WO2020057465A1 - 3d打印支撑件结构及设计方法 - Google Patents

3d打印支撑件结构及设计方法 Download PDF

Info

Publication number
WO2020057465A1
WO2020057465A1 PCT/CN2019/105990 CN2019105990W WO2020057465A1 WO 2020057465 A1 WO2020057465 A1 WO 2020057465A1 CN 2019105990 W CN2019105990 W CN 2019105990W WO 2020057465 A1 WO2020057465 A1 WO 2020057465A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
print
hollow
printing
printed
Prior art date
Application number
PCT/CN2019/105990
Other languages
English (en)
French (fr)
Inventor
朱光
林依禾
林治家
李杨
姚志锋
渠思源
车弘毅
Original Assignee
清锋(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910736413.9A external-priority patent/CN110936615A/zh
Application filed by 清锋(北京)科技有限公司 filed Critical 清锋(北京)科技有限公司
Publication of WO2020057465A1 publication Critical patent/WO2020057465A1/zh
Priority to US17/192,916 priority Critical patent/US20210197494A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present application relates to the technical field of 3D printing, and in particular, to the structure and design method of 3D printing support, including a hollow print and its 3D print support, a 3D print and its 3D print support, a method for constructing a 3D print support, and a hollow print 3D printing method.
  • the technical principle of 3D printing is to layer the three-dimensional model first, then obtain the contour information or image information of each layer, and use adhesive materials such as powdered metal or resin to print the prints layer by layer.
  • One of the embodiments of the present application provides a 3D printed support for a hollow print, and at least one end of the support is connected to the hollow print; the support includes a main body portion and a connection connected to the hollow print. At least part of the connection between the connecting portion and the hollow print is located inside the hollow print.
  • connection between the at least part of the connecting portion and the hollow print is located inside the hollow print and includes: at least part of the connecting portion extends into a hole or hollow of the hollow print Cavity.
  • a cross-sectional area of an end of the connecting portion connected to the hollow print is smaller than a cross-sectional area of the main body portion.
  • the support includes a columnar support, a sheet support, and / or a mesh support.
  • the hollow print includes at least two sub-prints, the at least two sub-prints are the same, and the at least two sub-prints are arranged rotationally symmetrically.
  • all slices between each slice and the initial printed slice constitute a sub-combination.
  • the line connecting the centers of gravity of each sub-assembly is located in the first cylinder space perpendicular to any slice.
  • the hollow print includes a hollow sole.
  • the inside of the hollow sole is a mesh structure; at least part of the connecting portion is connected to a pillar of the mesh structure inside the hollow sole.
  • connection between the connecting portion and the hollow sole is located at the junction of two contoured surfaces on the hollow sole.
  • Some embodiments of the present application provide a hollow print, and the hollow print uses a 3D printing support described in any one of the above technical solutions when printing.
  • the hollow print is a hollow shoe sole.
  • Some embodiments of the present application provide a hollow print, the hollow print has a connection trace after removing a 3D printing support, and at least part of the connection trace is located inside the hollow print.
  • the at least part of the connection trace is located inside the hollow print, and includes: at least part of the connection trace is located in a hole or cavity of the hollow print.
  • Another embodiment of the present application provides a method for constructing a 3D printed support for a hollow print, including: obtaining a hollow print model; and constructing a support for the hollow print model, at least one end of the support and the hollow
  • the printing member is connected, and the supporting member includes a main body portion and a connection portion connected to the hollow print, and at least a part of the connection between the connection portion and the hollow print is located inside the hollow print.
  • Some embodiments of the present application provide a 3D printing method for a hollowed-out print, which includes: a method for constructing a 3D printed support for a hollowed-out print according to any of the above technical solutions, constructing a support for a hollowed-out print model; and using 3D printing The device prints the hollow print and the support.
  • inventions of the present application provide a 3D printed support, at least one end of the support is connected to the print; a combination formed by the support and at least part of the print is divided into multiple parallel slices After that, all slices between the slice of each layer and the initial printed slice constitute a sub-assembly; the line of gravity of each sub-assembly is located in the first cylinder space perpendicular to any slice.
  • the line of the center of gravity of each sub-assembly is perpendicular to any slice.
  • the support includes a main body portion and a connection portion connected to the print, and a cross-sectional area of an end of the connection portion connected to the print is smaller than a cross-sectional area of the main body portion.
  • the support includes a columnar support, a sheet support, and / or a mesh support.
  • the sheet-shaped support is provided with one or more through holes extending in a thickness direction thereof.
  • connection portion between the sheet-shaped support and the print is zigzag.
  • the mesh support includes a plurality of unit structures composed of pillars; the unit structure includes at least one of the following structures: tetrahedron, cube, rectangular parallelepiped, octahedron, dodecahedron, twenty Noodles.
  • both ends of the support are connected to the print.
  • Some embodiments of the present application provide a 3D print, and the print uses a support described in any one of the above technical solutions when printing.
  • the print includes at least two sub-prints.
  • the at least two sub-prints are the same; the at least two sub-prints are arranged rotationally symmetrically.
  • Some embodiments of the present application provide a method for constructing a 3D printed support, which includes: obtaining a print model; constructing a support for the print model, and at least one end of the support is connected to the print, and After the combination formed by the support member and at least part of the print is divided into multiple parallel slices, all slices between the slice and the initial print slice in each layer constitute a sub-assembly, and the center of gravity of each sub-assembly The line is located in the first cylinder space perpendicular to any slice.
  • the support includes a main body portion and a connection portion connected to the print, and a cross-sectional area of an end of the connection portion connected to the print is smaller than a cross-sectional area of the main body portion.
  • the support includes a columnar support, a sheet support, and / or a mesh support.
  • Some embodiments of the present application provide a 3D printing method, which includes: the method for constructing a 3D printing support according to any of the above technical solutions to construct a support for a print model; and using a 3D printing device to print the print And the support.
  • FIG. 1 is a schematic diagram of a connection between a 3D printed support and a hollow print according to some embodiments of the present application
  • FIG. 2 is a schematic side view of a 3D printed support and a hollowed out printed part according to some embodiments of the present application;
  • 3 is a schematic bottom view of a 3D printed support member and a hollowed out printed member according to some embodiments of the present application;
  • FIG. 4 is a schematic structural diagram of a sub-print and a support of a hollow print according to some embodiments of the present application.
  • FIG. 5 is an enlarged schematic view of a connection position of a 3D printed support member and a hollowed-out printed member according to one of the embodiments of the present application;
  • FIG. 6 is a flowchart of a method for constructing a 3D printed support for a hollowed-out print according to some embodiments of the present application
  • FIG. 7 is a schematic diagram of a connection between a 3D printing support and a print according to some embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a sheet-shaped support for a 3D printed support according to some embodiments of the present application.
  • FIG. 9 is a flowchart of a method for constructing a 3D printed support according to some embodiments of the present application.
  • 1 is a hollow print
  • 2 is a support
  • 10 is a sub-print
  • 21 is a sheet support
  • 22 is a mesh support
  • 201 is a main body portion
  • 202 is a connecting portion
  • 221 is a unit structure.
  • the embodiment of the present application mainly relates to a 3D printing support for a hollowed-out print, and the 3D printed support can be applied to various scenarios for printing a hollow-out print.
  • the 3D printed support can be applied to the technologies of 3D printed hollow prints such as light curing molding, fused deposition rapid molding, and three-dimensional powder bonding molding.
  • the 3D printing support may be a support in a 3D printing design process, a support in a printing process, or a support after printing is completed.
  • the present application also relates to a hollow print using a 3D printing support during printing.
  • the hollow print can be a hollow print that is applied in various fields such as medical, industrial, living, and art.
  • This application also relates to a 3D printing support construction method and a 3D printing method for hollowed-out prints.
  • Those skilled in the art can use the 3D printed support construction method to implement hollowed-out prints on software such as Rhino, Solidworks, Catia, or UG.
  • the application does not limit the 3D printing support of the hollow print, the hollow print, the 3D printing support construction method of the hollow print, and the application scenarios of the 3D printing method.
  • FIG. 1 is a schematic diagram of a connection between a 3D printed support and a hollowed out print according to some embodiments of the present application
  • FIG. 2 is a schematic side view of a 3D printed support and a hollowed out print according to some embodiments of the present application
  • 3 is a schematic bottom view of a 3D printed support and a hollowed out printed part shown in some embodiments of the present application.
  • the 3D printed supporting member of the hollowed out printed part according to the embodiment of the present application will be described in detail below with reference to FIGS. 1-3. It is worth noting that the following examples are only used to explain the present application and do not constitute a limitation on the present application.
  • the hollow print can be understood as a 3D printed product with a hollow structure such as a hole or a cavity.
  • the hollowed-out print may be a hollowed-out print, such as a net-shaped print, or a partially hollowed-out print, for example, having a hollowed-out structure only in a certain part of the print.
  • the 3D printed supporting member 2 is connected to the hollow printed member 1.
  • One end of the supporting member 2 is connected to the 3D printed molding table, and the other end is connected to the hollow printed member 1. It may also be a supporting member. Both ends of 2 are connected to the hollow printout 1.
  • at least part of the connection between the connecting portion 202 and the hollow print 1 is located inside the hollow print 1. It can be understood that all the connections of the connection 202 and the hollow print 1 are located inside the hollow print 1 (such as (Shown in FIG. 1); or, a portion of the connecting portion 202 and the hollow print 1 are located inside the hollow print 1, while the remaining portions of the connecting portion 202 and the hollow print 1 are located on the surface of the hollow print.
  • the connecting portion 202 is located inside the hollow printout 1 can be understood as the connection portion 202 protruding into the hole or cavity of the hollow printout 1.
  • the specific structure of the support member 2 may be determined according to the shape of the hollow printout 1.
  • the specific structural construction of the support 2 can be completed automatically by a software algorithm (such as Grasshopper), or it can be designed and adjusted manually.
  • the 3D printed support in the following embodiments is also suitable for supporting other 3D printed parts that are not hollowed out.
  • hollowed out prints are used as an example.
  • the support 2 The connection of the print may be on the surface of the print.
  • the 3D printing support 2 may include any combination of one or more of a column-shaped support, a sheet-shaped support 21, a mesh-shaped support 22, and the like, and those skilled in the art may It needs to be set specifically, and this application does not limit this.
  • the sheet-like support 21 may include one plane or a plurality of planes which are not parallel to each other, or may include one or more curved surfaces.
  • the thickness of the sheet-shaped support can be selected from 0.1 to 10 mm.
  • the cross-sectional area of the connecting portion 202 may be equal to the main body portion 201. In some embodiments, a cross-sectional area of an end of the connecting portion 202 connected to the hollow print 1 is smaller than a cross-sectional area of the main body portion 201.
  • the connecting portion 202 is connected between the main body portion 201 and the hollow printout 1. The main body portion 201 is used to support the hollow printout 1. The main body portion 201 is not connected to the hollow printout 1 and the connecting portion 202 The main body portion 201 is connected to the hollow print 1 and the change of the cross-sectional area is used to ensure that the support 2 is easily removed from the hollow print 1 after printing.
  • the main body portion 201 may include one or more support columns, and the connection portion 202 may include connection columns respectively connected between the one or more support columns and the hollow printout 1.
  • the cross-sectional area of the connecting column can be set to be smaller than the cross-sectional area of the supporting column, or the connecting column can be pyramid-shaped, conical, or truncated, etc.
  • the end with a smaller cross-sectional area is connected to the hollow print 1, and the end with a larger cross-sectional area is connected to the support post.
  • the support 2 includes the mesh support 22
  • the main body portion 201 may include a plurality of pillars constituting a mesh
  • the connection portion 202 may include a connection pillar connected between the pillar and the hollow print 1.
  • the cross-sectional area of the connecting column can be set to be smaller than the cross-sectional area of the pillar, or the connecting column can be pyramidal, conical, or truncated, etc.
  • the end with a smaller cross-sectional area is connected to the hollow print 1, and the end with a larger cross-sectional area is connected with the pillar.
  • the main body portion 201 may include a support piece
  • the connection portion 202 may include a saw-tooth structure or a plurality of spaced-apart connection posts connected between the support piece and the hollow print 1.
  • the end with the smaller cross-sectional area of the sawtooth-shaped connecting portion 202 is connected to the hollow printout 1, and the end with the larger cross-sectional area is connected to the support sheet.
  • the connecting portion 202 connecting the sheet-shaped support member 21 and the hollow printout 1 may include pyramid-shaped, conical, and truncated-shaped connecting columns, and the pyramid-shaped, conical, and truncated-shaped shapes.
  • One end of the connecting post having a smaller cross-sectional area is connected to the hollow printout 1, and the end having a larger cross-sectional area is connected to the supporting sheet.
  • FIG. 4 is a schematic structural diagram of a sub-print and a support of a hollow print according to some embodiments of the present application.
  • the hollow print 1 may include at least two sub-prints 10.
  • the print When the print is a non-hollowed structure, it may also include at least two sub-prints.
  • the hollow print is used as an example for description below.
  • the 3D printed support 2 of any one of the above solutions may be connected between two adjacent sub-prints 10, and at this time, the support 2 may be connected to the 3D printed molding table or may not be connected to the 3D printed molding table. During the 3D printing process, at least two sub-prints 10 are printed at the same time.
  • the support member 2 can support and connect the sub-prints 10, and each sub-print 10 can be kept relatively stable. Especially for the sub-prints 10 that are difficult to place individually and stably, each of the sub-prints 10 can support each other by the supporting member 2, thereby reducing sloshing during printing.
  • at least two sub-prints 10 are the same, and at least two sub-prints 10 may be arranged in a rotationally symmetrical manner.
  • the two sub-prints 10 may be arranged in a 180 ° rotationally symmetrical manner.
  • the three sub-prints 10 may be arranged in a 120 ° rotation symmetrical manner.
  • the hollowed-out printed product 1 has a symmetrical structure, which is convenient for designing the structure of the support 2.
  • the support is such that the center of gravity of each slice is located at the center of rotation.
  • the support in each slice can also be rotationally symmetric about the rotation center of the slice.
  • the sub-prints 10 may also include other arrangements (such as an axisymmetric arrangement).
  • the first pillar may include, but is not limited to, a cylinder, a Mitsubishi pillar, a quadrangular prism, a hexagonal prism, and the like.
  • the size of the first cylinder can be set according to specific conditions (such as the size of a print).
  • the diameter of the first pillar can be set to 0.1-50 mm (such as 0.1 mm, 0.5 mm, 1 mm, 5 mm, 10 mm, etc.).
  • the line of the center of gravity of each sub-assembly is located in the first cylinder space. It can be understood that the line of the center of gravity of each sub-assembly is perpendicular or approximately perpendicular to any slice.
  • the assembly may be formed integrally by the support 2 and the print 1 as a whole.
  • the combination body may also be formed by the supporting member 2 and the partial printing member 1 together.
  • the partial print may be a partial print that includes a support in a slice after being divided into slices.
  • the initial print slice can be understood as the first slice of the print 1 printed during printing.
  • the operation of ensuring that the connection line of the center of gravity of each sub-assembly is located in the first cylinder space perpendicular to any slice may be embedded in the construction software of the support in the form of a program, so as to use software to construct The support can be called or used by default.
  • dividing the assembly into multiple parallel slices can be reflected during modeling, printing, and / or printing.
  • the multi-layered slices that are divided by the assembly are generally parallel to the 3D printed molding table, so as to facilitate the 3D printing process.
  • the line of the center of gravity of each sub-assembly can be made perpendicular to any slice.
  • the support member 2 By arranging the support member 2 in the above manner, it is possible to effectively prevent the hollow printout 1 from shaking during the 3D printing of the hollow printout 1 and reduce printing deviation.
  • the molding table moves the cured prints up one layer of height, The entire printing process requires the molding table to move upward continuously.
  • the prints attached to the molding table will be affected by gravity and uncured liquid (such as photosensitive resin).
  • the process of moving the molding table upward after each layer of printing may cause hollow printing.
  • the piece 1 was shaken, and even caused deviation in printing.
  • the shaking problem of the hollow print 1 caused by the upward movement of the molding table will be particularly prominent.
  • Elastomer materials generally have lower Young's modulus and higher failure strain, undergo large deformation when subjected to force, and can quickly return to their approximate initial shape and size after withdrawal of external force.
  • the elastomer material may include, but is not limited to, rubber, thermoplastic polyurethane, and the like.
  • the hollow printout 1 and the support 2 according to the embodiment of the present application may be printed from an elastomer material.
  • the hollow printout 1 may be a hollow sole.
  • a hollow sole By using a hollow sole, the breathability of shoes (especially sports shoes) can be improved.
  • the fact that at least a part of the connection between the connection portion 202 and the hollow sole is located inside the hollow sole may mean that the connection is located in the hollow hole of the hollow sole.
  • the inside of the hollow sole is a mesh structure, and at least part of the connecting portion 202 of the support member 2 is connected to the pillar of the internal mesh structure of the hollow sole.
  • the mesh structure inside the hollow outsole can not only make the sole more lightweight, but also reduce the material used in the hollow outsole.
  • the pillars of the mesh structure provide an ideal attachment position for the connecting portion 202 of the support 2, so that the support 2 is easier to separate from the hollow sole.
  • the hollow outsole may be printed from an elastomeric material (such as rubber, thermoplastic polyurethane, etc.).
  • FIG. 5 is an enlarged schematic view of a connection position of a 3D printed support member and a hollowed-out printed member according to one of the embodiments of the present application.
  • the hollow print is a hollow sole, and at least a portion of the connection portion 202 between the support member 2 and the hollow sole is located at the junction of two contoured surfaces on the hollow sole.
  • the connecting portion 202 of the support 2 needs to be disposed outside the hollow sole to support the hollow sole.
  • connection point at the junction of the two contoured surfaces, it is easier to separate the support member 2 from the hollowed out sole while leaving no supporter on the contoured surface of the hollowed out print 1 2 to minimize the impact of the residual material of the support 2 on the appearance of the hollow printout 1.
  • the junction of the two contoured surfaces can be understood as the intersection of the top surface of the sole and the side, or the intersection of the bottom surface and the side of the sole.
  • the connection between the connecting portion 202 and the printout may also be set at the junction of two contoured surfaces of the printout.
  • the beneficial effects that the 3D printed support of the hollowed out print disclosed in this application may include but are not limited to: (1) After separation from the hollowed out print, the residual material of the support member will not remain on the outer surface of the hollowed out print So as not to affect the appearance and use function of the hollow print 1; (2) it is easy to separate the support member from the hollow print after printing is completed; (3) it can prevent the hollow print from shaking during the 3D printing process to reduce Small printing deviation, improve printing accuracy. It should be noted that different embodiments may have different beneficial effects. In different embodiments, the possible beneficial effects may be any one or a combination of the above, or any other beneficial effects that may be obtained.
  • FIG. 1 Another embodiment of the present application provides a hollow print, and the hollow print 1 uses the 3D printing support 2 of any of the above technical solutions when printing.
  • the hollow print 1 uses the support 2 of any of the above technical solutions. After the support 2 is separated from the hollow print 1, most of the residual material of the support 2 will remain inside the hollow print 1 and will not remain. On the outer surface of the hollow printout 1, the appearance and use function of the hollow printout 1 will not be affected.
  • the hollow print 1 may be a hollow sole. In other embodiments, the hollow print 1 may be a handicraft with a hollow pattern, or an industrial component or a medical prosthesis with a hollow structure.
  • the hollow print 1 has a connection trace after removing a 3D printing support, and at least part of the connection trace is located inside the hollow print 1. Specifically, at least a part of the connection trace may be located in a hole or cavity of the hollow printout 1. Since the connection mark is located inside the hollow printout 1, it does not affect the appearance of the hollow printout 1.
  • FIG. 6 is a flowchart of a method for constructing a 3D printed support for a hollowed out print according to some embodiments of the present application.
  • the 3D printing support 2 construction method may include: obtaining a hollow print 1 model; constructing a support 2 for the hollow print 1 model; at least one end of the support 2 is connected to the hollow print 1; the support 2 includes a main body portion 201 and a connection portion 202 connected to the hollow printout 1. At least a part of the connection portion between the connection portion 202 and the hollow printout 1 is located inside the hollow printout 1.
  • At least one end of the support member 2 is connected to the hollow printout 1.
  • One end of the support member 2 is connected to the 3D printed molding table, and the other end thereof is connected to the hollow printout 1. Both ends are connected to the hollow printout 1.
  • Hollow print 1 model construction can be achieved by software such as Rhino, Solidworks, Catia or UG.
  • the construction of the support 2 can be determined according to the shape of the hollowed-out print 1.
  • the specific structural construction of the support 2 can be automatically completed by a software algorithm (such as Grasshopper), or it can be manually designed and adjusted.
  • the support member 2 may include a main body portion 201 and a connection portion 202 connected to the print 1.
  • a cross-sectional area of an end of the connection portion 202 connected to the hollow print 1 is smaller than a cross-sectional area of the main body 201.
  • the connecting portion 202 is connected between the main body portion 201 and the hollow printout 1, the main body portion 201 is used to support the hollow printout 1, and the connecting portion 202 connects the main body portion 201 and the hollow printout 1.
  • the support 2 may include any combination of one or more of a pillar-shaped support, a sheet-shaped support, a mesh-shaped support, and the like. It should be noted that when the print is a non-hollowed structure, the method of constructing the 3D printed support can also be implemented according to the solution in the above embodiment. At this time, the connection between the 3D printed support and the hollow print can be located on the print. Outer surface.
  • the skeleton print may include at least two sub-prints.
  • the at least two sub-prints 10 may be the same, and the at least two sub-prints 10 are arranged rotationally symmetrically.
  • the production efficiency of the sub-printing member 10 can be improved first.
  • the printing member 1 has a symmetrical (such as center-symmetrical) structure, which facilitates designing the structure of the supporting member 2.
  • the center of gravity of each slice is located at the center of rotation by designing the support.
  • the support in each slice can also be rotationally symmetric about the rotation center of the slice.
  • all slices between each slice and the initial printed slice form a sub-assembly, and each sub-assembly
  • the line connecting the center of gravity of the assembly is located in the first cylinder space perpendicular to any slice.
  • the process of constructing the support 2 for the hollow print 1 model may include: constructing a support 2 for the print 1 with at least one end connected to the print 1; and combining the support 2 and the print 1 according to a certain layer thickness (such as (0.1mm, 0.15mm, 0.2mm, etc.) divided into multiple parallel slices that are parallel to the 3D printed molding table; calculate the position of the center of gravity of each sub-assembly, and adjust the structural shape of the support 2 according to the position of the center of gravity so that each The line connecting the center of gravity of each sub-assembly is located in the first cylinder space perpendicular to any slice.
  • the support 2 of the hollow print 1 can be constructed.
  • the support 2 can not only prevent the hollow print 1 from shaking during the 3D printing of the hollow print 1, but also reduce the separation of the hollow print and the support. Residual material of the support 2 is left on the surface of the hollow print 1.
  • the hollow print 1 may include a hollow sole.
  • the support member 2 When the support member 2 is removed from the hollow sole, the residual material of the support 2 located at the connection inside the hollow sole will not remain on the outside of the hollow sole, not only ensuring the integrity of the appearance of the hollow sole, but also ensuring the use of the The comfort of a shoe with a hollow sole.
  • the beneficial effects that the 3D printed support construction method of the hollow print disclosed in this application may bring, but are not limited to: (1) After the constructed support is separated from the hollow print, the residual material of the support will not remain On the outer surface of the hollow print, so as not to affect the appearance and use function of the hollow print; (2) the constructed support is easy to separate from the hollow print after printing is completed; (3) the constructed support is During the 3D printing process, it is possible to prevent the hollowed-out print from shaking as much as possible to reduce printing deviation. It should be noted that different embodiments may have different beneficial effects. In different embodiments, the possible beneficial effects may be any one or a combination of the above, or any other beneficial effects that may be obtained.
  • the printing method includes: a method for constructing a 3D printed support for a hollowed out print according to any of the above technical solutions; constructing a support 2 for a hollowed out print 1 model; Hollow print 1 and support 2.
  • the 3D printing device for printing the hollow print 1 and the support 2 may be a photo-curable 3D printer, a fused deposition 3D printer, or a powder-bonded 3D printer.
  • the 3D printing method uses the above-mentioned 3D printed support construction method of the hollow print to perform a preliminary modeling for the support 2 to build the support 2.
  • the printed support 2 and the hollow print 1 are easy to separate and can be effectively used.
  • the material for reducing the support 2 is left on the outer surface of the hollow print 1.
  • An embodiment of the present application further provides a 3D printing support. At least one end of the 3D printing support 2 is connected to the 3D printing 3. The combination formed by the support 2 and at least part of the 3D printing 3 is divided into multiple layers. After the parallel slices, all slices between each layer slice and the initial print slice constitute a sub-assembly; the line of gravity of each sub-assembly is located in the first cylinder space perpendicular to any slice. At least one end of the support 2 is connected to the 3D printing 3. One end of the support 2 is connected to the 3D printed molding table, and the other end is connected to the 3D printing 3. Alternatively, both ends of the support 2 are connected to 3D. Print 3 is connected.
  • FIG. 7 is a schematic diagram of a connection between a 3D printing support and a print according to some embodiments of the present application. In the embodiment shown in FIG. 7, both ends of the support 2 are connected to the 3D print 3.
  • the 3D printing support 2 may include a columnar support, a sheet support 21, and / or a mesh support 22.
  • the sheet-shaped support 21 may be provided with one or more through holes extending in the thickness direction thereof.
  • the through hole may be a through hole of any shape, such as a circular hole, a square hole, a triangular hole, or other irregularly shaped holes. If the through hole is a circular hole, the diameter of the through hole can be selected from 1-10mm.
  • blind holes, buried holes or grooves may also be provided on the sheet-shaped support posts to reduce the material used for the support 2.
  • the mesh support 22 when the 3D printed support 2 includes a mesh support 22, the mesh support 22 includes a plurality of unit structures 221 composed of pillars.
  • the unit structure 221 may include any combination of one or more of a tetrahedron, a cube, a cuboid, an octahedron, a dodecahedron, and an icosahedron.
  • the plurality of pillars of each unit structure 221 define a basic geometry of the unit structure 221. Those skilled in the art can determine the diameter of the pillar (eg, set to 2mm, 3mm, 4mm, etc.) and / or the size of the unit structure according to the structural strength that the mesh support 22 needs to be designed.
  • the unit structure 221 of the support 2 may also include a plurality of two-dimensional mesh units composed of pillars, and the two-dimensional mesh units may be in the shape of a triangle, a quadrangle, and / or a hexagon.
  • those skilled in the art may also provide a mesh support 22 having both a two-dimensional grid and a three-dimensional polyhedron unit member 221. The use of the mesh-shaped supporting member 22 can reduce the material used for the supporting member 2, and at the same time can ensure the supporting strength of the supporting member 2, thereby ensuring that the supporting member 2 supports the 3D print 3 more stably during the printing process.
  • the mesh support 22 is convenient to change the center of gravity of each sub-assembly by changing the shape and size of the unit structure 221, thereby ensuring that the line of the center of gravity of each sub-assembly is perpendicular or approximately perpendicular to any slice.
  • the structure of the support 2 can be adjusted by changing the shape and size of the unit structure 221, thereby conveniently adjusting the position of the center of gravity of each sub-assembly of the assembly.
  • the possible beneficial effects of the 3D printing support disclosed in this application include, but are not limited to: (1) preventing the print from shaking during 3D printing, reducing printing deviation, and improving printing accuracy; (2) less material used for the support , Can reduce printing costs; (3) after the printing is completed, the support member can be easily separated from the printing member, thereby reducing material residue on the printing member. It should be noted that different embodiments may have different beneficial effects. In different embodiments, the possible beneficial effects may be any one or a combination of the above, or any other beneficial effects that may be obtained.
  • the 3D printed part 3 uses the supporting member 2 according to any one of the above technical solutions when printing. Through the setting of the support, the print is less prone to shake during the printing process, which can reduce the printing deviation as much as possible and improve the printing accuracy.
  • FIG. 9 is a flowchart of a method for constructing a 3D printed support according to some embodiments of the present application.
  • the construction method may include: obtaining 3D print 3 model; build support 2 for 3D print 3 model, at least one end of support 2 is connected to 3D print 3, and the combination of support 2 and at least part of 3D print 3 is divided into multiple layers After the parallel slices, all slices between each slice and the initial print slice constitute a sub-assembly, and the line of gravity of each sub-assembly is located in the first cylinder space perpendicular to any slice.
  • connection of at least one end of the support 2 to the 3D printing 3 can be understood as: one end of the support is connected to the molding table, and the other end is connected to the 3D printing 3; or both ends of the support are connected to 3D printing Piece 3 is connected.
  • the possible beneficial effects of the 3D printing support construction method disclosed in this application include, but are not limited to: (1) suitable supports can be constructed to prevent the print from shaking as much as possible during the 3D printing process and reduce printing deviation; (2) The constructed support can reduce the use of materials and reduce printing costs; (3) The constructed support 2 can be easily separated from the print after printing, thereby reducing the material residue of the support on the print. It should be noted that different embodiments may have different beneficial effects. In different embodiments, the possible beneficial effects may be any one or a combination of the above, or any other beneficial effects that may be obtained.
  • the printing method includes: a method for constructing a 3D printed support according to any one of the above technical solutions to construct a support 2 for a 3D print 3 model; and printing the 3D print using a 3D printing device.
  • 3 Support member 2.
  • the 3D printing device that prints the 3D print 3 and the support 2 may be a photo-curable 3D printer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本申请公开了一种镂空打印件及其3D打印支撑件、3D打印支撑件构建方法和镂空打印件的3D打印方法。该镂空打印件的3D打印支撑件的至少一端与所述镂空打印件连接;所述支撑件包括主体部以及与所述镂空打印件连接的连接部;至少部分所述连接部与所述镂空打印件的连接处位于所述镂空打印件内部。

Description

3D打印支撑件结构及设计方法
交叉引用
本申请要求2018年09月21日提交的申请号为201821549720.3的中国申请,2019年08月09日提交的申请号为201910735447.6的中国申请,以及2019年08月09日提交的申请号为201910736413.9的中国申请的优先权。上述申请的内容以引用方式被包含于此。
技术领域
本申请涉及3D打印技术领域,特别涉及3D打印支撑件结构及设计方法,包括镂空打印件及其3D打印支撑件、3D打印件及其3D打印支撑件、3D打印支撑件构建方法和镂空打印件的3D打印方法。
背景技术
3D打印的技术原理是先将三维模型进行分层,然后获取每层的轮廓信息或者图像信息,并运用粉末状金属或树脂等可粘合材料通过逐层打印的方式来完成打印件的打印。
由于3D打印是将材料进行逐层固化,并层层叠加,在原理上一般要求模型的上层结构要有下层部分的支撑,因此如果打印件的某些部位是悬空的,通常就需要设计支撑件来支撑打印件的这些悬空的部分。在现有技术中,在打印完成并将支撑件与打印件分离后,残留在打印件表面上的支撑件会影响打印件的外观,更有可能影响打印件的正常使用。
发明内容
本申请实施例之一提供一种镂空打印件的3D打印支撑件,所述支撑件的至少一端与所述镂空打印件连接;所述支撑件包括主体部以及与所述镂空打印件连接的连接部;至少部分所述连接部与所述镂空打印件的连接处位于所述镂空打印件内部。
在一些实施例中,所述至少部分所述连接部与所述镂空打印件的连接处位于所述镂空打印件内部包括:至少部分所述连接部伸入到所述镂空打印件的孔洞或空腔内。
在一些实施例中,所述连接部与所述镂空打印件连接的一端的横截面积小于所述主体部的横截面积。
在一些实施例中,所述支撑件包括柱状支撑件、片状支撑件和/或网状支撑件。
在一些实施例中,所述镂空打印件包括至少两个子打印件,所述至少两个子打印件相同,所述至少两个子打印件呈旋转对称布置。
在一些实施例中,所述支撑件与至少部分所述镂空打印件共同形成的组合体被划分成多层平行的切片后,每层所述切片与初始打印切片之间的所有切片构成子组合体,每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。
在一些实施例中,所述镂空打印件包括镂空鞋底。
在一些实施例中,所述镂空鞋底内部为网状结构;至少部分所述连接部与所述镂空鞋底内部网状结构的支柱连接。
在一些实施例中,至少部分所述连接部与所述镂空鞋底的连接处位于所述镂空鞋底上的两个轮廓面的交界处。
本申请一些实施例提供一种镂空打印件,所述镂空打印件在打印时采用了上述任一技术方案所述的3D打印支撑件。
在一些实施例中,所述镂空打印件为镂空鞋底。
本申请一些实施例提供一种镂空打印件,所述镂空打印件具有去除3D打印支撑件后的连接痕迹,至少部分所述连接痕迹位于所述镂空打印件内部。
在一些实施例中,所述至少部分所述连接痕迹位于所述镂空打印件 内部包括:至少部分所述连接痕迹位于所述镂空打印件的孔洞或空腔内。
本申请又一实施例提供一种镂空打印件的3D打印支撑件构建方法,包括:获取镂空打印件模型;为所述镂空打印件模型构建支撑件,所述支撑件的至少一端与所述镂空打印件连接,所述支撑件包括主体部以及与所述镂空打印件连接的连接部,至少部分所述连接部与所述镂空打印件的连接处位于所述镂空打印件内部。
本申请一些实施例提供一种镂空打印件的3D打印方法,其包括:根据上述任一技术方案所述的镂空打印件的3D打印支撑件构建方法为镂空打印件模型构建支撑件;利用3D打印设备打印所述镂空打印件和所述支撑件。
本申请另一些实施例提供一种3D打印支撑件,所述支撑件的至少一端与打印件连接;所述支撑件与至少部分所述打印件共同形成的组合体被划分成多层平行的切片后,每层所述切片与初始打印切片之间的所有切片构成子组合体;每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。
在一些实施例中,所述每个子组合体的重心的连线与任意切片垂直。
在一些实施例中,所述支撑件包括主体部以及与所述打印件连接的连接部,所述连接部与所述打印件连接的一端的横截面积小于所述主体部的横截面积。
在一些实施例中,所述支撑件包括柱状支撑件、片状支撑件和/或网状支撑件。
在一些实施例中,所述片状支撑件上设有沿其厚度方向延伸的一个或多个通孔。
在一些实施例中,所述片状支撑件与所述打印件连接的连接部呈锯齿状。
在一些实施例,所述网状支撑件包括多个由支柱构成的单元结构;所述单元结构包括以下结构中的至少一种:四面体、立方体、长方体、八面体、十二面体、二十面体。
在一些实施例中,所述支撑件的两端均与所述打印件连接。
本申请的一些实施例提供一种3D打印件,所述打印件在打印时采用了上述任一技术方案所述的支撑件。
在一些实施例中,所述打印件包括至少两个子打印件。
在一些实施例中,所述至少两个子打印件相同;所述至少两个子打印件呈旋转对称布置。
本申请的一些实施例提供一种3D打印支撑件构建方法,其包括:获取打印件模型;为所述打印件模型构建支撑件,所述支撑件的至少一端与所述打印件连接,所述支撑件与至少部分所述打印件共同形成的组合体被划分成多层平行的切片后,每层所述切片与初始打印切片之间的所有切片构成子组合体,每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。
在一些实施例中,所述支撑件包括主体部以及与所述打印件连接的连接部,所述连接部与所述打印件连接的一端的横截面积小于所述主体部的横截面积。
在一些实施例中,所述支撑件包括柱状支撑件、片状支撑件和/或网状支撑件。
本申请的一些实施例提供一种3D打印方法,其特征在于,包括:上述任一技术方案所述的3D打印支撑件构建方法为打印件模型构建支撑件;利用3D打印设备打印所述打印件和所述支撑件。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将 通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例所示的3D打印支撑件与镂空打印件的连接示意图;
图2是根据本申请一些实施例所示的3D打印支撑件与镂空打印件的侧部示意图;
图3是根据本申请一些实施例所示的3D打印支撑件与镂空打印件的底部示意图;
图4是根据本申请一些实施例所示的镂空打印件的子打印件和支撑件的结构示意图;
图5是根据本申请实施例之一所示的3D打印支撑件与镂空打印件的连接位置放大示意图;
图6是根据本申请一些实施例所示的镂空打印件的3D打印支撑件构建方法流程图;
图7是根据本申请一些实施例所示的3D打印支撑件与打印件的连接示意图;
图8是根据本申请一些实施例所示的3D打印支撑件的片状支撑件的结构示意图;
图9是根据本申请一些实施例所示的3D打印支撑件构建方法流程图。
图中,1为镂空打印件,2为支撑件,10为子打印件,21为片状支撑件;22为网状支撑件,201为主体部,202为连接部,221为单元结构。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具 体实施例仅仅用以解释本申请,并不用于限定本申请。
相反,本申请涵盖任何由权利要求定义的在本申请的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本申请有更好的了解,在下文对本申请的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本申请。
本申请实施例主要涉及一种镂空打印件的3D打印支撑件,该3D打印支撑件可以适用于打印镂空打印件的多种场景。例如,该3D打印支撑件可以应用到光固化成型、熔融沉积快速成型及三维粉末粘接成型等3D打印镂空打印件的技术中。在一些实施例中,该3D打印支撑件可以是3D打印设计过程中的支撑件,也可以是打印过程中的支撑件,还可以是打印完成后的支撑件。本申请还涉及在打印时采用了3D打印支撑件的镂空打印件,该镂空打印件可以是应用在医用、工业、生活及艺术等各个方面的镂空打印物品。本申请还涉及一种镂空打印件的3D打印支撑件构建方法和3D打印方法,本领域技术人员可以在Rhino、Solidworks、Catia或UG等软件上采用该3D打印支撑件构建方法来实现镂空打印件的3D打印支撑件的构建,并通过各种3D打印设备来完成打印。本申请对于该镂空打印件的3D打印支撑件、镂空打印件、镂空打印件的3D打印支撑件构建方法及3D打印方法的应用场景均不作限制。
图1是根据本申请一些实施例所示的3D打印支撑件与镂空打印件的连接示意图,图2是根据本申请一些实施例所示的3D打印支撑件与镂空打印件的侧部示意图,图3是根据本申请一些实施例所示的3D打印支撑件与镂空打印件的底部示意图。以下将结合图1-3对本申请实施例所涉及的镂空打印件的3D打印支撑件进行详细说明。值得注意的是,以下实施例仅仅用以解释本申请,并不构成对本申请的限定。
在本申请的实施例中,如图1所示,3D打印支撑件2的至少一端与 镂空打印件1连接,支撑件2可以包括主体部201以及与镂空打印件1连接的连接部202;至少部分连接部202与镂空打印件1的连接处位于镂空打印件1内部。在本申请的实施例中,镂空打印件可以理解为一种内部具有孔洞或空腔等镂空结构的3D打印产品。镂空打印件可以是全部镂空,例如网状结构的打印件;也可以是部分镂空,例如只在打印件的某个部位具有镂空结构。需要说明的是,3D打印支撑件2的至少一端与镂空打印件1连接可以是支撑件2的一端与3D打印的成型台连接,而其另一端与镂空打印件1连接;也可以是支撑件2的两端均与镂空打印件1连接。还需说明的是,至少部分连接部202与镂空打印件1的连接处位于镂空打印件1内部可以理解为,所有连接部202与镂空打印件1的连接处均位于镂空打印件1内部(如图1所示);或者,部分连接部202与镂空打印件1的连接处位于镂空打印件1内部,而其余部分连接部202与镂空打印件1的连接处位于镂空打印件表面。具体的,连接部202位于镂空打印件1内部可以理解为连接部202伸入到镂空打印件1的孔洞或空腔内。在一些实施例中,支撑件2的具体结构可以根据镂空打印件1的形状来进行确定。在一些实施例中,支撑件2的具体结构构建可以通过软件算法(例如Grasshopper)来自动完成,也可以结合人工进行设计和调节。
下述实施例中的3D打印支撑件也适用于支撑其他的非镂空结构的3D打印件,本说明书中以镂空打印件为例进行说明,当3D打印件为非镂空结构时,支撑件2与打印件的连接处可以位于打印件的表面。
在一些实施例中,3D打印支撑件2可以包括柱状支撑件、片状支撑件21、网状支撑件22等一种或多种的任意组合,本领域技术人员可以在实际的操作过程中根据需要来具体进行设置,本申请对此不作限制。在一些实施例中,当3D打印支撑件2包括片状支撑件21时,片状支撑件21可以包括一个平面或多个彼此不平行的平面,也可以包括一个或多个弧面。 片状支撑件的厚度可以选择为0.1-10mm。
在一些实施例中,连接部202的横截面积可以与主体部201相等。在一些实施例中,连接部202与镂空打印件1连接的一端的横截面积小于主体部201的横截面积。具体的,连接部202连接在主体部201与镂空打印件1之间,主体部201用于对镂空打印件1起到支撑的作用,主体部201不与镂空打印件1相连,而连接部202将主体部201与镂空打印件1连接起来,并通过上述横截面积的变化来保证支撑件2在打印结束后便于从镂空打印件1上去除。这样可以方便打印完成后将支撑件2从镂空打印件1上分离下来,防止过多的支撑件2材料残留在镂空打印件1上而影响打印件1的正常使用,也能够保证镂空打印件1的美观。当主体部201的形状不同时,本领域技术人员可以通过多种设计形式来保证连接部202与镂空打印件1连接的一端的横截面积小于主体部201的横截面积。例如,当支撑件2包括柱状支撑件时,主体部201可以包括一个或多个支撑柱,连接部202可以包括分别连接在一个或多个支撑柱与镂空打印件1之间的连接柱。连接柱的横截面积可以设置为小于支撑柱的横截面积,也可以是,连接柱呈现为金字塔状、圆锥状或圆台状等,且金字塔状、圆锥状、圆台状等形状的连接柱的横截面积较小的一端与镂空打印件1相连,而其横截面积较大的一端与支撑柱相连。当支撑件2包括网状支撑件22时,主体部201可以包括构成网状的多个支柱,而连接部202可以包括连接在支柱与镂空打印件1之间的连接柱。连接柱的横截面积可以设置为小于支柱的横截面积,也可以是,连接柱呈现为金字塔状、圆锥状或圆台状等,且金字塔状、圆锥状、圆台状等形状的连接柱的横截面积较小的一端与镂空打印件1相连,而其横截面积较大的一端与支柱相连。当支撑件2包括片状支撑件21时,主体部201可以包括支撑片,而连接部202可以包括连接在支撑片与镂空打印件1之间的锯齿状结构或多个间隔设置的连接柱。如图8所示, 锯齿状的连接部202的横截面积较小的一端与镂空打印件1连接,而横截面积较大的一端与支撑片连接。在一些替代性实施例中,片状支撑件21与镂空打印件1连接的连接部202可以包括金字塔状、圆锥状、圆台状等形状的连接柱,且金字塔状、圆锥状、圆台状等形状的连接柱的横截面积较小的一端与镂空打印件1相连,而其横截面积较大的一端与支撑片连接。
图4是根据本申请一些实施例所示的镂空打印件的子打印件和支撑件的结构示意图,在图4所示的实施例中,镂空打印件1可以包括至少两个子打印件10。当打印件为非镂空结构时,其也可以包括至少两个子打印件,下面以镂空打印件为例进行说明。上述任一方案的3D打印支撑件2可以连接在相邻的两个子打印件10之间,此时支撑件2可以与3D打印的成型台相连,也可以不与3D打印的成型台相连。在3D打印过程中同时打印至少两个子打印件10,支撑件2可以对各子打印件10进行支撑和连接,各个子打印件10之间均能够保持相对稳定。尤其是对于难以单独稳定放置的子打印件10而言,各个子打印件10能够通过支撑件2而相互支撑,在打印过程中减少晃动。在一些优选的实施例中,至少两个子打印件10相同,至少两个子打印件10可以呈旋转对称布置。例如,可以是两个子打印件10呈180°旋转对称布置。又例如,可以是三个子打印件10呈120°旋转对称布置。通过这样的设置,首先能够提高子打印件10的生产效率,另外,在每一层切片中,镂空打印件1均为对称的结构,便于对支撑件2的结构进行设计,例如,可以通过设计支撑件而使得每层切片的重心位于旋转中心。例如,每层切片中的支撑件也可以关于该层切片的旋转中心呈旋转对称。在一些替代性实施例中,子打印件10也可以包括其他布置方式(如轴对称布置)。
在一些实施例中,支撑件2与至少部分镂空打印件1共同形成的组合体被划分成多层平行的切片后,每层切片与初始打印切片之间的所有切 片构成子组合体,每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。在本申请的实施例中,第一柱体与任意切片垂直可以理解为第一柱体的中心轴线与任意切片垂直。在一些实施例中,第一柱体可以包括但不限于圆柱、三菱柱、四棱柱、六棱柱等。在一些实施例中,第一柱体的尺寸可以根据具体情况(如打印件尺寸)设定。例如,当第一柱体为圆柱体时,第一柱体的直径可以设置为0.1~50mm(如0.1mm、0.5mm、1mm、5mm、10mm等)。在一些实施例中,每个子组合体的重心的连线位于第一柱体空间内可以理解为每个子组合体的重心的连线垂直或近似垂直于任意切片。在一些实施例中,组合体可以由支撑件2与打印件1整体共同形成。在一些实施例中,组合体也可以由支撑件2与部分打印件1共同形成。例如,该部分打印件可以为被划分成切片后切片中包含有支撑件的部分打印件。在一些实施例中,初始打印切片可以理解为打印件1在打印时打印的第一层切片。
在一些实施例中,保证每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内的操作可以是以程序的形式嵌入到支撑件的构建软件中,从而在利用软件构建支撑件的时候可以调用或默认采用。另外,将组合体划分为多层平行的切片可以在建模过程中、打印过程中和/或打印完成后体现。还需说明的是,组合体被划分的多层切片一般平行于3D打印的成型台,以便于3D打印过程的顺利进行。在一些实施例中,为了进一步防止3D打印过程中打印件出现晃动,可以使得每个子组合体的重心的连线与任意切片垂直。通过按照上述方式来设置支撑件2,在3D打印镂空打印件1的过程中能够有效防止镂空打印件1晃动,减小打印偏差。例如,对于约束液面式(bottom up)光固化3D打印技术而言,由于光固化由树脂料槽底部开始,每完成一层固化,成型台携带已固化的打印件向上移动一层的高度,整个打印过程需要成型台不断向上运动,附着在成型台上的打印 件会受到重力以及未固化液体(如光敏树脂等)的影响,成型台在每层打印完成向上移动的过程都可能使得镂空打印件1产生晃动,甚至造成打印的偏差。在光固化3D打印的材料为弹性体材料时,成型台向上移动而造成的镂空打印件1晃动问题会尤为凸出。弹性体材料一般具有较低的杨氏模量和较高的破坏应变,在受力时发生大变形,而撤出外力后能迅速回复其近似初始形状和尺寸。弹性体材料可以包括但不限于橡胶、热塑性聚氨酯等。本申请实施例所涉及的镂空打印件1以及支撑件2可以由弹性体材料打印而成。
在一些实施例中,如图1-4所示,镂空打印件1可以为镂空鞋底。通过使用镂空鞋底,可以提高鞋子(尤其是运动鞋)的透气性。至少部分连接部202与镂空鞋底的连接处位于镂空鞋底内部可以是指该连接处位于镂空鞋底的镂空孔内。通过上述设置,当将支撑件2从镂空鞋底上去除时,支撑件2的残留材料不会留在镂空鞋底的外部,不但保证了镂空鞋底的外观的完整性,还能够提高使用该镂空鞋底的鞋子的舒适性。
在一些实施例中,镂空鞋底内部为网状结构,至少部分支撑件2的连接部202与镂空鞋底内部网状结构的支柱连接。镂空鞋底内部为网状结构不但可以使得鞋底更加轻便,还可以减少镂空鞋底的用料。而将镂空鞋底的内部设为网状结构后,网状结构的支柱为支撑件2的连接部202提供了理想的附着位置,从而使得支撑件2更易于与镂空鞋底分离。在一些实施例中,镂空鞋底可以通过弹性体材料(如橡胶、热塑性聚氨酯等)打印而成。
图5是根据本申请实施例之一所示的3D打印支撑件与镂空打印件的连接位置放大示意图。在图5所示的实施例中,镂空打印件为镂空鞋底,至少部分支撑件2的连接部202与镂空鞋底的连接处位于镂空鞋底上的两个轮廓面的交界处。在某些情况下,支撑件2的连接部202需要设置在镂 空鞋底的外部来对镂空鞋底进行支撑。在此情况下,通过使该连接处位于两个轮廓面的交界处,在将支撑件2从镂空鞋底上分离时能够更加容易,同时不会在镂空打印件1的轮廓面上留下支撑件2的残留材料,以尽可能减少支撑件2的残留材料对镂空打印件1的外观的影响。例如,对于镂空鞋底来说,两个轮廓面的交界处可以理解为鞋底的顶面与侧面的交线,或者鞋底的底面与侧面的交线。当镂空打印件1包括其他的打印件时,也可以将连接部202与打印件的连接处设置在该打印件的两个轮廓面的交界处。
本申请所披露的镂空打印件的3D打印支撑件可能带来的有益效果包括但不限于:(1)与镂空打印件分离后,支撑件的残留材料不会留在镂空打印件的外表面上,从而不会影响镂空打印件1的外观和使用功能;(2)在打印完成后易于将支撑件与镂空打印件分离;(3)能够在3D打印过程中能够防止镂空打印件晃动,以减小打印偏差,提升打印精度。需要说明的是,不同的实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种组合,也可以是其他任何可能获得的有益效果。
本申请另一实施例提供一种镂空打印件,镂空打印件1在打印时采用了上述任一技术方案的3D打印支撑件2。该镂空打印件1通过使用上述任一技术方案的支撑件2,在支撑件2与镂空打印件1分离后,支撑件2的残留材料大部分会留在镂空打印件1的内部,不会留在镂空打印件1的外表面上,从而不会影响镂空打印件1的外观和使用功能。
在一些实施例中,所述镂空打印件1可以是镂空鞋底。在另一些实施例中,镂空打印件1可以是具有镂空花纹的工艺品,也可以是具有镂空结构的工业零部件或医用假体等。
本申请又一实施例提供一种镂空打印件,镂空打印件1具有去除3D打印支撑件后的连接痕迹,至少部分连接痕迹位于镂空打印件1内部。具 体的,至少部分连接痕迹可以位于镂空打印件1的孔洞或空腔内。由于该连接痕迹位于镂空打印件1的内部,因此其不会影响镂空打印件1的外观。
本申请又一实施例提供一种镂空打印件的3D打印支撑件构建方法,图6是根据本申请一些实施例所示的镂空打印件的3D打印支撑件构建方法流程图。如图6所示,该3D打印支撑件2构建方法可以包括:获取镂空打印件1模型;为镂空打印件1模型构建支撑件2,支撑件2的至少一端与镂空打印件1连接,支撑件2包括主体部201以及与镂空打印件1连接的连接部202,至少部分连接部202与镂空打印件1的连接处位于镂空打印件1内部。需要说明的是,支撑件2的至少一端与镂空打印件1连接可以是支撑件2的一端与3D打印的成型台连接,而其另一端与镂空打印件1连接;也可以是支撑件2的两端均与镂空打印件1连接。镂空打印件1模型构建可以通过Rhino、Solidworks、Catia或UG等软件来实现。支撑件2的构建可以根据镂空打印件1的形状来进行确定,支撑件2的具体结构构建可以通过软件算法(例如Grasshopper)来自动完成,也可以通过人工进行设计和调节。
在一些实施例中,支撑件2可以包括主体部201以及与打印件1连接的连接部202,连接部202与镂空打印件1连接的一端的横截面积小于主体部201的横截面积。具体的,连接部202连接在主体部201与镂空打印件1之间,主体部201用于对镂空打印件1起到支撑的作用,而连接部202将主体部201与镂空打印件1连接起来,并通过上述横截面积的变化来保证整个支撑件2在打印结束后便于从镂空打印件1上去除。在一些实施例中,支撑件2可以包括柱状支撑件、片状支撑件、网状支撑件等一种或多种的任意组合。需要说明的是,当打印件为非镂空结构时,3D打印支撑件的构建方法也可以按照上述实施例中方案来进行实施,此时3D打印支撑件与镂打印件的连接处可以位于打印件的外表面。
在一些实施例中,镂空打印件可以包括至少两个子打印件。该至少两个子打印件10可以相同,且该至少两个子打印件10呈旋转对称布置。通过这样的设置,首先能够提高子打印件10的生产效率,另外,在每一层切片中,打印件1均为对称(如中心对称)的结构,便于对支撑件2的结构进行设计。例如,通过设计支撑件而使得每层切片的重心位于旋转中心。例如,每层切片中的支撑件也可以关于该层切片的旋转中心呈旋转对称。
在一些实施例中,支撑件2与至少部分镂空打印件1共同形成的组合体被划分成多层平行的切片后,每层切片与初始打印切片之间的所有切片构成子组合体,每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。为镂空打印件1模型构建支撑件2的过程可以包括:为打印件1构建至少一端与打印件1相连的支撑件2;将支撑件2与打印件1的组合体按照一定的层厚(比如0.1mm、0.15mm或0.2mm等)划分成平行于3D打印的成型台的多层平行的切片;计算每个子组合体的重心位置,并根据重心位置调节支撑件2的结构形状,以使得每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。通过上述方式能够构建出镂空打印件1的支撑件2,该支撑件2不但能够在3D打印镂空打印件1的过程中防止镂空打印件1晃动,还能在镂空打印件与支撑件分离后减少在镂空打印件1的表面留下支撑件2的残留材料。
在一些实施例中,镂空打印件1可以包括镂空鞋底。当将支撑件2从镂空鞋底上去除时,连接处位于镂空鞋底内部的支撑件2的残留材料不会留在镂空鞋底的外部,不但保证了镂空鞋底的外观的完整性,还能够保证使用该镂空鞋底的鞋子的舒适性。
本申请所披露的镂空打印件的3D打印支撑件构建方法可能带来的有益效果包括但不限于:(1)所构建的支撑件在与镂空打印件分离后,支撑件的残留材料不会留在镂空打印件的外表面上,从而不会影响镂空打印 件的外观和使用功能;(2)所构建的支撑件在打印完成后易于与镂空打印件分离;(3)所构建的支撑件在3D打印过程中能够尽可能地防止镂空打印件晃动,以减小打印偏差。需要说明的是,不同的实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种组合,也可以是其他任何可能获得的有益效果。
本申请再一实施例提供一种3D打印方法,打印方法包括:根据上述任一技术方案的镂空打印件的3D打印支撑件构建方法为镂空打印件1模型构建支撑件2;利用3D打印设备打印镂空打印件1和支撑件2。打印镂空打印件1和支撑件2的3D打印设备可以是光固化3D打印机、熔融沉积3D打印机或粉末粘接式3D打印机等。该3D打印方法通过使用上述镂空打印件的3D打印支撑件构建方法来为支撑件2进行前期建模,构建出支撑件2,打印出的支撑件2和镂空打印件1易于分离,且能够有效减少支撑件2的材料残留在镂空打印件1的外表面上。
本申请的实施例还提供一种3D打印支撑件,该3D打印支撑件2的至少一端与3D打印件3连接,支撑件2与至少部分3D打印件3共同形成的组合体被划分为多层平行的切片后,每层切片与初始打印切片之间的所有切片构成子组合体;每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。支撑件2的至少一端与3D打印件3连接可以是支撑件2的一端与3D打印的成型台连接,而其另一端与3D打印件3连接;也可以是支撑件2的两端均与3D打印件3连接。图7是根据本申请一些实施例所示的3D打印支撑件与打印件的连接示意图,在图7所示的实施例中,支撑件2的两端均与3D打印件3连接。
在一些实施例中,3D打印支撑件2可以包括柱状支撑件、片状支撑件21和/或网状支撑件22。当3D打印支撑件2包括片状支撑件21时,为了减少支撑件2的用料,片状支撑件21上可以设有沿其厚度方向延伸的一 个或多个通孔。该通孔可以是任意形状的通孔,如圆形孔、方形孔、三角形孔或其他不规则形状的孔等。若通孔为圆形孔时,该通孔的直径可以选择为1-10mm。在一些替代性实施例中,片状支撑柱上也可以设置盲孔、埋孔或凹槽来减少支撑件2的用料。
在一些实施例中,如图1所示,当3D打印支撑件2包括网状支撑件22时,网状支撑件22包括多个由支柱构成的单元结构221。单元结构221可以包括四面体、立方体、长方体、八面体、十二面体、二十面体等一种或多种的任意组合。每一个单元结构221的多个支柱限定了该单元结构221的基本几何形状。本领域技术人员可以根据网状支撑件22需要设计的结构强度来确定支柱的直径(如设置为2mm、3mm或4mm等)和/或单元结构的大小。在一些替代性实施例中,支撑件2的单元结构221也可以包括多个由支柱构成的二维网孔单元,该二维网孔单元可以呈三角形、四边形和/或六边形等形状。在一些实施例中,本领域技术人员也可以设置既具有二维的网格又具有三维的多面体单元构件221的网状支撑件22。采用网状支撑件22可以减少支撑件2的用料,同时又可以保证支撑件2的支撑强度,从而保证支撑件2在打印过程中对3D打印件3进行更稳定地支撑。此外,网状支撑件22便于通过改变单元结构221的形状和大小来改变每个子组合体的重心,从而保证每个子组合体的重心的连线与任意切片垂直或近似垂直。尤其是应用于对形状不规则的3D打印件3进行支撑时,可以通过改变单元结构221的形状和大小来调节支撑件2的结构,从而方便地调节组合体的每个子组合体的重心位置。
本申请所披露的3D打印支撑件可能带来的有益效果包括但不限于:(1)在3D打印过程中防止打印件晃动,减小打印偏差,提升打印精度;(2)支撑件用料少,能够降低打印成本;(3)打印完成后能够方便地将支撑件与打印件分离,从而在打印件上减少材料残留。需要说明的是,不同 的实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种组合,也可以是其他任何可能获得的有益效果。
本申请另一实施例提供一种3D打印件,3D打印件3在打印时采用了上述任一技术方案所述的支撑件2。通过支撑件的设置,打印件在其打印过程中不易出现晃动,能够尽可能地减少打印偏差,提高打印精度。
本申请又一实施例提供一种3D打印支撑件构建方法,图9是根据本申请一些实施例所示的3D打印支撑件构建方法流程图,如图9所示,该构建方法可以包括:获取3D打印件3模型;为3D打印件3模型构建支撑件2,支撑件2的至少一端与3D打印件3连接,支撑件2与至少部分3D打印件3共同形成的组合体被划分成多层平行的切片后,每层切片与初始打印切片之间的所有切片构成子组合体,每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。需要说明的是,支撑件2的至少一端与3D打印件3连接可以理解为:支撑件的一端与成型台连接,而另一端与3D打印件3连接;或者支撑件的两端均与3D打印件3连接。
本申请所披露的3D打印支撑件构建方法可能带来的有益效果包括但不限于:(1)可以构建出合适的支撑件,以在3D打印过程中尽可能防止打印件晃动,减少打印偏差;(2)所构建的支撑件可以减少用料,降低打印成本;(3)所构建的支撑件2在打印完成后易于与打印件分离,从而在打印件上减少支撑件的材料残留。需要说明的是,不同的实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种组合,也可以是其他任何可能获得的有益效果。
本申请再一实施例提供一种3D打印方法,打印方法包括:根据上述任一技术方案的3D打印支撑件构建方法为3D打印件3模型构建支撑件2;利用3D打印设备打印该3D打印件3和支撑件2。打印该3D打印件3 和支撑件2的3D打印设备可以是光固化3D打印机。通过使用上述3D打印支撑件构建方法来为3D打印进行前期建模,构建出支撑件2和3D打印件3,可以在3D打印设备打印该3D打印件3和支撑件2的过程中减少3D打印件3的晃动,从而使得打印出的3D打印件3的精度较高。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (36)

  1. 一种镂空打印件的3D打印支撑件,其特征在于,所述支撑件的至少一端与所述镂空打印件连接;
    所述支撑件包括主体部以及与所述镂空打印件连接的连接部;
    至少部分所述连接部与所述镂空打印件的连接处位于所述镂空打印件内部。
  2. 如权利要求1所述的3D打印支撑件,其特征在于,所述至少部分所述连接部与所述镂空打印件的连接处位于所述镂空打印件内部包括:
    至少部分所述连接部伸入到所述镂空打印件的孔洞或空腔内。
  3. 如权利要求1所述的3D打印支撑件,其特征在于,所述连接部与所述镂空打印件连接的一端的横截面积小于所述主体部的横截面积。
  4. 如权利要求1所述的3D打印支撑件,其特征在于,所述支撑件包括柱状支撑件、片状支撑件和/或网状支撑件。
  5. 如权利要求1所述的3D打印支撑件,其特征在于,所述镂空打印件包括至少两个子打印件,所述至少两个子打印件相同,所述至少两个子打印件呈旋转对称布置。
  6. 如权利要求1所述的3D打印支撑件,其特征在于,所述支撑件与至少部分所述镂空打印件共同形成的组合体被划分成多层平行的切片后,每层所述切片与初始打印切片之间的所有切片构成子组合体,每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。
  7. 如权利要求1~6任一项所述的3D打印支撑件,其特征在于,所述镂空打印件包括镂空鞋底。
  8. 如权利要求7所述的3D打印支撑件,其特征在于,所述镂空鞋底内部为网状结构;
    至少部分所述连接部与所述镂空鞋底内部网状结构的支柱连接。
  9. 如权利要求8所述的3D打印支撑件,其特征在于,至少部分所述连接部与所述镂空鞋底的连接处位于所述镂空鞋底上的两个轮廓面的交界处。
  10. 一种镂空打印件,其特征在于,所述镂空打印件在打印时采用了如权利要求1~9中任一项所述的3D打印支撑件。
  11. 如权利要求10所述的镂空打印件,其特征在于,所述镂空打印件为镂空鞋底。
  12. 一种镂空打印件,其特征在于,所述镂空打印件具有去除3D打印支撑件后的连接痕迹,至少部分所述连接痕迹位于所述镂空打印件内部。
  13. 如权利要求12所述的镂空打印件,其特征在于,所述至少部分所述连接痕迹位于所述镂空打印件内部包括:
    至少部分所述连接痕迹位于所述镂空打印件的孔洞或空腔内。
  14. 一种镂空打印件的3D打印支撑件构建方法,其特征在于,包括:
    获取镂空打印件模型;
    为所述镂空打印件模型构建支撑件,所述支撑件的至少一端与所述镂空打印件连接,所述支撑件包括主体部以及与所述镂空打印件连接的连接部,至少部分所述连接部与所述镂空打印件的连接处位于所述镂空打印件 内部。
  15. 如权利要求14所述的3D打印支撑件构建方法,其特征在于,所述至少部分所述连接部与所述镂空打印件的连接处位于所述镂空打印件内部包括:
    至少部分所述连接部伸入到所述镂空打印件的孔洞或空腔内。
  16. 如权利要求14所述的3D打印支撑件构建方法,其特征在于,所述连接部与所述镂空打印件连接的一端的横截面积小于所述主体部的横截面积。
  17. 如权利要求14所述的3D打印支撑件构建方法,其特征在于,所述支撑件包括柱状支撑件、片状支撑件和/或网状支撑件。
  18. 如权利要求14所述的3D打印支撑件构建方法,其特征在于,所述镂空打印件包括至少两个子打印件,所述至少两个子打印件相同,所述至少两个子打印件呈旋转对称布置。
  19. 如权利要求14所述的3D打印支撑件构建方法,其特征在于,所述支撑件与至少部分所述镂空打印件共同形成的组合体被划分成多层平行的切片后,每层所述切片与初始打印切片之间的所有切片构成子组合体,每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。
  20. 如权利要求14~19任一项所述的3D打印支撑件构建方法,其特征在于,所述镂空打印件包括镂空鞋底。
  21. 一种镂空打印件的3D打印方法,其特征在于,包括:
    根据如权利要求14~20任一项所述的镂空打印件的3D打印支撑件构建方法为镂空打印件模型构建支撑件;
    利用3D打印设备打印所述镂空打印件和所述支撑件。
  22. 一种3D打印支撑件,其特征在于,所述支撑件的至少一端与打印件连接;
    所述支撑件与至少部分所述打印件共同形成的组合体被划分成多层平行的切片后,每层所述切片与初始打印切片之间的所有切片构成子组合体;
    每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。
  23. 如权利要求22所述的3D打印支撑件,其特征在于,所述每个子组合体的重心的连线与任意切片垂直。
  24. 如权利要求22所述的3D打印支撑件,其特征在于,所述支撑件包括主体部以及与所述打印件连接的连接部,所述连接部与所述打印件连接的一端的横截面积小于所述主体部的横截面积。
  25. 如权利要求22所述的3D打印支撑件,其特征在于,所述支撑件包括柱状支撑件、片状支撑件和/或网状支撑件。
  26. 如权利要求25所述的3D打印支撑件,其特征在于,所述片状支撑件上设有沿其厚度方向延伸的一个或多个通孔。
  27. 如权利要求25所述的3D打印支撑件,其特征在于,所述片状支撑件与所述打印件连接的连接部呈锯齿状。
  28. 如权利要求25所述的3D打印支撑件,其特征在于,所述网状支撑件包括多个由支柱构成的单元结构;
    所述单元结构包括以下结构中的至少一种:四面体、立方体、长方体、八面体、十二面体、二十面体。
  29. 如权利要求22所述的3D打印支撑件,其特征在于,所述支撑件的两端均与所述打印件连接。
  30. 一种3D打印件,其特征在于,所述打印件在打印时采用了如权利要求1-8中任一项所述的支撑件。
  31. 如权利要求30所述的3D打印件,其特征在于,所述打印件包括至少两个子打印件。
  32. 如权利要求31所述的3D打印件,其特征在于,所述至少两个子打印件相同;
    所述至少两个子打印件呈旋转对称布置。
  33. 一种3D打印支撑件构建方法,其特征在于,包括:
    获取打印件模型;
    为所述打印件模型构建支撑件,所述支撑件的至少一端与所述打印件连接,所述支撑件与至少部分所述打印件共同形成的组合体被划分成多层平行的切片后,每层所述切片与初始打印切片之间的所有切片构成子组合体,每个子组合体的重心的连线位于与任意切片垂直的第一柱体空间内。
  34. 如权利要求33所述的3D打印支撑件构建方法,其特征在于,所 述支撑件包括主体部以及与所述打印件连接的连接部,所述连接部与所述打印件连接的一端的横截面积小于所述主体部的横截面积。
  35. 如权利要求33所述的3D打印支撑件构建方法,其特征在于,所述支撑件包括柱状支撑件、片状支撑件和/或网状支撑件。
  36. 一种3D打印方法,其特征在于,包括:
    根据权利要求33~35任一项所述的3D打印支撑件构建方法为打印件模型构建支撑件;
    利用3D打印设备打印所述打印件和所述支撑件。
PCT/CN2019/105990 2018-09-21 2019-09-16 3d打印支撑件结构及设计方法 WO2020057465A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/192,916 US20210197494A1 (en) 2018-09-21 2021-03-05 3d printing support structure and design method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201821549720 2018-09-21
CN201821549720.3 2018-09-21
CN201910736413.9A CN110936615A (zh) 2018-09-21 2019-08-09 一种镂空打印件及其3d打印支撑件
CN201910736413.9 2019-08-09
CN201910735447.6A CN110948880A (zh) 2018-09-21 2019-08-09 一种3d打印支撑件和3d打印件
CN201910735447.6 2019-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/192,916 Continuation US20210197494A1 (en) 2018-09-21 2021-03-05 3d printing support structure and design method

Publications (1)

Publication Number Publication Date
WO2020057465A1 true WO2020057465A1 (zh) 2020-03-26

Family

ID=69888345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105990 WO2020057465A1 (zh) 2018-09-21 2019-09-16 3d打印支撑件结构及设计方法

Country Status (1)

Country Link
WO (1) WO2020057465A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160324260A1 (en) * 2015-05-08 2016-11-10 Under Armour, Inc. Midsole lattice with hollow tubes for footwear
CN106180708A (zh) * 2016-06-30 2016-12-07 浙江工业大学 金属增材制造中的可控多孔网状支撑结构及其制作方法
CN106263250A (zh) * 2015-06-29 2017-01-04 阿迪达斯股份公司 运动鞋的鞋底
EP3165109A1 (en) * 2015-11-03 2017-05-10 Vibram S.p.A. Customized sole or midsole for footwear
JP2017177594A (ja) * 2016-03-30 2017-10-05 株式会社松浦機械製作所 サポート及びワーク並びに当該サポートの造形方法
CN108477752A (zh) * 2018-06-04 2018-09-04 福建泉州匹克体育用品有限公司 3d打印缓震结构以及应用该结构的鞋底

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160324260A1 (en) * 2015-05-08 2016-11-10 Under Armour, Inc. Midsole lattice with hollow tubes for footwear
CN106263250A (zh) * 2015-06-29 2017-01-04 阿迪达斯股份公司 运动鞋的鞋底
EP3165109A1 (en) * 2015-11-03 2017-05-10 Vibram S.p.A. Customized sole or midsole for footwear
JP2017177594A (ja) * 2016-03-30 2017-10-05 株式会社松浦機械製作所 サポート及びワーク並びに当該サポートの造形方法
CN106180708A (zh) * 2016-06-30 2016-12-07 浙江工业大学 金属增材制造中的可控多孔网状支撑结构及其制作方法
CN108477752A (zh) * 2018-06-04 2018-09-04 福建泉州匹克体育用品有限公司 3d打印缓震结构以及应用该结构的鞋底

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, WEIMING ET AL.: "Cost-effective Printing of 3D Objects with Skin-Frame Structures", ACM TRANSACTIONS ON GRAPHICS, vol. 32, no. 6, 30 November 2013 (2013-11-30), XP058033878, DOI: 10.1145/2508363.2508382 *

Similar Documents

Publication Publication Date Title
US20210197494A1 (en) 3d printing support structure and design method
JP5866285B2 (ja) シャトルコック用人工羽根、シャトルコック、およびシャトルコック用人工羽根の製造方法
WO2021114534A1 (zh) 一种3d打印的分级回弹结构以及应用该结构的鞋底
ES2802301T3 (es) Método de moldeo tridimensional
ES2820801T3 (es) Placa de base para soportar ladrillos de construcción de interconexión
US9248889B2 (en) Stand-up paddle board and method of manufacture
CN208783842U (zh) 一种鞋底内嵌3d打印模块的运动鞋
WO2020057465A1 (zh) 3d打印支撑件结构及设计方法
JP5624821B2 (ja) シャトルコック用人工羽根、シャトルコック、およびシャトルコック用人工羽根の製造方法
WO2017136813A1 (en) Objects having improved rebound characteristics
IT201900006827A1 (it) Tacchetto per l'aderenza di calzature
KR20170089124A (ko) 골프 매트
CN212737077U (zh) 耐压透气缓冲构件
JP2009153539A (ja) ボール
JP5054849B1 (ja) 睡眠用枕
CN113561492A (zh) 一种3d打印件支撑件以及其添加方法和打印方法
CN115230167A (zh) 一种3d打印制备的齿科器械及其3d打印支撑件
CN209995753U (zh) 一种通风透水减震垫
CN211021191U (zh) 一种3d打印的分级回弹结构以及应用该结构的鞋底
RU2005111858A (ru) Легковесная конструкция мебели для сиденья
JP5458422B2 (ja) ボールの製造方法
JP3216808U (ja) 着脱可能な新型機能性マットレス
CN218122854U (zh) 一种基于3d打印的医疗机器人组件
EP4417272A1 (en) Basketball
KR102196476B1 (ko) 이미지 연출을 위한 교체식 장식패널

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863937

Country of ref document: EP

Kind code of ref document: A1