WO2020056793A1 - 多向铺层碳纤维增强树脂基复合材料微波固化方法 - Google Patents

多向铺层碳纤维增强树脂基复合材料微波固化方法 Download PDF

Info

Publication number
WO2020056793A1
WO2020056793A1 PCT/CN2018/108724 CN2018108724W WO2020056793A1 WO 2020056793 A1 WO2020056793 A1 WO 2020056793A1 CN 2018108724 W CN2018108724 W CN 2018108724W WO 2020056793 A1 WO2020056793 A1 WO 2020056793A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
reinforced resin
fiber reinforced
composite material
based composite
Prior art date
Application number
PCT/CN2018/108724
Other languages
English (en)
French (fr)
Inventor
李迎光
周靖
徐鄂严
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2020056793A1 publication Critical patent/WO2020056793A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave

Definitions

  • the invention relates to a composite material heating molding technology, in particular to a composite material microwave heating and curing technology, and in particular to a microwave heating and curing method of a multi-directional laminated carbon fiber reinforced resin-based composite material.
  • Advanced composite materials have excellent characteristics such as high specific strength and specific modulus, good fatigue resistance, good corrosion resistance, and good overall formability. They are widely used in aerospace and other fields. At present, composite materials are mainly heated and pressure-cured by autoclave. The autoclave heats the air through the resistance wire, and blows the hot air to the surface of the composite material and the mold under the action of a fan to conduct conduction heating. The above heating principle makes the autoclave curing process inherently have problems such as large temperature gradients in the thickness direction of the composite material, long curing time, and high energy consumption.
  • the composite material microwave curing process (201210167316.0) proposed by the inventors earlier adopts electromagnetic waves to uniformly heat and cure the composite material at the same time, which has a series of advantages such as small temperature gradient in the thickness direction of the composite material, short curing time, and low energy consumption.
  • the inventors found that directly placing a multi-directionally laminated carbon fiber reinforced resin-based composite material in a microwave cavity would have a microwave shielding effect and could not be heated by microwaves.
  • the composite materials currently used in the aerospace field are almost all multi-layered carbon fiber reinforced resin-based composite materials (about 95% of the total composite materials).
  • the above problems have severely restricted the development and application of microwave curing technology for composite materials.
  • the inventor proposed a microwave indirect heating mold and curing method for composite materials (201810325089.7) in advance. The microwave absorption surface of the mold is used to absorb microwaves, and the microwave energy is converted into thermal energy for heating and curing. Material parts.
  • the inventors have unexpectedly discovered that pasting a metal tape (two-dimensional material) on the surface of a multi-directionally laminated carbon fiber reinforced resin-based composite material can cause a material of about 2 mm near the tape to generate weak gap-like heating stripes under the action of microwaves. Therefore, the inventor further applied for a microwave heating method of placing a two-dimensional metal grid on the surface of a composite material (201710895983.3), but since an effective resonance cannot be formed between the two-dimensional metal grid and the microwave (frequency is generally 2.45 GHz), the above method generates The heating effect is extremely limited, and the gap-like heating stripes make the temperature distribution on the material surface extremely uneven.
  • the entire electromagnetic field has considered that placing three-dimensional metal structures (especially multiple three-dimensional metal structures) in a microwave resonant cavity will cause serious discharge and ignition phenomena, a large number of microwave reflections, and damage to microwave sources.
  • the inventors found that by rationally designing the geometric structure and dimensions of the three-dimensional metal unit, not only can the three-dimensional metal structure be prevented from generating discharges, sparks, large amounts of reflection, or damage in the microwave resonant cavity.
  • Microwave sources and other phenomena can transform the original microwave resonance mode (mostly TEM mode) of the carbon fiber reinforced resin-based composite material that cannot be heated in multi-directional layers to a new microwave resonance mode (mostly TM) mold).
  • the microwave resonance mode (mostly the TEM mode) of the carbon fiber reinforced resin-based composite material that could not be heated in the multidirectional layer can be converted to energy with high efficiency.
  • New microwave resonance mode (mostly TM mode) for effective heating of this type of material.
  • the microwave energy is continuously absorbed by the multidirectionally laminated carbon fiber reinforced resin-based composite material in the converted microwave resonance mode (mostly the TM mode).
  • the heating effect produced by the invention can fully meet the requirements of industrial production, and in a real sense, realizes high-quality, short-cycle, low-cost microwave curing molding of multi-directional laminated carbon fiber reinforced resin-based composite materials.
  • the purpose of the present invention is to solve the problems that the multi-directionally laminated carbon fiber reinforced resin-based composite material has a microwave shielding effect in a microwave resonance cavity and cannot be heated by microwaves, and the heating effect of a two-dimensional metal grid is extremely poor.
  • the three-dimensional metal unit converts the microwave resonance mode (mostly TEM mode) of the original multidirectional laminated carbon fiber reinforced resin-based composite material into a new microwave resonance mode (mostly TM mode) that can effectively heat this type of material. Heating method.
  • a method for microwave curing of a multi-directionally laminated carbon fiber reinforced resin-based composite material is characterized in that an array of three-dimensional metal units is placed on the surface of the multi-directionally laminated carbon fiber-reinforced resin-based composite material or within a certain distance from the surface, and placed in a microwave Microwave heating and curing in a heating furnace.
  • the three-dimensional metal unit has a structure such as a square ring with a certain thickness, and is made of a metal material with good conductivity, such as copper, aluminum, and the like.
  • the substrate for fixing the three-dimensional metal unit is made of a certain rigid high-temperature resistant wave-transmitting material, and the relative position between the array three-dimensional metal units is maintained; the shape of the substrate and the shape of the multi-directional laminated carbon fiber reinforced resin-based composite material to be cured are maintained Consistent.
  • the high-temperature-resistant wave-transmitting material with a certain rigidity is polytetrafluoroethylene, glass fiber reinforced resin-based composite materials, and the like.
  • the thickness of the smooth profile is less than 10mm, and the smaller the thickness of the smooth profile, the better the heating effect.
  • an array of three-dimensional metal units can be placed only under the multi-directionally laminated carbon fiber-reinforced resin-based composite material; when the thickness of the multi-directionally laminated carbon fiber-reinforced resin-based composite material is greater than At 5mm, array three-dimensional metal units are placed at the upper and lower positions of the multi-directionally laminated carbon fiber reinforced resin-based composite material.
  • the electromagnetic parameters are used to optimize the structural parameters of the array three-dimensional metal elements, such as the geometric parameters and element spacing of the three-dimensional metal elements;
  • the electromagnetic model includes a microwave resonant cavity (the surrounding wall surface is set as an ideal electric conductor, and the cross-section side length is not less than 100mm), the excitation ports A and B, an array three-dimensional metal unit fixed by a substrate, and a multi-directional laminated carbon fiber reinforced resin Base composite material; the microwave emitted from the excitation port A is incident on the array three-dimensional metal unit and the multi-directionally laminated carbon fiber reinforced resin-based composite material; the multi-directionally laminated carbon fiber-reinforced resin-based composite material and the surrounding walls of the microwave resonance cavity Good contact;
  • the input parameters of the above model mainly include: microwave frequency, dielectric constant, conductivity, permeability, density, and thickness of multidirectional laminated carbon fiber reinforced resin-based composites, and geometric parameters and cell spacing of three-dimensional metal elements Etc .; among them, the dielectric constant, electrical conductivity, magnetic permeability, density, and thickness of the microwave frequency and multidirectional laminated carbon fiber reinforced resin-based composite materials are assigned according to actual parameters; at
  • the output parameters of the above model include: the reflectance at the excitation port A and the transmittance at the excitation port B.
  • the invention can realize effective microwave heating of the multi-directionally laminated carbon fiber reinforced resin-based composite material, and the heating effect is remarkable, which can completely meet the requirements of industrial production, and in a true sense, realize the high level of the multi-directionally laminated carbon fiber reinforced resin-based composite material. Quality, short cycle, low cost microwave curing molding.
  • FIG. 1 is a schematic diagram of a microwave heating device for a multi-directionally laminated carbon fiber reinforced resin-based composite material according to the present invention.
  • FIG. 2 is a schematic diagram (three-view projection view) of an array of three-dimensional metal square rings fixed by a substrate according to the present invention.
  • FIG. 3 is a schematic diagram of an array three-dimensional metal square ring fixed by a self-contained profile substrate according to the present invention.
  • FIG. 4 is a layout diagram of a microwave heating device for a multi-directionally laminated carbon fiber reinforced resin-based composite material thin-walled part of the present invention.
  • FIG. 5 is a layout diagram of a microwave heating device for a carbon fiber reinforced resin-based composite material with a large thickness and a multi-directional layer according to the present invention.
  • FIG. 6 is a schematic diagram of an electromagnetic model of the present invention.
  • FIG. 7 is a structural parameter diagram of an array three-dimensional metal square ring of the present invention.
  • a microwave curing method for a multi-directionally laminated carbon fiber reinforced resin-based composite material the key of which is to place an array three-dimensional metal unit 1 on the surface of the multi-directionally laminated carbon fiber reinforced resin-based composite material 4 or a certain distance from the surface, and place the The microwave resonance cavity 5 is cured by microwave heating, and the closer the distance between the multi-directionally laminated carbon fiber reinforced resin-based composite material 4 and the three-dimensional metal unit 1 is, the more the wave-absorbing property of the multi-directionally laminated carbon fiber reinforced resin-based composite material 4 is. The stronger, the more significant the heating effect, the schematic diagram is shown in Figure 1.
  • the three-dimensional metal unit 1 is a square ring with a certain thickness (it can also be a rectangular ring, a diamond ring, a ring, a polygon ring, an open edge ring, Multi-ring nested, etc.) and made of metal materials with good conductivity, such as copper, aluminum, etc.
  • a substrate 2 for fixing three-dimensional metal units is made by using a certain rigid high-temperature resistant wave-transmitting material (such as polytetrafluoroethylene, glass fiber reinforced resin-based composite materials, etc.) to maintain the relative position between the array three-dimensional metal units.
  • a substrate with a grid can be made first, and then a small three-dimensional metal unit 1 is placed in the grid.
  • the grid edge on the substrate plays a role in positioning the three-dimensional metal unit 1.
  • the shape of the substrate 2 and The shape of the multidirectionally laminated carbon fiber reinforced resin-based composite material 4 to be cured remains the same.
  • the surface quality of the multi-directionally laminated carbon fiber reinforced resin-based composite material 4 on the side of the array three-dimensional metal unit 1 can be improved in the following three ways:
  • a thinner layer is added between the multi-directionally laminated carbon fiber reinforced resin-based composite material 4 and the three-dimensional metal unit 1 (for example, if the thickness is less than 5 mm, the smaller the thickness of the profile 3, the more effective the heating effect is). Good) smooth profile 3; the profile 3 is in close contact with the substrate 2 and its material is consistent with the substrate 2;
  • the profile 3 and the substrate 2 are made into a whole 7, and a series of blind holes are provided on the lower surface thereof for placing the array three-dimensional metal unit 1, and the upper surface has a good surface quality.
  • the array three-dimensional metal unit 1 can be placed only under the multi-directional laminated carbon fiber reinforced resin-based composite material 4, as shown in FIG. 4 ;
  • the array three-dimensional metal unit 1 is placed above and below the multi-directionally laminated carbon fiber reinforced resin-based composite material 4, as shown in FIG. 5 Show.
  • An electromagnetic model (as shown in FIG. 6) is used to optimize the structural parameters of the array three-dimensional metal unit 1, such as the geometric parameters and element spacing of the three-dimensional metal unit 1 (as shown in FIG. 7);
  • the electromagnetic model includes a microwave resonance cavity 5 (the surrounding wall surface is set as an ideal electrical conductor, and the cross-section side length is not less than 100mm), the excitation ports A and B, the array three-dimensional metal unit 1 fixed by the substrate 2 and the multi-directional layering Carbon fiber reinforced resin-based composite material 4; microwaves emitted from the excitation port A are sequentially incident on the array three-dimensional metal unit 1 and the multi-directionally laminated carbon fiber-reinforced resin-based composite material 4; the multi-directionally laminated carbon fiber-reinforced resin-based composite material 4 and The surrounding walls of the microwave resonant cavity 5 are in good contact;
  • the input parameters of the above model mainly include: microwave frequency, dielectric constant, electrical conductivity, magnetic permeability, density and thickness of multidirectional laminated carbon fiber reinforced resin-based composite materials, and geometric parameters and cell spacing of three-dimensional metal units;
  • the dielectric constant, electrical conductivity, magnetic permeability, density and thickness of the microwave frequency and multi-directional laminated carbon fiber reinforced resin-based composite material 4 are assigned according to actual parameters; at the same time, the geometric parameters and cell spacing of the three-dimensional metal unit 1 are set.
  • Value range generally greater than zero and less than the microwave wavelength
  • the output parameters of the above model include: the reflectance at the excitation port A and the transmittance at the excitation port B.
  • a square loop model is established by the electromagnetic simulation software HFSS (see Figure 6).
  • the surrounding walls of the microwave resonant cavity 5 are set to ideal electric conductor boundary conditions, and the side length is 200 mm.
  • the two ends of the microwave resonant cavity 5 are set to excitation ports A and B.
  • the composite material 4 is in good contact with the surrounding walls of the microwave resonance cavity 5.
  • the thickness of the composite material 4 is 2 mm, the density is 1820 kg / m 3 , and the relative dielectric constant of the anisotropy is (61, 28, 28), the relative magnetic permeability is (1, 1, 1), and the electrical conductivity is ( 13900, 0.01, 0.01).
  • the calculation step length is 1 mm. It is 1 to 8 mm, and the calculation step length is 1 mm.
  • the value of the outer side length l of the square ring 1 ranges from 1 to 29 mm, and the calculation step length is 2 mm.
  • the multidirectional ply carbon fiber reinforced epoxy resin composite The microwave absorption of the material laminates reached a maximum of 24%.
  • a three-dimensional copper ring 1 is made of H59 brass, and a substrate 2 is made of a polytetrafluoroethylene plate.
  • the size of the substrate 2 is 300 (length) ⁇ 300 (width) ⁇ 18 (height) mm 3 .
  • a layer of polytetrafluoroethylene surface 3 with a size of 300 (length) ⁇ 300 (width) ⁇ 1 (height) mm 3 is placed on the substrate 2.
  • the Teflon sheet 2 and the Teflon profile 3 are tightly bonded by an adhesive.
  • a mold release cloth 9 a multi-directionally laminated carbon fiber reinforced epoxy-based composite material thin-walled piece 4, a mold release cloth 9, a non-porous insulation film 13, and a porous insulation film are placed in this order. 12.
  • Auxiliary materials such as breathable felt 11, vacuum bag 10, vacuum joint 14, sealing tape 8.
  • the encapsulated multi-directionally laminated carbon fiber reinforced epoxy resin-based composite material 4 is placed in a microwave resonance cavity 5, and vacuum-cured and microwave-heated for curing according to a set process curve. After the curing is completed, a multi-directionally laminated carbon fiber reinforced epoxy-based composite material thin-walled part 4 that meets the requirements for use is obtained.
  • This embodiment is the same as Example 1 except that the substrate 2 and the profile 3 are made as a whole (ie, a self-contained profile substrate 7).
  • Microwave-cured large-thickness, multi-directionally laminated carbon fiber reinforced epoxy-based composite material laminate 4 having a size of 200 (length) ⁇ 200 (width) ⁇ 10 (height) mm 3 , and the laying order is [0 / + 45 / -45 / 90] 25 .
  • a square loop model is established by the electromagnetic simulation software HFSS (see Figure 6).
  • the surrounding walls of the microwave resonant cavity 5 are set to ideal electric conductor boundary conditions, and the side length is 200 mm.
  • the two ends of the microwave resonant cavity 5 are set to excitation ports A and B.
  • the composite material 4 is in good contact with the surrounding walls of the microwave resonance cavity 5.
  • the thickness of the composite material 4 is 10 mm, the density is 1820 kg / m 3 , and the relative dielectric constant of the anisotropy is (61, 28, 28), the relative magnetic permeability is (1, 1, 1), and the electrical conductivity is ( 13900, 0.01, 0.01).
  • the value of the outer side length l of the square ring 1 ranges from 1 to 46 mm, and the calculated step length is 3 mm.
  • the multidirectional ply carbon fiber reinforced epoxy resin composite The microwave absorption of the material laminate reached a maximum of 14.9%.
  • a three-dimensional copper square ring 1 is made of H59 brass, and a substrate 2 is made of a polytetrafluoroethylene plate.
  • the size of the substrate 2 is 300 (length) ⁇ 300 (width) ⁇ 16 (height) mm 3 .
  • the hollow portion of the three-dimensional copper ring is filled with a polytetrafluoroethylene block; the size of the polytetrafluoroethylene block is 14 (length) x 14 (width) x 16 (height) mm 3 .
  • a release cloth 9 On the upper surface of the three-dimensional copper square ring 1 fixed by the polytetrafluoroethylene sheet 2, a release cloth 9, a large-thickness, multi-directionally laminated carbon fiber reinforced epoxy-based composite material laminated board 4, a release cloth 9, and no holes are placed in this order.
  • Auxiliary materials such as isolation film 13, porous isolation film 12, substrate 2 and array three-dimensional copper square ring 1, breathable felt 11, vacuum bag 10, vacuum joint 14, sealing tape 8.
  • the encapsulated large-thickness, multi-directionally laminated carbon fiber reinforced epoxy resin-based composite material laminate 4 is placed in a microwave resonance cavity 5, and vacuum-cured and microwave-heated for curing according to a set process curve. After the curing is completed, a large-thickness, multi-directionally laminated carbon fiber reinforced epoxy resin-based composite material laminate 4 that meets the requirements for use is obtained.

Abstract

一种多向铺层碳纤维增强树脂基复合材料微波固化方法,在多向铺层碳纤维增强树脂基复合材料表面或距离表面一定范围内放置阵列三维金属单元,并将其置于微波加热炉中进行微波加热固化。可以实现对多向铺层碳纤维增强树脂基复合材料的有效微波加热,且加热效果显著,完全可以满足工业生产要求,从真正意义上实现了多向铺层碳纤维增强树脂基复合材料的高质量、短周期、低成本微波固化成型。

Description

多向铺层碳纤维增强树脂基复合材料微波固化方法 技术领域
本发明涉及一种复合材料加热成型技术,尤其是一种复合材料微波加热固化技术,具体地说是一种多向铺层碳纤维增强树脂基复合材料的微波加热固化方法。
背景技术
先进复合材料具有比强度和比模量高、抗疲劳性能好、耐腐蚀性能好和整体成型性好等优异特性,被广泛应用于航空航天等领域。目前,复合材料主要采用热压罐进行加热、加压固化成型。热压罐通过电阻丝加热空气,并在风机作用下将热空气吹拂到复合材料和模具表面,进行传导加热。上述加热原理使热压罐固化工艺从本质上存在复合材料厚度方向温度梯度大、固化时间长、能耗高等问题。针对上述问题,发明人前期提出的复合材料微波固化工艺(201210167316.0)采用电磁波内外同时均匀加热固化复合材料,具有复合材料厚度方向温度梯度小、固化时间短、能耗低等一系列优点。
然而,通过大量研究,发明人发现直接将多向铺层的碳纤维增强树脂基复合材料放置在微波腔体内会产生微波屏蔽效应,无法被微波加热。不幸的是,目前航空航天领域应用的复合材料几乎均为多向铺层的碳纤维增强树脂基复合材料(约占复合材料总量的95%)。上述问题严重制约了复合材料微波固化技术的发展与应用。为解决上述问题,本发明人前期提出了一种复合材料微波间接加热模具及固化方法(201810325089.7),采用微波间接加热模具的吸波型面吸收微波,将微波能转化为热能用于加热固化复合材料零件。此外,发明人意外发现,在多向铺层碳纤维增强树脂基复合材料表面粘贴金属胶带(二维材料)可以使胶带附近约2mm的材料在微波作用下产生微弱的间隙状加热条纹。因此,本发明人进一步申请了在复合材料表面放置二维金属栅的微波加热方法(201710895983.3),但由于二维金属栅与微波(频率一般为2.45GHz)间无法形成有效谐振,上述方法产生的加热效果极其有限,而且间隙状的加热条纹使材料表面的温度分布极不均匀。
一直以来,整个电磁领域都认为将三维金属结构(尤其是多个三维金属结构)放置于微波谐振腔体中会发生放电打火现象、产生大量微波反射、损坏微波源等严重后果。然而,经过大量理论研究、仿真分析和实验探索后,发明人发现通过合理设计三维金属单元的几何结构和尺寸,不仅可以避免三维金属结构在微波谐振腔体内产生放电打火、发生大量反射、损坏微波源等现象,而且可以将原来不能加热多向铺层碳纤维增强树脂基复合材料的微波谐振模式(多为TEM模)转换为能对该类材料进行有效加热的全新微波谐振模式(多为TM 模)。此外,通过多个阵列三维金属单元间产生的良好微波谐振效应,可以以极高的效率将原来不能加热多向铺层碳纤维增强树脂基复合材料的微波谐振模式(多为TEM模)转换为能对该类材料进行有效加热的全新微波谐振模式(多为TM模)。这样,微波能量就以转换后的微波谐振模式(多为TM模)源源不断的被多向铺层碳纤维增强树脂基复合材料吸收。本发明产生的加热效果完全可以满足工业生产要求,从真正意义上实现了多向铺层碳纤维增强树脂基复合材料的高质量、短周期、低成本微波固化成型。
发明内容
本发明的目的是针对多向铺层的碳纤维增强树脂基复合材料在微波谐振腔体内会产生微波屏蔽效应而无法被微波加热,以及二维金属栅加热效果极差的问题,发明一种采用阵列三维金属单元将原来不能加热多向铺层碳纤维增强树脂基复合材料的微波谐振模式(多为TEM模)转换为能对该类材料进行有效加热的全新微波谐振模式(多为TM模)的微波加热方法。
本发明的技术方案是:
一种多向铺层碳纤维增强树脂基复合材料微波固化方法,其特征在于:在多向铺层碳纤维增强树脂基复合材料表面或距离表面一定范围内放置阵列三维金属单元,并将其置于微波加热炉中进行微波加热固化。
所述的三维金属单元为具有一定厚度的方环等结构,并采用导电性良好的金属材料制成,如铜、铝等。
采用具有一定刚性的耐高温透波材料制作用于固定三维金属单元的基板,维持阵列三维金属单元间的相对位置;基板的外形与待固化的多向铺层碳纤维增强树脂基复合材料的外形保持一致。
所述的具有一定刚性的耐高温透波材料为聚四氟乙烯、玻璃纤维增强树脂基复合材料等。
通过以下方式提高多向铺层碳纤维增强树脂基复合材料靠近阵列三维金属单元一面的表面质量:
(a)采用与多向铺层碳纤维增强树脂基复合材料基板一致的材料填充三维金属单元的中空部分,保证多向铺层碳纤维增强树脂基复合材料与阵列三维金属单元整体结构(包括基板、阵列三维金属单元、填充材料)之间的接触面平整光滑;
(b)在多向铺层碳纤维增强树脂基复合材料与三维金属单元之间增加一层较薄的光滑型面;该型面与基板紧密接触,其材料与基板保持一致;
(c)将上述型面与基板制作为一个整体,其下表面设置一系列盲孔,用于放置阵列三维金属单元,而其上表面具有良好的表面质量,用于放置多向铺层碳纤维增强树脂基复合材料。
光滑型面的厚度小于10mm,且光滑型面厚度越小加热效果越好。
当多向铺层碳纤维增强树脂基复合材料厚度小于等于5mm时,可仅在多向铺层碳纤维增强树脂基复合材料下方放置阵列三维金属单元;当多向铺层碳纤维增强树脂基复合材料厚度大于5mm时,在多向铺层碳纤维增强树脂基复合材料的上下位置均放置阵列三维金属单元。
采用电磁模型对阵列三维金属单元的结构参数进行优化设计,如三维金属单元的几何参数和单元间距等;
所述电磁模型包括微波谐振腔体(四周壁面设置为理想电导体,横截面边长不小于100mm),激励端口A、B,采用基板固定的阵列三维金属单元,以及多向铺层碳纤维增强树脂基复合材料;从激励端口A发出的微波依次入射到阵列三维金属单元和多向铺层的碳纤维增强树脂基复合材料上;多向铺层碳纤维增强树脂基复合材料与微波谐振腔体的四周壁面接触良好;上述模型的输入参数主要包括:微波频率,多向铺层碳纤维增强树脂基复合材料的介电常数、电导率、磁导率、密度和厚度,以及三维金属单元的几何参数和单元间距等;其中,微波频率与多向铺层碳纤维增强树脂基复合材料的介电常数、电导率、磁导率、密度和厚度根据实际参数赋值;同时,为三维金属单元的几何参数和单元间距设定取值范围(一般大于零且小于微波波长);
上述模型的输出参数包括:激励端口A处的反射率和激励端口B处的透射率。
上述模型的计算过程为:以多向铺层碳纤维增强树脂基复合材料的吸收率(吸收率=1-反射率-透射率)为优化目标,以设定的取值范围为边界条件,通过大量计算搜索三维金属单元几何参数和单元间距的最优解,使多向铺层碳纤维增强树脂基复合材料的吸收率达到最大值(或吸收率大于等于10%)。
本发明的有益效果:
本发明可以实现对多向铺层碳纤维增强树脂基复合材料的有效微波加热,且加热效果显著,完全可以满足工业生产要求,从真正意义上实现了多向铺层碳纤维增强树脂基复合材料的高质量、短周期、低成本微波固化成型。
附图说明
图1是本发明的多向铺层碳纤维增强树脂基复合材料微波加热装置示意图。
图2是本发明采用基板固定的阵列三维金属方环的示意图(三视投影图)。
图3是本发明采用自带型面基板固定的阵列三维金属方环示意图。
图4是本发明的多向铺层碳纤维增强树脂基复合材料薄壁件微波加热装置布置图。
图5是本发明的大厚度多向铺层碳纤维增强树脂基复合材料微波加热装置布置图。
图6是本发明的电磁模型示意图。
图7是本发明的阵列三维金属方环结构参数示意图。
图中:1三维金属单元,2基板,3型面,4复合材料,5微波谐振腔体,6磁控管,7自带型面基板,8密封胶带,9脱模布,10真空袋,11透气毡,12有孔隔离膜,13无孔隔离膜,14真空接头。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
如图1-7所示。
一种多向铺层碳纤维增强树脂基复合材料微波固化方法,其关键是在多向铺层碳纤维增强树脂基复合材料4表面或距离表面一定范围内放置阵列三维金属单元1,并将其置于微波谐振腔体5中进行微波加热固化,且多向铺层碳纤维增强树脂基复合材料4与三维金属单元1间的距离越近,多向铺层碳纤维增强树脂基复合材料4的吸波性能越强,加热效果越显著,其原理图如图1所示。
所述的三维金属单元1的一种结构如图2所示,该三维金属单元1为具有一定厚度的方环(也可为长方形环、菱形环、圆环、多边形环、边缘开口方环、多环嵌套等)结构,并采用导电性良好的金属材料制成,如铜、铝等。同时,采用具有一定刚性的耐高温透波材料(如聚四氟乙烯、玻璃纤维增强树脂基复合材料等)制作用于固定三维金属单元的基板2,维持阵列三维金属单元间的相对位置,也就是说可先制作一个带栅格的基板,再将一个一个小的三维金属单元1放入栅格中,基板上的栅格边起到给三维金属单元1定位的作用,基板2的外形与待固化的多向铺层碳纤维增强树脂基复合材料4的外形保持一致。
具体实施时,为了提高固化成型后的复合板材的表面质量,可通过以下三种方式来提高多向铺层碳纤维增强树脂基复合材料4靠阵列三维金属单元1一面的表面质量:
(a)采用与基板2一致的材料填充三维金属单元1的中空部分,保证多向铺层碳纤维增强树脂基复合材料4与阵列三维金属单元整体结构(包括基板2、阵列三维金属单元1、填充材料)之间的接触面平整光滑;
(b)如图1所示,在多向铺层碳纤维增强树脂基复合材料4与三维金属单元1之间增加一层较薄(如厚度小于5mm,型面3的厚度越小,加热效果越好)的光滑型面3;该型面3与 基板2紧密接触,其材料与基板2保持一致;
(c)如图3所示,将型面3与基板2制作为一个整体7,其下表面设置一系列盲孔,用于放置阵列三维金属单元1,而其上表面具有良好的表面质量,用于放置多向铺层碳纤维增强树脂基复合材料4。
当多向铺层碳纤维增强树脂基复合材料4较薄(如厚度小于等于5mm)时,可仅在多向铺层碳纤维增强树脂基复合材料4下方放置阵列三维金属单元1,如图4所示;当多向铺层碳纤维增强树脂基复合材料4较厚(如厚度大于5mm)时,在多向铺层碳纤维增强树脂基复合材料4的上下位置均放置阵列三维金属单元1,如图5所示。
采用电磁模型(如图6所示)对阵列三维金属单元1的结构参数进行优化设计,如三维金属单元1的几何参数和单元间距等(如图7所示);
所述电磁模型包括微波谐振腔体5(四周壁面设置为理想电导体,横截面边长不小于100mm),激励端口A、B,采用基板2固定的阵列三维金属单元1,以及多向铺层碳纤维增强树脂基复合材料4;从激励端口A发出的微波依次入射到阵列三维金属单元1和多向铺层的碳纤维增强树脂基复合材料4上;多向铺层碳纤维增强树脂基复合材料4与微波谐振腔体5的四周壁面接触良好;
上述模型的输入参数主要包括:微波频率,多向铺层碳纤维增强树脂基复合材料的介电常数、电导率、磁导率、密度和厚度,以及三维金属单元的几何参数和单元间距等;其中,微波频率与多向铺层碳纤维增强树脂基复合材料4的介电常数、电导率、磁导率、密度和厚度根据实际参数赋值;同时,为三维金属单元1的几何参数和单元间距设定取值范围(一般大于零且小于微波波长);
上述模型的输出参数包括:激励端口A处的反射率和激励端口B处的透射率。
上述模型的计算过程为:以多向铺层碳纤维增强树脂基复合材料4的吸收率(吸收率=1-反射率-透射率)为优化目标,以设定的取值范围为边界条件,通过大量计算搜索三维金属单元1几何参数和单元间距的最优解,使多向铺层碳纤维增强树脂基复合材料4的吸收率达到最大值(或吸收率大于等于10%)。
实例一。
采用微波固化多向铺层碳纤维增强环氧树脂基复合材料薄壁板4,其尺寸为200(长)×200(宽)×2(高)mm 3,铺层顺序为[0/90] 10
首先,通过电磁仿真软件HFSS建立方环模型(如图6)。模型中微波谐振腔体5四周壁面设置为理想电导体边界条件,边长为200mm;微波谐振腔体5两端设置为激励端口 A和B。复合材料4与微波谐振腔体5四周壁面接触良好。复合材料4的厚度为2mm,密度为1820kg/m 3,其各向异性的相对介电常数为(61,28,28),相对磁导率为(1,1,1),电导率为(13900,0.01,0.01)。设置方环1厚度h的取值范围为1~20mm,计算步长为2mm,方环1宽度m的取值范围为1~9mm,计算步长为1mm,方环1间隙j的取值范围为1~8mm,计算步长为1mm,方环1的外边长l的取值范围为1~29mm,计算步长为2mm。通过大量交叉计算,当方环1厚度h为18mm,方环1宽度m为5mm,方环1间隙j为3mm,方环1外边长l为23mm时,多向铺层碳纤维增强环氧树脂基复合材料层合板的微波吸收率达到最大值24%。
其次,根据上述参数,采用H59黄铜制作三维铜环1,采用聚四氟乙烯板制作基板2,基板2尺寸为300(长)×300(宽)×18(高)mm 3。将阵列三维铜环1放入基板2后,在基板2上方放置一层尺寸为300(长)×300(宽)×1(高)mm 3的聚四氟乙烯型面3。聚四氟乙烯基板2和聚四氟乙烯型面3通过粘结剂紧密结合。
然后,在聚四氟乙烯型面3上依次放置脱模布9、多向铺层碳纤维增强环氧树脂基复合材料薄壁件4、脱模布9、无孔隔离膜13、有孔隔离膜12、透气毡11、真空袋10、真空接头14、密封胶带8等辅助材料。
最后,将封装好的多向铺层碳纤维增强环氧树脂基复合材料4置于微波谐振腔体5内,按照设定的工艺曲线进行抽真空和微波加热固化。固化完成后,获得满足使用要求的多向铺层碳纤维增强环氧树脂基复合材料薄壁件4。
实例二。
采用微波固化多向铺层碳纤维增强环氧树脂基复合材料薄壁板4,其尺寸为200(长)×200(宽)×2(高)mm 3,铺层顺序为[0/90] 10
本实施例除将基板2和型面3制作为一个整体(即自带型面基板7)外,其他均与实例一相同。
实例三。
采用微波固化大厚度多向铺层碳纤维增强环氧树脂基复合材料层合板4,其尺寸为200(长)×200(宽)×10(高)mm 3,铺层顺序为[0/+45/-45/90] 25
首先,通过电磁仿真软件HFSS建立方环模型(如图6)。模型中微波谐振腔体5四周壁面设置为理想电导体边界条件,边长为200mm;微波谐振腔体5两端设置为激励端口A和B。复合材料4与微波谐振腔体5四周壁面接触良好。复合材料4的厚度为10mm,密度为1820kg/m 3,其各向异性的相对介电常数为(61,28,28),相对磁导率为(1,1,1), 电导率为(13900,0.01,0.01)。设置方环1厚度h的取值范围为1~24mm,计算步长为2mm,方环1宽度m的取值范围为1~11mm,计算步长为1mm,方环1间隙j的取值范围为1~7mm,计算步长为1mm,方环1的外边长l的取值范围为1~46mm,计算步长为3mm。通过大量交叉计算,当方环1厚度h为16mm,方环1宽度m为4mm,方环1间隙j为4mm,方环1外边长l为22mm时,多向铺层碳纤维增强环氧树脂基复合材料层合板的微波吸收率达到最大值14.9%。
其次,根据上述参数,采用H59黄铜制作三维铜方环1,采用聚四氟乙烯板制作基板2,基板2尺寸为300(长)×300(宽)×16(高)mm 3。将阵列三维铜环1放入基板2后,采用聚四氟乙烯块填充三维铜环的中空部分;该聚四氟乙烯块的尺寸为14(长)×14(宽)×16(高)mm 3
然后,在聚四氟乙烯基板2固定的三维铜方环1上表面依次放置脱模布9、大厚度多向铺层碳纤维增强环氧树脂基复合材料层合板4、脱模布9、无孔隔离膜13、有孔隔离膜12、基板2与阵列三维铜方环1、透气毡11、真空袋10、真空接头14、密封胶带8等辅助材料。
最后,将封装好的大厚度多向铺层碳纤维增强环氧树脂基复合材料层合板4置于微波谐振腔体5内,按照设定的工艺曲线进行抽真空和微波加热固化。固化完成后,获得满足使用要求的大厚度多向铺层碳纤维增强环氧树脂基复合材料层合板4。
本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

Claims (7)

  1. 一种多向铺层碳纤维增强树脂基复合材料微波固化方法,其特征在于:在多向铺层碳纤维增强树脂基复合材料表面或距离表面一定范围内放置阵列三维金属单元,并将其置于微波加热炉中进行微波加热固化。
  2. 根据权利要求1所述的方法,其特征在于:所述的三维金属单元为具有一定厚度的方环等结构,并采用导电性良好的金属材料制成,如铜、铝等。
  3. 根据权利要求1所述的方法,其特征在于:采用具有一定刚性的耐高温透波材料制作用于固定三维金属单元的基板,维持阵列三维金属单元间的相对位置;基板的外形与待固化的多向铺层碳纤维增强树脂基复合材料的外形保持一致。
  4. 根据权利要求3所述的方法,其特征在于:所述的具有一定刚性的耐高温透波材料为聚四氟乙烯、玻璃纤维增强树脂基复合材料等。
  5. 根据权利要求1所述的方法,其特征在于:通过以下方式提高多向铺层碳纤维增强树脂基复合材料靠近阵列三维金属单元一面的表面质量:
    (a)采用与多向铺层碳纤维增强树脂基复合材料基板一致的材料填充三维金属单元的中空部分,保证多向铺层碳纤维增强树脂基复合材料与阵列三维金属单元整体结构(包括基板、阵列三维金属单元、填充材料)之间的接触面平整光滑;
    (b)在多向铺层碳纤维增强树脂基复合材料与阵列三维金属单元之间增加一层较薄的光滑型面;该型面与基板紧密接触,其材料与基板保持一致;
    (c)将上述型面与基板制作为一个整体,其下表面设置一系列盲孔,用于放置阵列三维金属单元,而其上表面具有良好的表面质量,用于放置多向铺层碳纤维增强树脂基复合材料。
  6. 根据权利要求5所述的方法,其特征在于光滑型面的厚度一般小于10mm,且光滑型面厚度越小加热效果越好。
  7. 根据权利要求1所述的方法,其特征在于:当多向铺层碳纤维增强树脂基复合材料厚度小于等于5mm时,可仅在多向铺层碳纤维增强树脂基复合材料下方放置阵列三维金属单元;当多向铺层碳纤维增强树脂基复合材料厚度大于5mm时,在多向铺层碳纤维增强树脂基复合材料的上下位置均放置阵列三维金属单元。
PCT/CN2018/108724 2018-09-17 2018-09-29 多向铺层碳纤维增强树脂基复合材料微波固化方法 WO2020056793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811078980.1 2018-09-17
CN201811078980.1A CN109228066A (zh) 2018-09-17 2018-09-17 多向铺层碳纤维增强树脂基复合材料微波固化方法

Publications (1)

Publication Number Publication Date
WO2020056793A1 true WO2020056793A1 (zh) 2020-03-26

Family

ID=65058447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108724 WO2020056793A1 (zh) 2018-09-17 2018-09-29 多向铺层碳纤维增强树脂基复合材料微波固化方法

Country Status (2)

Country Link
CN (1) CN109228066A (zh)
WO (1) WO2020056793A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747668B (zh) * 2020-03-25 2021-11-21 源川國際股份有限公司 零組件的製造方法
CN112455048B (zh) * 2020-11-24 2022-10-04 南京航空航天大学 一种强反射材料的微波高效加热方法
CN112793057B (zh) * 2020-11-24 2022-09-20 南京航空航天大学 一种碳纤维增强复合材料微波多频分区加热方法
CN112936922A (zh) * 2021-04-06 2021-06-11 南京航空航天大学 一种超表面馈能的复合材料构件损伤外场微波快速修补方法
CN113977990A (zh) * 2021-11-04 2022-01-28 吉林大学 一种提高金属/cfrp复合材料构件抗拉强度的制备方法
CN115091785B (zh) * 2022-06-17 2024-04-09 佛山市石金科技有限公司 一种高效固化大尺寸碳纤维预浸料的方法和固化成型设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025360A1 (en) * 2012-08-10 2014-02-13 Empire Technology Development Llc Microwave dipolar heating of energetic polymers for carbon fiber-matrix separation
CN107662303A (zh) * 2017-10-16 2018-02-06 南京航空航天大学 一种碳纤维增强树脂基复合材料综合电损耗固化方法
CN107718394A (zh) * 2017-09-28 2018-02-23 南京航空航天大学 多向碳纤维增强复合材料的直接穿透微波加热固化方法
CN107901306A (zh) * 2017-11-02 2018-04-13 南京航空航天大学 阻抗匹配的碳纤维复合材料高效微波固化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025360A1 (en) * 2012-08-10 2014-02-13 Empire Technology Development Llc Microwave dipolar heating of energetic polymers for carbon fiber-matrix separation
CN107718394A (zh) * 2017-09-28 2018-02-23 南京航空航天大学 多向碳纤维增强复合材料的直接穿透微波加热固化方法
CN107662303A (zh) * 2017-10-16 2018-02-06 南京航空航天大学 一种碳纤维增强树脂基复合材料综合电损耗固化方法
CN107901306A (zh) * 2017-11-02 2018-04-13 南京航空航天大学 阻抗匹配的碳纤维复合材料高效微波固化方法

Also Published As

Publication number Publication date
CN109228066A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020056793A1 (zh) 多向铺层碳纤维增强树脂基复合材料微波固化方法
Li et al. Curing multidirectional carbon fiber reinforced polymer composites with indirect microwave heating
Lee et al. Microwave curing of composites
CN106457700B (zh) 用于加热模具的设备
CN100596249C (zh) 用于加热材料以制造产品的方法及实施所述方法的设备
US5723849A (en) Reinforced susceptor for induction or resistance welding of thermoplastic composites
CN102729490B (zh) 微波固化复合材料的方法和装置
Li et al. Tooling design and microwave curing technologies for the manufacturing of fiber-reinforced polymer composites in aerospace applications
US5624594A (en) Fixed coil induction heater for thermoplastic welding
CN101772231B (zh) 具有超颖结构材料的微波加热装置
CN105514066A (zh) 一种石墨烯复合红外辐射导热膜及其制作方法
JPH032228A (ja) 樹脂含浸ガラス繊維複合製品の製造方法
CN1544238A (zh) 碳纤维增强复合材料的自电阻加热成型方法
CN104732022B (zh) 一种复合材料微波固化温度场的预测方法
CN105666896A (zh) 一种复合能场加热方法
CN103991225A (zh) 三维间隔连体织物增强树脂基复合材料的固化方法及固化用的微波炉
CN107565215B (zh) 一种机载天线罩结构
CN107718394B (zh) 多向碳纤维增强复合材料的直接穿透微波加热固化方法
CN114536617B (zh) 一种改善碳纤维复合材料微波固化加热均匀性的方法
CN107901306B (zh) 阻抗匹配的碳纤维复合材料高效微波固化方法
CN105690629B (zh) 复合材料微波固化激励装置及方法
CN106881871B (zh) 热塑性高分子材料体之间的可控定位面焊接方法
CN112793057B (zh) 一种碳纤维增强复合材料微波多频分区加热方法
CN108437306B (zh) 复合材料微波间接加热模具及固化方法
Xia et al. High-efficiency and compact microwave heating system for liquid in a mug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934015

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18934015

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/11/2021)