应用
CN105377848A (zh) 取代的三唑并吡啶的前体药物衍生物
CN112279863A (zh) Hsp90抑制剂与喜树碱衍生物的偶联物及其制备方法与应用
WO2017156959A1 (zh) 一种小分子肺靶向药物
CN109096272A (zh) 一种具有抗肿瘤活性的吲哚异羟肟酸类化合物及其应用
CN109311875A (zh) 作为PI3Kβ抑制剂的二环吡啶、二环吡嗪、和二环嘧啶衍生物
CN104788372B (zh) 一种氘代卡博替尼衍生物、其制备方法、应用及其中间体
BR112021013099A2 (pt) Composto de benzotiofeno substituído contendo flúor, e composição farmacêutica e aplicação dos mesmos
WO2024012157A1 (zh) 一种多肽类化合物及其配合物、应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862070

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19862070

Country of ref document: EP

Kind code of ref document: A2