WO2020057331A1 - 调整式摄像模组及其组装测试方法 - Google Patents

调整式摄像模组及其组装测试方法 Download PDF

Info

Publication number
WO2020057331A1
WO2020057331A1 PCT/CN2019/102957 CN2019102957W WO2020057331A1 WO 2020057331 A1 WO2020057331 A1 WO 2020057331A1 CN 2019102957 W CN2019102957 W CN 2019102957W WO 2020057331 A1 WO2020057331 A1 WO 2020057331A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment
camera module
coil
optical lens
lens group
Prior art date
Application number
PCT/CN2019/102957
Other languages
English (en)
French (fr)
Inventor
黄桢
刘筱迪
陈振宇
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to EP19861367.1A priority Critical patent/EP3843373A4/en
Priority to US17/276,633 priority patent/US11399122B2/en
Publication of WO2020057331A1 publication Critical patent/WO2020057331A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B43/00Testing correct operation of photographic apparatus or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to the field of optics, and more specifically, to an adjustable camera module and an assembly testing method thereof.
  • an energizing amount corresponding to an inclination amount of an optical lens group is preset to facilitate improvement of resolution.
  • the camera module has become a necessary module for mobile devices such as mobile phones. Compared with professional camera equipment, people usually choose to shoot with a mobile phone, which is not only smart and convenient, but also cost-effective. However, as consumers have higher and higher requirements for shooting performance, the production and design requirements for camera module manufacturers have become higher and higher. At the same time, the development of technology and the continuous iteration of products require camera module manufacturers to shorten the production cycle as much as possible and quickly adapt to the speed of industry development.
  • AA technology active alignment technology
  • the AA technology adjusts the position and orientation of the entire actuator. If there is an assembly tilt problem when the lens and the actuator are assembled, it is likely to exceed the adjustment range of the AA technology or increase the difficulty of the AA technology adjustment. In other words, AA technology cannot completely guarantee complete alignment. If you want to achieve alignment through AA technology, the process level requirements and costs of camera module manufacturers will increase.
  • the lens will dynamically tilt during the focusing of the actuator and the movement of the lens. And the amount of dynamic tilt of the lens will vary depending on the focus position. If AA technology is used, it is difficult to adjust the position of the actuator for different focusing positions, which not only has a large workload, is time-consuming and labor-intensive, and further increases the difficulty.
  • An object of the present invention is to provide an adjustable camera module and an assembly testing method thereof.
  • the adjustable camera module implements the inclination of an optical lens group by applying an adjustment current to an adjustment coil group.
  • the alignment of the optical lens group and a photosensitive chip improves the resolution.
  • An object of the present invention is to provide an adjustable camera module and an assembly testing method thereof.
  • an adjustment current required for an adjustment coil group is programmed, and an energization amount is preset to be adjusted, thereby facilitating use.
  • the adjustment coil obtains a preset adjustment energization amount, adjusts the tilt amount of an optical lens group, realizes the alignment of the optical lens group and a photosensitive chip, and improves the resolution.
  • Another object of the present invention is to provide an adjustable camera module and an assembly testing method thereof.
  • the energization amount of the preset adjustment coil group By adjusting the energization amount of the preset adjustment coil group, the difficulty of the AA alignment step is reduced, so that the AA alignment step only needs to be adjusted to The adjustment coil group can be adjusted within the adjustable range.
  • Another object of the present invention is to provide an adjustable camera module and an assembly testing method thereof, which reduces the difficulty of the AA alignment step, thereby reducing the requirements on the production technology of the camera module manufacturer and improving the product yield.
  • Another object of the present invention is to provide an adjustable camera module and an assembly testing method thereof. By adjusting the energization amount of the preset adjustment coil group instead of the AA alignment step, the technical requirements for camera module manufacturers are reduced.
  • Another object of the present invention is to provide an adjustable camera module and an assembly testing method thereof, which can reduce the difficulty of the AA alignment step or replace the AA alignment step by presetting the adjustment of the energization amount of the adjustment coil group, thereby shortening the generation cycle. Adapt to fast-paced product iterations.
  • An object of the present invention is to provide an adjustable camera module and an assembly testing method thereof, which can be used to adjust a static tilt amount between the optical lens group and a photosensitive chip.
  • An object of the present invention is to provide an adjustable camera module and an assembly testing method thereof, which can be used to adjust a dynamic tilt amount between the optical lens group and a photosensitive chip.
  • Another object of the present invention is to provide an adjustable camera module and an assembly testing method thereof.
  • the static tilt is measured, and a preset static Adjust the amount of power to achieve static tilt adjustment.
  • a preset static Adjust the amount of power to achieve static tilt adjustment can measure the assembly tilt amount by other methods.
  • Another object of the present invention is to provide an adjustable camera module and an assembly testing method thereof, which drive the optical lens group to move to different focusing positions, and measure the tilt amount of the optical lens group under different strokes to measure
  • the dynamic tilt amount is preset to dynamically adjust the energization amount to achieve dynamic tilt amount adjustment.
  • Another object of the present invention is to provide an adjustable camera module and an assembly and testing method thereof. By presetting the dynamic adjustment of the energization amount corresponding to each focus position, the dynamic tilt amount of different focus positions can be automatically adjusted, which reduces the product The scrapping rate reduces production costs.
  • Another object of the present invention is to provide an adjustable camera module and an assembly testing method thereof, wherein the adjustment coil group can replace an AF coil (Auto Focus Focus Coil) by a preset driving power to compensate for tilt After the measurement, autofocus is achieved. That is, compared with the existing AF actuators, the adjusting actuator of the present invention has a smaller overall size, which is in line with the current trend of thinner and lighter overalls.
  • AF coil Auto Focus Focus Coil
  • the present invention further provides an assembly and testing method for an adjustable camera module, including:
  • the method for assembling and testing the adjustable camera module further includes steps:
  • step (e) further includes the following steps:
  • the method for assembling and testing the adjustable camera module further includes steps:
  • the method for assembling and testing the adjustable camera module further includes steps:
  • the present invention further provides an assembly and testing method for an adjustable camera module, including:
  • (E) Measure the amount of dynamic tilt after adjustment. If the amount of dynamic tilt after adjustment is within an acceptable error range, write the dynamic adjustment power required for each of the adjustment coils corresponding to the focus position; if the amount of dynamic tilt after adjustment is adjusted Outside the acceptable error range, repeat steps (B) and (C).
  • the present invention further provides an adjustable camera module, including:
  • the assembly test method according to any one of the adjustable camera modules is prepared, wherein the adjustable actuator supports the optical lens group and is installed on the top of the photosensitive component, and the optical lens group corresponds to the optical lens group. Photosensitive path of the photosensitive component.
  • the adjustable actuator includes a frame body, an adjustment coil group, at least one magnet, and a base, wherein the frame body and the base are coupled to define a mounting cavity,
  • the elastic component, the magnet, the optical lens group, and the adjustment coil are housed and fixed in the mounting cavity, and when the adjustment coil group passes a corresponding static adjustment power, the Under the action of the magnet, the optical lens group is driven by the adjustment coil to adjust the amount of static tilt to facilitate the focusing of the optical lens group.
  • the adjustment coil when the optical lens group is driven to focus, the adjustment coil is passed into a dynamic adjustment electric power corresponding to the in-focus position. Under the action of the magnet, the optical lens group is Adjust the coil drive to compensate for the amount of dynamic tilt.
  • the adjustment coil group is fixed to an outer peripheral wall of the optical lens group, and each adjustment coil is distributed at intervals.
  • the magnet is fixed to an inner side wall of the main frame body.
  • the respective adjustment coils are fixed to the inner side wall of the main frame body at intervals, and the magnets are fixed to the outer side wall of the lens barrel at intervals.
  • the adjustment actuator further includes an autofocus coil, wherein the autofocus coil surrounds the optical lens group, and when the corresponding static adjustment power is passed to the adjustment coil group, After compensating for the amount of static tilt, the autofocus coil achieves autofocus.
  • the adjusting actuator further includes an auto-focusing coil, wherein the auto-focusing coil surrounds the optical lens group, and after the auto-focusing coil realizes auto-focusing, the adjusting coil The group is passed in the corresponding static adjustment power to make up for the static tilt amount.
  • the adjusting actuator further includes an autofocus coil, wherein the autofocus coil surrounds the optical lens group, and when the optical lens group is driven to focus by the autofocus coil At that time, the adjustment coil group is passed in the corresponding dynamic adjustment power to compensate for the dynamic tilt amount.
  • the adjustment coil group when the adjustment coil group passes in the corresponding static adjustment power and / or dynamic adjustment power to compensate for the static tilt amount and / or dynamic tilt amount, the driving power is passed in, and the adjustment coil The group drives the optical lens group to automatically focus.
  • FIG. 1 is a flowchart of an assembly testing method of an adjustable camera module according to a preferred embodiment of the present invention.
  • FIG. 2 is a flowchart of an assembly and testing method of an adjustable camera module according to another embodiment of the present invention.
  • 3A is a schematic diagram of a static tilt of an adjustable camera module according to the present invention.
  • FIG. 3B is a schematic diagram of a target plate used in a static tilt measurement of an adjustable camera module according to the present invention.
  • FIG. 3C is a schematic diagram of the out-of-cross curve measured by the static tilt measurement of the adjustable camera module according to the present invention.
  • 3D is a schematic diagram of an out-of-cross curve measured after the static tilt of the adjustable camera module according to the present invention is adjusted.
  • FIGS. 4A and 4B are schematic diagrams of dynamic tilt of an adjustable camera module according to the present invention.
  • 4C is a schematic diagram of a dynamic tilt curve of an adjustable camera module according to the present invention.
  • 5A is a schematic diagram of an embodiment of an adjustable coil resistance of an adjustable camera module according to the present invention.
  • 5B is a schematic diagram of another embodiment of the adjustment coil resistance of the adjustable camera module according to the present invention.
  • FIG. 6 is an exploded view of an adjustable camera module according to an embodiment of the present invention.
  • FIG. 7 is an exploded view of an adjustable camera module according to another embodiment of the present invention.
  • FIG. 8 is an exploded view of an adjustable camera module according to another embodiment of the present invention.
  • FIG. 9 is an exploded view of an adjustable camera module according to another embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view of an adjustable camera module according to an embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of an adjustable camera module according to another embodiment of the present invention.
  • the present invention provides an adjustable camera module and an assembly testing method thereof.
  • an adjustment current required for an adjustment coil group 40 of an adjustment actuator 100 is programmed to preset an adjustment energization amount, so that when the use is convenient, the adjustment coil group 40 obtains a preset adjustment energization amount.
  • An optical lens group 200 is adjusted to achieve alignment between the optical lens group 200 and a photosensitive chip 410 of a photosensitive component 400 to improve resolution.
  • FIG. 1 it is a flowchart of the actuator production method of the present invention.
  • Step 301 Assemble the optical lens group 200, the adjustment actuator 100, and the photosensitive component 400 to form an adjustment camera module.
  • the adjusting actuator 100 supports the optical lens group 200 and is mounted on the top of the photosensitive assembly 400.
  • the optical lens group 200 corresponds to a photosensitive path of the photosensitive chip 410 of the photosensitive component 400.
  • the assembly manner of the optical lens group 200, the adjustment actuator 100, and the photosensitive component 400 is not limited, and those skilled in the art can assemble the two by any executable method.
  • the optical lens group 200 includes a plurality of optical lenses 210 and a lens barrel 220.
  • the optical lenses 210 are sequentially arranged and fixed in the lens barrel 220, and the inner side wall of the lens barrel 220 is suitable for mounting and fixing the corresponding optical lens 210.
  • the method for fixing the optical lens 210 to the inner wall of the lens barrel 220 is not limited, and may be snapping, inlaying, bonding, or the like.
  • the adjusting actuator 100 can be assembled with the optical lens group 100 by fixing the lens barrel 220.
  • the photosensitive assembly 400 includes the photosensitive chip 410, a mirror base 420, and a circuit board 430, and the mirror base 420 encapsulates the photosensitive chip 410 on the circuit board 430.
  • the lens holder 420 has a light window 421 formed on the top of the lens holder, corresponding to the light sensing path of the photosensitive chip 410.
  • the photosensitive component 400 may be formed by a packaging process such as MOB, MOC, and COB, which is not limited herein, as shown in FIGS. 10 and 11.
  • the step 301 may include a step of assembling the optical lens group 200 and the adjustable actuator 100 through an AA alignment technique.
  • the AA alignment technology is not necessary, but the module manufacturer can adjust the assembly through the AA alignment technology and then perform the subsequent steps to reduce the static tilt amount and adjust the static tilt amount to the adjustable range of the adjustment coil group 40.
  • Step 303 Perform a defocus curve test on the adjustable camera module, and measure a static tilt of the adjustable camera module.
  • the test principle of the defocus curve is: by applying current to the AF coil or the adjustment coil of the adjustment actuator 100, the optical lens group 200 is moved up and down relative to the photosensitive chip 410, and the adjustment actuator is removed.
  • Focal curve test recording the resolution curve of the adjustable camera module at a field of view of 0.8 in the upper left B, upper right E, lower left C, and lower right D of a module test image, for example, MTF (Modulation Transfer Function, Modulation Transfer Function) or Spatial Frequency Response (SFR).
  • MTF Modulation Transfer Function, Modulation Transfer Function
  • SFR Spatial Frequency Response
  • the test is performed only by selecting the 0.8 field of view as an example. According to different tilt control requirements and different algorithms, other positions of the module test image or other fields of view may be selected for testing. It is not a limitation of the present invention. In addition, those skilled in the art can know the specific steps of the defocus curve test and the equipment used, which will not be repeated here.
  • the motor travel of the adjustable module when the imaging is clearest at the upper left B, upper right E, lower left C, and lower right D of the module test image, that is, the optical lens group 200 corresponds to the module Focus positions at various positions of the test image; when there is a tilt between the imaging surface of the optical lens group 200 and the photosensitive chip 410, that is, when a static tilt amount exists, the optical lens group 200 is at each position There is a difference between the in-focus positions of. The larger the position difference, the greater the amount of static tilt.
  • the static tilt amount can be calculated according to the position difference between the in-focus positions and the imaging direction of the adjustable camera module, as shown in FIGS. 3B and 3C.
  • optical lens group 200 is also moved up and down relative to the photosensitive chip 410 by moving the module test image.
  • Step 305 Measure the dynamic tilt corresponding to the adjustable camera module at different focusing positions.
  • the lens will dynamically tilt during the focus of the actuator and the movement of the lens.
  • the amount of dynamic tilt of the lens will vary depending on the focus position, as shown in Figures 4A to 4C.
  • the test method of the dynamic tilt amount may be to emit laser light to the surface of the optical lens group 200, and let the adjustment actuator 100 drive the optical lens group 200 to move to a different focus position (preferably, drive the The optical lens group 200 has completed all the strokes of the adjustable actuator 100, so that the dynamic tilt of the entire stroke can be obtained and adjusted.)
  • the optical lens group 200 is in a certain in-focus position, it is detected whether the laser light reflected by the optical lens group 200 has a dynamic offset and an offset amount, and the corresponding dynamic tilt amount is converted according to the offset amount.
  • the testing method of the dynamic tilt amount may allow the optical lens groups 200 at different in-focus positions to shoot for the same test target, and determine whether a dynamic shift and a shift amount occur according to the obtained shooting results. That is, the testing method of the dynamic tilt amount is not limited, and those skilled in the art may perform the step 305 in other implementable manners.
  • step 303 and the step 305 may be performed simultaneously or separately.
  • Step 307 Analyze the static adjustment power of each adjustment coil of the adjustment coil group 40 according to the static tilt amount.
  • the adjustment coil group 40 includes at least three independent adjustment coils 41, which are distributed on the outside of the optical lens group 200 and provide multiple adjustment points, as shown in FIGS. 5A and 5B. Show. After the adjustment coil 41 is energized, it receives electromagnetic force and moves upward or downward along the respective Z-axis directions (directions perpendicular to the photosensitive chip) to drive the optical lens group 200 to rotate and align it with the photosensitive chip, that is, The imaging surface of the rigid lens group 200 is substantially parallel to the imaging surface of the photosensitive chip 410.
  • the three adjustment coils are taken as an example for explanation.
  • the three adjustment coils may be distributed in an equilateral triangle, an isosceles triangle, or a right triangle, and the like is not limited herein. It is assumed that, after step 301 is performed, the assembled state of the optical lens group 200 and the adjustable actuator 100 is shown in FIG. 3A.
  • the step 303 obtains a static tilt amount according to the defocus curve, and according to the static tilt amount, the three adjustment coils need to move in different directions and different amounts of electricity.
  • the first adjustment coil 41A needs to move downward
  • the second adjustment coil 41B needs to move upward
  • the third adjustment coil 41C may not need to move, or it needs to move up or down to make up for the static tilt amount.
  • the static adjustment power required by the three adjustment coils 41 is different, the first adjustment coil 41A is a static adjustment power I A , the second adjustment coil 41B is a static adjustment power I B , and the third adjustment coil 41C is the static adjustment power I C.
  • Step 309 Analyze the dynamic adjustment power of each adjustment coil of the adjustment coil group 40 according to each focus position according to the dynamic tilt amount.
  • the dynamic tilt adjustment is also provided with an adjustment force by a plurality of independent said adjustment coils 41. Different focusing positions have different dynamic tilt amounts, and the dynamic adjustment power required for each adjustment coil will also be different.
  • the three adjusting coils are still taken as an example for explanation.
  • the three adjusting coils may be distributed in an equilateral triangle, an isosceles triangle, or a right triangle, and the like is not limited herein.
  • the first adjustment coil 41A needs to move downward.
  • the second adjustment coil 41B needs to move upward, and the third adjustment coil 41C may not need to move, or it needs to move up or down to make up for the amount of dynamic tilt.
  • the first adjustment coil 41A is a dynamic adjustment power I a1
  • the second adjustment coil 41B is a static adjustment power I a1
  • the third adjustment coil 41C is a static adjustment power I c1 .
  • the first adjustment coil 41A needs to move upward, and the second The adjustment coil 41B needs to move downward, and the third adjustment coil 41C may not need to move, or it needs to move up or down to make up for the amount of dynamic tilt.
  • the first adjustment coil 41A is a dynamic adjustment power I a2
  • the second adjustment coil 41B is a static adjustment power I a2
  • the third adjustment coil 41C is a static adjustment power I c2 .
  • Step 311 Pass the static adjustment power required by each of the adjustment coils to the adjustment camera module.
  • Step 313 Measure the adjusted defocus curve. If the measured defocus curve is measured after adjustment, it means that the static adjustment power required for each of the adjustment coils is programmed within the acceptable range of the static tilt amount; if the static tilt amount exceeds The error range is acceptable, and the steps 303 and 307 are repeated.
  • each of the adjustment coils 41 is forced to drive the optical lens group 200 to rotate to the adjustment position.
  • the optical lens group 200 is again photographed at the four upper left, upper right, lower left, and lower right positions of the module test image to obtain the corresponding defocus curve after adjustment.
  • the static adjustment power required by each of the adjustment coils may be programmed into a driving chip of the adjustment actuator 100.
  • a recording chip is disposed on the circuit board 430 for programming a static adjustment power, or a static adjustment power is programmed into the photosensitive chip 410.
  • the actuator 100 is connected to the circuit board 430 through a pin to obtain the programmed static adjustment power.
  • Step 315 The optical lens group is driven to move to different focusing positions, and the dynamic adjustment power required by each of the adjustment coils corresponding to the focusing position is passed to the adjustable camera module.
  • Step 317 Measure the adjusted dynamic tilt amount. If the adjusted dynamic tilt amount is within an acceptable error range, write the dynamic adjustment power required for each of the adjustment coils corresponding to the focus position; if the adjusted dynamic tilt amount Outside the acceptable error range, repeat steps 305 and 309.
  • the testing and compensation of the static tilt amount will not affect the testing and compensation of the dynamic tilt amount, and the order of the two is not limited.
  • the steps 315 and 317 are performed. That is, after the step 313 is performed, the static adjustment power required to compensate for the static tilt amount can be obtained.
  • the corresponding static adjustment power is first passed in to compensate the static tilt of the optical lens assembly 200, and then the dynamic adjustment power required by each of the adjustment coils corresponding to the focus position is passed to test whether the dynamic tilt amount is compensated.
  • the dynamically adjusted power can be programmed into the drive chip of the adjustable actuator 100, or it can be programmed into the photosensitive chip 410, or the recording chip additionally configured.
  • step 315 and step 317 are directly performed without accessing the corresponding static adjustment power.
  • the adjustable camera module is installed on a mobile terminal such as a mobile phone or tablet.
  • the camera module is triggered to start, the recorded static adjustment power is read, and the corresponding static adjustment power is passed to the adjustment coil group 40.
  • the optical lens group 200 is straightened, and shooting starts .
  • the focusing function of the camera module is triggered and the optical lens group 200 moves, according to the in-focus position of the optical lens group 200, the recorded dynamic adjustment power is read and passed to the adjustment coil group 40.
  • the amount of dynamic tilt at this time is compensated.
  • the resolution of the camera module is improved and the performance is increased compared to when the static adjustment power and / or the dynamic adjustment power have not been made up.
  • the adjustable camera module compensates for the amount of dynamic tilt first, and then compensates for the amount of static tilt. That is, when the user needs to shoot, the focus function of the camera module is triggered, and when the optical lens group 200 moves, according to the focus position of the optical lens group 200, the recorded dynamic adjustment power is read, and the adjustment coil The group 40 receives the corresponding dynamic adjustment power, and the dynamic tilt amount at this time is compensated. After that, the recorded static adjustment power is read, the corresponding static adjustment power is passed to the adjustment coil group 40, and the optical lens group 200 is aligned.
  • the common camera module on the market is an AF camera module, which can realize autofocus.
  • the optical lens group 200 is driven by an auto-focusing coil 70 of the adjusting actuator 100.
  • the moving focus coil surrounds the optical lens group 200, for example, it is sleeved on the outer peripheral wall of the lens barrel 220.
  • the auto-focusing coil 70 is energized to drive the optical lens group 200 to the corresponding focus position.
  • the autofocus coil 70 and the adjustment coil group 40 coexist, and the adjustment coil group 40 is distributed outside the autofocus coil 70.
  • the adjustment coil group 40 compensates for static
  • the autofocus coil 70 works to achieve autofocus, as shown in FIGS. 7 and 8.
  • the adjustment coil group 40 replaces the autofocus coil 70 to implement an autofocus function, as shown in FIG. 6.
  • Step 319 preset the driving current corresponding to each of the adjustment coils according to different focusing positions.
  • the focus position of the optical lens group 200 is different, and the amount of driving current corresponding to each of the adjustment coils is also different.
  • the preset driving current can be directly calculated and analyzed through the overall design of the camera module during the adjustment.
  • the design parameters of the shrapnel, magnet, and the adjustment coil can correspond to the driving current corresponding to each distance scale. To preset the amount of driving current.
  • Step 321 Pass the driving current corresponding to each of the adjustment coils to the camera module.
  • Step 323 Detect whether the focusing is successful after the driving power is input. If the focusing is successful, record the driving current corresponding to each of the adjustment coils; if not, repeat steps 319 and 321.
  • steps 319 to 323 are performed prior to steps 303 to 317. That is, the amount of driving current required for the adjustment coil group 40 is measured and programmed first, and then the amount of static adjustment current and the amount of dynamic adjustment current are measured and programmed. Therefore, the corresponding required driving current is passed to the adjustment coil group 40 to drive the optical lens group 200 to focus and move, which facilitates the measurement of the static adjustment current amount and the dynamic adjustment current amount, and also facilitates accurate static adjustment. Current amount and dynamic adjustment current amount.
  • the adjustment coil group 40 drives the optical lens group 200 until the optical lens group 200 moves to a position where the image is sharpest. That is to say, in the present invention, the adjustment coil group 40 can not only compensate for static adjustment power and / or dynamic adjustment power, but also drive the optical lens group 200 to focus.
  • the presetting and recording of the production stage makes the compensation and driving more flexible and rapid in the use process.
  • the method for assembling and testing the adjustable camera module may use the adjustable actuator 100 mentioned below.
  • the method for assembling and testing the adjustable camera module may also use an adjustable actuator having an adjustment coil group 40 of another structure, as shown in FIGS. 6 to 8.
  • the adjustable actuator 100 includes a frame body 10, an elastic component 20, at least one magnet 30, the adjustment coil group 40, and a base 50.
  • the frame body 10 and the base 50 are coupled to define a mounting cavity 60, and the elastic component 20, the magnet 30, the optical lens group 200, and the adjustment coil group 40 are accommodated and fixed in In the mounting cavity 60, the optical lens group 200 is driven by the adjustment coil group 40 to adjust the dynamic tilt amount and the static tilt amount.
  • the shape of the main frame body 10 is not limited, and is preferably a square frame for fixing and accommodating other components.
  • the main frame body 10 has a magnetic permeability effect, which improves the effective utilization rate of the magnet 30.
  • the main frame body 10 has a light passing hole 11 corresponding to a light path of the optical lens group 200. That is, the main frame body 10 surrounds the periphery of the optical lens group 200, and the light passing hole 11 thereof corresponds to the optical path of the optical lens group 200. When a consumer takes a picture, the reflected light of the subject is captured by the optical lens group 200 through the light hole 11.
  • the coupling structure of the frame body 10 and the base 50 may be a buckle, a screw, or an adhesive, etc. The present invention is not limited thereto.
  • the lens barrel 220 drives the optical lens 210 to move, thereby adjusting or autofocusing.
  • the magnet 30 may be implemented as a magnet, a permanent magnet, or the like, and is fixed in the receiving cavity 60.
  • the adjustment coil groups 40 are fixed to an outer peripheral wall of the lens barrel 220, and the adjustment coils 41 are spaced apart from each other.
  • the top and bottom edges of the lens barrel 220 respectively extend outward to form a plurality of top fixing elements and corresponding bottom fixing elements, and the top and bottom ends of the adjustment coil 41 are respectively fixed to the top fixing elements and corresponding ⁇ bottom fixing element.
  • the magnet 30 is fixed to an inner side wall of the main frame body 10, and is located at an inner corner of the main frame body 10.
  • the adjustment coils 41 are fixed to the inner wall of the main frame body 10 at intervals
  • the magnets 30 are fixed to the outer wall of the lens barrel 220 at intervals.
  • the elastic component 20 is used to keep the optical lens group 200 stable and balance electromagnetic force.
  • the elastic component 20 may be implemented as a coil spring, a leaf spring, or the like, and the present invention is not limited thereto.
  • the elastic component 20 includes an upper elastic piece 21 and a lower elastic piece 22, wherein the upper elastic piece 21 is installed at the top of the optical lens group 200, and the lower elastic piece 22 is installed at The lower end of the optical lens group 200.
  • the adjustment coil group 40 is energized, the upper elastic piece 21 and the lower elastic piece 22 balance the force applied by the adjustment coil group 40.
  • the driving power generates an upward ampere force under the action of the magnetic field, and pushes the optical lens group 200 upward.
  • the optical lens group 200 stays at a corresponding distance scale to achieve focusing.
  • the adjusting actuator 100 includes a plurality of pairs of pins 80, and each pair of pins 80 corresponds to one adjusting coil 41.
  • the pin 80 is communicably connected to the circuit board 420. On the one hand, the power of the battery is obtained.
  • the pin 80 reads corresponding data.
  • the adjustable actuator 100 further includes the autofocus coil 70, and the autofocus coil 70 surrounds the optical lens group 200.
  • the autofocus coil 70 For autofocus. That is, in this embodiment, the adjustment coil group 40 and the autofocus coil 70 coexist, the adjustment coil group 40 compensates the static tilt amount and the dynamic tilt amount, and the autofocus coil 70 realizes automatic Focus.
  • the autofocus coil 70 generates an upward ampere force under the action of the magnetic field, and pushes the optical lens group 200 to move upward.
  • the optical lens group 200 stays at a corresponding distance scale to achieve focusing.
  • the mounting position of the autofocus coil 70 is not limited, and a combination of the mounting position with the adjustment coil group 40 and the magnet 30 may form various embodiments.
  • the autofocus coil 70 is fixedly wrapped around the outer side wall of the lens barrel 210, and the upper and lower edges of the lens barrel 220 extend laterally outwards to form an upper protective layer and a lower protection. Layer to cover the auto-focusing coil 70 to prevent the auto-focusing coil 70 from being impacted and short-circuited.
  • the adjustment coil group 40 is also fixed to the outer peripheral wall of the lens barrel 220, and the adjustment coils 41 are distributed at intervals.
  • the top end and the low end of the adjustment coil 41 are fixed to the protective layer and the lower protective layer, respectively.
  • the magnet 30 is fixed to an inner side wall of the main frame body 10 at an inner corner of the main frame body 10.
  • the magnet 30 is also fixed to the outer peripheral wall of the lens barrel 220, and the upper and lower ends are respectively fixed to the protective layer and The lower protective layer, and the adjustment coil 41 is fixed to the inner side wall of the main frame body 10, for example, by a buckle or the like.
  • the adjustment coil group 40 is placed on the bottom of the optical lens group 200, and is located on an FPC circuit board of the adjustment actuator. Specifically, the adjustment coil group 40 is formed or fixed on the FPC circuit board, and is in communication with the FPC circuit board. The FPC circuit board with the adjustment coil group 40 is fixed to the bottom of the optical lens group 200.
  • the adjustment coil group 40 is fixed below the autofocus coil 70, as shown in FIG. 9.
  • the adjustment coil 41 is fixed to an outer side wall of the lens barrel 220.
  • the adjustment coil 41 has a flat shape, and the plane where the adjustment coil 41 is located is connected to the outer side wall of the lens barrel 220. Basically parallel.
  • the adjustment coil 41 may also be fixed laterally, that is, the coil winding direction of the adjustment coil 41 is consistent with the circumferential direction of the lens 220.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)

Abstract

调整式摄像模组及其组装测试方法。所述调整式摄像模组的组装测试方法包括通过对所述调整式摄像模组进行离焦曲线测试,测取所述光学镜片组与所述感光组件间的静态倾斜量;根据静态倾斜量,分析一调整线圈组各调整线圈的静态调整电量;和烧录各所述调整线圈所需的静态调整电量,从而降低工艺要求。

Description

调整式摄像模组及其组装测试方法 技术领域
本发明涉及光学领域,更详而言之地涉及一调整式摄像模组及其组装测试方法,在生产阶段预设弥补一光学镜片组倾斜量对应的通电量,便于提高解像力。
背景技术
随着摄光学技术的发展,摄像模组成为手机等移动设备必备的模块。相比于专业的摄像设备,人们通常会选择使用手机拍摄,不仅智能和方便,性价比也较高。但随着消费者对拍摄性能要求越来越高,对摄像模组厂商的生产和设计要求也越来越高。同时,科技的发展,产品的不断迭代,要求摄像模组厂商能够尽可能缩短生产周期,快速适应行业发展速度。
而在摄像模组的组装过程中,无论是镜头与马达的组装、马达与镜座的组装,还是镜座与线路板的组装,其都会存在组装公差,这些组装公差最终累积起来,最终将导致摄像模组的镜头与芯片之间产生倾斜,也就是说镜头的成像面与感光芯片的感光面不重合,进而导致摄像模组的解像力降低。
现有技术中,有些摄像模组厂商通过AA技术(active alignment主动对准技术)来使镜头和感光芯片对准。但是AA技术调整的是整个致动器的位置和方向,如果镜头和致动器组装时就存在组装倾斜问题,很有可能超出AA技术的调整范围,或者增加AA技术的调整难度。也就是说,AA技术并不能完全保证对准完全,如果想要通过AA技术实现对准,对摄像模组厂商工艺水平要求和成本都增加。
此外,由于磁铁便宜或者线圈偏移,在致动器对焦、镜头移动的过程中,镜头会产生动态倾斜。而且不同的对焦位置,镜头的动态倾斜量也会不同。如果通过AA技术,很难做到针对不同对焦位置调整致动器的位置,不仅工作量大,耗时费力,难度进一步加大。
发明内容
本发明的一个目的在于提供一种调整式摄像模组及其组装测试方法,所述调 整式摄像模组通过向一调整线圈组通入调整电流,以调整一光学镜片组倾斜量,实现所述光学镜片组和一感光芯片的对准,提高解像力。
本发明的一个目的在于提供一种调整式摄像模组及其组装测试方法,在生产过程中,烧录一调整线圈组所需的调整电流,预设调整通电量,从而方便使用时,所述调整线圈获组得预设调整通电量,调整一光学镜片组倾斜量,实现所述光学镜片组和一感光芯片的对准,提高解像力。
本发明的另一个目的在于提供一种调整式摄像模组及其组装测试方法,通过预设调整线圈组的调整通电量,降低AA对准步骤的难度,使得AA对准步骤只需调整至所述调整线圈组可调整范围内即可。
本发明的另一个目的在于提供一种调整式摄像模组及其组装测试方法,降低AA对准步骤难度,也就降低了对摄像模组厂商生产技术的要求,提高产品良率。
本发明的另一个目的在于提供一种调整式摄像模组及其组装测试方法,通过预设调整线圈组的调整通电量,代替AA对准步骤,降低了对摄像模组厂商生成技术要求。
本发明的另一个目的在于提供一种调整式摄像模组及其组装测试方法,通过预设调整线圈组的调整通电量,降低AA对准步骤的难度或代替AA对准步骤,实现生成周期缩短,适应快节奏的产品迭代。
本发明的一个目的在于提供一种调整式摄像模组及其组装测试方法,可以用于调整所述光学镜片组和感光芯片之间的静态倾斜量。
本发明的一个目的在于提供一种调整式摄像模组及其组装测试方法,可以用于调整所述光学镜片组和感光芯片之间的动态倾斜量。
本发明的另一个目的在于提供一种调整式摄像模组及其组装测试方法,通过对所述调整式摄像模组进行离焦曲线测试,测得所述静态倾斜量(tilt),预设静态调整通电量,从而实现静态倾斜量调整。当然,本领域技术人员可以通过其他方法测取所述组装倾斜量。
本发明的另一个目的在于提供一种调整式摄像模组及其组装测试方法,驱动所述光学镜片组移动至不同对焦位置,通过监测所述光学镜片组在不同行程下的倾斜量,测取所述动态倾斜量,预设动态调整通电量,实现动态倾斜量调整。
本发明的另一个目的在于提供一种调整式摄像模组及其组装测试方法,通过预设与各对焦位置对应的动态调整通电量,可以实现不同对焦位置的动态倾斜量 自动调整,减少了产品的报废率,降低生产成本。
本发明的另一个目的在于提供一种调整式摄像模组及其组装测试方法,其中所述调整线圈组可以代替AF线圈(Auto Focus自动对焦线圈),通过一预设驱动电量,以在弥补倾斜量后实现自动对焦。也就是说,本发明的所述调整式致动器,相比于现有的AF致动器,整体体积尺寸减小,符合当下整体轻薄化的趋势。
依本发明的一个方面,本发明进一步提供一调整式摄像模组的组装测试方法,包括:
(a)组装一光学镜片组、一调整式致动器和一感光组件,成一调整式摄像模组;
(b)通过对所述调整式摄像模组进行离焦曲线测试,测取所述光学镜片组与所述感光组件间的静态倾斜量;
(c)根据静态倾斜量,分析一调整线圈组各调整线圈的静态调整电量;
(d)向所述调整式摄像模组通入各所述调整线圈所需的静态调整电量;及
(e)测取调整后的离焦曲线,如果调整后测取离焦曲线,表示静态倾斜量位置差值处于可接受误差范围内,烧录各所述调整线圈所需的静态调整电量;如果位置差值超过可接受误差范围,重复所述步骤(b)、步骤(c)和步骤(d)。
在本发明的一个实施例中,所述调整式摄像模组的组装测试方法进一步包括步骤:
(f)测取所述调整式摄像模组处于不同对焦位置对应的动态倾斜量;和
(g)根据动态倾斜量,分析各个对焦位置所述调整线圈组的各所述调整线圈所需的动态调整电量。
在本发明的一个实施例中,在所述步骤(e)之后进一步包括步骤:
(h)驱动所述光学镜片组移动至不同的对焦位置对焦,向所述调整式摄像模组通入对应对焦位置各所述调整线圈所需的动态调整电量;和
(i)测取调整后的动态倾斜量,如果调整后的动态倾斜量处于可接受误差范围内,烧录对应对焦位置各所述调整线圈所需的动态调整电量;如果调整后的动态倾斜量超过可接受误差范围,重复步骤(f)和步骤(g)。
在本发明的一个实施例中,所述调整式摄像模组的组装测试方法,进一步包括步骤:
(j)根据不同对焦位置,预设各所述调整线圈对应的驱动电流量。
在本发明的一个实施例中,所述调整式摄像模组的组装测试方法,进一步包括步骤:
(k)向所述调整式摄像模组通入被烧录的静态调整电量和对应的对焦位置的动态调整电量后,通入各所述调整线圈对应预设的驱动电流量;和
(l)检测驱动电量输入后对焦是否成功,如果对焦成功,烧录各所述调整线圈对应的驱动电流量;如果不成功,重复步骤(j)和步骤(k)。
根据本发明的另一个方面,本发明进一步提供一调整式摄像模组的组装测试方法,包括:
(A)组装一光学镜片组、一调整式致动器和一感光组件,成一调整式摄像模组;
(B)测取所述调整式摄像模组处于不同对焦位置对应的动态倾斜量;
(C)根据动态倾斜量,分析各个对焦位置所述调整线圈组的各所述调整线圈所需的动态调整电量;
(D)驱动所述光学镜片组对焦,向所述调整式摄像模组通入对应对焦位置各所述调整线圈所需的动态调整电量;和
(E)测取调整后的动态倾斜量,如果调整后的动态倾斜量处于可接受误差范围内,烧录对应对焦位置各所述调整线圈所需的动态调整电量;如果调整后的动态倾斜量超过可接受误差范围,重复步骤(B)和步骤(C)。
根据本发明的另一个方面,本发明进一步提供一调整式摄像模组,包括:
所述调整式摄像模组上任一所述的组装测试方法制成,其中所述调整式致动器支撑所述光学镜片组,安装于所述感光组件顶部,所述光学镜片组对应于所述感光组件的感光路径。
在本发明的一个实施例中,所述调整式致动器包括一框架主体、一调整线圈组、至少一磁体和一基座,其中所述框架主体和所述基座耦合界定一安装腔,所述弹性组件、所述磁体、所述光学镜片组和所述调整线圈,被容置和固定于所述安装腔内,其中当所述调整线圈组通入对应的静态调整电量,在所述磁体的作用下,所述光学镜片组被所述调整线圈驱动,调整静态倾斜量,以便于所述光学镜片组对焦。
在本发明的一个实施例中,当所述光学镜片组被驱动对焦,所述调整线圈被通入对焦位置对应的动态调整电量,在所述磁体的作用下,所述光学镜片组被所 述调整线圈驱动,弥补动态倾斜量。
在本发明的一个实施例中,所述调整线圈组被固定于所述光学镜片组的外周壁,各个调整线圈间隔地分布,其中所述磁体被固定于所述主框架体的内侧壁。
在本发明的一个实施例中,所述各个调整线圈间隔地固定于所述主框架体的内侧壁,所述磁体被间隔地固定于所述镜筒的外侧壁。
在本发明的一个实施例中,所述调整式致动器进一步包括一自动对焦线圈,其中所述自动对焦线圈环绕于光学镜片组,其中当所述调整线圈组通入对应的静态调整电量,弥补静态倾斜量后,所述自动对焦线圈实现自动对焦。
在本发明的一个实施例中,所述调整式致动器进一步包括一自动对焦线圈,其中所述自动对焦线圈环绕于光学镜片组,其中所述自动对焦线圈实现自动对焦后,所述调整线圈组被通入对应的静态调整电量,弥补静态倾斜量。
在本发明的一个实施例中,所述调整式致动器进一步包括一自动对焦线圈,其中所述自动对焦线圈环绕于光学镜片组,其中当所述光学镜片组被所述自动对焦线圈驱动对焦时,所述调整线圈组被通入对应的动态调整电量,弥补动态倾斜量。
在本发明的一个实施例中,当所述调整线圈组通入对应的静态调整电量和\或动态调整电量,弥补静态倾斜量和\或动态倾斜量后,通入驱动电量,所述调整线圈组驱动所述光学镜片组自动对焦。
附图说明
图1是根据本发明的一个优选实施例的一调整式摄像模组的组装测试方法流程图。
图2是根据本发明的另一实施例的调整式摄像模组的组装测试方法流程图。
图3A是根据本发明的一调整式摄像模组的静态倾斜示意图。
图3B是根据本发明的调整式摄像模组的静态倾斜量测试所用标板示意图。
图3C是根据本发明的调整式摄像模组的静态倾斜量测得离交曲线示意图。
图3D是根据本发明的调整式摄像模组的静态倾斜量调整后测得离交曲线示意图。
图4A和图4B是根据本发明的调整式摄像模组的动态倾斜示意图。
图4C是根据本发明的调整式摄像模组的动态倾斜量曲线示意图。
图5A是根据本发明的调整式摄像模组的一调整线圈阻的一种实施方式示意图。
图5B是根据本发明的调整式摄像模组的所述调整线圈阻的另一种实施方式示意。
图6是根据本发明的一实施例的一调整式摄像模组的爆炸图。
图7是根据本发明的另一实施例的一调整式摄像模组的爆炸图。
图8是根据本发明的另一实施例的一调整式摄像模组的爆炸图。
图9是根据本发明的另一实施例的一调整式摄像模组的爆炸图。
图10是根据本发明的一实施例的一调整式摄像模组的剖视示意图。
图11是根据本发明的另一实施例的一调整式摄像模组的剖视示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
如图1至图10所示,本发明提供一种调整式摄像模组及其组装测试方法。在生产过程中,烧录一调整式致动器100的一调整线圈组40所需的调整电流,预设调整通电量,从而方便使用时,所述调整线圈组40获得预设调整通电量,调整一光学镜片组200,实现所述光学镜片组200和一感光组件400的一感光芯片410的对准,提高解像力。如图1所示,为本发明的所述致动器生产方法流程 图。
步骤301:组装所述光学镜片组200、所述调整式致动器100和所述感光组件400,成一调整式摄像模组。
所述调整式致动器100支撑所述光学镜片组200,安装于所述感光组件400顶部。所述光学镜片组200对应于所述感光组件400的所述感光芯片410的感光路径。本发明中,所述光学镜片组200、所述调整式致动器100和所述感光组件400的组装方式不限,本领域技术人员可以采用任何可执行的方法组装两者。
所述光学镜片组200包括多个光学镜片210和一镜筒220。所述光学镜片210依次排列固定所述镜筒220内,所述镜筒220的内侧壁适于安装和固定对应的所述光学镜片210。所述光学镜片210固定于所述镜筒220内侧壁的方法并不限制,可以是卡扣、镶嵌、粘结等等。所述调整式致动器100可以通过固定所述镜筒220,与所述光学镜片组100组装。
所述感光组件400包括所述感光芯片410,一镜座420和一线路板430,而所述镜座420封装所述感光芯片410于所述线路板430。所述镜座420具有一光窗421,形成于所述镜座顶部,对应于所述感光芯片410的感光路径。所述感光组件400可以通过MOB、MOC、COB等封装工艺形成,此处并不限制,如图10和图11所示。
进一步,所述步骤301可以包括步骤:通过AA对准技术,组装所述光学镜片组200和所述调整式致动器100。AA对准技术并非必须,但是模组制造厂商可以通过AA对准技术调整组装后,再执行后续步骤,从而减小静态倾斜量,将静态倾斜量调整至所述调整线圈组40可调整的范围内。
步骤303:对所述调整式摄像模组进行离焦曲线测试,测取所述调整式摄像模组的静态倾斜量。
如前文背景所述,由于所述摄像模组在组装的过程中,存在着组装公差从而导致所述光学镜片组200与所述感光芯片410间产生静态倾斜量。如3A所示。离焦曲线的测试原理是:通过向所述调整式致动器100的AF线圈或者调整线圈通电,使得所述光学镜片组200相对感光芯片410上下移动,对所述调整式致动器进行离焦曲线测试,记录所述调整式摄像模组在一模组测试图像左上B、右上E、左下C、右下D四个位置0.8视场处的解像力曲线,例如可以是MTF(Modulation Transfer Function,调制传递函数)或SFR(Spatial frequency  response)。
可以理解的是,在本实施例中,仅以选取0.8视场处进行测试为例,根据不同倾斜度管控要求以及不同的算法,也可选取模组测试图像的其他位置或者其他视场进行测试,其不作为本发明的限制。另,本领域技术人员可以知道离焦曲线测试的具体步骤和所用设备,此处不再赘述。
进一步地,提取出所述调整式模组在在模组测试图像左上B、右上E、左下C、右下D处成像最清晰时的马达行程,也就是所述光学镜片组200对应该模组测试图像各位置处的对焦位置;当所述光学镜片组200的成像面与所述感光芯片410之间存在倾斜时,也就是当静态倾斜量存在时,所述光学镜片组200在各位置处的对焦位置间存在差值,该位置差值越大,表示静态倾斜量越大。根据对焦位置间的位置差值和所述调整式摄像模组的成像方向,可计算出所述静态倾斜量,如图3B和图3C所示。
可以理解的是,也通过移动所述模组测试图像来实现所述光学镜片组200相对感光芯片410的上下移动。
步骤305:测取所述调整式摄像模组处于不同对焦位置对应的动态倾斜量。
如前文背景所述,由于磁铁偏移或者线圈偏移,或者是弹片变形等原因,在致动器对焦、镜头移动的过程中,镜头会产生动态倾斜。而且不同的对焦位置,镜头的动态倾斜量也会不同,如图4A至4C所示。
动态倾斜量的测试方式可以是将激光发射至所述光学镜片组200的表面,让所述调整式致动器100驱动所述光学镜片组200移动至不同的对焦位置(优选地是,驱动所述光学镜片组200走完所述调整式致动器100的全部行程,从而可以得到全部行程的动态倾斜情况,并对其进行调整)。当所述光学镜片组200处于某一对焦位置时,检测此时所述光学镜片组200反射的激光是否发生动态偏移以及偏移量,根据偏移量换算对应的动态倾斜量。或者动态倾斜量的测试方式可以让处于不同的对焦位置的所述光学镜片组200,针对同一测试标板拍摄,根据所得拍摄结果,判断是否发生动态偏移以及偏移量。也就是说,动态倾斜量的测试方式并不限制,本领域技术人员可以采用其他可实施的方式执行所述步骤305。
值得一提的是,所述步骤303和所述步骤305可以同时执行,也可以分别执行。
步骤307:根据静态倾斜量,分析所述调整线圈组40各调整线圈的静态调整 电量。
为了实现所述光学镜片组200的调整,所述调整线圈组40至少包括三个独立的调整线圈41,分布于所述光学镜片组200外侧,提供多个调整点,如图5A和图5B所示。所述调整线圈41通电后受到电磁力,沿各自的Z轴方向(垂直于感光芯片的方向)向上或向下移动,带动所述光学镜片组200转动,并使其于感光芯片对准,即,使所述刚学镜片组200的成像面与所述感光芯片410的成像面基本平行。
以三个调整线圈为例阐释说明,其中三个所述调整线圈可以呈等边三角形、等腰三角形或直角三角形等状态分布,此处并不限制。假设步骤301执行后,所述光学镜片组200和所述调整式致动器100组装状态如图3A所示。所述步骤303根据离焦曲线获得静态倾斜量,而根据静态倾斜量,三个调整线圈需要移动的方向和电量各有不同。此时,第一调整线圈41A需要向下移动,第二调整线圈41B需要向上移动,第三调整线圈41C可能不需要移动,或者需要向上或向下移动,才能弥补静态倾斜量。对应地,三个调整线圈41所需的静态调整电量不同,所述第一调整线圈41A为静态调整电量I A,所述第二调整线圈41B为静态调整电量I B,所述第三调整线圈41C为静态调整电量I C
步骤309:根据动态倾斜量,分析各个对焦位置所述调整线圈组40各调整线圈的动态调整电量。
类似于静态倾斜调整,动态倾斜调整也由多个独立的所述调整线圈41提供调整力。不同的对焦位置,对应的动态倾斜量不同,对应各调整线圈所需的动态调整电量也会不同。
仍以三个调整线圈为例阐释说明,其中三个所述调整线圈可以呈等边三角形、等腰三角形或直角三角形等状态分布,此处并不限制。假设当所述光学镜片组200移动至L 1位置时,其动态倾斜状态,如图4A和图5B所示,此时所测取的动态倾斜量,第一调整线圈41A需要向下移动,第二调整线圈41B需要向上移动,第三调整线圈41C可能不需要移动,或者需要向上或向下移动,才能弥补动态倾斜量。对应地,,所述第一调整线圈41A为动态调整电量I a1,所述第二调整线圈41B为静态调整电量I a1,所述第三调整线圈41C为静态调整电量I c1
而当所述光学镜片组200移动至L 2位置时,其动态倾斜状态如图4B和图5B所示,此时根据所测取的动态倾斜量,第一调整线圈41A需要向上移动,第二 调整线圈41B需要向下移动,第三调整线圈41C可能不需要移动,或者需要向上或向下移动,才能弥补动态倾斜量。对应地,所述第一调整线圈41A为动态调整电量I a2,所述第二调整线圈41B为静态调整电量I a2,所述第三调整线圈41C为静态调整电量I c2
步骤311:向所述调整式摄像模组通入各所述调整线圈所需的静态调整电量。
步骤313:测取调整后的离焦曲线,如果调整后测取离焦曲线,表示静态倾斜量可接受误差范围内,烧录各所述调整线圈所需的静态调整电量;如果静态倾斜量超过可接受误差范围,重复所述步骤303和步骤307。
当所述调整式摄像模组获得对应的静态调整电量时,各所述调整线圈41受力,带动所述光学镜片组200转动,至调整位。此时,再次将所述光学镜片组200针对模组测试图像左上、右上、左下、右下四个位置进行拍摄,获取调整后对应的离焦曲线。
如图3D所示,当所述调整式摄像模组获得对应的静态调整电量时,测取的离焦曲线表示各视场的位置差值处于可接受误差范围内。在本发明的一些实施例中,各所述调整线圈所需的静态调整电量可以被烧录于所述调整式致动器100的一驱动芯片。在本发明的另一些实施例中,一记录芯片被设置于所述线路板430,用于烧录静态调整电量,或者静态调整电量被烧录于所述感光芯片410中,所述调整式致动器100通过引脚于所述线路板430连接,获取被烧录的静态调整电量。
步骤315:驱动所述光学镜片组移动至不同的对焦位置,向所述调整式摄像模组通入对应对焦位置各所述调整线圈所需的动态调整电量。
步骤317:测取调整后的动态倾斜量,如果调整后的动态倾斜量处于可接受误差范围内,烧录对应对焦位置各所述调整线圈所需的动态调整电量;如果调整后的动态倾斜量超过可接受误差范围,重复步骤305和步骤309。
值得一提的是,静态倾斜量的测试和弥补不会影响动态倾斜量的测试和弥补,两者之间的先后顺序并不限定。制造商可以再烧录各所述调整线圈所需的静态调整电量之后,再执行所述步骤315和步骤317。也就说,当所述步骤313执行完毕后,可以获得弥补静态倾斜量所需静态调整电量。此时先通入对应的静态调整电量,将所述光学镜片组件200的静态倾斜弥补,然后通入对应对焦位置各所述调整线圈所需的动态调整电量,测试动态倾斜量是否被弥补。相应地,动态调整电量可以被烧录于所述调整式致动器100的所述驱动芯片,也可以被烧录于所述 感光芯片410,或者额外配置的所述记录芯片。或者无需通入对应的静态调整电量,而直接执行步骤315和步骤317。
使用时,所述调整式摄像模组被安装于手机、平板等移动端。当用户需要拍摄时,摄像模组被触发启动,被记录的静态调整电量被读取,向所述调整线圈组40通入对应的静态调整电量,所述光学镜片组200被摆正,开始拍摄。当所述摄像模组的对焦功能被触发,所述光学镜片组200移动时,根据光学镜片组200移动的对焦位置,被记录的动态调整电量被读取,向所述调整线圈组40通入对应的动态调整电量,此时的动态倾斜量被弥补。相应地,对比于静态调整电量和\或动态调整电量尚未被弥补时,所述摄像模组的解像力提高,性能增加。
或者所述调整式摄像模组先弥补动态倾斜量,后弥补静态倾斜量。即当用户需要拍摄时,摄像模组的对焦功能被触发,所述光学镜片组200移动时,根据光学镜片组200移动的对焦位置,被记录的动态调整电量被读取,向所述调整线圈组40通入对应的动态调整电量,此时的动态倾斜量被弥补。之后,被记录的静态调整电量被读取,向所述调整线圈组40通入对应的静态调整电量,所述光学镜片组200被摆正。
进一步,市场上常见的摄像模组为AF摄像模组,可以实现自动对焦。通过所述调整式致动器100的一自动对焦线圈70,驱动所述光学镜片组200实现。动对焦线圈环绕于所述光学镜片组200,比如套摄于所述镜筒220外周壁。当摄像模组判断出被拍摄物以及被拍摄物和所述感光元件410之间的距离时,所述自动对焦线圈70被通入电量,驱动所述光学镜片组200至相应的对焦位置。
在本发明的一些实施例中,所述自动对焦线圈70和所述调整线圈组40并存,所述调整线圈组40分布于所述自动对焦线圈70的外侧,当所述调整线圈组40弥补静态倾斜量和\或动态倾斜量时,所述自动对焦线圈70工作实现自动对焦,如图7和图8所示。
在本发明的另一些实施例中,所述调整线圈组40代替所述自动对焦线圈70,实现自动对焦功能,如图6所示。
步骤319:根据不同对焦位置,预设各所述调整线圈对应的驱动电流量。
当被拍摄物和所述感光元件410之间的距离不同时,所述光学镜片组200的对焦位置不同,各所述调整线圈对应的驱动电流量也会不同。驱动电流量的预设可以通过所述调整时摄像模组的整体设计直接计算分析得出,例如通过弹片、磁 体、以及所述调整线圈的设计参数,可以对应处各个距离刻度对应的驱动电流量,从而预设驱动电流量。
步骤321:向所述摄像模组通入各所述调整线圈对应的驱动电流量。
步骤323:检测驱动电量输入后对焦是否成功,如果对焦成功,记录各所述调整线圈对应的驱动电流量;如果不成功,重复步骤319和步骤321。
此时,由于所述调整线圈组40代替所述自动对焦线圈70,优选地,所述步骤319至步骤323优先于步骤303至步骤317之前执行。也就是说,先测取和烧录所述调整线圈组40所需的驱动电流量,再测取和烧录静态调整电流量和动态调整电流量。从而,所述调整线圈组40被通入对应的所需驱动电流量,驱动所述光学镜片组200对焦移动,便于静态调整电流量和动态调整电流量的测取,也便于获得准确的静态调整电流量和动态调整电流量。
使用时,当静态调整电量和\或动态调整电量被弥补后,被预设的驱动电流量被读取,向所述调整线圈组40通入对应对焦位置的驱动电流量。各个调整线圈41驱动所述光学镜片组200,直至所述光学镜片组200移动至使图像最清晰的位置。也就是说,本发明中,所述调整线圈组40不仅可以弥补静态调整电量和\或动态调整电量,还可以驱动所述光学镜片组200对焦。生产阶段的预设和记录,使得使用过程中弥补和驱动更灵活、迅速。
在本发明的一个实施例中,所述调整式摄像模组的组装测试方法可以采用以下提到的所述调整式致动器100。但是本领域技术人员可以知道的是,此处只是说明,并不是限制。所述调整式摄像模组的组装测试方法也可以采用其他结构的具有调整线圈组40的调整式致动器,如图6至图8所示。
具体地,所述调整式致动器100包括一框架主体10,一弹性组件20,至少一磁体30,所述调整线圈组40、和一基座50。所述框架主体10和所述基座50耦合界定一安装腔60,而所述弹性组件20、所述磁体30、所述光学镜片组200和所述调整线圈组40,被容置和固定于所述安装腔60内,实现所述光学镜片组200被所述调整线圈组40驱动,以调整动态倾斜量和静态倾斜量。
所述主框架体10的形状不限,优选为方形框架,用于固定和容置其他元件。所述主框架体10具有导磁作用,提高所述磁体30的有效利用率。所述主框架体10具有一通光孔11,对应于所述光学镜片组200的光线路径。也就是说,所述主框架体10环绕于所述光学镜片组200的周围,其通光孔11对应于所述光学镜 片组200的光学路径。当消费者拍摄时,被拍摄物的反射光线通过所述通光孔11被所述光学镜片组200捕捉。所述框架主体10和所述基座50的耦合结构可以是卡扣、螺旋或者粘结等等本发明并不限制。
当所述调整线圈组40获得预设的调整电量或驱动电量时,所述镜筒220带动所述光学镜片210移动,从而调整或自动对焦。所述磁体30可以被实施为磁石或永久磁铁等,被固定于所述容纳腔60内。在本发明的一个实施例中,所述调整线圈组40被固定于所述镜筒220的外周壁,各个调整线圈41间隔地分布。例如所述镜筒220的顶边缘和底边缘分别向外延伸形成多个顶固定元件和对应的底固定元件,所述调整线圈41的顶端和低端分别被固定于所述顶固定元件和对应的所述底固定元件。所述磁体30被固定于所述主框架体10的内侧壁,处于所述主框架体10内侧角落,可呈四角梯形状。在本发明的另一个实施例中,所述各个调整线圈41间隔地固定于所述主框架体10的内侧壁,所述磁体30被间隔地固定于所述镜筒220的外侧壁。
所述弹性组件20用于保持所述光学镜片组200稳定,平衡电磁力。所述弹性组件20可以被实施为圈状弹簧或叶片式弹簧等等,本发明并不限制。在本发明的一个实施例中,所述弹性组件20包括一上弹片21和一下弹片22,其中所述上弹片21被安装于所述光学镜片组200的顶端,所述下弹片22被安装于所述光学镜片组200的低端。当所述调整线圈组40通电施力时,所述上弹片21和所述下弹片22平衡调整线圈组40施加的力。尤其当所述调整线圈组40被通入驱动电量实现对焦时,驱动电量在磁场的作用下产生向上的安培力,推动所述光学镜片组200向上移动。而当所述光学镜片组200所受向上电磁力与所述弹性组件20的弹力平衡时,所述光学镜片组200即停留在对应的距离刻度,实现对焦。
所述调整式致动器100包括多对引脚80,每对引脚80对应一个所述调整线圈41。所述引脚80可通信地连接于所述线路板420,一方面获取电量动力,另一方面,当预设的驱动电量和调整电量被记录于所述感光芯片410或记录芯片时,可以通过所述引脚80读取对应的数据。
进一步,在本发明的另一实施例中,如图7和图8所示,所述调整式致动器100还包括所述自动对焦线圈70,所述自动对焦线圈70环绕于光学镜片组200,用于实现自动对焦。也就是说,在本实施例中,所述调整线圈组40和所述自动对焦线圈70共存,由所述调整线圈组40弥补静态倾斜量和动态倾斜量,由所述 自动对焦线圈70实现自动对焦。此时,所述自动对焦线圈70在磁场的作用下产生向上的安培力,推动所述光学镜片组200向上移动。而当所述光学镜片组200所受向上电磁力与所述弹性组件20的弹力平衡时,所述光学镜片组200即停留在对应的距离刻度,实现对焦。
所述自动对焦线圈70的安装位置并不限定,与所述调整线圈组40和所述磁体30的安装位置组合可以形成多种实施方式。
例如,在一些实施例中,所述自动对焦线圈70固定地环绕于所述镜筒210的外侧壁,所述镜筒220的上下边缘侧向地向外延伸,形成一上保护层和一下保护层,覆盖所述自动对焦线圈70,防止所述自动对焦线圈70被撞击发生短路。此时,所述调整线圈组40也被固定于所述镜筒220的外周壁,各个调整线圈41间隔地分布。例如所述调整线圈41的顶端和低端分别被固定于所述保护层和所述下保护层。所述磁体30被固定于所述主框架体10的内侧壁,处于所述主框架体10内侧角落。
或者当所述自动对焦线圈70固定地环绕于所述镜筒210的外侧壁时,所述磁体30也被固定于所述镜筒220的外周壁,上下端分别被固定于所述保护层和所述下保护层,而所述调整线圈41被固定于所述主框架体10的内侧壁,例如通过卡扣等等。
或者所述调整线圈组40被置于所述光学镜片组200的底部,位于调整式致动器的一FPC线路板。具体地,所述调整线圈组40被形成或固定于所述FPC线路板,并和所述FPC线路板导通。带有所述调整线圈组40的所述FPC线路板被固定于所述光学镜头组200底部。
或者所述调整线圈组40被固定于所述自动对焦线圈70之下,如图9所示。所述调整线圈41被固定于所述镜筒220的外侧壁,在本实施例中,所述调整线圈41呈一平面状,所述调整线圈41所在的平面与所述镜筒220的外侧壁基本平行。另外,在本发明的另一个实施例中,所述调整线圈41也可被横向地固定,即所述调整线圈41的线圈环绕方向和所述镜头220的周向方向一致。
本领域的技术人员应理解,此处多种组合结构安装方式表明,所述调整式致动器100的结构对本发明中所述调整式摄像模组的组装测试方式影响较小,同时上述具体结构只是为了阐述方便和具体说明,并不是限制。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为 举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (17)

  1. 一调整式摄像模组的组装测试方法,其特征在于,包括:
    (a)组装一光学镜片组、一调整式致动器和一感光组件,成一调整式摄像模组;
    (b)通过对所述调整式摄像模组进行离焦曲线测试,测取所述光学镜片组与所述感光组件间的静态倾斜量;
    (c)根据静态倾斜量,分析一调整线圈组各调整线圈的静态调整电量;
    (d)向所述调整式摄像模组通入各所述调整线圈所需的静态调整电量;及
    (e)测取调整后的离焦曲线,如果调整后测取离焦曲线,表示静态倾斜量处于可接受误差范围内,烧录各所述调整线圈所需的静态调整电量;如果位置差值超过可接受误差范围,重复所述步骤(b)、步骤(c)和步骤(d)。
  2. 根据权利要求1所述的调整式摄像模组的组装测试方法,进一步包括步骤:
    (f)测取所述调整式摄像模组处于不同对焦位置对应的动态倾斜量;和
    (g)根据动态倾斜量,分析各个对焦位置所述调整线圈组的各所述调整线圈所需的动态调整电量。
  3. 根据权利要求2所述的调整式摄像模组的组装测试方法,在所述步骤(e)之后进一步包括步骤:
    (h)驱动所述光学镜片组移动至不同的对焦位置,向所述调整式摄像模组通入对应对焦位置各所述调整线圈所需的动态调整电量;和
    (i)测取调整后的动态倾斜量,如果调整后的动态倾斜量处于可接受误差范围内,烧录对应对焦位置各所述调整线圈所需的动态调整电量;如果调整后的动态倾斜量超过可接受误差范围,重复步骤(f)和步骤(g)。
  4. 根据权利要求3所述的调整式摄像模组的组装测试方法,进一步包括步骤:
    (j)根据不同对焦位置,预设各所述调整线圈对应的驱动电流量。
  5. 根据权利要求4所述的调整式摄像模组的组装测试方法,进一步包括步骤:
    (k)向所述调整式摄像模组通入被烧录的静态调整电量和对应的对焦位置的动态调整电量后,通入各所述调整线圈对应预设的驱动电流量;和
    (l)检测驱动电量输入后对焦是否成功,如果对焦成功,烧录各所述调整线圈对应的驱动电流量;如果不成功,重复步骤(j)和步骤(k)。
  6. 根据权利要求1所述的调整式摄像模组的组装测试方法,进一步包括步骤:
    (m)向各所述调整线圈通入预设的驱动电流量;和
    (n)检测驱动电量输入后对焦是否成功,如果对焦成功,烧录各所述调整线圈对应的驱动电流量;如果不成功,重复步骤(m)。
  7. 一调整式摄像模组的组装测试方法,其特征在于,包括:
    (A)组装一光学镜片组、一调整式致动器和一感光组件,成一调整式摄像模组;
    (B)测取所述调整式摄像模组处于不同对焦位置对应的动态倾斜量;
    (C)根据动态倾斜量,分析各个对焦位置所述调整线圈组的各所述调整线圈所需的动态调整电量;
    (D)驱动所述光学镜片组对焦,向所述调整式摄像模组通入对应对焦位置各所述调整线圈所需的动态调整电量;和
    (E)测取调整后的动态倾斜量,如果调整后的动态倾斜量处于可接受误差范围内,烧录对应对焦位置各所述调整线圈所需的动态调整电量;如果调整后的动态倾斜量超过可接受误差范围,重复步骤(B)和步骤(C)。
  8. 一调整式摄像模组,其特征在于,包括:
    所述调整式摄像模组如权利要求1至7任一所述的组装测试方法制成,其中所述调整式致动器支撑所述光学镜片组,安装于所述感光组件顶部,所述光学镜片组对应于所述感光组件的感光路径。
  9. 根据权利要求8所述的调整式摄像模组,其中所述调整式致动器包括一框架主体、一调整线圈组、至少一磁体和一基座,其中所述框架主体和所述基座耦合界定一安装腔,所述弹性组件、所述磁体、所述光学镜片组和所述调整线圈,被容置和固定于所述安装腔内,其中当所述调整线圈组通入对应的静态调整电量,在所述磁体的作用下,所述光学镜片组被所述调整线圈驱动,调整静态倾斜量,以便于所述光学镜片组对焦。
  10. 根据权利要求9所述的调整式摄像模组,其中当所述光学镜片组被驱动对焦,所述调整线圈被通入对焦位置对应的动态调整电量,在所述磁体的作用下,所述光学镜片组被所述调整线圈驱动,弥补动态倾斜量。
  11. 根据权利要求8所述的调整式摄像模组,其中所述调整式致动器包括一框架主体、一调整线圈组、至少一磁体和一基座,其中所述框架主体和所述基座耦 合界定一安装腔,所述弹性组件、所述磁体、所述光学镜片组和所述调整线圈,被容置和固定于所述安装腔内,其中当所述光学镜片组被驱动对焦,所述调整线圈通入对焦位置对应的动态调整电量,在所述磁体的作用下,所述光学镜片组被所述调整线圈驱动,弥补动态倾斜量。
  12. 根据权利要求9或11所述的调整式摄像模组,其中所述调整线圈组被固定于所述光学镜片组的外周壁,各个调整线圈间隔地分布,其中所述磁体被固定于所述主框架体的内侧壁。
  13. 根据权利要求9或11所述的调整式摄像模组,其中所述各个调整线圈间隔地固定于所述主框架体的内侧壁,所述磁体被间隔地固定于所述镜筒的外侧壁。
  14. 根据权利要求9所述的调整式摄像模组,其中所述调整式致动器进一步包括一自动对焦线圈,其中所述自动对焦线圈环绕于光学镜片组,其中当所述调整线圈组通入对应的静态调整电量,弥补静态倾斜量后,所述自动对焦线圈实现自动对焦。
  15. 根据权利要求9所述的调整式摄像模组,其中所述调整式致动器进一步包括一自动对焦线圈,其中所述自动对焦线圈环绕于光学镜片组,其中所述自动对焦线圈实现自动对焦后,所述调整线圈组被通入对应的静态调整电量,弥补静态倾斜量。
  16. 根据权利要求10或11所述的调整式摄像模组,其中所述调整式致动器进一步包括一自动对焦线圈,其中所述自动对焦线圈环绕于光学镜片组,其中当所述光学镜片组被所述自动对焦线圈驱动对焦时,所述调整线圈组被通入对应的动态调整电量,弥补动态倾斜量。
  17. 根据权利要求8所述的调整式摄像模组,其中当所述调整线圈组通入对应的静态调整电量和\或动态调整电量,弥补静态倾斜量和\或动态倾斜量后,通入驱动电量,所述调整线圈组驱动所述光学镜片组自动对焦。
PCT/CN2019/102957 2018-09-17 2019-08-28 调整式摄像模组及其组装测试方法 WO2020057331A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19861367.1A EP3843373A4 (en) 2018-09-17 2019-08-28 ADJUSTABLE CAMERA MODULE AND ASSEMBLY TEST PROCEDURE THEREFOR
US17/276,633 US11399122B2 (en) 2018-09-17 2019-08-28 Adjustable camera module and assembly test method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811081788.8A CN110913095B (zh) 2018-09-17 2018-09-17 调整式摄像模组及其组装测试方法
CN201811081788.8 2018-09-17

Publications (1)

Publication Number Publication Date
WO2020057331A1 true WO2020057331A1 (zh) 2020-03-26

Family

ID=69812933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102957 WO2020057331A1 (zh) 2018-09-17 2019-08-28 调整式摄像模组及其组装测试方法

Country Status (4)

Country Link
US (1) US11399122B2 (zh)
EP (1) EP3843373A4 (zh)
CN (1) CN110913095B (zh)
WO (1) WO2020057331A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312028B (zh) * 2020-11-20 2022-02-22 歌尔光学科技有限公司 摄像头模组调焦方法、装置及计算机可读存储介质
US11758122B1 (en) * 2022-01-06 2023-09-12 Norman Rogers Lens and camera testing method, apparatus, and system
CN115951500B (zh) * 2023-03-15 2023-07-25 北京亮亮视野科技有限公司 一种基于主动对准技术的ar模组组装方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782584A (zh) * 2011-09-05 2014-05-07 柯尼卡美能达株式会社 照相机模块的制造方法以及照相机模块
CN104075803A (zh) * 2013-03-25 2014-10-01 精工爱普生株式会社 光谱相机以及对准调整方法
US20150009400A1 (en) * 2013-07-04 2015-01-08 Samsung Electronics Co., Ltd. Camera module with adjustable lens tilt
JP2015111758A (ja) * 2013-12-06 2015-06-18 コニカミノルタ株式会社 撮像装置の製造方法、撮像装置及び携帯端末
CN105025290A (zh) * 2014-04-23 2015-11-04 宁波舜宇光电信息有限公司 一种自动调整摄像模组传感器与镜头之间倾斜的方法
CN107656418A (zh) * 2016-07-26 2018-02-02 宁波舜宇光电信息有限公司 可调焦摄像模组光轴倾斜的测试与计算方法
CN107948638A (zh) * 2017-12-14 2018-04-20 信利光电股份有限公司 一种摄像模组主动校准设备及其校准方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8366001B2 (en) * 2008-08-14 2013-02-05 Varioptic S.A. Calibration methods for imaging systems and imaging systems using such
US8711275B2 (en) * 2011-05-31 2014-04-29 Apple Inc. Estimating optical characteristics of a camera component using sharpness sweep data
US9134503B2 (en) * 2012-07-06 2015-09-15 Apple Inc. VCM OIS actuator module
JP2014052601A (ja) * 2012-09-10 2014-03-20 Sharp Corp カメラモジュールおよび情報処理装置
US9810917B2 (en) * 2014-01-24 2017-11-07 Apple Inc. Passive damping for optical image stabilization
CN103984199B (zh) * 2014-05-30 2017-01-18 爱佩仪光电技术(深圳)有限公司 自动对焦相机模组镜头倾斜补偿控制的调试及应用方法
CN107655418A (zh) 2017-08-30 2018-02-02 天津大学 一种基于混合现实的模型实验结构应变实时可视化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782584A (zh) * 2011-09-05 2014-05-07 柯尼卡美能达株式会社 照相机模块的制造方法以及照相机模块
CN104075803A (zh) * 2013-03-25 2014-10-01 精工爱普生株式会社 光谱相机以及对准调整方法
US20150009400A1 (en) * 2013-07-04 2015-01-08 Samsung Electronics Co., Ltd. Camera module with adjustable lens tilt
JP2015111758A (ja) * 2013-12-06 2015-06-18 コニカミノルタ株式会社 撮像装置の製造方法、撮像装置及び携帯端末
CN105025290A (zh) * 2014-04-23 2015-11-04 宁波舜宇光电信息有限公司 一种自动调整摄像模组传感器与镜头之间倾斜的方法
CN107656418A (zh) * 2016-07-26 2018-02-02 宁波舜宇光电信息有限公司 可调焦摄像模组光轴倾斜的测试与计算方法
CN107948638A (zh) * 2017-12-14 2018-04-20 信利光电股份有限公司 一种摄像模组主动校准设备及其校准方法

Also Published As

Publication number Publication date
CN110913095B (zh) 2021-06-04
US11399122B2 (en) 2022-07-26
CN110913095A (zh) 2020-03-24
EP3843373A1 (en) 2021-06-30
US20220046148A1 (en) 2022-02-10
EP3843373A4 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
US20220260804A1 (en) Lens moving apparatus and camera module including the same
KR102209033B1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈
EP3158723B1 (en) Autofocus for folded optic array cameras
KR101354775B1 (ko) 카메라 모듈
KR20230061322A (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈
WO2020057331A1 (zh) 调整式摄像模组及其组装测试方法
KR102230966B1 (ko) 렌즈 구동장치
KR102537831B1 (ko) 렌즈 구동장치, 카메라 모듈, 및 카메라 탑재 장치
CN107041156A (zh) 光学系统的透镜组件和致动器及其方法
KR102145916B1 (ko) 렌즈 구동장치
TW201351976A (zh) 微型影像擷取裝置及其應用
KR20230130593A (ko) 렌즈 구동장치 및 이를 포함하는 카메라 모듈
KR102493434B1 (ko) 카메라 모듈 및 이의 동작 방법
KR102355999B1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈
KR102554388B1 (ko) 카메라 모듈
KR102396345B1 (ko) 렌즈 구동장치
KR20220014911A (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈
KR20200100018A (ko) 렌즈 구동장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019861367

Country of ref document: EP

Effective date: 20210325