WO2020057328A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2020057328A1
WO2020057328A1 PCT/CN2019/102676 CN2019102676W WO2020057328A1 WO 2020057328 A1 WO2020057328 A1 WO 2020057328A1 CN 2019102676 W CN2019102676 W CN 2019102676W WO 2020057328 A1 WO2020057328 A1 WO 2020057328A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
management function
network
wireless network
wireless
Prior art date
Application number
PCT/CN2019/102676
Other languages
English (en)
French (fr)
Inventor
于益俊
曹龙雨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19862599.8A priority Critical patent/EP3840527A4/en
Publication of WO2020057328A1 publication Critical patent/WO2020057328A1/zh
Priority to US17/202,685 priority patent/US11979818B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4505Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols
    • H04L61/4511Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols using domain name system [DNS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/045Interfaces between hierarchically different network devices between access point and backbone network device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • H04W36/008355Determination of target cell based on user equipment [UE] properties, e.g. UE service capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • Each decoupled network function (English: Network Function, NF for short) can achieve independent expansion, independent evolution, and on-demand deployment.
  • the control plane function of the core network can be broken down into multiple NF network elements, such as access and mobility management functions (English: Access and Mobility Management Function, referred to as: AMF) network element, session management function (English: Sessions Management Function, SMF for short) network element, authentication service function (English: Authentication Server Function, AUSF for short) network element, network storage function (English: Network Repository Function, Abbreviation: NRF) network element.
  • AMF Access and Mobility Management Function
  • SMF Sessions Management Function
  • AUSF Authentication Server Function
  • NRF Network Repository Function
  • the control signaling between the radio access network (English: Radio Access Network, RAN for short) and each NF network element in the core network is mainly connected to the AMF through the N2 interface to achieve interaction, and control between RAN nodes
  • the signaling is mainly implemented through the Xn interface.
  • the N2 interface uses the NG interface application protocol (English: NG Application, Protocol: NGAP) and stream control transmission protocol (English: Stream Control Protocol, SCTP), that is, the NGAP / SCTP protocol processing mechanism
  • the Xn interface mainly It uses Xn interface application protocol (English: XnApplication / Protocol, XnAP for short) and SCTP protocol, that is, XnAP / SCTP protocol processing mechanism.
  • the processing of these protocols is more complicated and verbose, which will cause the transmission efficiency of signaling to be low, which will cause a large delay in signaling transmission.
  • embodiments of the present application provide a communication method and device in a wireless network to improve signaling transmission efficiency and reduce signaling transmission delay.
  • an embodiment of the present application provides a communication method applied to a first wireless network management function network element side, including: the first wireless network management function network element receives the first connection from a first access network network element Information about network access network elements, where the first wireless network management function network element supports a function of invoking a service with a first core network network element through a first service-oriented interface; the first wireless network management function network element receives the The information of the first access network element is used to make a service call with the first access network element through a second service interface.
  • the information of the first access network element includes any one or more of the following information: the identity of the first access network element, the routing address of the first access network element, and the first access network element service Public land mobile network PLMN, the cell identifier served by the first access network element, and the radio access type RAT supported by the first access network element.
  • the wireless network management function network element that provides a service-oriented interface
  • the wireless network communication between the access network element and the core network element is simply and conveniently implemented, which overcomes the problems of the access network element and the core.
  • Network network elements transmit information through protocol processing. Due to the complex and verbose protocol processing, the transmission of information is inefficient and the delay is large. It provides a wireless network with higher information transmission efficiency and shorter transmission delay. Communication method.
  • the communication method may further include: the first wireless network management function network element sends any one or more of the following information to the network storage function network element: an identifier of the first wireless network management function network element, The routing address of the first wireless network management function network element, the PLMN served by the first wireless network management function network element, the cell identifier of the first wireless network management function network element, and the RAT supported by the first wireless network management function network element.
  • the first wireless network management function network element that provides a service-oriented interface can be used to implement simple and convenient wireless network communication, thereby improving information transmission efficiency and reducing information transmission delay.
  • the first wireless network management function network element may also determine the network storage function that receives the information in one of the following ways: Network element: the first method, the first wireless network management function network element determines the network storage function network element according to the configuration information in the first wireless network management function network element; the second method, the first wireless network management function network element passes Query the domain name system server to determine the network storage function network element.
  • the communication method provided in the embodiments of the present application can also implement network element switching in a wireless network environment.
  • the specific implementation manner may include: a first wireless network management function network element from a second access network element After receiving user equipment measurement information, the second access network element provides services to the user equipment; the first wireless network management function network element determines the target network element based on the user equipment measurement information; the first wireless network management function network element accesses from the second The network element receives the user equipment context information; the first wireless network management function network element sends the user equipment context information to the target network element.
  • the determined target network element may be a third access network element, a second wireless network management function network element, or a second core network element.
  • the embodiment of the present application can also obtain user equipment measurement information through the service-oriented interface of the first wireless network management function network element and determine a target network element that will soon need to provide services for the user equipment, so that the communication method is applicable. Refer to a variety of different communications, and improve communication efficiency and reduce communication delay in these communication scenarios.
  • the first wireless network management function network element determines the target network element according to user equipment measurement information
  • the specific manner may be: the first possible manner, the first wireless network management function network element determines the target network element through the configuration information in the first wireless network management function network element according to the user equipment measurement information; the second manner, the first A wireless network management function network element determines a target network element by querying the network storage function network element according to user equipment measurement information.
  • an embodiment of the present application further provides a communication method applied to an access network element side, including: the access network element sends information of the access network element to a wireless network management function element, and the wireless network
  • the management function network element supports the function of calling the service with the core network element through the first service interface, and the information of the access network element is used for the wireless network management function network element and the access network element through the second service interface.
  • Service call; the network element of the access network and the network element of the wireless network management function make a service call through the second service-oriented interface.
  • the information of the network element of the access network includes any one or more of the following information: the identity of the network element of the access network, the routing address of the network element of the access network, the public land mobile network PLMN served by the network element of the access network, The cell identifier of the access network element service, and the wireless access type RAT supported by the access network element.
  • the method for determining the wireless network management function network element by the access network element may be any one of the following methods: in the first manner, the access network element The configuration information in the network element determines the wireless network management function network element. In the second method, the access network network element determines the wireless network management function network element by querying the DNS server of the domain name system.
  • the access network element may also receive user equipment measurement information from the user equipment; and the access network element sends the user equipment measurement to the wireless network management function network element information.
  • an embodiment of the present application further provides a communication method, which is applied to a network storage function network element side of a core network, and may specifically include: the network storage function network element receives the first wireless network element from the first wireless network management function network element Information of the network management function network element; the network storage function network element makes a service call with the first wireless network management function network element through the first service-oriented interface according to the information of the first wireless network management function network element; The network management function network element supports a function of making a service call with the access network element through the second service-oriented interface.
  • the information about the first wireless network management function network element includes any one or more of the following information: the identity of the first wireless network management function network element, the routing address of the first wireless network management function network element, and the first wireless network.
  • the network storage function network element may query the first wireless network management function network element for the target network element that serves the user equipment.
  • the determined target network element may specifically be a second wireless network management function or a second core network element in different communication scenarios.
  • a first wireless network management function network element that can provide a service-oriented interface is introduced between the access network element and the core network element.
  • the first wireless network management function network element can be called by The service-enabled interface of the access network element and the function of making a service call by the network element of the access network may also call the function of the service element interface of the first wireless network management function network element and the function of the core network element to make a service call.
  • the wireless network communication between the access network element and the core network element is simply and conveniently implemented, which overcomes the problems in the access network element and the core.
  • Network network elements transmit information through protocol processing. Due to the complex and verbose protocol processing, the transmission of information is inefficient and the delay is large. It provides a wireless network with higher information transmission efficiency and shorter transmission delay. Communication method.
  • the communication methods provided in the first aspect, the second aspect, and the third aspect of the embodiments of the present application are only based on the description of the communication method by different network element sides of the wireless network, and the implementation effects can refer to the foregoing description. .
  • an embodiment of the present application further provides a communication device corresponding to the communication method provided in the first aspect, including: a receiving module, configured to receive the first access network element from the first access network element A processing module for driving a service call with a first core network element through a first service-oriented interface, and driving a service call with a first access network element through a second service-oriented interface; a sending module for A service call is made to the first access network element through the second serviced interface according to the information of the first access network element.
  • the information of the first access network element includes any one or more of the following information: the identity of the first access network element, the routing address of the first access network element, and the first access network element service Public land mobile network PLMN, the cell identifier served by the first access network element, and the radio access type RAT supported by the first access network element.
  • the sending module in the device is further configured to send any one or more of the following information to the network storage function network element: the identity of the first wireless network management function network element, and the first wireless network management function network The routing address of the element, the PLMN served by the first wireless network management function network element, the cell identifier served by the first wireless network management function network element, and the RAT supported by the first wireless network management function network element.
  • the processing module in the device is further configured to determine a network storage function network element according to the configuration information in the first wireless network management function network element; or the processing module is further configured to pass The DNS server queries to determine the network storage function network element.
  • the receiving module in the apparatus is further configured to receive user equipment measurement information from a second access network element, and the second access network element provides services for the user equipment; the processing module, further The receiving module is further configured to determine the target network element according to the measurement information of the user equipment.
  • the receiving module is further configured to receive the user equipment context information from the second access network element.
  • the device further includes a sending module configured to send the user to the target network element.
  • the target network element may be a third access network element, a second wireless network management function network element, or a second core network element.
  • the processing module is specifically configured to pass through the first wireless network management function network element according to user equipment measurement information.
  • the configuration information determines the target network element, or the first wireless network management function network element determines the target network element by querying the network storage function network element according to the user equipment measurement information.
  • an embodiment of the present application further provides a communication device corresponding to the communication method provided in the second aspect, including: a sending module, configured to send the access network element to the wireless network management function network element.
  • Information the information of the access network network element is used for wireless network management function network element and access network network element to make service call through the second service interface;
  • the processing module is used to drive the wireless network management function network element support and the core network The element makes a service call through the first service-oriented interface, and drives the wireless network management function network element and the access network element to make a service call through the second service-oriented interface.
  • the information of the access network element includes any one or more of the following information: the identity of the access network element, the routing address of the access network element, and the information of the access network element service.
  • the processing module in the device is further configured to determine a wireless network management function network element according to the configuration information in the network element of the access network; or, the processing module is further configured to use a domain name system DNS The server queries to determine the network element of the wireless network management function.
  • the apparatus may further include: a receiving module for receiving user equipment measurement information from the user equipment; and a sending module for transmitting user equipment measurement information to a wireless network management function network element.
  • an embodiment of the present application further provides a communication device corresponding to the communication method provided in the third aspect, including: a receiving module, configured to receive a first wireless network from a first wireless network management function network element Information of a management function network element; a processing module configured to drive, according to the information of the first wireless network management function network element, to make a service-oriented call with the first wireless network management function network element through a first service-oriented interface; The network management function network element supports a function of making a service call with the access network element through the second service-oriented interface.
  • the information of the first wireless network management function network element includes any one or more of the following information: the identity of the first wireless network management function network element, the routing address of the first wireless network management function network element, and the first wireless network management The PLMN served by the functional network element, the cell identifier served by the first wireless network management function network element, and the RAT supported by the first wireless network management function network element.
  • the processing module in the apparatus is further configured to query a first wireless network management function network element for a target network element serving a user equipment.
  • the target network element may be a second wireless network management function or a second core network element.
  • an embodiment of the present application provides a communication device having a function of implementing a network element function of a first wireless network management function in the foregoing method.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the communication device includes a processor and a transceiver, and the processor is configured to process the communication device to perform a corresponding function in the foregoing method.
  • the transceiver is used to implement communication between the communication device and an access network / core network element.
  • the communication device may further include a memory, which is used for coupling with the processor, and stores program instructions and data necessary for the communication device.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on a computer, the computer executes the methods described in the foregoing aspects.
  • an embodiment of the present application provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the methods described in the foregoing aspects.
  • the present application provides a chip system including a processor, configured to support the foregoing device or user equipment to implement the functions involved in the foregoing aspects, for example, generating or processing information involved in the foregoing methods.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the data sending device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of communication between a RAN and a core network using a protocol stack according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of protocol stack communication between two RANs according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a network system framework involved in an application scenario according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 5 is a signaling flowchart of a first access network element registering with a first wireless network management function element in an embodiment of the present application
  • FIG. 6 is a signaling flowchart of a first wireless network management function network element registering with an NRF network element according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of a network system framework involved in another application scenario according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a network element switching process according to an embodiment of the present application.
  • FIG. 9 is a signaling flowchart of switching an access network element in an embodiment of the present application.
  • FIG. 10 is a signaling flowchart of switching a wireless network management function network element according to an embodiment of the present application.
  • FIG. 11 is a signaling flowchart of switching a core network element in an embodiment of the present application.
  • FIG. 12 is a signaling flowchart of a first communication method in a wireless network according to an embodiment of the present application
  • FIG. 13 is a signaling flowchart of a second communication method in a wireless network according to an embodiment of the present application.
  • FIG. 14 is a signaling flowchart of a third communication method in a wireless network according to an embodiment of the present application.
  • Example 15 is a signaling flowchart of Example 4 of a communication method in a wireless network according to an embodiment of the present application.
  • 16 is a signaling flowchart of a fifth example of a communication method in a wireless network according to an embodiment of the present application.
  • FIG. 17 is a signaling flowchart of Example 6 of a communication method in a wireless network according to an embodiment of the present application.
  • Example 7 is a signaling flowchart of Example 7 of a communication method in a wireless network according to an embodiment of the present application.
  • Example 19 is a signaling flowchart of Example 8 of a communication method in a wireless network according to an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • 21 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of still another communication device according to an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the user equipments involved in the embodiments of the present application are not limited to 5G networks, and include mobile phones, Internet of Things equipment, smart home equipment, industrial control equipment, vehicle equipment, and so on.
  • the user equipment may also be referred to as terminal equipment, mobile station, mobile station, mobile station, remote station, remote terminal, access terminal,
  • the user equipment (User terminal) and user agent (User agent) are not limited here.
  • the above user equipment may also be a car in vehicle-to-vehicle (V2V) communication, a machine in machine-type communication, or the like.
  • V2V vehicle-to-vehicle
  • the embodiments of the present application may also be applied to other future-oriented communication technologies.
  • the network architecture and service scenarios described in this application are to more clearly illustrate the technical solutions of this application, and do not constitute a limitation on the technical solutions provided in this application. Those of ordinary skill in the art will know that with the evolution of network architecture and new business scenarios Appearance, the technical solution provided by this application is also applicable to similar technical problems.
  • the core network and the radio access network RAN or between the two RANs can use a protocol stack for wireless network communication.
  • the RAN device is a device for providing a wireless communication function for user equipment.
  • the RAN device may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, and the like.
  • base stations such as: macro base stations, micro base stations (also called small stations), relay stations, access points, and the like.
  • eNB evolved NodeB
  • gNodeB Node B
  • gNodeB gNodeB
  • the core network system in Figure 1 includes AMF network elements, SMF network elements, AUSF network elements, NRF network elements, network capability (NEF) network elements, and network slice selection function (NSSF). Network element.
  • the AMF network element involved in this system may be responsible for user equipment registration, mobility management, and tracking area update process.
  • AMF network elements can also be called AMF equipment or AMF entities.
  • the SMF network elements involved in this system can be responsible for the session management of the terminal equipment.
  • session management includes selection of user plane devices, reselection of user plane devices, IP address allocation, QoS control, and establishment, modification, or release of sessions.
  • the SMF network element may also be called an SMF device or an SMF entity.
  • the network functions that the AUSF network elements involved in this system can provide include: authentication control on user equipment.
  • the AUSF network element may also be referred to as an AUSF device or an AUSF entity.
  • the NRF network elements involved in this system can provide service discovery functions.
  • the NRF network element can also maintain information about the network function network elements that are valid in the core network.
  • the NRF network element can also maintain the services supported by the effective network function network elements in the core network.
  • the NRF network element may also be called an NRF device or an NRF entity.
  • the network functions that the NEF network elements involved in this system can provide include the services, capabilities, application functions, and edge computing of providing network elements externally.
  • the NEF network element may also be called an NEF device or an NEF entity.
  • the NSSF network elements involved in this system can select network slices for user equipment.
  • the NSSF network element may also be called an NSSF device or an NSSF entity.
  • Each of the above network elements may be a network element implemented on dedicated hardware, or a software instance running on dedicated hardware, or an example of a virtualization function on an appropriate platform.
  • the above virtualization platform may be a cloud platform .
  • the process of wireless network communication between the RAN and the core network through a protocol stack can be as follows:
  • the RAN uses the NGAP / SCTP protocol processing mechanism through the N2 interface, and connects to the AMF module of the core network to complete the RAN and core Transmission of signaling in the network, that is, when the signaling is transmitted from the RAN to the core network, the signaling can be processed through the NGAP / SCTP protocol on the RAN side, and then the processed signaling is sent to the core network through the N2 interface.
  • the corresponding NGAP / SCTP protocol stack is used for processing, and the signaling after the last processed NGAP / SCTP protocol is sent to the AMF module of the core network.
  • FIG. 2 it is a schematic structural diagram of wireless network communication between two RANs by using a protocol stack.
  • the RAN 1 and RAN 2 devices refer to the description of the RAN in the related description in FIG. 1.
  • RAN 1 in FIG. 2 includes a radio resource control (English: Radio Resource Control, abbreviated as: RRC) network element, a control plane packet data convergence layer protocol (English: Packet Data Convergence Protocol-Control plane, abbreviated: PDCP-C) network element , User plane packet data convergence layer protocol (English: Packet Data Convergence Protocol-User Plane (PDCP-U)) network element and service data adaptation protocol (English: Service Data Adaptation Protocol (SDAP) network element).
  • RRC Radio Resource Control
  • PDCP-C Packet Data Convergence Protocol-Control plane
  • PDCP-U Packet Data Convergence Protocol-User Plane
  • SDAP Service Data Adaptation Protocol
  • the RRC network elements involved in this system may be responsible for receiving and processing the signaling sent by the user equipment.
  • the RRC network element may also be called an RRC device or an AMF entity.
  • the PDCP-C network elements involved in this system can also be responsible for receiving and processing the signaling sent by the user equipment.
  • the PDCP-C network element may also be called a PDCP-C device or a PDCP-C entity.
  • the PDCP-U network elements involved in this system can be responsible for data encryption and integrity protection.
  • the PDCP-U network element may also be called a PDCP-U device or a PDCP-U entity.
  • Each of the above network elements may be a network element implemented on dedicated hardware, or a software instance running on dedicated hardware, or an example of a virtualization function on an appropriate platform.
  • the above virtualization platform may be a cloud platform .
  • the process of wireless network communication between RAN1 and RAN2 through a protocol stack can be: RAN1 uses the XnAP / SCTP protocol processing mechanism through the Xn interface, and connects to RAN2 to complete the signaling between RAN1 and RAN2 Transmission, that is, when the signaling is transmitted from RAN 1 to RAN 2, RAN 1 can first process the signaling through the XnAP / SCTP protocol, and then send the processed signaling to the XnAP / SCTP in RAN 2 through the Xn interface. The protocol performs processing, and finally the signaling processed by the XnAP / SCTP protocol is received by the RAN2. It should be noted that the process of transmitting signaling from RAN 2 to RAN 1 is similar to the above process, and is not repeated here.
  • the functional modules of the core network and the RAN can be virtualized and deployed on a unified cloud platform that supports wireless network communication. Then, the fusion is deployed on the cloud platform If the protocol processing mechanism is used for signal transmission between the RAN and the core network or between the two RANs, the protocol processing is more complicated and verbose, which may result in the same cloud platform between the RAN and the core network or the two RANs. Problems such as low signaling transmission efficiency and long transmission delay.
  • a first wireless network management function (English: Radio Network Management Function (RNMF)) network element that can provide multiple service-oriented interfaces is introduced, between the RAN and the core network, or between two RANs.
  • RNMF Radio Network Management Function
  • wireless network communication may also be performed by calling a service interface on the first wireless network management function network element.
  • the present application may be applied to a cloud platform architecture where the RAN and the core network are integrated as shown in FIG. 3.
  • the cloud platform architecture may include, for example, an RNMF network element, a RAN, and a core network.
  • the service interface provided by the RNMF network element may be, for example, an application programming interface (English: Application Programming Interface, API for short), and the C1 interface and R2 interface in FIG. 3 are service APIs provided by the RNMF network element.
  • the RNMF network element supports the function of making a service call with the network element in the RAN through the C1 interface, and the RNMF network element also supports the function of making a service call with the network element in the core network through the R2 interface.
  • the core network element includes NRF network element, AMF network element, SMF network element, NEF network element, NSSF network element and AUSF network element.
  • the specific communication process may be: the RRC network element in the RAN sends the signaling to the RNMF network by calling the C1 interface of the RNMF network element.
  • the RNMF then calls the R2 interface and transmits the signaling to the AMF network element through the service bus of the core network, realizing efficient and fast wireless communication of the signaling between the RAN and the core network.
  • the RAN may include an RRC network element, a PDCP-C network element, an SDAP network element, and a PDCP-U network element.
  • service interface R2 interface and C1 interface provided by the RNMF network element in this scenario may be API interfaces, but the service interface provided by the RNMF network element may be any other interface in other communication platforms.
  • the service-oriented interface can implement the functions of RNMF network element and RAN network element, and the service call function with the core network network element, they all belong to the service-oriented interface mentioned in the embodiments of this application.
  • an RNMF network element capable of providing a service-oriented interface is introduced between the RAN and the core network, and the function of making a service call between the RAN network element and the core network element is implemented through the call of the service-oriented interface, so that the core can be realized.
  • the wireless network communication between the network element and the RAN network element does not require complicated and verbose processing to complete the wireless communication through the protocol stack, and provides a wireless network communication method with high information transmission efficiency and short transmission delay.
  • FIG. 4 is a schematic flowchart of a communication method in a wireless network according to an embodiment of the present application. Referring to FIG. 4, this embodiment may specifically include:
  • a first wireless network management function network element receives information of a first access network network element from a first access network network element, and the first wireless network management function network element supports communication with the first core network element through the first The function of the service-oriented interface to make service calls.
  • the first wireless network management function network element refers to a network element that can provide multiple service-oriented interfaces.
  • the first wireless network management function network element implements a service call function with the first access network element and the first core network element by calling different service-oriented interfaces.
  • the first wireless network management function network element may make a service call with the first core network network element by calling the first service-oriented interface; for another example, the first wireless network management function network element may also call the second service-oriented interface by calling Make a service call with the first access network element.
  • the first service-oriented interface and the second service-oriented interface are provided by the first wireless network management function network element, and are used to make service calls with the first core network element and the first access network element. interface.
  • the first wireless network management function network element may implement a service-oriented interface with the core network element and the access network element. Service call function;
  • the first wireless network management function network element may also use the protocol stack to implement the service call function with the core network element and the access network element.
  • a communication method invoking a service-oriented interface is taken as an example for description.
  • the first core network element includes but is not limited to: AMF network element, SMF network element, AUSF network element, NRF network element, NEF network element and NSSF network element;
  • the first access network network element includes but is not limited to: RRC Network element, PDCP-C network element, SDAP network element, and PDCP-U network element.
  • the first wireless network management function network element may be an RNMF network element
  • the first access network element may be an RRC network element in the RAN
  • the first service-oriented interface may be The R2 interface and the second service-oriented interface may be a C1 interface.
  • step 401 may specifically be: the RRC network element sends the information of the RRC network element to the RNMF network element through C1, that is, the RNMF network element receives the information of the RRC network element from the RRC network element.
  • the RNMF network element can send other messages to the core network element through the R2 interface.
  • the information of the first access network element may include any one or more of the following information: the identity of the first access network element, the routing address of the first access network element, and the first access network element service Public land mobile network (English: Public, Mobile, Network, PLMN), the cell identity of the first access network element service, the radio access type supported by the first access network element (English: Radio Access Type, Abbreviation: RAT).
  • the information of the first access network element includes the identifier of the first access network element and the routing address of the first access network element, and can be used for the first access network element.
  • Message routing the information includes the public land mobile network PLMN served by the first access network element, the cell identifier served by the first access network element, and the radio access type RAT supported by the first access network element, It can be used to indicate the service capability of the first access network element.
  • the first wireless network management function network element may be based on the first information included in the information of each first access network network element.
  • the PLMN served by an access network element, the cell identifier served by the first access network element, or the radio access type RAT supported by the first access network element determine the capabilities of each first access network element, thereby Determine a suitable first access network element as the first access network element to which the message needs to be sent; then, the first wireless network management function network element may also be based on the determined first access network element
  • the routing address of the first access network element included in the information determines the delivery address of the message on the first wireless network management function network element, that is, sends the message to the first access point indicated by the routing address. Network element.
  • the first access network element sends the information of the first access network element to the first wireless network management function element
  • the information may be carried in signaling (for example, registration Request) to the first wireless network management function network element
  • the first wireless network management function network element needs to parse the received signaling to obtain the information; in another case, the information can also be sent directly
  • This information is given to the first wireless network management function network element, that is, the first wireless network management function network element does not need to obtain the information through other processing.
  • the first wireless network management function network element makes a service call with the first access network element through the second service-oriented interface according to the information of the first access network element.
  • the first wireless network management function network element may pass the second service-oriented interface according to the first access network.
  • the information of the network element makes a service call with the first access network element.
  • the first wireless network management function network element may be an RNMF network element
  • the first access network network element may be an RRC network element in the RAN
  • the second service-oriented interface may be C1 interface.
  • step 402 may specifically be: after the RNMF network element receives the information of the RRC network element sent by the RRC network element through the C1 interface, the RNMF network element may pass the C1 interface and the RRC network according to the information of the RRC network element. Meta to make service calls.
  • a wireless communication scenario corresponding to the embodiment shown in FIG. 4 may be a scenario in which an access network element registers with a wireless network management function element.
  • the access network element can register the information of the access network element with the corresponding wireless network management function network element, so that the first wireless network management function network element can be registered in the registered Select the appropriate access network element from the access network elements to call.
  • the specific method may include:
  • the first access network element sends a first registration request carrying the information of the first access network element to the first wireless network management function network element.
  • the first access network element is specifically an access network element to be registered on the first wireless network management function element, for example, assuming a first RRC network element, a second RRC network element, and a third RRC
  • the network element is an access network element to be registered on the first wireless network management function network element.
  • the first access network element may be a first RRC network element, a second RRC network element, or a third RRC network.
  • the first registration request may be an RRC Register Request, and the RRC Register Request may carry information of the first access network element.
  • the RRC The Register Request may carry information of the first RRC network element, and the information may include: a first RRC ID, a first RRC IP address, a serving PLMN, a serving cell area, and a serving RAT.
  • the first wireless network management function network element receives the first registration instruction sent by the first access network network element, in order to ensure the normal progress of subsequent communication services, the first registration instruction can also be parsed, The information of the first access network element carried in the first registration request is obtained, and the information of the first access network element is stored. The information of the first access network element may be used to reflect the service capability of the first access network element.
  • the first wireless network management function network element generates a first registration response message, and sends the first registration response message to the first access network through a second service-oriented interface according to the information of the first access network element. Network element.
  • the first wireless network management function network element may generate a first registration response message and send the first registration response message to the first access network element.
  • the first registration response message may carry an identifier that can uniquely identify the first wireless network management function network element, for example, it may be the IP address of the first wireless network management function network element, which is used to inform the first access The network element has completed registration on the first wireless network management function network element.
  • the wireless network management function network element For the first access network element that needs to be registered with the wireless network management function network element, before registration, it is necessary to determine the wireless network management function network element to which the first access network element is specifically registered. Determining that the first wireless network management function network element can be specifically implemented in the following two ways:
  • the first access network element may determine the first wireless network management function network element from the configuration information in the first access network element.
  • the specific process may be: An access network element is configured with a fixed configuration information (for example, the routing address of the first wireless network management function network element is configured). After power-on, the first access network element can read the configuration information. (For example, reading the fixedly configured routing address of the first wireless network management function network element), so as to obtain the first wireless network management function network element to which the first access network network element needs to register.
  • the first wireless network management function network element may also be obtained by a first access network network element querying a Domain Name System (English: Domain Name System (DNS) server).
  • DNS Domain Name System
  • the first access network element sends a first DNS query request to a DNS server.
  • the first DNS query request may carry: the type of the queried network element, the identifier of the PLMN served by the first access network element, the cell identifier of the first access network element service, and the first Radio access type RAT supported by the access network element.
  • the first DNS query request may be a first DNS request, and the first DNS request may carry: Type, Serving PLMN, Serving Cell area, and Serving RAT.
  • the type of the target network element to be queried may be represented by the full domain name (English: Fully Qualified Domain Name, FQDN) of the target network element.
  • the value of Type may be RNMF.cellid. .RATx.y (corresponds to the FQDN of the first wireless network management function network element); in another case, it can also be directly reflected by the name of the target network element, for example, the value of Type can be RNMF.
  • the RAT type supported by the first access network element may specifically be one or more of GERAN-supported, UTRAN-supported, E-UTRAN-supported, and 5G NR-supported, or may be a new one after the above types are mixed.
  • RAT type for example: it can be a new RAT type formed by mixing GERAN-supported and UTRAN-supported types: GERAN / UTRAN-supported, and for example: it can be a new combination of E-UTRAN-supported and 5G RAT type: E-UTRAN / 5GNR-supported, etc.
  • the DNS server selects and determines a suitable first wireless network management function network element based on the received first DNS query request as the discovered first wireless network management function network element.
  • a suitable first wireless network management function network element refers to a first wireless network management function network element of a PLMN and / or cell that can be served by the first access network network element and supports.
  • the DNS server may find, from the related information of all the first wireless network management function network elements configured thereon, a wireless network management function network element that meets the requirements in the received first DNS query request as a discovery.
  • the first wireless network management function network element may be found, from the related information of all the first wireless network management function network elements configured thereon, a wireless network management function network element that meets the requirements in the received first DNS query request as a discovery.
  • the DNS server feeds back the first wireless network management function network element to the first access network network element.
  • the related information of the first wireless network management function network element may be carried in the first DNS query response and fed back to The first access network element.
  • the DNS server determines the discovered first wireless network management function network element, it can find the discovered first wireless network management function network from the related messages of the first wireless network management function network element configured thereon.
  • the routing information of the first wireless network management element, and the related information of the first wireless network management function network element including the routing address of the first wireless network management function network element found in the first DNS query response is returned to the first connection Network access network element.
  • the first access network network element discovers the first wireless network management function network element by querying the DNS server dynamically.
  • FIG. 5 shows a first access network element provided by this embodiment.
  • the specific process to the corresponding first wireless network management function network element may include:
  • the first access network element sends a first DNS query request to a DNS server.
  • the DNS server Based on the received first DNS query request, the DNS server selects and determines a suitable first wireless network management function network element as the discovered first wireless network management function network element.
  • the DNS server feeds back a first DNS query response to the first access network element, which carries information about the first wireless network management function network element.
  • S501-S503 are the specific processes of the first access network element to determine the first wireless network management function network element by querying the DNS server. For related description, refer to the "first step” to "" in the example section of this scenario. The description of the third step is not repeated here.
  • S501 to S503 are optional steps. It is determined that the first wireless network management function network element may also adopt other implementation manners, which is not limited in this embodiment.
  • the first access network element sends a first registration request carrying the information of the first access network element to the first wireless network management function network element.
  • the first wireless network management function network element generates a first registration response message, and sends the first registration response message to the first access network through a second service-oriented interface according to the information of the first access network element.
  • Network element The first wireless network management function network element.
  • S504 and S505 may further include:
  • the first wireless network management function network element obtains the information of the first access network element from the first registration request and saves the information.
  • the RRC network element may query the DNS server to determine the RNMF network element. Then, the RRC network element carries the information of the RRC network element in the first registration request, and according to the determined RNMF network The routing address of the element is sent to the corresponding RNMF network element through the C1 interface. After receiving the first registration request, the RNMF network element can parse the information of the RRC network element from it; then, the RNMF network element according to the information of the RRC network element Send the generated first registration response message to the RRC network element through the C1 interface, and complete registration of the RRC network element to the RNMF network element.
  • the registration process of the first access network element to the first wireless network management function network element shown in FIG. 5 above the registration of the first access network element to the first wireless network management function network element is completed.
  • the selection of the first wireless network management function network element to call the access network element provides the selected resources and the basis for the selection.
  • the wireless network management function network element in addition to the access network network element needs to be registered with the corresponding wireless network management function network element, the wireless network management function network element also needs to be registered with the corresponding core network network element, so that the core network network The element may select an appropriate wireless network management function network element among the registered wireless network management function network elements to be called.
  • the specific may include:
  • the first-line network management function network element is specifically a network management function network element to be registered on the NRF network element.
  • the first RNMF network element, the second RNMF network element, and the third RNMF network element are to be registered.
  • the network management function network element registered on the NRF network element, then the first-line network management function network element may be a first RNMF network element, a second RNMF network element, or a third RNMF network element.
  • the second registration request is used to request to register the first wireless network management function network element to the corresponding NRF network element, and notify the NRF network element of the first wireless network management function network element to be registered.
  • the second registration request may carry relevant information of the first wireless network management function network element, and may specifically include, but is not limited to, the identification of the first wireless network management function network element and the routing address of the first wireless network management function network element.
  • the identifier of the first wireless network management function network element and the routing address of the first wireless network management function network element can be used for message routing of the first wireless network management function network element; the first wireless network management function network element
  • the serving PLMN, the cell identifier served by the first radio network management function network element, and the RAT supported by the first radio network management function network element may be used to indicate the service capabilities of the first radio network management function network element.
  • the NRF network element may be based on the first wireless network management function network element included in the related information of each first wireless network management function network element.
  • the serving PLMN, the cell identifier served by the first wireless network management function network element, or the RAT supported by the first wireless network management function network element determines the capabilities of each first wireless network management function network element, thereby determining a suitable first wireless network
  • the management function network element is used as the first wireless network management function network element to which the message needs to be sent.
  • the NRF network element may further include the first wireless network management function network element related information determined according to the first information included in the first wireless network management function network element.
  • the routing address of the wireless network management function network element determines the delivery address of the message on the NRF network element, that is, sends the message to the first wireless network management function network element indicated by the routing address.
  • the second registration request may be an RNMF Register Request
  • the RNMF Register Request may carry information about the first wireless network management function network element.
  • the RNMF RegisterRequest may carry related information of the first RNMF network element, and the related information may include: a first RNMF ID, a first RNMF IP address, a serving PLMN, a serving cell area, and a serving RAT.
  • the second registration instruction can also be parsed to obtain the second registration instruction.
  • the related information of the first wireless network management function network element carried in the registration request, and the related information of the first wireless network management function network element is stored.
  • the related information of the first wireless network management function network element may be used to reflect the service capability of the first wireless network management function network element.
  • the NRF network element sends a second registration response message to the first wireless network management function network element.
  • the NRF network element may generate the second registration response message and send the second registration response message to the first wireless network management function network element.
  • the second registration response message may carry an identifier capable of uniquely identifying the NRF network element, for example, it may be an IP address of the NRF network element, and is used to inform the first wireless network management function that the network element has completed the NRF Registration on the network element.
  • the first wireless network management function network element that has been registered on the NRF network element, and the relevant information reflecting the service capability of the first wireless network management function network element is stored on the NRF network element. If its service capability is reflected If the related information changes, the first wireless network management function network element needs to initiate an information update request to the NRF network element. For the specific process, refer to the registration process described above.
  • the first wireless network that has been registered in the NRF network element Relevant information corresponding to management function network elements is updated to ensure the accuracy and effectiveness of subsequent services.
  • NRF network element For the first wireless network management function network element that needs to be registered with the NRF network element, before registration, it is necessary to determine the NRF network element to which the first wireless network management function network element is specifically registered. Determining NRF network elements can be achieved in the following two ways:
  • the first wireless network management function network element may determine the NRF network element from the configuration information in the first wireless network management function network element.
  • the specific process may be: using a program code for the first wireless network
  • the management function network element is configured with a fixed configuration information (for example, the routing address of the NRF network element is configured).
  • the first wireless network management function network element can read the configuration information (for example: read The routing address of the fixedly configured NRF network element), so as to obtain the NRF network element to which the first wireless network management function network element needs to register.
  • the NRF network element may also be obtained by querying the first wireless network management function network element from a DNS server.
  • the specific process may be:
  • the first wireless network management function network element sends a second DNS query request to a DNS server.
  • the second DNS query request may carry: the type of the queried network element, the identifier of the PLMN serviced by the first wireless network management function network element, the cell identifier of the first wireless network management function network element service, and the first A RAT type supported by a wireless network management function network element.
  • the second DNS query request may be a second DNS request, and the second DNS request may carry: Type, Serving PLMN, Serving Cell area, and Serving RAT.
  • the type of the queried network element Type can be reflected by the FQDN of the network element.
  • the value of Type can be NRF.cellid.PLMNid.y (corresponding to the FQDN of the NRF network element); another In this case, it can also be directly reflected by the name of the network element.
  • the value of Type can be NRF.
  • the DNS server selects and determines a suitable NRF network element as the discovered NRF network element based on the received second DNS query request.
  • a suitable NRF network element refers to a PLMN and / or cell that can be served by the first wireless network management function network element and a RAT type NRF network element that is supported.
  • the DNS server may find, from the related information of all NRF network elements configured thereon, the NRF network element that meets the requirements in the received second DNS query request as the discovered NRF network element.
  • the DNS server feeds back the NRF network element to the first wireless network management function network element.
  • the NRF network element may carry the related information of the NRF network element in a second DNS query response and feed it back to the first wireless network management function network element.
  • the DNS server can find the routing address of the discovered NRF network element from the related information of the configured NRF network element, and include the discovered NRF network element in the discovery.
  • the relevant information of the NRF network element of the routing address is carried in the second DNS query response and returned to the first wireless network management function network element.
  • the first wireless network management function network element dynamically queries the DNS server by using Discovered the NRF network element.
  • FIG. 6 shows a first wireless network management function network element provided to the NRF network element according to this embodiment.
  • the signaling flowchart of the registration method Taking the first wireless network management function network element to query the DNS server to determine the NRF network element as an example, the specific process of connecting the first wireless network management function network element to the corresponding NRF network element may include :
  • the first wireless network management function network element sends a second DNS query request to a DNS server.
  • the DNS server selects and determines a suitable NRF network element as the discovered NRF network element based on the received second DNS query request.
  • the DNS server feeds back a second DNS query response to the first wireless network management function network element, which carries related information of the NRF network element.
  • S601 to S603 are specific processes for the first wireless network management function network element to determine the NRF network element by querying the DNS server.
  • first step to “third step” in the example section of this scenario. The description is not repeated here.
  • S601 to S603 are optional steps. It is determined that the NRF network element may also adopt other implementation manners, which is not limited in this embodiment.
  • the NRF network element sends a second registration response message to the first wireless network management function network element.
  • S604 and S605 may further include:
  • the NRF network element obtains related information of the first wireless network management function network element from the second registration request and saves it.
  • the RNMF network element may query the DNS server to determine the NRF network element. Then, the RNMF network element carries the relevant information of the RNMF network element in the second registration request, and according to the determined NRF The routing address of the network element is sent to the corresponding NRF network element through the R2 interface. After receiving the second registration request, the NRF network element can parse the relevant information of the RNMF network element; then, the NRF network element is based on the RNMF network element. The related information is sent to the RNMF network element through the R2 interface, and the registration of the RNMF network element to the NRF network element is completed.
  • the registration process of the first wireless network management function network element to the NRF network element shown in FIG. 6 described above the registration of the first wireless network management function network element on the NRF network element is completed.
  • the NRF The network element selects and invokes the first wireless network management function.
  • the network element provides the selected resources and the basis for selection.
  • FIG. 7 is a schematic diagram of a network system framework involved in another application scenario according to an embodiment of the present application.
  • multiple RANs, multiple RNMF network elements, and multiple core networks can be expanded.
  • it may include: RAN 701 and RAN 702, RNMF 711, RNMF 712, core network 721, and core network 722.
  • RAN 701 may include: RRC 7011, PDCP-C 7012 SDAP 7013, and PDCP-U 7014.
  • the RAN 702 may include: RRC 7021, PDCP-C, 7022 SDAP 7023, and PDCP-U 7024.
  • the core network 721 may include: NRF 7211, AMF 7212, and SMF 7213.
  • the core network 722 may include: NRF 7221, AMF 7222, and SMF 7222.
  • the RNMF network element in FIG. 7 provides a C1 interface, an R1 interface, and an R2 interface, which can all be service API interfaces provided by the RNMF network element. Then, the RNMF network element support and the network element in the RAN can pass through The C1 interface performs the function of service invocation, and the RNMF network element also supports the function of invoking service with the network element in the core network through the R2 interface, and the function of invoking service between the two RNMF network elements through the R1 interface.
  • an RRC network element of one RAN can only be connected to one RNMF network element, but each RNMF network element can be connected to multiple RRC network elements of RAN, and the RAN and the core network can be connected through Invoke multiple RNMF network elements to achieve wireless network communication.
  • RRC 7011 of RAN 701 needs to realize the communication with AMF 7212 in core network 721 by calling RNMF 711 and RNMF 712 together.
  • FIG. 8 is a schematic flowchart of a communication method for switching network elements according to an embodiment of the present application. As shown in FIG. 8, the embodiment of the present application may specifically include:
  • a first wireless network management function network element receives user equipment measurement information from a second access network element, and the second access network element provides services to the user equipment.
  • the measurement information of the user equipment is a measurement result obtained by the user equipment performing signal measurement by using a currently connected wireless network, where the currently connected wireless network includes a second interface that currently provides services for the user equipment.
  • Network element The user equipment measurement information may be used to reflect a network environment in which the user equipment is currently located, such as a cell in which the user equipment is currently located.
  • the user equipment may report the obtained user equipment measurement information to the second access network element, that is, the source equipment of the user equipment before handover.
  • the second access network element sends the user equipment measurement information to the first wireless network management function network element.
  • the first user equipment measurement information may carry, for example, any one or more of the following information: measurement type (such as RSRP, RSRQ, RSTD, UTRAN, TDD, P-CCPCH, RSCP, UTRAN, FDD, CPICH, etc.) of frequencies.
  • measurement type such as RSRP, RSRQ, RSTD, UTRAN, TDD, P-CCPCH, RSCP, UTRAN, FDD, CPICH, etc.
  • the first wireless network management function network element determines a target network element according to the user equipment measurement information.
  • the target network element refers to the network element to which the user equipment needs to switch to provide services for the user equipment after the switch.
  • the target network element may be one or more of an access network element, a wireless network management function network element, and a core network element.
  • the target network element may be a third access network element, a second A wireless network management function network element or a second core network element.
  • the type of the target network element and the specific network element to which the handover is performed may be determined by the first wireless network management function network element according to the received user equipment measurement information.
  • the first wireless network management function network element may determine the cell where the user equipment is currently located according to the first user equipment measurement information, and record it as the target cell (target ID). Then, the first wireless network management function network element may According to the target cell, the type of the network element to be switched and the specific network element to which the switching is performed are determined.
  • the specific basis for judging the types of network elements that need to be switched among the access network elements, RNMF network elements, and core network elements are:
  • the first wireless network management function network element checks whether the target cell (target ID) to be switched by the UE is within the cell range of the access network element currently serving the UE. If yes, you do not need to switch the access network element, otherwise, you need to switch the access network element.
  • the first wireless network management function network element checks whether the target cell (target ID) is a cell that it can serve, and if so, it does not need to switch the first wireless network. The network management function network element; otherwise, the first wireless network management function network element needs to be switched.
  • target ID target cell
  • Conditions for determining whether the core network element needs to be switched In one case, if the first wireless network management function element locally stores the cell information of the core network element service, the first wireless network management function element checks the The target ID identifies whether the corresponding cell is a cell served by a core network element (for example, an AMF network element).
  • a core network element for example, an AMF network element
  • the core network element does not need to be switched; otherwise, the core network element needs to be switched; in another case, If the first wireless network management function network element does not locally store the cell information of the core network element service, then the first wireless network management function network element is required to query the NRF network element related information of the core network element, that is, the target ID is used to The NRF network element requests the AMF service, so that the first wireless network management function network element judges whether the address of the AMF service returned by the NRF network element is the same as the address of the core network element of the current service. If it is, there is no need to switch the core network network. Element, otherwise, the core network element needs to be switched.
  • the first wireless network management function network element may further be determined by the configuration information in the first wireless network management function network element according to user equipment measurement information.
  • the NE to be switched to under this type may be determined by the configuration information in the first wireless network management function network element according to user equipment measurement information.
  • the first wireless network management function network element may also determine the network to be specifically switched to under this type by querying the NRF network element based on user equipment measurement information. yuan.
  • the first wireless network management function network element may also The configuration information in the first wireless network management function network element determines that the switched wireless network management function network element is a second wireless network management function network element.
  • the first wireless network management function network element may also query the NRF based on the measurement information of the user equipment.
  • the network element determines that the switched core network element is a second core network element.
  • the first wireless network management function network element receives user equipment context information from the second access network element.
  • the source access network element (that is, the second access network element) needs to send user equipment context information to the first wireless Network management function network element.
  • the user equipment context information can be, for example, UE context, which can carry at least: UE-AMBR, AS Security Information (Key), PDU Session Session resource set up list, RRC context, Mobility and Restriction List etc.
  • UE context which can carry at least: UE-AMBR, AS Security Information (Key), PDU Session Session resource set up list, RRC context, Mobility and Restriction List etc.
  • the PDU session resource list is the configuration information of the PDU session that needs to be rebuilt, and can include: PDU session ID, PDU session resource AMBR, UL NG-U Address, Security indication, PDU session type, QoS and other parameter information.
  • the user equipment context information may be specifically carried along with the target ID, UE ID, and GUAMI information in a user equipment handover request HO request, which is sent by the second access network element to the first through the service interface.
  • a wireless network management function network element may be specifically carried along with the target ID, UE ID, and GUAMI information in a user equipment handover request HO request, which is sent by the second access network element to the first through the service interface.
  • the user equipment context information may not be carried in other signaling, but may be directly sent by the second access network element to the first wireless network in the form of the user equipment context information itself through the service interface. Management function network element.
  • S804 The first wireless network management function network element sends the user equipment context information to the target network element.
  • the first wireless network management function network element may directly send the user equipment context information to the target network element to inform the target network element about the user equipment currently serving the user equipment.
  • the target network element can establish the target network element context for the user equipment, assign a DRB ID to the PDU session, and select the corresponding network element based on the target ID to send a PDU session to it.
  • the resource establishes a PDU, a session, a resource, and a setup message to perform handover of the user equipment from the source wireless network to the wireless network including the target network element.
  • FIG. 9 shows the signaling flowchart of this scenario.
  • the specific implementation of this scenario may include:
  • a first wireless network management function network element receives first user equipment measurement information from a second access network element, and the second access network element provides services to the user equipment;
  • the first wireless network management function network element determines a third access network element according to the first user equipment measurement information.
  • the first wireless network management function network element receives the first user equipment context information from the second access network element.
  • the first wireless network management function network element sends the first user equipment context information to the third access network element.
  • the first access network element is the source access network element that provided service to the user equipment before the handover; the second access network element is the one that provides service to the user equipment to be switched to the user equipment. Target network element.
  • the second access network element may be determined by the first wireless network management function network element according to the received first user equipment measurement information.
  • the handover process may include: RRC 7021 sends first user equipment measurement information to RNMF 712; RNMF 712 determines that the target network element is RRC 7011 according to the first user equipment measurement information; at this time, RRC 7021 sends the first user to RNMF 712 Device context information; then, RNMF 712 sends the first user equipment context information to RRC 7011 to complete the handover.
  • the type of the target network element that needs to be switched is the first wireless network management function network element that can provide a service-oriented interface.
  • Figure 10 shows the signaling flowchart of this scenario. Specific implementations may include:
  • a first wireless network management function network element receives second user equipment measurement information from a second access network element, and the second access network element provides services to the user equipment;
  • the first wireless network management function network element determines a second wireless network management function network element according to the second user equipment measurement information.
  • the first wireless network management function network element receives second user equipment context information from the second access network element.
  • the first wireless network management function network element sends the second user equipment context information to the second wireless network management function network element.
  • the first wireless network management function network element is a source wireless network management function network element that provides services to the user equipment before switching;
  • the second wireless network management function network element is the user equipment that is to be switched over for the user equipment.
  • Target network element providing the service.
  • the second wireless network management function network element may be determined by the first wireless network management function network element according to the received second user equipment measurement information.
  • the first wireless network management function network element stores configuration information about other wireless network management function network elements, that is, the configuration information may include each wireless network management function network element providing a service-oriented interface and its The corresponding relationship between the corresponding serving cells
  • S1002 may specifically include: determining, by the first wireless network management function network element according to the second user equipment measurement information, the configuration information in the first wireless network management function network element The second wireless network management function network element.
  • the first wireless network management function network element may determine the cell where the user equipment is currently located according to the second user equipment measurement information, and record it as the target cell (target ID); A network element providing a service-oriented interface serving the target cell is queried in the configuration information as a second wireless network management function network element.
  • the S1002 may further include: the first wireless network management function network element queries the NRF network element according to the second user equipment measurement information Determining the second wireless network management function network element.
  • the first wireless network management function network element may initiate a query request to the NRF network element, and use the target ID, RAT type (current access mode of the user equipment) and PLMN information to perform the query; the NRF network element is based on the query request The information in the selection selects a matching second wireless network management function network element, and returns the routing address (for example, IP address) of the second wireless network management function network element to the first wireless network management function network element.
  • the handover process may include: RRC 7021 sends second user equipment measurement information to RNMF 712; RNMF 712 determines that the target network element is RNMF 711 according to the second user equipment measurement information; at this time, RRC 7021 sends the second user to RNMF 712 Device context information; then, RNMF 712 sends the second user equipment context information to RNMF 711 to complete the handover.
  • the target network element that needs to be switched is the core network element.
  • Figure 11 shows the signaling flowchart of this scenario.
  • the specific implementation of this scenario may include:
  • the first wireless network management function network element receives third user equipment measurement information from the second access network element; the third access network element provides services for the user equipment;
  • the first wireless network management function network element determines a second core network network element according to the third user equipment measurement information.
  • the first wireless network management function network element receives third user equipment context information from the second access network element;
  • S1104 The first wireless network management function network element sends the third user equipment context information to the second core network element.
  • the first core network element is a source core network element that provides services to the user equipment before the handover;
  • the second core network element is a target network element that is to be switched by the user equipment and provides services to the user equipment.
  • the second core network element may be determined by the first wireless network management function network element according to the received measurement information of the third user equipment.
  • S1102 may specifically include: the first wireless network management function network element determines the second core network network element through configuration information in the first wireless network management function network element according to measurement information of the third user equipment.
  • the first wireless network management function network element may determine the cell where the user equipment is currently located according to the measurement information of the third user equipment, and record it as the target cell (target ID); The target core network element serving the target cell is queried in the configuration information as the second core network element.
  • the S1102 may further include: the first wireless network management function network element queries the NRF network element according to the measurement information of the third user equipment Determining the second core network element.
  • the first wireless network management function network element may initiate a query request to the NRF network element, and use the target ID, RAT type (current access mode of the user equipment) and PLMN information to perform the query; the NRF network element is based on the query request The information in the selection selects a matching second core network element, and returns the routing address (such as IP address) of the second core network element to the first wireless network management function network element.
  • the handover process may include: RRC 7021 sends third user equipment measurement information to RNMF 712; based on the third user equipment measurement information, RNMF 712 determines that the target network element is NRF 7211; at this time, RRC 7021 sends third user to RNMF 712 Device context information; then, RNMF 712 sends the third user equipment context information to NRF 7211 to complete the handover.
  • the target network element including the third access network element, the second wireless network management function network element, or the second core network network element
  • receives the user equipment context information sent by the first wireless network management function network element it may also By performing operations similar to those mentioned in FIG. 8, in order to complete switching the user equipment from the source network element (including the second access network element, the first wireless network management function network element, or the first core network element) to the target Network element.
  • FIG. 9 to FIG. 11 correspond to the switching of the access network element, the wireless network management function element, and the core network element, respectively. Then, in some possible scenarios, there may be more than one network element that needs to be switched. At this time, a corresponding switching operation may be performed according to the operations of the embodiments corresponding to the three figures described above, and details are not described herein again.
  • Example 7 For a complete description of the communication process in the scenario of switching the second access network element and the first wireless network management function network element, refer to Example 7 below; for switching the first access network element and the first wireless network management function network
  • Example 8 For a complete description of the communication process in the scenario of the element and the first core network element.
  • the first wireless network management function network element by introducing a first wireless network management function network element that can provide a service-oriented interface between the access network element and the core network network element, the first wireless network management function network element can be called.
  • Two service-oriented interfaces implement service invocation between the first wireless network management function network element and the access network network element, and may also call a first service-oriented interface of the first wireless network management function network element to implement the first wireless network management Service call between functional network element and core network element.
  • wireless network communication between the access network element and the core network element can be implemented simply and conveniently, which overcomes the problem of transferring information between the access network element and the core network element through protocol processing. Complexity and verbosity lead to problems such as low information transmission efficiency and large time delay, and provides a wireless network communication method with high information transmission efficiency and short transmission time delay.
  • first access network element in the “first access network element”, “first core network element”, etc. is only used to identify the name, and is used to distinguish different “network elements”, and does not Representation order; similarly, “second access network element” and “third access network element” are also only used to identify the network element. They are defined according to different scenarios, and can be the same thing or Different things.
  • the wireless network communication method provided in the embodiments of the present application can be applied to various scenarios of wireless network communication, except for the foregoing scenario where the access network element is registered with the wireless network management function element,
  • wireless network management function NEs are registered with core network NEs and scenarios where various types of network elements are switched, they can also be applied to, for example, paging scenarios, scenarios where UEs are registered in a wireless network, and UEs are established in a wireless network. Scenes of PDU sessions, etc.
  • Example 1 and Example 2 For a complete description of the communication process of the paging scenario, refer to Example 1 and Example 2 below; for a complete description of the communication process of the scenario where the UE registers with the wireless network, refer to Example 3 below; The UE establishes a PDU to the wireless network.
  • Example 4 and Example 5 For a complete description of the communication scenario in the session scenario, see Example 4 and Example 5 below.
  • Example 1 Specific scenarios for paging an IDEL UE:
  • the paging may be performed by referring to the communication method in the wireless network shown in FIG. 12, for example
  • the network element providing the service-oriented interface is an RNMF network element
  • the access network element is an RRC network element
  • the core network element is an AMF network element.
  • the paging process in this scenario may specifically include:
  • the SMF network element After receiving the downlink data notification message sent by the UPF, the SMF network element sends a signaling request to the AMF network element to be called.
  • the AMF may call the R2 interface to send a paging message to the RNMF network element.
  • the RNMF network element determines an RRC network element that meets the paging conditions based on information such as a registration area list (English: Registration list) or service information (for example, Service Type) carried in the paging message sent by the AMF network element.
  • information such as a registration area list (English: Registration list) or service information (for example, Service Type) carried in the paging message sent by the AMF network element.
  • the RNMF network element invokes the C1 interface to send a paging message to the determined RRC network element.
  • the RRC network element may send the paging message to the corresponding PDCP-U network element, so that the PDCP-U network element can page the corresponding IDEL state UE according to the paging message.
  • the communication method used in this embodiment can simply and conveniently implement wireless network communication between the access network element and the core network element, which overcomes the problem of Network network elements and core network network elements communicate information through protocol processing. Due to the complexity and length of the protocol processing, the transmission of information is inefficient and has a large delay. It provides a high information transmission efficiency and transmission delay. Communication method for shorter wireless networks.
  • Example 2 Specific scenarios for paging an Inactive UE:
  • the paging UE When the paging UE is in the Inactive state, that is, the UE and the RAN are in the disconnected state, and the RAN and the core network are in the connected state. At this time, referring to FIG. 13, the signaling of the paging Inactive UE is shown.
  • the communication method in the wireless network performs paging, for example, provides service
  • the network element of the interface is an RNMF network element
  • the network element of the access network is a Last RRC network element and a New RRC network element.
  • the paging process in this scenario may specifically include:
  • the PDCP-U network element when the PDCP-U network element receives the DL data that needs to be sent to the UE in the inactive state, the PDCP-U network element sends downlink data to the PDCP-C network element (labeled as Last PDCP-C in the figure) of a RAN. Notification message.
  • the PDCP-C network element labeled as Last PDCP-C in the figure
  • the downlink data notification message carries the IP address or identification of the UE and the QoS flow identification (English: QoS Flow ID, QFI for short), for example, the IP address or identification of the UE can be used to identify The UE to be paged; QFI is used to identify the QoS information.
  • the last PDCP-C network element sends the received downlink data notification message to the last RRC network element.
  • the Last RRC network element performs paging of the UE in the cell it serves.
  • the paging process refer to the description in S1006 shown in FIG. 10.
  • the RRC network element in addition to paging the UE in its own service area, can also trigger paging of the UE in the RNA-identified cell, and call the C1 interface to send the RNA-carrying ID and UE paging to the RNMF network element A paging message identifying information such as the paging neighborhood.
  • the RNMF network element may determine the corresponding New RRC network element based on the RNA identifier in the paging message, and send a paging message to the determined New RRC network element by calling the C1 interface.
  • the paging process can refer to the description in S1206 shown in FIG. 12.
  • the communication method used in this embodiment can simply and conveniently implement wireless network communication between the network elements of the access network, and in particular, it can easily and efficiently implement inactive UEs.
  • Paging overcomes the problems of passing information through protocol processing between the access network elements. Due to the complexity and length of the protocol processing, the problems of low efficiency and long delay in transmitting information are provided. Communication method for wireless network with short transmission delay.
  • Example 3 The specific scenario in which the UE registers with the wireless network:
  • the UE Before using the established wireless network for communication, the UE also needs to register with the wireless network. See the communication method in the wireless network shown in Figure 14 to implement the registration of the UE.
  • the network element that provides the service-oriented interface is RNMF.
  • Network element the access network element is an RRC network element
  • the core network element is an AMF network element.
  • This scenario may specifically include:
  • the UE may send a UE Registration Request (UE Registration Request) to the RRC network element through a distributed unit (English: Distributed Unit, abbreviated as DU) and a PDCP-C network element.
  • UE Registration Request UE Registration Request
  • DU Distributed Unit
  • the UE registration request may carry SUCI (or old 5G-GUTI), PLMN ID, and Registration request PDU.
  • Registration request PDU is the information content sent by the UE to the core network, and the RAN does not process it.
  • the RRC network element After receiving the UE registration request, the RRC network element calls the C1 interface to send Nrnmf_Communication_UEMessageTransfer to the RNMF network element that it registered.
  • This message also belongs to a UE registration request.
  • This message carries information such as PLMN ID, old 5G-GUTI, cell ID, cell ID, and RAT type. If the UE provides an Equivalent PLMM List, it can also be carried in the UE registration request.
  • the RNMF network element initiates an AMF service discovery request to the NRF network element, and queries related information of the AMF network element service.
  • the AMF service discovery request carries at least one of the PLMN ID, the current cell identifier Cell ID, RAT type, old 5G-GUTI, etc. This kind of information is provided for NRF network elements to perform AMF network element query reference.
  • the NRF network element queries the appropriate AMF network element according to the AMF service discovery request.
  • the NRF network element generates an AMF service response message and sends it to the RNMF network element.
  • the RNMF network element can create the UE context of the UE in the RNMF network element, and the PLMN ID, Cell ID, RAT Type, old 5G -GUTI, RRC ID and IP address of the AMF network element are recorded in the UE context.
  • the RNMF network element calls the R2 interface to send Nrnmf_Communication_N1MessageNotify to the AMF network element.
  • This message belongs to a UE registration request, and specifically can carry at least one kind of information such as UE registration, PDU, PLMN ID, Cell ID, RAT type, RNMF ID, and so on.
  • the AMF network element sends Namf_Communicaiton UE Context Transfer to the Old AMF network element.
  • the AMF network element can obtain the relevant information by parsing the received UE registration of the Nrnmf_Communication_N1MessageNotify; if the relevant information carries Old 5G-GUTI, the AMF network element sends a query request to the NRF network element to obtain the old AMF The address information of the network element.
  • the NRF network element checks whether there is an available AMF network element according to the old 5G GUTI in the query request, and if it exists, sends the IP address of the old AMF network element to the AMF network element.
  • the old AMF network element sends a Namf_Communicaiton_UEContextTransfer response to the AMF network element.
  • the Namf_Communicaiton_UEContextTransfer response can carry the context of the UE related to the UE.
  • the AMF network element requests the AUSF network element to authenticate the UE, and sends the context of the relevant UE to the AMF network element, and the AMF immediately initiates the AS and NAS security processes and activates the AS / NAS security mechanism. If the AUSF fails to authenticate the UE, S1411 is performed.
  • the AMF network element requests access and mobility-related subscription data of the UE through a Nudm_SDM_Get service provided by User Data Management (English: User Data Management (UDM) for short).
  • UDM User Data Management
  • This message belongs to the UE registration acceptance message.
  • the message may specifically carry: Registration, Acceptance PDU, 5G-GUTI, Handover restriction list, UE-AMBR, and AMF ID.
  • 5G-GUTI is a new identifier assigned by the AMF network element to the UE.
  • the AMF ID is used to identify the AMF, which can be GUAMI, or other ID identifiers that uniquely identify the AMF.
  • the AMF network element may send the location area information (such as the serving cell / PLMN) that it serves to the RNMF network element.
  • the RNMF network element stores the location area information of the AMF network element service in the AMF network element status information.
  • the AMF network element may reject the UE's registration request, and reply to the Registration reject PDU in S1409, while the Registration PDU carries the cause of the rejection Cause (such as authentication failure). Then, the AMF network element may carry Registration, reject, PDU, Cause (such as refusal of registration) and AMFId in S1411. For example, if the RNMF network element receives the cause information, the UE-related context is deleted, and step S1412 / S1413 sends a Registration PDU to the UE.
  • the RNMF network element receives the UE registration acceptance message, which can be parsed and recorded to the context of the UE, which may specifically include the newly allocated 5G-TURI, Handover restriction list, UE-AMBR and AMF ID, and the AMF network element service. Location area information and the like are stored in the context of the UE, and Nrnmf_Communication_N1MessageNotify is sent to the RRC network element through the C1 interface.
  • the G-GUTI and UE-AMBR sent in S1411 may also be sent to the RRC network element.
  • the RNMF network element When the RNMF network element receives the AMF registration request rejection message, the RNMF network element deletes the related information of the UE and sends a UE registration acceptance message to the RRC network element through the Nrnmf_Communication_N1MessageNotify service.
  • the RRC network element sends a UE registration acceptance message (UE registration) to the UE through the PDCP-C network element and the DU network element.
  • UE registration UE registration acceptance message
  • the UE After receiving the UE registration, the UE sends a registration completion message (Registration Complete) to the RRC network element through the DU / PDCP-C network element.
  • a registration completion message (Registration Complete)
  • the communication method used in this embodiment can easily and efficiently register the UE to the network that has established the connection relationship, which overcomes the problems of accessing the network element and the core.
  • Network network elements transmit information through protocol processing. Due to the complex and verbose protocol processing, the transmission of information is inefficient and the delay is large. It provides a wireless network with higher information transmission efficiency and shorter transmission delay. Communication method.
  • Example four The specific scenario of the UE establishing a PDU session to the wireless network (1):
  • the UE Before the UE uses the established wireless network for communication, it also needs to establish one or more communication paths in the wireless network, that is, establish a PDU session to ensure that the communication can be performed normally and orderly.
  • the network element providing the service interface is an RNMF network element
  • the access network element is an RRC network element
  • the core network element is an AMF network.
  • This scenario can include:
  • the UE may send a PDU session establishment request (PDU, session establishment) to the RRC network element through the DU and the PDCP-C network element.
  • PDU PDU session establishment
  • the RRC network element After receiving the PDU session establishment request, the RRC network element calls the C1 interface to send Nrnmf_Communication_UEMessageTransfer to the RNMF network element it registered.
  • This message is also a PDU session establishment request, and this message carries information such as NAS PDU (may include: establishing a PDU session), 5G-GUTI, and so on.
  • NAS PDU may include: establishing a PDU session
  • 5G-GUTI 5G-GUTI
  • the RNMF network element sends Nrnmf_Communication_N1MessageNotify to the AMF network element by calling the R2 interface.
  • the AMF network element After receiving the PDU session establishment request, the AMF network element calls the PDU Session_CreateSMContext service provided by the SMF network element, and requests the SMF network element to create a session management (English: Session Management) (SM) context for the UE.
  • SM Session Management
  • the SMF network element After receiving the PDU session establishment service request of the AMF network element, the SMF network element requests the UDM network element for the session subscription data of the UE.
  • S1506 The SMF network element sends a subscription retrieval Subscription retrieval to the AMF network element.
  • S1508 The SMF network element requests service policy information from the PCF network element.
  • the SMF network element executes policy decisions based on the session subscription data and policy information, determines QoS parameters, etc., assigns an IP address to the UE, selects a UPF network element, and sends an N4 interface session establishment request to the selected UPF network element to complete the UPF network. Meta configuration.
  • S1510 After the SMF network element completes the service processing, it sends an N1N2 information transmission message to the AMF network element, and sends the session context information to the AMF network element.
  • the AMF network element After performing SM service processing in the core network, the AMF network element sends Nrnmf_Communication_AllocateSessionResource to the RNMF network element by calling the R2 interface.
  • This message belongs to the PDU session establishment acceptance message. This message is also used to trigger the processing flow of the RAN side PDU session establishment.
  • the message carries the PDU session establishment acceptance identifier (which can be encapsulated in the NAS PDU), the UE ID, and the PDU session resource installation list ( English: PDU, Session, Source, Setup).
  • a PDU session resource list is a parameter configuration set for one or more PDU sessions that are requested to be established, and may include: the ID of the PDU session and a PDU session resource installation and migration request (English: PDU Session resource setup request).
  • PDU Session resource setup and request transfer include the maximum aggregate bit rate of PDU session resources (English: PDU session resource Aggregate Maximum Bit Rate), UL NG-U address, PDU session type, and security indicators (English: Security indication, used to indicate whether to enable encryption Protection and / or whether integrity protection is enabled), QFI and QoS flow level QoS parameters.
  • the RNMF network element sends the received Nrnmf_Communication_AllocateSession Resource to the RRC network element by calling the C1 interface.
  • the RNMF network element can also save the information carried in Nrnmf_Communication_AllocateSessionResource as the PDU session context information.
  • the RRC network element After receiving the PDU session establishment acceptance message sent by the RNMF network element, the RRC network element sends a PDU session resource installation request (PDU session resource setup) to the PDCP-C network element.
  • PDU session resource setup PDU session resource setup
  • This message can carry the DRB ID allocated by the RRC network element and other PDU session context information.
  • the PDCP-C network element analyzes the PDU, session, resource, and setup list, and further analyzes the PDU, session, resource, and setup request to obtain the related parameter configuration information of the established PDU session, and sends the established PDCP-U network element with the bearer context Bearer contextual setup message.
  • the message carries DRB ID, PDU session resource AMBR, UL NG-U Address (such as UL GTP TEID and IP address of UPF), Security indication (values can be required, preferred, or not needed).
  • the PDCP-U network element allocates a downlink NG-U address (such as DL, GTP, TEID, and IP address) and an uplink UL, PDCP-U, TEID, and IP address, and performs resource configuration according to parameters in the request message, and responds to the bearer context established by the bearer context Setup response message to the PDCP-C network element.
  • a downlink NG-U address such as DL, GTP, TEID, and IP address
  • an uplink UL, PDCP-U, TEID, and IP address performs resource configuration according to parameters in the request message, and responds to the bearer context established by the bearer context Setup response message to the PDCP-C network element.
  • This message can carry DRB ID and DL NG-U Address (such as DL, GTP, TEID, IP address), Security result (its value is performed or not performed).
  • DRB ID and DL NG-U Address such as DL, GTP, TEID, IP address
  • Security result its value is performed or not performed.
  • the PDCP-C network element can repeatedly perform S1514 to S1515, and different DRBs may select multiple different PDCP-U network elements.
  • the PDCP-C network element sends a UE context establishment request UE context setup request message to the DU network element, and performs resource configuration on the DU network element.
  • This message can carry PDU, Session establishment, acceptance, DRB ID, QoS and UL PDCP-U GTP TEID ID.
  • the DU network element sends an AN specific resource setup message to the UE, and receives a confirmation message from the UE.
  • the message may carry a PDU, Session establishment, and Accept.
  • the DU network element returns a UE context establishment response UE context setup response message to the PDCP-C network element.
  • the message may carry a DRB ID and a DL address (such as DL, GTP, TEID, and IP address).
  • the PDCP-C network element sends a bearer context modification Bearer Context Modification message to the PDCP-U network element, updates the DL address (DL GTP TEID and IP address) in the UE context, and receives a confirmation message from the PDCP-U.
  • a bearer context modification Bearer Context Modification message to the PDCP-U network element, updates the DL address (DL GTP TEID and IP address) in the UE context, and receives a confirmation message from the PDCP-U.
  • the message may carry a DRB ID and a DL address (such as DL, GTP, TEID, and IP address).
  • the PDCP-C network element sends a PDU session session resource response message to the RRC network element.
  • This message may carry the PDU Session ID and the downlink user plane address information DL NG-U Address (such as DL PDCP-U GTP TEID and IP address) corresponding to the PDCP-U network element.
  • DL NG-U Address such as DL PDCP-U GTP TEID and IP address
  • the RRC network element may send a modified PDU session notification Nrnmf_Communication_ModifySessionResource to the RNMF network element by calling the C1 interface, which is used to update the downlink user plane address information of the PDCP-U network element DL-NG-UAddress (such as DL PDCP-U GTP TEID ID and IP address) to the RNMF network element.
  • Nrnmf_Communication_ModifySessionResource to the RNMF network element by calling the C1 interface, which is used to update the downlink user plane address information of the PDCP-U network element DL-NG-UAddress (such as DL PDCP-U GTP TEID ID and IP address) to the RNMF network element.
  • the RNMF network element sends the Namf_Communication_ModifyPDUSessionNotify to the AMF network element by calling the R2 interface.
  • the AMF network element executes the internal PDU session update service processing flow of the core network, that is, sends a PDU session modification notification to the SMF network element, and calls, for example, the PDU Session_UpdateSMContext service.
  • the SMF network element can send N4session modification to the UPF network element.
  • the N4session modification includes downlink user plane address information DL and NG-U Address (such as DL PDCP-U GTP TEID and IP address).
  • DL and NG-U Address such as DL PDCP-U GTP TEID and IP address.
  • the SMF network element after receiving the DL-NG-U address information, the SMF network element sends the downlink user plane address information shown to the UPF network element through the N4 interface session modification process.
  • the communication method used in this embodiment can simply and efficiently establish a PDU session in a network that has established a connection relationship, and overcomes the problem of accessing the network element and core of the access network.
  • Network network elements transmit information through protocol processing. Due to the complex and verbose protocol processing, the transmission of information is inefficient and the delay is large. It provides a wireless network with higher information transmission efficiency and shorter transmission delay. Communication method.
  • Example 5 A specific scenario in which a UE establishes a PDU session in a wireless network (2):
  • the difference from the above example 4 is that in this example, the RNMF network element is fully utilized to connect the service bus of the core network through the R2 interface, that is, The RNMF network element can be directly connected to the SMF network element through the R2 interface without the need of AMF network element for forwarding processing.
  • FIG. 15 for specific implementation of this example. Except that there is no need to execute S1504, S1506, S1510, S1523, and S1525 in FIG. 15, for descriptions of other steps, refer to the description of Example 4, which is not repeated here.
  • the RNMF network element judges according to the target cell target ID after the UE moves to determine that each network element in the RAN needs to be switched.
  • the RNMF network element instructs the network elements in the RAN to be initiated.
  • the network element providing the service interface is an RNMF network element
  • the source access network element is an S-RRC network element
  • the target access network element is a T-RRC network element.
  • This scenario may specifically include:
  • the UE completes signal measurement, and sends the UE measurement report MeasurementReport to the S-RRC network element in the source RAN through the S-DU / S-PDCP-C network element in the source RAN.
  • Measurement reports can carry information such as Measurement type (such as RSRP, RSRQ, RSTD, UTRAN, TDD, P-CCPCH, RSCP, UTRAN, FDD, CPICH, etc.), measurement period, number, and frequency.
  • Measurement type such as RSRP, RSRQ, RSTD, UTRAN, TDD, P-CCPCH, RSCP, UTRAN, FDD, CPICH, etc.
  • measurement period such as RSRP, RSRQ, RSTD, UTRAN, TDD, P-CCPCH, RSCP, UTRAN, FDD, CPICH, etc.
  • the S-RRC network element calls the C1 interface to send the UE measurement report MeasurementReport to the RNMF network element.
  • the RNMF network element may include the Nrnmf_Communication_UEMessageTransfer service.
  • the RNMF network element Based on the measurement report of the UE reported by the S-RRC network element, the RNMF network element determines that the decision needs to perform a handover process on the UE, and further determines a target cell (target ID) for the handover.
  • target ID target cell
  • the RNMF network element can determine that the RRC network element needs to be changed based on the target ID, and the RNMF network element and the AMF network element need not be changed.
  • the RNMF network element may determine a target RRC network element (ie, a T-RRC network element) based on the target ID.
  • a target RRC network element ie, a T-RRC network element
  • the RNMF network element can send a service query request NF service request to the NRF network element.
  • the type of the query NF is AMF, and the NRF network element selects a target that can serve the target. AMF network element for the area identified by the ID.
  • the NRF network element returns the selected AMF address AMF IP address to the RNMF network element.
  • S1703 to S1704 can be taken as optional steps and executed when it is necessary to determine whether the AMF network element is switched.
  • the RNMF network element sends a UE handover indication HO indication to the S-RRC network element.
  • the HO indication indicates that the S-RRC network element sends a UE handover request HO request request to the RNMF network element, and the target cell carrying the handover in the HO indication indicates the Target ID.
  • the S-RRC network element sends a UE handover request HO request to the RNMF network element by calling the C1 interface.
  • This message can carry information such as target ID, UE ID, GUAMI, UE context, and so on.
  • the UE context includes information such as UE-AMBR, AS Security Information (Key), PDU Session Resource, setup list, RRC context, Mobility Restriction List and other information.
  • the PDU session resource list is the configuration information of the PDU session that needs to be rebuilt, including PDU session ID, PDU session resource AMBR, UL NG-UAddress, Security indication, PDU session type, QoS and other parameter information.
  • the RNMF network element in S1705 cannot determine whether the AMF address returned by the NRF network element is the same as the address of the AMF network element serving the UE before.
  • the RNMF network element After the RNMF network element receives the HO request sent by the S-RRC network element, it can determine whether the AMF network element identified by it is the same as the AMF network element returned by the NRF network element in S1705 based on the GUAMI in the message.
  • the RNMF network element sends a UE handover request HORequest to the T-RRC network element determined in S1703.
  • the RNMF network element can determine the T-RRC network element based on the target ID at this step and send it a UE handover request HO Request.
  • the message can carry the target ID, UE Id, GUAMI, UE context, etc.
  • the T-RRC network element establishes an RRC context for the UE, allocates a DRB ID for the PDU session, selects a T-PDCP-C network element based on the target ID, and sends a PDU session resource establishment PDU Session session resource setup message to it.
  • the message After receiving the PDU session resource establishment message, you can perform resource configuration related to the PDU session.
  • the message carries the target ID, UE ID, PDU, session resource, and setup list. (This parameter set includes the DRB ID information corresponding to each PDU session. ).
  • the T-PDCP-C network element receives the handover request of the UE, parses the PDU, session, resource, and setup list to obtain related parameter configuration information of the requested PDU session, and the T-PDCP-C network element selects and determines T- The PDCP-U network element sends a Bearer context setup message to it.
  • Relevant parameter configuration information can include PDU session resource AMBR, UL NG-U address, PDU session type, Security indication, QFI and QoS flow level QoS parameters.
  • the Bearer context message can carry DRB ID, PDU session resource AMBR, UL NG-U Address (such as UL GTP TEID and IP address), Security indication (its value is required, preferred, not required).
  • the T-PDCP-U network element allocates a downlink NG-U address (such as DL, GTP, TEID, and IP address) and an uplink UL, PDCP-U, TEID, and IP address, and forward GTP, TEID, and IP, and configures resources according to parameters in the request message. And respond to the bearer context establishment response Bearer, context, setup response message.
  • a downlink NG-U address such as DL, GTP, TEID, and IP address
  • Forward GTP, TEID, and IP are used during the handover process.
  • the S-PDCP-U network element transmits user data packets that have not been sent to the UE through the PDU session established with the T-PDCP-U network element. Go to the T-PDCP-U network element for buffering and forwarding.
  • the Bearer context response message can carry DRB ID, DL NG-U Address (such as DL GTP TEID ID IP address), UL PDCP-U TEID ID IP address, Forward GTP TEID ID IP and Security (its value is performed or not performed).
  • DL NG-U Address such as DL GTP TEID ID IP address
  • UL PDCP-U TEID ID IP address UL PDCP-U TEID ID IP address
  • Forward GTP TEID ID IP and Security its value is performed or not performed.
  • the PDCP-C network element needs to repeat S1714 to S1715, and different DRBs may select multiple different PDCP-U network elements.
  • the T-PDCP-C network element sends a user context establishment UE context, UE setup request message to the T-DU network element, and performs resource configuration on the T-DU network element.
  • the message can carry DRB ID, QoS, UL, PDCP-U, GTP, TEID, and IP.
  • the T-DU network element After the T-DU network element completes the resource configuration, it responds to the user context establishment UE context and UE setup response message to the T-PDCP-C network element.
  • This message belongs to the confirmation message of the handover request, and the message may carry DRB ID, DL, GTP, TEID, and IP.
  • the T-PDCP-C network element responds to the PDU session resource establishment response PDU, Session resource, and setup response to the T-RRC network element to confirm that the resource configuration is complete.
  • This message can carry the PDU, session ID, DL, NG-U, Address, Forward, GTP, TEID, and IP.
  • the T-RRC network element responds to the RNMF network element with a confirmation message HO Request Ack message, which carries a UE Id, a PDU, a session resource, an Admitted list, a target source, and a transparent container.
  • the PDU session resource and Admitted list is the PDU session information for a successful switch, including PDU session ID, Data Forwarding Info from target nodes (that is, Forward GTP, TEID, and IP).
  • the RNMF network element responds to the handover request acknowledgement HO Request Ack message to the S-RRC function.
  • the S-RRC network element determines that the target cell has completed the handover process, and sends a handover command HO command to the S-PDCP-C network element.
  • HO command can carry UE id, PDU, session, resource and Admitted list.
  • the S-PDCP-C network element notifies the S-PDCP-U network element of the completed PDU session Bearer context modification, and sends related parameter information to the S-PCDP-U network element.
  • the related parameter information may include: forwarding tunnel address information (Forward, GTP, TEID, and IP), which is used to forward user data that has not been sent to the UE to the T-PDCP-U network according to the forwarding tunnel address (Forward, GTP, TEID, and IP). yuan.
  • forwarding tunnel address information Forward, GTP, TEID, and IP
  • the S-PDCP-C network element sends a handover command HO command to the S-DU, and forwards the handover command HO command to the UE through the S-DU.
  • the HO command instructs the UE to perform reconfiguration of the RRC network element to synchronize to the target cell.
  • the T-DU / T-PDCP-C network element responds to the T-RRC network element with a handover complete HO complete confirmation message, and the T-RRC network element forwards the HO complete to the RNMF network element, Used to confirm the completion of the RAN side handover process.
  • the RNMF network element sends a path switching request to the core network side, that is, the RNMF network element invokes a path update service Path switch provided by the R2 interface to the AMF network element.
  • the downlink user plane routing information of the target PDCP-U network element (DL, NG-U, Address, such as DL, GTP, TEID, and IP address) can be sent to the AMF network element.
  • the AMF network element notifies the SMF network element to initiate a PDU session update process.
  • S1323 to S1325 in the fourth embodiment and details are not described herein again.
  • the RNMF network element update PDU session can be implemented by indirectly sending the AMF network element to the SMF network element.
  • the RNMF network element can intervene on the service bus of DORE through the R2 interface, the RNMF network element can directly Send a PDU session establishment request to the SMF network element.
  • the communication method used in this embodiment can simply and efficiently implement the switching of various functional network elements in the RAN, which overcomes the problems of the access network element and the core network.
  • Information is transmitted through protocol processing between elements. Due to the complexity and length of the protocol processing, the transmission of information is inefficient and the delay is large. It provides a wireless network communication with higher information transmission efficiency and shorter transmission delay Method so that the communication method of the wireless network can be flexibly adapted to the UE that is moving, thereby improving the user experience.
  • Example 7 Specific scenarios for switching each functional network element and RNMF network element in the RAN:
  • the RNMF network element determines that the current RAN functional network elements and RNMF network elements cannot serve the area identified by the target ID, but the AMF network element can continue to serve the area, then, refer to the communication method shown in FIG. 18, and the RNMF network
  • the meta-instruction initiates the handover of each functional network element in the RAN and the handover of the RNMF network element.
  • the source wireless network management function network element is an S-RNMF network element
  • the target wireless network management function network element is a T-RNMF network element.
  • the source access network element is an S-RRC network element
  • the target access network element is a T-RRC network element.
  • This scenario may include:
  • the S-RNMF network element determines that the decision needs to perform a handover process on the UE, and further determines a target cell (target ID) for the handover.
  • the RNMF network element determines that the RRC network element and the RNMF network element need to be changed based on the target ID, and the AMF network element does not need to be changed.
  • the RNMF may determine and determine the T-RRC network element based on the target ID.
  • the S-RNMF network element initiates an RNMF service discovery request to the NRF network element, and uses the target ID, RAT type (UE's current access system), and PLMN information for query.
  • RAT type UE's current access system
  • PLMN information for query.
  • the NRF network element selects a matching RNMF network element based on the information in the request of the S-RNMF network element, and returns the RNMF IP address as the target RNMF network element (that is, the T-RNMF network element) to the S-RNMF network element. .
  • the S-RNMF network element sends a HO request message to the corresponding T-RNMF network element according to the RNMF IP address.
  • This message can carry the information obtained in S1807 and the S-RNMF ID.
  • the T-RNMF network element selects a T-RRC network element based on the target ID, RAT type (UE's current access system), and PLMN information, and sends a HO request message to it.
  • RAT type UE's current access system
  • PLMN Packet Management Function
  • This message can carry the information obtained in S1807 and the T-RNMF ID.
  • the T-RNMF network element After the T-RNMF network element confirms that the handover processing of the target cell is completed, it returns a HO confirmation request message to the S-RNMF network element.
  • the T-RNMF network element update PDU session can be implemented by indirectly sending the AMF network element to the SMF network element.
  • T-RNMF network element since the T-RNMF network element can intervene on the service bus of DORE through the R2 interface, T -The RNMF network element may directly send a PDU session establishment request to the SMF network element.
  • the communication method used in this embodiment can simply and conveniently implement the switching between various functional network elements and the RNMF network element in the RAN, which overcomes the problem of network elements in the access network.
  • Information is transmitted to the core network elements through protocol processing. Due to the complexity and length of the protocol processing, the transmission of information is inefficient and the delay is large. It provides a high-efficiency information transmission and short transmission delay.
  • a communication method of a wireless network so that the communication method of the wireless network can be flexibly adapted to a UE that is moving, thereby improving a user experience.
  • Example 8 Specific scenarios for switching RRC function network elements, RNMF network elements, and AMF network elements:
  • the RNMF network element judges that the current RAN functional network elements, RNMF network elements, and AMF network elements cannot serve the area identified by the target ID, then, referring to the communication method shown in FIG. 19, the RNMF network element instructs to initiate the functions in the RAN.
  • Network element switching, RNMF network element switching, and AMF network element switching For example, the source wireless network management function network element is an S-RNMF network element, and the target wireless network management function network element is a T-RNMF network element.
  • the incoming network element is an S-RRC network element, the target access network element is a T-RRC network element, the source core network element is an S-AMF network element, and the target core network element is a T-AMF network element.
  • This scenario This can include:
  • the S-RNMF network element Based on the measurement report reported by the S-RRC network element, the S-RNMF network element determines that the decision needs to perform a handover process on the UE, and further determines a target cell (target ID) for the handover.
  • the RNMF determines that the RRC network element, the RNMF network element, and the AMF network element need to be changed based on the target ID.
  • the RNMF network element may select and determine the T-RRC network element based on the target ID.
  • the S-RNMF network element invokes the service of the AMF network element, and initiates a handover request HO requested to the S-AMF network element.
  • the S-AMF network element calls the service of the SMF network element Namf_CreateUEContext to request the T-AMF network element to create a context for the UE and establish a user plane data transmission path.
  • the message may carry the target ID and parameter information in S1908.
  • the T-AMF network element performs UE context creation and invokes the services of the SMF network element to trigger the establishment of a PDU session and the indirect forwarding tunnel establishment during the handover process.
  • the T-AMF network element initiates an RNMF service discovery request to the NRF network element, and uses the target ID, RAT type (UE's current access system), and PLMN information for query.
  • RNMF service discovery request to the NRF network element, and uses the target ID, RAT type (UE's current access system), and PLMN information for query.
  • the NRF network element selects a matching RNMF network element based on the information in the request of the T-AMF network element, and returns the RNMF IP address to the S-RNMF.
  • the T-AMF network element sends a HO request message to the corresponding T-RNMF network element according to the RNMF IP address.
  • This message can carry PDU, session setup list, UE id (including PDU Session ID, Handover Request Transfer, HO restrciton list, Security context (including UE Security Capabilities, Security Key, KAMF Change Indicator), T-AMF ID.
  • UE id including PDU Session ID, Handover Request Transfer, HO restrciton list
  • Security context including UE Security Capabilities, Security Key, KAMF Change Indicator
  • T-AMF ID T-AMF ID.
  • the T-RNMF network element selects and determines the T-RRC network element based on the target ID, RAT type (UE's current access system), and PLMN information, and sends a HO request message to it.
  • the message may carry the T-RNMF ID.
  • the T-RNMF network element After the T-RNMF network element confirms that the handover processing of the target cell is completed, it returns a HO confirmation request message to the T-AMF network element.
  • the T-AMF network element initiates a PDU session update process and notifies the T-UPF network element of the downlink user plane tunnel information.
  • PDU session update process For details, refer to S1723 to S1725 in Example 6. The detailed description is not repeated here.
  • the T-RRC network element receives the HO confirmation HO Complete message from the UE, then notifies the T-RNMF network element that the handover is complete, and reports the location information of the user to the network.
  • the T-RNMF network element calls the service of the AMF network element Namf_N2InfoNotify to notify the T-AMF network element that the user has completed the handover.
  • the T-AMF network element receives the T-RNMF network element's handover completion confirmation, and then notifies the SMF / UPF network element that the UE has completed handover, and sends a handover complete indication Handover Complete Indication to the SMF.
  • the communication method used in this embodiment can simply and conveniently implement the switching of each network element, the RNMF network element, and the AMF network element in the RAN, which overcomes the problem of connection.
  • Information is transmitted between the network element in the network and the core network element through protocol processing. Due to the complexity and length of the protocol processing, the information transmission efficiency is low and the delay is large. It provides a high information transmission efficiency, transmission time
  • the communication method of the short wireless network is so that the communication method of the wireless network can be flexibly adapted to the UE that is moving, thereby improving the user experience.
  • the communication device 200 may include a receiving module 2001, a processing module 2002, and a transmitting module 2003.
  • the communication device may be configured to perform the operations of the first wireless network management function network element in the foregoing FIG. 4.
  • the receiving module 2001 is configured to receive information of the first access network element from the first access network element; the processing module 2002 is used to drive a service call with the first core network element through the first service-oriented interface, and The driver makes a service call with the first access network element through the second service interface; the sending module 2003 is configured to make the first access network element through the second service interface according to the information of the first access network element. Service call.
  • the information of the first access network element includes any one or more of the following information: the identity of the first access network element, the routing address of the first access network element, and the first access network element service Public land mobile network PLMN, the cell identifier served by the first access network element, and the radio access type RAT supported by the first access network element.
  • the communication device provided in the embodiment of the present application can simply and conveniently implement wireless network communication between the access network element and the core network element by introducing a first wireless network management function network element that provides a service-oriented interface. , Overcomes the problem of transferring information between the access network element and the core network element through protocol processing. Due to the complex and verbose protocol processing, the problems of low efficiency and large delay in transmitting information are provided, and an information transmission efficiency is provided. Communication method device for wireless network with higher transmission delay.
  • the sending module 2003 in the device is further configured to send any one or more of the following information to the network storage function network element: the identifier of the first wireless network management function network element, and the first wireless network management function network element Routing address, PLMN served by the first wireless network management function network element, cell identifier served by the first wireless network management function network element, and RATs supported by the first wireless network management function network element.
  • the processing module 2002 in the apparatus is further configured to determine a network storage function network element according to the configuration information in the first wireless network management function network element; or, the processing module 2002 is further configured to provide a domain name system server Query to determine the network storage function network element.
  • the receiving module 2001 in the apparatus is further configured to receive user equipment measurement information from a second access network element, and the second access network element provides services to the user equipment;
  • the processing module 2002 is further configured to The user equipment measurement information determines the target network element;
  • the receiving module 2001 is further configured to receive the user equipment context information from the second access network element;
  • the sending module 2003 is configured to send the user equipment context information to the target network element.
  • the target network element may be a third access network element, a second wireless network management function network element, or a second core network element.
  • the processing module 2002 is specifically configured to: pass through the first wireless network management function network element according to user equipment measurement information.
  • the configuration information determines the target network element, or the first wireless network management function network element determines the target network element by querying the network storage function network element according to the user equipment measurement information.
  • the receiving module 2001, the processing module 2002, and the sending module 2003 in the communication device based on the network slice may also implement other operations or functions of the first wireless network management function network element in the foregoing method, and details are not described herein again.
  • FIG. 21 also shows a schematic structural diagram of a communication device.
  • the communication device 210 provided in the embodiment of the present application may be further configured to perform the operations of the access network element (for example, the RRC network element) described in FIG. 4.
  • the access network element for example, the RRC network element
  • the sending module 2101 is configured to send the information of the access network element to the wireless network management function element, and the information of the access network element is used for the wireless network management function element and the access network element through the second service interface.
  • Service call ; processing module 2102, for driving the wireless network management function network element to support the service call with the core network network element through the first service interface, and driving the wireless network management function network element and the access network network element through the second service Interface to make service calls.
  • the information of the access network element includes any one or more of the following information: the identity of the access network element, the routing address of the access network element, and the public land mobile network served by the access network element PLMN, the cell identity served by the access network element, and the radio access type RAT supported by the access network element.
  • the processing module 2102 in the device is further configured to determine a wireless network management function network element according to the configuration information in the network element of the access network; or the processing module 2102 is further configured to query a DNS server of a domain name system Identify wireless network management function network elements.
  • the apparatus may further include: a receiving module configured to receive user equipment measurement information from the user equipment; and the sending module 2101 is further configured to send user equipment measurement information to a wireless network management function network element.
  • the sending module 2101 and the processing module 2102 in the communication device based on the network slice can also implement other operations or functions of the network element of the access network in the above method, and details are not described herein again.
  • FIG. 22 also shows a schematic structural diagram of a communication device.
  • the communication device 220 provided in the embodiment of the present application may also be used to perform the operations of the network storage function network element (for example, an NRF network element) in FIG. 4 described above.
  • the network storage function network element for example, an NRF network element
  • the receiving module 2201 is configured to receive information of the first wireless network management function network element from the first wireless network management function network element; the processing module 2202 is configured to drive the first wireless network management function network element according to the information of the first wireless network management function network element.
  • the network management function network element makes a service call through a first service-oriented interface; wherein the first wireless network management function network element supports a function of making a service call with an access network network element through a second service-oriented interface.
  • the information of the first wireless network management function network element includes any one or more of the following information: the identity of the first wireless network management function network element, the routing address of the first wireless network management function network element, and the first wireless network management The PLMN served by the functional network element, the cell identifier served by the first wireless network management function network element, and the RAT supported by the first wireless network management function network element.
  • the processing module 2202 in the apparatus is further configured to query a target network element serving the user equipment for the first wireless network management function network element.
  • the target network element may be a second wireless network management function or a second core network element.
  • receiving module 2201 and the processing module 2202 in the communication device based on the network slice may also implement other operations or functions of the network storage function network element in the foregoing method, which are not described herein again.
  • FIG. 23 is another schematic structural diagram of a communication device involved in the foregoing embodiment.
  • the communication device 230 includes a memory 2301, a transceiver 2302, and a processor 2303, as shown in FIG.
  • the memory 2301 is configured to be coupled to the processor 2303 and stores a computer program necessary for the communication device 230.
  • the processor 2303 is configured as other operations or functions of the first wireless network management function network element.
  • the transceiver 2302 is configured to implement communication between the communication device 230 and the first access network element and the first core network element.
  • the processor 2303 is configured for other operations or functions of the first access network element.
  • the transceiver 2302 is configured to implement communication between the communication device 230 and the first wireless network management function network element and the first core network element.
  • the processor 2303 is configured for other operations or functions of the network storage function network element.
  • the transceiver 2302 is configured to implement communication between the communication device 230 and the first access network element and the first wireless network management function element.
  • the controller / processor for executing the above-mentioned communication device of the present application may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array (FPGA). Or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the steps of the method or algorithm described in combination with the disclosure of this application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, mobile hard disk, CD-ROM, or any other form of storage known in the art Media.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may be located in a radio access network device.
  • the processor and the storage medium may also exist as discrete components in the radio access network device.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (Solid State Disk (SSD)

Abstract

本申请公开了一种通信方法和装置,通过在接入网网元和核心网网元之间,引入可以提供服务化接口的第一无线网络管理功能网元,这样,可以通过调用第一无线网络管理功能网元的服务化接口和接入网网元进行服务调用的功能,也可以通过调用第一无线网络管理功能网元的服务化接口和核心网网元进行服务调用的功能。可见,通过引入提供服务化接口的第一无线网络管理功能网元,简单、方便的实现接入网网元和核心网网元之间的无线网络通信,克服了在接入网网元和核心网网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法。

Description

一种通信方法和装置
本申请要求于2018年9月17日提交中国国家知识产权局、申请号为201811082865.1、发明名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别是涉及一种通信方法和装置。
背景技术
在无线网络中,通过模块化实现网络功能间的解耦,各解耦后的网络功能(英文:Network Function,简称:NF)可以实现独立扩容、独立演进以及按需部署。例如,核心网(英文:Core Network)的服务化架构模型中,核心网控制面功能可以分解为多个NF网元,如接入和移动性管理功能(英文:Access and Mobility Management Function,简称:AMF)网元、会话管理功能(英文:Sessions Management Function,简称:SMF)网元、鉴权服务功能(英文:Authentication Server Function,简称:AUSF)网元、网络存储功能(英文:Network Repository Function,简称:NRF)网元等。
目前,无线接入网(英文:Radio Access Network,简称:RAN)节点与核心网中各NF网元之间的控制信令主要通过N2接口统一对接到AMF来实现交互,RAN节点之间的控制信令主要通过Xn接口来实现交互。例如,N2接口采用NG接口应用协议(英文:NG Application Protocol,简称:NGAP)和流控制传输协议(英文:Stream Control Transmission Protocol,简称:SCTP),即,NGAP/SCTP协议处理机制,Xn接口主要采用Xn接口应用协议(英文:Xn Application Protocol,简称:XnAP)和SCTP协议,即,XnAP/SCTP协议处理机制。但是,这些协议处理较为复杂、冗长,这样会导致信令的传输效率低下,从而使得信令传输的时延较大。
发明内容
为了解决上述问题,本申请实施例提供了一种无线网络中的通信方法和装置,以提高信令的传输效率,降低信令传输的时延。
第一方面,本申请实施例提供了一种通信方法,应用于第一无线网络管理功能网元侧,包括:第一无线网络管理功能网元从第一接入网网元接收该第一接入网网元的信息,其中,该第一无线网络管理功能网元支持与第一核心网网元通过第一服务化接口进行服务调用的功能;第一无线网络管理功能网元根据所接收到的该第一接入网网元的信息,与该第一接入网网元通过第二服务化接口进行服务调用。其中,第一接入网网元的信息包括以下任意一种或多种信息:第一接入网网元的标识,第一接入网网元的路由地址,第一接入网网元服务的公用陆地移动网PLMN,第一接入网网元服务的小区标识,第一接入网网元支持的无线接入类型RAT。这样,通过引入提供服务化接口的第一无线网络管理功能网元,简单、方便的实现接入网网元和核心网网元之间的无线网络通信,克服了在接入网网元和核心网 网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法。
在一些可能的实现方式中,该通信方法还可以包括:第一无线网络管理功能网元向网络存储功能网元发送以下任意一种或多种信息:第一无线网络管理功能网元的标识,第一无线网络管理功能网元的路由地址,第一无线网络管理功能网元服务的PLMN,第一无线网络管理功能网元服务的小区标识,第一无线网络管理功能网元支持的RAT。如此,即可通过提供了服务化接口的第一无线网络管理功能网元,实现简单、方便的无线网络通信,从而提高了信息的传输效率、降低了信息的传输时延。
在该实现方式中,在第一无线网络管理功能网元向网络存储功能网元发送信息之前,该第一无线网络管理功能网元还可以通过以下方式中的一种确定接收信息的网络存储功能网元:第一种方式,第一无线网络管理功能网元根据第一无线网络管理功能网元中的配置信息确定网络存储功能网元;第二种方式,第一无线网络管理功能网元通过向域名系统服务器查询确定网络存储功能网元。
在另一些实现方式中,本申请实施例提供的通信方法还可以实现无线网络环境中网元的切换,具体的实现方式可以包括:第一无线网络管理功能网元从第二接入网网元接收用户设备测量信息,第二接入网网元为用户设备提供服务;第一无线网络管理功能网元根据用户设备测量信息确定目标网元;第一无线网络管理功能网元从第二接入网网元接收用户设备上下文信息;第一无线网络管理功能网元向目标网元发送用户设备上下文信息。在不同的通信场景中,所确定的目标网元可以是第三接入网网元、第二无线网络管理功能网元或第二核心网网元。可见,本申请实施例还可以通过第一无线网络管理功能网元的服务化接口,获取用户设备测量信息并基于此确定即将需要为该用户设备提供服务的目标网元,使该通信方法可以适用于多种不同的通信参见,并且提高了这些通信场景中的通信效率、降低了通信时延。
在该实现方式中,作为具体的示例,若目标网元为第二无线网络管理功能网元或第二核心网网元,则第一无线网络管理功能网元根据用户设备测量信息确定目标网元的具体方式可以是:第一种可能的方式,第一无线网络管理功能网元根据用户设备测量信息通过第一无线网络管理功能网元中的配置信息确定目标网元;第二种方式,第一无线网络管理功能网元根据用户设备测量信息通过查询网络存储功能网元确定目标网元。
第二方面,本申请实施例还提供了一种通信方法,应用于接入网网元侧,包括:接入网网元向无线网络管理功能网元发送接入网网元的信息,无线网络管理功能网元支持与核心网网元通过第一服务化接口进行服务调用的功能,接入网网元的信息用于无线网络管理功能网元与接入网网元通过第二服务化接口进行服务调用;接入网网元与无线网络管理功能网元通过第二服务化接口进行服务调用。其中,该接入网网元的信息包括以下任意一种或多种信息:接入网网元的标识,接入网网元的路由地址,接入网网元服务的公用陆地移动网PLMN,接入网网元服务的小区标识,接入网网元支持的无线接入类型RAT。
在一些可能的实现方式中,本申请实施例中提供的接入网网元确定无线网络管理功能网元的方式可以是如下任意一种方式:第一种方式,接入网网元根据接入网网元中的配置信息确定无线网络管理功能网元;第二种方式,接入网网元通过向域名系统DNS服务器查 询确定无线网络管理功能网元。
其中,对应于一些可能的通信场景,本申请实施例中接入网网元还可以从用户设备接收用户设备测量信息;并且,该接入网网元向无线网络管理功能网元发送用户设备测量信息。
第三方面,本申请实施例还提供了一种通信方法,应用于核心网的网络存储功能网元侧,具体可以包括:网络存储功能网元从第一无线网络管理功能网元接收第一无线网络管理功能网元的信息;网络存储功能网元根据第一无线网络管理功能网元的信息,与第一无线网络管理功能网元通过第一服务化接口进行服务化调用;其中,第一无线网络管理功能网元支持与接入网网元通过第二服务化接口进行服务调用的功能。其中,该第一无线网络管理功能网元的信息包括以下任意一种或多种信息:第一无线网络管理功能网元的标识,第一无线网络管理功能网元的路由地址,第一无线网络管理功能网元服务的PLMN,第一无线网络管理功能网元服务的小区标识,第一无线网络管理功能网元支持的RAT。
在一些可能的实现方式中,当需要确定即将为用户设备提供服务的目标网元时,可以是网络存储功能网元为第一无线网络管理功能网元查询出为用户设备服务的目标网元。所确定的目标网元,在不同的通信场景中,具体可以是:第二无线网络管理功能或第二核心网网元。
在本申请实施例中,在接入网网元和核心网网元之间,引入可以提供服务化接口的第一无线网络管理功能网元,这样,可以通过调用第一无线网络管理功能网元的服务化接口和接入网网元进行服务调用的功能,也可以通过调用第一无线网络管理功能网元的服务化接口和核心网网元进行服务调用的功能。可见,通过引入提供服务化接口的第一无线网络管理功能网元,简单、方便的实现接入网网元和核心网网元之间的无线网络通信,克服了在接入网网元和核心网网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法。
需要说明的是,本申请实施例在第一方面、第二方面和第三方面提供的通信方法,只是基于无线网络的不同网元侧对该通信方法的描述,实现的效果均可以参见上述描述。
第四方面,本申请实施例还提供了一种与第一方面所提供的通信方法对应的通信装置,包括:接收模块,用于从第一接入网网元接收第一接入网网元的信息;处理模块,用于驱动与第一核心网网元通过第一服务化接口进行服务调用,且驱动与第一接入网网元通过第二服务化接口进行服务调用;发送模块,用于根据第一接入网网元的信息向第一接入网网元通过第二服务化接口进行服务调用。其中,第一接入网网元的信息包括以下任意一种或多种信息:第一接入网网元的标识,第一接入网网元的路由地址,第一接入网网元服务的公用陆地移动网PLMN,第一接入网网元服务的小区标识,第一接入网网元支持的无线接入类型RAT。
在一些可能的实现,该装置中的发送模块,还用于向网络存储功能网元发送以下任意一种或多种信息:第一无线网络管理功能网元的标识,第一无线网络管理功能网元的路由地址,第一无线网络管理功能网元服务的PLMN,第一无线网络管理功能网元服务的小区标识,第一无线网络管理功能网元支持的RAT。
在另一些可能的实现方式中,该装置中的处理模块,还用于根据第一无线网络管理功能网元中的配置信息确定网络存储功能网元;或,该处理模块,还用于通过向域名系统服务器查询确定网络存储功能网元。
在再一些可能的实现方式中,该装置中的接收模块,还用于从第二接入网网元接收用户设备测量信息,第二接入网网元为用户设备提供服务;处理模块,还用于根据用户设备测量信息确定目标网元;所述接收模块,还用于从第二接入网网元接收用户设备上下文信息;该装置还包括:发送模块,用于向目标网元发送用户设备上下文信息。其中,该目标网元可以为第三接入网网元、第二无线网络管理功能网元或第二核心网网元。
其中,作为一个示例,若目标网元为第二无线网络管理功能网元或第二核心网网元,则处理模块,具体用于:根据用户设备测量信息通过第一无线网络管理功能网元中的配置信息确定目标网元,或,第一无线网络管理功能网元根据用户设备测量信息通过查询网络存储功能网元确定目标网元。
第五方面,本申请实施例还提供了一种与第二方面所提供的通信方法对应的一种通信装置,包括:发送模块,用于向无线网络管理功能网元发送接入网网元的信息,接入网网元的信息用于无线网络管理功能网元与接入网网元通过第二服务化接口进行服务调用;处理模块,用于驱动无线网络管理功能网元支持与核心网网元通过第一服务化接口进行服务调用,且驱动无线网络管理功能网元与接入网网元通过第二服务化接口进行服务调用。
在一些可能的实现方式中,该接入网网元的信息包括以下任意一种或多种信息:接入网网元的标识,接入网网元的路由地址,接入网网元服务的公用陆地移动网PLMN,接入网网元服务的小区标识,接入网网元支持的无线接入类型RAT。
在另一些可能的实现方式中,该装置中的处理模块,还用于根据接入网网元中的配置信息确定无线网络管理功能网元;或,处理模块,还用于通过向域名系统DNS服务器查询确定无线网络管理功能网元。
在一些通信场景中,该装置还可以包括:接收模块,用于从用户设备接收用户设备测量信息;发送模块,还用于向无线网络管理功能网元发送用户设备测量信息。
第六方面,本申请实施例还提供了一种与第三方面所提供的通信方法对应的一种通信装置,包括:接收模块,用于从第一无线网络管理功能网元接收第一无线网络管理功能网元的信息;处理模块,用于根据第一无线网络管理功能网元的信息,驱动与第一无线网络管理功能网元通过第一服务化接口进行服务化调用;其中,第一无线网络管理功能网元支持与接入网网元通过第二服务化接口进行服务调用的功能。其中,第一无线网络管理功能网元的信息包括以下任意一种或多种信息:第一无线网络管理功能网元的标识,第一无线网络管理功能网元的路由地址,第一无线网络管理功能网元服务的PLMN,第一无线网络管理功能网元服务的小区标识,第一无线网络管理功能网元支持的RAT。
在一些可能的实现方式中,该装置中的处理模块,还用于为第一无线网络管理功能网元查询出为用户设备服务的目标网元。其中,该目标网元可以为第二无线网络管理功能或第二核心网网元。
需要说明的是,本申请实施例在第四方面、第五方面和第六方面提供的通信装置,实现效果可以参见上述第一方面、第二方面和第三方面提供的通信方法的描述,这里不再赘 述。
第七方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述方法中第一无线网络管理功能网元行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,上述通信装置的结构中包括处理器和收发器,所述处理器被配置为处理该通信装置执行上述方法中相应的功能。所述收发器用于实现上述通信装置与接入网/核心网网元之间的通信。所述通信装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该通信装置必要的程序指令和数据。
第八方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第九方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持上述装置或用户设备实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请实施例中RAN和核心网采用协议栈通信的结构示意图;
图2为本申请实施例中两个RAN之间采用协议栈通信的结构示意图;
图3为本申请实施例中一应用场景所涉及的网络系统框架示意图;
图4为本申请实施例中一种通信方法的流程示意图;
图5为本申请实施例中第一接入网网元向第一无线网络管理功能网元注册的信令流程图;
图6为本申请实施例中第一无线网络管理功能网元向NRF网元注册的信令流程图;
图7为本申请实施例中另一应用场景所涉及的网络系统框架示意图;
图8为本申请实施例提供的切换网元的流程示意图;
图9为本申请实施例中切换接入网网元的信令流程图;
图10为本申请实施例中切换无线网络管理功能网元的信令流程图;
图11为本申请实施例中切换核心网网元的信令流程图;
图12为本申请实施例中无线网络中的通信方法的实例一的信令流程图;
图13为本申请实施例中无线网络中的通信方法的实例二的信令流程图;
图14为本申请实施例中无线网络中的通信方法的实例三的信令流程图;
图15为本申请实施例中无线网络中的通信方法的实例四的信令流程图;
图16为本申请实施例中无线网络中的通信方法的实例五的信令流程图;
图17为本申请实施例中无线网络中的通信方法的实例六的信令流程图;
图18为本申请实施例中无线网络中的通信方法的实例七的信令流程图;
图19为本申请实施例中无线网络中的通信方法的实例八的信令流程图;
图20为本申请实施例中一种通信装置的结构示意图;
图21为本申请实施例中另一种通信装置的结构示意图;
图22为本申请实施例中再一种通信装置的结构示意图;
图23为本申请实施例中一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“多个”是指两个或两个以上。
此外,本申请实施例中所涉及到的用户设备不受限于5G网络,包括:手机、物联网设备、智能家居设备、工业控制设备、车辆设备等等。所述用户设备也可以称为终端设备(Terminal Equipment)、移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户设备(User Terminal)、用户代理(User Agent),在此不作限定。上述用户设备还可以车与车(Vehicle-to-vehicle,V2V)通信中的汽车、机器类通信中的机器等。
此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
目前,核心网和无线接入网RAN之间或者两个RAN之间可以采用协议栈的方式无线网络通信。
一种情况下,如图1所示,RAN设备是一种用于为用户设备提供无线通信功能的装置。RAN设备可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd generation,3G)系统中,称为节点B(Node B)等。在新一代系统中,称为gNB(gNodeB)。
图1中的核心网系统包括AMF网元、SMF网元、AUSF网元、NRF网元、网络能力开放功能(network exposure function,NEF)网元和网络切片选择功能(network slice selection  function,NSSF)网元。
例如,本系统中所涉及到的AMF网元可负责用户设备的注册、移动性管理、跟踪区更新流程等。AMF网元也可称为AMF设备或AMF实体。
本系统中所涉及到的SMF网元可负责终端设备的会话管理。例如,会话管理包括用户面设备的选择、用户面设备的重选、IP地址分配、QoS控制,以及会话的建立、修改或释放等。SMF网元也可称为SMF设备或SMF实体。
本系统中所涉及到的AUSF网元能够提供的网络功能包括:对用户设备的鉴权控制。所述AUSF网元也可称为AUSF设备或AUSF实体。
本系统中所涉及到的NRF网元能够提供服务发现功能。可选的,NRF网元还能够维护核心网中有效的网络功能网元的信息。可选的,NRF网元还能够维护核心网中有效的网络功能网元支持的服务。所述NRF网元也可称为NRF设备或NRF实体。
本系统中所涉及到的NEF网元能够提供的网络功能包括对外提供网元的服务、能力以及应用功能和边缘计算。所述NEF网元也可称为NEF设备或NEF实体。
本系统中所涉及到的NSSF网元能为用户设备选择网络切片。所述NSSF网元也可称为NSSF设备或NSSF实体。
上述各网元既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。
如图1所示,RAN与核心网之间通过协议栈的方式进行无线网络通信的过程可以是:RAN通过N2接口采用NGAP/SCTP协议处理机制,对接到核心网的AMF模块,完成RAN与核心网中信令的传输,即,信令从RAN传输到核心网时,可以先将该信令通过RAN侧的NGAP/SCTP协议进行处理,再将处理后的信令通过N2接口发送给核心网对应的NGAP/SCTP协议栈进行处理,最后经过的NGAP/SCTP协议处理后的信令才被发送到核心网的AMF模块中。
另一种情况下,如图2所示,为两个RAN之间采用协议栈的方式进行无线网络通信的结构示意图。其中,RAN 1和RAN 2设备具体可以参见图1相关描述中对RAN的介绍。
图2中的RAN 1包括无线资源控制(英文:Radio Resource Control,简称:RRC)网元、控制面分组数据汇聚层协议(英文:Packet Data Convergence Protocol-Control plane,简称:PDCP-C)网元,用户面分组数据汇聚层协议(英文:Packet Data Convergence Protocol-User plane,简称:PDCP-U)网元和业务数据适配协议(英文:Service Data Adaptation Protocol,简称SDAP)网元。需要说明的是,RAN 2中也可以包括RAN 1中所包括的上述网元。
例如,本系统中所涉及到的RRC网元可负责接收并处理用户设备发送的信令等。RRC网元也可称为RRC设备或AMF实体。
本系统中所涉及到的PDCP-C网元也可负责接收并处理用户设备发送的信令等。PDCP-C网元也可称为PDCP-C设备或PDCP-C实体。
本系统中所涉及到的PDCP-U网元可负责对数据的加密和完整性保护。PDCP-U网元也可称为PDCP-U设备或PDCP-U实体。
上述各网元既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软 件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。
RAN 1和RAN 2之间通过协议栈的方式进行无线网络通信的过程可以是:RAN 1通过Xn接口采用XnAP/SCTP协议处理机制,对接到RAN 2以完成RAN 1和RAN 2之间信令的传输,即,信令从RAN 1传输到RAN 2时,RAN 1可以先将该信令通过XnAP/SCTP协议进行处理,再将处理后的信令通过Xn接口发送给RAN 2中的XnAP/SCTP协议进行处理,最后经过再次XnAP/SCTP协议处理后的信令才被该RAN 2接收到。需要说明的是,信令从RAN 2传输到RAN 1的过程与上述过程类似,这里不再赘述。
为了简化边缘网络中RAN和核心网的通信,可以将核心网和RAN的各个功能模块进行虚拟化定义,并且融合部署在支持无线网络通信的统一云平台上,那么,融合部署在该云平台上的RAN和核心网之间或者两个RAN之间,如果继续采用协议处理机制进行信令的传输,由于协议处理较为复杂和冗长,可能导致同一云平台上RAN和核心网之间或者两个RAN之间信令的传输效率较低下、传输时延较长等问题。
基于此,在本申请实施例中,引入可以提供多个服务化接口的第一无线网络管理功能(英文:Radio Network Management Function,简称:RNMF)网元,RAN和核心网之间或者两个RAN之间除了通过协议栈的方式进行无线网络通信,还可以通过调用该第一无线网络管理功能网元上的服务化接口进行无线网络通信。
作为本申请实施例的场景之一,本申请可以是应用到如图3所示的RAN和核心网融合的云平台架构中。该云平台架构例如可以包括:RNMF网元、RAN和核心网。其中,RNMF网元提供的服务化接口例如可以是应用程序编程接口(英文:Application Programming Interface,简称:API),图3中的C1接口和R2接口,均为该RNMF网元提供的服务化API接口,那么,RNMF网元支持与RAN中的网元可以通过C1接口进行服务调用的功能,且,该RNMF网元也支持与核心网中网元可以通过R2接口进行服务调用的功能。其中,如图3所示,核心网网元包括NRF网元、AMF网元、SMF网元、NEF网元、NSSF网元和AUSF网元。
可以理解的是,在该场景中,如果RAN需要向核心网传输信令,具体的通信过程可以是:RAN中的RRC网元通过调用RNMF网元的C1接口,将该信令发送给RNMF网元;RNMF再调用R2接口,将该信令通过核心网的服务化总线传输给AMF网元,实现了信令在RAN和核心网之间高效、快速的无线通信。其中,如图3所示,RAN可以包括RRC网元、PDCP-C网元、SDAP网元和PDCP-U网元。
需要说明的是,该场景中的RNMF网元提供的服务化接口R2接口和C1接口可以均为API接口,但是,在其他的通信平台中该RNMF网元提供的服务化接口也可以是其他任何的服务化接口,只要可以实现RNMF网元与RAN网元,以及与核心网网元进行服务调用的功能的服务化接口,均属于本申请实施例提及的服务化接口。
可见,本申请实施例中在RAN和核心网之间引入可以提供服务化接口的RNMF网元,通过服务化接口的调用实现RAN网元与核心网网元进行服务调用的功能,从而可以实现核心网网元和RAN网元之间的无线网络通信,无需通过协议栈进行复杂、冗长的处理完成无线通信,提供了一种信息传输效率高、传输时延短的无线网络的通信方法。
可以理解的是,上述场景仅是本申请实施例提供的一个场景示例,本申请实施例并不 限于此场景。
下面结合附图,通过实施例来详细说明本申请实施例中无线网络中的通信方法的具体实现方式。
图4为本申请实施例中一种无线网络中的通信方法的流程示意图。参见图4,本实施例具体可以包括:
S401,第一无线网络管理功能网元从第一接入网网元接收第一接入网网元的信息,所述第一无线网络管理功能网元支持与第一核心网网元通过第一服务化接口进行服务调用的功能。
例如,第一无线网络管理功能网元,是指可以提供多个服务化接口的网元。该第一无线网络管理功能网元通过调用不同的服务化接口,实现和第一接入网网元以及第一核心网网元之间服务调用的功能。例如,第一无线网络管理功能网元可以通过调用第一服务化接口与第一核心网网元进行服务调用;又例如,该第一无线网络管理功能网元也可以通过调用第二服务化接口与第一接入网网元进行服务调用。
可以理解的是,第一服务化接口和第二服务化接口是该第一无线网络管理功能网元提供的,用于和第一核心网网元以及第一接入网网元进行服务调用的接口。需要说明的是,在各种无线网络通信的场景中,一种情况下,该第一无线网络管理功能网元可以通过调用服务化接口的方式实现与核心网网元以及接入网网元的服务调用功能;另一种情况下,该第一无线网络管理功能网元也可以通过使用协议栈的方式实现与核心网网元以及接入网网元的服务调用功能。在本申请实施例中,均以调用服务化接口的通信方式为例进行说明。
例如,第一核心网网元包括但不限于:AMF网元、SMF网元、AUSF网元、NRF网元、NEF网元和NSSF网元;第一接入网网元包括但不限于:RRC网元、PDCP-C网元、SDAP网元和PDCP-U网元。
举例说明,在图3所示的场景中,第一无线网络管理功能网元可以是RNMF网元,第一接入网网元可以是RAN中的RRC网元,而第一服务化接口可以是R2接口,第二服务化接口可以是C1接口。那么,该步骤401具体可以是:RRC网元通过C1向RNMF网元发送该RRC网元的信息,即,RNMF网元从RRC网元接收该RRC网元的信息。需要说明的是,RNMF网元可以通过R2接口向核心网网元发送其他消息。
第一接入网网元的信息,可以包括以下任意一种或多种信息:第一接入网网元的标识,第一接入网网元的路由地址,第一接入网网元服务的公用陆地移动网(英文:Public Land Mobile Network,简称:PLMN),第一接入网网元服务的小区标识,第一接入网网元支持的无线接入类型(英文:Radio Access Type,简称:RAT)。
可以理解的是,该第一接入网网元的信息包括的第一接入网网元的标识和第一接入网网元的路由地址,均可以用于该第一接入网网元的消息路由;该信息包括的第一接入网网元服务的公用陆地移动网PLMN、第一接入网网元服务的小区标识和第一接入网网元支持的无线接入类型RAT,可以用于表示该第一接入网网元的服务能力。
举例说明,当第一无线网络管理功能网元需要向第一接入网网元发送消息时,该第一无线网络管理功能网元可以根据各第一接入网网元的信息中包括的第一接入网网元服务的 PLMN、第一接入网网元服务的小区标识或者第一接入网网元支持的无线接入类型RAT,确定各第一接入网网元的能力,从而确定合适的第一接入网网元,作为该消息需要发送到的第一接入网网元;接着,该第一无线网络管理功能网元还可以根据上述确定的第一接入网网元的信息中包括的该第一接入网网元的路由地址,确定该第一无线网络管理功能网元上消息的送达地址,即,将该消息发送到该路由地址所指示的第一接入网网元。
需要说明的是,在第一接入网网元向第一无线网络管理功能网元发送该第一接入网网元的信息,一种情况下,该信息可以携带在信令(例如:注册请求)中发送给第一无线网络管理功能网元,那么,第一无线网络管理功能网元需要通过解析所接收到的信令,获得该信息;另一种情况下,该信息也可以直接发送给第一无线网络管理功能网元,即,第一无线网络管理功能网元接收到的是该信息本身,无需通过其他的处理来获得该信息。
S402,第一无线网络管理功能网元根据第一接入网网元的信息与第一接入网网元通过第二服务化接口进行服务调用。
具体实现时,当第一无线网络管理功能网元接收到第一接入网网元的信息后,该第一无线网络管理功能网元可以通过第二服务化接口,根据该第一接入网网元的信息,与该第一接入网网元进行服务调用。
举例说明,在图3所示的场景中,第一无线网络管理功能网元可以是RNMF网元,第一接入网网元可以是RAN中的RRC网元,而第二服务化接口可以是C1接口。那么,该步骤402具体可以是:在RNMF网元接收到RRC网元通过C1接口发送的该RRC网元的信息后,该RNMF网元可以根据该RRC网元的信息通过C1接口和该RRC网元进行服务调用。
作为一个场景示例,图4所示的实施例对应的一个无线通信场景可以是接入网网元向无线网络管理功能网元注册的场景。为了无线通信业务可以正常运行,接入网网元可以将该接入网网元的信息注册到对应的无线网络管理功能网元上,以便让第一无线网络管理功能网元可以在已注册的接入网网元中选择合适的接入网网元进行调用。以第一接入网网元注册到第一无线网络管理功能网元为例,具体可以包括:
S11,第一接入网网元向第一无线网络管理功能网元发送携带第一接入网网元的信息的第一注册请求。
作为一个示例,第一接入网网元具体为待注册到第一无线网络管理功能网元上的接入网网元,例如:假设第一RRC网元、第二RRC网元和第三RRC网元为待注册到第一无线网络管理功能网元上的接入网网元,那么,该第一接入网网元可以是第一RRC网元、第二RRC网元或第三RRC网元。
其中,该第一注册请求可以是RRC Register Request,该RRC Register Request可以携带第一接入网网元的信息,例如:如果第一接入网网元为第一RRC网元,那么,该RRC Register Request中可以携带该第一RRC网元的信息,该信息可以包括:第一RRC ID、第一RRC IP Address、Serving PLMN、Serving Cell area和Serving RAT。
可以理解的是,在第一无线网络管理功能网元接收到第一接入网网元发送的第一注册指令后,为了确保后续通信业务的正常进行,还可以通过解析该第一注册指令,获得该第一注册请求中携带的第一接入网网元的信息,并保存该第一接入网网元的信息。该第一接 入网网元的信息可以用于体现该第一接入网网元的服务能力。
S12,第一无线网络管理功能网元生成第一注册响应消息,并根据该第一接入网网元的信息,通过第二服务化接口将该第一注册响应消息发送给第一接入网网元。
作为对接收到的第一注册请求的回应,该第一无线网络管理功能网元可以生成第一注册响应消息,并向第一接入网网元发送该第一注册响应消息。
例如,该第一注册响应消息中可以携带能够唯一标识该第一无线网络管理功能网元的标识,例如,可以是该第一无线网络管理功能网元的IP Address,用于告知第一接入网网元已经完成了在该第一无线网络管理功能网元上的注册。
需要说明的是,已经注册到第一无线网络管理功能网元上的第一接入网网元,体现该第一接入网网元服务能力的信息被保存在第一无线网络管理功能网元上,如果体现其服务能力的信息发生变化,则需要该第一接入网网元向第一无线网络管理功能网元发起信息更新的请求,具体的过程可以参见上述注册过程,将已经注册在第一无线网络管理功能网元中的该第一接入网网元对应的信息进行更新,以确保后续业务的准确和有效。
对于需要注册到无线网络管理功能网元的第一接入网网元,在注册之前,需要确定出第一接入网网元具体要注册到的无线网络管理功能网元。确定该第一无线网络管理功能网元具体可以通过如下两种方式实现:
第一种实现方式下,第一接入网网元可以从该第一接入网网元中的配置信息中确定第一无线网络管理功能网元,具体的过程可以是:通过程序代码为第一接入网网元配置一个固定的配置信息,(例如:配置了第一无线网络管理功能网元的路由地址),在上电后,第一接入网网元即可以读取该配置信息(例如:读取该固定配置的第一无线网络管理功能网元的路由地址),从而获得第一接入网网元需要注册到的第一无线网络管理功能网元。
第二种实现方式下,该第一无线网络管理功能网元也可以是第一接入网网元向域名系统(英文:Domain Name System,简称:DNS)服务器查询获得的,具体的过程可以是:
第一步,第一接入网网元向DNS服务器发送第一DNS查询请求。
可以理解的是,该第一DNS查询请求中可以携带:所查询的网元的类型、第一接入网网元服务的PLMN的标识、第一接入网网元服务的小区标识和第一接入网网元支持的无线接入类型RAT。例如,该第一DNS查询请求可以是第一DNS Request,该第一DNS Request可以携带:Type、Serving PLMN、Serving Cell area和Serving RAT。
例如,所查询的目标网元类型Type,一种情况下,可以通过该目标网元的全域名(英文:Fully Qualified Domain Name,简称:FQDN)体现,例如:Type的取值可以为RNMF.cellid.RATx.y(对应第一无线网络管理功能网元的FQDN);另一种情况下,也可以直接通过该目标网元的名称体现,例如:Type的取值可以为RNMF。第一接入网网元支持的RAT类型,具体可以是GERAN-supported、UTRAN-supported、E-UTRAN-supported和5G NR-supported中的一种或多种,也可以是上述类型混合后的新RAT类型,例如:可以是GERAN-supported和UTRAN-supported类型混合后形成的新RAT类型:GERAN/UTRAN-supported,又例如:可以是E-UTRAN-supported和5G NR-supported类型混合后形成的新RAT类型:E-UTRAN/5GNR-supported,等。
第二步,DNS服务器基于接收到的第一DNS查询请求,选择并确定合适的第一无线 网络管理功能网元,作为发现的第一无线网络管理功能网元。
需要说明的是,合适的第一无线网络管理功能网元,是指第一接入网网元可以服务的PLMN和/或小区,并且支持的RAT类型的第一无线网络管理功能网元。具体实现时,DNS服务器可以从其上配置的所有第一无线网络管理功能网元的相关信息中,查找满足所接收到的第一DNS查询请求中需求的无线网络管理功能网元,作为所发现的第一无线网络管理功能网元。
第三步,DNS服务器向第一接入网网元反馈该第一无线网络管理功能网元,具体可以将该第一无线网络管理功能网元的相关信息携带在第一DNS查询响应中反馈给第一接入网网元。
可以理解的是,DNS服务器在确定发现的第一无线网络管理功能网元后,可以从其上配置的第一无线网络管理功能网元的相关消息中查找该发现的第一无线网络管理功能网元的路由地址,并将该发现的包括该第一无线网络管理功能网元的路由地址的该第一无线网络管理功能网元的相关信息均携带在第一DNS查询响应中返回给第一接入网网元,这样,第一接入网网元即通过向DNS服务器动态查询的方式发现了第一无线网络管理功能网元。
为了更加清楚、完整的描述中第一接入网网元向第一无线网络管理功能网元注册的过程,作为一个实例,图5为本实施例提供的一种第一接入网网元向第一无线网络管理功能网元注册的方法的信令流程图,以第一接入网网元向DNS服务器查询确定第一无线网络管理功能网元为例,将第一接入网网元注册到对应的第一无线网络管理功能网元上的具体过程可以包括:
S501,第一接入网网元向DNS服务器发送第一DNS查询请求。
S502,DNS服务器基于接收到的第一DNS查询请求,选择并确定合适的第一无线网络管理功能网元,作为发现的第一无线网络管理功能网元。
S503,DNS服务器向第一接入网网元反馈第一DNS查询响应,其中携带有第一无线网络管理功能网元的相关信息。
可以理解的是,S501~S503为第一接入网网元通过向DNS服务器查询确定第一无线网络管理功能网元的具体过程,相关描述参见本场景示例部分中对“第一步”~“第三步”的描述,这里不再赘述。
需要说明的是,S501~S503为可选的步骤,确定该第一无线网络管理功能网元也可以采用其他的实现方式,本实施例不作限定。
S504,第一接入网网元向第一无线网络管理功能网元发送携带第一接入网网元的信息的第一注册请求。
S505,第一无线网络管理功能网元生成第一注册响应消息,并根据该第一接入网网元的信息,通过第二服务化接口将该第一注册响应消息发送给第一接入网网元。
需要说明的是,S504~S505的具体实现可以参见上述S11~S12的相关描述,这里不再赘述。
可选地,在S504和S505之间,还可以包括:
S506,第一无线网络管理功能网元从第一注册请求中获取第一接入网网元的信息并保存。
例如,以图3所示的场景为例,RRC网元可以向DNS服务器查询确定RNMF网元,接着,RRC网元将该RRC网元的信息携带于第一注册请求中,根据确定的RNMF网元的路由地址,通过C1接口发送给对应的RNMF网元,RNMF网元接收到第一注册请求后,可以从中解析到RRC网元的信息;然后,该RNMF网元根据该RRC网元的信息通过C1接口,将生成的第一注册响应消息发送给RRC网元,完成将该RRC网元注册到RNMF网元。
通过上述图5示出的第一接入网网元向第一无线网络管理功能网元的注册过程,完成了第一接入网网元在第一无线网络管理功能网元上的注册,为在后续的通信业务中,第一无线网络管理功能网元选择调用接入网网元提供了选择的资源和选择的依据。
作为另一个无线通信场景示例,除了接入网网元需要注册到对应的无线网络管理功能网元上,无线网络管理功能网元也需要注册到对应的核心网网元上,以便让核心网网元可以在其上已注册的无线网络管理功能网元中选择合适的无线网络管理功能网元进行调用。以第一无线网络管理功能网元注册到核心网的网络存储功能NRF网元为例,具体可以包括:
S21,第一无线网络管理功能网元向NRF网元发送的第二注册请求。
作为一个示例,第一线网络管理功能网元具体为待注册到NRF网元上的网络管理功能网元,例如:假设第一RNMF网元、第二RNMF网元和第三RNMF网元为待注册到NRF网元上的网络管理功能网元,那么,该第一线网络管理功能网元可以是第一RNMF网元、第二RNMF网元或第三RNMF网元。
可以理解的是,该第二注册请求,用于请求将该第一无线网络管理功能网元注册到对应的NRF网元上,并告知该NRF网元待注册的第一无线网络管理功能网元的服务能力。其中,该第二注册请求可以携带第一无线网络管理功能网元的相关信息,具体可以包括但不限于:第一无线网络管理功能网元的标识,第一无线网络管理功能网元的路由地址,第一无线网络管理功能网元服务的PLMN,第一无线网络管理功能网元服务的小区标识和第一无线网络管理功能网元支持的RAT。
其中,第一无线网络管理功能网元的标识和第一无线网络管理功能网元的路由地址,均可以用于该第一无线网络管理功能网元的消息路由;第一无线网络管理功能网元服务的PLMN、第一无线网络管理功能网元服务的小区标识和第一无线网络管理功能网元支持的RAT,可以用于表示该第一无线网络管理功能网元的服务能力。
举例说明,当NRF网元需要向第一无线网络管理功能网元发送消息时,该NRF网元可以根据各第一无线网络管理功能网元的相关信息中包括的第一无线网络管理功能网元服务的PLMN、第一无线网络管理功能网元服务的小区标识或者第一无线网络管理功能网元支持的RAT,确定各第一无线网络管理功能网元的能力,从而确定合适的第一无线网络管理功能网元,作为该消息需要发送到的第一无线网络管理功能网元;接着,该NRF网元还可以根据上述确定的第一无线网络管理功能网元的相关信息中包括的该第一无线网络管理功能网元的路由地址,确定该NRF网元上消息的送达地址,即,将该消息发送到该路由地址所指示的第一无线网络管理功能网元。
例如,该第二注册请求可以是RNMF Register Request,该RNMF Register Request可以 携带第一无线网络管理功能网元的相关信息,例如:如果第一无线网络管理功能网元为第一RNMF网元,那么,该RNMF Register Request中可以携带该第一RNMF网元的相关信息,该相关信息可以包括:第一RNMF ID、第一RNMF IP Address、Serving PLMN、Serving Cell area和Serving RAT。
可以理解的是,在NRF网元接收到第一无线网络管理功能网元发送的第二注册指令后,为了确保后续通信业务的正常进行,还可以通过解析该第二注册指令,获得该第二注册请求中携带的第一无线网络管理功能网元的相关信息,并保存该第一无线网络管理功能网元的相关信息。该第一无线网络管理功能网元的相关信息可以用于体现该第一无线网络管理功能网元的服务能力。
S22,NRF网元向第一无线网络管理功能网元发送第二注册响应消息。
作为对接收到的第二注册请求的回应,该NRF网元可以生成该第二注册响应消息,并向第一无线网络管理功能网元发送第二注册响应消息。
例如,该第二注册响应消息中可以携带能够唯一标识该NRF网元的标识,例如,可以是该NRF网元的IP地址,用于告知第一无线网络管理功能网元已经完成了在该NRF网元上的注册。
需要说明的是,已经注册到NRF网元上的第一无线网络管理功能网元,体现该第一无线网络管理功能网元服务能力的相关信息被保存在NRF网元上,如果体现其服务能力的相关信息发生变化,则需要该第一无线网络管理功能网元向NRF网元发起信息更新的请求,具体的过程可以参见上述注册过程,将已经注册在NRF网元中的该第一无线网络管理功能网元对应的相关信息进行更新,以确保后续业务的准确和有效。
对于需要注册到NRF网元的第一无线网络管理功能网元,在注册之前,需要确定第一无线网络管理功能网元具体要注册到的NRF网元。确定NRF网元具体可以通过如下两种方式实现:
第一种实现方式下,第一无线网络管理功能网元可以从该第一无线网络管理功能网元中的配置信息中确定NRF网元,具体的过程可以是:通过程序代码为第一无线网络管理功能网元配置了一个固定的配置信息,(例如:配置了NRF网元的路由地址),在上电后,第一无线网络管理功能网元即可以读取该配置信息(例如:读取该固定配置的NRF网元的路由地址),从而获得该第一无线网络管理功能网元需要注册到的NRF网元。
第二种实现方式下,该NRF网元也可以是第一无线网络管理功能网元向DNS服务器查询获得的,具体的过程可以是:
第一步,第一无线网络管理功能网元向DNS服务器发送第二DNS查询请求。
可以理解的是,该第二DNS查询请求中可以携带:所查询的网元类型、第一无线网络管理功能网元服务的PLMN的标识、第一无线网络管理功能网元服务的小区标识和第一无线网络管理功能网元支持的RAT类型。例如,该第二DNS查询请求可以是第二DNS Request,该第二DNS Request可以携带:Type、Serving PLMN、Serving Cell area和Serving RAT。
例如,所查询的网元类型Type,一种情况下,可以通过该网元的FQDN体现,例如:Type的取值可以为NRF.cellid.PLMNid.y(对应NRF网元的FQDN);另一种情况下,也可 以直接通过该网元的名称体现,例如:Type的取值可以为NRF。
第二步,DNS服务器基于接收到的第二DNS查询请求,选择并确定合适的NRF网元,作为发现的NRF网元。
需要说明的是,合适的NRF网元,是指第一无线网络管理功能网元可以服务的PLMN和/或小区,并且支持的RAT类型的NRF网元。具体实现时,DNS服务器可以从其上配置的所有NRF网元的相关信息中,查找满足所接收到的第二DNS查询请求中需求的NRF网元,作为所发现的NRF网元。
第三步,DNS服务器向第一无线网络管理功能网元反馈该NRF网元,具体可以将该NRF网元的相关信息携带在第二DNS查询响应反馈给第一无线网络管理功能网元。
可以理解的是,DNS服务器在确定发现的NRF网元后,可以从其上配置的NRF网元的相关信息中查找该发现的NRF网元的路由地址,并将该发现的包括该NRF网元的路由地址的该NRF网元的相关信息均携带在第二DNS查询响应中返回给第一无线网络管理功能网元,这样,第一无线网络管理功能网元即通过采用向DNS服务器动态查询的方式发现了NRF网元。
为了更加清楚、完整的描述中第一无线网络管理功能网元向NRF网元注册的过程,作为一个实例,图6为本实施例提供的一种第一无线网络管理功能网元向NRF网元注册的方法的信令流程图,以第一无线网络管理功能网元向DNS服务器查询确定NRF网元为例,将第一无线网络管理功能网元到对应的NRF网元上的具体过程可以包括:
S601,第一无线网络管理功能网元向DNS服务器发送第二DNS查询请求。
S602,DNS服务器基于接收到的第二DNS查询请求,选择并确定合适的NRF网元,作为发现的NRF网元。
S603,DNS服务器向第一无线网络管理功能网元反馈第二DNS查询响应,其中携带有NRF网元的相关信息。
可以理解的是,S601~S603为第一无线网络管理功能网元通过向DNS服务器查询确定NRF网元的具体过程,相关描述参见本场景示例部分中对“第一步”~“第三步”的描述,这里不再赘述。
需要说明的是,S601~S603为可选的步骤,确定该NRF网元也可以采用其他的实现方式,本实施例不作限定。
S604,第一无线网络管理功能网元向NRF网元发送的第二注册请求。
S605,NRF网元向第一无线网络管理功能网元发送第二注册响应消息。
需要说明的是,S604~S605的具体实现可以参见上述S21~S22的相关描述,这里不再赘述。
可选地,在S604和S605之间,还可以包括:
S606,NRF网元从第二注册请求中获取第一无线网络管理功能网元的相关信息并保存。
例如,以图3所示的场景为例,RNMF网元可以向DNS服务器查询确定NRF网元,接着,RNMF网元将该RNMF网元的相关信息携带于第二注册请求中,根据确定的NRF网元的路由地址,通过R2接口发送给对应的NRF网元,NRF网元接收到第二注册请求后,可以从中解析到RNMF网元的相关信息;然后,该NRF网元根据该RNMF网元的相关信 息通过R2接口,将生成的第二注册响应消息发送给RNMF网元,完成将该RNMF网元注册到NRF网元。
通过上述图6示出的第一无线网络管理功能网元向NRF网元的注册过程,完成了第一无线网络管理功能网元在NRF网元上的注册,为在后续的通信业务中,NRF网元选择调用第一无线网络管理功能网元提供了选择的资源和选择的依据。
此外,本申请实施例除了适用于图3所示的系统架构,还可以应用于图7所示的架构中。图7为本申请实施例中另一应用场景所涉及的网络系统框架示意图,该场景中,可以多扩多个RAN,多个RNMF网元,以及多个核心网。具体如图7所示,可以包括:RAN 701和RAN 702、RNMF 711、RNMF 712、核心网721和核心网722,其中,RAN 701可以包括:RRC 7011、PDCP-C 7012SDAP 7013和PDCP-U 7014,RAN 702可以包括:RRC 7021、PDCP-C 7022SDAP 7023和PDCP-U 7024,核心网721可以包括:NRF 7211、AMF 7212和SMF 7213,核心网722可以包括:NRF 7221、AMF 7222和SMF 7223。
可以理解的是,图7中RNMF网元提供了C1接口、R1接口和R2接口,均可以是该RNMF网元提供的服务化API接口,那么,RNMF网元支持与RAN中的网元可以通过C1接口进行服务调用的功能,且,该RNMF网元也支持与核心网中网元可以通过R2接口进行服务调用的功能,两个RNMF网元之间可以通过R1接口进行服务调用的功能。
需要说明的是,该场景中,一个RAN的RRC网元只能连接一个RNMF网元,但是,每个RNMF网元可以连接多个RAN的RRC网元,而且,RAN和核心网之间可以通过调用多个RNMF网元实现无线网络通信,如图7所示,RAN 701的RRC 7011,就需要通过调用RNMF 711和RNMF 712共同来实现与核心网721中AMF 7212的通信。
可以理解的是,考虑到图7所示的通信场景的需求,本申请实施例还提供了在需要切换网元的的通信场景下的通信方法,实现了当由于用户设备的移动导致当前的无线网络通信质量变差时,将用户设备切换到可以提供更好通信质量的无线网络中的良好通信效果。图8示出了本申请实施例提供的切换网元的通信方法的流程示意图,如图8所示,本申请实施例具体可以包括:
S801,第一无线网络管理功能网元从第二接入网网元接收用户设备测量信息,所述第二接入网网元为用户设备提供服务。
可以理解的是,该用户设备测量信息,是用户设备利用当前所连接的无线网络进行信号测量所得到的测量结果,其中,当前所连接的无线网络包括当前为该用户设备提供服务的第二接入网网元。该用户设备测量信息,可以用于体现该用户设备当前所处的网络环境,例如当前所处的小区。
具体实现时,当用户设备经过信号测量得到该用户设备测量信息后,可以由该用户设备将所得的用户设备测量信息上报至第二接入网网元,即,切换之前该用户设备的源接入网网元;接着,第二接入网网元在接收到该用户设备测量信息后,将该用户设备测量信息发送给第一无线网络管理功能网元。
作为一个实例,该第一用户设备测量信息例如可以携带以下任意一种或多种信息:measurement type(如RSRP,RSRQ,RSTD,UTRAN TDD P-CCPCH RSCP,UTRAN FDD  CPICH等),measurement period,number of frequencies。
S802,第一无线网络管理功能网元根据所述用户设备测量信息确定目标网元。
目标网元,是指该用户设备需要切换到的网元,为切换后为该用户设备提供服务。具体实现时,该目标网元可以是接入网网元、无线网络管理功能网元和核心网网元中的一种或者多种,例如:具体可以是第三接入网网元、第二无线网络管理功能网元或第二核心网网元。该目标网元的类型以及切换到的具体网元,可以由第一无线网络管理功能网元根据接收到的用户设备测量信息确定。
具体实现时,第一无线网络管理功能网元可以根据第一用户设备测量信息确定用户设备当前所处的小区,记作目标小区(target ID);接着,该第一无线网络管理功能网元可以根据目标小区判断需要切换的网元的类型以及具体切换到的网元。判断接入网网元、RNMF网元和核心网网元中,需要切换的网元类型的具体判断依据分别为:
一、判断接入网网元是否需要切换的条件:第一无线网络管理功能网元查看UE切换的目标小区(target ID)是否在当前为该UE服务的接入网网元服务的小区范围内,如果是,则不需要切换接入网网元,否则,需要切换接入网网元。
二、判断第一无线网络管理功能网元是否需要切换的条件:第一无线网络管理功能网元查看该目标小区(target ID)是否为自己能够服务小区,若是,则不需切换该第一无线网络管理功能网元,否则,需要切换该第一无线网络管理功能网元。
三、判断核心网网元是否需要切换的条件:一种情况下,如果第一无线网络管理功能网元本地保存了核心网网元服务的小区信息,则第一无线网络管理功能网元查看该target ID标识对应的小区是否为核心网网元(例如:AMF网元)服务的小区,若是,则不需要切换核心网网元,否则,需要切换该核心网网元;另一种情况下,如果第一无线网络管理功能网元本地没有保存核心网网元服务的小区信息,那么,需要第一无线网络管理功能网元向NRF网元查询核心网网元的相关信息,即利用target ID向NRF网元请求AMF服务,从而,第一无线网络管理功能网元判断该NRF网元返回的AMF服务的地址与当前服务的核心网网元的地址是否相同,若是,则不需要切换核心网网元,否则,需要切换该核心网网元。
作为一个示例,如果确定需要切换的网元的类型后,那么,该第一无线网络管理功能网元还可以根据用户设备测量信息,通过所述第一无线网络管理功能网元中的配置信息确定该类型下具体要切换到的网元。
作为另一个示例,如果确定需要切换的网元的类型后,那么,该第一无线网络管理功能网元还可以根据用户设备测量信息,通过查询NRF网元确定该类型下具体要切换到的网元。
例如:假设第一无线网络管理功能网元根据用户设备测量信息确定需要切换的网元为无线网络管理功能网元,那么,该第一无线网络管理功能网元还可以根据用户设备测量信息,通过该第一无线网络管理功能网元中的配置信息,确定出切换的无线网络管理功能网元为第二无线网络管理功能网元。
例如:假设第一无线网络管理功能网元根据用户设备测量信息确定需要切换的网元为核心网网元,那么,该第一无线网络管理功能网元还可以根据用户设备测量信息,通过查询NRF网元,确定出切换的核心网网元为第二核心网网元。
S803,第一无线网络管理功能网元从所述第二接入网网元接收用户设备上下文信息。
在确定了切换的目标网元后,为了在保障切换后的无线网络通信可以正常,源接入网网元(即,第二接入网网元)需要将用户设备上下文信息发送给第一无线网络管理功能网元。
可以理解的是,用户设备上下文信息,例如可以是UE context,其中可以至少携带:UE-AMBR,AS Security information(密钥Key),PDU Session resource to be setup list,RRC context,Mobility Restriction List等信息中的一种或多种。例如,PDU Session resource to be setup list是需要重建的PDU会话的配置信息,可以包括:PDU session ID、PDU Session resource AMBR、UL NG-U Address、Security indication、PDU session type,QoS等参数信息。
作为一个示例,该用户设备上下文信息具体可以与target ID、UE ID和GUAMI等信息一起,被携带于用户设备的切换请求HO request中,由第二接入网网元通过服务化接口发送给第一无线网络管理功能网元。
作为另一个示例,该用户设备上下文信息也可以不携带在其他的信令中,而是以用户设备上下文信息本身的形式直接由第二接入网网元通过服务化接口发送给第一无线网络管理功能网元。
S804,第一无线网络管理功能网元向所述目标网元发送所述用户设备上下文信息。
具体实现时,第一无线网络管理功能网元在接收到用户设备上下文信息后,可以直接将该用户设备上下文信息发送至目标网元,以告知目标网元当前服务的该用户设备的相关信息。
可以理解的是,当目标网元获得该用户设备上下文信息后,可以为该用户设备建立目标网元上下文,为PDU会话分配DRB ID,并基于target ID选择对应的网元,向其发送PDU会话资源建立PDU Session resource setup消息等操作,以便完成将该用户设备从源无线网络切换到包括目标网元的无线网络中。
为了清楚的说明本申请实施例所提供的通信方法中切换网元的实现方式,下面结合图9~图11对三个具体的切换场景进行介绍。
第一个切换网元的场景,具体需要切换的目标网元的类型为接入网网元,图9示出了该场景的信令流程图,该场景的具体实现方式可以包括:
S901,第一无线网络管理功能网元从第二接入网网元接收第一用户设备测量信息,所述第二接入网网元为用户设备提供服务;
S902,第一无线网络管理功能网元根据该第一用户设备测量信息确定第三接入网网元;
S903,第一无线网络管理功能网元从第二接入网网元接收第一用户设备上下文信息;
S904,第一无线网络管理功能网元向第三接入网网元发送第一用户设备上下文信息。
可以理解的是,第一接入网网元为切换之前为该用户设备提供服务的源接入网网元;第二接入网网元,为用户设备待切换的为该用户设备提供服务的目标网元。具体实现时,该第二接入网网元,可以由第一无线网络管理功能网元根据接收到的第一用户设备测量信息确定。
例如,以图7所示的通信架构为例,假设当前无线网络中的第二接入网网元为RRC 7021,第一无线网络管理功能网元为RNMF 712,第一核心网网元为NRF 7221。切换的过 程可以包括:RRC 7021向RNMF 712发送第一用户设备测量信息;RNMF 712根据该第一用户设备测量信息,确定目标网元为RRC 7011;此时,RRC 7021向RNMF 712发送第一用户设备上下文信息;接着,RNMF 712向RRC 7011发送该第一用户设备上下文信息,完成切换。
需要说明的是,对该具体场景的完整通信过程介绍可以参见下文中的实例六。
第二个切换网元的场景,具体需要切换的目标网元的类型是可以提供服务化接口的第一无线网络管理功能网元,图10示出了该场景的信令流程图,该场景的具体实现方式可以包括:
S1001,第一无线网络管理功能网元从第二接入网网元接收第二用户设备测量信息,所述第二接入网网元为用户设备提供服务;
S1002,第一无线网络管理功能网元根据该第二用户设备测量信息确定第二无线网络管理功能网元;
S1003,第一无线网络管理功能网元从第二接入网网元接收第二用户设备上下文信息;
S1004,第一无线网络管理功能网元向第二无线网络管理功能网元发送第二用户设备上下文信息。
可以理解的是,第一无线网络管理功能网元为切换之前为该用户设备提供服务的源无线网络管理功能网元;第二无线网络管理功能网元,为用户设备待切换的为该用户设备提供服务的目标网元。具体实现时,该第二无线网络管理功能网元,可以由第一无线网络管理功能网元根据接收到的第二用户设备测量信息确定。
作为一个示例,如果第一无线网络管理功能网元中保存有关于其他无线网络管理功能网元的配置信息,即,该配置信息中可以包括提供服务化接口的各无线网络管理功能网元和其所对应服务小区之间的对应关系,那么,S1002具体可以包括:第一无线网络管理功能网元根据第二用户设备测量信息通过所述第一无线网络管理功能网元中的配置信息确定所述第二无线网络管理功能网元。具体实现时,第一无线网络管理功能网元可以根据第二用户设备测量信息确定用户设备当前所处的小区,记作目标小区(target ID);第一无线网络管理功能网元从其保存的配置信息中查询服务该目标小区的提供服务化接口的网元,作为第二无线网络管理功能网元。
作为另一个示例,如果该第一无线网络管理功能网元中未保存上述配置信息,则,该S1002还可以包括:第一无线网络管理功能网元根据第二用户设备测量信息通过查询NRF网元确定所述第二无线网络管理功能网元。具体实现时,第一无线网络管理功能网元可以向NRF网元发起查询请求,利用target ID、RAT type(用户设备的当前的接入制式)和PLMN信息进行查询;NRF网元基于该查询请求中的信息选择一个匹配的第二无线网络管理功能网元,并将该第二无线网络管理功能网元的路由地址(例如IP Address)返回给该第一无线网络管理功能网元。
例如,以图7所示的通信架构为例,假设当前无线网络中的第二接入网网元为RRC 7021,第一无线网络管理功能网元为RNMF 712,第一核心网网元为NRF 7221。切换的过程可以包括:RRC 7021向RNMF 712发送第二用户设备测量信息;RNMF 712根据该第二用户设备测量信息,确定目标网元为RNMF 711;此时,RRC 7021向RNMF 712发送第二 用户设备上下文信息;接着,RNMF 712向RNMF 711发送该第二用户设备上下文信息,完成切换。
第三个切换网元的场景,具体需要切换的目标网元为核心网网元,图11示出了该场景的信令流程图,该场景的具体实现方式可以包括:
S1101,第一无线网络管理功能网元从第二接入网网元接收第三用户设备测量信息;所述第三接入网网元为用户设备提供服务;
S1102,第一无线网络管理功能网元根据该第三用户设备测量信息确定第二核心网网元;
S1103,第一无线网络管理功能网元从第二接入网网元接收第三用户设备上下文信息;
S1104,第一无线网络管理功能网元向该第二核心网网元发送所述第三用户设备上下文信息。
可以理解的是,第一核心网网元为切换之前为该用户设备提供服务的源核心网网元;第二核心网网元,为用户设备待切换的为该用户设备提供服务的目标网元。具体实现时,该第二核心网网元,可以由第一无线网络管理功能网元根据接收到的第三用户设备测量信息确定。
作为一个示例,如果第一无线网络管理功能网元中保存有关于核心网网元的配置信息,即,该配置信息中可以包括各核心网网元和其所对应服务小区之间的对应关系,那么,S1102具体可以包括:第一无线网络管理功能网元根据第三用户设备测量信息通过所述第一无线网络管理功能网元中的配置信息确定所述第二核心网网元。具体实现时,第一无线网络管理功能网元可以根据第三用户设备测量信息确定用户设备当前所处的小区,记作目标小区(target ID);第一无线网络管理功能网元从其保存的配置信息中查询服务该目标小区的目标核心网网元,作为第二核心网网元。
作为另一个示例,如果该第一无线网络管理功能网元中未保存上述配置信息,则,该S1102还可以包括:第一无线网络管理功能网元根据第三用户设备测量信息通过查询NRF网元确定所述第二核心网网元。具体实现时,第一无线网络管理功能网元可以向NRF网元发起查询请求,利用target ID、RAT type(用户设备的当前的接入制式)和PLMN信息进行查询;NRF网元基于该查询请求中的信息选择一个匹配的第二核心网网元,并将该第二核心网网元的路由地址(例如IP Address)返回给该第一无线网络管理功能网元。
例如,以图7所示的通信架构为例,假设当前无线网络中的第二接入网网元为RRC 7021,第一无线网络管理功能网元为RNMF 712,第一核心网网元为NRF 7221。切换的过程可以包括:RRC 7021向RNMF 712发送第三用户设备测量信息;RNMF 712根据该第三用户设备测量信息,确定目标网元为NRF 7211;此时,RRC 7021向RNMF 712发送第三用户设备上下文信息;接着,RNMF 712向NRF 7211发送该第三用户设备上下文信息,完成切换。
需要说明的是,第一用户设备测量信息、第一用户设备上下文信息、第二用户设备测量信息、第二用户设备上下文信息、第三用户设备测量信息、第三用户设备上下文信息等相关说明,可以参见图8中对用户设备测量信息和用户设备上下文信息的相关解读,这里不再赘述。当目标网元(包括第三接入网网元、第二无线网络管理功能网元或第二核心网 网元)接收到第一无线网络管理功能网元发送的用户设备上下文信息后,也可以通过执行类似图8中提及的操作,以便完成将该用户设备从源网元(包括第二接入网网元、第一无线网络管理功能网元或第一核心网网元)切换到目标网元。
需要说明的是,图9~图11分别对应接入网网元、无线网络管理功能网元和核心网网元的切换,那么,在一些可能的场景中,需要切换的网元可能不止一个,此时,可以按照上述是三个图所对应的实施例的操作,进行相应的切换操作,此处不再赘述。对于切换第二接入网网元和第一无线网络管理功能网元的场景的完整通信过程介绍可以参见下文中的实例七;对于切换第一接入网网元、第一无线网络管理功能网元和第一核心网网元的场景的完整通信过程介绍可以参见下文中的实例八。
可见,本申请实施例中,通过在接入网网元和核心网网元之间引入可以提供服务化接口的第一无线网络管理功能网元,可以调用第一无线网络管理功能网元的第二服务化接口实现该第一无线网络管理功能网元和接入网网元之间的服务调用,也可以调用第一无线网络管理功能网元的第一服务化接口实现该第一无线网络管理功能网元和核心网网元之间的服务调用。这样,可以简单、方便的实现接入网网元和核心网网元之间的无线网络通信,克服了在接入网网元和核心网网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法。
需要说明的是,“第一接入网网元”、“第一核心网网元”等中的“第一”只是用来做名字的标识,用于区别不同的“网元”,并不代表顺序;同理,“第二接入网网元”、“第三接入网网元”等,也只是用于标识网元,彼此根据不同的场景限定,可以是相同的事物也可以是不同的事物。
需要说明的是,本申请实施例所提供的无线网络的通信方法,可以被应用于无线网络通信的各种场景中,除了上述的接入网网元向无线网络管理功能网元注册的场景、无线网络管理功能网元向核心网网元注册的场景、各个类型网元切换的场景之外,还可以应用于例如:寻呼场景、UE向无线网络中注册的场景和UE向无线网络中建立PDU会话的场景等。具体的,寻呼场景的完整通信过程介绍可以参见下文中的实例一和实例二;UE向无线网络中注册的场景的完整通信过程介绍可以参见下文中的实例三;UE向无线网络中建立PDU会话的场景的完整通信过程介绍可以参见下文中的实例四和实例五。
在介绍完本申请实施例的内容后,为了使本申请实施例提供的方法更加清楚,下面以图3和图7所示的系统架构为例,结合附图对本申请实施例中的8个具体的场景示例进行如下描述。
实例一、寻呼IDEL态UE的具体场景:
当寻呼的UE处于IDEL态,即,UE和RAN之间、RAN和核心网之间的连接均是断开状态时,可以参见图12所示的无线网络中的通信方法进行寻呼,例如,提供服务化接口的网元为RNMF网元,接入网网元为RRC网元,核心网网元为AMF网元,该场景的寻呼过程具体可以包括:
S1201,当用户面功能(英文:User Plane Function,简称:UPF)接收到需要发送给IDLE 态的UE的下行用户数据(英文:DL data)时,该UPF向SMF网元发送下行数据通知消息。
S1202,SMF网元接收到UPF发送的下行数据通知消息后,向需要调用的AMF网元发送信令请求。
S1203,当AMF网元接收到关于IDLE态UE的SMF网元的信令请求时,AMF可以调用R2接口向RNMF网元发送寻呼消息。
S1204,该RNMF网元基于AMF网元发送的寻呼消息中携带的注册区域列表(英文:Registration area list)或业务信息(例如:Service Type)等信息确定符合寻呼条件的RRC网元。
S1205,RNMF网元调用C1接口向所确定的RRC网元发送寻呼消息。
S1206,该RRC网元接收到寻呼消息后,可以将该寻呼消息发送给对应的PDCP-U网元,以便该PDCP-U网元可以按照该寻呼消息寻呼到对应的IDEL态UE。
可见,该实施例采用的通信方法通过引入包括R1接口和C1接口的RNMF网元,可以简单、方便的实现接入网网元和核心网网元之间的无线网络通信,克服了在接入网网元和核心网网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法。
实例二、寻呼Inactive态UE的具体场景:
当寻呼的UE处于Inactive态,即,UE和RAN之间是断开状态,RAN和核心网之间是连接状态,此时,可以参见图13,示出了寻呼Inactive态UE的信令流程,当DL data发送到PDCP-U网元时,由于与被叫UE断开了连接,故无法与被叫UE通信,那么,该无线网络中的通信方法进行寻呼,例如,提供服务化接口的网元为RNMF网元,接入网网元为Last RRC网元和New RRC网元,该场景的寻呼过程具体可以包括:
S1301,当PDCP-U网元接收到需要发送给Inactive态的UE的DL data时,该PDCP-U网元向上一个RAN的PDCP-C网元(图中标记为Last PDCP-C)发送下行数据通知消息。
可以理解的是,该下行数据通知消息中携带报文相关的UE的IP地址或标识和QoS流标识,(英文:QoS Flow ID,简称:QFI),例如,UE的IP地址或标识可用来识别所要寻呼的UE;QFI用来标识QoS信息。
S1302,Last PDCP-C网元将接收到的下行数据通知消息发送给Last RRC网元。
S1303,Last RRC网元在自己服务的小区进行寻呼UE,寻呼的流程可参见图10所示的S1006中的描述。
S1304,Last RRC网元除了在自己的服务区域对UE进行寻呼,还可以触发在RNA标识的小区对UE进行寻呼,并调用C1接口向RNMF网元发送携带RNA的标识、UE的寻呼标识和寻呼邻域等信息的寻呼消息。
S1305,RNMF网元可以基于寻呼消息中的RNA标识确定对应的New RRC网元,并向通过调用C1接口向所确定的New RRC网元发送寻呼消息。
S1306,New RRC网元接收到寻呼消息后,寻呼的流程可参见图12所示的S1206中的 描述。
可见,该实施例采用的通信方法通过引入包括C1接口的RNMF网元,可以简单、方便的实现接入网网元之间的无线网络通信,尤其是可以简单、高效的实现对Inactive态UE的寻呼,克服了在接入网网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法。
实例三、UE向无线网络中注册的具体场景:
UE在利用已经建立的无线网络进行通信之前,还需要向该无线网络进行注册,可以参见图14所示的无线网络中的通信方法实现UE的注册,例如,提供服务化接口的网元为RNMF网元,接入网网元为RRC网元,核心网网元为AMF网元,该场景具体可以包括:
S1401,UE可以经过分布式单元(英文:Distributed Unit,简称:DU)和PDCP-C网元向RRC网元发送UE注册请求(UE Registration Request)。
该UE注册请求中可以携带SUCI(或old 5G-GUTI)、PLMN ID和Registration request PDU,例如Registration request PDU是UE发给核心网的信息内容,RAN对此不作处理。
S1402,RRC网元接收到UE注册请求后,调用C1接口向其注册的RNMF网元发送Nrnmf_Communication_UEMessageTransfer。
该消息也属于UE注册请求,该消息携带PLMN ID、old 5G-GUTI、小区标识cell id、RAT type等信息,如果UE提供了Equivalent PLMM List,则也可以携带于该UE注册请求中。
S1403,RNMF网元向NRF网元发起AMF服务发现请求,查询AMF网元服务的相关信息,该AMF服务发现请求中携带PLMN ID、当前小区标识Cell Id、RAT type、old 5G-GUTI等至少一种信息,以供NRF网元执行AMF网元查询参考。
S1404,NRF网元根据AMF服务发现请求,查询合适的AMF网元。
S1405,NRF网元生成AMF服务响应消息,发送给RNMF网元,此时,RNMF网元可以创建该UE在该RNMF网元中的UE上下文,并将PLMN ID、Cell ID、RAT Type、old 5G-GUTI、RRC ID以及该AMF网元的IP地址记录到该UE上下文中。
S1406,RNMF网元调用R2接口向AMF网元发送Nrnmf_Communication_N1MessageNotify。
该消息属于UE注册请求,具体可以携带UE Registration PDU、PLMN ID、Cell ID、RAT type、RNMF ID等至少一种信息。
S1407,AMF网元向Old AMF网元发送Namf_Communicaiton UE Context Transfer。
具体实现时,AMF网元可以通过解析接收到的Nrnmf_Communication_N1MessageNotify的UE registration PDU,获取相关信息;若该相关信息中携带了Old 5G-GUTI,则AMF网元向NRF网元发送查询请求,获取old AMF网元的地址信息,NRF网元根据查询请求中的old 5G GUTI查询是否存在可用的AMF网元,如果存在,则将old AMF网元的IP地址发送给AMF网元。
S1408,若Old AMF保存了UE上下文,则Old AMF网元向AMF网元发送 Namf_Communicaiton_UEContextTransfer reponse。
该Namf_Communicaiton_UEContextTransfer reponse中可以携带于UE相关的该UE的上下文。
S1409,AMF网元请求AUSF网元对UE进行鉴权,并将相关的UE的上下文发送给AMF网元,则AMF立即发起AS和NAS安全流程,激活AS/NAS安全机制。若AUSF对UE鉴权失败,则执行S1411。
S1410,AMF网元通过用户数据管理(英文:User data management,简称:UDM)提供的Nudm_SDM_Get服务请求该UE的接入和移动性相关签约数据。
S1411,AMF网元完成UE注册相关处理后,调用R2接口向RNMF网元发送Nrnmf_Communication_UEMessageTransfer。
该消息属于UE注册接受消息,该消息具体可以携带:Registration Accept PDU、5G-GUTI、Handover restriction List、UE-AMBR以及AMF Id等信息,例如,5G-GUTI是AMF网元为UE分配的新标识,AMF Id用于标识该AMF,可以是GUAMI,也可以是其他唯一识别AMF的ID标识。
作为一个实现方式,AMF网元可将自己服务的位置区域信息(如服务的小区/PLMN)发送给RNMF网元。RNMF网元将AMF网元服务的位置区信息保存在AMF网元状态信息中。
当S1409中AUSF鉴权失败,则AMF网元可以拒绝UE的注册请求,并在该S1409回复Registration reject PDU,同时在Registration reject PDU携带拒绝的原因Cause(如鉴权失败)。那么,AMF网元在该S1411中可以携带Registration reject PDU,Cause(如鉴权失败拒绝注册)和AMF Id,例如,RNMF网元收到该cause信息,则删除UE相关上下文,并通过步骤S1412/S1413将Registration reject PDU发送给UE。
S1412,RNMF网元收到UE注册接受消息,可以从中解析并记录到该UE的上下文,具体可以包括新分配的5G-TURI、Handover restriction List、UE-AMBR以及AMF ID以及该AMF网元服务的位置区域信息等保存在UE上下文中,并通过C1接口向RRC网元发送Nrnmf_Communication_N1MessageNotify。
具体实现时,还可以将S1411中发送的G-GUTI和UE-AMBR也发送给RRC网元。
当RNMF网元收到AMF注册请求拒绝消息时,RNMF网元则删除该UE的相关信息,并通过Nrnmf_Communication_N1MessageNotify服务向RRC网元发送UE注册接受消息。
S1413,RRC网元通过PDCP-C网元和DU网元向UE发送UE注册接受消息(UE registration accept)。
S1414,UE收到UE registration accept之后,通过DU/PDCP-C网元回复注册完成消息(Registration Complete)给RRC网元。
可见,该实施例采用的通信方法通过引入包括C1接口、R2接口的RNMF网元,可以简单、高效的实现将UE注册到已建立连接关系的网络中,克服了在接入网网元和核心网网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法。
实例四、UE向无线网络中建立PDU会话的具体场景(1):
UE在利用已经建立的无线网络进行通信之前,还需要在该无线网络中建立一条或者多条通信路径,即,建立PDU会话,确保通信能够正常有序的进行。参见图15所示的无线网络中的通信方法实现PDU会话的建立过程,例如,提供服务化接口的网元为RNMF网元,接入网网元为RRC网元,核心网网元为AMF网元,该场景具体可以包括:
S1501,UE可以经过DU和PDCP-C网元向RRC网元发送PDU会话建立请求PDU session Establishment。
S1502,RRC网元接收到PDU会话建立请求后,调用C1接口向其注册的RNMF网元发送Nrnmf_Communication_UEMessageTransfer。
该消息也是PDU会话建立请求,该消息携带NAS PDU(可以包括:建立PDU会话)、5G-GUTI等信息。
S1503,RNMF网元通过调用R2接口将Nrnmf_Communication_N1MessageNotify发给AMF网元。
S1504,AMF网元收到PDU会话建立请求后,调用SMF网元提供的PDU Session_CreateSMContext服务,请求SMF网元为UE创建会话管理(英文:Session Management,简称:SM)上下文。
S1505,SMF网元接收到AMF网元的PDU会话建立服务请求后,向UDM网元请求UE的会话签约数据。
S1506,SMF网元向AMF网元发送订阅检索Subscription retrieval。
S1507,进行PDU会话认证/授权(即,PDU Session authentication/authorization)。
S1508,SMF网元向PCF网元请求业务策略信息。
S1509,SMF网元基于会话签约数据和策略信息执行策略决策,确定QoS参数等,为UE分配IP地址,选择UPF网元,并向选择的UPF网元发送N4接口会话建立请求,以完成UPF网元的配置。
S1510,SMF网元完成业务处理后,向AMF网元发送N1N2信息传输消息,将会话上下文信息发送给AMF网元。
S1511:核心网中执行完SM业务处理之后,AMF网元通过调用R2接口向RNMF网元发送Nrnmf_Communication_AllocateSessionResource。
该消息属于PDU会话建立接受消息,该消息也用于触发RAN侧PDU会话建立的处理流程,消息中携带PDU会话建立接受标识(可以封装在NAS PDU中)、UE ID、PDU会话资源安装列表(英文:PDU Session resource setup list)。
例如,PDU Session resource setup list是请求建立的一个或多个PDU会话的参数配置集合,可以包括:PDU会话的ID和PDU会话资源安装迁移请求(英文:PDU Session resource setup request transfer)。PDU Session resource setup request transfer包括PDU会话资源最大聚合比特率(英文:PDU session resource Aggregate Maximum Bit Rate)、UL NG-U地址、PDU会话类型和安全指标(英文:Security indication,用于指示是否开启加密保护和/或是否开启完整性保护)、QFI和QoS flow level QoS parameters等信息。
S1512,RNMF网元将接收到的Nrnmf_Communication_AllocateSession Resource通过调 用C1接口发送给RRC网元
可以理解的是,该RNMF网元也可以将Nrnmf_Communication_AllocateSessionResource中携带的信息作为PDU会话上下文信息进行保存。
S1513,RRC网元接收RNMF网元发送的PDU会话建立接受消息后,向PDCP-C网元发送PDU会话资源安装请求(PDU session resource setup)。
该消息可以携带RRC网元分配的DRB ID和其他的PDU会话上下文信息。
S1514,PDCP-C网元解析PDU Session resource setup list,并进一步解析PDU Session resource setup request transfer,以获得建立的PDU会话的相关参数配置信息,并向确定的PDCP-U网元发送承载上下文建立的Bearer context setup消息。
该消息中携带DRB ID,PDU session resource AMBR,UL NG-U Address(如UL GTP TEID and IP address of UPF),Security indication(取值可以是required、preferred或not needed)。
S1515,PDCP-U网元分配下行NG-U地址(如DL GTP TEID and IP address)和上行UL PDCP-U TEID and IP地址,并按照请求消息中参数进行资源配置,回复承载上下文建立的Bearer context setup response响应消息至PDCP-C网元。
该消息中可以携带DRB ID和DL NG-U Address(如DL GTP TEID and IP address),Security result(其取值是performed或not performed)。
若需要建立多个DRB,则PDCP-C网元可以重复执行S1514~S1515,且不同的DRB可能选择到多个不同的PDCP-U网元。
S1516,PDCP-C网元发送UE上下文建立请求UE context setup request消息给DU网元,执行对DU网元的资源配置。
该消息中可以携带PDU Session establishment accept、DRB ID、QoS和UL PDCP-U GTP TEID and IP。
S1517,DU网元发送AN specific resource setup消息给UE,并接收UE的确认消息。
该消息中可以携带PDU Session establishment accept。
S1518,DU网元向PDCP-C网元回复UE上下文建立响应UE context setup response消息。
该消息中可以携带DRB ID和DL DU Address(如DL GTP TEID and IP address)。
S1519,PDCP-C网元发送承载上下文修改Bearer Context modification消息给PDCP-U网元,更新UE上下文中DL DU Address(DL GTP TEID and IP address),并且接收PDCP-U反馈的确认消息。
该消息中可以携带DRB ID和DL DU Address(如DL GTP TEID and IP address)。
S1520,PDCP-C网元发送PDU session resource setup response消息给RRC网元。
该消息中可以携带PDU Session ID和PDCP-U网元对应的下行用户面地址信息DL NG-U Address(如DL PDCP-U GTP TEID and IP address)。
S1521,RRC网元可以通过调用C1接口向RNMF网元发送修改PDU会话通知Nrnmf_Communication_ModifySessionResource,用于将PDCP-U网元的下行用户面地址信息DL NG-U Address(如DL PDCP-U GTP TEID and IP address)发送给RNMF网元。
S1522,RNMF网元通过调用R2接口向AMF网元发送该Namf_Communication_ModifyPDUSessionNotify。
S1523,AMF网元执行核心网内部PDU会话更新业务处理流程,即向SMF网元发送修改PDU会话通知,调用例如的PDU Session_UpdateSMContext服务。
S1524,SMF网元可以向UPF网元发送N4session modification。
N4session modification中包括下行用户面地址信息DL NG-U Address(如DL PDCP-U GTP TEID and IP address)。
S1525,SMF网元收到DL NG-U address信息后,通过N4接口会话修改流程,将所示下行用户面地址信息发送给UPF网元。
可见,该实施例采用的通信方法通过引入包括C1接口、R2接口的RNMF网元,可以简单、高效的实现在已建立连接关系的网络中建立PDU会话,克服了在接入网网元和核心网网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法。
实例五、UE向无线网络中建立PDU会话的具体场景(2):
参见图16所示的无线网络中的通信方法实现PDU会话的建立过程,与上述实例四的区别在于,本实例中充分利用了RNMF网元通过R2接口连接的是核心网的服务化总线,即,RNMF网元可以直接通过R2接口连接到SMF网元而无需AMF网元作转发处理。该实例具体实现可以参见图15,除了无需执行图15中S1504、S1506、S1510、S1523和S1525,其他步骤的描述均可参见实例四的相关描述,这里不再赘述。
实例六、切换RAN中各功能网元的具体场景:
当UE移动后,RNMF网元根据UE移动后的目标小区target ID判断,确定需要切换RAN中各网元时,可以参见图17所示的通信方法,由RNMF网元指示发起RAN中各网元的切换,例如,提供服务化接口的网元为RNMF网元,源接入网网元为S-RRC网元,目标接入网网元为T-RRC网元,该场景具体可以包括:
S1701,UE完成信号测量,并通过源RAN中的S-DU/S-PDCP-C网元向源RAN中S-RRC网元发送UE的测量报告Measurement Report。
测量报告可以携带:Measurement type(如RSRP,RSRQ,RSTD,UTRAN TDD P-CCPCH RSCP,UTRAN FDD CPICH等)、measurement period和number of frequencies等信息。
S1702,S-RRC网元调用C1接口向RNMF网元发送UE的测量报告Measurement Report。
例如,RNMF网元中可以包括Nrnmf_Communication_UEMessageTransfer服务。
S1703,RNMF网元基于S-RRC网元上报的UE的测量报告,判断决策需要对UE执行切换处理,并进一步确定切换的目标小区(target ID)。
RNMF网元可以基于target ID判断RRC网元需要改变,RNMF网元和AMF网元不需要改变。
可选地,RNMF网元可基于target ID确定目标RRC网元(即,T-RRC网元)。
S1704,若RNMF网元在S1703中无法判断AMF网元是否需要改变,则RNMF网元可以向NRF网元发送服务查询请求NF service request,查询的NF type是AMF,NRF网元选择一个能够服务target ID标识的区域的AMF网元。
S1705,NRF网元将选择确定的AMF地址AMF IP address返回给RNMF网元。
例如,S1703~S1704可以作为选做步骤,在需要判断AMF网元是否切换的情况下执行。
S1706,RNMF网元向S-RRC网元发送UE的切换指示HO indication。
该HO indication指示S-RRC网元向RNMF网元发送UE的切换请求HO request请求,且该HO indication中携带切换的目标小区表示Target ID。
S1707,S-RRC网元通过调用C1接口发送UE的切换请求HO request给RNMF网元。
该消息中可以携带target ID,UE Id,GUAMI,UE context等信息。例如,UE context包括UE-AMBR,AS Security information(密钥Key),PDU Session resource to be setup list,RRC context,Mobility Restriction List等信息。PDU Session resource to be setup list是需要重建的PDU session的配置信息,包括PDU session ID、PDU Session resource AMBR、UL NG-U Address、Security indication、PDU session type,QoS等参数信息。
若RNMF网元没有保存UE上下文,则S1705中RNMF网元就无法判断NRF网元返回的AMF地址与之前为UE服务的AMF网元的地址是否相同,此时,AMF网元是否切换的判断,可在RNMF网元接收到S-RRC网元发送的HO request之后,基于消息中GUAMI判断其标识的AMF网元与S1705中NRF网元返回的AMF网元是否相同。
S1708,当S1707或S1705中确定RNMF网元和AMF网元不需要改变,则RNMF网元向S1703确定的T-RRC网元发送UE的切换请求HO Request。
如果S1703中没有确定T-RRC网元,则RNMF网元可在此步骤时基于target ID确定T-RRC网元,并向其发送UE的切换请求HO Request,该消息中可以携带target ID,UE Id,GUAMI,UE context等信息。
S1709,T-RRC网元为UE建立RRC上下文,为PDU会话分配DRB ID,并基于target ID选择T-PDCP-C网元,向其发送PDU会话资源建立PDU Session resource setup消息。
接收到PDU会话资源建立消息后,可以执行PDU会话相关的资源配置,消息中携带target ID、UE Id、PDU Session resource to be setup list(该参数集合中包括了每个PDU session对应的DRB ID信息)。
S1710,T-PDCP-C网元接收到该UE的切换请求,解析PDU Session resource to be setup list,以获得请求建立的PDU session的相关参数配置信息,T-PDCP-C网元选择确定T-PDCP-U网元,并向其发送承载上下文建立Bearer context setup消息。
相关参数配置信息可以包括PDU session resource AMBR,UL NG-U Address,PDU Session type,Security indication,QFI和QoS flow level QoS parameters等信息。而且,Bearer context setup消息中可以携带DRB ID,PDU session resource AMBR,UL NG-U Address(如UL GTP TEID and IP address),Security indication(其取值是required、preferred、not needed)。
S1711,T-PDCP-U网元分配下行NG-U address(如DL GTP TEID and IP address)和上行UL PDCP-U TEID and IP address以及Forward GTP TEID and IP,按照请求消息中参数进行资源配置,并回复承载上下文建立响应Bearer context setup response消息。
参数进行资源配置中,Forward GTP TEID and IP用于在切换处理进行中,S-PDCP-U网元将还未发送给UE的用户数据包通过与T-PDCP-U网元建立的PDU会话传输到T-PDCP-U网元上进行缓存、转发。
例如,Bearer context setup response消息中可以携带DRB ID、DL NG-U Address(如DL GTP TEID and IP address)、UL PDCP-U TEID and IP address,Forward GTP TEID and IP和Security result(其取值是performed或not performed)。
若需要建立多个DRB,则PDCP-C网元需重复执行S1714~S1715,且不同的DRB可能选择到多个不同的PDCP-U网元。
S1712,T-PDCP-C网元发送用户上下文建立UE Context UE setup request消息给T-DU网元,执行对T-DU网元上的资源配置。
消息中可以携带DRB ID,QoS,UL PDCP-U GTP TEID and IP。
S1713,T-DU网元完成资源配置后,回复用户上下文建立UE Context UE setup response消息给T-PDCP-C网元。
该消息属于切换请求的确认消息,消息中可以携带DRB ID,DL DU GTP TEID and IP。
S1714,T-PDCP-C网元回复PDU会话资源建立响应PDU Session resource setup response给T-RRC网元,确认资源配置完成。
该消息中可以携带PDU session ID,DL NG-U Address,Forward GTP TEID and IP。
S1715,T-RRC网元向RNMF网元回复切换请求的确认消息HO Request Ack消息,携带UE Id,PDU session resource Admitted list,target to source Transparent container。
例如,PDU session resource Admitted list是切换成功的PDU session信息,包括PDU session ID,Data Forwarding Info from target node(即Forward GTP TEID and IP)等信息。
S1716,RNMF网元回复切换请求确认HO Request Ack消息给S-RRC功能。
S1717,S-RRC网元确定目标小区已完成切换处理,并向S-PDCP-C网元发送切换命令HO command。
HO command中可以携带UE id,PDU session resource Admitted list。
S1718,S-PDCP-C网元通知S-PDCP-U网元切换完成的PDU会话Bearer context Modification,同时将相关参数信息发送给S-PCDP-U网元。
例如,相关参数信息可以包括:转发隧道地址信息(Forward GTP TEID and IP),用于将还未发送给UE的用户数据按照转发隧道地址(Forward GTP TEID and IP)转发到T-PDCP-U网元。
S1719,S-PDCP-C网元向S-DU发送切换命令HO command,并通过S-DU向UE转发切换命令HO command。
该HO command通知UE进行RRC网元的重配置,以同步到目标小区。
S1720,UE完成同步处理后,通过T-DU/T-PDCP-C网元向T-RRC网元回复切换完成HO complete确认消息,并且,T-RRC网元转发该HO complete给RNMF网元,用于确认RAN侧切换处理完成。
S1721,RNMF网元向核心网侧发送路径切换请求,即,RNMF网元调用R2接口向AMF网元提供的路径更新服务Path switch。
可以理解的是,可以将目标PDCP-U网元的下行用户面路由信息DL NG-U Address(如DL GTP TEID and IP address)发送给AMF网元。
S1722,AMF网元通知SMF网元发起PDU会话更新处理,该步骤的具体实现可以参见实例四中的S1323~S1325,此处不再赘述。
需要说明的是,RNMF网元更新PDU会话可以是通过AMF网元间接发送给SMF网元实现的,但是,由于RNMF网元可通过R2接口介入DORE的服务化总线上故,RNMF网元可以直接向SMF网元发送PDU会话建立请求,具体可以参见实例四或者实例五中的相关描述,在此不再赘述。
可见,该实施例采用的通信方法通过引入包括C1接口、R2接口的RNMF网元,可以简单、高效的实现在RAN中各功能网元的切换,克服了在接入网网元和核心网网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法以便该无线网络的通信方法可以灵活的适应于发生移动的UE,从而提高用户体验。
实例七、切换RAN中各功能网元和RNMF网元的具体场景:
如果RNMF网元判断当前的RAN各功能网元和RNMF网元不能服务target ID标识的区域,但AMF网元还可以继续服务该区域,那么,可以参见图18所示的通信方法,由RNMF网元指示发起RAN中各功能网元的切换,以及,RNMF网元的切换,例如,源无线网络管理功能网元为S-RNMF网元,目标无线网络管理功能网元为T-RNMF网元,源接入网网元为S-RRC网元,目标接入网网元为T-RRC网元,该场景具体可以包括:
S1801~S1802,具体可以参见实例六中的S1701~S1702,具体描述这里不再赘述。
S1803,S-RNMF网元基于S-RRC网元上报的测量报告,判断决策需要对UE执行切换处理,并进一步确定切换的目标小区(target ID)。RNMF网元基于target ID判断RRC网元和RNMF网元需要改变,AMF网元不需要改变。
可选地,RNMF可基于target ID选择确定T-RRC网元。
S1804~S1807,具体可以参考实例六中的S1704~S1707。
S1808,S-RNMF网元向NRF网元发起RNMF服务发现请求,利用target ID、RAT type(UE当前的接入制式)和PLMN信息进行查询。
S1809,NRF网元基于S-RNMF网元的请求中的信息选择一个匹配的RNMF网元,并将RNMF IP address作为目标RNMF网元(即,T-RNMF网元)返回给S-RNMF网元。
S1810,S-RNMF网元按照RNMF IP address地址发送切换请求HO request消息给相应的T-RNMF网元。
该消息中可以携带S1807中得到的信息和S-RNMF Id。
S1811,T-RNMF网元基于target ID、RAT type(UE当前的接入制式)、PLMN信息选择确定T-RRC网元,并向其发送切换请求HO request消息。
该消息中可以携带S1807中得到的信息和T-RNMF Id。
S1812~S1818,具体可以参考实例六中的S1709~S1715。
S1819,T-RNMF网元确认完成目标小区的切换处理后,回复切换确认HO request ack 消息给S-RNMF网元。
S1820~S1824,具体可以参考实例六中的S1716~S1720。
S1825~S1826,具体可以参考实例六中的S1721~S1722。
需要说明的是,T-RNMF网元更新PDU会话可以是通过AMF网元间接发送给SMF网元实现的,但是,由于T-RNMF网元可通过R2接口介入DORE的服务化总线上故,T-RNMF网元可以直接向SMF网元发送PDU会话建立请求,具体可以参见实例四或者实例五中的相关描述,在此不再赘述。
可见,该实施例采用的通信方法通过引入包括C1接口、R2接口的RNMF网元,可以简单、方便的实现在RAN中各功能网元和RNMF网元的切换,克服了在接入网网元和核心网网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法,以便该无线网络的通信方法可以灵活的适应于发生移动的UE,从而提高用户体验。
实例八、切换RRC功能网元、RNMF网元和AMF网元的具体场景:
如果RNMF网元判断当前的RAN各功能网元、RNMF网元和AMF网元不能服务target ID标识的区域,那么,可以参见图19所示的通信方法,由RNMF网元指示发起RAN中各功能网元的切换、RNMF网元的切换和AMF网元的切换,例如,提源无线网络管理功能网元为S-RNMF网元,目标无线网络管理功能网元为T-RNMF网元,源接入网网元为S-RRC网元,目标接入网网元为T-RRC网元,源核心网网元为S-AMF网元,目标核心网网元为T-AMF网元,该场景具体可以包括:
S1901~S1902,具体可以参见实例六中的S1701~S1702,具体描述这里不再赘述。
S1903,S-RNMF网元基于S-RRC网元上报的测量报告,判断决策需要对UE执行切换处理,并进一步确定切换的目标小区(target ID)。RNMF基于target ID判断RRC网元、RNMF网元和AMF网元需要改变。
例如,RNMF网元可基于target ID选择确定T-RRC网元。
S1904~S1907,具体可以参考实例六中的S1704~S1707。
S1908,S-RNMF网元调用AMF网元的服务,向S-AMF网元发起切换要求HO required。
S1909,S-AMF网元调用SMF网元的服务Namf_CreateUEContext请求T-AMF网元为UE创建上下文,并建立用户面数据传输路径,消息中可以携带target ID以及S1908中的参数信息。
S1910~S1912,T-AMF网元执行UE上下文创建,并调用SMF网元的服务触发PDU会话建立以及切换过程中间接转发隧道建立。
S1913,T-AMF网元向NRF网元发起RNMF服务发现请求,利用target ID、RAT type(UE当前的接入制式)和PLMN信息进行查询。
S1914,NRF网元基于T-AMF网元的请求中的信息选择一个匹配的RNMF网元,并将RNMF IP address返回给S-RNMF。
S1915,T-AMF网元按照RNMF IP address地址发送切换请求HO request消息给相应的T-RNMF网元。
该消息中可以携带PDU session setup list,UE id(包括PDU Session ID,Handover Request Transfer,HO restrciton list,Security context(包括UE Security Capabilities,Security Key,KAMF Change Indicator),T-AMF Id。
S1916,T-RNMF网元基于target ID、RAT type(UE当前的接入制式)、PLMN信息选择确定T-RRC网元,并向其发送切换请求HO request消息,
该消息中可以携带T-RNMF ID。
S1917~S1923,具体可以参见实例六中的S1709~S1715,具体描述这里不再赘述。
S1924,T-RNMF网元确认完成目标小区的切换处理后,回复切换确认HO request ack消息给T-AMF网元。
S1925~S1927,T-AMF网元发起PDU会话更新处理,将下行用户面隧道信息通知给T-UPF网元,具体可以参见实例六中的S1723~S1725,具体描述这里不再赘述。
S1928,T-AMF网元完成UE切换处理之后,回复Namf_CreateUEContext消息给S-AMF,确认目标网络处理完成。
S1929~S1932,具体可以参见实例六中的S1717~S1720,具体描述这里不再赘述。
S1933,T-RRC网元接收到UE的HO确认HO Complete消息,则通知T-RNMF网元切换完成,并将用户的位置信息上报给网络。
S1934,T-RNMF网元调用AMF网元的服务Namf_N2InfoNotify通知T-AMF网元用户已切换完成。
S1935,T-AMF网元收到T-RNMF网元的切换完成确认,则通知SMF/UPF网元,UE已切换完成,将切换完成指示Handover Complete indication发送给SMF。
可见,该实施例采用的通信方法通过引入包括C1接口、R2接口的RNMF网元,可以简单、方便的实现实现在RAN中各网元、RNMF网元和AMF网元的切换,克服了在接入网网元和核心网网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法,以便该无线网络的通信方法可以灵活的适应于发生移动的UE,从而提高用户体验。
上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的通信方法的各方案进行了介绍。可以理解的是,各个网元和设备,例如上述无线接入网设备、接入及移动性管理功能网元、用户设备、数据管理功能网元和网络切片选择功能网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
例如,当上述网元通过软件模块来实现相应的功能。如图20所示,示出了本申请实施例提供的一种通信装置。该通信装置200可包括接收模块2001、处理模块2002和发送模 块2003。
在一个实施例中,该通信装置可用于执行上述图4中第一无线网络管理功能网元的操作。例如:
接收模块2001,用于从第一接入网网元接收第一接入网网元的信息;处理模块2002,用于驱动与第一核心网网元通过第一服务化接口进行服务调用,且驱动与第一接入网网元通过第二服务化接口进行服务调用;发送模块2003,用于根据第一接入网网元的信息向第一接入网网元通过第二服务化接口进行服务调用。其中,第一接入网网元的信息包括以下任意一种或多种信息:第一接入网网元的标识,第一接入网网元的路由地址,第一接入网网元服务的公用陆地移动网PLMN,第一接入网网元服务的小区标识,第一接入网网元支持的无线接入类型RAT。
由此,本申请实施例提供的通信装置通能够过引入提供服务化接口的第一无线网络管理功能网元,简单、方便的实现接入网网元和核心网网元之间的无线网络通信,克服了在接入网网元和核心网网元之间通过协议处理传递信息,由于协议处理较为复杂和冗长导致传输信息的效率低下、时延较大等问题,提供了一种信息传输效率较高、传输时延较短的无线网络的通信方法装置。
可选地,该装置中的发送模块2003,还用于向网络存储功能网元发送以下任意一种或多种信息:第一无线网络管理功能网元的标识,第一无线网络管理功能网元的路由地址,第一无线网络管理功能网元服务的PLMN,第一无线网络管理功能网元服务的小区标识,第一无线网络管理功能网元支持的RAT。
可选地,该装置中的处理模块2002,还用于根据第一无线网络管理功能网元中的配置信息确定网络存储功能网元;或,该处理模块2002,还用于通过向域名系统服务器查询确定网络存储功能网元。
可选地,该装置中的接收模块2001,还用于从第二接入网网元接收用户设备测量信息,第二接入网网元为用户设备提供服务;处理模块2002,还用于根据用户设备测量信息确定目标网元;接收模块2001,还用于从第二接入网网元接收用户设备上下文信息;发送模块2003,用于向目标网元发送用户设备上下文信息。其中,该目标网元可以为第三接入网网元、第二无线网络管理功能网元或第二核心网网元。
可选地,若目标网元为第二无线网络管理功能网元或第二核心网网元,则处理模块2002,具体用于:根据用户设备测量信息通过第一无线网络管理功能网元中的配置信息确定目标网元,或,第一无线网络管理功能网元根据用户设备测量信息通过查询网络存储功能网元确定目标网元。
此外,基于网络切片的通信装置中的接收模块2001、处理模块2002和发送模块2003还可实现上述方法中第一无线网络管理功能网元的其他操作或功能,此处不再赘述。
在另一个实施例中,图21还出了一种通信装置的结构示意图。本申请实施例所提供的该通信装置210还可用于执行上述图4中接入网网元(例如,RRC网元)的操作。例如:
发送模块2101,用于向无线网络管理功能网元发送接入网网元的信息,接入网网元的信息用于无线网络管理功能网元与接入网网元通过第二服务化接口进行服务调用;处理模 块2102,用于驱动无线网络管理功能网元支持与核心网网元通过第一服务化接口进行服务调用,且驱动无线网络管理功能网元与接入网网元通过第二服务化接口进行服务调用。
可选地,该接入网网元的信息包括以下任意一种或多种信息:接入网网元的标识,接入网网元的路由地址,接入网网元服务的公用陆地移动网PLMN,接入网网元服务的小区标识,接入网网元支持的无线接入类型RAT。
可选地,该装置中的处理模块2102,还用于根据接入网网元中的配置信息确定无线网络管理功能网元;或,该处理模块2102,还用于通过向域名系统DNS服务器查询确定无线网络管理功能网元。
可选地,该装置还可以包括:接收模块,用于从用户设备接收用户设备测量信息;所述发送模块2101,还用于向无线网络管理功能网元发送用户设备测量信息。
此外,基于网络切片的通信装置中的发送模块2101和处理模块2102还可实现上述方法中接入网网元的其他操作或功能,此处不再赘述。
在再一个实施例中,图22还出了一种通信装置的结构示意图。本申请实施例所提供的该通信装置220还可用于执行上述图4中网络存储功能网元(例如,NRF网元)的操作。例如:
接收模块2201,用于从第一无线网络管理功能网元接收第一无线网络管理功能网元的信息;处理模块2202,用于根据第一无线网络管理功能网元的信息,驱动与第一无线网络管理功能网元通过第一服务化接口进行服务化调用;其中,第一无线网络管理功能网元支持与接入网网元通过第二服务化接口进行服务调用的功能。其中,第一无线网络管理功能网元的信息包括以下任意一种或多种信息:第一无线网络管理功能网元的标识,第一无线网络管理功能网元的路由地址,第一无线网络管理功能网元服务的PLMN,第一无线网络管理功能网元服务的小区标识,第一无线网络管理功能网元支持的RAT。
可选地,该装置中的处理模块2202,还用于为第一无线网络管理功能网元查询出为用户设备服务的目标网元。其中,该目标网元可以为第二无线网络管理功能或第二核心网网元。
此外,基于网络切片的通信装置中的接收模块2201和处理模块2202还可实现上述方法中网络存储功能网元的其他操作或功能,此处不再赘述。
图23示出了上述实施例中所涉及的通信装置的另一种可能的结构示意图。该通信装置230包括存储器2301、收发器2302和处理器2303,如图23所示。所述存储器2301用于与处理器2303耦合,其保存该通信装置230必要的计算机程序。
例如,在一个实施例中,处理器2303被配置为第一无线网络管理功能网元的其他操作或功能。收发器2302用于实现通信装置230与第一接入网网元以及第一核心网网元之间的通信。
在另一个实施例中,处理器2303被配置为第一接入网网元的其他操作或功能。收发器2302用于实现通信装置230与第一无线网络管理功能网元以及第一核心网网元之间的通信。
在再一个实施例中,处理器2303被配置为网络存储功能网元的其他操作或功能。收发器2302用于实现通信装置230与第一接入网网元以及第一无线网络管理功能网元之间的通信。
用于执行本申请上述通信设备的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于无线接入网设备中。当然,处理器和存储介质也可以作为分立组件存在于无线接入网设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    第一无线网络管理功能网元从第一接入网网元接收所述第一接入网网元的信息,所述第一无线网络管理功能网元支持与第一核心网网元通过第一服务化接口进行服务调用的功能;
    所述第一无线网络管理功能网元根据所述第一接入网网元的信息与所述第一接入网网元通过第二服务化接口进行服务调用。
  2. 根据权利要求1所述的方法,其特征在于,所述第一接入网网元的信息包括以下任意一种或多种信息:所述第一接入网网元的标识,所述第一接入网网元的路由地址,所述第一接入网网元服务的公用陆地移动网PLMN,所述第一接入网网元服务的小区标识,所述第一接入网网元支持的无线接入类型RAT。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述第一无线网络管理功能网元向网络存储功能网元发送以下任意一种或多种信息:所述第一无线网络管理功能网元的标识,所述第一无线网络管理功能网元的路由地址,所述第一无线网络管理功能网元服务的PLMN,所述第一无线网络管理功能网元服务的小区标识,所述第一无线网络管理功能网元支持的RAT。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    所述第一无线网络管理功能网元根据所述第一无线网络管理功能网元中的配置信息确定所述网络存储功能网元;
    或,
    所述第一无线网络管理功能网元通过向域名系统服务器查询确定所述网络存储功能网元。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,还包括:
    所述第一无线网络管理功能网元从第二接入网网元接收用户设备测量信息,所述第二接入网网元为用户设备提供服务;
    所述第一无线网络管理功能网元根据所述用户设备测量信息确定目标网元;
    所述第一无线网络管理功能网元从所述第二接入网网元接收用户设备上下文信息;
    所述第一无线网络管理功能网元向所述目标网元发送所述用户设备上下文信息。
  6. 根据权利要求5所述的方法,其特征在于,所述目标网元为第三接入网网元、第二无线网络管理功能网元或第二核心网网元。
  7. 根据权利要求6所述的方法,其特征在于,若所述目标网元为所述第二无线网络管理功能网元或所述第二核心网网元,则所述第一无线网络管理功能网元根据所述用户设备测量信息确定目标网元,包括:
    所述第一无线网络管理功能网元根据所述用户设备测量信息通过所述第一无线网络管理功能网元中的配置信息确定所述目标网元,或,所述第一无线网络管理功能网元根据所述用户设备测量信息通过查询网络存储功能网元确定所述目标网元。
  8. 一种通信方法,其特征在于,包括:
    接入网网元向无线网络管理功能网元发送所述接入网网元的信息,所述无线网络管理 功能网元支持与核心网网元通过第一服务化接口进行服务调用的功能,所述接入网网元的信息用于所述无线网络管理功能网元与所述接入网网元通过第二服务化接口进行服务调用;
    所述接入网网元与所述无线网络管理功能网元通过所述第二服务化接口进行服务调用。
  9. 根据权利要求8所述的方法,其特征在于,所述接入网网元的信息包括以下任意一种或多种信息:所述接入网网元的标识,所述接入网网元的路由地址,所述接入网网元服务的公用陆地移动网PLMN,所述接入网网元服务的小区标识,所述接入网网元支持的无线接入类型RAT。
  10. 根据权利要求8所述的方法,其特征在于,还包括:
    所述接入网网元根据所述接入网网元中的配置信息确定所述无线网络管理功能网元;
    或,
    所述接入网网元通过向域名系统DNS服务器查询确定所述无线网络管理功能网元。
  11. 根据权利要求8所述的方法,其特征在于,还包括:
    所述接入网网元从用户设备接收用户设备测量信息;
    所述接入网网元向所述无线网络管理功能网元发送所述用户设备测量信息。
  12. 一种通信方法,其特征在于,包括:
    网络存储功能网元从第一无线网络管理功能网元接收所述第一无线网络管理功能网元的信息;
    所述网络存储功能网元根据所述第一无线网络管理功能网元的信息,与所述第一无线网络管理功能网元通过第一服务化接口进行服务化调用;
    其中,所述第一无线网络管理功能网元支持与接入网网元通过第二服务化接口进行服务调用的功能。
  13. 根据权利要求12所述的方法,其特征在于,所述第一无线网络管理功能网元的信息包括以下任意一种或多种信息:所述第一无线网络管理功能网元的标识,所述第一无线网络管理功能网元的路由地址,所述第一无线网络管理功能网元服务的PLMN,所述第一无线网络管理功能网元服务的小区标识,所述第一无线网络管理功能网元支持的RAT。
  14. 根据权利要求12所述的方法,其特征在于,还包括:
    网络存储功能网元为所述第一无线网络管理功能网元查询出为用户设备服务的目标网元。
  15. 根据权利要求14所述的方法,其特征在于,所述目标网元为第二无线网络管理功能或第二核心网网元。
  16. 一种通信装置,其特征在于,包括:
    接收模块,用于从第一接入网网元接收所述第一接入网网元的信息;
    处理模块,用于驱动与第一核心网网元通过第一服务化接口进行服务调用,且驱动与所述第一接入网网元通过第二服务化接口进行服务调用;
    发送模块,用于根据所述第一接入网网元的信息向所述第一接入网网元通过第二服务化接口进行服务调用。
  17. 根据权利要求16所述的装置,其特征在于,所述第一接入网网元的信息包括以下任意一种或多种信息:所述第一接入网网元的标识,所述第一接入网网元的路由地址,所述第一接入网网元服务的公用陆地移动网PLMN,所述第一接入网网元服务的小区标识,所述第一接入网网元支持的无线接入类型RAT。
  18. 根据权利要求16或17所述的装置,其特征在于,
    所述发送模块,还用于向网络存储功能网元发送以下任意一种或多种信息:第一无线网络管理功能网元的标识,所述第一无线网络管理功能网元的路由地址,所述第一无线网络管理功能网元服务的PLMN,所述第一无线网络管理功能网元服务的小区标识,所述第一无线网络管理功能网元支持的RAT。
  19. 根据权利要求18所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一无线网络管理功能网元中的配置信息确定所述网络存储功能网元;
    或,
    所述处理模块,还用于通过向域名系统服务器查询确定所述网络存储功能网元。
  20. 根据权利要求16至19中任一项所述的装置,其特征在于,
    所述接收模块,还用于从第二接入网网元接收用户设备测量信息,所述第二接入网网元为用户设备提供服务;
    所述处理模块,还用于根据所述用户设备测量信息确定目标网元;
    所述接收模块,还用于从所述第二接入网网元接收用户设备上下文信息;
    所述发送模块,还用于向所述目标网元发送所述用户设备上下文信息。
  21. 根据权利要求20所述的装置,其特征在于,所述目标网元为第三接入网网元、第二无线网络管理功能网元或第二核心网网元。
  22. 根据权利要求21所述的装置,其特征在于,若所述目标网元为所述第二无线网络管理功能网元或所述第二核心网网元,则所述处理模块,具体用于:
    根据所述用户设备测量信息通过所述第一无线网络管理功能网元中的配置信息确定所述目标网元,或,所述第一无线网络管理功能网元根据所述用户设备测量信息通过查询网络存储功能网元确定所述目标网元。
  23. 一种通信装置,其特征在于,包括:
    发送模块,用于向无线网络管理功能网元发送接入网网元的信息,所述接入网网元的信息用于所述无线网络管理功能网元与所述接入网网元通过第二服务化接口进行服务调用;
    处理模块,用于驱动所述无线网络管理功能网元支持与核心网网元通过第一服务化接口进行服务调用,且驱动所述无线网络管理功能网元与所述接入网网元通过所述第二服务化接口进行服务调用。
  24. 根据权利要求23所述的装置,其特征在于,所述接入网网元的信息包括以下任意一种或多种信息:所述接入网网元的标识,所述接入网网元的路由地址,所述接入网网元服务的公用陆地移动网PLMN,所述接入网网元服务的小区标识,所述接入网网元支持的无线接入类型RAT。
  25. 根据权利要求23所述的装置,其特征在于,
    所述处理模块,还用于根据所述接入网网元中的配置信息确定所述无线网络管理功能网元;
    或,
    所述处理模块,还用于通过向域名系统DNS服务器查询确定所述无线网络管理功能网元。
  26. 根据权利要求23所述的装置,其特征在于,还包括:
    接收模块,用于从用户设备接收用户设备测量信息;
    所述发送模块,还用于向所述无线网络管理功能网元发送所述用户设备测量信息。
  27. 一种通信装置,其特征在于,包括:
    接收模块,用于从第一无线网络管理功能网元接收所述第一无线网络管理功能网元的信息;
    处理模块,用于根据所述第一无线网络管理功能网元的信息,驱动与所述第一无线网络管理功能网元通过第一服务化接口进行服务化调用;
    其中,所述第一无线网络管理功能网元支持与接入网网元通过第二服务化接口进行服务调用的功能。
  28. 根据权利要求27所述的装置,其特征在于,所述第一无线网络管理功能网元的信息包括以下任意一种或多种信息:所述第一无线网络管理功能网元的标识,所述第一无线网络管理功能网元的路由地址,所述第一无线网络管理功能网元服务的PLMN,所述第一无线网络管理功能网元服务的小区标识,所述第一无线网络管理功能网元支持的RAT。
  29. 根据权利要求27所述的装置,其特征在于,还包括:
    所述处理模块,还用于为所述第一无线网络管理功能网元查询出为用户设备服务的目标网元。
  30. 根据权利要求29所述的装置,其特征在于,所述目标网元为第二无线网络管理功能或第二核心网网元。
PCT/CN2019/102676 2018-09-17 2019-08-27 一种通信方法和装置 WO2020057328A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19862599.8A EP3840527A4 (en) 2018-09-17 2019-08-27 COMMUNICATION PROCESS AND APPARATUS
US17/202,685 US11979818B2 (en) 2018-09-17 2021-03-16 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811082865.1 2018-09-17
CN201811082865.1A CN110933623B (zh) 2018-09-17 2018-09-17 一种通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/202,685 Continuation US11979818B2 (en) 2018-09-17 2021-03-16 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020057328A1 true WO2020057328A1 (zh) 2020-03-26

Family

ID=69855753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102676 WO2020057328A1 (zh) 2018-09-17 2019-08-27 一种通信方法和装置

Country Status (4)

Country Link
US (1) US11979818B2 (zh)
EP (1) EP3840527A4 (zh)
CN (1) CN110933623B (zh)
WO (1) WO2020057328A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669290A (zh) * 2020-05-29 2020-09-15 中国联合网络通信集团有限公司 网元管理方法、管理服务器和存储介质
CN113573326A (zh) * 2020-04-28 2021-10-29 华为技术有限公司 一种地址获取方法及装置
WO2022057995A1 (en) * 2020-09-15 2022-03-24 Nokia Technologies Oy Communication between cn and an
WO2022128125A1 (en) * 2020-12-18 2022-06-23 Nokia Technologies Oy Access network with service-based interfaces
EP4192104A4 (en) * 2020-08-18 2024-04-24 Huawei Tech Co Ltd MOBILITY MANAGEMENT METHOD AND APPARATUS
EP4266733A4 (en) * 2021-01-19 2024-05-08 Vivo Mobile Communication Co Ltd ACCESS NETWORK SYSTEM

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112022000849A2 (pt) * 2019-07-29 2022-03-08 Nec Corp Nó mestre, nó secundário e método para os mesmos
CN113891340B (zh) * 2020-07-02 2023-10-27 中国移动通信集团安徽有限公司 自适应流控方法、装置、计算设备和存储介质
CN114630345A (zh) * 2020-12-14 2022-06-14 中国移动通信有限公司研究院 一种接入网、通信系统及服务提供方法、存储介质
CN112671565B (zh) * 2020-12-16 2023-02-21 中盈优创资讯科技有限公司 一种基于信令链路的5g核心网拓扑发现方法及装置
EP4277438A4 (en) * 2021-01-15 2024-02-28 Guangdong Oppo Mobile Telecommunications Corp Ltd COMMUNICATION METHOD AND APPARATUS, DEVICE, AND STORAGE MEDIUM
CN114867004A (zh) * 2021-02-03 2022-08-05 维沃移动通信有限公司 核心网系统
CN113015163A (zh) * 2021-03-05 2021-06-22 成都中科微信息技术研究院有限公司 一种提高ue接入5g-nr基站成功率的方法以及ue入网方法
US20220353263A1 (en) * 2021-04-28 2022-11-03 Verizon Patent And Licensing Inc. Systems and methods for securing network function subscribe notification process
CN115696631A (zh) * 2021-07-30 2023-02-03 华为技术有限公司 通信方法及相关装置
CN113676836B (zh) * 2021-08-05 2022-11-04 重庆智铸华信科技有限公司 一种无线通信方法、装置、电子设备及存储介质
CN113692006B (zh) * 2021-08-24 2022-05-13 北京云智软通信息技术有限公司 通信管理方法、接入网单元及通信系统
WO2023061577A1 (en) * 2021-10-13 2023-04-20 Nokia Technologies Oy Mobility in sba access network
WO2023212930A1 (zh) * 2022-05-06 2023-11-09 北京小米移动软件有限公司 通信方法、装置、设备以及存储介质
CN117528845A (zh) * 2022-07-30 2024-02-06 华为技术有限公司 一种传输消息的方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431807A (zh) * 2007-11-05 2009-05-13 上海华为技术有限公司 移动台代理、基站子系统和网络适配方法
US7796514B2 (en) * 2008-12-11 2010-09-14 At&T Intellectual Property I, L.P. System and method for multi-services packet network traffic engineering
CN103945352A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 信息处理方法及装置、无线接入网系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586847B2 (en) * 2004-03-31 2009-09-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for network imposed packet data flow control
CN102695290B (zh) * 2011-03-22 2017-03-15 中兴通讯股份有限公司 数据传递方法及系统
WO2014175919A1 (en) * 2013-04-26 2014-10-30 Intel IP Corporation Shared spectrum reassignment in a spectrum sharing context
US9313711B2 (en) * 2013-08-30 2016-04-12 Qualcomm Incorporated Enhanced out-of-service scan and system selection for dual-subscription, dual-active devices
EP3266241B1 (en) * 2015-03-04 2020-06-03 Deutsche Telekom AG Method for improved communication between network nodes of a mobile communication network, mobile communication network, program and computer program product
CN107409436B (zh) * 2015-03-27 2020-02-21 华为技术有限公司 一种云平台、运行应用的方法及接入网单元
US10470218B2 (en) * 2016-05-16 2019-11-05 Cisco Technology, Inc. System and method for optimized idle and active state transitions of user equipment in a network environment
KR102224248B1 (ko) * 2017-06-09 2021-03-08 삼성전자주식회사 통신 시스템에서 PDU(Protocol Data Unit) 세션을 설립하는 방법
US11128985B2 (en) * 2017-08-14 2021-09-21 Qualcomm Incorporated Systems and methods for 5G location support using service based interfaces
WO2020034371A1 (en) * 2018-10-09 2020-02-20 Zte Corporation Managing access and mobility functions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431807A (zh) * 2007-11-05 2009-05-13 上海华为技术有限公司 移动台代理、基站子系统和网络适配方法
US7796514B2 (en) * 2008-12-11 2010-09-14 At&T Intellectual Property I, L.P. System and method for multi-services packet network traffic engineering
CN103945352A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 信息处理方法及装置、无线接入网系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3840527A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573326A (zh) * 2020-04-28 2021-10-29 华为技术有限公司 一种地址获取方法及装置
CN113573326B (zh) * 2020-04-28 2023-08-22 华为技术有限公司 一种地址获取方法及装置
US11895083B2 (en) 2020-04-28 2024-02-06 Huawei Technologies Co., Ltd. Address obtaining method and an address obtaining apparatus
CN111669290A (zh) * 2020-05-29 2020-09-15 中国联合网络通信集团有限公司 网元管理方法、管理服务器和存储介质
CN111669290B (zh) * 2020-05-29 2023-04-18 中国联合网络通信集团有限公司 网元管理方法、管理服务器和存储介质
EP4192104A4 (en) * 2020-08-18 2024-04-24 Huawei Tech Co Ltd MOBILITY MANAGEMENT METHOD AND APPARATUS
WO2022057995A1 (en) * 2020-09-15 2022-03-24 Nokia Technologies Oy Communication between cn and an
WO2022128125A1 (en) * 2020-12-18 2022-06-23 Nokia Technologies Oy Access network with service-based interfaces
EP4266733A4 (en) * 2021-01-19 2024-05-08 Vivo Mobile Communication Co Ltd ACCESS NETWORK SYSTEM

Also Published As

Publication number Publication date
CN110933623B (zh) 2021-08-31
US11979818B2 (en) 2024-05-07
CN110933623A (zh) 2020-03-27
US20210204199A1 (en) 2021-07-01
EP3840527A4 (en) 2021-11-03
EP3840527A1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
WO2020057328A1 (zh) 一种通信方法和装置
CN108260162B (zh) 一种5g系统的sdap层功能实现方法
WO2018171724A1 (zh) 控制终端设备状态的方法、终端设备和网络设备
WO2020057401A1 (zh) 一种网元选择方法及装置
WO2021164564A1 (zh) 传输组播业务的方法和装置
KR20200009096A (ko) 정보 처리 방법 및 관련 장치
KR102337091B1 (ko) 다중 접속 통신 방법, 장치 및 단말
WO2021259157A1 (zh) 中继确定方法、配置方法、装置、终端及网络侧设备
WO2019165882A1 (zh) 一种切片信息的获取方法和中继装置
KR20140028100A (ko) 중계 노드에 대한 네트워크 부착 방법 및 관련 장치
EP4271043A1 (en) Communication method, apparatus and system
WO2021097858A1 (zh) 一种通信方法及装置
US9609561B2 (en) Mobile communications method, device, and system
CN111385851B (zh) 一种通信方法及装置
CN112368976B (zh) 用于执行组通信的终端和方法
US20230018378A1 (en) Parameter configuration method, apparatus and system, device and storage medium
WO2022022082A1 (zh) 通信方法和通信装置
WO2021159238A1 (zh) 一种数据处理方法、通信装置和通信系统
WO2021078170A1 (zh) 一种通信方法及装置
JP2024507928A (ja) マルチキャスト/ブロードキャストサービス通信方法、装置、およびシステム
WO2022021251A1 (zh) 一种通信方法、装置及系统
WO2023015973A1 (zh) 一种网络切片准入控制方法和装置
WO2023205959A1 (zh) 通信方法及通信装置
WO2023237046A1 (zh) 一种iab节点的移动性管理方法及相关设备
WO2023015454A1 (zh) 路径建立方法、选择方法、装置、终端设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019862599

Country of ref document: EP

Effective date: 20210316