WO2020057336A1 - 资源配置方法、终端及网络设备 - Google Patents

资源配置方法、终端及网络设备 Download PDF

Info

Publication number
WO2020057336A1
WO2020057336A1 PCT/CN2019/103016 CN2019103016W WO2020057336A1 WO 2020057336 A1 WO2020057336 A1 WO 2020057336A1 CN 2019103016 W CN2019103016 W CN 2019103016W WO 2020057336 A1 WO2020057336 A1 WO 2020057336A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
semi
transmission carrier
period
persistent
Prior art date
Application number
PCT/CN2019/103016
Other languages
English (en)
French (fr)
Inventor
吴昱民
潘学明
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19863518.7A priority Critical patent/EP3855662A4/en
Priority to KR1020217011019A priority patent/KR20210057156A/ko
Priority to JP2021515646A priority patent/JP7194819B2/ja
Publication of WO2020057336A1 publication Critical patent/WO2020057336A1/zh
Priority to US17/205,097 priority patent/US11979893B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the technical field of communication applications, and in particular, to a resource configuration method, a terminal, and a network device.
  • High-frequency communication can provide wider system bandwidth and smaller antenna size, which is more conducive to large-scale antenna deployment in base stations and UEs.
  • Multi-beam or Multi-TRP Transmisison Point is used at the base station side for data transmission and reception.
  • Multi-beam or Multi-TRP Transmisison Point transmission and reception at the UE side will be widely used.
  • the UE In the related art 5G system, it is possible to configure the UE with semi-persistent data transmission resources, including: downlink semi-persistent scheduling (DL, Semi-Persistent Scheduling, DL), uplink configuration grant type 1 (UL configured configured grant type 1), and uplink configuration Authorized Type 2 (UL configured) Grant Type 2 and Autonomous Uplink (AUL).
  • DL downlink semi-persistent scheduling
  • UL Uplink configuration grant type 1
  • AUL Autonomous Uplink
  • An object of the present disclosure is to provide a resource configuration method, a terminal, and a network device to solve the problem that when there are multiple different beams or transmission points for data transmission and reception to the UE, there is no clear method for configuring semi-persistent resources.
  • an embodiment of the present disclosure provides a resource configuration method, including:
  • the resource configuration information includes identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers;
  • At least one of the available resource location information of the transmission carrier in each resource period and the hybrid automatic repeat request HARQ process number available in each resource period is determined.
  • an embodiment of the present disclosure further provides a resource configuration method, including:
  • Send resource configuration information of semi-persistent resources where the resource configuration information includes: identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers.
  • an embodiment of the present disclosure further provides a terminal, including:
  • An obtaining module configured to obtain resource configuration information of semi-persistent resources, where the resource configuration information includes identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers;
  • a determining module configured to determine, according to the resource configuration information of the semi-persistent resources, available resource location information of the transmission carrier in each resource cycle and a hybrid automatic repeat request HARQ process number available in each resource cycle.
  • an embodiment of the present disclosure further provides a terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program is implemented as described above when executed by the processor. Steps of the resource allocation method according to the first aspect.
  • an embodiment of the present disclosure further provides a network device, including:
  • the sending module is configured to send resource configuration information of semi-persistent resources, where the resource configuration information includes identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers.
  • an embodiment of the present disclosure further provides a network device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the computer program is implemented when the processor is executed by the processor. The steps of the resource allocation method according to the second aspect.
  • an embodiment of the present disclosure further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the resources described in the first aspect above.
  • the configuration method or the steps of implementing the resource configuration method according to the second aspect is provided.
  • the foregoing technical solution of the embodiment of the present disclosure obtains resource configuration information of semi-persistent resources, where the resource configuration information includes: identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers;
  • the resource configuration information of the semi-persistent resources determining at least one of position information of available resources of the transport carrier in each resource period and hybrid automatic retransmission request HARQ process numbers available in each resource period, thereby It realizes the configuration of different semi-persistent resources on different uplink transmission carriers and / or downlink transmission carriers, improves the utilization rate of the lower semi-persistent resources of multi-transport carriers, and reduces the delay caused by scheduling when transmitting data. .
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure
  • FIG. 2 is one of the schematic flowcharts of a resource configuration method according to an embodiment of the present disclosure
  • FIG. 3 is a second schematic flowchart of a resource allocation method according to an embodiment of the present disclosure.
  • FIG. 5 is a second schematic block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a structural block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a second structural block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic block diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 9 is a structural block diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure.
  • the user terminal 11 may be a user equipment (User Equipment, UE ),
  • UE user equipment
  • the user terminal 11 can be a mobile phone, a tablet computer, a laptop computer, a personal digital assistant (PDA), a mobile Internet device (MID), or a wearable
  • PDA personal digital assistant
  • MID mobile Internet device
  • terminal-side equipment such as a device (Wearable Device) is not limited to a specific type of the user terminal 11 in the embodiment of the present disclosure.
  • the above base station 12 may be a base station of 5G and later versions (for example, gNB, 5G, NR, or NB), or a base station in another communication system, or referred to as a Node B, an evolved Node B, and a transmitting node (TRP) or As long as other vocabularies in the field achieve the same technical effect, the base station is not limited to specific technical vocabulary. It should be noted that in the embodiment of the present disclosure, only a 5G base station is used as an example, but the specific type of the base station 12 is not limited .
  • an embodiment of the present disclosure provides a resource configuration method applied to a terminal.
  • the method includes:
  • Step 201 Obtain resource configuration information of semi-persistent resources.
  • the resource configuration information includes identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers.
  • the transmission carrier includes a beam or a transmission node.
  • the resource allocation information includes a resource period.
  • the identification information of the transmission carrier includes: the transmission carrier identifier, the cell identifier corresponding to the transmission carrier, the frequency point identifier corresponding to the transmission carrier, the bandwidth part BWP identifier corresponding to the transmission carrier, the control channel information identifier corresponding to the transmission carrier, and the MAC entity corresponding to the transmission carrier At least one of the logos.
  • the cell identifier corresponding to the transmission carrier may be specifically cell 1
  • the frequency point identifier corresponding to the transmission carrier may be frequency point 1
  • the bandwidth part BWP identifier corresponding to the transmission carrier may be specifically BWP_1
  • the MAC corresponding to the transmission carrier may be The entity identifier may be specifically MAC_1.
  • the transmission carrier identifier includes at least one of a synchronization signal block SSB identifier, a channel state information reference signal CSI-RS identifier, and a port number identifier corresponding to the reference signal, and the reference signal includes SSB and / or CSI- RS.
  • the transmission carrier identifier may be other signal identifiers, which are not specifically limited herein.
  • the port number identifier corresponding to the above reference signal may be specifically port_1, and the reference signal may be other reference signals in addition to SSB and CSI-RS, which is not specifically limited here.
  • the control channel identifier corresponding to the transmission carrier includes at least one of a control channel type identifier, a control channel resource location identifier, a control channel reference signal identifier, and a control channel reference signal corresponding port number identifier.
  • the control channel type identifier may be specifically PDCCH_1 of the primary cell PCell; the resource location identifier of the control channel may be a control resource group (CORESET) and / or a search space identifier (search space); the reference signal identifier of the control channel may be an SSB identifier And / or CSI-RS identification.
  • CORESET control resource group
  • search space search space
  • the reference signal identifier of the control channel may be an SSB identifier And / or CSI-RS identification.
  • Step 202 According to the resource configuration information of the semi-persistent resources, determine at least one of the available resource location information of the transport carrier in each resource period and the hybrid automatic repeat request HARQ process number available in each resource period. One item.
  • the available resource location information of the transport carrier in each resource cycle and the hybrid automatic repeat request HARQ process number available in each resource cycle are determined.
  • the available resource location information of the transmission carrier in each resource period is determined.
  • the resource allocation information includes resource allocation information in each resource period
  • determining the transmission carrier in each resource period according to the allocation information of the semi-persistent resource in each resource period Available resource location information.
  • determining the available resource location information of the transmission carrier in each resource period according to the resource configuration information of the semi-persistent resource includes:
  • the resource allocation information includes resource allocation information in each resource period
  • determining the transmission carrier in each resource period according to the allocation information of the semi-persistent resource in each resource period Available resource location information.
  • uplink configuration grant type 1 resources or uplink configuration grant type 2 resources when one HARQ process is available in each resource period;
  • Determining, according to the resource configuration information of the semi-persistent resource, an available HARQ process number of the transmission carrier in each resource period including:
  • each of the transmission carriers is in each of the two channels according to the resource period, the current slot number, the number of slots in each system frame, and the number of HARQ processes of semi-persistent resources. Available HARQ process numbers in each resource period;
  • the HARQ process identifies an offset, and determines a HARQ process number available to each transmission carrier in each resource period.
  • Determining, according to the resource configuration information of the semi-persistent resource, an available HARQ process number of the transmission carrier in each resource period including:
  • the current slot number the number of slots per system frame, the resource period, the number of HARQ processes for semi-persistent resources, and the number of HARQ processes in each resource period
  • the resource period Determine the HARQ process number of the initial resource of the transmission carrier in each resource cycle, and determine the HARQ process number of subsequent resources in each resource cycle according to the number of the resource cycle and the resource number;
  • the number of HARQ processes and the HARQ process identifier offset in each resource cycle determine the HARQ process number of the starting resource of the transmission carrier in each resource cycle, and determine each resource based on the resource cycle number and resource number HARQ process number of subsequent resources in the cycle.
  • uplink configuration grant type 2 resource when multiple HARQ processes are available in each resource period;
  • Determining, according to the resource configuration information of the semi-persistent resource, an available HARQ process number of the transmission carrier in each resource period including:
  • the transmission carrier is determined in each resource according to the current time slot number, the number of time slots of each system frame, the resource period, and the number of HARQ processes of semi-persistent resources.
  • the HARQ process identifies the offset, determines the HARQ process number of the starting resource of the transmission carrier in each resource cycle, and determines the HARQ process number of subsequent resources in each resource cycle according to the resource cycle number and resource number.
  • the resource configuration method acquires resource configuration information of semi-persistent resources, where the resource configuration information includes identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers;
  • the resource configuration information of the semi-persistent resources determining at least one of position information of available resources of the transport carrier in each resource period and hybrid automatic retransmission request HARQ process numbers available in each resource period, thereby It realizes the configuration of different semi-persistent resources on different uplink transmission carriers and / or downlink transmission carriers, improves the utilization rate of the lower semi-persistent resources of multi-transport carriers, and reduces the delay caused by scheduling when transmitting data. .
  • the resource allocation information further includes: allocation information of the semi-persistent resources of the transmission carrier in each resource period and the number of HARQ processes of the semi-persistent resources of the transmission carrier. At least one of.
  • the semi-persistent resources are downlink semi-persistent scheduling SPS resources, uplink configuration grant type 2 resources, or autonomous uplink AUL resources.
  • the resource allocation information further includes: the semi-persistent resource of the transmission carrier is in each resource. Allocation information within the period;
  • the resource allocation information further includes: the semi-persistent resource of the transmission carrier in each resource period. At least one of allocation information and a number of HARQ processes of semi-persistent resources of the transmission carrier.
  • the resource allocation information further includes: allocation information of the semi-persistent resource of the transmission carrier in each resource period, and a time domain offset of the semi-persistent resource of the transmission carrier. And at least one of the time domain length occupied by each time domain resource in the semi-persistent resources of the transmission carrier.
  • the semi-persistent resource is an uplink configuration grant type 1 resource.
  • the time domain length occupied by each of the time domain resources may be specifically 2 symbols.
  • the allocation information of the semi-persistent resources of the transmission carrier in each resource cycle includes at least one of information: a starting position of resource allocation, a bitmap of resource allocation, a resource allocation duration, and a short period of resource allocation; The duration of the short period of resource allocation is shorter than the duration of the resource period.
  • the starting position information of resource allocation may be specifically slot 2 or the offset from the active position is 2 slots;
  • the resource allocation bitmap bitmap may be specifically the positions of 10 slots identified by 10 bits, where , Determine that the resource at the slot position identified by a bit value of 1 is the resource allocated to the terminal;
  • the resource allocation duration may specifically be a resource allocation duration of 10ms from the start position of the resource for a 40ms cycle resource; a short cycle of resource allocation Specifically, for a resource with a 40ms period, the resource allocation duration is 10ms every 40ms, and the short period of resource allocation within the 10ms is 2ms.
  • the semi-persistent resource is a downlink semi-persistently scheduled SPS resource, and one HARQ process is available for each resource period.
  • periodic downlink resources are configured by the network side, and one downlink resource is allocated for each period.
  • the network side activates or deactivates the use of the SPS resource through physical downlink control channel (Physical Downlink Control Channel, PDCCH) control signaling.
  • PDCCH Physical Downlink Control Channel
  • the PDCCH command indicates the location of the activated resource, such as the start system frame number (SFN start time ) and The start slot number (slot start time ) is the start position of the resource.
  • determining the available resource location information of the transmission carrier in each resource period according to the resource configuration information of the semi-persistent resources includes:
  • the starting position of the semi-persistent resource is determined according to the activation signaling; the transmission is determined according to the resource configuration information and the starting position of the semi-persistent resource.
  • the carrier starts with available resource location information in each resource cycle.
  • the above activation signaling may be PDCCH activation signaling
  • the terminal determines the starting position of the semi-persistent resource, such as SFN start time and slot start time according to the activation signaling; the terminal according to the resource configuration information and the semi-persistent resource.
  • the starting position determines the available resource position information of the transmission carrier in each resource period by using the following formula.
  • CURRENT_slot [(N SlotsPerFrame ⁇ SFN start time + slot start time ) + N ⁇ T periodicity ⁇ N SlotsPerFrame / 10] modulo (1024 ⁇ N SlotsPerFrame ).
  • CURRENT_slot represents the current slot number
  • CURRENT_slot N SlotsPerFrame ⁇ SFN + N Slotnumber int heframe ;
  • N Slotnumber int heframe is the slot number of the current system frame; SFN represents the current system frame number; N SlotsPerFrame represents the number of slots in each system frame; SFN start time represents the starting system frame number; slot start time represents the start time Slot number; N represents the Nth resource, and T periodicity represents the resource period configured by the RRC message.
  • the resource allocation information includes resource allocation information in each resource period
  • determining the transmission carrier in each resource period according to the allocation information of the semi-persistent resource in each resource period Available resource location information.
  • the allocation information of the semi-persistent resources of the transmission carrier in each resource period includes at least one of: information on a starting position of resource allocation, a bitmap of resource allocation, a resource allocation duration, and a short period of resource allocation; wherein, the The duration of the short period of resource allocation is less than the duration of the resource period.
  • the available resource location information of the transmission carrier in each resource period can be specifically determined by the following methods.
  • the above allocation information includes a resource allocation duration. For example, 10 ms, it is determined that resources within 10 ms from the start position are available resources of the transmission carrier in each resource period.
  • the above allocation information includes a resource allocation duration, such as 10ms, and a short period of resource allocation, such as 2ms. It is determined that an available resource is allocated to the terminal every 2ms within 10ms from the starting position.
  • determining the HARQ process number available to the transmission carrier in each resource period includes:
  • each of the transmission carriers is Number of HARQ processes available in each resource period.
  • the HARQ process number available to each transmission carrier in each resource period is determined by the following formula.
  • HARQ Process ID [floor (CURRENT_slot ⁇ 10 / (N SlotsPerFrame ⁇ T periodicity ))] modulo N HARQ-Processes .
  • N HARQ-Processes indicates the number of HARQ processes of SPS resources configured by RRC messages
  • HARQ ProcessID represents the HARQ process number available to the transport carrier in each resource cycle.
  • the HARQ process identifies an offset, and determines a HARQ process number available to each transmission carrier in each resource period.
  • the HARQ process number available to each transmission carrier in each resource period is determined by the following formula.
  • HARQ Process ID [floor (CURRENT_slot ⁇ 10 / (N SlotsPerFrame ⁇ T periodicity ))] modulo N HARQ-Processes + Offset HARQ Process ID ;
  • the Offset HARQ Process ID indicates the offset of the HARQ process ID.
  • the above-mentioned HARQ process identifier offset includes at least one of the start number of the HARQ process identifier of the transmission carrier, the end number of the HARQ process identifier of the transmission carrier, and the number of available numbers of the HARQ process identifier of the transmission carrier.
  • the network device configuration or the protocol stipulates HARQ configuration information available to the terminal, and the HARQ configuration information includes the number of HARQ processes of semi-persistent resources, such as the total number of HARQs that semi-persistent resources can use.
  • the number of processes is four.
  • the network device determines the available resource location information of the transmission carrier in each resource cycle and the hybrid automatic retransmission request HARQ process that is available in each resource cycle according to the same method as described above. Number, and send data according to the determined available resource location information and available HARQ process number, and the terminal receives the data sent by the network device at the corresponding location.
  • the network device when the network device sends data according to the determined available resource location information and the available HARQ process number, the network device first detects whether the resource corresponding to the available resource location information and the HARQ process number are idle, and sends the data under the idle condition.
  • the above semi-persistent resources are downlink semi-persistently scheduled SPS resources, and multiple HARQ processes are available for each resource period.
  • the downlink semi-persistent scheduling SPS resources are configured by the network side with periodic downlink resources, and each period has 1 downlink resource allocation.
  • the network side activates or deactivates the use of the SPS resource through physical downlink control channel (Physical Downlink Control Channel, PDCCH) control signaling.
  • PDCCH Physical Downlink Control Channel
  • the PDCCH command indicates the location of the activated resource, such as the start system frame number (SFN start time ) and
  • the start slot number (slot start time ) is the start position of the resource.
  • determining the available resource location information of the transmission carrier in each resource period according to the resource configuration information of the semi-persistent resources includes:
  • the starting position of the semi-persistent resource is determined according to the activation signaling; the transmission is determined according to the resource configuration information and the starting position of the semi-persistent resource.
  • the carrier starts the available resource location information in each resource cycle;
  • the resource allocation information includes resource allocation information in each resource period
  • determining the transmission carrier in each resource period according to the allocation information of the semi-persistent resource in each resource period Available resource location information.
  • determining the HARQ process number available to the transmission carrier in each resource period includes:
  • the HARQ process number of the starting resource of each transmission carrier in each resource period is first determined by the following formula:
  • HARQ Process ID [floor (CURRENT_slot ⁇ 10 / (N SlotsPerFrame ⁇ T periodicity ))] modulo (N HARQ-Processes / N HARQ-ProcessesPerPeriod );
  • the remaining HARQ process numbers are allocated in order.
  • N HARQ-ProcessesPerPeriod represents the number of HARQ processes available in each resource cycle.
  • the number of HARQ processes and the HARQ process identifier offset in each resource cycle determine the HARQ process number of the starting resource of the transmission carrier in each resource cycle, and determine each resource according to the resource cycle number and resource number HARQ process number of subsequent resources in the cycle.
  • the HARQ process number of the starting resource of each transmission carrier in each resource period is determined by the following formula:
  • HARQ Process ID [floor (CURRENT_slot ⁇ 10 / (N SlotsPerFrame ⁇ T periodicity ))] modulo (N HARQ-Processes / N HARQ-ProcessesPerPeriod ) + Offset HARQ Process ID ;
  • the Offset HARQ Process ID indicates the offset of the HARQ process ID.
  • the above-mentioned HARQ process identifier offset includes at least one of the start number of the HARQ process identifier of the transmission carrier, the end number of the HARQ process identifier of the transmission carrier, and the number of available numbers of the HARQ process identifier of the transmission carrier.
  • the network device configuration or the protocol stipulates HARQ configuration information available to the terminal, and the HARQ configuration information includes: the number of HARQ processes of semi-persistent resources, and the number of HARQ processes of semi-persistent resources ( For example, the total number of HARQ processes that can be used for semi-persistent resources is 1, 2, 3, and 4), the number of HARQ processes that semi-persistent resources can use in each resource cycle (for example, 2 HARQ processes can be used for each resource cycle), and half At least one of the HARQ process numbers of persistent resources available in each resource period.
  • the UE can use a total of 4 HARQ processes, and each HARQ process can have 2 HARQ processes. Then, the UE starts the HARQ process numbers of the first resource cycle from the starting activation position, and the HARQ processes of the first resource cycle are numbered 1 and 2. The process numbers are 3 and 4; the HARQ process numbers for the third period are 1 and 2; the HARQ integration numbers for the fourth period are 3 and 4, and so on.
  • the network device determines the available resource location information of the transmission carrier in each resource period and the hybrid automatic repeat request HARQ process that is available in each resource period according to the same method as described above. Number, and send data according to the determined available resource location information and available HARQ process number, and the terminal receives the data sent by the network device at the corresponding location.
  • the network device when the network device sends data according to the determined available resource location information and the available HARQ process number, the network device first detects whether the resource corresponding to the available resource location information and the HARQ process number are idle, and sends the data under the idle condition.
  • the semi-persistent resource is an uplink configuration authorization type 1 resource, and one HARQ process is available for each resource period.
  • the uplink configuration grant type 1 resource is configured by the network side with periodic uplink resources, and there is 1 uplink resource allocation per cycle. No PDCCH command activation is required, and the RRC configuration can be used.
  • determining the available resource location information of the transmission carrier in each resource period according to the resource configuration information of the semi-persistent resources includes:
  • N SlotsPerFrame represents the number of slots of each system frame
  • N SymbolsPerSlot represents the number of symbols of each slot
  • N Slotnumber int heframe represents the slot number of the current system frame
  • N represents the Nth resource
  • S represents the number of the starting symbol
  • T periodicity represents the resource period of the RRC message configuration of the radio resource control
  • N symbol number in the slot represents the symbol number of the current slot;
  • CURRENT_symbol (SFN ⁇ N SlotsPerFrame ⁇ N SymbolsPerSlot + N Slotnumber int heframe ⁇ N SymbolsPerSlot + N symbol number in the slot );
  • CURRENT_symbol indicates the number of the current symbol.
  • the resource allocation information includes resource allocation information in each resource period
  • determining the transmission carrier in each resource period according to the allocation information of the semi-persistent resource in each resource period Available resource location information.
  • the allocation information of the semi-persistent resources of the transmission carrier in each resource period includes at least one of: information on a starting position of resource allocation, a bitmap of resource allocation, a resource allocation duration, and a short period of resource allocation; wherein, the The duration of the short period of resource allocation is less than the duration of the resource period.
  • the available resource location information of the transmission carrier in each resource period can be specifically determined by the following methods.
  • the above allocation information includes a resource allocation duration. For example, 10 ms, it is determined that resources within 10 ms from the start position are available resources of the transmission carrier in each resource period.
  • the above allocation information includes a resource allocation duration, such as 10 ms, and a short period of resource allocation, such as 2 ms. It is determined that an available resource is allocated to the terminal every 2 ms within 10 ms from the starting position.
  • determining the HARQ process number available to the transmission carrier in each resource period includes:
  • each of the transmission carriers is in each of the two channels according to the resource period, the current slot number, the number of slots in each system frame, and the number of HARQ processes of semi-persistent resources. Available HARQ process numbers in each resource period;
  • the HARQ process identifies an offset, and determines a HARQ process number available to each transmission carrier in each resource period.
  • the network device configuration or the protocol stipulates HARQ configuration information available to the terminal, and the HARQ configuration information includes the number of HARQ processes of semi-persistent resources, such as the total HARQ that semi-persistent resources can use.
  • the number of processes is four.
  • the terminal determines, according to the resource configuration information of the semi-persistent resources, the available resource location information of the transmission carrier in each resource cycle and the available hybrid in each resource cycle. After the HARQ process number is automatically retransmitted, the corresponding HARQ process number is used to send data at the available resource position in each resource cycle.
  • the terminal when the terminal sends data according to the determined available resource location information and the available HARQ process number, the terminal first detects whether the resource corresponding to the available resource location information and the HARQ process number are idle, and sends the data under the idle condition.
  • the semi-persistent resource is an uplink configuration grant type 1 resource, and multiple HARQ processes are available for each resource period.
  • the uplink configuration grant type 1 resource is configured by the network side with periodic uplink resources, and there is 1 uplink resource allocation per cycle. No PDCCH command activation is required, and the RRC configuration can be used.
  • determining the available resource location information of the transmission carrier in each resource period according to the resource configuration information of the semi-persistent resources includes:
  • the resource allocation information includes resource allocation information in each resource period
  • determining the transmission carrier in each resource period according to the allocation information of the semi-persistent resource in each resource period Available resource location information.
  • determining the HARQ process number available to the transmission carrier in each resource period includes:
  • the current slot number the number of slots per system frame, the resource period, the number of HARQ processes for semi-persistent resources, and the number of HARQ processes in each resource period
  • the resource period Determine the HARQ process number of the initial resource of the transmission carrier in each resource cycle, and determine the HARQ process number of subsequent resources in each resource cycle according to the number of the resource cycle and the resource number;
  • the number of HARQ processes and the HARQ process identifier offset in each resource cycle determine the HARQ process number of the starting resource of the transmission carrier in each resource cycle, and determine each resource based on the resource cycle number and resource number HARQ process number of subsequent resources in the cycle.
  • the network device configuration or the protocol stipulates HARQ configuration information available to the terminal.
  • the HARQ configuration information includes: the number of HARQ processes of semi-persistent resources, and the number of HARQ processes of semi-persistent resources ( For example, the total number of HARQ processes that can be used for semi-persistent resources is 1, 2, 3, and 4), the number of HARQ processes that semi-persistent resources can use in each resource cycle (for example, 2 HARQ processes can be used for each resource cycle), and half At least one of the HARQ process numbers of persistent resources available in each resource period.
  • the UE can use a total of 4 HARQ processes, and each HARQ process can have 2 HARQ processes. Then, the UE starts the HARQ process numbers of the first resource cycle from the starting activation position, and the HARQ processes of the first resource cycle are numbered 1 and 2. The process numbers are 3 and 4; the HARQ process numbers for the third period are 1 and 2; the HARQ integration numbers for the fourth period are 3 and 4, and so on.
  • the terminal determines, according to the resource configuration information of the semi-persistent resource, the available resource location information of the transmission carrier in each resource cycle and the available hybrid in each resource cycle. After the HARQ process number is automatically retransmitted, the corresponding HARQ process number is used to send data at the available resource position in each resource cycle.
  • the terminal when the terminal sends data according to the determined available resource location information and the available HARQ process number, the terminal first detects whether the resource corresponding to the available resource location information and the HARQ process number are idle, and sends the data under the idle condition.
  • the semi-persistent resource is an uplink configuration grant type 2 resource, and one HARQ process is available for each resource period.
  • the uplink configuration grant type 2 resource is configured by the network side with periodic uplink resources, and one uplink resource is allocated for each period.
  • the network side activates or deactivates the use of the SPS resource through PDCCH control signaling, and the PDCCH command indicates the position of the activated resource (eg, SFN start time (starting system frame number) and slot start time (starting slot number) and symbol start time ) is the start position of the resource.
  • determining the available resource location information of the transmission carrier in each resource period according to the resource configuration information of the semi-persistent resources includes:
  • the starting position of the semi-persistent resource is determined according to the activation signaling; the transmission is determined according to the resource configuration information and the starting position of the semi-persistent resource.
  • the carrier starts with available resource location information in each resource cycle.
  • the resource location information of the transmission carrier that is initially available in each resource period is determined by the following formula.
  • SFN represents the current system frame number
  • N SlotsPerFrame represents the number of slots in each system frame
  • N SymbolsPerSlot represents the number of symbols in each slot
  • N Slotnumber int heframe represents the slot number of the current system frame
  • N symbol number in The slot represents the symbol number of the current slot.
  • the resource allocation information includes resource allocation information in each resource period
  • determining the transmission carrier in each resource period according to the allocation information of the semi-persistent resource in each resource period Available resource location information.
  • the allocation information of the semi-persistent resources of the transmission carrier in each resource period includes at least one of: information on a starting position of resource allocation, a bitmap of resource allocation, a resource allocation duration, and a short period of resource allocation; wherein, the The duration of the short period of resource allocation is less than the duration of the resource period.
  • the available resource location information of the transmission carrier in each resource period can be specifically determined by the following methods.
  • the above allocation information includes a resource allocation duration. For example, 10 ms, it is determined that resources within 10 ms from the start position are available resources of the transmission carrier in each resource period.
  • the above allocation information includes a resource allocation duration, such as 10ms, and a short period of resource allocation, such as 2ms. It is determined that an available resource is allocated to the terminal every 2ms within 10ms from the starting position.
  • determining a HARQ process number available to the transmission carrier in each resource period includes:
  • Determining, according to the resource configuration information of the semi-persistent resource, an available HARQ process number of the transmission carrier in each resource period including:
  • each of the transmission carriers is in each of the two channels according to the resource period, the current slot number, the number of slots in each system frame, and the number of HARQ processes of semi-persistent resources. Available HARQ process numbers in each resource period;
  • the resource period the current time slot number, the number of time slots per system frame, the number of HARQ processes for semi-persistent resources, and the HARQ process The offset is identified, and a HARQ process number available to each transmission carrier in each resource period is determined.
  • the network device configuration or the protocol stipulates HARQ configuration information available to the terminal, and the HARQ configuration information includes the number of HARQ processes of semi-persistent resources, such as the total HARQ available for semi-persistent resources.
  • the number of processes is four.
  • the terminal determines, according to the resource configuration information of the semi-persistent resources, the available resource location information of the transmission carrier in each resource cycle and the available hybrid in each resource cycle. After the HARQ process number is automatically retransmitted, the corresponding HARQ process number is used to send data at the available resource position in each resource cycle.
  • the terminal when the terminal sends data according to the determined available resource location information and the available HARQ process number, the terminal first detects whether the resource corresponding to the available resource location information and the HARQ process number are idle, and sends the data under the idle condition.
  • the semi-persistent resource is an uplink configuration grant type 2 resource, and multiple HARQ processes are available for each resource period.
  • the uplink configuration grant type 2 resource is configured by the network side with periodic uplink resources, and one uplink resource is allocated for each period.
  • the network side activates or deactivates the use of the SPS resource through PDCCH control signaling.
  • the PDCCH command indicates the position of the activated resource (for example, SFN start time (starting system frame number) and slot start time (starting slot number) and symbol start time ) is the start position of the resource.
  • determining the available resource location information of the transmission carrier in each resource period according to the resource configuration information of the semi-persistent resources includes:
  • the starting position of the semi-persistent resource is determined according to the activation signaling; the transmission is determined according to the resource configuration information and the starting position of the semi-persistent resource.
  • the carrier starts the available resource location information in each resource cycle;
  • the resource allocation information includes resource allocation information in each resource period
  • determining the transmission carrier in each resource period according to the allocation information of the semi-persistent resource in each resource period Available resource location information.
  • determining the HARQ process number available to the transmission carrier in each resource period includes:
  • Determining, according to the resource configuration information of the semi-persistent resource, an available HARQ process number of the transmission carrier in each resource period including:
  • the transmission carrier is determined in each resource according to the current time slot number, the number of time slots of each system frame, the resource period, and the number of HARQ processes of semi-persistent resources.
  • the HARQ process number of the starting resource in the period, and the HARQ process number of the subsequent resource in each resource period is determined according to the number of the resource period and the resource number.
  • a HARQ process number of a start resource of each transmission carrier in each resource period is determined by the following formula:
  • HARQ Process ID [floor (CURRENT_slot ⁇ 10 / (N SlotsPerFrame ⁇ T periodicity ))] modulo N HARQ-Processes .
  • the remaining HARQ process numbers are allocated in order.
  • the HARQ process identifies the offset, determines the HARQ process number of the starting resource of the transmission carrier in each resource cycle, and determines the HARQ process number of subsequent resources in each resource cycle according to the resource cycle number and resource number.
  • the HARQ process number of the starting resource of each transmission carrier in each resource period is determined by the following formula:
  • HARQ Process ID [floor (CURRENT_slot ⁇ 10 / (N SlotsPerFrame ⁇ T periodicity ))] modulo N HARQ-Processes + Offset HARQ Process ID ;
  • the remaining HARQ process numbers are allocated in order.
  • the network device configuration or the protocol stipulates HARQ configuration information available to the terminal, and the HARQ configuration information includes: the number of HARQ processes of semi-persistent resources, and the number of HARQ processes of semi-persistent resources ( For example, the total number of HARQ processes that can be used for semi-persistent resources is 1, 2, 3, and 4), the number of HARQ processes that semi-persistent resources can use in each resource cycle (for example, 2 HARQ processes can be used for each resource cycle), and half At least one of the HARQ process numbers of persistent resources available in each resource period.
  • the UE can use a total of 4 HARQ processes, and each HARQ process can have 2 HARQ processes. Then, the UE starts the HARQ process numbers of the first resource cycle from the starting activation position, and the HARQ processes of the first resource cycle are numbered 1 and 2. The process numbers are 3 and 4; the HARQ process numbers for the third period are 1 and 2; the HARQ integration numbers for the fourth period are 3 and 4, and so on.
  • the terminal determines, according to the resource configuration information of the semi-persistent resources, the available resource location information of the transmission carrier in each resource cycle and the available hybrid in each resource cycle. After the HARQ process number is automatically retransmitted, the corresponding HARQ process number is used to send data at the available resource position in each resource cycle.
  • the terminal when the terminal sends data according to the determined available resource location information and the available HARQ process number, the terminal first detects whether the resource corresponding to the available resource location information and the HARQ process number are idle, and sends the data under the idle condition.
  • the semi-persistent resource is an autonomous uplink AUL resource.
  • the network side configures a resource allocation of a bitmap bitmap (for example, if one of the bit values in the 40 bits is set to 1, the resource is allocated to the UE).
  • the network side activates or deactivates the use of the AUL resource through PDCCH control signaling.
  • the PDCCH command indicates the position of the activated resource (for example, SFN start time (starting system frame number) and slot start time (starting time slot number) and symbol. start time (starting symbol number) is the start position of the resource.
  • start time starting symbol number
  • the UE autonomously selects a HARQ process from the HARQ process pool configured on the network side for sending.
  • determining the available resource location information of the transmission carrier in each resource period according to the resource configuration information of the semi-persistent resources includes:
  • the starting position of the semi-persistent resource is determined according to the activation signaling; the transmission is determined according to the resource configuration information and the starting position of the semi-persistent resource.
  • the carrier starts the available resource location information in each resource cycle;
  • the resource allocation information includes resource allocation information in each resource period
  • determining the transmission carrier in each resource period according to the allocation information of the semi-persistent resource in each resource period Available resource location information.
  • the network device configuration or the protocol stipulates HARQ configuration information available to the terminal, and the HARQ configuration information includes: a HARQ process number pool available to the terminal, for example, a HARQ process number available to the terminal is 1, 2, 3, and 4.
  • the terminal determines, according to the resource configuration information of the semi-persistent resources, the available resource location information of the transmission carrier in each resource cycle and the available hybrid in each resource cycle. After the HARQ process number is automatically retransmitted, the corresponding HARQ process number is used to send data at the available resource position in each resource cycle.
  • the terminal when the terminal sends data according to the determined available resource location information, it first detects whether the resource corresponding to the available resource location information and the HARQ process number are free, and in the case of idleness, according to the resource configuration information in the available HARQ process number pool Select a HARQ process to send data, such as selecting HARQ process 1 to send data.
  • the resource configuration method acquires resource configuration information of semi-persistent resources, where the resource configuration information includes identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers;
  • the resource configuration information of the semi-persistent resources determines the available resource location information of the transmission carrier in each resource period and the hybrid automatic retransmission request HARQ process number available in each resource period, thereby achieving different Different semi-persistent resources are configured on the uplink transmission carrier and / or the downlink transmission carrier, which provides the utilization of the lower semi-persistent resources of the multi-transport carrier, and at the same time reduces the delay caused by scheduling when data is being sent.
  • an embodiment of the present disclosure further provides a resource configuration method, which is applied to a network device and includes:
  • Step 301 Send resource configuration information of semi-persistent resources, where the resource configuration information includes identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers.
  • the transmission carrier includes a beam or a transmission node; and the resource allocation information includes a resource period of a semi-persistent resource.
  • the identification information of the transmission carrier includes: the transmission carrier identifier, the cell identifier corresponding to the transmission carrier, the frequency point identifier corresponding to the transmission carrier, the bandwidth part BWP identifier corresponding to the transmission carrier, the control channel information identifier corresponding to the transmission carrier, and the MAC entity corresponding to the transmission carrier. At least one of the logos.
  • the cell identifier corresponding to the transmission carrier may be specifically cell 1
  • the frequency point identifier corresponding to the transmission carrier may be frequency point 1
  • the bandwidth part BWP identifier corresponding to the transmission carrier may be specifically BWP_1
  • the MAC corresponding to the transmission carrier may be The entity identifier may be specifically MAC_1.
  • the transmission carrier identifier includes at least one of a synchronization signal block SSB identifier, a channel state information reference signal CSI-RS identifier, and a port number identifier corresponding to the reference signal, and the reference signal includes SSB and / or CSI- RS.
  • the transmission carrier identifier may be other signal identifiers, which are not specifically limited herein.
  • the port number identifier corresponding to the above reference signal may be specifically port_1, and the reference signal may be other reference signals in addition to SSB and CSI-RS, which is not specifically limited here.
  • the control channel identifier corresponding to the transmission carrier includes at least one of a control channel type identifier, a control channel resource location identifier, a control channel reference signal identifier, and a control channel reference signal corresponding port number identifier.
  • the control channel type identifier may be specifically PDCCH_1 of the primary cell PCell; the resource location identifier of the control channel may be a control resource group (CORESET) and / or a search space identifier (search space); the reference signal identifier of the control channel may be an SSB identifier And / or CSI-RS identification.
  • CORESET control resource group
  • search space search space
  • the reference signal identifier of the control channel may be an SSB identifier And / or CSI-RS identification.
  • the resource allocation method of the embodiment of the present disclosure when a network device configures a terminal with semi-persistent resources, different semi-persistent resources are configured for different transmission carriers, which improves the utilization rate of the semi-persistent resources in the multi-transport carrier, and reduces Delay in data transmission due to scheduling.
  • the resource allocation information further includes: allocation information of the semi-persistent resources of the transmission carrier in each resource period and the number of HARQ processes of the semi-persistent resources of the transmission carrier. At least one of.
  • the semi-persistent resources are downlink semi-persistent scheduling SPS resources, uplink configuration grant type 2 resources, or autonomous uplink AUL resources.
  • the resource allocation information further includes: the semi-persistent resource of the transmission carrier is in each resource. Allocation information within the period;
  • the resource allocation information further includes: the semi-persistent resource of the transmission carrier in each resource period. At least one of allocation information and a number of HARQ processes of semi-persistent resources of the transmission carrier.
  • the resource allocation information further includes: allocation information of the semi-persistent resource of the transmission carrier in each resource period, and a time domain offset of the semi-persistent resource of the transmission carrier. And at least one of the time domain length occupied by each time domain resource in the semi-persistent resources of the transmission carrier.
  • the semi-persistent resource is an uplink configuration grant type 1 resource.
  • the time domain length occupied by each of the time domain resources may be specifically 2 symbols.
  • the allocation information of the semi-persistent resources of the transmission carrier in each resource cycle includes at least one of information: a starting position of resource allocation, a bitmap of resource allocation, a resource allocation duration, and a short period of resource allocation; The duration of the short period of resource allocation is shorter than the duration of the resource period.
  • the starting position information of resource allocation may be specifically slot 2 or the offset from the active position is 2 slots;
  • the resource allocation bitmap bitmap may be specifically the positions of 10 slots identified by 10 bits, where , Determine that the resource at the slot position identified by a bit value of 1 is the resource allocated to the terminal;
  • the resource allocation duration may specifically be a resource allocation duration of 10ms from the start position of the resource for a 40ms cycle resource; a short cycle of resource allocation Specifically, for a resource with a 40ms period, the resource allocation duration is 10ms every 40ms, and the short period of resource allocation within the 10ms is 2ms.
  • the network device configuration or the protocol stipulates HARQ configuration information available to the terminal.
  • the HARQ configuration information includes: the number of HARQ processes with semi-persistent resources, the number of HARQ processes with semi-persistent resources, the number of HARQ processes with semi-persistent resources available in each resource cycle, the number of HARQ processes with semi-persistent resources available in each resource cycle, and At least one item in the HARQ process number pool available to the terminal.
  • the HARQ configuration information includes the number of HARQ processes for semi-persistent resources.
  • the total number of HARQ processes that can be used for semi-persistent resources is 4; for the case of downlink semi-persistently scheduled SPS resources and multiple HARQ processes are available per resource period, the HARQ configuration information includes: the number of HARQ processes for semi-persistent resources, and the HARQ process number of semi-persistent resources
  • the total number of HARQ processes that can be used for the resource is 1, 2, 3, and 4), the number of HARQ processes that semi-persistent resources can use in each resource cycle (for example, 2 HARQ processes can be used per resource cycle), and semi-persistent resources At least one of the HARQ process numbers available for each resource period.
  • the UE can use a total of 4 HARQ processes, and each HARQ process can have 2 HARQ processes. Then, the UE starts the HARQ process numbers of the first resource cycle from the starting activation position, and the HARQ processes of the first resource cycle are numbered 1 and 2. The process numbers are 3 and 4; the HARQ process numbers for the third period are 1 and 2; the HARQ integration numbers for the fourth period are 3 and 4, and so on.
  • the HARQ configuration information includes the number of HARQ processes of semi-persistent resources. For example, the total number of HARQ processes that can be used for semi-persistent resources is 4.
  • the HARQ configuration information includes: the number of HARQ processes for semi-persistent resources, and the number of HARQ processes for semi-persistent resources The number of HARQ processes used are 1, 2, 3, and 4), the number of HARQ processes available for semi-persistent resources in each resource cycle (for example, 2 HARQ processes can be used for each resource cycle), and semi-persistent resources in each resource At least one of the periodically available HARQ process numbers.
  • the HARQ configuration information includes the number of HARQ processes of semi-persistent resources. For example, the total number of HARQ processes that can be used for semi-persistent resources is 4.
  • the HARQ configuration information includes: the number of HARQ processes for semi-persistent resources, and the number of HARQ processes for semi-persistent resources (for example, the total number of semi-persistent resources can be The number of HARQ processes used are 1, 2, 3, and 4), the number of HARQ processes available for semi-persistent resources in each resource cycle (for example, 2 HARQ processes can be used for each resource cycle), and semi-persistent resources in each resource At least one of the periodically available HARQ process numbers.
  • the HARQ configuration information includes: a HARQ process number pool available to the terminal, for example, HARQ process numbers available to the terminal are 1, 2, 3, and 4.
  • the resource allocation method of the embodiment of the present disclosure when a network device configures a terminal with semi-persistent resources, different semi-persistent resources are configured for different transmission carriers, which improves the utilization rate of the semi-persistent resources in the multi-transport carrier, and reduces Delay in data transmission due to scheduling.
  • FIG. 4 is a schematic module diagram of a terminal according to an embodiment of the present disclosure. As shown in FIG. 4, an embodiment of the present disclosure further provides a terminal 400 including:
  • the obtaining module 401 is configured to obtain resource configuration information of semi-persistent resources, where the resource configuration information includes identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers;
  • a determining module 402 configured to determine, according to the resource configuration information of the semi-persistent resources, available resource location information of the transmission carrier in each resource cycle and a hybrid automatic repeat request HARQ process number available in each resource cycle At least one of.
  • the resource allocation information includes a resource period.
  • the resource allocation information further includes at least one of allocation information of the semi-persistent resources of the transmission carrier in each resource period and the number of HARQ processes of the semi-persistent resources of the transmission carrier. .
  • the determining module is configured to determine a starting position of a semi-persistent resource according to the activation signaling when receiving activation signaling sent by a network device; and according to the resource configuration information and all resources, The starting position of the semi-persistent resource is determined, and resource position information of the transmission carrier that is available at the beginning of each resource period is determined;
  • the resource allocation information includes resource allocation information in each resource period
  • the semi-persistent resource is a downlink semi-continuous scheduling SPS resource, an uplink configuration grant type 2 resource, or an autonomous uplink AUL resource.
  • the resource allocation information further includes: allocation information of the semi-persistent resource of the transmission carrier in each resource period, a time domain offset of the semi-persistent resource of the transmission carrier, and the At least one of the time domain lengths occupied by each time domain resource in the semi-persistent resources of the transport carrier.
  • the determining module is configured to determine, according to the resource configuration information of the semi-persistent resource, the resource location information that the transmission carrier starts to use in each resource cycle;
  • the resource allocation information includes resource allocation information in each resource period
  • the semi-persistent resource is an uplink configuration authorization type 1 resource.
  • the allocation information of the semi-persistent resources of the transmission carrier in each resource period includes: start position information of resource allocation, bitmap of resource allocation bitmap, resource allocation duration, and resource allocation short period. At least one
  • the duration of the short period of resource allocation is shorter than the duration of the resource period.
  • the terminal when one HARQ process is available in each resource period;
  • the determining module 402 includes:
  • the first determining submodule 4021 is configured to, when different transmission carriers correspond to different HARQ entities, according to the resource period, the current time slot number, the number of time slots of each system frame, and the number of HARQ processes of semi-persistent resources. Determining a HARQ process number available for each said transmission carrier in each resource period;
  • the second determining submodule 4022 is configured to, when different transmission carriers correspond to the same HARQ entity and correspond to different HARQ process numbers, according to the resource period, the current slot number, and the number of slots of each system frame 2.
  • the semi-persistent resource is a downlink semi-persistent scheduling SPS resource, an uplink configuration grant type 1 resource, or an uplink configuration grant type 2 resource.
  • the HARQ process identifier offset includes: a start number of the HARQ process identifier of the transmission carrier, an end number of the HARQ process identifier of the transmission carrier, and an available number of the available number of the HARQ process identifier of the transmission carrier. At least one.
  • the determining module 402 includes:
  • the third determining sub-module 4023 is used in the case that different transmission carriers correspond to different HARQ entities, according to the current time slot number, the number of time slots of each system frame, the resource period, and the number of HARQ processes of semi-persistent resources.
  • the number of HARQ processes in each resource cycle, the HARQ process number of the initial resource of the transmission carrier in each resource cycle is determined, and the HARQ process of subsequent resources in each resource cycle is determined according to the resource cycle number and the resource number. Numbering;
  • the fourth determining sub-module 4024 is configured to, when different transmission carriers correspond to the same HARQ entity and correspond to different HARQ process numbers, according to the current time slot number, the number of time slots of each system frame, and the resource period , The number of HARQ processes of semi-persistent resources, the number of HARQ processes in each resource cycle, and the HARQ process identifier offset, determine the HARQ process number of the starting resource of the transmission carrier in each resource cycle, and according to the resource cycle's Number and resource number, determine the HARQ process number of subsequent resources in each resource cycle.
  • the semi-persistent resource is a downlink semi-persistent scheduling SPS resource or an uplink configuration grant type 1 resource.
  • the determining module 402 includes:
  • the fifth determining sub-module 4025 is configured to, when different transmission carriers correspond to different HARQ entities, according to the current time slot number, the number of time slots of each system frame, the resource period, and the number of HARQ processes of semi-persistent resources, Determining the HARQ process number of the starting resource of the transmission carrier in each resource period, and determining the HARQ process number of subsequent resources in each resource period according to the resource period number and the resource number;
  • the sixth determining sub-module 4026 is configured to, in a case where different transmission carriers correspond to the same HARQ entity and correspond to different HARQ process numbers, according to the current time slot number, the number of time slots of each system frame, and the resource period 2.
  • the number of HARQ processes and the HARQ process identifier offset of semi-persistent resources determine the HARQ process number of the initial resource of the transmission carrier in each resource cycle, and determine each resource cycle according to the resource cycle number and resource number. HARQ process number of subsequent resources in the medium.
  • the semi-persistent resource is an uplink configuration authorization type 2 resource.
  • the identification information of the transmission carrier includes: a transmission carrier identifier, a cell identifier corresponding to the transmission carrier, a frequency point identifier corresponding to the transmission carrier, a bandwidth part BWP identifier corresponding to the transmission carrier, and a control channel corresponding to the transmission carrier. At least one of an information identifier and a MAC entity identifier corresponding to the transmission carrier.
  • the transmission carrier identifier includes at least one of a synchronization signal block SSB identifier, a channel state information reference signal CSI-RS identifier, and a port number identifier corresponding to the reference signal.
  • the reference signal includes SSB and / Or CSI-RS.
  • the control channel identifier corresponding to the transmission carrier includes at least one of a control channel type identifier, a control channel resource location identifier, a control channel reference signal identifier, and a port number identifier corresponding to the control channel reference signal.
  • the determination module of the terminal in the embodiment of the present disclosure includes a first determination submodule, a second determination submodule, and a third determination submodule. At least one of a module, a fourth determination submodule, a fifth determination submodule, and a sixth determination submodule.
  • the terminal in the embodiment of the present disclosure obtains resource configuration information of semi-persistent resources, where the resource configuration information includes: identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers; Semi-persistent resource resource configuration information, determining at least one of the available resource location information of the transmission carrier in each resource period and the hybrid automatic retransmission request HARQ process number available in each resource period, thereby achieving The configuration of different semi-persistent resources on different uplink transmission carriers and / or downlink transmission carriers improves the utilization rate of the lower semi-persistent resources of the multi-transport carrier, and at the same time reduces the delay due to scheduling during data transmission.
  • the resource configuration information includes: identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers;
  • Semi-persistent resource resource configuration information determining at least one of the available resource location information of the transmission carrier in each resource period and the hybrid automatic retransmission request HARQ process number available in each resource period, thereby achieving
  • An embodiment of the present disclosure further provides a terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • a terminal including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor, the foregoing application to the terminal is implemented.
  • the various processes in the embodiment of the resource allocation method can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the foregoing resource configuration method embodiment applied to a terminal.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • an embodiment of the present disclosure further provides a terminal including a memory 520, a processor 500, a transceiver 510, a user interface 530, a bus interface, and storage on the memory 520.
  • a computer program that can run on the processor 500, which is used to read the program in the memory 520 and execute the following processes:
  • the resource configuration information includes identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers;
  • At least one of the available resource location information of the transmission carrier in each resource period and the hybrid automatic repeat request HARQ process number available in each resource period is determined.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 510 may be multiple elements, including a transmitter and a transceiver, providing a unit for communicating with various other devices over a transmission medium.
  • the user interface 530 may also be an interface capable of externally connecting internally required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 may store data used by the processor 500 when performing operations.
  • the resource allocation information includes a resource period.
  • the resource allocation information further includes at least one of allocation information of the semi-persistent resources of the transmission carrier in each resource period and the number of HARQ processes of the semi-persistent resources of the transmission carrier.
  • the processor 500 reads the program in the memory 520 and is further configured to execute:
  • the starting position of the semi-persistent resource is determined according to the activation signaling; the transmission is determined according to the resource configuration information and the starting position of the semi-persistent resource.
  • the carrier starts the available resource location information in each resource cycle;
  • the resource allocation information includes resource allocation information in each resource period
  • determining the transmission carrier in each resource period according to the allocation information of the semi-persistent resource in each resource period Available resource location information.
  • the semi-persistent resources are downlink semi-persistent scheduling SPS resources, uplink configuration grant type 2 resources, or autonomous uplink AUL resources.
  • the resource allocation information further includes: allocation information of the semi-persistent resources of the transmission carrier in each resource period, a time domain offset of the semi-persistent resources of the transmission carrier, and At least one of the time domain lengths occupied by each time domain resource in the semi-persistent resources.
  • the processor 500 reads the program in the memory 520 and is further configured to execute:
  • the resource allocation information includes resource allocation information in each resource period
  • determining the transmission carrier in each resource period according to the allocation information of the semi-persistent resource in each resource period Available resource location information.
  • the semi-persistent resource is an uplink configuration authorization type 1 resource.
  • the allocation information of the semi-persistent resources of the transmission carrier in each resource period includes at least one of the following information: the starting position of resource allocation, bitmap of resource allocation, bitmap of resource allocation, and short period of resource allocation. ;
  • the duration of the short period of resource allocation is shorter than the duration of the resource period.
  • the processor 500 reads a program in the memory 520 and is further configured to execute:
  • each of the transmission carriers is in each of the two channels according to the resource period, the current slot number, the number of slots in each system frame, and the number of HARQ processes of semi-persistent resources. Available HARQ process numbers in each resource period;
  • the HARQ process identifies an offset, and determines a HARQ process number available to each transmission carrier in each resource period.
  • the semi-persistent resources are downlink semi-persistent scheduling SPS resources, uplink configuration grant type 1 resources, or uplink configuration grant type 2 resources.
  • the HARQ process identifier offset includes at least one of the start number of the HARQ process identifier of the transmission carrier, the end number of the HARQ process identifier of the transmission carrier, and the number of available numbers of the HARQ process identifier of the transmission carrier. .
  • the processor 500 reads a program in the memory 520 and is further configured to execute:
  • the current slot number the number of slots per system frame, the resource period, the number of HARQ processes for semi-persistent resources, and the number of HARQ processes in each resource period
  • the resource period Determine the HARQ process number of the initial resource of the transmission carrier in each resource cycle, and determine the HARQ process number of subsequent resources in each resource cycle according to the number of the resource cycle and the resource number;
  • the number of HARQ processes and the HARQ process identifier offset in each resource cycle determine the HARQ process number of the starting resource of the transmission carrier in each resource cycle, and determine each resource based on the resource cycle number and resource number HARQ process number of subsequent resources in the cycle.
  • the semi-persistent resource is a downlink semi-persistent scheduling SPS resource or an uplink configuration grant type 1 resource.
  • the processor 500 reads a program in the memory 520 and is further configured to execute:
  • the transmission carrier is determined in each resource according to the current time slot number, the number of time slots of each system frame, the resource period, and the number of HARQ processes of semi-persistent resources.
  • the HARQ process identifies the offset, determines the HARQ process number of the starting resource of the transmission carrier in each resource cycle, and determines the HARQ process number of subsequent resources in each resource cycle according to the resource cycle number and resource number.
  • the semi-persistent resource is an uplink configuration authorization type 2 resource.
  • the identification information of the transmission carrier includes: a transmission carrier identifier, a cell identifier corresponding to the transmission carrier, a frequency point identifier corresponding to the transmission carrier, a bandwidth part BWP identifier corresponding to the transmission carrier, a control channel information identifier corresponding to the transmission carrier, and At least one of the MAC entity identifiers corresponding to the transmission carrier.
  • the transmission carrier identifier includes at least one of a synchronization signal block SSB identifier, a channel state information reference signal CSI-RS identifier, and a port number identifier corresponding to the reference signal, and the reference signal includes SSB and / or CSI -RS.
  • control channel identifier corresponding to the transmission carrier includes at least one of a control channel type identifier, a control channel resource location identifier, a control channel reference signal identifier, and a control channel reference signal corresponding port number identifier.
  • the terminal in the embodiment of the present disclosure obtains resource configuration information of semi-persistent resources, where the resource configuration information includes: identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers; Semi-persistent resource resource configuration information, determining at least one of the available resource location information of the transmission carrier in each resource period and the hybrid automatic retransmission request HARQ process number available in each resource period, thereby achieving The configuration of different semi-persistent resources on different uplink transmission carriers and / or downlink transmission carriers improves the utilization rate of the lower semi-persistent resources of the multi-transport carrier, and at the same time reduces the delay due to scheduling during data transmission.
  • the resource configuration information includes: identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers;
  • Semi-persistent resource resource configuration information determining at least one of the available resource location information of the transmission carrier in each resource period and the hybrid automatic retransmission request HARQ process number available in each resource period, thereby achieving
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 600 includes, but is not limited to, a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, The user input unit 607, the interface unit 608, the memory 609, the processor 610, and the power supply 611 and other components.
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the processor 610 is configured to obtain resource configuration information of semi-persistent resources, where the resource configuration information includes identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers;
  • At least one of the available resource location information of the transmission carrier in each resource period and the hybrid automatic repeat request HARQ process number available in each resource period is determined.
  • the foregoing technical solution of the embodiment of the present disclosure obtains resource configuration information of semi-persistent resources, where the resource configuration information includes: identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers;
  • the resource configuration information of the semi-persistent resources determining at least one of position information of available resources of the transport carrier in each resource period and hybrid automatic retransmission request HARQ process numbers available in each resource period, thereby It realizes the configuration of different semi-persistent resources on different uplink transmission carriers and / or downlink transmission carriers, improves the utilization rate of the lower semi-persistent resources of multi-transport carriers, and reduces the delay caused by scheduling when transmitting data. .
  • the radio frequency unit 601 may be used to receive and send signals during the process of receiving and sending information or during a call. Specifically, the downlink data from the network device is received and processed by the processor 610. In addition, Send the uplink data to the network device.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 601 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 602, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 603 may convert audio data received by the radio frequency unit 601 or the network module 602 or stored in the memory 609 into audio signals and output them as sound. Also, the audio output unit 603 may also provide audio output (for example, a call signal receiving sound, a message receiving sound, etc.) related to a specific function performed by the terminal 600.
  • the audio output unit 603 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 604 is used for receiving audio or video signals.
  • the input unit 604 may include a graphics processing unit (GPU) 6041 and a microphone 6042.
  • the graphics processor 6041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on a display unit 606.
  • the image frames processed by the graphics processor 6041 may be stored in the memory 609 (or other storage medium) or transmitted via the radio frequency unit 601 or the network module 602.
  • the microphone 6042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication network device via the radio frequency unit 601 in the case of a telephone call mode and output.
  • the terminal 600 further includes at least one sensor 605, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 6061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 6061 and / Or backlight.
  • an accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes).
  • sensor 605 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 606 is configured to display information input by the user or information provided to the user.
  • the display unit 606 may include a display panel 6061, and the display panel 6061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 607 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072.
  • Touch panel 6071 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 6071 or near touch panel 6071 operating).
  • the touch panel 6071 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends To the processor 610, receive the command sent by the processor 610 and execute it.
  • various types such as resistive, capacitive, infrared and surface acoustic wave can be used to implement the touch panel 6071.
  • the user input unit 607 may further include other input devices 6072.
  • other input devices 6072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 6071 may be overlaid on the display panel 6061.
  • the touch panel 6071 detects a touch operation on or near the touch panel 6071, the touch panel 6071 transmits the touch operation to the processor 610 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 6061.
  • the touch panel 6071 and the display panel 6061 are implemented as two separate components to implement the input and output functions of the terminal, in some embodiments, the touch panel 6071 and the display panel 6061 can be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 608 is an interface through which an external device is connected to the terminal 600.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 608 may be used to receive an input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 600 or may be used between the terminal 600 and an external device. Transfer data.
  • the memory 609 can be used to store software programs and various data.
  • the memory 609 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 609 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 610 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal.
  • the processor 610 runs or executes software programs and / or modules stored in the memory 609 and calls data stored in the memory 609 to execute Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 610.
  • the terminal 600 may further include a power source 611 (such as a battery) for supplying power to various components.
  • a power source 611 such as a battery
  • the power source 611 may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 600 includes some functional modules that are not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a network device 700, including:
  • the sending module 701 is configured to send resource configuration information of semi-persistent resources, where the resource configuration information includes identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers.
  • the terminal when the terminal is configured with semi-persistent resources, different semi-persistent resources are configured for different transmission carriers, which improves the utilization rate of the lower semi-persistent resources of the multi-transport carrier, and at the same time reduces the data transmission Delay due to scheduling.
  • the resource allocation information includes a resource period.
  • the resource allocation information further includes at least one of allocation information of the semi-persistent resources of the transmission carrier in each resource period and a number of HARQ processes of the semi-persistent resources of the transmission carrier. item.
  • the semi-persistent resources are downlink semi-persistent scheduling SPS resources, uplink configuration authorization type 2 resources, or autonomous uplink AUL resources.
  • the resource allocation information further includes: allocation information of the semi-persistent resource of the transmission carrier in each resource period, a time domain offset of the semi-persistent resource of the transmission carrier, and a At least one of the time domain lengths occupied by each time domain resource in the semi-persistent resources of the transmission carrier is described.
  • the semi-persistent resource is an uplink configuration authorization type 1 resource.
  • the allocation information of the semi-persistent resources of the transmission carrier in each resource period includes: starting position information of resource allocation, bitmap of resource allocation bitmap, resource allocation duration, and short period of resource allocation. At least one of
  • the duration of the short period of resource allocation is shorter than the duration of the resource period.
  • the identification information of the transmission carrier includes a transmission carrier identifier, a cell identifier corresponding to the transmission carrier, a frequency point identifier corresponding to the transmission carrier, a bandwidth part BWP identifier corresponding to the transmission carrier, and a control corresponding to the transmission carrier. At least one of a channel information identifier and a MAC entity identifier corresponding to the transmission carrier.
  • the transmission carrier identifier includes at least one of a synchronization signal block SSB identifier, a channel state information reference signal CSI-RS identifier, and a port number identifier corresponding to the reference signal, and the reference signal includes SSB. And / or CSI-RS.
  • the control channel identifier corresponding to the transmission carrier includes: a control channel type identifier, a control channel resource location identifier, a control channel reference signal identifier, and a port number identifier corresponding to the control channel reference signal. At least one.
  • the terminal when the terminal is configured with semi-persistent resources, different semi-persistent resources are configured for different transmission carriers, which improves the utilization rate of the lower semi-persistent resources of the multi-transport carrier, and at the same time reduces the data transmission Delay due to scheduling.
  • An embodiment of the present disclosure further provides a network device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • a network device including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor, the foregoing application to the network is implemented.
  • Each process in the method embodiment of the device resource allocation method can achieve the same technical effect. To avoid repetition, details are not described herein again.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the foregoing resource configuration method embodiment applied to a network device.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
  • an embodiment of the present disclosure further provides a network device 800 including a processor 801, a transceiver 802, a memory 803, and a bus interface, where:
  • the processor 801 is configured to read a program in the memory 803 and execute the following processes:
  • Send resource configuration information of semi-persistent resources where the resource configuration information includes: identification information of multiple transmission carriers and resource allocation information corresponding to the identification information of each of the transmission carriers.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 801 and various circuits of the memory represented by the memory 803 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 802 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 may store data used by the processor 801 when performing operations.
  • the resource allocation information includes a resource period.
  • the resource allocation information further includes at least one of allocation information of the semi-persistent resources of the transmission carrier in each resource period and the number of HARQ processes of the semi-persistent resources of the transmission carrier.
  • the semi-persistent resources are downlink semi-persistent scheduling SPS resources, uplink configuration grant type 2 resources, or autonomous uplink AUL resources.
  • the resource allocation information further includes: allocation information of the semi-persistent resources of the transmission carrier in each resource period, a time domain offset of the semi-persistent resources of the transmission carrier, and At least one of the time domain lengths occupied by each time domain resource in the semi-persistent resources.
  • the semi-persistent resource is an uplink configuration authorization type 1 resource.
  • the allocation information of the semi-persistent resources of the transmission carrier in each resource period includes at least one of the following information: the starting position of resource allocation, bitmap of resource allocation, bitmap of resource allocation, and short period of resource allocation. ;
  • the duration of the short period of resource allocation is shorter than the duration of the resource period.
  • the identification information of the transmission carrier includes: a transmission carrier identifier, a cell identifier corresponding to the transmission carrier, a frequency point identifier corresponding to the transmission carrier, a bandwidth part BWP identifier corresponding to the transmission carrier, a control channel information identifier corresponding to the transmission carrier, and At least one of the MAC entity identifiers corresponding to the transmission carrier.
  • the transmission carrier identifier includes at least one of a synchronization signal block SSB identifier, a channel state information reference signal CSI-RS identifier, and a port number identifier corresponding to the reference signal, and the reference signal includes SSB and / or CSI -RS.
  • control channel identifier corresponding to the transmission carrier includes at least one of a control channel type identifier, a control channel resource location identifier, a control channel reference signal identifier, and a control channel reference signal corresponding port number identifier.
  • the terminal when the terminal is configured with semi-persistent resources, different semi-persistent resources are configured for different transmission carriers, which improves the utilization rate of the lower semi-persistent resources of the multi-transport carrier, and at the same time reduces the data transmission Delay due to scheduling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种资源配置方法、终端及网络设备。本公开实施例的资源配置方法包括:获取半持续资源的资源配置信息,资源配置信息包括:多个传输载体的标识信息及与每个传输载体的标识信息对应的资源分配信息;根据半持续资源的资源配置信息,确定传输载体在每个资源周期中的可用资源位置信息及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项。

Description

资源配置方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年9月21日在中国提交的中国专利申请No.201811110744.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信应用的技术领域,尤其涉及一种资源配置方法、终端及网络设备。
背景技术
第五代(5Generation,5G)移动通信系统中,为达到下行链路传输速率20Gbps,上行链路传输速率10Gbps的目标,高频通信和大规模天线技术将会被引入。高频通信可提供更宽的系统带宽,天线尺寸也可以更小,更加有利于大规模天线在基站和UE中部署。基站侧采用多波束(Multi-beam)或多收发节点(Multi-TRP Transmisison Point)进行数据发送和接收,UE侧Multi-beam或Multi-TRP Transmisison Point的发送和接收将会广泛应用。
相关技术中的5G系统中可以给UE配置半持续的数据发送资源,包括:下行半持续调度(DL Semi-Persistent Scheduling,DL SPS)、上行配置授权类型1(UL configured grant Type 1)、上行配置授权类型2(UL configured grant Type 2)、自主上行(Autonomous Uplink,AUL)。
当采用多个不同的波束或传输点对UE进行数据收发的时候,如何配置半持续资源尚未有明确的方法。
发明内容
本公开的目的在于提供一种资源配置方法、终端及网络设备,以解决当采用多个不同的波束或传输点对UE进行数据收发的时候,如何配置半持续资源尚未有明确的方法的问题。
第一方面,本公开实施例提供了资源配置方法,包括:
获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项。
第二方面,本公开实施例还提供了一种资源配置方法,包括:
发送半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息。
第三方面,本公开实施例还提供了一种终端,包括:
获取模块,用于获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;
确定模块,用于根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号。
第四方面,本公开实施例还提供了一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上第一方面所述的资源配置方法的步骤。
第五方面,本公开实施例还提供了一种网络设备,包括:
发送模块,用于发送半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息。
第六方面,本公开实施例还提供了一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上第二方面所述的资源配置方法的步骤。
第七方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上第一方面所述的资源配置方法或者实现如上第二方面所述的资源配置方法的步骤。
本公开实施例具有以下有益效果:
本公开实施例的上述技术方案,获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项,从而实现了在不同的上行传输载体和/或下行传输载体上配置不同的半持续资源,提高了多传输载体下半持续资源的利用率,同时减少了在进行数据发送时由于调度而产生的延时。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例可应用的一种网络系统的结构图;
图2为本公开实施例的资源配置方法的流程示意图之一;
图3为本公开实施例的资源配置方法的流程示意图之二;
图4为本公开实施例的终端的模块示意图之一;
图5为本公开实施例的终端的模块示意图之二;
图6为本公开实施例的终端的结构框图之一;
图7为本公开实施例的终端的结构框图之二;
图8为本公开实施例的网络设备的模块示意图;
图9为本公开实施例的网络设备的结构框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地 理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
参见图1,图1是本公开实施例可应用的一种网络系统的结构图,如图1所示,包括用户终端11和基站12,其中,用户终端11可以是用户设备(User Equipment,UE),例如:可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定用户终端11的具体类型。上述基站12可以是5G及以后版本的基站(例如:gNB、5G NR NB),或者其他通信系统中的基站,或者称之为节点B,演进节点B,收发节点(transmitting receiving point,TRP)或者所述领域中其他词汇,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定基站12的具体类型。
如图2所示,本公开实施例提供了一种资源配置方法,应用于终端,该方法包括:
步骤201:获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息。
上述传输载体包括波束或传输节点。该资源分配信息包括资源周期。
传输载体的标识信息包括:传输载体标识、传输载体对应的小区标识、 传输载体对应的频点标识、传输载体对应的带宽部分BWP标识、传输载体对应的控制信道信息标识和传输载体对应的MAC实体标识中的至少一项。
例如,上述传输载体对应的小区标识可具体为小区1,上述传输载体对应的频点标识可具体为频点1,上述传输载体对应的带宽部分BWP标识可具体为BWP_1,上述传输载体对应的MAC实体标识可具体为MAC_1。
进一步地,所述传输载体标识包括:同步信号块SSB标识、信道状态信息参考信号CSI-RS标识和参考信号对应的端口号标识中的至少一项,所述参考信号包括SSB和/或CSI-RS。
上述传输载体标识除了SSB标识和/或CSI-RS标识之外,还可为其他信号标识,此处不做具体限定。
上述参考信号对应的端口号标识可具体为port_1,且该参考信号除了SSB和CSI-RS之外,还可为其他参考信号,此处不做具体限定。
所述传输载体对应的控制信道标识包括:控制信道类型标识、控制信道的资源位置标识、控制信道的参考信号标识和控制信道的参考信号对应的端口号标识中的至少一项。
其中,控制信道类型标识可具体为主小区PCell的PDCCH_1;控制信道的资源位置标识可以为控制资源组(CORESET)和/或搜索空间标识(search space);控制信道的参考信号标识可以为SSB标识和/或CSI-RS标识。
步骤202:根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项。
可选地,根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号。
具体地,对于下行半持续调度SPS资源、上行配置授权类型2资源或自主上行AUL资源,根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息,包括:
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
对于上行配置授权类型1资源,根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息,包括:
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
进一步地,对于下行半持续调度SPS资源、上行配置授权类型1资源或上行配置授权类型2资源,在每个资源周期有1个HARQ进程可用时;
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
在不同的传输载体对应不同的HARQ实体的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量和半持续资源的HARQ进程数量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号;
或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号。
进一步地,对于下行半持续调度SPS资源或上行配置授权类型1资源,在每个资源周期有多个HARQ进程可用时;
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和每个资源周期内的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源 周期中后续资源的HARQ进程编号;
或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量、每个资源周期内的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
进一步地,对于上行配置授权类型2资源,在每个资源周期有多个HARQ进程可用时;
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期和半持续资源的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号;
或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
本公开实施例的资源配置方法,获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项,从而实现了在不同的上行传输载体和/或下行传输载体上配置不同的半持续资源,提高了多传输载体下半持续资源的利用率,同时减少了在进行数据发送时由于调度而产生的延时。
进一步地,作为一种可选的实现方式,所述资源分配信息还包括:所述 传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ进程数量中的至少一项。
这里,所述半持续资源为下行半持续调度SPS资源、上行配置授权类型2资源或自主上行AUL资源。
具体地,在所述半持续资源为下行半持续调度SPS资源,且每个资源周期有1个HARQ进程可用时,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息;
在所述半持续资源为下行半持续调度SPS资源,且每个资源周期有多个HARQ进程可用时,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ进程数量中的至少一项。
作为另一种可选的实现方式,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息、所述传输载体的半持续资源的时域偏移量和所述传输载体的半持续资源中的每个时域资源占用的时域长度中的至少一项。
这里,上述半持续资源为上行配置授权类型1资源。
例如,上述时域偏移量可具体为10个OFDM符号,对于SFN=0的位置,传输载体的半持续资源可具体为第10个符号。上述每个时域资源占用的时域长度可具体为2个符号。
其中,所述传输载体的半持续资源在每个资源周期内的分配信息包括:资源分配的起始位置信息、资源分配比特图bitmap、资源分配时长、资源分配短周期中的至少一项;其中,所述资源分配短周期的时长小于所述资源周期的时长。
例如,资源分配的起始位置信息可具体为时隙2,或者,相对于激活位置的偏移量为2个时隙;资源分配比特图bitmap可具体为10bit标识的10个slot的位置,其中,确定取值为1的bit标识的slot位置的资源为分配给终端的资源;资源分配时长可具体为对于一个40ms周期的资源,从资源的开始位置起10ms的资源分配时长;资源分配短周期可具体为:对于一个40ms周期的资源,每40ms有10ms的资源分配时长,则在该10ms内资源分配短周期 为2ms。
作为第一种可选的实现方式,上述半持续资源为下行半持续调度SPS资源,且每个资源周期有1个HARQ进程可用。
下行半持续调度SPS资源由网络侧配置周期性的下行资源,每个周期有1个下行资源分配。网络侧通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)控制信令激活或去激活该SPS资源的使用,该PDCCH命令指示激活的资源位置,如,起始系统帧编号(SFN start time)和起始时隙编号(slot start time)为资源的开始位置。
上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息,包括:
在接收到网络设备发送的激活信令的情况下,根据所述激活信令确定半持续资源的起始位置;根据所述资源配置信息和所述半持续资源的起始位置,确定所述传输载体在每个资源周期中起始可用的资源位置信息。
具体地,上述激活信令可为PDCCH激活信令,终端根据该激活信令确定半持续资源的起始位置,如SFN start time和slot start time;终端根据上述资源配置信息和该半持续资源的起始位置,通过以下公式确定所述传输载体在每个资源周期中起始可用的资源位置信息。
CURRENT_slot=[(N SlotsPerFrame×SFN start time+slot start time)+N×T periodicity×N SlotsPerFrame/10]modulo(1024×N SlotsPerFrame)。
其中,CURRENT_slot表示当前的时隙编号;
CURRENT_slot=N SlotsPerFrame×SFN+N Slotnumber int heframe
N Slotnumber int heframe为当前系统帧的时隙编号;SFN表示当前的系统帧号;N SlotsPerFrame表示每个系统帧的时隙数量;SFN start time表示起始系统帧编号;slot start time表示起始时隙编号;N表示第N个资源,T periodicity表示无线资源控制RRC消息配置的资源周期。
或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
该传输载体的半持续资源在每个资源周期内的分配信息包括:资源分配的起始位置信息、资源分配比特图bitmap、资源分配时长、资源分配短周期 中的至少一项;其中,所述资源分配短周期的时长小于所述资源周期的时长。
根据上述分配信息终端可具体通过以下方法确定传输载体在每个资源周期中的可用资源位置信息。
方法1:上述分配信息包括资源分配bitmap,资源分配bitmap=10bits bitmap,此时,则从起始位置开始的10bit中确定可用的资源位置。
方法2:上述分配信息包括资源分配时长,如10ms,则确定从起始位置开始的10ms时间内的资源为传输载体在每个资源周期中的可用资源。
方法3:上述分配信息包括资源分配时长,如10ms,资源分配短周期,如2ms,则确定从起始位置开始的10ms时间内,每2ms为终端分配一个可用资源。
该第一种可选的实现方式中,上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
在不同的传输载体对应不同的HARQ实体的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量和半持续资源的HARQ进程数量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号。
具体地,通过以下公式来确定每个所述传输载体在每个资源周期中可用的HARQ进程编号。
HARQ Process ID=[floor(CURRENT_slot×10/(N SlotsPerFrame×T periodicity))]modulo N HARQ-Processes
其中,N HARQ-Processes表示RRC消息配置的SPS资源的HARQ进程数量;
HARQ Process ID表示传输载体在每个资源周期中可用的HARQ进程编号。
或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号。
具体地,通过以下公式来确定每个所述传输载体在每个资源周期中可用的HARQ进程编号。
HARQ Process ID=[floor(CURRENT_slot×10/(N SlotsPerFrame×T periodicity))]modulo N HARQ-Processes+Offset HARQ Process ID
其中,Offset HARQ Process ID表示HARQ进程标识偏移量。
上述HARQ进程标识偏移量包括:传输载体的HARQ进程标识的起始编号、传输载体的HARQ进程标识的结束编号和传输载体的HARQ进程标识的可用编号数量中的至少一项。
可选地,该第一种可选的实现方式中,网络设备配置或协议约定终端可用的HARQ配置信息,该HARQ配置信息包括半持续资源的HARQ进程数量,如半持续资源总共可以使用的HARQ进程数量为4个。
该第一种可选的实现方式中,网络设备按照上述相同的方法确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号,并根据确定的可用资源位置信息和可用的HARQ进程编号发送数据,终端则在相应位置接收网络设备发送的数据。
可选地,网络设备根据确定的可用资源位置信息和可用的HARQ进程编号发送数据时,先检测可用资源位置信息对应的资源以及HARQ进程编号是否空闲,并在空闲的情况下进行数据发送。
作为第二种可选的实现方式,上述半持续资源为下行半持续调度SPS资源,且每个资源周期有多个HARQ进程可用。
这里,下行半持续调度SPS资源由网络侧配置周期性的下行资源,每个周期有1个下行资源分配。网络侧通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)控制信令激活或去激活该SPS资源的使用,该PDCCH命令指示激活的资源位置,如,起始系统帧编号(SFN start time)和起始时隙编号(slot start time)为资源的开始位置。
上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息,包括:
在接收到网络设备发送的激活信令的情况下,根据所述激活信令确定半持续资源的起始位置;根据所述资源配置信息和所述半持续资源的起始位置,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
这里,该第二种可选的实现方式中确定传输载体在每个资源周期中的可用资源位置信息的具体实现过程与上述第一种可选的实现方式中确定传输载体在每个资源周期中的可用资源位置信息的具体实现过程相同,此处不再赘述。
该第二种可选的实现方式中,上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和每个资源周期内的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
具体地,首先通过以下公式来确定每个所述传输载体在每个资源周期中起始资源的HARQ进程编号:
HARQ Process ID=[floor(CURRENT_slot×10/(N SlotsPerFrame×T periodicity))]modulo(N HARQ-Processes/N HARQ-ProcessesPerPeriod);
然后,根据资源周期的编号和资源编号,在剩余的HARQ进程编号中按顺序分配。
其中,N HARQ-ProcessesPerPeriod表示每个资源周期可用的HARQ进程数量。
例如,T periodicity=10;N HARQ-Processes=4;N HARQ-ProcessesPerPeriod=2,网络侧每个周期配置了2个资源位置,则第1个资源周期的第1个资源的“HARQ进程编号=1”;第2个资源周期的第1个资源的“HARQ进程编号=2”;第3个资源周期的第1个资源的“HARQ进程编号=1”;第4个资源周期的第1个资源的“HARQ进程编号=2”依次类推。第1个资源周期的第2个资源的“HARQ进程编号=3”;第2个资源周期的第2个资源的“HARQ进程编号=4”;第3个资源周期的第2个资源的“HARQ进程编号=3”;第4个资源周期的第2个资源的“HARQ进程编号=2”依次类推。
或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量、每个资源周期内的HARQ进程数量和HARQ 进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
具体地,通过以下公式来确定每个所述传输载体在每个资源周期中起始资源的HARQ进程编号:
HARQ Process ID=[floor(CURRENT_slot×10/(N SlotsPerFrame×T periodicity))]modulo(N HARQ-Processes/N HARQ-ProcessesPerPeriod)+Offset HARQ Process ID
其中,Offset HARQ Process ID表示HARQ进程标识偏移量。
上述HARQ进程标识偏移量包括:传输载体的HARQ进程标识的起始编号、传输载体的HARQ进程标识的结束编号和传输载体的HARQ进程标识的可用编号数量中的至少一项。
可选地,该第二种可选的实现方式中,网络设备配置或协议约定终端可用的HARQ配置信息,该HARQ配置信息包括:半持续资源的HARQ进程数量、半持续资源的HARQ进程编号(如半持续资源总共可以使用的HARQ进程编号为1、2、3和4)、半持续资源在每个资源周期可用的HARQ进程数量(如,每个资源周期可以用2个HARQ进程)和半持续资源在每个资源周期可用的HARQ进程编号中的至少一项。
例如,UE总共可用4个HARQ进程,每个资源周期可用的HARQ进程为2个,则UE从起始激活位置开始第1个资源周期的HARQ进程编号为1和2;第2个周期的HARQ进程编号为3和4;第3个周期的HARQ进程编号为1和2;第4个周期的HARQ集成编号为3和4,依次类推。
该第二种可选的实现方式中,网络设备按照上述相同的方法确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号,并根据确定的可用资源位置信息和可用的HARQ进程编号发送数据,终端则在相应位置接收网络设备发送的数据。
可选地,网络设备根据确定的可用资源位置信息和可用的HARQ进程编号发送数据时,先检测可用资源位置信息对应的资源以及HARQ进程编号是否空闲,并在空闲的情况下进行数据发送。
作为第三种可选的实现方式,所述半持续资源为上行配置授权类型1资 源,且每个资源周期有1个HARQ进程可用。
这里,上行配置授权类型1资源由网络侧配置周期性的上行资源,每个周期有1个上行资源分配,无需PDCCH命令激活,RRC配置后便可使用。
上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息,包括:
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中起始可用的资源位置信息。
[(SFN×N SlotsPerFrame×N SymbolsPerSlot)+(N Slotnumber int heframe×N SymbolsPerSlot)+N symbol number in the slot]=(Offset timeDomain×N SymbolsPerSlot+S+N×T periodicity)modulo(1024×N SlotsPerFrame×N SymbolsPerSlot);
其中,N SlotsPerFrame表示每个系统帧的时隙数量;N SymbolsPerSlot表示每个时隙的符号数量;N Slotnumber int heframe表示当前系统帧的时隙编号;Offset timeDomain表示相对于SFN=0的时间域的资源偏移量;N表示第N个资源;S表示起始符号的编号;T periodicity表示无线资源控制RRC消息配置的资源周期;N symbol number in the slot表示当前slot的符号编号;
CURRENT_symbol=(SFN×N SlotsPerFrame×N SymbolsPerSlot+N Slotnumber int heframe×N SymbolsPerSlot+N symbol number in the slot);
CURRENT_symbol:表示当前符号的编号。
或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
该传输载体的半持续资源在每个资源周期内的分配信息包括:资源分配的起始位置信息、资源分配比特图bitmap、资源分配时长、资源分配短周期中的至少一项;其中,所述资源分配短周期的时长小于所述资源周期的时长。
根据上述分配信息终端可具体通过以下方法确定传输载体在每个资源周期中的可用资源位置信息。
方法1:上述分配信息包括资源分配bitmap,资源分配bitmap=10bits bitmap,此时,则从起始位置开始的10bit中确定可用的资源位置。
方法2:上述分配信息包括资源分配时长,如10ms,则确定从起始位置开始的10ms时间内的资源为传输载体在每个资源周期中的可用资源。
方法3:上述分配信息包括资源分配时长,如10ms,资源分配短周期, 如2ms,则确定从起始位置开始的10ms时间内,每2ms为终端分配一个可用资源。
该第三种可选的实现方式中,上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
在不同的传输载体对应不同的HARQ实体的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量和半持续资源的HARQ进程数量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号;
或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号。
这里的具体实现过程与上述第一种可选的实现方式中的实现过程相同,此处不再赘述。
可选地,该第三种可选的实现方式中,网络设备配置或协议约定终端可用的HARQ配置信息,该HARQ配置信息包括半持续资源的HARQ进程数量,如半持续资源总共可以使用的HARQ进程数量为4个。
该第三种可选的实现方式中,终端在根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号之后,在每个资源周期的可用资源位置使用相应的HARQ进程编号发送数据。
可选地,终端根据确定的可用资源位置信息和可用的HARQ进程编号发送数据时,先检测可用资源位置信息对应的资源以及HARQ进程编号是否空闲,并在空闲的情况下进行数据发送。
作为第四种可选的实现方式,所述半持续资源为上行配置授权类型1资源,且每个资源周期有多个HARQ进程可用。
这里,上行配置授权类型1资源由网络侧配置周期性的上行资源,每个周期有1个上行资源分配,无需PDCCH命令激活,RRC配置后便可使用。
上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载 体在每个资源周期中的可用资源位置信息,包括:
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中起始可用的资源位置信息。
或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
这里的具体实现过程与上述第三种可选的实现方式中的实现过程相同,此处不再赘述。
该第四种可选的实现方式中,上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和每个资源周期内的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号;
或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量、每个资源周期内的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
这里的具体实现过程与上述第二种可选的实现方式中的实现过程相同,此处不再赘述。
可选地,该第四种可选的实现方式中,网络设备配置或协议约定终端可用的HARQ配置信息,该HARQ配置信息包括:半持续资源的HARQ进程数量、半持续资源的HARQ进程编号(如半持续资源总共可以使用的HARQ进程编号为1、2、3和4)、半持续资源在每个资源周期可用的HARQ进程数量(如,每个资源周期可以用2个HARQ进程)和半持续资源在每个资源周 期可用的HARQ进程编号中的至少一项。
例如,UE总共可用4个HARQ进程,每个资源周期可用的HARQ进程为2个,则UE从起始激活位置开始第1个资源周期的HARQ进程编号为1和2;第2个周期的HARQ进程编号为3和4;第3个周期的HARQ进程编号为1和2;第4个周期的HARQ集成编号为3和4,依次类推。
该第四种可选的实现方式中,终端在根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号之后,在每个资源周期的可用资源位置使用相应的HARQ进程编号发送数据。
可选地,终端根据确定的可用资源位置信息和可用的HARQ进程编号发送数据时,先检测可用资源位置信息对应的资源以及HARQ进程编号是否空闲,并在空闲的情况下进行数据发送。
作为第五种可选的实现方式,所述半持续资源为上行配置授权类型2资源,且每个资源周期有1个HARQ进程可用。
这里,上行配置授权类型2资源由网络侧配置周期性的上行资源,每个周期有1个上行资源分配。网络侧通过PDCCH控制信令激活或去激活该SPS资源的使用,该PDCCH命令指示激活的资源位置(如,SFN start time(起始系统帧编号)和slot start time(起始时隙编号)和symbol start time(起始符号编号))为资源的开始位置。
上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息,包括:
在接收到网络设备发送的激活信令的情况下,根据所述激活信令确定半持续资源的起始位置;根据所述资源配置信息和所述半持续资源的起始位置,确定所述传输载体在每个资源周期中起始可用的资源位置信息。
具体地,通过以下公式确定所述传输载体在每个资源周期中起始可用的资源位置信息。
[(SFN×N SlotsPerFrame×N SymbolsPerSlot)+N Slotnumber int heframe×N SymbolsPerSlot+N symbol number in the slot]=[(SFN start time×N SlotsPerFrame×N SymbolsPerSlot+slot start time×N SymbolsPerSlot+symbol start time)+N×T periodicity]modulo(1024×N SlotsPerFrame×N SymbolsPerSlot);
其中,SFN表示当前的系统帧号;N SlotsPerFrame表示每个系统帧的时隙数量; N SymbolsPerSlot表示每个时隙的符号数量;N Slotnumber int heframe表示当前系统帧的时隙编号;N symbol number in the slot表示当前slot的符号编号。
或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
该传输载体的半持续资源在每个资源周期内的分配信息包括:资源分配的起始位置信息、资源分配比特图bitmap、资源分配时长、资源分配短周期中的至少一项;其中,所述资源分配短周期的时长小于所述资源周期的时长。
根据上述分配信息终端可具体通过以下方法确定传输载体在每个资源周期中的可用资源位置信息。
方法1:上述分配信息包括资源分配bitmap,资源分配bitmap=10bits bitmap,此时,则从起始位置开始的10bit中确定可用的资源位置。
方法2:上述分配信息包括资源分配时长,如10ms,则确定从起始位置开始的10ms时间内的资源为传输载体在每个资源周期中的可用资源。
方法3:上述分配信息包括资源分配时长,如10ms,资源分配短周期,如2ms,则确定从起始位置开始的10ms时间内,每2ms为终端分配一个可用资源。
该第五种可选的实现方式中,上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
在不同的传输载体对应不同的HARQ实体的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量和半持续资源的HARQ进程数量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号;
在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号。
这里的具体实现过程与上述第一种可选的实现方式中的实现过程相同,此处不再赘述。
可选地,该第五种可选的实现方式中,网络设备配置或协议约定终端可用的HARQ配置信息,该HARQ配置信息包括半持续资源的HARQ进程数量,如半持续资源总共可以使用的HARQ进程数量为4个。
该第五种可选的实现方式中,终端在根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号之后,在每个资源周期的可用资源位置使用相应的HARQ进程编号发送数据。
可选地,终端根据确定的可用资源位置信息和可用的HARQ进程编号发送数据时,先检测可用资源位置信息对应的资源以及HARQ进程编号是否空闲,并在空闲的情况下进行数据发送。
作为第六种可选的实现方式,所述半持续资源为上行配置授权类型2资源,且每个资源周期有多个HARQ进程可用。
这里,上行配置授权类型2资源由网络侧配置周期性的上行资源,每个周期有1个上行资源分配。网络侧通过PDCCH控制信令激活或去激活该SPS资源的使用,该PDCCH命令指示激活的资源位置(如,SFN start time(起始系统帧编号)和slot start time(起始时隙编号)和symbol start time(起始符号编号))为资源的开始位置。
上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息,包括:
在接收到网络设备发送的激活信令的情况下,根据所述激活信令确定半持续资源的起始位置;根据所述资源配置信息和所述半持续资源的起始位置,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
这里的具体实现过程与上述第五种可选的实现方式中的实现过程相同,此处不再赘述。
该第六种可选的实现方式中,上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期和半持续资源的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
具体地,首先,通过以下公式来确定每个所述传输载体在每个资源周期的起始资源的HARQ进程编号:
HARQ Process ID=[floor(CURRENT_slot×10/(N SlotsPerFrame×T periodicity))]modulo N HARQ-Processes
然后,根据资源周期的编号和资源编号,在剩余的HARQ进程编号中按顺序分配。
例如,T periodicity=10;N HARQ-Processes=4;N HARQ-ProcessesPerPeriod=2,网络侧每个周期配置了2个资源位置,则第1个资源周期的第1个资源的“HARQ进程编号=1”;第2个资源周期的第1个资源的“HARQ进程编号=2”;第3个资源周期的第1个资源的“HARQ进程编号=1”;第4个资源周期的第1个资源的“HARQ进程编号=2”依次类推。第1个资源周期的第2个资源的“HARQ进程编号=3”;第2个资源周期的第2个资源的“HARQ进程编号=4”;第3个资源周期的第2个资源的“HARQ进程编号=3”;第4个资源周期的第2个资源的“HARQ进程编号=2”依次类推。
或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
具体地,通过以下公式来确定每个所述传输载体在每个资源周期中起始资源的HARQ进程编号:
HARQ Process ID=[floor(CURRENT_slot×10/(N SlotsPerFrame×T periodicity))]modulo N HARQ-Processes+Offset HARQ Process ID
然后,根据资源周期的编号和资源编号,在剩余的HARQ进程编号中按顺序分配。
例如,T periodicity=10;N HARQ-Processes=4;N HARQ-ProcessesPerPeriod=2,网络侧每个周期配置了2个资源位置,则第1个资源周期的第1个资源的“HARQ进程编号=1”;第2个资源周期的第1个资源的“HARQ进程编号=2”;第3个资源周期的第1个资源的“HARQ进程编号=1”;第4个资源周期的第1个资源的“HARQ进程编号=2”依次类推。第1个资源周期的第2个资源的“HARQ进程编号=3”;第2个资源周期的第2个资源的“HARQ进程编号=4”;第3个资源周期的第2个资源的“HARQ进程编号=3”;第4个资源周期的第2个资源的“HARQ进程编号=2”依次类推。
可选地,该第六种可选的实现方式中,网络设备配置或协议约定终端可用的HARQ配置信息,该HARQ配置信息包括:半持续资源的HARQ进程数量、半持续资源的HARQ进程编号(如半持续资源总共可以使用的HARQ进程编号为1、2、3和4)、半持续资源在每个资源周期可用的HARQ进程数量(如,每个资源周期可以用2个HARQ进程)和半持续资源在每个资源周期可用的HARQ进程编号中的至少一项。
例如,UE总共可用4个HARQ进程,每个资源周期可用的HARQ进程为2个,则UE从起始激活位置开始第1个资源周期的HARQ进程编号为1和2;第2个周期的HARQ进程编号为3和4;第3个周期的HARQ进程编号为1和2;第4个周期的HARQ集成编号为3和4,依次类推。
该第六种可选的实现方式中,终端在根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号之后,在每个资源周期的可用资源位置使用相应的HARQ进程编号发送数据。
可选地,终端根据确定的可用资源位置信息和可用的HARQ进程编号发送数据时,先检测可用资源位置信息对应的资源以及HARQ进程编号是否空闲,并在空闲的情况下进行数据发送。
作为第七种可选的实现方式,所述半持续资源为自主上行AUL资源。
AUL由网络侧配置一个比特图bitmap(如,40bit中如果其中1个bit值设置成1则该资源被分配给UE)的资源分配。网络侧通过PDCCH控制信令激活或去激活该AUL资源的使用,PDCCH命令指示激活的资源位置(如,SFN start time(起始系统帧编号)和slot start time(起始时隙编号)和symbol start time(起始符号编号))为资源的开始位置。UE在有上行数据发送的时候,从网络侧配置的HARQ进程池中自主的选择一个HARQ进程进行发送。
上述步骤202中根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息,包括:
在接收到网络设备发送的激活信令的情况下,根据所述激活信令确定半持续资源的起始位置;根据所述资源配置信息和所述半持续资源的起始位置,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
这里的具体实现过程与上述第五种可选的实现方式中的实现过程相同,此处不再赘述。
可选地,该第七种可选的实现方式中,网络设备配置或协议约定终端可用的HARQ配置信息,该HARQ配置信息包括:终端可用的HARQ进程编号池,如终端可用的HARQ进程编号为1、2、3和4。
该第七种可选的实现方式中,终端在根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号之后,在每个资源周期的可用资源位置使用相应的HARQ进程编号发送数据。
可选地,终端根据确定的可用资源位置信息发送数据时,先检测可用资源位置信息对应的资源以及HARQ进程编号是否空闲,并在空闲的情况下,根据资源配置信息在可用的HARQ进程编号池中选择一个HARQ进程进行数据发送,如选择HARQ进程1进行数据发送。
本公开实施例的资源配置方法,获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标 识信息对应的资源分配信息;根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号,从而实现了在不同的上行传输载体和/或下行传输载体上配置不同的半持续资源,提供了多传输载体下半持续资源的利用率,同时减少了在进行数据发送时由于调度而产生的延时。
如图3所示,本公开实施例还提供了一种资源配置方法,应用于网络设备,包括:
步骤301:发送半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息。
上述传输载体包括波束或传输节点;上述资源分配信息包括半持续资源的资源周期。
传输载体的标识信息包括:传输载体标识、传输载体对应的小区标识、传输载体对应的频点标识、传输载体对应的带宽部分BWP标识、传输载体对应的控制信道信息标识和传输载体对应的MAC实体标识中的至少一项。
例如,上述传输载体对应的小区标识可具体为小区1,上述传输载体对应的频点标识可具体为频点1,上述传输载体对应的带宽部分BWP标识可具体为BWP_1,上述传输载体对应的MAC实体标识可具体为MAC_1。
进一步地,所述传输载体标识包括:同步信号块SSB标识、信道状态信息参考信号CSI-RS标识和参考信号对应的端口号标识中的至少一项,所述参考信号包括SSB和/或CSI-RS。
上述传输载体标识除了SSB标识和/或CSI-RS标识之外,还可为其他信号标识,此处不做具体限定。
上述参考信号对应的端口号标识可具体为port_1,且该参考信号除了SSB和CSI-RS之外,还可为其他参考信号,此处不做具体限定。
所述传输载体对应的控制信道标识包括:控制信道类型标识、控制信道的资源位置标识、控制信道的参考信号标识和控制信道的参考信号对应的端口号标识中的至少一项。
其中,控制信道类型标识可具体为主小区PCell的PDCCH_1;控制信道 的资源位置标识可以为控制资源组(CORESET)和/或搜索空间标识(search space);控制信道的参考信号标识可以为SSB标识和/或CSI-RS标识。
本公开实施例的资源配置方法,网络设备在给终端配置半持续资源时,对于不同的传输载体配置不同的半持续资源,提高了多传输载体下半持续资源的利用率,同时减少了在进行数据发送时由于调度而产生的延时。
进一步地,作为一种可选的实现方式,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ进程数量中的至少一项。
这里,所述半持续资源为下行半持续调度SPS资源、上行配置授权类型2资源或自主上行AUL资源。
具体地,在所述半持续资源为下行半持续调度SPS资源,且每个资源周期有1个HARQ进程可用时,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息;
在所述半持续资源为下行半持续调度SPS资源,且每个资源周期有多个HARQ进程可用时,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ进程数量中的至少一项。
作为另一种可选的实现方式,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息、所述传输载体的半持续资源的时域偏移量和所述传输载体的半持续资源中的每个时域资源占用的时域长度中的至少一项。
这里,上述半持续资源为上行配置授权类型1资源。
例如,上述时域偏移量可具体为10个OFDM符号,对于SFN=0的位置,传输载体的半持续资源可具体为第10个符号。上述每个时域资源占用的时域长度可具体为2个符号。
其中,所述传输载体的半持续资源在每个资源周期内的分配信息包括:资源分配的起始位置信息、资源分配比特图bitmap、资源分配时长、资源分配短周期中的至少一项;其中,所述资源分配短周期的时长小于所述资源周期的时长。
例如,资源分配的起始位置信息可具体为时隙2,或者,相对于激活位置的偏移量为2个时隙;资源分配比特图bitmap可具体为10bit标识的10个slot的位置,其中,确定取值为1的bit标识的slot位置的资源为分配给终端的资源;资源分配时长可具体为对于一个40ms周期的资源,从资源的开始位置起10ms的资源分配时长;资源分配短周期可具体为:对于一个40ms周期的资源,每40ms有10ms的资源分配时长,则在该10ms内资源分配短周期为2ms。
可选地,本公开实施例中网络设备配置或协议约定终端可用的HARQ配置信息。该HARQ配置信息包括:半持续资源的HARQ进程数量、半持续资源的HARQ进程编号、半持续资源在每个资源周期可用的HARQ进程数量、半持续资源在每个资源周期可用的HARQ进程编号和终端可用的HARQ进程编号池中的至少一项。
具体地,对于下行半持续调度SPS资源,且每个资源周期有1个HARQ进程可用的情况,该HARQ配置信息包括半持续资源的HARQ进程数量,如半持续资源总共可以使用的HARQ进程数量为4个;对于下行半持续调度SPS资源,且每个资源周期有多个HARQ进程可用的情况,该HARQ配置信息包括:半持续资源的HARQ进程数量、半持续资源的HARQ进程编号(如半持续资源总共可以使用的HARQ进程编号为1、2、3和4)、半持续资源在每个资源周期可用的HARQ进程数量(如,每个资源周期可以用2个HARQ进程)和半持续资源在每个资源周期可用的HARQ进程编号中的至少一项。
例如,UE总共可用4个HARQ进程,每个资源周期可用的HARQ进程为2个,则UE从起始激活位置开始第1个资源周期的HARQ进程编号为1和2;第2个周期的HARQ进程编号为3和4;第3个周期的HARQ进程编号为1和2;第4个周期的HARQ集成编号为3和4,依次类推。
对于上行配置授权类型1资源,且每个资源周期有1个HARQ进程可用的情况,该HARQ配置信息包括半持续资源的HARQ进程数量,如半持续资源总共可以使用的HARQ进程数量为4个。
对于上行配置授权类型1资源,且每个资源周期有多个HARQ进程可用的情况,该HARQ配置信息包括:半持续资源的HARQ进程数量、半持续资 源的HARQ进程编号(如半持续资源总共可以使用的HARQ进程编号为1、2、3和4)、半持续资源在每个资源周期可用的HARQ进程数量(如,每个资源周期可以用2个HARQ进程)和半持续资源在每个资源周期可用的HARQ进程编号中的至少一项。
对于上行配置授权类型2资源,且每个资源周期有1个HARQ进程可用的情况,该HARQ配置信息包括半持续资源的HARQ进程数量,如半持续资源总共可以使用的HARQ进程数量为4个。
对于上行配置授权类型2资源,且每个资源周期有多个HARQ进程可用的情况,该HARQ配置信息包括:半持续资源的HARQ进程数量、半持续资源的HARQ进程编号(如半持续资源总共可以使用的HARQ进程编号为1、2、3和4)、半持续资源在每个资源周期可用的HARQ进程数量(如,每个资源周期可以用2个HARQ进程)和半持续资源在每个资源周期可用的HARQ进程编号中的至少一项。
对于自主上行AUL资源,该HARQ配置信息包括:终端可用的HARQ进程编号池,如终端可用的HARQ进程编号为1、2、3和4。
本公开实施例的资源配置方法,网络设备在给终端配置半持续资源时,对于不同的传输载体配置不同的半持续资源,提高了多传输载体下半持续资源的利用率,同时减少了在进行数据发送时由于调度而产生的延时。
图4为本公开实施例的终端的模块示意图,如图4所示,本公开的实施例还提供了一种终端400,包括:
获取模块401,用于获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;
确定模块402,用于根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项。
本公开实施例的终端,所述资源分配信息包括:资源周期。
本公开实施例的终端,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ 进程数量中的至少一项。
本公开实施例的终端,所述确定模块用于在接收到网络设备发送的激活信令的情况下,根据所述激活信令确定半持续资源的起始位置;根据所述资源配置信息和所述半持续资源的起始位置,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
或者,用于在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
本公开实施例的终端,所述半持续资源为下行半持续调度SPS资源、上行配置授权类型2资源或自主上行AUL资源。
本公开实施例的终端,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息、所述传输载体的半持续资源的时域偏移量和所述传输载体的半持续资源中的每个时域资源占用的时域长度中的至少一项。
本公开实施例的终端,所述确定模块用于根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
或者,用于在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
本公开实施例的终端,所述半持续资源为上行配置授权类型1资源。
本公开实施例的终端,所述传输载体的半持续资源在每个资源周期内的分配信息包括:资源分配的起始位置信息、资源分配比特图bitmap、资源分配时长、资源分配短周期中的至少一项;
其中,所述资源分配短周期的时长小于所述资源周期的时长。
如图5所示,本公开实施例的终端,在每个资源周期有1个HARQ进程可用时;
所述确定模块402包括:
第一确定子模块4021,用于在不同的传输载体对应不同的HARQ实体的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量和半持续 资源的HARQ进程数量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号;
或者,第二确定子模块4022,用于在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号。
本公开实施例的终端,所述半持续资源为下行半持续调度SPS资源、上行配置授权类型1资源或上行配置授权类型2资源。
本公开实施例的终端,所述HARQ进程标识偏移量包括:传输载体的HARQ进程标识的起始编号、传输载体的HARQ进程标识的结束编号和传输载体的HARQ进程标识的可用编号数量中的至少一项。
本公开实施例的终端,在每个资源周期有多个HARQ进程可用时;
所述确定模块402包括:
第三确定子模块4023,用于在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和每个资源周期内的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号;
或者,第四确定子模块4024,用于在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量、每个资源周期内的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
本公开实施例的终端,所述半持续资源为下行半持续调度SPS资源或上行配置授权类型1资源。
本公开实施例的终端,在每个资源周期有多个HARQ进程可用时;
所述确定模块402包括:
第五确定子模块4025,用于在不同的传输载体对应不同的HARQ实体的 情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期和半持续资源的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号;
或者,第六确定子模块4026,用于在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
本公开实施例的终端,所述半持续资源为上行配置授权类型2资源。
本公开实施例的终端,所述传输载体的标识信息包括:传输载体标识、传输载体对应的小区标识、传输载体对应的频点标识、传输载体对应的带宽部分BWP标识、传输载体对应的控制信道信息标识和传输载体对应的MAC实体标识中的至少一项。
本公开实施例的终端,所述传输载体标识包括:同步信号块SSB标识、信道状态信息参考信号CSI-RS标识和参考信号对应的端口号标识中的至少一项,所述参考信号包括SSB和/或CSI-RS。
本公开实施例的终端,所述传输载体对应的控制信道标识包括:控制信道类型标识、控制信道的资源位置标识、控制信道的参考信号标识和控制信道的参考信号对应的端口号标识中的至少一项。
需要说明的是,图5所示的终端结构框图仅为本公开实施例终端的一个示意图,本公开实施例的终端的确定模块包括第一确定子模块、第二确定子模块、第三确定子模块、第四确定子模块、第五确定子模块和第六确定子模块中的至少一个。
本公开实施例的终端,获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合 自动重传请求HARQ进程编号中的至少一项,从而实现了在不同的上行传输载体和/或下行传输载体上配置不同的半持续资源,提高了多传输载体下半持续资源的利用率,同时减少了在进行数据发送时由于调度而产生的延时。
本公开的实施例还提供了一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述应用于终端的资源配置方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述应用于终端的资源配置方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
为了更好的实现上述目的,如图6所示,本公开的实施例还提供了一种终端,包括存储器520、处理器500、收发机510、用户接口530、总线接口及存储在存储器520上并可在处理器500上运行的计算机程序,所述处理器500用于读取存储器520中的程序,执行下列过程:
获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口530还可以是能够外接内接需要设备的接口, 连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
可选地,所述资源分配信息包括:资源周期。
可选地,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ进程数量中的至少一项。
可选地,所述处理器500读取存储器520中的程序,还用于执行:
在接收到网络设备发送的激活信令的情况下,根据所述激活信令确定半持续资源的起始位置;根据所述资源配置信息和所述半持续资源的起始位置,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
可选地,所述半持续资源为下行半持续调度SPS资源、上行配置授权类型2资源或自主上行AUL资源。
可选地,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息、所述传输载体的半持续资源的时域偏移量和所述传输载体的半持续资源中的每个时域资源占用的时域长度中的至少一项。
可选地,所述处理器500读取存储器520中的程序,还用于执行:
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
可选地,所述半持续资源为上行配置授权类型1资源。
可选地,所述传输载体的半持续资源在每个资源周期内的分配信息包括:资源分配的起始位置信息、资源分配比特图bitmap、资源分配时长、资源分配短周期中的至少一项;
其中,所述资源分配短周期的时长小于所述资源周期的时长。
可选地,在每个资源周期有1个HARQ进程可用时;
所述处理器500读取存储器520中的程序,还用于执行:
在不同的传输载体对应不同的HARQ实体的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量和半持续资源的HARQ进程数量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号;
或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号。
可选地,所述半持续资源为下行半持续调度SPS资源、上行配置授权类型1资源或上行配置授权类型2资源。
可选地,所述HARQ进程标识偏移量包括:传输载体的HARQ进程标识的起始编号、传输载体的HARQ进程标识的结束编号和传输载体的HARQ进程标识的可用编号数量中的至少一项。
可选地,在每个资源周期有多个HARQ进程可用时;
所述处理器500读取存储器520中的程序,还用于执行:
在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和每个资源周期内的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号;
或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量、每个资源周期内的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
可选地,所述半持续资源为下行半持续调度SPS资源或上行配置授权类 型1资源。
可选地,在每个资源周期有多个HARQ进程可用时;
所述处理器500读取存储器520中的程序,还用于执行:
在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期和半持续资源的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号;
或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
可选地,所述半持续资源为上行配置授权类型2资源。
可选地,所述传输载体的标识信息包括:传输载体标识、传输载体对应的小区标识、传输载体对应的频点标识、传输载体对应的带宽部分BWP标识、传输载体对应的控制信道信息标识和传输载体对应的MAC实体标识中的至少一项。
可选地,所述传输载体标识包括:同步信号块SSB标识、信道状态信息参考信号CSI-RS标识和参考信号对应的端口号标识中的至少一项,所述参考信号包括SSB和/或CSI-RS。
可选地,所述传输载体对应的控制信道标识包括:控制信道类型标识、控制信道的资源位置标识、控制信道的参考信号标识和控制信道的参考信号对应的端口号标识中的至少一项。
本公开实施例的终端,获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项,从而实现了在不同的上行传输载体和/或下行传输载体上配置不同的半持续资源,提高了多传输载体下半持 续资源的利用率,同时减少了在进行数据发送时由于调度而产生的延时。
图7为实现本公开各个实施例的一种终端的硬件结构示意图,该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、处理器610、以及电源611等部件。本领域技术人员可以理解,图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器610,用于获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;
根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项。
本公开实施例的上述技术方案,获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项,从而实现了在不同的上行传输载体和/或下行传输载体上配置不同的半持续资源,提高了多传输载体下半持续资源的利用率,同时减少了在进行数据发送时由于调度而产生的延时。
应理解的是,本公开实施例中,射频单元601可用于收发信息或通话过程中,信号的接收和发送,具体地,将来自网络设备的下行数据接收后,给处理器610处理;另外,将上行的数据发送给网络设备。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元601还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块602为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元603可以将射频单元601或网络模块602接收的或者在存储器609中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元603还可以提供与终端600执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元603包括扬声器、蜂鸣器以及受话器等。
输入单元604用于接收音频或视频信号。输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元606上。经图形处理器6041处理后的图像帧可以存储在存储器609(或其它存储介质)中或者经由射频单元601或网络模块602进行发送。麦克风6042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元601发送到移动通信网络设备的格式输出。
终端600还包括至少一种传感器605,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板6061的亮度,接近传感器可在终端600移动到耳边时,关闭显示面板6061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器605还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元606用于显示由用户输入的信息或提供给用户的信息。显示单元606可包括显示面板6061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板6061。
用户输入单元607可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板6071上或在触控面板6071附近的操作)。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器610,接收处理器610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板6071。除了触控面板6071,用户输入单元607还可以包括其他输入设备6072。具体地,其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步地,触控面板6071可覆盖在显示面板6061上,当触控面板6071检测到在其上或附近的触摸操作后,传送给处理器610以确定触摸事件的类型,随后处理器610根据触摸事件的类型在显示面板6061上提供相应的视觉输出。虽然在图7中,触控面板6071与显示面板6061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板6071与显示面板6061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元608为外部装置与终端600连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元608可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端600内的一个或多个元件或者可以用于在终端600和外部装置之间传输数据。
存储器609可用于存储软件程序以及各种数据。存储器609可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区 可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器609内的软件程序和/或模块,以及调用存储在存储器609内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器610可包括一个或多个处理单元;可选地,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
终端600还可以包括给各个部件供电的电源611(比如电池),可选地,电源611可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端600包括一些未示出的功能模块,在此不再赘述。
如图8所示,本公开实施例还提供了一种网络设备700,包括:
发送模块701,用于发送半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息。
本公开实施例的网络设备,在给终端配置半持续资源时,对于不同的传输载体配置不同的半持续资源,提高了多传输载体下半持续资源的利用率,同时减少了在进行数据发送时由于调度而产生的延时。
本公开实施例的网络设备,所述资源分配信息包括:资源周期。
本公开实施例的网络设备,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ进程数量中的至少一项。
本公开实施例的网络设备,所述半持续资源为下行半持续调度SPS资源、上行配置授权类型2资源或自主上行AUL资源。
本公开实施例的网络设备,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息、所述传输载体的半持续资源的时 域偏移量和所述传输载体的半持续资源中的每个时域资源占用的时域长度中的至少一项。
本公开实施例的网络设备,所述半持续资源为上行配置授权类型1资源。
本公开实施例的网络设备,所述传输载体的半持续资源在每个资源周期内的分配信息包括:资源分配的起始位置信息、资源分配比特图bitmap、资源分配时长、资源分配短周期中的至少一项;
其中,所述资源分配短周期的时长小于所述资源周期的时长。
本公开实施例的网络设备,所述传输载体的标识信息包括:传输载体标识、传输载体对应的小区标识、传输载体对应的频点标识、传输载体对应的带宽部分BWP标识、传输载体对应的控制信道信息标识和传输载体对应的MAC实体标识中的至少一项。
本公开实施例的网络设备,所述传输载体标识包括:同步信号块SSB标识、信道状态信息参考信号CSI-RS标识和参考信号对应的端口号标识中的至少一项,所述参考信号包括SSB和/或CSI-RS。
本公开实施例的网络设备,所述传输载体对应的控制信道标识包括:控制信道类型标识、控制信道的资源位置标识、控制信道的参考信号标识和控制信道的参考信号对应的端口号标识中的至少一项。
本公开实施例的网络设备,在给终端配置半持续资源时,对于不同的传输载体配置不同的半持续资源,提高了多传输载体下半持续资源的利用率,同时减少了在进行数据发送时由于调度而产生的延时。
本公开实施例还提供了一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述应用于网络设备的资源配置方法的方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述应用于网络设备的资源配置方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory, RAM)、磁碟或者光盘等。
如图9所示,本公开的实施例还提供了一种网络设备800,包括处理器801、收发机802、存储器803和总线接口,其中:
处理器801,用于读取存储器803中的程序,执行下列过程:
发送半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息。
在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
可选地,所述资源分配信息包括:资源周期。
可选地,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ进程数量中的至少一项。
可选地,所述半持续资源为下行半持续调度SPS资源、上行配置授权类型2资源或自主上行AUL资源。
可选地,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息、所述传输载体的半持续资源的时域偏移量和所述传输载体的半持续资源中的每个时域资源占用的时域长度中的至少一项。
可选地,所述半持续资源为上行配置授权类型1资源。
可选地,所述传输载体的半持续资源在每个资源周期内的分配信息包括:资源分配的起始位置信息、资源分配比特图bitmap、资源分配时长、资源分配短周期中的至少一项;
其中,所述资源分配短周期的时长小于所述资源周期的时长。
可选地,所述传输载体的标识信息包括:传输载体标识、传输载体对应 的小区标识、传输载体对应的频点标识、传输载体对应的带宽部分BWP标识、传输载体对应的控制信道信息标识和传输载体对应的MAC实体标识中的至少一项。
可选地,所述传输载体标识包括:同步信号块SSB标识、信道状态信息参考信号CSI-RS标识和参考信号对应的端口号标识中的至少一项,所述参考信号包括SSB和/或CSI-RS。
可选地,所述传输载体对应的控制信道标识包括:控制信道类型标识、控制信道的资源位置标识、控制信道的参考信号标识和控制信道的参考信号对应的端口号标识中的至少一项。
本公开实施例的网络设备,在给终端配置半持续资源时,对于不同的传输载体配置不同的半持续资源,提高了多传输载体下半持续资源的利用率,同时减少了在进行数据发送时由于调度而产生的延时。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (45)

  1. 一种资源配置方法,应用于终端,包括:
    获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;
    根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项。
  2. 根据权利要求1所述的资源配置方法,其中,所述资源分配信息包括:资源周期。
  3. 根据权利要求2所述的资源配置方法,其中,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ进程数量中的至少一项。
  4. 根据权利要求3所述的资源配置方法,其中,根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息,包括:
    在接收到网络设备发送的激活信令的情况下,根据所述激活信令确定半持续资源的起始位置;根据所述资源配置信息和所述半持续资源的起始位置,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
    或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
  5. 根据权利要求3或4所述的资源配置方法,其中,所述半持续资源为下行半持续调度SPS资源、上行配置授权类型2资源或自主上行AUL资源。
  6. 根据权利要求2所述的资源配置方法,其中,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息、所述传输载体的半持续资源的时域偏移量和所述传输载体的半持续资源中的每个时域资源占用的时域长度中的至少一项。
  7. 根据权利要求6所述的资源配置方法,其中,根据所述半持续资源的 资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息,包括:
    根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
    或者,在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
  8. 根据权利要求6或7所述的资源配置方法,其中,所述半持续资源为上行配置授权类型1资源。
  9. 根据权利要求3或6所述的资源配置方法,其中,所述传输载体的半持续资源在每个资源周期内的分配信息包括:资源分配的起始位置信息、资源分配比特图bitmap、资源分配时长、资源分配短周期中的至少一项;
    其中,所述资源分配短周期的时长小于所述资源周期的时长。
  10. 根据权利要求2所述的资源配置方法,其中,在每个资源周期有1个HARQ进程可用时,根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
    在不同的传输载体对应不同的HARQ实体的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量和半持续资源的HARQ进程数量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号;
    或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号。
  11. 根据权利要求10所述的资源配置方法,其中,所述半持续资源为下行半持续调度SPS资源、上行配置授权类型1资源或上行配置授权类型2资源。
  12. 根据权利要求10所述的资源配置方法,其中,所述HARQ进程标识偏移量包括:传输载体的HARQ进程标识的起始编号、传输载体的HARQ进程标识的结束编号和传输载体的HARQ进程标识的可用编号数量中的至少 一项。
  13. 根据权利要求2所述的资源配置方法,其中,在每个资源周期有多个HARQ进程可用时,根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
    在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和每个资源周期内的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号;
    或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量、每个资源周期内的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
  14. 根据权利要求13所述的资源配置方法,其中,所述半持续资源为下行半持续调度SPS资源或上行配置授权类型1资源。
  15. 根据权利要求2所述的资源配置方法,其中,在每个资源周期有多个HARQ进程可用时,根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中可用的HARQ进程编号,包括:
    在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期和半持续资源的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号;
    或者,在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
  16. 根据权利要求15所述的资源配置方法,其中,所述半持续资源为上行配置授权类型2资源。
  17. 根据权利要求1所述的资源配置方法,其中,所述传输载体的标识信息包括:传输载体标识、传输载体对应的小区标识、传输载体对应的频点标识、传输载体对应的带宽部分BWP标识、传输载体对应的控制信道信息标识和传输载体对应的MAC实体标识中的至少一项。
  18. 根据权利要求17所述的资源配置方法,其中,所述传输载体标识包括:同步信号块SSB标识、信道状态信息参考信号CSI-RS标识和参考信号对应的端口号标识中的至少一项,所述参考信号包括SSB和/或CSI-RS。
  19. 根据权利要求17所述的资源配置方法,其中,所述传输载体对应的控制信道标识包括:控制信道类型标识、控制信道的资源位置标识、控制信道的参考信号标识和控制信道的参考信号对应的端口号标识中的至少一项。
  20. 一种资源配置方法,应用于网络设备,包括:
    发送半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息。
  21. 根据权利要求20所述的资源配置方法,其中,所述资源分配信息包括:资源周期。
  22. 根据权利要求21所述的资源配置方法,其中,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ进程数量中的至少一项。
  23. 根据权利要求22所述的资源配置方法,其中,所述半持续资源为下行半持续调度SPS资源、上行配置授权类型2资源或自主上行AUL资源。
  24. 根据权利要求21所述的资源配置方法,其中,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息、所述传输载体的半持续资源的时域偏移量和所述传输载体的半持续资源中的每个时域资源占用的时域长度中的至少一项。
  25. 根据权利要求24所述的资源配置方法,其中,所述半持续资源为上行配置授权类型1资源。
  26. 根据权利要求22或24所述的资源配置方法,其中,所述传输载体 的半持续资源在每个资源周期内的分配信息包括:资源分配的起始位置信息、资源分配比特图bitmap、资源分配时长、资源分配短周期中的至少一项;
    其中,所述资源分配短周期的时长小于所述资源周期的时长。
  27. 根据权利要求20所述的资源配置方法,其中,所述传输载体的标识信息包括:传输载体标识、传输载体对应的小区标识、传输载体对应的频点标识、传输载体对应的带宽部分BWP标识、传输载体对应的控制信道信息标识和传输载体对应的MAC实体标识中的至少一项。
  28. 根据权利要求27所述的资源配置方法,其中,所述传输载体标识包括:同步信号块SSB标识、信道状态信息参考信号CSI-RS标识和参考信号对应的端口号标识中的至少一项,所述参考信号包括SSB和/或CSI-RS。
  29. 根据权利要求27所述的资源配置方法,其中,所述传输载体对应的控制信道标识包括:控制信道类型标识、控制信道的资源位置标识、控制信道的参考信号标识和控制信道的参考信号对应的端口号标识中的至少一项。
  30. 一种终端,包括:
    获取模块,用于获取半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息;
    确定模块,用于根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中的可用资源位置信息以及在每个资源周期中可用的混合自动重传请求HARQ进程编号中的至少一项。
  31. 根据权利要求30所述的终端,其中,所述资源分配信息包括:资源周期。
  32. 根据权利要求31所述的终端,其中,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ进程数量中的至少一项。
  33. 根据权利要求32所述的终端,其中,所述确定模块用于在接收到网络设备发送的激活信令的情况下,根据所述激活信令确定半持续资源的起始位置;根据所述资源配置信息和所述半持续资源的起始位置,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
    或者,用于在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
  34. 根据权利要求31所述的终端,其中,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息、所述传输载体的半持续资源的时域偏移量和所述传输载体的半持续资源中的每个时域资源占用的时域长度中的至少一项。
  35. 根据权利要求34所述的终端,其中,所述确定模块用于根据所述半持续资源的资源配置信息,确定所述传输载体在每个资源周期中起始可用的资源位置信息;
    或者,用于在所述资源分配信息包括资源在每个资源周期内的分配信息的情况下,根据所述半持续资源在每个资源周期内的分配信息,确定所述传输载体在每个资源周期中的可用资源位置信息。
  36. 根据权利要求31所述的终端,其中,在每个资源周期有1个HARQ进程可用时,所述确定模块包括:
    第一确定子模块,用于在不同的传输载体对应不同的HARQ实体的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量和半持续资源的HARQ进程数量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号;
    或者,第二确定子模块,用于在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据资源周期、当前的时隙编号、每个系统帧的时隙数量、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定每个所述传输载体在每个资源周期中可用的HARQ进程编号。
  37. 根据权利要求31所述的终端,其中,在每个资源周期有多个HARQ进程可用时,所述确定模块包括:
    第三确定子模块,用于在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和每个资源周期内的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资 源编号,确定每个资源周期中后续资源的HARQ进程编号;
    或者,第四确定子模块,用于在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量、每个资源周期内的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
  38. 根据权利要求31所述的终端,其中,在每个资源周期有多个HARQ进程可用时,所述确定模块包括:
    第五确定子模块,用于在不同的传输载体对应不同的HARQ实体的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期和半持续资源的HARQ进程数量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号;
    或者,第六确定子模块,用于在不同的传输载体对应相同的HARQ实体且对应不同的HARQ进程编号的情况下,根据当前的时隙编号、每个系统帧的时隙数量、资源周期、半持续资源的HARQ进程数量和HARQ进程标识偏移量,确定所述传输载体在每个资源周期中起始资源的HARQ进程编号,并根据资源周期的编号和资源编号,确定每个资源周期中后续资源的HARQ进程编号。
  39. 一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至19中任一项所述资源配置方法的步骤。
  40. 一种网络设备,包括:
    发送模块,用于发送半持续资源的资源配置信息,所述资源配置信息包括:多个传输载体的标识信息以及与每个所述传输载体的标识信息对应的资源分配信息。
  41. 根据权利要求40所述的网络设备,其中,所述资源分配信息包括:资源周期。
  42. 根据权利要求41所述的网络设备,其中,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息和所述传输载体的半持续资源的HARQ进程数量中的至少一项。
  43. 根据权利要求41所述的网络设备,其中,所述资源分配信息还包括:所述传输载体的半持续资源在每个资源周期内的分配信息、所述传输载体的半持续资源的时域偏移量和所述传输载体的半持续资源中的每个时域资源占用的时域长度中的至少一项。
  44. 一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求20至29中任一项所述资源配置方法的步骤。
  45. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至19中任一项或者实现20至29中任一项所述资源配置方法的步骤。
PCT/CN2019/103016 2018-09-21 2019-08-28 资源配置方法、终端及网络设备 WO2020057336A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19863518.7A EP3855662A4 (en) 2018-09-21 2019-08-28 RESOURCE, TERMINAL AND NETWORK DEVICE CONFIGURATION PROCESS
KR1020217011019A KR20210057156A (ko) 2018-09-21 2019-08-28 자원 구성 방법, 단말, 및 네트워크 장비
JP2021515646A JP7194819B2 (ja) 2018-09-21 2019-08-28 リソース配置方法、端末、およびネットワーク機器
US17/205,097 US11979893B2 (en) 2018-09-21 2021-03-18 Resource configuration method, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811110744.3A CN110943816B (zh) 2018-09-21 2018-09-21 一种资源配置方法、终端及网络设备
CN201811110744.3 2018-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/205,097 Continuation US11979893B2 (en) 2018-09-21 2021-03-18 Resource configuration method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2020057336A1 true WO2020057336A1 (zh) 2020-03-26

Family

ID=69888259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103016 WO2020057336A1 (zh) 2018-09-21 2019-08-28 资源配置方法、终端及网络设备

Country Status (6)

Country Link
US (1) US11979893B2 (zh)
EP (1) EP3855662A4 (zh)
JP (1) JP7194819B2 (zh)
KR (1) KR20210057156A (zh)
CN (1) CN110943816B (zh)
WO (1) WO2020057336A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11509426B2 (en) * 2019-08-14 2022-11-22 Ofinno, Llc URLLC HARQ processes
WO2021062854A1 (zh) * 2019-10-01 2021-04-08 华为技术有限公司 一种控制harq进程的方法以及装置
WO2021142833A1 (zh) * 2020-01-19 2021-07-22 Oppo广东移动通信有限公司 资源配置方法、装置、终端、非易失性存储介质
EP4133828A4 (en) * 2020-04-11 2023-06-07 ZTE Corporation METHOD AND SYSTEM FOR IMPROVED SOUNDING REFERENCE SIGNAL (SRS) OVERTHROUGHPUT AND FLEXIBLE REUSE SCHEME
CN113556814A (zh) * 2020-04-23 2021-10-26 维沃移动通信有限公司 下行数据接收方法、下行资源配置方法及装置、通信设备
US11924846B2 (en) * 2020-07-27 2024-03-05 Samsung Electronics Co., Ltd. HARQ process identification and soft buffer management for non-terrestrial networks
CN112204909B (zh) * 2020-08-27 2023-12-29 北京小米移动软件有限公司 盲重传方法和装置、盲重传指示方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023705A (zh) * 2016-11-04 2018-05-11 维沃移动通信有限公司 一种半静态参考信号配置、收发方法、基站及终端
WO2018137539A1 (zh) * 2017-01-25 2018-08-02 华为技术有限公司 传输数据的方法、终端设备和网络设备
CN108401301A (zh) * 2017-02-04 2018-08-14 华为技术有限公司 一种半静态调度方法、网络设备及终端设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621364B (zh) * 2008-06-30 2013-01-30 富士通株式会社 自动重传控制器和重传块重组装置
CN101800991B (zh) * 2009-02-06 2012-10-03 电信科学技术研究院 一种数据传输方法、系统及装置
CN109510697B (zh) * 2013-07-04 2021-07-06 韩国电子通信研究院 处理无线电链路故障的方法
CN115996363A (zh) 2016-02-03 2023-04-21 三菱电机株式会社 通信系统
CN107371260B (zh) * 2016-05-13 2020-05-22 中兴通讯股份有限公司 资源请求、资源分配方法及装置
CN109479267B (zh) 2016-08-12 2021-06-15 华为技术有限公司 半静态传输方法及装置
CN106465391B (zh) * 2016-08-12 2018-08-07 北京小米移动软件有限公司 资源调度方法、调度器、基站、终端及系统
US11284413B2 (en) 2016-08-12 2022-03-22 Beijing Xiaomi Mobile Software Co., Ltd. Traffic type based scheduling in a wireless network and device
CN108307502B (zh) 2016-08-25 2023-05-23 中兴通讯股份有限公司 信息发送、接收方法及装置、基站、终端
US10868649B2 (en) 2016-12-27 2020-12-15 FG Innovation Company Limited Method for signaling bandwidth part (BWP) indicators and radio communication equipment using the same
US11038649B2 (en) * 2017-02-01 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for CSI report in next generation wireless system
US11582781B2 (en) * 2018-08-10 2023-02-14 Qualcomm Incorporated SPS support for multi-TRP

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023705A (zh) * 2016-11-04 2018-05-11 维沃移动通信有限公司 一种半静态参考信号配置、收发方法、基站及终端
WO2018137539A1 (zh) * 2017-01-25 2018-08-02 华为技术有限公司 传输数据的方法、终端设备和网络设备
CN108401301A (zh) * 2017-02-04 2018-08-14 华为技术有限公司 一种半静态调度方法、网络设备及终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Corrections to Multiple SPS Configurations Introduced in HRLLC", 3GPP TSG-WG2 MEETING #103 R2-1813372, 24 August 2018 (2018-08-24), XP051522893 *
See also references of EP3855662A4 *

Also Published As

Publication number Publication date
CN110943816B (zh) 2021-06-15
JP7194819B2 (ja) 2022-12-22
KR20210057156A (ko) 2021-05-20
JP2022500950A (ja) 2022-01-04
US11979893B2 (en) 2024-05-07
US20210204297A1 (en) 2021-07-01
CN110943816A (zh) 2020-03-31
EP3855662A1 (en) 2021-07-28
EP3855662A4 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
WO2020057336A1 (zh) 资源配置方法、终端及网络设备
WO2019196690A1 (zh) 旁链路的传输方法和终端
US11582791B2 (en) PUCCH collision processing method and terminal
CN110166206B (zh) 一种harq-ack码本的确定方法和终端
CN111148262B (zh) 一种数据传输方法、信息配置方法、终端及网络设备
CN111262670B (zh) 一种混合自动重传确认反馈信息传输方法和终端设备
WO2020063241A1 (zh) 信息传输方法及终端
WO2021013090A1 (zh) 旁链路信息发送方法、接收方法、终端和控制节点
AU2021269599B2 (en) Information transmission method and apparatus, and electronic device
WO2020228529A1 (zh) 半静态调度配置的配置方法、设备及系统
WO2020119243A1 (zh) 物理上行控制信道传输方法、网络侧设备和终端
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
WO2021057655A1 (zh) 信息指示方法、设备及系统
WO2020073805A1 (zh) 上行传输的指示方法、终端及网络侧设备
WO2021057779A1 (zh) 混合自动重传请求应答反馈的获取、发送、终端及网络侧设备
WO2021018227A1 (zh) 上行控制信息的传输方法、终端设备及存储介质
WO2020063271A1 (zh) 接收方法、发送方法、终端及网络侧设备
US12063693B2 (en) Method and terminal for transmitting random access request information or target information based on priority
WO2021208953A1 (zh) 冲突资源判断方法、终端和网络设备
WO2021018130A1 (zh) 物理上行链路控制信道传输方法、装置、设备及介质
WO2021204152A1 (zh) 资源确定方法及终端
WO2021121114A1 (zh) 辅小区休眠指示方法和通信设备
WO2020228415A1 (zh) 信息确定方法及用户设备
WO2020134222A1 (zh) 信息传输方法、终端及网络设备
WO2019154358A1 (zh) Harq-ack码本的确定方法和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011019

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019863518

Country of ref document: EP

Effective date: 20210421