WO2020057427A1 - 一种电机控制方法、装置及变频控制器 - Google Patents

一种电机控制方法、装置及变频控制器 Download PDF

Info

Publication number
WO2020057427A1
WO2020057427A1 PCT/CN2019/105541 CN2019105541W WO2020057427A1 WO 2020057427 A1 WO2020057427 A1 WO 2020057427A1 CN 2019105541 W CN2019105541 W CN 2019105541W WO 2020057427 A1 WO2020057427 A1 WO 2020057427A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
target
current component
torque
component
Prior art date
Application number
PCT/CN2019/105541
Other languages
English (en)
French (fr)
Inventor
蒋德凯
Original Assignee
杭州先途电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州先途电子有限公司 filed Critical 杭州先途电子有限公司
Priority to US17/253,572 priority Critical patent/US11404985B2/en
Priority to EP19862764.8A priority patent/EP3872981A4/en
Publication of WO2020057427A1 publication Critical patent/WO2020057427A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/05Torque loop, i.e. comparison of the motor torque with a torque reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/07Speed loop, i.e. comparison of the motor speed with a speed reference

Definitions

  • the present application relates to the technical field of motor control, and more particularly, to a method and device for controlling a motor, and a frequency conversion controller.
  • the present application provides a motor control method and device, and a frequency conversion controller to implement motor current limiting control.
  • a motor control method includes the following steps:
  • Motor control is performed according to the current component of the target current after the limit control.
  • a motor control device includes:
  • Torque limiting module is used to limit the commanded torque to obtain the target torque
  • a target current calculation module configured to calculate a target current according to the target torque
  • a judging module configured to judge whether the target current amplitude is greater than a current limit value
  • a current limit module configured to perform current limit control on a current component of the target current when the target current amplitude is greater than the current limit value
  • the motor control module is configured to perform motor control according to the current component of the target current after the limit control.
  • a variable frequency controller for controlling a motor is characterized by including the above-mentioned motor control device.
  • the embodiments of the present application provide a motor control method, a device, and a frequency conversion controller.
  • the target torque is obtained by limiting the command torque, and then calculating the target current according to the target torque, and then limiting the target current. After the judgment, the limit control is performed, and finally the motor control is performed according to the current component after the limit control to achieve the motor current limit control.
  • FIG. 1 is a flowchart of a motor control method according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a motor frequency control loop according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a motor control device according to an embodiment of the present application.
  • An embodiment of the present application provides a method for controlling a motor, as shown in FIG. 1, including the following steps:
  • S12 Calculate a target current Ig according to the target torque T * ; wherein the target current Ig represents a driving current of the motor;
  • S13 determine whether the target current amplitude is greater than the current limit value Imax; wherein the current limit value Imax is set by the system, such as a host computer, and when the target current is greater than this value, frequency limiting or frequency reduction processing is required, After limiting or reducing the frequency of the motor, the target current will be reduced to achieve overcurrent protection;
  • S15 Perform motor control according to the current component of the target current after the limit control.
  • the command torque Ti is a system, such as the torque generated by the host computer according to the preset value and the motor's feedback value, in order to make the parameters of the drive motor reach the preset required output torque; among them, the preset value can be the target speed, The feedback value of the motor can be the feedback value of the motor speed.
  • the command torque Ti is set by the system, such as a host computer.
  • the system such as a host computer.
  • a stable motor drive system or controller must not only take into account the actual parameters of the motor to meet the preset requirements, but also implement the current limiting protection function to avoid frequent over-current shutdown.
  • the motor control method provided in the embodiment of the present application realizes frequency-limiting and frequency-reduction protection when the current reaches the current-limiting value; during normal operation, the setting of the current-limiting protection function will not affect the parameters of the drive motor to reach preset requirements This prevents frequent overcurrent protection.
  • this embodiment of the present application also provides another method for controlling a motor. As shown in FIG. 2, before step S11: performing limit control on the command torque Ti to obtain the target torque T * , Steps S111 and S112 are also included;
  • S111 Obtain the target rotation speed ⁇ * and the feedback rotation speed ⁇ f ; among them, the target rotation speed ⁇ * is set by the system, such as a host computer; the feedback rotation speed ⁇ f is the actual rotation speed of the motor;
  • step S12: calculating the target current according to the target torque T * includes the steps:
  • S122 Calculate the total amount Is of the target current according to the current component of the target current Ig;
  • step S13 determines whether the target current amplitude is greater than the current limit value Imax, including determining whether the total amplitude of the target current is greater than the current limit value Imax.
  • an embodiment of the present application provides a schematic diagram of a motor frequency control loop, as shown in FIG. 3. This embodiment relies on the fast response of the current loop to limit the maximum value of the motor current, thereby achieving frequency limiting or frequency reduction of the motor speed, thereby reducing the motor current and achieving current limiting protection.
  • the step S121 specifically capturing target torque T * d-axis current component of current Id * and the q-axis current component Iq * according to the target, i.e., the target current component comprising a d-axis current Id * and the q-current component Shaft current component Iq * .
  • the distribution principle may be performed according to a preset angle between the target current and the q / d axis, or may be distributed according to other methods, which is not limited in this application.
  • step S122 the amplitude
  • Step S13 determines whether the target current amplitude is greater than the current limit value Imax, including determining whether the total target amplitude is greater than the current limit value Imax, that is, whether
  • performing motor control on the current component of the target current to perform current limit control on the q and d-axis current components includes the following steps:
  • Iq ' * and Id' * represent the q-axis and d-axis current components after the current limit control.
  • the current component represents the magnitude of the current
  • the q / d-axis current component is the magnitude of the q / d-axis current.
  • the q-axis current demand is preferably satisfied, thereby ensuring the torque of the driving motor as much as possible.
  • the d-axis current demand can also be satisfied first, thereby ensuring the magnetic force of the motor.
  • is still the root of the sum of the squares of the d-axis current component Id * and q-axis current component Iq * , that is,
  • step S14 performing current limit control on the current component of the target current includes the following steps:
  • Iq ' * and Id' * represent the q-axis and d-axis current components after the current limit control.
  • step S12: calculating the target current according to the target torque includes obtaining the total amount Is of the target current according to the target torque and Component angle ⁇ ; where component angle ⁇ is the angle between the total target current Is and the d-axis;
  • Step S13 determining whether the target current amplitude is greater than the current limit value includes determining whether the total amount Is of the target current is greater than the current limit value Imax, that is, determining the magnitude of
  • the performing current limit control on the current component of the target current includes:
  • the embodiment of the present application further provides a motor control method.
  • the feedback torque Tlimit is Motor pole pair number P, back electromotive force constant Ke and q-axis current component Iq ' * product of 1.5 times, that is,
  • Tlimit 1.5 * P * Ke * Iq ' * .
  • step S11 performs limit control on the command torque Ti to obtain the target torque T *. It can be compared with the feedback torque Tlimit and the preset torque Tmax, whichever is smaller.
  • the value is the maximum amplitude of the command torque Ti, and the command torque Ti after the limit control is the target torque T * , as shown in FIG. Among them, Tmax is set in advance by the system, such as the host computer, according to the driving parameters of the motor or working condition information or protection information.
  • step S112: calculating the commanded torque Ti based on the target rotation speed ⁇ * and the feedback rotation speed ⁇ f includes:
  • Step S15 Performing motor control according to the current component of the target current after the limit control includes: performing current loop control according to the current component of the target current after the limit control.
  • the target current may include information such as amplitude, q / d-axis current, etc. Therefore, specifically, the motor may perform current loop control according to the q / d-axis current component of the target current after the limit control.
  • the control method performs a frequency reduction and reduction process according to the motor current, thereby achieving overcurrent protection.
  • the method generally includes the following steps:
  • the motor control method provided in the embodiment of the present application has the following advantages:
  • the present application also provides a motor control device, as shown in FIG. 4, including: a torque limiter module 11, a target current calculation module 12, a judgment module 13, and a current. Limiting module 14 and motor control module 15.
  • the torque limiting module 11 is used for limiting the command torque Ti to obtain the target torque T * ;
  • a target current calculation module 12 for calculating a target current Ig according to the target torque T * ;
  • a judging module 13 for judging whether the amplitude of the target current Ig is greater than the current limit amplitude Imax;
  • a current limit module 14 configured to perform current limit control on a current component of a target current when the target current amplitude is greater than the current limit value
  • the motor control module 15 is configured to perform motor control according to the current component of the target current after the limit control.
  • the commanded torque Ti is calculated by using the target rotation speed ⁇ * and the feedback rotation speed ⁇ f .
  • the motor control device further includes:
  • a torque acquisition module for acquiring a target rotation speed ⁇ * and a feedback rotation speed ⁇ f ;
  • a commanded torque calculation module is configured to calculate a commanded torque Ti based on the target speed ⁇ * and the feedback speed ⁇ f . For example, first calculate the difference ⁇ between the target rotation speed ⁇ * and the feedback rotation speed ⁇ f , and then use the speed loop PI algorithm to calculate the command torque Ti according to the difference ⁇ and the target rotation speed ⁇ * ;
  • the current component of the target current includes the d-axis current component Id * and the q-axis current component Iq * ; the total amount of the target current Is is the root of the sum of the squares of the d-axis current component Id * and the q-axis current component Iq * , that is,
  • the above determination module 13 is specifically configured to determine whether the total amount Is of the target current is greater than the current limit value Imax; the current limit module 14 includes:
  • q-axis current component judgment unit determines whether the q-axis current component Iq * is greater than or equal to the current limit value Imax;
  • a first current component calculation unit means for, when the q-axis current component is greater than or equal to the current limits, so that the q-axis current component Iq clipped control '* equal to the current limitation Imax, d-axis current
  • the square root of the difference between the amplitude Imax and the q-axis current component Iq ' * that is,
  • the current limiting module 14 may also include:
  • d-axis current component judgment unit used to determine whether the d-axis current component Id * is greater than or equal to the current limit value Imax;
  • the target current calculation module 12 is configured to obtain the total Is and the component angle ⁇ of the target current according to the target torque;
  • a judging module 13 for judging whether the total amount Is of the target current is greater than a current limit value
  • the current limiting module 14 includes:
  • the above motor control device may further include:
  • Feedback torque calculation module used to calculate the feedback torque Tlimit after entering the current limit control.
  • the torque limiting module 11 is specifically used to compare the feedback torque Tlimit and the preset torque Tmax, and take the smaller of the two as the maximum amplitude of the command torque; the command torque Ti after the limit control Is the target torque T * , as shown in FIG. Among them, Tmax is set in advance by the system, such as the host computer, according to the driving parameters of the motor or working condition information or protection information.
  • the motor control unit 15 is configured to perform current loop control according to the current component of the target current after the limit control.
  • the target current includes information such as amplitude and q / d-axis current. Therefore, the motor can be controlled in a current loop according to the q / d-axis current component of the target current after the limit control.
  • the above-mentioned motor control device relies on the fast response of the current loop to limit the maximum value of the motor drive current, thereby achieving frequency limiting or frequency reduction of the motor speed.
  • the embodiments of the present application further provide a variable frequency controller
  • a variable frequency controller for controlling a motor includes the motor control device provided in the foregoing embodiment.
  • the motor control method, device, and frequency conversion controller provided in the embodiments of the present application can be widely applied to motor frequency conversion control of air conditioners, refrigerators, washing machines, and other inverter controllers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种电机控制方法、装置及变频控制器,该方法包括对指令转矩进行限幅控制,得到目标转矩(S11);根据所述目标转矩计算目标电流(S12);判断所述目标电流幅值是否大于电流限幅值(S13);若所述目标电流幅值大于所述电流限幅值,则对所述目标电流的电流分量进行电流限幅控制(S14);根据所述限幅控制后的目标电流的电流分量进行电机控制(S15)。通过对转矩和电流的限幅,实现电机的限电流控制。

Description

一种电机控制方法、装置及变频控制器
本申请要求于2018年09月20日提交中国专利局、申请号为201811102178.1、发明名称为“一种电机控制方法、装置及变频控制器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机控制技术领域,更具体的说,涉及一种电机控制方法、装置及变频控制器。
背景技术
近年来,随着节能要求的不断提高,对电机进行变频调速控制的需求越来越大。对电机进行变频控制时,普遍采用FOC(field-oriented control:磁场定向控制)控制算法;为了保持系统稳定性及可靠性,根据电流进行限流控制是一个重要的保护功能。
发明内容
有鉴于此,本申请提供了一种电机控制方法、装置及变频控制器,实现电机限流控制。
为解决上述技术问题,本申请采用了如下技术方案:
一种电机控制方法,包括以下步骤:
对指令转矩进行限幅控制,得到目标转矩;
根据所述目标转矩计算目标电流;
判断所述目标电流幅值是否大于电流限幅值;
若所述目标电流幅值大于所述电流限幅值,则对所述目标电流的电流分量进行电流限幅控制;
根据所述限幅控制后的目标电流的电流分量进行电机控制。
一种电机控制装置,包括:
转矩限幅模块,用于对指令转矩进行限幅控制,得到目标转矩;
目标电流计算模块,用于根据所述目标转矩计算目标电流;
判断模块,用于判断所述目标电流幅值是否大于电流限幅值;
电流限幅模块,用于当所述目标电流幅值大于所述电流限幅值,对所述目标电流的电流分量进行电流限幅控制;
电机控制模块,用于根据所述限幅控制后的目标电流的电流分量进行电机控制。
一种变频控制器,用于控制电机,其特征在于,包括上述的电机控制装置。
本申请实施例提供了一种电机控制方法、装置及变频控制器,先通过对指令转矩进行限幅后,得到目标转矩,后根据目标转矩计算目标电流,再对目标电流进行限幅判断后、进行限幅控制,最后根据限幅控制后的电流分量进行电机控制,实现电机限流控制。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种电机控制方法的流程图;
图2为本申请实施例提供的另一种电机控制方法的流程图;
图3为本申请实施例提供的电机频率控制环路示意图;
图4为本申请实施例提供的一种电机控制装置的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例提供了一种电机控制方法,如图1所示,包括以下步骤:
S11:对指令转矩Ti进行限幅控制,得到目标转矩T *
S12:根据所述目标转矩T *计算目标电流Ig;其中,目标电流Ig表征电机的驱动电流;
S13:判断所述目标电流幅值是否大于电流限幅值Imax;其中,电流限流值Imax为系统、如上位机设定,当目标电流大于该值时,需要进行限频或降频处理,对电机进行限频或降频处理后,目标电流将会降低,从而实现过流保护;
S14:若所述目标电流幅值大于所述电流限幅值,则对所述目标电流的电流分量进行电流限幅控制;其中,电流分量可以包括q轴电流分量和d轴电流分量;
S15:根据所述限幅控制后的目标电流的电流分量进行电机控制。
其中,指令转矩Ti为系统,如上位机根据预设值和电机的反馈值产生的、为使驱动电机的参数达到预设要求输出的转矩;其中,预设值可以为转速目标值、电机的反馈值可以为电机转速的反馈值。或者,在恒转矩控制模式下,指令转矩Ti为系统、如上位机设定。但是,在某些情况下,如负载增大或输入电压降低,此时若盲目为了满足驱动电机的参数达到预设要求,将出现过流现象。因此,一个稳定的电机驱动系统或者控制器不仅要兼顾电机实际参数满足预设要求,也要同时实现限电流保护功能,避免经常出现过流停机现象。而本申请实施例提供的一种电机控制方法,在电流达到限电流值时,实现限降频保护;在正常工作时,限流保护功能的设置不会影响驱动电机的参数达到预设要求,又防止了频繁执行过流保护。
在上述实施例的基础上,本申请实施例还提供了另一种电机控制方法,如图2所示,在步骤S11:对指令转矩Ti进行限幅控制,得到目标转矩T *之前,还包括步骤S111和S112;
S111:获取目标转速ω *和反馈转速ω f;其中,目标转速ω *由系统、如上位机设定;反馈转速ω f为电机实际运行的转速;
S112:根据目标转速ω *和反馈转速ω f计算指令转矩Ti;
另一个实施例中,步骤S12:根据目标转矩T *计算目标电流包括步骤:
S121:根据所述目标转矩T *获取所述目标电流Ig的电流分量;
S122:根据所述目标电流Ig的电流分量计算目标电流的总量Is;
本实施例中,步骤S13判断所述目标电流幅值是否大于电流限幅值Imax,包括判断所述目标电流的总量幅值是否大于电流限幅值Imax。为进一步解释控制原理,本申请实施例提供了一种电机频率控制环路示意图,如图3所示。本实施例依靠电流环的快速响应,限制电机电流的最大值,从而达到对电机转速的限频或降频,进而降低电机电流,实现限流保护。
在上述实施例中,步骤S121具体为根据目标转矩T *获取目标电流的d轴电流分量Id *和q轴电流分量Iq *,即,目标电流的电流分量包括d轴电流分量Id *和q轴电流分量Iq *。分配原则可以根据预设的目标电流与q/d轴的夹角来进行,也可以根据其他方式进行分配,本申请对此不作限定。
步骤S122根据目标电流的电流分量计算目标电流的总量Is的幅值|Is|中,
Figure PCTCN2019105541-appb-000001
步骤S13判断所述目标电流幅值是否大于电流限幅值Imax,包括判断所述目标电流的总量幅值是否大于电流限幅值Imax,即判断|Is|是否大于Imax。本实施例中,对目标电流的电流分量进行电机控制为对q、d轴电流分量进行电流限幅控制,具体包括以下步骤:
判断q轴电流分量Iq *是否大于或等于电流限幅值Imax,如果是,则q轴电流分量Iq’ *等于Imax电流限幅值、d轴电流分量Id’ *为0,即,
Iq’ *=Imax,Id’ *=0;
如果q轴电流分量Iq *小于电流限幅值Imax,则q轴电流分量Iq’ *保持不变,即Iq’ *=Iq *,而d轴电流分量Id’ *为电流限幅值Imax与q轴电流分量Iq’ *的平方差的开方,即,
Figure PCTCN2019105541-appb-000002
其中,Iq’ *和Id’ *表示电流限幅控制后的q轴和d轴电流分量。
需要说明的是,本申请中,电流分量表示电流的幅值,q/d轴电流分量为q/d轴电流的幅值。
本实施例中,优先满足q轴电流需求,从而尽量保证了驱动电机的力矩。而在另一个实施例中,也可以优先满足d轴电流需求,从而保证电机的磁力大小。本实施例中,目标电流的总量幅值|Is|仍为所述d轴电流分量 Id *和q轴电流分量Iq *的平方和的开方,即,
Figure PCTCN2019105541-appb-000003
其中,步骤S14中,对目标电流的电流分量进行电流限幅控制包括以下步骤:
判断d轴电流分量Id *是否大于或等于所述电流限幅值Imax,如果是,则令电流限幅控制后的d轴电流分量Id’ *等于电流限幅值Imax、q轴电流分量Iq’ *为0,即,
Id’ *=Imax,Iq’ *=0;
如果d轴电流分量Id *小于电流限幅值Imax,则d轴电流分量Id’ *不变,即Id’ *=Id *,q轴电流分量Iq’ *为电流限幅值Imax与d轴电流分量Id’ *的平方差的开方,即,
Figure PCTCN2019105541-appb-000004
其中,Iq’ *和Id’ *表示电流限幅控制后的q轴和d轴电流分量。
除上述提供的实施例外,本申请还提供了一种实施例,该实施例中,步骤S12:根据目标转矩计算目标电流包括,根据所述目标转矩获取所述目标电流的总量Is及分量角度θ;其中分量角度θ为目标电流的总量Is与d轴的夹角;
步骤S13判断所述目标电流幅值是否大于电流限幅值包括判断所述目标电流的总量Is是否大于电流限幅值Imax,即,判断|Is|与Imax的大小;
所述对所述目标电流的电流分量进行电流限幅控制包括:
令电流限幅控制后的目标电流的q轴电流分量Iq' *=Imax*sinθ;
令电流限幅控制后的目标电流的d轴电流分量Id' *=Imax*cosθ。
进一步的,本申请实施例还提供了一种电机控制方法,当进入电流限幅控制、对目标电流Ig进行q/d轴电流限幅控制后,计算反馈转矩Tlimit,其中反馈转矩Tlimit为电机极对数P、反电动势常数Ke与q轴电流分量Iq’ *乘积的1.5倍,即,
Tlimit=1.5*P*Ke*Iq' *
在本实施例中,步骤S11对所述指令转矩Ti进行限幅控制,得到目标转矩T *可以为,对反馈转矩Tlimit和预设转矩Tmax进行比较,取两者中 的较小值作为指令转矩Ti的最大幅值,被限幅控制后的指令转矩Ti为目标转矩T *,如图3所示。其中,Tmax为系统、如上位机根据电机的驱动参数或工况信息或保护信息等信息预先设定。
在另一个实施例中,步骤S112:根据目标转速ω *和反馈转速ω f计算指令转矩Ti包括,
计算目标转速ω *和反馈转速ω f的差值△ω,再根据差值△ω和目标转速ω *,利用速度环PI算法计算指令转矩Ti;
步骤S15:根据限幅控制后的目标电流的电流分量进行电机控制包括:根据限幅控制后的目标电流的电流分量,进行电流环控制。其中,目标电流可以包括幅值、q/d轴电流等信息,因此具体可以为,根据限幅控制后的目标电流的q/d轴电流分量对电机进行电流环控制。
为了进一步阐述本申请技术方案的优势,对已有的一种电机控制方法进行描述,该控制方法根据电机电流进行限降频处理,从而实现过流保护。该方法一般包括以下步骤:
1)当电机实际运行电流Irun小于Ihold时,不进入保护,电机自由运行;
2)当电机实际运行电流Irun大于等于Ihold,小于Idown时,进入限频保护,电机以当前转速运行;
3)当电机实际运行电流Irun大于等于Idown,小于Istop时,进入降频保护,电机以加速度acc进行降频运行,直到Irun小于Idown;
4)当电机实际运行电流Irun大于Istop时,则停机报错。
其中,Ihold<Idown<Istop。
该方法由于响应速度较慢,在负载快速变化情况下,无法及时响应,容易出现过流停机保护。同时,需做大量实验才能决定Ihold,Idown,Istop,acc,否则容易引起电机运转频率的震荡,导致转速无法稳定,降低了控制的可靠性。
相较于上述已有的一种电机控制方法,本申请实施例提供的一种电机控制方法具有以下优点:
1)快速的对电机电流的最大值进行限制,使电机快速的限频或降频;
2)在限频或降频时不会产生转速震荡现象,使转速稳定到某一较低转 速;
3)避免了限降频时的噪音的产生。
基于上述本申请实施例提供的电机控制方法,本申请还提供了一种电机控制装置,具体如图4所示,包括:转矩限幅模块11、目标电流计算模块12、判断模块13、电流限幅模块14和电机控制模块15。
转矩限幅模块11,用于对指令转矩Ti进行限幅控制,得到目标转矩T *
目标电流计算模块12,用于根据目标转矩T *计算目标电流Ig;
判断模块13,用于判断目标电流Ig幅值是否大于电流限幅值Imax;
电流限幅模块14,用于当目标电流幅值大于所述电流限幅值,对目标电流的电流分量进行电流限幅控制;
电机控制模块15,用于根据限幅控制后的目标电流的电流分量进行电机控制。
在一个实施例中,指令转矩Ti通过目标转速ω *和反馈转速ω f计算得到,其中该电机控制装置还包括:
转矩获取模块,用于获取目标转速ω *和反馈转速ω f
指令转矩计算模块,用于根据目标转速ω *和反馈转速ω f计算指令转矩Ti。比如首先计算目标转速ω *和反馈转速ω f的差值△ω,再根据差值△ω和目标转速ω *,利用速度环PI算法计算指令转矩Ti;
目标电流的电流分量包括d轴电流分量Id *和q轴电流分量Iq *;目标电流的总量Is为d轴电流分量Id *和q轴电流分量Iq *的平方和的开方,即,
Figure PCTCN2019105541-appb-000005
上述判断模块13具体用于判断目标电流的总量Is是否大于电流限幅值Imax;电流限幅模块14包括:
q轴电流分量判断单元:判断q轴电流分量Iq *是否大于或等于电流限幅值Imax;
第一电流分量计算单元:用于当所述q轴电流分量大于或等于所述电流限幅值时,令限幅控制后的q轴电流分量Iq’ *等于电流限幅值Imax、d轴电流分量Id’ *为0;如果q轴电流分量Iq *小于电流限幅值Imax,则q轴 电流分量Iq’ *不变,即Iq’ *=Iq *,d轴电流分量Id’ *为电流限幅值Imax与q轴电流分量Iq’ *的平方差的开方,即,
Figure PCTCN2019105541-appb-000006
上述电流限幅模块14也可以包括:
d轴电流分量判断单元:用于判断d轴电流分量Id *是否大于或等于电流限幅值Imax;
第二电流分量计算单元用于当d轴电流分量Id *是否大于或等于电流限幅值Imax,令d轴电流分量Id’ *等于电流限幅值Imax、q轴电流分量Iq’ *为0;如果d轴电流分量Id *小于所述电流限幅值Imax,则d轴电流分量不变,即Id’ *=Id *,q轴电流分量为所述电流限幅值与所述d轴电流分量的平方差的开方,即,
Figure PCTCN2019105541-appb-000007
在另一个实施例中,目标电流计算模块12,用于根据所述目标转矩获取所述目标电流的总量Is及分量角度θ;
判断模块13,用于判断上述目标电流的总量Is是否大于电流限幅值;
电流限幅模块14包括:
q轴电流计算单元,用于当目标电流的总量大于电流限幅值时,使得所述目标电流的q轴电流分量Iq' *=Imax*sinθ;
d轴电流计算单元,用于当目标电流的总量大于电流限幅值时,计算所述目标电流的d轴电流风量Id' *=Imax*cosθ。
在上述电机控制装置中,还可以包括:
反馈转矩计算模块:用于在进入电流限幅控制后,计算反馈转矩Tlimit,反馈转矩Tlimit为电机极对数P、反电动势常数Ke与q轴电流分量Iq’ *乘积的1.5倍,即Tlimit=1.5*P*Ke*Iq' *
转矩限幅模块11具体用于对反馈转矩Tlimit和预设转矩Tmax进行比较,取两者中的较小值作为指令转矩的最大幅值;被限幅控制后的指令转矩Ti为目标转矩T *,如图3所示。其中,Tmax为系统、如上位机根据电机的驱动参数或工况信息或保护信息等信息预先设定。
电机控制单元15:用于根据所述限幅控制后的目标电流的电流分量,进行电流环控制。其中,目标电流包括幅值、q/d轴电流等信息,因此,具体可以为根据限幅控制后的目标电流的q/d轴电流分量对电机进行电流环 控制。
上述电机控制装置依靠电流环的快速响应,限制电机驱动电流的最大值,从而达到对电机转速的限频或降频。
基于上述电机控制方法和装置,本申请实施例还提供了一种变频控制器,
一种变频控制器,用于控制电机,包括上述实施例提供的电机控制装置。
本申请实施例提供的电机控制方法、装置及变频控制器能够广泛应用在空调、冰箱、洗衣机等的电机变频控制及其它逆变控制器的控制。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种电机控制方法,其特征在于,包括以下步骤:
    对指令转矩进行限幅控制,得到目标转矩;
    根据所述目标转矩计算目标电流;
    判断所述目标电流幅值是否大于电流限幅值;
    若所述目标电流幅值大于所述电流限幅值,则对所述目标电流的电流分量进行电流限幅控制;
    根据所述限幅控制后的目标电流的电流分量进行电机控制。
  2. 根据权利要求1所述的电机控制方法,其特征在于,在所述对指令转矩进行限幅控制,得到目标转矩前,还包括步骤:
    获取目标转速和反馈转速;
    根据所述目标转速和所述反馈转速计算所述指令转矩。
  3. 根据权利要求1所述的电机控制方法,其特征在于,所述根据所述目标转矩计算目标电流包括:
    根据所述目标转矩计算所述目标电流的电流分量;
    根据所述目标电流的电流分量计算目标电流的总量;
    所述判断所述目标电流幅值是否大于电流限幅值包括判断所述目标电流的总量幅值是否大于电流限幅值。
  4. 根据权利要求3所述的一种电机控制方法,其特征在于,所述电流分量包括d轴电流分量和q轴电流分量;
    所述目标电流的总量幅值为所述d轴电流分量和q轴电流分量的平方和的开方;
    所述对所述目标电流的电流分量进行电流限幅控制包括:
    判断所述q轴电流分量是否大于或等于所述电流限幅值,如果是,则令q轴电流分量等于所述电流限幅值、所述d轴电流分量为0;
    如果所述q轴电流分量小于所述电流限幅值,则q轴电流分量不变,d轴电流分量为所述电流限幅值与所述q轴电流分量的平方差的开方;
    或者,所述对所述目标电流的电流分量进行电流限幅控制包括:
    判断所述d轴电流分量是否大于或等于所述电流限幅值,如果是,则 令d轴电流分量等于所述电流限幅值、所述q轴电流分量为0;
    如果所述d轴电流分量小于所述电流限幅值,则d轴电流分量不变,q轴电流分量为所述电流限幅值与所述d轴电流分量的平方差的开方。
  5. 根据权利要求1所述的电机控制方法,其特征在于,所述根据目标转矩计算目标电流包括:
    根据所述目标转矩计算所述目标电流的总量Is及分量角度θ;
    所述判断所述目标电流幅值是否大于电流限幅值Imax包括判断所述目标电流的总量幅值是否大于电流限幅值;
    所述对所述目标电流的电流分量进行电流限幅控制包括:
    令所述电流限幅控制后的目标电流的q轴电流分量Iq' *=Imax*sinθ;
    令所述电流限幅控制后的目标电流的d轴电流分量Id' *=Imax*cosθ。
  6. 根据权利要求4或5所述的一种电机控制方法,其特征在于,进入电流限幅控制后,计算反馈转矩,所述反馈转矩为电机极对数、反电动势常数与q轴电流分量乘积的1.5倍。
  7. 根据权利要求6所述的一种电机控制方法,其特征在于,所述对所述指令转矩进行限幅控制,得到目标转矩包括:对所述反馈转矩和预设转矩进行比较,取两者中的较小值作为所述指令转矩的最大幅值,被限幅后的指令转矩为所述目标转矩。
  8. 根据权利要求7所述的一种电机控制方法,其特征在于,所述根据所述目标转速和反馈转速计算指令转矩包括:
    计算所述目标转速和所述反馈转速的差值,根据所述差值和所述目标转速,利用速度环PI算法计算所述指令转矩;
    所述根据限幅控制后的目标电流的电流分量进行电机控制包括:根据所述限幅控制后的目标电流的电流分量,进行电流环控制。
  9. 一种电机控制装置,其特征在于,包括:
    转矩限幅模块,用于对指令转矩进行限幅控制,得到目标转矩;
    目标电流计算模块,用于根据所述目标转矩计算目标电流;
    判断模块,用于判断所述目标电流幅值是否大于电流限幅值;
    电流限幅模块,用于当所述目标电流幅值大于所述电流限幅值,对所述目标电流的电流分量进行电流限幅控制;
    电机控制模块,用于根据所述限幅控制后的目标电流的电流分量进行电机控制。
  10. 根据权利要求9所述的一种电机控制装置,其特征在于,还包括:
    转矩获取模块,用于获取目标转速和反馈转速;
    指令转矩计算模块,用于根据所述目标转速和所述反馈转速计算所述指令转矩。
  11. 根据权利要求10所述的一种电机控制装置,其特征在于,所述判断模块,用于判断所述目标电流的总量幅值是否大于所述电流限幅值;
    所述目标电流的电流分量包括d轴电流分量和q轴电流分量;所述目标电流的总量幅值为所述d轴电流分量和q轴电流分量的平方和的开方;
    所述电流限幅模块包括:
    q轴电流分量判断单元,用于判断所述q轴电流分量是否大于或等于所述电流限幅值;
    第一电流分量计算单元,用于当所述q轴电流分量大于或等于所述电流限幅值时,令q轴电流分量等于所述电流限幅值、所述d轴电流分量为0;当所述q轴电流分量小于所述电流限幅值,令q轴电流分量不变,d轴电流分量为所述电流限幅值与所述q轴电流分量的平方差的开方;
    或者,
    所述电流限幅模块包括:
    d轴电流分量判断单元,用于判断所述d轴电流分量是否大于或等于所述电流限幅值;
    第二电流分量计算单元,用于当所述d轴电流分量大于或等于所述电流限幅值时,令d轴电流分量等于所述电流限幅值、所述q轴电流分量为0;当所述d轴电流分量小于所述电流限幅值时,则令d轴电流分量不变,q轴电流分量为所述电流限幅值与所述d轴电流分量的平方差的开方。
  12. 根据权利要求10所述的一种电机控制装置,其特征在于,
    所述目标电流计算模块,用于根据所述目标转矩获取所述目标电流的总量Is及分量角度θ;
    所述判断模块,用于判断所述目标电流的总量幅值是否大于电流限幅值;
    所述电流限幅模块包括:
    q轴电流计算单元,用于当所述目标电流的总量幅值大于电流限幅值时,使得所述目标电流的q轴电流分量Iq' *=Imax*sinθ;
    d轴电流计算单元,用于当所述目标电流的总量幅值大于电流限幅值时,计算所述目标电流的d轴电流风量Id' *=Imax*cosθ。
  13. 根据权利要求10-12任一项所述电机控制装置,其特征在于,还包括:
    反馈转矩计算模块:用于在进入电流限幅控制后,计算反馈转矩,所述反馈转矩为电机极对数、反电动势常数与q轴电流分量乘积的1.5倍;
    所述转矩限幅模块,用于对所述反馈转矩和预设转矩进行比较,取两者中的较小值作为所述指令转矩的最大幅值;
    所述指令转矩计算模块,还用于计算所述目标转速和所述反馈转速的差值,根据所述差值和所述目标转速,利用速度环PI算法计算所述指令转矩;
    所述电机控制模块,用于根据所述限幅控制的目标电流的电流分量,进行电流环控制。
  14. 一种变频控制器,用于控制电机,其特征在于,包括如权利要求9-13任一项所述的电机控制装置。
PCT/CN2019/105541 2018-09-20 2019-09-12 一种电机控制方法、装置及变频控制器 WO2020057427A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/253,572 US11404985B2 (en) 2018-09-20 2019-09-12 Motor control method and device, and frequency conversion controller
EP19862764.8A EP3872981A4 (en) 2018-09-20 2019-09-12 MOTOR CONTROL METHOD AND DEVICE AND CONTROL DEVICE FOR FREQUENCY CONVERSION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811102178.1 2018-09-20
CN201811102178.1A CN110932633B (zh) 2018-09-20 2018-09-20 一种电机控制方法、装置及变频控制器

Publications (1)

Publication Number Publication Date
WO2020057427A1 true WO2020057427A1 (zh) 2020-03-26

Family

ID=69855405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105541 WO2020057427A1 (zh) 2018-09-20 2019-09-12 一种电机控制方法、装置及变频控制器

Country Status (4)

Country Link
US (1) US11404985B2 (zh)
EP (1) EP3872981A4 (zh)
CN (1) CN110932633B (zh)
WO (1) WO2020057427A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300534A (zh) * 2021-05-18 2021-08-24 杨立 一种具有变频输出的智能节能电机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922709B (zh) * 2020-07-10 2024-07-16 丁金龙 一种开关磁阻电机控制方法及装置
CN114903360B (zh) * 2021-02-08 2024-02-20 宁波方太厨具有限公司 一种料理机抗负载扰动方法及料理机
CN113606737B (zh) * 2021-08-17 2022-10-25 宁波奥克斯电气股份有限公司 一种风机转速控制方法、装置及空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1954486A (zh) * 2004-05-14 2007-04-25 三菱电机株式会社 同步机控制装置
US20100052581A1 (en) * 2008-08-27 2010-03-04 Shiho Izumi Motor controller
CN102163943A (zh) * 2010-02-23 2011-08-24 山洋电气株式会社 电动机的控制方法和装置
CN104242767A (zh) * 2014-09-10 2014-12-24 深圳市微秒控制技术有限公司 伺服电机动力线断线检测方法
CN106160589A (zh) * 2015-05-11 2016-11-23 美蓓亚株式会社 马达驱动控制装置及其控制方法、电子设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015148A1 (en) * 1991-02-22 1992-09-03 U.S. Windpower, Inc. Four quadrant motor controller
JP3818086B2 (ja) * 2001-06-01 2006-09-06 株式会社日立製作所 同期モータの駆動装置
JP4007345B2 (ja) * 2004-06-29 2007-11-14 アイシン・エィ・ダブリュ株式会社 電動駆動制御装置、電動駆動制御方法及びプログラム
US7595600B2 (en) * 2007-06-07 2009-09-29 Gm Global Technology Operations, Inc. Method and system for torque control in permanent magnet machines
KR101562418B1 (ko) * 2011-07-05 2015-10-22 엘에스산전 주식회사 매입형 영구자석 동기 전동기의 구동장치
JP5948613B2 (ja) * 2011-08-10 2016-07-06 パナソニックIpマネジメント株式会社 モータの制御装置
CN102403950B (zh) * 2011-11-14 2013-06-12 电子科技大学 一种电动汽车感应电机励磁电流给定装置
EP3484046A1 (de) * 2013-01-24 2019-05-15 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Bamberg Stellvorrichtung für ein bewegbares fahrzeugteil
JP5920671B2 (ja) * 2013-11-01 2016-05-18 株式会社安川電機 モータ制御装置
US9722522B2 (en) * 2014-04-02 2017-08-01 Canrig Drilling Technology Ltd. Method for controlling torque in permanent magnet motor drives
CN105811827A (zh) * 2014-12-29 2016-07-27 上海大郡动力控制技术有限公司 纯电动汽车转速波动的抑制方法
JP6776066B2 (ja) * 2016-09-05 2020-10-28 東芝インフラシステムズ株式会社 インバータ制御装置および電動機駆動システム
CN108429503A (zh) * 2018-03-20 2018-08-21 美的集团股份有限公司 感应电机的驱动控制方法、装置和计算机存储介质
CN108667374B (zh) * 2018-03-30 2021-02-19 青岛大学 一种高刚度、免调试的变频调速系统速度环的设计方法
JP7047686B2 (ja) * 2018-09-18 2022-04-05 株式会社デンソー モータ駆動装置、及び操舵システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1954486A (zh) * 2004-05-14 2007-04-25 三菱电机株式会社 同步机控制装置
US20100052581A1 (en) * 2008-08-27 2010-03-04 Shiho Izumi Motor controller
CN102163943A (zh) * 2010-02-23 2011-08-24 山洋电气株式会社 电动机的控制方法和装置
CN104242767A (zh) * 2014-09-10 2014-12-24 深圳市微秒控制技术有限公司 伺服电机动力线断线检测方法
CN106160589A (zh) * 2015-05-11 2016-11-23 美蓓亚株式会社 马达驱动控制装置及其控制方法、电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872981A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300534A (zh) * 2021-05-18 2021-08-24 杨立 一种具有变频输出的智能节能电机
CN113300534B (zh) * 2021-05-18 2022-07-22 江苏锡安达防爆股份有限公司 一种具有变频输出的智能节能电机

Also Published As

Publication number Publication date
EP3872981A4 (en) 2022-09-14
US20210175829A1 (en) 2021-06-10
US11404985B2 (en) 2022-08-02
EP3872981A1 (en) 2021-09-01
CN110932633A (zh) 2020-03-27
CN110932633B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2020057427A1 (zh) 一种电机控制方法、装置及变频控制器
JP4131079B2 (ja) インバータ装置およびその電流制限方法
WO2018019177A1 (zh) 电机矢量控制方法、装置和飞行器
JPWO2005093943A1 (ja) 永久磁石式同期モータの制御装置
CN110149080B (zh) 永磁同步电机弱磁控制方法及其装置
WO2020103894A1 (zh) 一种电机控制方法和系统、控制器
CN112737429B (zh) 电机及其电流补偿控制方法、装置、存储介质及处理器
EP3896365B1 (en) Method for controlling the rotational speed fluctuation of a compressor
CN112737421A (zh) 一种用于控制电动机减速的方法及系统
WO2016029840A1 (zh) V/f控制的感应电机在弱磁区的加速方法
EP3896842B1 (en) Method for controlling rotational speed fluctuation of single rotor compressor
EP3896366B1 (en) Method and device for controlling the rotating speed fluctuation of a compressor
JP2003088194A (ja) 電動機駆動システム
JP3707251B2 (ja) 同期電動機の制御装置
EP3001558B1 (en) Systems and methods for controlling high speed motor
CN114928272A (zh) 变频器飞车启动方法及其变频器
CN115378322A (zh) 一种永磁同步电机的电压自适应控制方法及控制装置
CN111224595B (zh) 提升安全性的电机控制方法、装置、压缩机及空调
JP2002218799A (ja) 電動機駆動制御装置
JP6465477B2 (ja) モータ制御装置、モータ制御方法及びプログラム
CN113489407A (zh) 一种电机的控制方法、装置、电机、存储介质及处理器
JP2001204199A (ja) 永久磁石型同期電動機の制御装置
WO2020063330A1 (zh) 交流电机的控制装置和控制方法
CN112688606A (zh) 永磁电机的弱磁切换方法及装置、空调器
WO2019196352A1 (zh) 一种电机加速方法、装置、电子调速器和无人飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019862764

Country of ref document: EP

Effective date: 20210420