WO2021114534A1 - 一种3d打印的分级回弹结构以及应用该结构的鞋底 - Google Patents

一种3d打印的分级回弹结构以及应用该结构的鞋底 Download PDF

Info

Publication number
WO2021114534A1
WO2021114534A1 PCT/CN2020/084494 CN2020084494W WO2021114534A1 WO 2021114534 A1 WO2021114534 A1 WO 2021114534A1 CN 2020084494 W CN2020084494 W CN 2020084494W WO 2021114534 A1 WO2021114534 A1 WO 2021114534A1
Authority
WO
WIPO (PCT)
Prior art keywords
rebound
rods
rod
printed
vertical
Prior art date
Application number
PCT/CN2020/084494
Other languages
English (en)
French (fr)
Inventor
沈炜
姚远
丁颖
Original Assignee
南京阿米巴工程结构优化研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京阿米巴工程结构优化研究院有限公司 filed Critical 南京阿米巴工程结构优化研究院有限公司
Publication of WO2021114534A1 publication Critical patent/WO2021114534A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/181Resiliency achieved by the structure of the sole
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials

Definitions

  • the invention belongs to the technical field of sports shoes, and in particular relates to a 3D printed hierarchical rebound structure and a sole using the structure.
  • the impact force received by the sole of the foot when it touches the ground is several times that of the body's own gravity, and the sole of the foot bears greater foot pressure, causing a series of sports injuries.
  • An effective solution is to use a sole with a cushioning structure to reduce the impact of the athlete's sole.
  • most common sports shoe midsole materials use foam materials such as ethylene-vinyl acetate (EVA) or polyurethane (PU), which can provide a better cushioning effect.
  • EVA ethylene-vinyl acetate
  • PU polyurethane
  • 3D printing technology is also called additive manufacturing technology. It only needs to import the 3D digital model into the 3D printer, after printing, after simple post-processing, a 3D printed product can be obtained. Compared with mold forming technology, 3D printing technology can directly print any shape, and has the characteristics of short cycle and high precision. When making customized sports shoes for athletes, traditional sports shoes rely on multiple functional components to complete products. 3D printed shoes can be realized by changing the shape and density distribution of sports shoes by parameters.
  • the purpose of the present invention is to solve the problems faced by the manufacturing and use of existing sports shoes in the above background art, and to provide a 3D printed graded rebound structure and a sole using the structure.
  • the technical scheme adopted by the present invention is: a 3D printed hierarchical rebound structure, including a surface grid, a plurality of 3D printed hierarchical rebound lattice units, ring edges, bottom grids and diagonal struts;
  • the hierarchical rebound lattice unit is composed of a cushioning component and a cushioning rebound part;
  • the cushioning component is composed of n vertical rods, n diagonal bracing rods, and 4n diagonal bracing rods forming a plane force structure (n ⁇ 3) :
  • N vertical rods are distributed vertically, and the distribution points are not on the same straight line; one end of each diagonal rod is connected with the upper end of the corresponding vertical rod, and the other end is connected with other diagonal rods at one point in space, and the height of the junction point is lower than the height of the vertical rod
  • the cushioning and resilience component is a single elastic vertical column structure, the lower end of the elastic vertical column is connected at the junction of the diagonal rods; every two of the graded rebound lattice units share two vertical rods;
  • the surface grid is formed by connecting a plurality of upper rods, and both ends of each upper rod are respectively connected to the upper end points of two elastic vertical columns to form a grid structure;
  • the ring edge is formed by connecting a plurality of ring edge rods, and the two ends of each ring edge rod are respectively connected to the lower end points of the elastic vertical column at the outermost edge of the structure to form a ring structure;
  • the bottom grid is formed by connecting a plurality of bottom rods, and two ends of each bottom rod are respectively connected to the lower end points of two vertical rods to form a grid structure;
  • diagonal bracing rods between the vertical rod and any connected rods, and the diagonal bracing rods are provided between the elastic vertical column and any connected rods to form a triangular stable structure.
  • the shape of the graded resilience structure can be designed into a three-dimensional shape such as a cylinder or a cube.
  • the material of the graded rebound lattice unit is nylon or TPU powder.
  • the 3D printing adopts the SLS selective laser sintering method.
  • the diameter range of the vertical rod, the diagonal rod, the elastic vertical column, the upper rod, the ring side rod, the bottom rod, and the diagonal brace rod are all 1.5-5mm; the height range of the vertical rod is 5-18mm, and the vertical rod The distance between them ranges from 5 to 30 mm; the height of the elastic vertical column ranges from 3 to 15 mm; the angle between the diagonal rod and the vertical rod ranges from 15 to 80°.
  • a shoe sole with a 3D printed graded rebound structure is used, and the cavities of the forefoot and the back of the shoe sole are filled with a 3D printed graded rebound structure.
  • the cushioning component of the present invention adopts a plane force structure, and first realizes "quick slowing" during compression deformation: the soft and easy-compressive structure is used to quickly reduce the impact force; the cushioning and resilient component is composed of a single elastic vertical column , And then realized “slow sinking” and “fast bomb”: using the structural properties of a relatively rigid bomb to provide stable support and strong resilience.
  • the present invention is based on the distribution of plantar pressure, and applies the 3D printed secondary rebound structure to the sole, which can not only fully absorb the impact energy generated by the movement through its two cushioning, but also provide strong resilience and support different sports.
  • the athletes with different sports characteristics complete technical actions to protect the athletes from sports injuries. In addition, it also has the functions of comfortable and breathable, customizable, and lightweight.
  • FIG. 1 is a schematic structural diagram of a 3D printed hierarchical rebound structure provided by an embodiment of the present invention.
  • Fig. 2 is a top view of Fig. 1.
  • Fig. 3 is a side view of Fig. 1.
  • FIG. 4 is a schematic structural diagram of a 3D printed hierarchical rebound lattice unit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a shoe sole using a 3D printing secondary rebound structure provided by an embodiment of the present invention.
  • Fig. 6 is a side view of Fig. 5.
  • FIG. 7 is a schematic diagram of a compression test test force versus displacement curve of a 3D printed hierarchical rebound structure according to an embodiment of the present invention.
  • Figure 8 is a schematic diagram of the curve of the compression test test force versus displacement of traditional shoe sole foam materials.
  • a 3D printed graded rebound structure includes a combination of surface mesh 1, multiple 3D printed graded rebound lattice units, ring edges 2, bottom mesh 3, and diagonal struts 4. Therefore, the shape of the graded rebound structure can be designed into three-dimensional shapes such as cylinders and cubes.
  • the graded rebound lattice unit is composed of a cushioning component and a cushioning and rebounding part.
  • the cushioning component is composed of 3 vertical rods 5, 3 diagonal bracing rods 6, and 12 diagonal bracing rods 4 forming a plane force structure: the distribution points of the 3 vertical rods 5 are triangular, and the diameter of the vertical rod 5 ranges from 1.5 to 5 mm, The height range is 5 ⁇ 18mm, and the distance between the vertical rods 5 ranges from 5 ⁇ 30mm; one end of the 3 inclined tie rods 6 is connected to the upper end of the 3 vertical rods 5, and the other end is handed over at the same point in space, and the height of the junction is lower than the height of the vertical rod 5 , The diameter of the diagonal rod 6 ranges from 1.5 to 5 mm, and the angle between the diagonal rod 6 and the vertical rod 5 ranges from 15 to 80°.
  • the cushioning and resilience component is a single elastic vertical column structure.
  • the lower end of the elastic vertical column 7 is connected at the junction of the three diagonal tie rods 6.
  • the diameter of the elastic vertical column 7 ranges from 1.5 to 5 mm and the height ranges from 3 to 15 mm.
  • the surface grid 1 is formed by connecting a plurality of upper rods 8.
  • the two ends of each upper rod 8 are respectively connected to the upper end points of two elastic vertical pillars 7 to form a grid structure.
  • the diameter of the upper rod 8 ranges from 1.5 to 5 mm.
  • the ring side 2 is formed by connecting a plurality of ring side rods 9, and the two ends of each ring side rod 9 are respectively connected to the lower end of the elastic vertical column 7 at the outermost edge of the structure to form a ring structure.
  • the diameter of the ring side rod 9 is The range is 1.5 ⁇ 5mm.
  • the bottom grid 3 is formed by connecting a plurality of bottom rods 10, and the two ends of each bottom rod 10 are respectively connected to the lower end points of two vertical rods 5 to form a grid structure.
  • the diameter of the bottom rod 10 ranges from 1.5 to 5 mm.
  • diagonal bracing rods 4 between the vertical rod 5 and any connected rods, and the diagonal bracing rods 4 are provided between the elastic vertical column 7 and any connected rods to form a triangular stable structure.
  • the diameter ranges from 1.5 to 5mm.
  • the raw material of the 3D printing is nylon or TPU powder.
  • the 3D printing adopts the SLS selective laser sintering method.
  • the cavities of the forefoot 11 and the rear sole 12 of the sole are filled with a 3D printed graded rebound structure.
  • the present invention applies the 3D printed graded rebound structure to the sole, which can not only fully absorb the impact energy generated by the movement through its two cushioning, but also provide strong rebound force to support different sports, Athletes with different sports characteristics complete technical actions to protect the athletes from sports injuries.
  • the present invention also has the functions of comfortable, breathable, customizable, and lightweight.
  • the 3D cushioning structure sample or shoe sole 3D printing uses SLS selective laser sintering technology.
  • the printing material uses TPU powder (or nylon powder).
  • the laser is used to scan and irradiate the powder layer by layer under the control of a computer to achieve the sintering and bonding of TPU powder. Combine, layer by layer to achieve forming.
  • the TPU powder used in 3D printing shoe soles is a powder with a particle size of one hundred microns, and its sintering temperature is 160°.
  • the particle size and molding temperature of the above-mentioned TPU powder are all possible in the present invention. 3D printing
  • the particle size and molding temperature of the TPU powder used in the shoe sole include but are not limited to the above possibilities.
  • the 3D printed graded rebound structure sample block for shoe midsoles is composed of a surface grid, multiple 3D printed graded rebound lattice units, ring edges, and bottom grids.
  • the graded rebound lattice unit is composed of cushioning components and cushioning and rebounding components.
  • the cushioning component adopts a plane force structure, which can realize the rapid cushioning function of the structure;
  • the cushioning and resilience component is composed of a single elastic vertical column, and the high elastic energy of the elastic vertical column is used to realize the secondary stable cushioning and return of the structure. bomb.
  • the cushioning component when the structural sample is compressed and deformed, the cushioning component first realizes "quick slowing”: using the soft and compressible structural properties to quickly reduce the impact force.
  • the cushioning and resilience components subsequently realized “slow sinking” and “fast elasticity”: using the structural properties of a relatively rigid elastic to provide stable support and strong resilience.
  • the combination of the two components makes the structure sample fully meet the requirements of both "slowness” and “springiness”.
  • a test bench of a universal testing machine was used to conduct a comparative test.
  • a compression test is performed on the 3D printed graded rebound structure and the traditional foam structure of the same size, and the test force varies with the deformation curve.
  • the results show that the 3D printed graded rebound structure is softer and has better cushioning performance in the deformation of 1-9mm; in the deformation of 9-11mm, it is more rigid and elastic, with better stability and resilience.
  • 3D printing or color-enhancing manufacturing
  • exemplary 3D printing technologies include, but are not limited to: fuse manufacturing (FFF), electron beam free forming manufacturing (EBF), direct metal laser sintering (DMLS), electron beam melting (EMB), selective laser melting (SLM) ), Selective Thermal Sintering (SHS), Selective Laser Sintering (SLS), Gypsum 3D Printing (PP), Layered Solid Manufacturing (LOM), Stereo Lithography (SLA), Digital Light Processing (DLP), and others in the field
  • FFFF fuse manufacturing
  • EMF electron beam free forming manufacturing
  • EMB electron beam melting
  • SLM selective laser melting
  • SHS Selective Thermal Sintering
  • SLS Selective Laser Sintering
  • PP Layered Solid Manufacturing
  • LOM Layered Solid Manufacturing
  • SLA Stereo Lithography
  • DLP Digital Light Processing
  • the printing material may be made of materials including ink, resin, acrylic, polymer, thermoplastic material, thermosetting material, photocurable material, or a combination thereof. According to embodiments, the printing material may also be formed to any desired thickness by printing one or more layers in the deposition sequence of the material, and the printing material may also include filler materials to impart a strengthening aspect or an aesthetic aspect to the printing material. Therefore, according to an embodiment, the printing material may be a composite material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

一种3D打印的分级回弹结构以及应用该结构的鞋底,分级回弹结构包括面网格(1)、多个3D打印的分级回弹晶格单元、环边(2)、底网格(3)和斜撑杆(4);分级回弹晶格单元由缓震部件和缓震回弹部件组成;缓震部件由n根竖杆(5)、n根斜拉杆(6)、4n根斜撑杆(4)组成平面受力结构(n≥3);缓震回弹部件为单根弹性竖柱(7)结构。该结构基于足底压力分布,将3D打印二级回弹结构应用于鞋底,不仅能通过两次缓震充分吸收运动产生的冲击能,还能提供较强的回弹力,支持不同运动项目、不同运动特点的运动者完成技术动作,保护运动者免于运动损伤,另外还具备舒适透气、可定制化、轻量化等功能。

Description

一种3D打印的分级回弹结构以及应用该结构的鞋底 技术领域
本发明属于运动鞋技术领域,尤其涉及一种3D打印的分级回弹结构以及应用该结构的鞋底。
背景技术
随着全民运动健身的扩展和普及,人们对运动鞋的品质、款式更新速度要求也在不断提高。传统运动鞋制作属于技术密集型产业链,涉及多种工艺,且工艺技术复杂,直接导致了研发生产周期长,即使是大型运动鞋制造商,设计生产一双运动鞋也需要18个月。
人们在体育运动中,脚底在接触地面瞬间受到的冲击力是人体自身重力的数倍,足底承受较大的足部压力,造成一系列运动损伤。有效的解决办法是采用具有缓震结构的鞋底,减少运动者足底遭受的冲击。目前,大部分常见运动鞋中底材料都采用乙烯-醋酸乙烯酯(EVA)或聚氨酯(PU)等发泡材料,能够提供较好的缓震效果。
但是这类依靠柔软材料自身弹性实现缓震的材料缓震鞋底,容易因时间流逝而出现塌陷、变形等问题,从而缓震效果逐渐减弱;另一方面,鞋底缓震性能越强,回弹性能则相应地减弱,在竞速体育等需要鞋底具有高回弹性的场合,普通的缓震鞋底无法做到既“缓“又”弹“。相比而言,利用不易变形的材料,制作出缓震回弹结构的机械缓震鞋底,性能表现更平均,寿命也较长。
3D打印技术又称为增材制造技术,仅需将3D数字模型导入3D打印机,打印完毕,经过简单的后处理即可得到一个3D打印成品。相比模具成型技术,3D打印技术可以直接打印任何形状,并且具有周期短,精度高的特点。为运动员制作定制化运动鞋时,传统运动鞋依靠多个功能部件才能完成的产品,3D打印鞋通过参数改变运动鞋造型和密度分布即可实现。
发明内容
本发明的目的是为了解决上述背景技术中现有的运动鞋制造和使用所面临的问题,提供一种3D打印的分级回弹结构以及应用该结构的鞋底。
本发明采用的技术方案为:一种3D打印的分级回弹结构,包括面网格、多个3D打印的分级回弹晶格单元、环边、底网格和斜撑杆;
所述分级回弹晶格单元由缓震部件和缓震回弹部组成;所述缓震部件由n根竖杆、n根斜拉杆、4n根斜撑杆组成平面受力结构(n≥3):n根竖杆竖直分布,分布点不在同一条直线上;每根斜拉杆一端与对应的竖杆上端连接,另一端与其他斜拉杆在空间一点交接,交接点的高度低于竖杆高度;所述缓震回弹部件为单根弹性竖柱结构,弹性竖柱下端连接在斜拉杆的交接点处;每2个所述分级回弹晶格单元共用2根竖杆;
所述面网格由多根上面杆连接而成,每根上面杆两端分别连接2根弹性竖柱的上端点,形成网格结构;
所述环边由多根环边杆连接而成,每根环边杆两端分别连接结构最外沿的弹性竖柱的下端点,形成环状结构;
所述底网格由多根底面杆连接而成,每根底面杆两端分别连接2根竖杆的下端点,形成网格结构;
所述竖杆与相连的任意杆件之间均设有斜撑杆,所述弹性竖柱与相连的任意杆件之间均设有斜撑杆,形成三角稳定结构。
作为优选,所述分级回弹结构的形状可设计成圆柱体、立方体等空间立体形状。
作为优选,所述分级回弹晶格单元的材料为尼龙或TPU粉末。
作为优选,所述3D打印采用SLS选择性激光烧结方法。
作为优选,所述竖杆、斜拉杆、弹性竖柱、上面杆、环边杆、底面杆、斜撑杆的直径范围均为1.5~5mm;所述竖杆的高度范围5~18mm,竖杆间的距离范围5~30mm;所述弹性竖柱的高度范围3~15mm;所述斜拉杆与竖杆的夹角范围15~80°。
应用上述一种3D打印的分级回弹结构的鞋底,所述鞋底的前掌与后掌的空腔内由3D打印的分级回弹结构填充。
有益效果:本发明缓震部件采用平面受力结构,在压缩变形时首先实现了“速缓“:利用柔软易压缩的结构性质迅速降低冲击力;缓震回弹部件由单根弹性竖柱组成,随后实现了”慢沉“和”速弹”:利用较为刚弹的结构性质提供稳定的支撑性和较强的回弹力。本发明是基于足底压力分布,将3D打印二级回弹结构应用于鞋底,不仅能通过其两次缓震充分吸收运动产生的冲击能,而且能提供较强的回弹力,支持不同运动项目、不同运动特点的运动者完成技术动作,保护运动者免于运动损伤,另外还具备舒适透气、可定制化、轻量化等功能。
附图说明
图1为本发明实施例提供的一种3D打印的分级回弹结构的结构示意图。
图2为图1的俯视图。
图3为图1的侧视图。
图4为本发明实施例提供的一种3D打印的分级回弹晶格单元的结构示意图。
图5为本发明实施例提供的一种应用3D打印二级回弹结构的鞋底的结构示意图。
图6为图5的侧视图。
图7为本发明实施例的一种3D打印的分级回弹结构的压缩试验测试力随位移变化曲线示意图。
图8为传统鞋底泡沫材料的压缩试验测试力随位移变化曲线示意图。
图中1.面网格,2.环边,3.底网格,4.斜撑杆,5.竖杆,6.斜拉杆,7.弹性竖柱,8.上面杆,9.环边杆,10.底面杆,11.前掌,12.后掌。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步地详细描述。
如图1-4所示,一种3D打印的分级回弹结构包括面网格1、多个3D打印的分级回弹晶格单元、环边2、底网格3、斜撑杆4组合而成,分级回弹结构的形状可设计成圆柱体、立方体等空间立体形状。
所述分级回弹晶格单元由缓震部件和缓震回弹部组成。
所述缓震部件由3根竖杆5、3根斜拉杆6、12根斜撑杆4组成平面受力结构:3根竖杆5分布点呈三角形,竖杆5的直径范围1.5~5mm,高度范围5~18mm,竖杆5间的距离范围5~30mm;3根斜拉杆6一端分别与3根竖杆5上端连接,另一端在空间同一点交接,交接点高度低于竖杆5高度,斜拉杆6的直径范围1.5~5mm,与竖杆5的夹角范围15~80°。
所述缓震回弹部件为单根弹性竖柱结构,弹性竖柱7下端连接在3根斜拉杆6的交接点处,弹性竖柱7的直径范围1.5~5mm,高度范围3~15mm。
每2个所述分级回弹晶格单元共用2根竖杆5。
所述面网格1由多根上面杆8连接而成,每根上面杆8两端分别连接2根弹性竖柱7的上端点,形成网格结构,上面杆8的直径范围1.5~5mm。
所述环边2由多根环边杆9连接而成,每根环边杆9两端分别连接结构最外沿的弹性竖柱7的下端点,形成环状结构,环边杆9的直径范围1.5~5mm。
所述底网格3由多根底面杆10连接而成,每根底面杆10两端分别连接2根竖杆5的下端点,形成网格结构,底面杆10的直径范围1.5~5mm。
所述竖杆5与相连的任意杆件之间均设有斜撑杆4,弹性竖柱7与相连的任意杆件之间均设有斜撑杆4,形成三角稳定结构,斜撑杆4直径范围1.5~5mm。
所述3D打印的原材料为尼龙或TPU粉末。
所述3D打印采用SLS选择性激光烧结方法。
如图5和图6所示,应用上述一种3D打印的分级回弹结构的鞋底,所述鞋底的前掌11与后掌12的空腔内由3D打印的分级回弹结构填充。
本发明基于足底压力分布,将3D打印的分级回弹结构应用于鞋底,不仅能通过其两次缓震充分吸收运动产生的冲击能,而且能提供较强的回弹力,支持不同运动项目、不同运动特点的运动者完成技术动作,保护运动者免于运动损伤,另外还具备舒适透气、可定制化、轻量化等功能。
具体方法为:
利用计算机3D设计软件进行3D缓震结构样块或鞋底3D数字建模,将3D缓震结构样块或鞋底3D数字模型导入3D打印机即可打印。
3D缓震结构样块或鞋底3D打印利用SLS选择性激光烧结技术,打印原料采用TPU粉末(或尼龙粉末),利用激光器在计算机的操控下对粉末进行逐层扫描照射,实现TPU粉末的烧结粘合,层层堆积实现成型。
3D打印鞋底所采用的TPU粉末是百微米级粒径的粉末,其烧结成型的温度为160°,以上所述的TPU粉末的粒径和成型温度均是本发明可能采用的一种,3D打印鞋底所采用的TPU粉末的粒径和成型温度包含但不限于以上的可能。
用于鞋中底的3D打印分级回弹结构样块,由面网格、多个3D打印的分级回弹晶格单元、环边、底网格组合而成。分级回弹晶格单元由缓震部件和缓震回弹部件组成。缓震部件采用平面受力结构,可以实现结构的快速缓震功能;缓震回弹部件由单根弹性竖柱组成,利用弹性竖柱的高弹性能,实现结构的二级稳定缓震和回弹。
因此,结构样块在压缩变形时,缓震部件首先实现了“速缓“:利用柔软易压缩的结构性质迅速降低冲击力。缓震回弹部件随后实现了”慢沉“和“速弹”:利用较为刚弹的结构性质提供稳定的支撑性,和较强的回弹力。两种部件的组合使得结构样块充分满足既“缓”又“弹”的需求。
如图7和图8所示,根据本发明的一些示例性构造中,利用万能试验机测试台进行了对照测试。对3D打印分级回弹结构与同尺寸的传统泡沫结构做压缩试验,测试力随变形变化曲线示意图。结果显示3D打印分级回弹结构在1-9mm的变形中,更为柔软,缓震性能更优;9-11mm的变形中,更为刚弹,稳定性和回弹能力更优。
3D打印的分级回弹结构和传统泡沫结构压缩试验测试数据
结构类型 压缩9mm的测试力(N) 压缩11mm的测试力(N)
3D打印的分级回弹结构 498 1088
传统泡沫结构 522 649
具体实施中,可使用各种种类的3D打印(或增彩制造)技术。可使用的示例性3D打印技术包括但不限于:熔丝制造(FFF)、电子束自由成型制造(EBF)、直接金属激光烧结(DMLS)、电子束熔炼(EMB)、选择性激光熔化(SLM)、选择性热烧结(SHS)、选择性激光烧结(SLS)、石膏3D印刷(PP)、分层实体制造(LOM)、立体光刻(SLA)、数字光处理(DLP)以及本领域已知的各种其他种类的3D打印或增材制造技术。
打印材料可以由包括墨汁、树脂、丙烯酸、聚合物、热塑性材料、热固性材料、光固化材料或其组合的材料制成。按照实施方案,打印材料还可以由按照材料的沉积序列打印一个或更多个层而形成为任何期望的厚度,并且打印材料还可以包括填充物材料以将强化方面或美学方面赋予打印材料。因此,按照实施方案,打印材料可以是复合材料。
应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本事例中未明确的各组成部分均可用现有技术加以实现。

Claims (6)

  1. 一种3D打印的分级回弹结构,其特征在于:包括面网格、多个3D打印的分级回弹晶格单元、环边、底网格和斜撑杆;
    所述分级回弹晶格单元由缓震部件和缓震回弹部组成;所述缓震部件由n根竖杆、n根斜拉杆、4n根斜撑杆组成平面受力结构,n根竖杆竖直分布,分布点不在同一条直线上,其中n≥3;每根斜拉杆一端与对应的竖杆上端连接,另一端与其他斜拉杆在空间一点交接,交接点的高度低于竖杆高度;所述缓震回弹部件为单根弹性竖柱结构,弹性竖柱下端连接在斜拉杆的交接点处;每2个所述分级回弹晶格单元共用2根竖杆;
    所述面网格由多根上面杆连接而成,每根上面杆两端分别连接2根弹性竖柱的上端点,形成网格结构;
    所述环边由多根环边杆连接而成,每根环边杆两端分别连接结构最外沿的弹性竖柱的下端点,形成环状结构;
    所述底网格由多根底面杆连接而成,每根底面杆两端分别连接2根竖杆的下端点,形成网格结构;
    所述竖杆与相连的任意杆件之间均设有斜撑杆,所述弹性竖柱与相连的任意杆件之间均设有斜撑杆,形成三角稳定结构。
  2. 根据权利要求1所述一种3D打印的分级回弹结构,其特征在于:所述分级回弹结构的形状为圆柱体或立方体。
  3. 根据权利要求1所述一种3D打印的分级回弹结构,其特征在于:所述分级回弹晶格单元的材料为尼龙或TPU粉末。
  4. 根据权利要求1所述一种3D打印的分级回弹结构,其特征在于:所述3D打印采用SLS选择性激光烧结方法。
  5. 根据权利要求1所述一种3D打印的分级回弹结构,其特征在于:所述竖杆、斜拉杆、弹性竖柱、上面杆、环边杆、底面杆、斜撑杆的直径范围均为1.5~5mm;所述竖杆的高度范围5~18mm,竖杆间的距离范围5~30mm;所述弹性竖柱的高度范围3~15mm;所述斜拉杆与竖杆的夹角范围15~80°。
  6. 应用权利要求1、2、3、4或5所述一种3D打印的分级回弹结构的鞋底,其特征在于:所述鞋底的前掌与后掌的空腔内由3D打印的分级回弹结构填充。
PCT/CN2020/084494 2019-12-12 2020-04-13 一种3d打印的分级回弹结构以及应用该结构的鞋底 WO2021114534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911277473.5A CN110811058A (zh) 2019-12-12 2019-12-12 一种3d打印的分级回弹结构以及应用该结构的鞋底
CN201911277473.5 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021114534A1 true WO2021114534A1 (zh) 2021-06-17

Family

ID=69545177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084494 WO2021114534A1 (zh) 2019-12-12 2020-04-13 一种3d打印的分级回弹结构以及应用该结构的鞋底

Country Status (2)

Country Link
CN (1) CN110811058A (zh)
WO (1) WO2021114534A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11684104B2 (en) 2019-05-21 2023-06-27 Bauer Hockey Llc Helmets comprising additively-manufactured components
US11779821B2 (en) 2014-05-13 2023-10-10 Bauer Hockey Llc Sporting goods including microlattice structures

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110811058A (zh) * 2019-12-12 2020-02-21 南京阿米巴工程结构优化研究院有限公司 一种3d打印的分级回弹结构以及应用该结构的鞋底
CN112716089B (zh) * 2021-01-29 2024-01-30 南京阿米巴工程结构优化研究院有限公司 一种自适应晶格型3d打印头盔缓冲层及其制作方法
WO2023059310A1 (en) * 2021-10-04 2023-04-13 Hewlett-Packard Development Company, L.P. Lattice structures

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108477752A (zh) * 2018-06-04 2018-09-04 福建泉州匹克体育用品有限公司 3d打印缓震结构以及应用该结构的鞋底
CN108601421A (zh) * 2015-11-13 2018-09-28 耐克创新有限合伙公司 鞋类鞋底结构
CN108652126A (zh) * 2017-03-27 2018-10-16 阿迪达斯股份公司 具有扭曲的格子结构的鞋类中底及其制造方法
CN108697197A (zh) * 2016-02-16 2018-10-23 耐克创新有限合伙公司 鞋类鞋底结构
US20180368518A1 (en) * 2017-06-21 2018-12-27 Under Armour, Inc. Cushioning for a sole structure of performance footwear
CN109619761A (zh) * 2018-12-06 2019-04-16 福建泉州匹克体育用品有限公司 一种3d打印回弹晶格结构以及应用该结构的鞋底
CN109965449A (zh) * 2018-11-28 2019-07-05 福建泉州匹克体育用品有限公司 一种3d打印轻量化晶格结构以及应用该结构的鞋底
CN110811058A (zh) * 2019-12-12 2020-02-21 南京阿米巴工程结构优化研究院有限公司 一种3d打印的分级回弹结构以及应用该结构的鞋底

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108601421A (zh) * 2015-11-13 2018-09-28 耐克创新有限合伙公司 鞋类鞋底结构
CN108697197A (zh) * 2016-02-16 2018-10-23 耐克创新有限合伙公司 鞋类鞋底结构
CN108652126A (zh) * 2017-03-27 2018-10-16 阿迪达斯股份公司 具有扭曲的格子结构的鞋类中底及其制造方法
US20180368518A1 (en) * 2017-06-21 2018-12-27 Under Armour, Inc. Cushioning for a sole structure of performance footwear
CN108477752A (zh) * 2018-06-04 2018-09-04 福建泉州匹克体育用品有限公司 3d打印缓震结构以及应用该结构的鞋底
CN109965449A (zh) * 2018-11-28 2019-07-05 福建泉州匹克体育用品有限公司 一种3d打印轻量化晶格结构以及应用该结构的鞋底
CN109619761A (zh) * 2018-12-06 2019-04-16 福建泉州匹克体育用品有限公司 一种3d打印回弹晶格结构以及应用该结构的鞋底
CN110811058A (zh) * 2019-12-12 2020-02-21 南京阿米巴工程结构优化研究院有限公司 一种3d打印的分级回弹结构以及应用该结构的鞋底

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11779821B2 (en) 2014-05-13 2023-10-10 Bauer Hockey Llc Sporting goods including microlattice structures
US11794084B2 (en) 2014-05-13 2023-10-24 Bauer Hockey Llc Sporting goods including microlattice structures
US11844986B2 (en) 2014-05-13 2023-12-19 Bauer Hockey Llc Sporting goods including microlattice structures
US11684104B2 (en) 2019-05-21 2023-06-27 Bauer Hockey Llc Helmets comprising additively-manufactured components

Also Published As

Publication number Publication date
CN110811058A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2021114534A1 (zh) 一种3d打印的分级回弹结构以及应用该结构的鞋底
CN208783842U (zh) 一种鞋底内嵌3d打印模块的运动鞋
CN108477752A (zh) 3d打印缓震结构以及应用该结构的鞋底
TWI703939B (zh) 鞋用中底結構及其製造方法
CN109619761A (zh) 一种3d打印回弹晶格结构以及应用该结构的鞋底
US11992084B2 (en) Footwear midsole with 3-D printed mesh having an anisotropic structure and methods of making the same
US20220110408A1 (en) Footwear and footwear components having a mesh component
CN208301086U (zh) 一种3d打印负泊松比多孔运动鞋中底
US11786008B2 (en) Footwear with 3-D printed midsole
CN109965449A (zh) 一种3d打印轻量化晶格结构以及应用该结构的鞋底
CN105795595B (zh) 高回弹鞋垫及其制造方法
WO2017136813A1 (en) Objects having improved rebound characteristics
CN207285371U (zh) 3d打印鞋底
CN203482948U (zh) 一种真空减震橡胶鞋底
WO2018120357A1 (zh) 一种减震鞋底的制作工艺
CN108308789A (zh) 一种基于3d打印的个人定制脚踩部件及其制作方法
CN202112421U (zh) 仿生减震鞋垫和采用该仿生减震鞋垫制作的运动鞋
CN218551510U (zh) 透气缓震鞋及其鞋底
CN211021191U (zh) 一种3d打印的分级回弹结构以及应用该结构的鞋底
KR101402361B1 (ko) 다중 기능 신발 안창용 발포 성형체의 제조방법
CN208783843U (zh) 一种一体鞋身的3d打印跑鞋
CN212520981U (zh) 一种设有3d双密度打印模块的鞋底
CN210630720U (zh) 一种3d打印轻量化晶格结构以及应用该结构的鞋底
CN202135794U (zh) 仿生减震鞋垫和采用该仿生减震鞋垫制作的运动鞋
CN201019060Y (zh) 舒适型鞋垫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897905

Country of ref document: EP

Kind code of ref document: A1