WO2020057396A1 - 等效弹性边界下锚链与土切向和法向抗力测试装置 - Google Patents

等效弹性边界下锚链与土切向和法向抗力测试装置 Download PDF

Info

Publication number
WO2020057396A1
WO2020057396A1 PCT/CN2019/105107 CN2019105107W WO2020057396A1 WO 2020057396 A1 WO2020057396 A1 WO 2020057396A1 CN 2019105107 W CN2019105107 W CN 2019105107W WO 2020057396 A1 WO2020057396 A1 WO 2020057396A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor chain
tangential
soil
normal
top plate
Prior art date
Application number
PCT/CN2019/105107
Other languages
English (en)
French (fr)
Inventor
王立忠
芮圣洁
国振
洪义
李玲玲
李雨杰
周文杰
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US16/960,896 priority Critical patent/US11353384B2/en
Publication of WO2020057396A1 publication Critical patent/WO2020057396A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0044Pneumatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means

Definitions

  • the invention relates to a test device, in particular to an tangential and normal resistance test device for anchor chain and soil under an equivalent elastic boundary.
  • the placement can measure the anchor chain and soil body under different elastic stress boundaries in tangential and normal directions. Resistance when relative displacement occurs upwards.
  • anchoring foundations and chains are usually used to fix floating structures (such as offshore drilling platforms and exploration platforms).
  • suction anchors are the most widely used.
  • Such anchoring foundations usually have a certain embedding depth.
  • the connection point with the anchor chain is usually located at 2/3 of the buried depth of the anchoring foundation, so the anchor chain needs a certain depth of penetration into the soil.
  • the magnitude of the load transmitted from the upper load to the anchoring foundation is mainly related to the tangential shear of the anchor chain and the soil, and the shape of the anchor line is mainly related to the normal resistance.
  • the magnitude of the force transmitted by the superstructure to the position of the anchor eye through the anchor chain determines the force and damage mode of the foundation, and then affects the safety of the entire anchoring system.
  • there is no relevant experimental device at home and abroad that can measure the normal and tangential shear resistance of the anchor chain and the soil at the same time, especially in the measurement of normal resistance. It often needs to consider the size effect of the elastic boundary. The size of the test chamber needs to be made large enough. This experimental device can make up for the blank in this technical field, and provide important design parameters for the calculation of the anchoring section of the engineering anchor chain.
  • the purpose of the present invention is to provide a test device for tangential and normal resistance of anchor chain and soil under equivalent elastic boundary, which can measure the tangential and normal resistance of anchor chain and soil under elastic boundary, and make up for the anchor chain and soil unit.
  • Experimental calibration blank The characteristics of this device are: the soil in the experiment is pressurized by an airbag to simulate the original stress state of the soil; the back and forth load is applied by the servo motor in the transmission device, and the anchor chain tension is measured during the experiment to measure the anchor The tangential resistance of the chain and the soil; the vertical load is applied by the stepper motor in the vertical displacement application unit to measure the normal resistance of the anchor chain and the soil during the test; the spring on the side wall and the bottom plate can be used to measure The elastic boundary is simulated. The size of the model box can be greatly reduced by using the spring equivalent elastic boundary.
  • An tangential and normal resistance test device for anchor chain and soil under an equivalent elastic boundary including a support frame, a test box, a transmission device, a pneumatic loading system, a vertical displacement applying unit, a tangential anchor chain unit, and a normal anchor chain
  • the test box is fixed on a support frame, and is composed of a bottom plate, front and rear walls, left and right fixing plates, and a detachable top plate.
  • the air bag, a sliding top plate, a soil sample, and a sliding bottom plate are sequentially arranged below the top plate in the test box.
  • a sliding front wall, a soil sample, and a sliding rear wall are sequentially arranged behind the front side wall in the test box.
  • the sliding floor and the floor, the sliding front wall and the front wall, and the sliding rear wall and the rear wall are connected by springs.
  • a linear bearing sleeve is installed in each of the openings on the fixing plate.
  • the built-in linear bearing guide rod is connected to the two ends of the tangential anchor chain unit buried in the soil sample through a hook, and the transmission device is connected to the linear bearing guide rod.
  • the vertical displacement applying unit The penetrating top plate, the airbag and the sliding top plate are directly connected to the normal anchor chain unit for applying vertical displacement to the normal anchor chain unit as a whole; the air pressure loading system is used to regulate the pressure in the airbag.
  • the transmission device includes four fixed pulleys, a servo motor, a steel strand, and two force sensors.
  • the four fixed pulleys are fixed on the support frame, and two or two points are located on the left and right of the test box.
  • the stranded wire in turn bypasses the four fixed pulleys in order to connect one force sensor to the linear bearing guide, and the other end of the stranded wire to the other linear force sensor to the other linear sensor guide.
  • Servo The motor is connected to the steel strand for applying displacement.
  • the air pressure loading system includes an air pipe, a barometer, and an air pressure regulating system.
  • the air bag is connected to the air pressure regulating system through the air pipe, and the air pipe is provided with a barometer.
  • the vertical displacement applying unit includes a reaction force beam fixed on a support frame, a stepper motor fixed to the reaction force beam, and a guide rod; the stepper motor connects the guide rod, the guide rod and the normal anchor chain The units are connected, and a vertical force sensor is provided on the guide rod.
  • the tangential anchor chain unit has five single-chain loops.
  • T 1 First use steel strands instead of tangential anchor chains to calibrate the friction of the transmission and loading device, denoted as T 1 : Apply a pretension load of 1kN by the servo motor to ensure that the steel strands in the test box are tightened and straightened;
  • the specified displacement is applied by the servo motor, and the force measurement is performed by the left and right force sensors.
  • f steel strand and soil + f system Intrinsic friction , due to the small diameter of the steel strand, its friction with the soil can be ignored.
  • step 1) Replace the steel strand with a tangential anchor chain unit, the rest is the same as in step 1), connect the pulley and the steel cable in place, and apply a pretension load of 1kN by the servo motor to ensure that the tangential anchor chain in the test box is tightened and straightened ;
  • the specified displacement is applied by the servo motor, and the force is measured by the left and right force sensors.
  • the two force sensors are set to F 1 and F 2 , so that the tangential resistance of the soil and the anchor chain can be measured.
  • F ⁇
  • -T 1
  • the normal displacement is applied by a stepper motor at a certain rate, the reading of the force sensor is read, and it is recorded as F 3.
  • the invention proposes an experimental device for measuring the tangential and normal resistance of the anchor chain to the soil.
  • the size of the test box can be greatly reduced under the influence of the boundary conditions, which is effective.
  • the model of soil interaction provides experimental parameters, which has important reference significance for the design of the anchoring system (not to mention the middle section of the soil).
  • FIG. 1 is a front view of a specific structure of the device of the present invention
  • Figure 2 is a side view of the structure of Figure 1 of the present invention.
  • Figure 3 is a top view of the structure of Figure 1 of the present invention.
  • FIG. 4 is a front sectional view of a specific structure of a test chamber
  • Fig. 5 is a side sectional view of the test chamber of Fig. 4.
  • the tangential and normal resistance test device for the anchor chain and soil under the equivalent elastic boundary of the present invention includes a support frame, a test box, a transmission device, a pneumatic loading system, a vertical displacement applying unit, and a tangential anchor.
  • the test box is fixed on a support frame, and is composed of a bottom plate, front and rear walls, left and right fixing plates, and a detachable top plate; and an air bag and a sliding top plate are sequentially arranged below the top plate in the test box , Soil sample, sliding floor, sliding front wall, soil sample, sliding rear wall are arranged in order behind the front side wall in the test box, between the sliding floor and the floor, between the sliding front wall and the front wall, between the sliding back wall and the rear wall Both are connected by springs; linear bearing sleeves are installed in each of the openings on the left and right fixing plates, and the built-in linear bearing guide is connected with the two ends of the tangential anchor chain unit buried in the soil sample through hooks. Connection; the vertical displacement applying unit penetrates the top plate, the airbag and the sliding top plate and is directly connected to the normal anchor chain unit for applying vertical displacement to the normal anchor chain unit as a whole; the air pressure loading system is used to regulate the airbag Pressure inside.
  • the support frame includes a support frame column 1, an upper table surface 2, a lower table surface 3, and the transmission device 4 includes a servo motor 9, a stranded wire 10, four fixed pulleys 11, a support rod 12, a pulley bracket 13, Two force sensors 15, the vertical displacement applying part includes a guide rod 14, a force sensor 15, a stepper motor 35, and a reaction force beam 36; the stepper motor 36 applies a displacement to the normal anchor chain unit 8 through the guide rod 14, and measures Normal resistance.
  • the outer wall of the test box 5 of the present invention is composed of a bottom plate 18, front and rear walls, and left and right fixing plates, which are fixed to the middle of the upper table 2 by bottom plate fixing bolts 19.
  • a top plate 28 is arranged on the top thereof, and an airbag 27, a sliding top plate 25 are arranged under the top plate, and experiments are performed. Soil sample, sliding base plate 21, spring 20, base plate 18; side wall holes 24 are opened on the left and right sides of the test box 5, linear bearing sleeves 34 are provided on the left and right fixing plates, the linear bearing guide rod 16 side and the steel strand 10, etc.
  • the transmission device is connected, and the connecting hook 17 on the other side is further connected to the tangential anchor chain unit 7; the transmission device 4 transmits the displacement applied by the servo motor 9 to the anchor chain, and the resistance is monitored by the force sensor 15.
  • the test box 5 is a front wall, a spring 20, a sliding front wall 23, a test soil sample, a sliding rear wall 23, a spring 20, and a rear wall 22.
  • the air bag 27 is connected to the high-precision barometer 32 and the air pressure regulating system 33 through the air pipe 31, and can apply a certain load to the test soil sample to simulate the actual ground stress of the soil body, thereby measuring the soil body and the anchor when the soil body is subjected to different ground stresses under the elastic boundary.
  • the tangential anchor chain unit 7 should generally have five single chain links. Too few chain links will result in inaccurate measurement, and too many chain links will place higher requirements on the test instrument.
  • the single chain link of the normal anchor chain unit 8 is welded as a whole, and the length can be the distance between the left and right side walls 22, which can be considered as a problem of plane strain.
  • T 1 First use steel strands instead of tangential anchor chains to calibrate the friction of the transmission and loading device, denoted as T 1 : Apply a pretension load of 1kN by the servo motor to ensure that the steel strands in the test box are tightened and straightened
  • the specified displacement is applied by the servo motor, and the force measurement is performed by the left and right force sensors.
  • f steel strand and soil + f system Intrinsic friction , due to the small diameter of the steel strand, its friction with the soil can be ignored.
  • step 1) Replace the steel strand with a tangential anchor chain unit, the rest is the same as in step 1), connect the pulley and the steel cable in place, and apply a pretension load of 1kN by the servo motor to ensure that the tangential anchor chain in the test box is tightened and straightened ;
  • the specified displacement is applied by the servo motor, and the force is measured by the left and right force sensors.
  • the two force sensors are set to F 1 and F 2 , so that the tangential resistance of the soil and the anchor chain can be measured.
  • F ⁇
  • -T 1
  • the normal displacement is applied by a stepper motor at a certain rate, the reading of the force sensor is read, and it is recorded as F 3.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种等效弹性边界下锚链与土切向和法向抗力测试装置及方法,该装置包括支撑架、传动装置(4)、气压加载系统、试验箱(5)、竖向位移施加部分(6)、切向锚链单元(7)、法向锚链单元(8)等。通过使用等刚度的弹簧(20)模拟弹性边界,在能克服边界条件的影响下,大大缩小试验箱(5)的尺寸,能有效节约材料和降低实验操作难度;同时它将法向和切向抗力测试集为一体,可以同时测量锚链与土的切向、法向相互作用,能够为工程锚链入土段的计算提供重要设计参数,对于锚点在海底泥面以下的锚泊系统设计有重要参考意义。

Description

等效弹性边界下锚链与土切向和法向抗力测试装置 技术领域
本发明涉及一种试验装置,尤其涉及一种等效弹性边界下锚链与土切向和法向抗力测试装置,该放置可测量不同地层应力弹性边界下锚链与土体在切向、法向上发生相对位移时的抗力。
背景技术
在海洋工程领域,通常会采用锚固基础和锚链对海上浮式构筑物(如海上钻井平台、勘探平台等)进行固定,目前应用最广泛的是吸力锚,这种锚固基础通常有一定埋置深度以改善锚的受力状态从而发挥更大的承载力,与锚链的连接点通常位于锚固基础埋深的2/3处,因此锚链需要一定的入土深度。
已有研究认为,上部荷载传递到锚固基础上的荷载大小主要与锚链与土的切向剪切相关,而锚泊线的形态主要与法向抗力大小相关。上部结构通过锚链传到锚眼位置处的作用力的大小决定着基础的受力和破坏模式,进而影响着整个锚泊系统的安全性。目前国内外没有相关的实验装置可以对锚链与土的法向和切向剪切抗力同时进行测量的装置,尤其是在法向抗力方面的测定,它往往需要考虑弹性边界的尺寸效应,因而需要将试验箱的尺寸做得足够大。本实验装置能弥补该技术领域的空白,为工程锚链入土段的计算提供重要设计参数。
发明内容
本发明的目的在于提供一种等效弹性边界下锚链与土切向和法 向抗力测试装置,能够测量弹性边界下锚链与土体切向、法向抗力,弥补在锚链与土单元实验的标定的空白。该装置的特点是:通过气囊对实验中的土进行加压以模拟土体的原始应力状态;通过传动装置中伺服电机施加往返荷载,对实验过程中的锚链张力进行测量,从而测算出锚链与土的切向抗力;通过竖向位移施加单元中的步进电机施加竖向荷载,对试验过程中锚链与土体法向作用抗力进行测量;通过侧壁及底板上的弹簧,可模拟弹性边界,通过使用弹簧等效弹性边界可以大大减少模型箱的尺寸。
本发明采取以下技术方案:
一种等效弹性边界下锚链与土切向和法向抗力测试装置,包括支撑架、试验箱、传动装置、气压加载系统、竖向位移施加单元、切向锚链单元、法向锚链单元;所述的试验箱固定于支撑架上,由底板、前后壁、左右固定板及可拆卸顶板固接构成,在试验箱内顶板下方依次设置有气囊、滑动顶板、土样、滑动底板,试验箱内前侧壁后方依次设置有滑动前壁、土样、滑动后壁,滑动底板与底板间、滑动前壁与前壁间、滑动后壁与后壁之间均通过弹簧连接;在左右固定板上各开孔安装有直线轴承套筒,内置直线轴承导杆与埋于土样中的切向锚链单元两端通过挂钩相连,传动装置与直线轴承导杆连接;竖向位移施加单元贯穿顶板、气囊及滑动顶板直接与法向锚链单元连接,用于向法向锚链单元整体施加竖向位移;气压加载系统用于调控气囊内的压力。
上述技术方案中,进一步的,所述的传动装置包括四只定滑轮、 伺服电机、钢绞线、两只力传感器,四只定滑轮固定于支撑架上,并两两分设于试验箱的左右两侧,钢绞线依次绕过四只定滑轮一端连接一只力传感器后与一直线轴承导杆连接,钢绞线另一端连接另一只力传感器后与另一直线轴承导杆连接,伺服电机与钢绞线连接用于施加位移。
进一步的,所述的气压加载系统包括气管、气压计以及气压调控系统,气囊通过气管与气压调控系统相连,气管上设置有气压计。
进一步的,所述的竖向位移施加单元包括固定于支撑架上的反力梁、与反力梁固定的步进电机、及导杆;步进电机连接导杆,导杆与法向锚链单元相连,导杆上设有竖向力传感器。
进一步的,所述的切向锚链单元具有五个单链环。
进一步的,所述的法向锚链单元各单链环间焊接。
切向抗力
1)首先用钢绞线代替切向锚链对传动装置及加载装置摩擦进行标定,记为T 1:通过伺服电机施加预张荷载1kN,保证试验箱内的钢绞线被拉紧拉直;
按照试验要求进行土样的安装,控制至指定的密实度;其次安装可滑动顶板、气囊、顶板,并将顶板通过固定插销固定在左右侧壁上。
对气囊施加压力,控制气囊内压力达到指定值进行固结。
通过伺服电机施加制定位移,通过左右力传感器进行力的测量,记左右力传感器示数为f 1与f 2,则T 1=|f 1-f 2|=f 钢绞线与土+f 系统固有摩擦,由于钢绞线直径较小,可忽略其与土体摩擦。
2)进行锚链与土的切向抗力的测试:
将钢绞线替换为切向锚链单元,其余与步骤1)相同,将滑轮及钢缆连接到位,通过伺服电机施加预张荷载1kN,保证试验箱内的切向锚链被拉紧拉直;
按照试验要求进行土样的安装,控制至指定的密实度;其次安装可滑动顶板、气囊、顶板,并将顶板通过固定插销固定在左右侧壁上。
对气囊施加压力,控制气囊内压力达到指定值进行固结。
通过伺服电机施加制定位移,通过左右力传感器进行力的测量,设两个力传感器示数为F 1、F 2,由此可以测出土体与锚链的的切向抗力F τ=|F 1-F 2|-T 1=|F 1-F 2|-|f 1-f 2|。
法向抗力
1)将法向锚链单元与导杆及步进电机连接,步进电机使其做匀速运动,读取力传感器示数,记为T 2,即为锚链及部分导杆重力。
按照试验要求进行土样的安装,控制至指定的密实度;其次安装可滑动顶板、气囊、顶板,并将顶板通过固定插销固定在左右侧壁上。
通过空压机对气囊施加压力,控制气囊内压力达到指定值进行固结。
通过步进电机以一定速率施加法向位移,读取力传感器示数,记为F 3,考虑锚链及导杆重力计算出锚链与土体法向抗力F n=T 2+F 3
本发明提出了一种用于测定锚链与土切向、法向抗力的实验装置,通过使用等刚度的弹簧模拟弹性边界,在能克服边界条件的影响下, 大大缩小试验箱的尺寸,有效降低实验操作难度;同时它将法向和切向抗力测试集为一体,能够模拟不同地应力弹性边界情况下锚链与土的切向、法向相互作用,功能更加完善,可以为工程锚链与土相互作用的模型提供试验参数,对锚泊系统(提别是涉及到土中段)的设计有重要参考意义。
附图说明
图1是本发明装置的一种具体结构主视图;
图2是本发明图1结构的侧视图;
图3是本发明图1结构的俯视图;
图4是试验箱的一种具体结构主视剖面图;
图5是图4试验箱的侧视剖面图。
其中,支撑架柱1、上台面2、下台面3、传动装置4、试验箱5、竖向位移施加部分6、切向锚链单元7、法向锚链单元8、伺服电机9、钢绞线10、滑轮11、支杆12、滑轮支架13、导杆14、力传感器15、直线轴承导杆16、挂钩17、底板18、底板固定螺栓19、弹簧20、滑动底板21、前后壁22、滑动前后壁23、侧壁孔24、滑动顶板25、滑动顶板孔26、气囊27、顶板28、顶板孔29、固定插销30、气管31、高精度气压计32、气压调控系统33、直线轴承套筒34、步进电机35、反力梁36。
具体实施方式
参照图1-5,本发明的等效弹性边界下锚链与土切向和法向抗力测试装置,包括支撑架、试验箱、传动装置、气压加载系统、竖向位 移施加单元、切向锚链单元、法向锚链单元;所述的试验箱固定于支撑架上,由底板、前后壁、左右固定板及可拆卸顶板固接构成,在试验箱内顶板下方依次设置有气囊、滑动顶板、土样、滑动底板,试验箱内前侧壁后方依次设置有滑动前壁、土样、滑动后壁,滑动底板与底板间、滑动前壁与前壁间、滑动后壁与后壁之间均通过弹簧连接;在左右固定板上各开孔安装有直线轴承套筒,内置直线轴承导杆与埋于土样中的切向锚链单元两端通过挂钩相连,传动装置与直线轴承导杆连接;竖向位移施加单元贯穿顶板、气囊及滑动顶板直接与法向锚链单元连接,用于向法向锚链单元整体施加竖向位移;气压加载系统用于调控气囊内的压力。
在图示实施例中,支撑架包括支撑架柱1、上台面2、下台面3,传动装置4包括伺服电机9、钢绞线10、四只定滑轮11、支杆12、滑轮支架13、两只力传感器15,竖向位移施加部分包括导杆14、力传感器15、步进电机35、反力梁36;由步进电机36通过导杆14对法向锚链单元8施加位移,测定法向抗力。本发明的试验箱5外壁由底板18及前后壁、左右固定板组成,通过底板固定螺栓19固定于上台面2中部,其顶部设置顶板28,顶板28下依次设置气囊27、滑动顶板25、实验土样、滑动底板21、弹簧20、底板18;试验箱5左右侧面开有侧壁孔24,左右固定板上设置有直线轴承套筒34,直线轴承导杆16一侧与钢绞线10等传动装置相连,另一侧连接挂钩17进而和切向锚链单元7相连;传动装置4将伺服电机9施加的位移传递给锚链,并通过力传感器15进行抗力的监测。试验箱5由前到后依 次是前壁、弹簧20、滑动前壁23、试验土样、滑动后壁23、弹簧20、后壁22。气囊27通过气管31与高精度气压计32及气压调控系统33连接,可对试验土样施加一定荷载,模拟土体实际地应力情况,从而测定土体在弹性边界下受不同地应力时与锚链的相互作用。切向锚链单元7一般应有有五个单链环,链环过少将导致测量不准确,链环过多,将对试验仪器有更高要求。法向锚链单元8的单链环焊接为整体,长可为左右侧壁22间距,可考虑为平面应变问题。
实验流程:
切向抗力
1)首先用钢绞线代替切向锚链对传动装置及加载装置摩擦进行标定,记为T 1:通过伺服电机施加预张荷载1kN,保证试验箱内的钢绞线被拉紧拉直;
按照试验要求进行土样的安装,控制至指定的密实度;其次安装可滑动顶板、气囊、顶板,并将顶板通过固定插销固定在左右侧壁上。
对气囊施加压力,控制气囊内压力达到指定值进行固结。
通过伺服电机施加制定位移,通过左右力传感器进行力的测量,记左右力传感器示数为f 1与f 2,则T 1=|f 1-f 2|=f 钢绞线与土+f 系统固有摩擦,由于钢绞线直径较小,可忽略其与土体摩擦。
2)进行锚链与土的切向抗力的测试:
将钢绞线替换为切向锚链单元,其余与步骤1)相同,将滑轮及钢缆连接到位,通过伺服电机施加预张荷载1kN,保证试验箱内的切向锚链被拉紧拉直;
按照试验要求进行土样的安装,控制至指定的密实度;其次安装可滑动顶板、气囊、顶板,并将顶板通过固定插销固定在左右侧壁上。
对气囊施加压力,控制气囊内压力达到指定值进行固结。
通过伺服电机施加制定位移,通过左右力传感器进行力的测量,设两个力传感器示数为F 1、F 2,由此可以测出土体与锚链的的切向抗力F τ=|F 1-F 2|-T 1=|F 1-F 2|-|f 1-f 2|。
法向抗力
1)将法向锚链单元与导杆及步进电机连接,步进电机使其做匀速运动,读取力传感器示数,记为T 2,即为锚链及部分导杆重力。
按照试验要求进行土样的安装,控制至指定的密实度;其次安装可滑动顶板、气囊、顶板,并将顶板通过固定插销固定在左右侧壁上。
通过空压机对气囊施加压力,控制气囊内压力达到指定值进行固结。
通过步进电机以一定速率施加法向位移,读取力传感器示数,记为F 3,考虑锚链及导杆重力计算出锚链与土体法向抗力F n=T 2+F 3

Claims (8)

  1. 一种等效弹性边界下锚链与土切向和法向抗力测试装置,其特征在于,包括支撑架、试验箱、传动装置、气压加载系统、竖向位移施加单元、切向锚链单元、法向锚链单元;所述的试验箱固定于支撑架上,由底板、前后壁、左右固定板及可拆卸顶板固接构成,在试验箱内顶板下方依次设置有气囊、滑动顶板、土样、滑动底板,试验箱内前侧壁后方依次设置有滑动前壁、土样、滑动后壁,滑动底板与底板间、滑动前壁与前壁间、滑动后壁与后壁之间均通过弹簧连接;在左右固定板上各开孔安装有直线轴承套筒,内置直线轴承导杆与埋于土样中的切向锚链单元两端通过挂钩相连,传动装置与直线轴承导杆连接;竖向位移施加单元贯穿顶板、气囊及滑动顶板直接与法向锚链单元连接,用于向法向锚链单元整体施加竖向位移;气压加载系统用于调控气囊内的压力。
  2. 根据权利要求1所述的等效弹性边界下锚链与土切向和法向抗力测试装置,其特征在于,所述的传动装置包括四只定滑轮、伺服电机、钢绞线、两只力传感器,四只定滑轮固定于支撑架上,并两两分设于试验箱的左右两侧,钢绞线依次绕过四只定滑轮一端连接一只力传感器后与一直线轴承导杆连接,钢绞线另一端连接另一只力传感器后与另一直线轴承导杆连接,伺服电机与钢绞线连接用于施加位移。
  3. 根据权利要求1所述的等效弹性边界下锚链与土切向和法向抗力测试装置,其特征在于,所述的气压加载系统包括气管、气压计以及气压调控系统,气囊通过气管与气压调控系统相连,气管上设置有气 压计。
  4. 根据权利要求1所述的等效弹性边界下锚链与土切向和法向抗力测试装置,其特征在于,所述的竖向位移施加单元包括固定于支撑架上的反力梁、与反力梁固定的步进电机、及导杆;步进电机连接导杆,导杆与法向锚链单元相连,导杆上设有竖向力传感器。
  5. 根据权利要求1所述的等效弹性边界下锚链与土切向和法向抗力测试装置,其特征在于,所述的切向锚链单元具有五个单链环。
  6. 根据权利要求1所述的等效弹性边界下锚链与土切向和法向抗力测试装置,其特征在于,所述的法向锚链单元各单链环间焊接。
  7. 采用如权利要求1所述的装置测试等效弹性边界下锚链与土切向的方法,其特征在于,
    1)首先用钢绞线代替切向锚链对传动装置及加载装置摩擦进行标定,记为T 1:通过伺服电机施加预张荷载,保证试验箱内的钢绞线被拉紧拉直;
    按照试验要求进行土样的安装,控制至指定的密实度;其次安装可滑动顶板、气囊、顶板,并将顶板通过固定插销固定在左右侧壁上;
    对气囊施加压力,控制气囊内压力达到指定值进行固结;
    通过伺服电机施加制定位移,通过左右力传感器进行力的测量,记左右力传感器示数为f 1与f 2,则T 1=|f 1-f 2|=f 钢绞线与土+f 系统固有摩擦,由于钢绞线直径较小,可忽略其与土体摩擦;
    2)进行锚链与土的切向抗力的测试:
    将钢绞线替换为切向锚链单元,其余与步骤1)相同,将滑轮及 钢缆连接到位,通过伺服电机施加预张荷载,保证试验箱内的切向锚链被拉紧拉直;
    按照试验要求进行土样的安装,控制至指定的密实度;其次安装可滑动顶板、气囊、顶板,并将顶板通过固定插销固定在左右侧壁上;
    对气囊施加压力,控制气囊内压力达到指定值进行固结;
    通过伺服电机施加制定位移,通过左右力传感器进行力的测量,设两个力传感器示数为F 1、F 2,由此可以测出土体与锚链的的切向抗力F τ=|F 1-F 2|-T 1=|F 1-F 2|-|f 1-f 2|。
  8. 采用如权利要求1所述的装置测试等效弹性边界下锚链与土法向的方法,其特征在于,
    将法向锚链单元与导杆及步进电机连接,步进电机使其做匀速运动,读取力传感器示数,记为T 2,即为锚链及部分导杆重力;
    按照试验要求进行土样的安装,控制至指定的密实度;其次安装可滑动顶板、气囊、顶板,并将顶板通过固定插销固定;
    通过空压机对气囊施加压力,控制气囊内压力达到指定值进行固结;
    通过步进电机以一定速率施加法向位移,读取力传感器示数,记为F 3,考虑锚链及导杆重力计算出锚链与土体法向抗力F n=T 2+F 3
PCT/CN2019/105107 2018-09-20 2019-09-10 等效弹性边界下锚链与土切向和法向抗力测试装置 WO2020057396A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/960,896 US11353384B2 (en) 2018-09-20 2019-09-10 Apparatus for testing tangential and normal resistance of anchor chain and soil under equivalent elastic boundary

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811118520.7A CN109374418B (zh) 2018-09-20 2018-09-20 等效弹性边界下锚链与土切向和法向抗力测试方法
CN201811118520.7 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020057396A1 true WO2020057396A1 (zh) 2020-03-26

Family

ID=65401815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105107 WO2020057396A1 (zh) 2018-09-20 2019-09-10 等效弹性边界下锚链与土切向和法向抗力测试装置

Country Status (3)

Country Link
US (1) US11353384B2 (zh)
CN (1) CN109374418B (zh)
WO (1) WO2020057396A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115235800A (zh) * 2022-07-20 2022-10-25 中国矿业大学 模拟近海深水条件下轴向管-土相互作用的微型离心机模型及方法
CN115787750A (zh) * 2022-11-14 2023-03-14 中铁南方投资集团有限公司 一种水泥土复合桩芯桩最优压桩时间的确定方法以及装置
CN117388082A (zh) * 2023-12-12 2024-01-12 西南交通大学 一种前拉式隧道锚室内试验模型及试验方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800002647A1 (it) * 2018-02-13 2019-08-13 Univ Degli Studi Di Milano Bicocca Dispositivo e metodo di simulazione di iniezioni di miscele cementizie e/o chimiche in terreni
CN109374418B (zh) 2018-09-20 2020-05-12 浙江大学 等效弹性边界下锚链与土切向和法向抗力测试方法
CN111158064B (zh) * 2019-12-30 2021-07-09 浙江大学 一种可模拟真实土体等刚度边界条件的cpt试验装置及测试方法
CN111155567A (zh) * 2019-12-30 2020-05-15 浙江大学 一种可反应真实土体边界条件的多种打桩试验装置及测试方法
CN112710543B (zh) * 2021-01-20 2022-06-14 同济大学 一种安全壳局部构件强度试验装置
CN113029802B (zh) * 2021-04-20 2022-10-18 中南大学 一种点阵材料等效弹性静力学参数高精度测试方法
CN115077776A (zh) * 2022-06-09 2022-09-20 腾达建设集团股份有限公司 一种浮力测试装置及测试方法
CN114894624B (zh) * 2022-07-14 2022-11-01 浙大城市学院 基于海洋管线群锚作用的拉拔力测量试验装置及测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614231A (zh) * 2015-02-12 2015-05-13 南京工业大学 一种能加载的层状剪切模型土箱
CN204988889U (zh) * 2015-08-06 2016-01-20 广东工业大学 室内多功能土工试验装置
KR101653750B1 (ko) * 2016-03-10 2016-09-02 한국건설기술연구원 식생매트 고정용 앵커핀의 인발 시험 장치 및 방법
CN106092416A (zh) * 2016-08-09 2016-11-09 大连理工大学 用于测量锚在土中运动轨迹和承载力的简易装置及其方法
CN107505206A (zh) * 2017-08-10 2017-12-22 山东建筑大学 用于土层抗拔基础承载性能测试的自动多功能试验系统及方法
CN109374418A (zh) * 2018-09-20 2019-02-22 浙江大学 等效弹性边界下锚链与土切向和法向抗力测试装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270080A (ja) * 2002-03-15 2003-09-25 Hitachi Industries Co Ltd 振動試験装置および振動試験方法
US7647821B2 (en) * 2005-09-22 2010-01-19 Bloomquist David G Apparatus for estimating the rate of erosion and methods using the same
CN103698215B (zh) * 2013-12-31 2016-03-02 中国地质大学(北京) 锚索拉拔试验装置
CN105045977A (zh) * 2015-07-01 2015-11-11 许昌学院 一种研究抗滑桩位的三维边坡模型建立方法
CN105067037B (zh) * 2015-08-08 2017-10-17 大连理工大学 用于测量锚在土中运动轨迹和承载力的装置及方法
CN105346677B (zh) * 2015-11-10 2018-03-23 中国海洋石油总公司 一种折叠式板锚及其使用方法
CN205530397U (zh) * 2016-03-04 2016-08-31 中国电建集团华东勘测设计研究院有限公司 变频水平循环加载试验装置
CN106096288A (zh) * 2016-06-15 2016-11-09 浙江大学 吸力式贯入板锚的安全评估及预警方法
CN106501014A (zh) * 2016-09-21 2017-03-15 同济大学 用于整环隧道结构的竖直加载试验装置
CN206205011U (zh) * 2016-09-28 2017-05-31 中国科学院武汉岩土力学研究所 一种钙质砂动静荷载多功能桩基模型试验装置
CN106844961B (zh) * 2017-01-20 2019-09-13 福州大学 一种考虑灌浆密实性的套筒接头抗拉承载力评估方法
CN207194039U (zh) * 2017-07-06 2018-04-06 扬州大学 桩箱基础水平循环加载试验装置
CN108035387B (zh) * 2017-12-28 2023-03-10 浙江大学 可控制围压用于模拟闭口桩安装过程的实验装置
CN108169005B (zh) * 2018-01-05 2020-10-30 河北建筑工程学院 一种用于土体的锚杆动态拉拔试验装置
CN108193678B (zh) * 2018-01-24 2019-10-29 中冶沈勘工程技术有限公司 岩石群锚杆相互作用界限间距的计算方法及岩石群锚杆的极限抗拔力计算方法
CN109030182B (zh) * 2018-09-04 2020-04-28 大连理工大学 一种基于全流触探的饱和黏土试样强度及应变软化参数测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614231A (zh) * 2015-02-12 2015-05-13 南京工业大学 一种能加载的层状剪切模型土箱
CN204988889U (zh) * 2015-08-06 2016-01-20 广东工业大学 室内多功能土工试验装置
KR101653750B1 (ko) * 2016-03-10 2016-09-02 한국건설기술연구원 식생매트 고정용 앵커핀의 인발 시험 장치 및 방법
CN106092416A (zh) * 2016-08-09 2016-11-09 大连理工大学 用于测量锚在土中运动轨迹和承载力的简易装置及其方法
CN107505206A (zh) * 2017-08-10 2017-12-22 山东建筑大学 用于土层抗拔基础承载性能测试的自动多功能试验系统及方法
CN109374418A (zh) * 2018-09-20 2019-02-22 浙江大学 等效弹性边界下锚链与土切向和法向抗力测试装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, SA ET AL.: "Study of Influencing Factors on Interaction between Soil and Suction Anchor Chain in Deep Sea by FEM", SHIPBUILDING OF CHINA, vol. 56, 30 November 2015 (2015-11-30), pages 90 - 98 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115235800A (zh) * 2022-07-20 2022-10-25 中国矿业大学 模拟近海深水条件下轴向管-土相互作用的微型离心机模型及方法
CN115787750A (zh) * 2022-11-14 2023-03-14 中铁南方投资集团有限公司 一种水泥土复合桩芯桩最优压桩时间的确定方法以及装置
CN115787750B (zh) * 2022-11-14 2023-12-19 中铁南方投资集团有限公司 一种水泥土复合桩芯桩最优压桩时间的确定方法以及装置
CN117388082A (zh) * 2023-12-12 2024-01-12 西南交通大学 一种前拉式隧道锚室内试验模型及试验方法
CN117388082B (zh) * 2023-12-12 2024-03-05 西南交通大学 一种前拉式隧道锚室内试验模型及试验方法

Also Published As

Publication number Publication date
US11353384B2 (en) 2022-06-07
CN109374418A (zh) 2019-02-22
CN109374418B (zh) 2020-05-12
US20210364401A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2020057396A1 (zh) 等效弹性边界下锚链与土切向和法向抗力测试装置
CN110593953B (zh) 模拟岩爆条件下巷道支护系统抗冲击特性测试装置及方法
CN106501014A (zh) 用于整环隧道结构的竖直加载试验装置
CN105510158B (zh) 锚固体动态拉伸实验装置及实验方法
CN110044698B (zh) 一种土钉拉拔试验箱及土钉拉拔试验装置
CN110763569A (zh) 一种考虑土体约束条件的土工格栅蠕变试验装置及试验方法
CN106680085A (zh) 基于蠕变试验机锚杆体系时效特征的测试系统及测试方法
CN109269903B (zh) 不同约束条件下锚链与土切向抗力测试装置及方法
CN212904186U (zh) 一种检测倾斜滑面滑坡抗滑桩安全经济性能的试验机
CN105509683B (zh) 一种用于自平衡试桩法的位移测量装置
KR101074569B1 (ko) 배관 지지대의 하중측정 장치 및 방법
CA3150000C (en) Top loaded bidirectional testing system and method of using the same
CN206902781U (zh) 锚杆内力外测的检测装置
CN109470550B (zh) 可模拟复杂应力下锚链与土切向作用的试验装置及测试方法
CN116399725B (zh) 锚索动态力学性能测试方法及其测试系统
CN116290148A (zh) 超长大直径桩基水平荷载测试装置及方法
CN116046372A (zh) 一种旋挖钻机桅杆加载疲劳试验台及试验方法
CN210140855U (zh) 一种插拔桩对邻近群桩影响的模型试验装置
CN110132759B (zh) 盾构管片上预埋槽道的剪切试验装置及其检测方法
CN106323774B (zh) 隔水管打桩作业锤击试验装置及试验方法
KR20210078628A (ko) 파고 계측기의 성능 시험 장치 및 이를 이용한 모형선의 실험 방법
CN217331554U (zh) 模拟地震作用下山岭隧道衬砌劣化的试验装置
CN113532716B (zh) 一种改进的吊钳或动力钳扭矩测量工装
CN115078694B (zh) 一种旋转式土与结构界面力学特性试验装置及方法
CN209114517U (zh) 一种大直径超长桩承载力检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863522

Country of ref document: EP

Kind code of ref document: A1