WO2020057109A1 - 真空腔中半导体晶圆的可控快速冷却系统及方法 - Google Patents

真空腔中半导体晶圆的可控快速冷却系统及方法 Download PDF

Info

Publication number
WO2020057109A1
WO2020057109A1 PCT/CN2019/082025 CN2019082025W WO2020057109A1 WO 2020057109 A1 WO2020057109 A1 WO 2020057109A1 CN 2019082025 W CN2019082025 W CN 2019082025W WO 2020057109 A1 WO2020057109 A1 WO 2020057109A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling system
processed
semiconductor wafer
vacuum chamber
rapid cooling
Prior art date
Application number
PCT/CN2019/082025
Other languages
English (en)
French (fr)
Inventor
魏旭东
夏伟锋
Original Assignee
上海迈铸半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海迈铸半导体科技有限公司 filed Critical 上海迈铸半导体科技有限公司
Publication of WO2020057109A1 publication Critical patent/WO2020057109A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers

Definitions

  • the invention relates to the field of semiconductor technology, in particular to a controllable rapid cooling system and method for a semiconductor wafer in a vacuum cavity.
  • an object of the present invention is to provide a controllable rapid cooling system and method for a semiconductor wafer in a vacuum chamber, which is used to solve the problem that wafers cannot be carried out in a vacuum chamber in the prior art.
  • the problem of fast cooling is to provide a controllable rapid cooling system and method for a semiconductor wafer in a vacuum chamber, which is used to solve the problem that wafers cannot be carried out in a vacuum chamber in the prior art.
  • the present invention provides a controllable rapid cooling system for a semiconductor wafer in a vacuum chamber.
  • the controllable rapid cooling system for a semiconductor wafer in a vacuum chamber includes:
  • a vacuum chamber including a chamber housing and a vacuum receiving chamber located in the chamber housing, and an opening communicating with the vacuum receiving chamber is formed on the chamber housing;
  • a heater located in the vacuum chamber, for placing a structure to be processed and heating the structure to be processed, the structure to be processed includes at least a wafer to be processed;
  • a ring-shaped adjustable support structure inserted into the vacuum chamber through the opening, and pressed onto the structure to be processed;
  • a cooling system is at least partially located in the ring-shaped adjustable support structure, and is configured to perform rapid cooling treatment on the structure to be processed after the heat treatment.
  • the ring-shaped adjustable support structure includes a ring-shaped support cylinder and a flange located on the periphery of the bottom of the ring-shaped support cylinder, and the flange is connected to the bottom of the ring-shaped support cylinder.
  • the structure to be processed further includes a cover plate, which is located on a surface of the wafer to be processed away from the heater.
  • the surface of the cover plate is a rough surface after being roughened.
  • controllable rapid cooling system for the semiconductor wafer in the vacuum chamber further includes:
  • a first sealing structure located at the periphery of the ring-shaped adjustable support structure, and used to realize the vacuum chamber being sealed from the outside;
  • a second sealing structure is located between the annular adjustable support structure and the structure to be processed.
  • the first sealing structure includes a bellows
  • the annular adjustable support structure is connected to the chamber housing via the bellows.
  • the first sealing structure includes a sealing ring located between the adjustable support structure and the chamber housing.
  • the second sealing structure includes a high-temperature-resistant seal.
  • controllable rapid cooling system for the semiconductor wafer in the vacuum chamber further includes a metal film covering the surface of the structure to be processed and located between the second sealing structure and the to-be-processed Between structures.
  • the cooling system includes:
  • a gas supply pipeline one end of which is connected to the cooling gas source
  • One end of at least one air blowing pipe is connected to one end of the air supply pipe far from the cooling gas source, and the other end is inserted into the annular adjustable support structure.
  • the cooling system further includes an air volume control unit, and the air volume control unit is located on the air supply line.
  • the cooling system includes:
  • a liquid supply pipeline one end of which is connected to the cooling liquid source
  • One end of the liquid injection pipeline is connected to one end of the liquid supply pipeline far from the cooling liquid source, and the other end extends into the annular adjustable support structure;
  • One end of the liquid discharge pipeline communicates with the inside of the ring-shaped adjustable support structure via the lower part of the ring-shaped adjustable support structure, and the other end extends outside the vacuum chamber.
  • the cooling system includes:
  • a cooling block located in the ring-shaped adjustable support structure
  • a driving device connected to the cooling block for driving the cooling block to move up and down;
  • the temperature control module is connected to the cooling block and is used to control the temperature of the cooling block.
  • the invention also provides a controllable rapid cooling method for a semiconductor wafer in a vacuum chamber.
  • the controllable rapid cooling method for a semiconductor wafer in a vacuum chamber includes the following steps:
  • the rapid cooling rate of the structure to be processed is 10 ° C./second or more.
  • controllable rapid cooling system and method for semiconductor wafers in the vacuum cavity of the present invention have the following beneficial effects:
  • the controllable rapid cooling system for semiconductor wafers in the vacuum chamber of the present invention can quickly cool the structure to be cooled in the vacuum chamber without affecting the normal operation of the vacuum chamber; and the cooling rate can be flexibly adjusted according to needs.
  • FIGS. 1 to 4 are schematic structural diagrams of a controllable rapid cooling system for a semiconductor wafer in a vacuum chamber in different examples provided in Embodiment 1 of the present invention.
  • FIG. 5 shows a curve of the temperature of the cover plate and the wafer to be processed over time during the cooling process of the controllable rapid cooling system for the semiconductor wafer in the vacuum chamber provided in the first embodiment of the present invention, where the dotted line is the temperature of the cover plate
  • the solid line of the curve over time is a curve of the temperature of the wafer to be processed over time.
  • FIG. 6 is a schematic structural diagram of a controllable rapid cooling system for a semiconductor wafer in a vacuum chamber according to an example provided in Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a controllable rapid cooling system for a semiconductor wafer in a vacuum chamber according to an example provided in Embodiment 3 of the present invention.
  • FIG. 8 is a flowchart of a controllable rapid cooling method for a semiconductor wafer in a vacuum chamber provided in Embodiment 4 of the present invention.
  • the present invention provides a controllable rapid cooling system for a semiconductor wafer in a vacuum chamber.
  • the controllable rapid cooling system for a semiconductor wafer in the vacuum chamber includes: a vacuum chamber 10, and the vacuum chamber 10
  • the chamber housing 101 includes a chamber housing 101 and a vacuum accommodating chamber 102 located in the chamber housing 101.
  • the chamber housing 101 is formed with an opening 103 communicating with the vacuum accommodating chamber 102; a heater 11
  • the heater 11 is located in the vacuum chamber 10 and is used for placing the structure 12 to be processed and heating the structure 12 to be processed.
  • the structure 12 to be processed includes at least the wafer 121 to be processed.
  • An adjustment support structure 13 is inserted into the vacuum chamber 10 through the opening 103 and is pressed onto the structure 12 to be processed; a cooling system 14 which is at least A portion is located in the ring-shaped adjustable support structure 13 and is used to perform rapid cooling treatment on the structure 12 to be processed after the heat treatment.
  • the material of the wafer 121 to be processed may include silicon, glass, ceramic, silicon carbide (SiC), or gallium nitride (GaN).
  • the to-be-processed wafer 121 may include, but is not limited to, wafers, such as 4-inch wafers, 6-inch wafers, 8-inch wafers, or 12-inch wafers; the to-be-processed wafer 121 may also be Including small cube chips drawn by a dicing machine and so on.
  • the wafer 121 to be processed is immobile within the vacuum chamber 10.
  • the wafer 121 to be processed may be a single wafer, or multiple wafers may be stacked and cooled at the same time.
  • the “rapid cooling process” in the present invention refers to a cooling process in which the temperature reduction rate reaches at least 10 ° C./second.
  • the ring-shaped adjustable support structure 13 may include a ring-shaped support cylinder 131 and a flange 132, and the flange 132 is located at the bottom periphery of the ring-shaped support cylinder 131. Connected at the bottom.
  • the structure to be processed may further include a cover plate 122 located on a surface of the wafer to be processed 121 away from the heater 11. Since the wafer to be processed 121 is a process wafer, the upper surface of the wafer to be processed 121 is uneven. For example, the upper surface of the wafer to be processed 121 may be formed with holes or grooves. At this time, If the annular adjustable support structure 13 is directly pressed on the upper surface of the wafer 121 to be processed, it is difficult to achieve a good contact between the annular adjustable support structure 13 and the wafer 121 to be processed. The vacuum chamber 10 cannot be sealed from the outside.
  • the cover plate 122 By providing the cover plate 122, the cover plate 122 can be a wafer with a flat surface, etc., so that the vacuum chamber 10 can be isolated and sealed from the outside. By adjusting the thickness and material of the cover plate 122 (for example, selecting materials with different specific heat capacity and thermal conductivity), the cooling speed of the wafer 121 to be processed under the cover plate 122 can be controlled.
  • the surface of the cover plate 122 is a rough surface after being roughened.
  • a contact area between a cooling medium (such as a cooling gas or a cooling liquid) and the cover plate 122 can be increased during cooling, thereby increasing cooling Effect to accelerate the cooling rate.
  • the diameter of the structure 12 to be processed needs to be greater than or equal to the inner diameter of the ring-shaped adjustable support structure 13 to ensure that the ring-shaped adjustable support structure 13 is pressed against the structure 12 to be processed.
  • the vacuum accommodating chamber 102 is sealed from the outside to ensure the degree of vacuum inside the vacuum accommodating chamber 102.
  • controllable rapid cooling system for a semiconductor wafer in the vacuum chamber further includes a first sealing structure and a second sealing structure, wherein the first sealing structure is located at the periphery of the ring-shaped adjustable support structure 13 and The second sealing structure is located between the annular adjustable support structure 13 and the structure 12 to be processed, and is also used to realize the vacuum chamber 10 and the outside. Isolated seal.
  • the opening 103 is provided on the chamber housing 101 of the vacuum chamber 10, after the annular adjustable support structure 13 is placed in the opening 103, in order to ensure that the vacuum chamber 10 can For normal operation, the vacuum receiving chamber 102 in the vacuum chamber 10 needs to be isolated from the outside; at this time, since the ring-shaped adjustable support structure 13 has a through hole penetrating up and down for exposing the to-be-treated Structure 12, at this time, the second sealing structure needs to be provided between the annular adjustable support structure 13 and the structure 12 to be processed to isolate the vacuum receiving chamber 102 from the outside;
  • the first sealing structure is provided on the periphery of the ring-shaped adjustable support structure 13 to seal the ring-shaped adjustable support structure 13 and the chamber housing 101.
  • the first sealing structure may include a bellows 151, and the annular adjustable support structure 13 is connected to the chamber housing 101 via the bellows 151.
  • the vacuum containing chamber 102 is isolated from the outside.
  • the first sealing structure may include a sealing ring 152 located between the adjustable support structure 13 and the chamber housing 101.
  • a sealing ring 152 located between the adjustable support structure 13 and the chamber housing 101.
  • the second sealing structure includes a high-temperature-resistant seal 161, and when the ring-shaped adjustable support structure 13 is pressed onto the structure 12 to be processed, the vacuum receiving chamber is realized via the high-temperature-resistant seal 161
  • the chamber 102 is hermetically sealed from the outside.
  • high temperature herein means that the temperature is greater than 100 ° C.
  • the controllable rapid cooling system of the semiconductor wafer in the vacuum chamber further includes a metal film 17 covering the surface of the structure to be processed and located on the surface of the structure to be processed. Between the second sealing structure and the structure to be processed. The metal film 17 can further seal the vacuum chamber 10 so as to ensure the degree of vacuum in the vacuum chamber 10.
  • the cooling system 14 includes: a cooling gas source 140; a gas supply pipe 141, one end of which is connected to the cooling gas source 140; at least one blow pipe 142, one end of the blow pipe 142 One end of the gas supply pipe 141 away from the cooling gas source 140 is connected, and the other end is inserted into the annular adjustable support structure 13.
  • the number of the air blowing pipes 142 can be set according to actual needs. For example, if the area of the wafer 121 to be processed is small or a plurality of small-sized structures cut out, the air blowing pipes The number of the channels 142 may be one. If the area of the wafer 121 to be processed is large, a plurality of the blowing pipes 142 may be used to blow the cooling gas to the surface of the wafer 121 at the same time.
  • the cooling gas provided by the cooling gas source 140 may be a gas below zero degrees.
  • the cooling system 14 further includes an air volume control unit 143, which is located on the air supply line 141.
  • the air volume control unit 143 is used to control the speed of the gas blowing from the air blowing pipe 142 toward the structure 12 to be processed.
  • the to-be-processed gas can be controlled.
  • the working principle of the controllable rapid cooling system for the semiconductor wafer in the vacuum chamber according to this embodiment is: after the structure to be processed 12 is heated to the outside, the heater 11 is turned off; the air blowing pipe 142 is directed toward the A cooling gas is blown on the surface of the structure 12 to be processed at a high speed, and the cooling gas instantly removes a large amount of heat of the structure 12 to be processed, thereby achieving rapid temperature reduction of the structure 12 to be processed.
  • the controllable rapid cooling system for the semiconductor wafer in the vacuum cavity according to the present invention can realize rapid cooling of the cover plate 122 and the wafer 121 to be processed, and the cooling rate of both can be reduced. 10 ° C / sec or more.
  • the controlled rapid cooling system for semiconductor wafers in the vacuum chamber described in this embodiment can be used without transferring the structure 12 to be processed out of the vacuum chamber without affecting the normal operation of the vacuum chamber 10 10, the structure 12 to be processed in the vacuum chamber 10 can be rapidly cooled; and the cooling rate of the structure 12 to be processed can be flexibly adjusted as required.
  • the present invention also provides a controllable rapid cooling system for semiconductor wafers in a vacuum chamber.
  • the specifics of the controllable rapid cooling system for semiconductor wafers in a vacuum chamber described in this embodiment are specific.
  • the structure is substantially the same as the specific structure of the controllable rapid cooling system for the semiconductor wafer in the vacuum chamber described in the first embodiment. The difference between the two is that the specific structure and cooling principle of the cooling system 14 are different.
  • the embodiment is as follows:
  • the cooling system 14 includes a cooling gas source 140, an air supply pipe 141, at least one air blowing pipe 142, and an air volume control unit 143.
  • the structure 12 to be processed is rapidly cooled by using an air cooling method.
  • the cooling system 14 includes: a cooling liquid source 144; a liquid supply line 145, one end of the liquid supply line 145 is connected to the cooling liquid source 144; One end of the liquid spraying pipe 146 is connected to one end of the liquid supply pipe 145 away from the cooling liquid source 144, and the other end extends into the annular adjustable support structure 13 and is used for the structure to be processed 122 surface Supply cooling liquid; a drain line (not shown), one end of the drain line communicates with the inside of the ring-shaped adjustable support structure 13 through the lower part of the ring-shaped adjustable support structure 13 and the other end extends to the The outside of the vacuum chamber 10 is described. That is, the controllable rapid cooling system for the semiconductor wafer in the vacuum chamber described in this embodiment uses water cooling to rapidly cool the structure 12 to be processed.
  • the cooling liquid may be, but is not limited to, relatively low temperature (such as water near zero degrees); the cooling rate of the structure 12 to be processed can be controlled by changing the material of the cooling liquid and the temperature of the cooling liquid.
  • the working principle of the controllable rapid cooling system for semiconductor wafers in the vacuum chamber described in this embodiment is: after the structure 12 to be processed is heated to the outside, the heater 11 is turned off; A cooling liquid is sprayed on the surface of the structure 12 to be processed, and the cooling liquid instantly removes a large amount of heat of the structure 12 to be processed, thereby achieving rapid cooling of the structure 12 to be processed.
  • FIG. 6 in this embodiment only uses the first sealing structure as a corrugated tube 151 and does not include the metal film 17 as an example.
  • the first sealing structure corresponding to the first embodiment Other examples of and the examples including the metal film 17 should be within the protection scope of this embodiment.
  • the present invention also provides a controllable rapid cooling system for a semiconductor wafer in a vacuum chamber.
  • the specifics of the controllable rapid cooling system for a semiconductor wafer in a vacuum chamber described in this embodiment are specific.
  • the structure is substantially the same as the specific structure of the controllable rapid cooling system for the semiconductor wafer in the vacuum chamber described in the first embodiment.
  • the difference between the two is that the specific structure and cooling principle of the cooling system 14 are different.
  • the embodiment is as follows:
  • the cooling system 14 includes a cooling gas source 140, an air supply pipe 141, at least one air blowing pipe 142, and an air volume control unit 143.
  • the structure 12 to be processed is rapidly cooled by using an air cooling method.
  • the cooling system 14 includes a cooling block 147 located in the ring-shaped adjustable support structure 13; a driving device (not shown), the driving device and the cooling device; A block 147 is connected to drive the cooling block 147 to move up and down; a temperature control module 148 is connected to the cooling block 147 and is used to control the temperature of the cooling block 147
  • the driving device may be a driving motor or the like.
  • the cooling rate of the structure 12 to be processed can be controlled by changing the material of the cooling block 147 and the temperature of the cooling block 147.
  • the working principle of the controllable rapid cooling system for semiconductor wafers in the vacuum chamber described in this embodiment is: after the structure to be processed 12 is heated to the outside, the heater 11 is turned off; the driving device drives the cooling The block 147 is moved downward until it is close to the structure 12 to be processed, and the cooling block 147 instantly removes a large amount of heat of the structure 12 to be processed, thereby achieving rapid cooling of the structure 12 to be processed.
  • FIG. 7 in this embodiment only uses the first sealing structure as a bellows 151 and does not include the metal film 17 as an example.
  • the first sealing structure corresponding to the first embodiment Other examples of and the examples including the metal film 17 should be within the protection scope of this embodiment.
  • the dotted rectangular frame above the cooling block 147 in FIG. 7 shows a position diagram when the cooling block 147 is not lowered.
  • the present invention also provides a controllable rapid cooling method for a semiconductor wafer in a vacuum chamber.
  • the controllable rapid cooling method for a semiconductor wafer in a vacuum chamber includes the following steps:
  • the controllable rapid cooling system for the semiconductor wafer in the vacuum chamber as described in the first embodiment is provided in step 1).
  • the blowing pipe 142 is used to blow a cooling gas at a high speed to the surface of the structure 12 to be processed, and the cooling gas will heat the heat of the structure 12 A large number of them are taken away in an instant, thereby achieving rapid cooling of the structure 12 to be processed.
  • controllable rapid cooling system of the semiconductor wafer in the vacuum chamber as described in the second embodiment is provided in step 1).
  • the specific structure of the controllable rapid cooling system of the semiconductor wafer in the vacuum chamber is as follows: Refer to the second embodiment, which will not be repeated here.
  • the liquid spraying pipe 46 is used to spray a cooling liquid onto the surface of the structure 12 to be processed. A large amount of heat is taken away instantaneously, thereby achieving rapid cooling of the structure 12 to be processed.
  • controllable rapid cooling system for the semiconductor wafer in the vacuum chamber as described in the third embodiment is provided in step 1).
  • the specific structure of the controllable rapid cooling system for the semiconductor wafer in the vacuum chamber is as follows: Refer to the third embodiment, which will not be repeated here.
  • the cooling device 147 is driven to move downward by the driving device until it is close to the structure 12 to be processed, and the cooling block 147 will A large amount of heat of the structure 12 to be processed is taken away instantly, so as to achieve rapid cooling of the structure 12 to be processed.
  • the cooling rate of the structure 12 to be processed may be 10 ° C./second or more.
  • the cooling rate in the first second may reach greater than 100 ° C./second.
  • the controllable rapid cooling system and method for semiconductor wafers in a vacuum cavity includes: a vacuum chamber, and the vacuum chamber includes a cavity.
  • the structure to be processed includes at least a wafer to be processed; a ring-shaped adjustable support structure is inserted into the vacuum chamber through the opening, and is pressed into the vacuum chamber.
  • a cooling system is at least partially located in the ring-shaped adjustable support structure, and is used to perform rapid cooling processing on the structure to be processed after heat treatment.
  • the controllable rapid cooling system for semiconductor wafers in the vacuum chamber of the present invention can quickly cool the structure to be cooled in the vacuum chamber without affecting the normal operation of the vacuum chamber; and the cooling rate can be flexibly adjusted according to needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本发明提供一种真空腔中半导体晶圆的可控快速冷却系统及方法,真空腔中半导体晶圆的可控快速冷却系统包括:真空腔室,真空腔室包括腔室壳体及位于腔室壳体内的真空容纳腔室,腔室壳体上形成有与真空容纳腔室相连通的开口;加热器,位于真空腔室内,用于放置待处理结构,并对待处理结构进行加热,待处理结构至少包括待处理晶圆;环形可调节支撑结构,插入至真空腔室内,且压置于待处理结构上;冷却系统,至少部分位于环形可调节支撑结构内。本发明的真空腔中半导体晶圆的可控快速冷却系统可以在不影响真空腔室正常工作的前提下对真空腔室内待冷却的结构进行快速冷却;且可以根据需要灵活调节冷却速率。

Description

真空腔中半导体晶圆的可控快速冷却系统及方法 技术领域
本发明涉及半导体技术领域,特别是涉及一种真空腔中半导体晶圆的可控快速冷却系统及方法。
背景技术
在半导体领域的晶圆加工处理方面,在某些特殊的工艺需要对高温处理后的晶圆实施快速的冷却,在快速冷却的过程中,冷却速率一般大于10℃/秒,最高甚至可达到大于100℃/秒。目前,对晶圆进行快速冷却需要特殊的结构来实现,而对于真空腔室内高温处理后的晶圆,由于目前常用的晶圆处理工艺都不需要这种快速冷却效果,目前的电子工业专业设备都不具备将晶圆在真空腔室内进行快速冷却的能力,无法实现对晶圆在真空腔室内进行快速冷却。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种真空腔中半导体晶圆的可控快速冷却系统及方法,用于解决现有技术中无法实现对晶圆在真空腔室内进行快速冷却的问题。
为实现上述目的及其他相关目的,本发明提供一种真空腔中半导体晶圆的可控快速冷却系统,所述真空腔中半导体晶圆的可控快速冷却系统包括:
真空腔室,所述真空腔室包括腔室壳体及位于所述腔室壳体内的真空容纳腔室,所述腔室壳体上形成有与所述真空容纳腔室相连通的开口;
加热器,位于所述真空腔室内,用于放置待处理结构,并对所述待处理结构进行加热,所述待处理结构至少包括待处理晶圆;
环形可调节支撑结构,经由所述开口插入至所述真空腔室内,且压置于所述待处理结构上;
冷却系统,至少部分位于所述环形可调节支撑结构内,用于对加热处理后的所述待处理结构进行快速冷却处理。
可选地,所述环形可调节支撑结构包括环形支撑筒及位于所述环形支撑筒底部外围的法兰,所述法兰与所述环形支撑筒的底部相连接。
可选地,所述待处理结构还包括盖板,所述盖板位于所述待处理晶圆远离所述加热器的 表面。
可选地,所述盖板的表面为经过粗糙处理后的粗糙面。
可选地,所述真空腔中半导体晶圆的可控快速冷却系统还包括:
第一密封结构,位于所述环形可调节支撑结构外围,用于实现所述真空腔室与外部隔绝密封;
第二密封结构,位于所述环形可调节支撑结构与所述待处理结构之间。
可选地,所述第一密封结构包括波纹管,所述环形可调节支撑结构经由所述波纹管与所述腔室壳体连接。
可选地,所述第一密封结构包括密封圈,所述密封圈位于所述可调节支撑结构与所述腔室壳体之间。
可选地,所述第二密封结构包括耐高温密封件。
可选地,所述真空腔中半导体晶圆的可控快速冷却系统还包括金属膜,所述金属膜覆盖于所述待处理结构的表面,且位于所述第二密封结构与所述待处理结构之间。
可选地,所述冷却系统包括:
冷却气体源;
供气管路,一端与所述冷却气体源相连接;
至少一吹气管,一端与所述供气管路远离所述冷却气体源的一端相连接,另一端插入至所述环形可调节支撑结构内。
可选地,所述冷却系统还包括气量控制单元,所述气量控制单元位于所述供气管路上。
可选地,所述冷却系统包括:
冷却液体源;
供液管路,一端与所述冷却液体源相连接;
喷液管路,一端与所述供液管路远离所述冷却液体源的一端相连接,另一端延伸至所述环形可调节支撑结构内;
排液管路,一端经由所述环形可调节支撑结构的下部与所述环形可调节支撑结构内侧相连通,另一端延伸至所述真空腔室之外。
可选地,所述冷却系统包括:
冷却块,位于所述环形可调节支撑结构内;
驱动装置,与所述冷却块相连接,用于驱动所述冷却块上下移动;
温度控制模块,与所述冷却块相连接,用于控制所述冷却块的温度。
本发明还提供一种真空腔中半导体晶圆的可控快速冷却方法,所述真空腔中半导体晶圆的可控快速冷却方法包括如下步骤:
1)提供如上述任一方案中所述的真空腔中半导体晶圆的可控快速冷却系统;
2)关掉所述加热器,停止对所述待处理结构进行加热;
3)使用所述冷却系统对所述待处理结构进行快速冷却。
可选地,步骤3)中,对所述待处理结构进行快速冷却的速率为大于等于10℃/秒。
如上所述,本发明的真空腔中半导体晶圆的可控快速冷却系统及方法,具有以下有益效果:
本发明的真空腔中半导体晶圆的可控快速冷却系统可以在不影响真空腔室正常工作的前提下对真空腔室内待冷却的结构进行快速冷却;且可以根据需要灵活调节冷却速率。
附图说明
图1至图4显示为本发明实施例一中提供的不同示例中真空腔中半导体晶圆的可控快速冷却系统的结构示意图。
图5显示为本发明实施例一中提供的真空腔中半导体晶圆的可控快速冷却系统冷却过程中盖板及待处理晶圆的温度随时间变化的曲线,其中,虚线为盖板的温度随时间变化的曲线实线为待处理晶圆的温度随时间变化的曲线。
图6显示为本发明实施例二中提供的一示例中真空腔中半导体晶圆的可控快速冷却系统的结构示意图。
图7显示为本发明实施例三中提供的一示例中真空腔中半导体晶圆的可控快速冷却系统的结构示意图。
图8显示为本发明实施例四中提供的真空腔中半导体晶圆的可控快速冷却方法的流程图。
元件标号说明
10      真空腔室
101     腔室壳体
102     真空容纳腔室
103     开口
11      加热器
12      待处理结构
121     待处理晶圆
122     盖板
13      环形可调节支撑结构
131     环形支撑筒
132     法兰
14      冷却系统
140     冷却气体源
141     供气管路
142     吹气管
143     气量控制单元
144     冷却气体源
145     供液管路
146     喷液管路
147     冷却块
148     温度控制模块
151     波纹管
152     密封圈
161     耐高温密封件
17      金属薄膜
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1~图8。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
实施例一
请参阅图1,本发明提供一种真空腔中半导体晶圆的可控快速冷却系统,所述真空腔中半导体晶圆的可控快速冷却系统包括:真空腔室10,所述真空腔室10包括腔室壳体101及位于所述腔室壳体101内的真空容纳腔室102,所述腔室壳体101上形成有与所述真空容纳腔室102相连通的开口103;加热器11,所述加热器11位于所述真空腔室10内,用于放置待处理结构12,并对所述待处理结构12进行加热,所述待处理结构12至少包括待处理晶圆121;环形可调节支撑结构13,所述环形可调节支撑结构13经由所述开口103插入至所述真空腔室10内,且压置于所述待处理结构12上;冷却系统14,所述冷却系统14至少部分位于所述环形可调节支撑结构13内,用于对加热处理后的所述待处理结构12进行快速冷却处理。
作为示例,所述待处理晶圆121的材料可以包括硅、玻璃、陶瓷、碳化硅(SiC)或氮化镓(GaN)等。所述待处理晶圆121可以包括但不仅限于晶圆片,譬如4英寸晶圆片、6英寸晶圆片、8英寸晶圆片或12英寸晶圆片;所述待处理晶圆121还可以包括由划片机划出的小方块芯片等等。在冷却处理过程中,所述待处理晶圆121在所述真空腔是10内是不动的。所述待处理晶圆121可以为单片,也可以为多片叠置在一起同时进行冷却。
需要说明的是,本发明中所述的“快速冷却处理”是指降温速率达到至少10℃/秒的冷却处理。
作为示例,所述环形可调节支撑结构13可以包括环形支撑筒131及法兰132,所述法兰132位于所述环形支撑筒131底部外围,所述法兰132与所述环形支撑筒131的底部相连接。
作为示例,所述待处理结构还可以包括盖板122,所述盖板122位于所述待处理晶圆121远离所述加热器11的表面。由于所述待处理晶圆121为工艺晶圆,所述待处理晶圆121的上表面是不平整的,譬如,所述待处理晶圆121的上表面可以形成有孔或槽;此时,若将所述环形可调节支撑结构13直接压置于所述待处理晶圆121的上表面,很难实现所述环形可调节支撑结构13与所述待处理晶圆121之间的良好接触,无法保证所述真空腔室10与外部的隔绝密封。通过设置所述盖板122,所述盖板122可以为表面平整的晶圆片等,这样就可以确保所述真空腔室10于外部的隔绝密封。通过调节所述盖板122的厚度及材料(譬如,选择不同的比热容和导热系数的材料),可以控制所述盖板122下方的所述待处理晶圆121的冷却速度。
作为示例,所述盖板122的表面为经过粗糙处理后的粗糙面,这样在冷却过程中可以增加冷却介质(譬如,冷却气体或冷却液)与所述盖板122的接触面积,从而增加冷却效果, 加速冷却的速度。
需要说明的是,所述待处理结构12的直径需大于等于所述环形可调节支撑结构13的内径,以确保所述环形可调节支撑结构13压置于所述待处理结构12上可以实现所述真空容纳腔室102与外部隔绝密封,确保所述真空容纳腔室102内部的真空度。
作为示例,所述真空腔中半导体晶圆的可控快速冷却系统还包括:第一密封结构及第二密封结构,其中,所述第一密封结构位于所述环形可调节支撑结构13外围,用于实现所述真空腔室10与外部隔绝密封;所述第二密封结构位于所述环形可调节支撑结构13与所述待处理结构12之间,同样用于实现所述真空腔室10与外部隔绝密封。由于在所述真空腔室10的所述腔室壳体101上设置所述开口103,将所述环形可调节支撑结构13置于所述开口103内之后,为了确保所述真空腔室10可以正常工作,需要实现所述真空腔室10内的所述真空容纳腔室102与外部隔绝;此时,由于所述环形可调节支撑结构13具有上下贯通的通孔用于暴露出所述待处理结构12,此时需要在所述环形可调节支撑结构13与所述待处理结构12之间设置所述第二密封结构以将所述真空容纳腔室102与外部隔离;同时,需要在所述环形可调节支撑结构13的外围设置所述第一密封结构以将所述环形可调节支撑结构13与所述腔室壳体101之间密封。
在一示例中,如图1及图2所示,所述第一密封结构可以包括波纹管151,所述环形可调节支撑结构13经由所述波纹管151与所述腔室壳体101相连接,以实现所述真空容纳腔室102与外部隔离密封。
在另一示例中,如图3及图4所示,所述第一密封结构可以包括密封圈152,所述密封圈152位于所述可调节支撑结构13与所述腔室壳体101之间,以实现所述真空容纳腔室102与外部隔离密封。
作为示例,所述第二密封结构包括耐高温密封件161,所述环形可调节支撑结构13压置于所述待处理结构12上时,经由所述耐高温密封件161实现所述真空容纳腔室102与外部隔绝密封。需要说明的是,此处的“高温”是指温度大于100℃。
作为示例,请参阅图2及图4,所述真空腔中半导体晶圆的可控快速冷却系统还包括金属膜17,所述金属膜17覆盖于所述待处理结构的表面,且位于所述第二密封结构与所述待处理结构之间。所述金属膜17可以进一步实现对所述真空腔室10的密封,从而保证所述真空腔室10内的真空度。
作为示例,所述冷却系统14包括:冷却气体源140;供气管路141,所述供气管路141一端与所述冷却气体源140相连接;至少一吹气管142,所述吹气管路142一端与所述供气 管路141远离所述冷却气体源140的一端相连接,另一端插入至所述环形可调节支撑结构13内。
作为示例,所述吹气管路142的数量可以根据实际需要进行设置,譬如,若所述待处理晶圆121的面积较小或为多个被切割而成的小尺寸结构时,所述吹气管路142的数量可以为一个,若所述待处理晶圆121的面积较大,可以使用多个所述吹气管路142同时向所述待处理晶圆121的表面吹哨冷却气体。
作为示例,所述冷却气体源140提供的冷却气体可以为零度以下的气体。
作为示例,所述冷却系统14还包括气量控制单元143,所述气量控制单元143位于所述供气管路141上。所述气量控制单元143用于控制所述吹气管142向所述待处理结构12上吹哨的气体的速度。通过控制所述冷却气体源140提供的冷却气体的温度及通过所述气量控制单元143控制所述吹气管142向所述待处理结构12表面吹哨的冷却气体的速度,可以控制所述待处理结构12的冷却速度。
本实施例所述的真空腔中半导体晶圆的可控快速冷却系统的工作原理为:在所述待处理结构12加热处理外部后,关闭所述加热器11;所述吹气管142向所述待处理结构12的表面高速吹冷却气体,冷却气体将所述待处理结构12的热量瞬间大量带走,从而实现对所述待处理结构12的快速降温。由图5可知,本发明所述的真空腔中半导体晶圆的可控快速冷却系统可以实现对所述盖板122及所述待处理晶圆121的快速冷却,对二者的冷却速率均可以达到10℃/秒以上。
本实施例中所述的真空腔中半导体晶圆的可控快速冷却系统可以在不影响所述真空腔室10正常工作的前提下,无需将所述待处理结构12传出所述真空腔室10,可以对所述真空腔室10内的所述待处理结构12进行快速冷却;且可以根据需要灵活调节所述待处理结构12的冷却速率。
实施例二
请结合图1至图4参阅图6,本发明还提供一种真空腔中半导体晶圆的可控快速冷却系统,本实施例中所述真空腔中半导体晶圆的可控快速冷却系统的具体结构与实施例一中所述的真空腔中半导体晶圆的可控快速冷却系统的具体结构大致相同,二者的区别在于所述冷却系统14的具体结构及冷却原理不同,具体为:实施例一中,所述冷却系统14包括:冷却气体源140、供气管路141、至少一吹气管142及气量控制单元143,实施例一中使用风冷的方式对所述待处理结构12进行快速冷却;而本实施例中,所述冷却系统14包括:冷却液体源144;供液管路145,所述供液管路145一端与所述冷却液体源144相连接;喷液管路146, 所述喷液管路146一端与所述供液管路145远离所述冷却液体源144的一端相连接,另一端延伸至所述环形可调节支撑结构13内,用于向所述待处理结构122表面提供冷却液体;排液管路(未示出),所述排液管路一端经由所述环形可调节支撑结构13的下部与所述环形可调节支撑结构13内侧相连通,另一端延伸至所述真空腔室10之外。即本实施例中所述的真空腔中半导体晶圆的可控快速冷却系统采用水冷的方式对所述待处理结构12进行快速冷却。
作为示例,所述冷却液体可以为但不仅限于温度较低(譬如接近零度的水);通过改变所述冷却液体的材质及所述冷却液体的温度可以控制所述待处理结构12的冷却速度。
本实施例所述的真空腔中半导体晶圆的可控快速冷却系统的工作原理为:在所述待处理结构12加热处理外部后,关闭所述加热器11;所述喷液管路46向所述待处理结构12的表面喷射冷却液体,冷却液体将所述待处理结构12的热量瞬间大量带走,从而实现对所述待处理结构12的快速降温。
需要说明的是,本实施例中的图6仅以所述第一密封结构为波纹管151且未包括金属膜17作为示例,在实际示例中,实施例一中对应的所述第一密封结构的其他示例以及包括所述金属膜17的示例均应在本实施例的保护范围之内。
本实施例中所述真空腔中半导体晶圆的可控快速冷却系统中的其他结构与实施例一中对应的结构完全相同,具体请参阅实施例一,此处不再累述。
实施例三
请结合图1至图4参阅图7,本发明还提供一种真空腔中半导体晶圆的可控快速冷却系统,本实施例中所述真空腔中半导体晶圆的可控快速冷却系统的具体结构与实施例一中所述的真空腔中半导体晶圆的可控快速冷却系统的具体结构大致相同,二者的区别在于所述冷却系统14的具体结构及冷却原理不同,具体为:实施例一中,所述冷却系统14包括:冷却气体源140、供气管路141、至少一吹气管142及气量控制单元143,实施例一中使用风冷的方式对所述待处理结构12进行快速冷却;而本实施例中,所述冷却系统14包括:冷却块147,所述冷却块147位于所述环形可调节支撑结构13内;驱动装置(未示出),所述驱动装置与所述冷却块147相连接,用于驱动所述冷却块147上下移动;温度控制模块148,所述温度控制模块148与所述冷却块147相连接,用于控制所述冷却块147的温度。
作为示例,所述驱动装置可以为驱动马达等等。
作为示例,可以通过改变所述冷却块147的材质及所述冷却块147的温度可以控制所述待处理结构12的冷却速度。
本实施例所述的真空腔中半导体晶圆的可控快速冷却系统的工作原理为:在所述待处理 结构12加热处理外部后,关闭所述加热器11;所述驱动装置驱动所述冷却块147向下移动直至贴紧所述待处理结构12,所述冷却块147将所述待处理结构12的热量瞬间大量带走,从而实现对所述待处理结构12的快速降温。
需要说明的是,本实施例中的图7仅以所述第一密封结构为波纹管151且未包括金属膜17作为示例,在实际示例中,实施例一中对应的所述第一密封结构的其他示例以及包括所述金属膜17的示例均应在本实施例的保护范围之内。
需要进一步说明的是,图7中所述冷却块147上方的虚线矩形框表示所述冷却块147未降下时的位置示意图。
本实施例中所述真空腔中半导体晶圆的可控快速冷却系统中的其他结构与实施例一中对应的结构完全相同,具体请参阅实施例一,此处不再累述。
实施例四
请结合图1至图7参阅图8,本发明还提供一种真空腔中半导体晶圆的可控快速冷却方法,所述真空腔中半导体晶圆的可控快速冷却方法包括如下步骤:
1)提供如实施例一至实施例三任一所述的真空腔中半导体晶圆的可控快速冷却系统;
2)关掉所述加热器,停止对所述待处理结构进行加热;
3)使用所述冷却系统对所述待处理结构进行快速冷却。
在一示例中,步骤1)中提供如实施例一中所述的真空腔中半导体晶圆的可控快速冷却系统,所述真空腔中半导体晶圆的可控快速冷却系统的具体结构请参阅实施例一,此处不再累述;此时,步骤3)中,使用所述吹气管142向所述待处理结构12的表面高速吹冷却气体,冷却气体将所述待处理结构12的热量瞬间大量带走,从而实现对所述待处理结构12的快速降温。
在另一示例中,步骤1)中提供如实施例二中所述的真空腔中半导体晶圆的可控快速冷却系统,所述真空腔中半导体晶圆的可控快速冷却系统的具体结构请参阅实施例二,此处不再累述;此时,步骤3)中,使用所述喷液管路46向所述待处理结构12的表面喷射冷却液体,冷却液体将所述待处理结构12的热量瞬间大量带走,从而实现对所述待处理结构12的快速降温。
在又一示例中,步骤1)中提供如实施例三中所述的真空腔中半导体晶圆的可控快速冷却系统,所述真空腔中半导体晶圆的可控快速冷却系统的具体结构请参阅实施例三,此处不再累述;此时,步骤3)中,使用所述驱动装置驱动所述冷却块147向下移动直至贴紧所述待处理结构12,所述冷却块147将所述待处理结构12的热量瞬间大量带走,从而实现对所 述待处理结构12的快速降温。
作为示例,步骤3)中,对所述待处理结构12进行快速冷却过程中,所述待处理结构12的冷却速率可以为大于等于10℃/秒。具体的,在对所述待处理结构12进行快速冷却过程中,第一秒内的冷却速率可以达到大于100℃/秒。
综上所述,本发明的真空腔中半导体晶圆的可控快速冷却系统及方法,所述真空腔中半导体晶圆的可控快速冷却系统包括:真空腔室,所述真空腔室包括腔室壳体及位于所述腔室壳体内的真空容纳腔室,所述腔室壳体上形成有与所述真空容纳腔室相连通的开口;加热器,位于所述真空腔室内,用于放置待处理结构,并对所述待处理结构进行加热,所述待处理结构至少包括待处理晶圆;环形可调节支撑结构,经由所述开口插入至所述真空腔室内,且压置于所述待处理结构上;冷却系统,至少部分位于所述环形可调节支撑结构内,用于对加热处理后的所述待处理结构进行快速冷却处理。本发明的真空腔中半导体晶圆的可控快速冷却系统可以在不影响真空腔室正常工作的前提下对真空腔室内待冷却的结构进行快速冷却;且可以根据需要灵活调节冷却速率。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (15)

  1. 一种真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述真空腔中半导体晶圆的可控快速冷却系统包括:
    真空腔室,所述真空腔室包括腔室壳体及位于所述腔室壳体内的真空容纳腔室,所述腔室壳体上形成有与所述真空容纳腔室相连通的开口;
    加热器,位于所述真空腔室内,用于放置待处理结构,并对所述待处理结构进行加热,所述待处理结构至少包括待处理晶圆;
    环形可调节支撑结构,经由所述开口插入至所述真空腔室内,且压置于所述待处理结构上;
    冷却系统,至少部分位于所述环形可调节支撑结构内,用于对加热处理后的所述待处理结构进行快速冷却处理。
  2. 根据权利要求1所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述环形可调节支撑结构包括环形支撑筒及位于所述环形支撑筒底部外围的法兰,所述法兰与所述环形支撑筒的底部相连接。
  3. 根据权利要求1所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述待处理结构还包括盖板,所述盖板位于所述待处理晶圆远离所述加热器的表面。
  4. 根据权利要求3所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述盖板的表面为经过粗糙处理后的粗糙面。
  5. 根据权利要求1所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述真空腔中半导体晶圆的可控快速冷却系统还包括:
    第一密封结构,位于所述环形可调节支撑结构外围,用于实现所述真空腔室与外部隔绝密封;
    第二密封结构,位于所述环形可调节支撑结构与所述待处理结构之间。
  6. 根据权利要求5所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述第一密封结构包括波纹管,所述环形可调节支撑结构经由所述波纹管与所述腔室壳体连接。
  7. 根据权利要求5所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述第 一密封结构包括密封圈,所述密封圈位于所述可调节支撑结构与所述腔室壳体之间。
  8. 根据权利要求5所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述第二密封结构包括耐高温密封件。
  9. 根据权利要求5所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述真空腔中半导体晶圆的可控快速冷却系统还包括金属膜,所述金属膜覆盖于所述待处理结构的表面,且位于所述第二密封结构与所述待处理结构之间。
  10. 根据权利要求1至9中任一项所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述冷却系统包括:
    冷却气体源;
    供气管路,一端与所述冷却气体源相连接;
    至少一吹气管,一端与所述供气管路远离所述冷却气体源的一端相连接,另一端插入至所述环形可调节支撑结构内。
  11. 根据权利要求10所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述冷却系统还包括气量控制单元,所述气量控制单元位于所述供气管路上。
  12. 根据权利要求1至9中任一项所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述冷却系统包括:
    冷却液体源;
    供液管路,一端与所述冷却液体源相连接;
    喷液管路,一端与所述供液管路远离所述冷却液体源的一端相连接,另一端延伸至所述环形可调节支撑结构内;
    排液管路,一端经由所述环形可调节支撑结构的下部与所述环形可调节支撑结构内侧相连通,另一端延伸至所述真空腔室之外。
  13. 根据权利要求1至9中任一项所述的真空腔中半导体晶圆的可控快速冷却系统,其特征在于,所述冷却系统包括:
    冷却块,位于所述环形可调节支撑结构内;
    驱动装置,与所述冷却块相连接,用于驱动所述冷却块上下移动;
    温度控制模块,与所述冷却块相连接,用于控制所述冷却块的温度。
  14. 一种真空腔中半导体晶圆的可控快速冷却方法,其特征在于,所述真空腔中半导体晶圆的可控快速冷却方法包括如下步骤:
    1)提供如权利要求1至13中任一项所述的真空腔中半导体晶圆的可控快速冷却系统;
    2)关掉所述加热器,停止对所述待处理结构进行加热;
    3)使用所述冷却系统对所述待处理结构进行快速冷却。
  15. 根据权利要求14所述的真空腔中半导体晶圆的可控快速冷却方法,其特征在于,步骤3)中,对所述待处理结构进行快速冷却的速率为大于等于10℃/秒。
PCT/CN2019/082025 2018-09-19 2019-04-10 真空腔中半导体晶圆的可控快速冷却系统及方法 WO2020057109A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811092132.6 2018-09-19
CN201811092132.6A CN109355710A (zh) 2018-09-19 2018-09-19 真空腔中半导体晶圆的可控快速冷却系统及方法

Publications (1)

Publication Number Publication Date
WO2020057109A1 true WO2020057109A1 (zh) 2020-03-26

Family

ID=65351215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082025 WO2020057109A1 (zh) 2018-09-19 2019-04-10 真空腔中半导体晶圆的可控快速冷却系统及方法

Country Status (2)

Country Link
CN (1) CN109355710A (zh)
WO (1) WO2020057109A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355710A (zh) * 2018-09-19 2019-02-19 上海迈铸半导体科技有限公司 真空腔中半导体晶圆的可控快速冷却系统及方法
CN112420561A (zh) * 2020-11-11 2021-02-26 宁波江丰电子材料股份有限公司 一种半导体冷却加热复合装置及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871815A (zh) * 2012-12-11 2014-06-18 旺宏电子股份有限公司 半导体处理装置及处理半导体晶圆的方法
CN104903992A (zh) * 2013-01-08 2015-09-09 系统科技公司 半导体晶圆的连续处理方法
CN104919583A (zh) * 2013-01-08 2015-09-16 系统科技公司 半导体晶圆的连续处理装置及方法
CN105374766A (zh) * 2014-08-08 2016-03-02 日东电工株式会社 半导体晶圆的冷却方法以及半导体晶圆的冷却装置
CN109355710A (zh) * 2018-09-19 2019-02-19 上海迈铸半导体科技有限公司 真空腔中半导体晶圆的可控快速冷却系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871815A (zh) * 2012-12-11 2014-06-18 旺宏电子股份有限公司 半导体处理装置及处理半导体晶圆的方法
CN104903992A (zh) * 2013-01-08 2015-09-09 系统科技公司 半导体晶圆的连续处理方法
CN104919583A (zh) * 2013-01-08 2015-09-16 系统科技公司 半导体晶圆的连续处理装置及方法
CN105374766A (zh) * 2014-08-08 2016-03-02 日东电工株式会社 半导体晶圆的冷却方法以及半导体晶圆的冷却装置
CN109355710A (zh) * 2018-09-19 2019-02-19 上海迈铸半导体科技有限公司 真空腔中半导体晶圆的可控快速冷却系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, HUAIYI ET AL.: "Preparation of Nano-Microcrystalline NiOx Films by Magnetron Sputtering and Cooling Substrates", JOURNAL OF FUNCTIONAL MATERIALS, vol. 39, no. 10, 20 October 2008 (2008-10-20), pages 1618, ISSN: 1001-9731 *

Also Published As

Publication number Publication date
CN109355710A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
KR101456894B1 (ko) 챔버로 가스를 방사상으로 전달하기 위한 장치 및 그 이용 방법들
US10312116B2 (en) Methods and apparatus for rapidly cooling a substrate
TWI413168B (zh) 低溫離子植入技術
KR102449747B1 (ko) 플라즈마 프로세싱을 위한 이중-구역 가열기
JP5091296B2 (ja) 接合装置
KR102155395B1 (ko) 플라즈마 에칭 장치 및 플라즈마 에칭 방법
WO2002007212A1 (fr) Dispositif de maintien pour corps traite
US11031262B2 (en) Loadlock integrated bevel etcher system
WO2020057109A1 (zh) 真空腔中半导体晶圆的可控快速冷却系统及方法
JP3453834B2 (ja) ウエハチャック装置および半導体製造装置
CN111684580B (zh) 用于选择性预清洁的快速响应基座组件
KR20160132090A (ko) 가스 분배 플레이트 열을 이용한 온도 램핑
JPH11233598A (ja) ウェハ冷却装置
TW202030832A (zh) 擴展裝置
JP2005056905A (ja) 基板処理装置
JP2006504239A (ja) エッジシールド及びガス排出をする静電チャックウエハポート及びトッププレート
US20210343565A1 (en) Electrostatic clamping system and method
JPH01275784A (ja) エッチング装置
JP5094288B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC.

122 Ep: pct application non-entry in european phase

Ref document number: 19862698

Country of ref document: EP

Kind code of ref document: A1