WO2020056719A1 - 一种信息传输时间的确定方法、终端设备及网络设备 - Google Patents

一种信息传输时间的确定方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2020056719A1
WO2020056719A1 PCT/CN2018/106925 CN2018106925W WO2020056719A1 WO 2020056719 A1 WO2020056719 A1 WO 2020056719A1 CN 2018106925 W CN2018106925 W CN 2018106925W WO 2020056719 A1 WO2020056719 A1 WO 2020056719A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time
feedback
downlink control
control information
Prior art date
Application number
PCT/CN2018/106925
Other languages
English (en)
French (fr)
Other versions
WO2020056719A9 (zh
Inventor
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/106925 priority Critical patent/WO2020056719A1/zh
Priority to CN201880091053.5A priority patent/CN111837349B/zh
Publication of WO2020056719A1 publication Critical patent/WO2020056719A1/zh
Publication of WO2020056719A9 publication Critical patent/WO2020056719A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of information processing technology, and in particular, to a method for transmitting information, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • the base station uses downlink scheduling signaling, such as Physical Downlink Shared Channel (PDSCH) in Downlink Control Information (DCI) -to-hybrid Automatic repeat request (HARQ, Hybrid, Automatic, ReQuest, HARQ) feedback timing indicator indicator indicates the transmission of feedback information corresponding to the DCI or the PDSCH scheduled by the DCI, such as acknowledgement (ACK) / not Acknowledgment (NACK) time slot. That is, the PDSCH scheduled by DCI or DCI is transmitted in the slot, and the corresponding ACK / NACK is transmitted in the slot + n.
  • PDSCH-to-HARQ_feedback timing is used to indicate the value of k.
  • the current feedback time may not meet the delay requirements.
  • embodiments of the present invention provide a method for transmitting information, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • an embodiment of the present invention provides a method for determining information transmission time, which is applied to a terminal device and includes:
  • the configuration information includes at least one time-domain granularity
  • the time-domain granularity is one of the following: time slot, half time slot, N symbols, N is greater than or equal to 1 Integer
  • an embodiment of the present invention provides a method for determining information transmission time, which is applied to a terminal device and includes:
  • the feedback time set includes at least two feedback times; among the at least two feedback times, time domain granularity or time units corresponding to different feedback times are at least partially different;
  • the time domain granularity is one of the following: time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • an embodiment of the present invention provides a method for determining information transmission time, which is applied to a network device and includes:
  • the information includes at least one time-domain granularity, and the time-domain granularity is one of the following: a complete time slot, an incomplete time slot, N symbols, and N is an integer greater than or equal to 1.
  • an embodiment of the present invention provides a method for determining information transmission time, which is applied to a network device and includes:
  • the feedback time set includes at least two feedback times; among the at least two feedback times, time domain granularity or time units corresponding to different feedback times are at least partially different;
  • the time domain granularity is one of the following: time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • an embodiment of the present invention provides a terminal device, including:
  • the first communication unit receives configuration information; receives downlink control information; wherein the configuration information includes at least one time domain granularity, and the time domain granularity is one of the following: time slot, half time slot, N symbols, where N is an integer greater than or equal to 1;
  • the first processing unit determines a time domain position for transmitting feedback information based on the downlink control information and at least one time domain granularity included in the configuration information.
  • an embodiment of the present invention provides a terminal device, including:
  • a second communication unit receiving downlink control information
  • a second processing unit determining a time domain position for transmitting the feedback information based on the downlink control information and the feedback time set;
  • the feedback time set includes at least two feedback times; among the at least two feedback times, time domain granularity or time units corresponding to different feedback times are at least partially different;
  • the time domain granularity is one of the following: time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • an embodiment of the present invention provides a network device, including:
  • a third processing unit based on the downlink control information and at least one time domain granularity included in the configuration information, determining a time domain location instructing the terminal device to transmit feedback information;
  • the third communication unit sends configuration information to the terminal device; sends downlink control information to the terminal device; wherein the configuration information includes at least one time domain granularity, and the time domain granularity is one of the following: a complete time slot , Non-complete slots, N symbols, N is an integer greater than or equal to 1.
  • an embodiment of the present invention provides a network device, including:
  • a fourth communication unit sending downlink control information to the terminal device
  • a fourth processing unit based on the downlink control information and a feedback time set, determining a time domain location instructing the terminal device to transmit feedback information;
  • the feedback time set includes at least two feedback times; among the at least two feedback times, time domain granularity or time units corresponding to different feedback times are at least partially different;
  • the time domain granularity is one of the following: time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the above-mentioned first aspect or its implementations.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or the implementations thereof.
  • a chip is provided for implementing any one of the foregoing first to second aspects or a method in each implementation manner thereof.
  • the chip includes a processor for invoking and running a computer program from a memory, so that a device installed with the chip executes any one of the first aspect to the second aspect described above or implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, which causes a computer to execute the method in any one of the first to second aspects described above or in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the first to second aspects described above or a method in each implementation thereof.
  • a computer program that, when run on a computer, causes the computer to execute any one of the first to second aspects described above or a method in each implementation thereof.
  • the time domain position of the transmission feedback information can be determined according to the downlink control information and the time domain granularity, and the time domain granularity may be half a time slot or N symbols, that is not necessarily Is a complete time slot; in this way, the time-domain granularity of sending feedback information is not limited to the entire time slot, and can be smaller than the entire time slot, so that it can meet the delay requirements of the service, especially the delay of the low-latency service. demand.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture according to an embodiment of the present application.
  • FIG. 2 is a first schematic flowchart of a method for determining information transmission time according to an embodiment of the present application
  • FIG. 3 is a first flowchart of a method for determining an information transmission time according to an embodiment of the present application
  • FIG. 4 is a first flowchart of a method for determining an information transmission time according to an embodiment of the present application
  • FIG. 5 is a first flowchart of a method for determining an information transmission time according to an embodiment of the present application
  • FIG. 6 is a first schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a second schematic diagram of a structure of a terminal device according to an embodiment of the present invention.
  • FIG. 8 is a first schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 9 is a second schematic diagram of a structure of a network device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram 2 of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE Frequency Division Duplex Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Global Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a network device (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a network device (NodeB, NB) in a WCDMA system, or may be an evolution in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • Type network equipment (Evolutional NodeB, eNB or eNodeB), or a wireless controller in a Cloud Radio Access Network (CRAN), or the network equipment may be a mobile switching center, relay station, access point, Vehicle-mounted devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • Evolutional NodeB, eNB or eNodeB or a wireless controller in a Cloud Radio Access Network (CRAN)
  • the network equipment may be a mobile switching center, relay station, access point, Vehicle-mounted devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) devices.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS personal communications systems
  • GPS Global Positioning System
  • a terminal device can refer to an access terminal, user equipment (terminal equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent Or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • terminal devices 120 may perform terminal direct device (D2D) communication.
  • D2D terminal direct device
  • the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and are not described herein again.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • An embodiment of the present invention provides a method for determining information transmission time, which is applied to a terminal device. As shown in FIG. 2, the method includes:
  • Step 201 Receive configuration information; wherein the configuration information includes at least one time-domain granularity, and the time-domain granularity is one of the following: time slot, half time slot, N symbols, and N is greater than An integer equal to 1
  • Step 202 Receive downlink control information, and determine a time domain position for transmitting feedback information based on the downlink control information and at least one time domain granularity included in the configuration information.
  • the configuration information may be information sent by the network side for the terminal device; the configuration information includes a first time domain granularity.
  • the configuration information in this embodiment includes a time domain granularity configured for the terminal device on the network side, that is, the first time domain granularity; the time domain granularity may be a complete time slot, or may be Half a time slot, or N symbols; N can be valued according to the actual situation, for example, it can be 4, of course, other values can also be taken, but it is not exhaustive in this embodiment.
  • the sending of the configuration information in this embodiment may be sent through high-level signaling, for example, the configuration information may be sent for radio resource control (RRC, Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the configuration information can also be sent through other signaling, for example, it can be sent through DCI information, but since the configuration information does not need to be changed frequently, the use of DCI sending is only an exemplary description and is not necessarily the optimal choice. To define this solution.
  • the downlink control information may specifically be DCI.
  • the determining a time domain position for transmitting feedback information based on the downlink control information and at least one time domain granularity included in the configuration information includes:
  • the value of the feedback time indication information in the downlink control information is set to k, where k is an integer greater than or equal to 1.
  • the time slot of the downlink control information is n, and n is an integer greater than or equal to 1.
  • the domain granularity is multiplied with the value k of the feedback time indication information to obtain a first result; the result obtained by adding the time slot n of the downlink control information to the first result is used as the time domain position of the feedback information.
  • the downlink control information in this example may also be downlink information scheduled by the downlink control information, for example, a PDSCH scheduled by the downlink control information.
  • the first result is 2.5 time slots; then the 2.5 time slots after the nth time slot are used as the time domain position of the feedback information.
  • the time domain granularity of HARQ timing indicated by the configuration information is, for example, slot slot, half-slot, and N-symbol.
  • the terminal device receives the downlink control signaling, and determines the time position for transmitting ACK / NACK according to the value of PDSCH-to-HARQ_feedback timing indicator in the downlink control signaling and the pre-configured time domain granularity.
  • This embodiment can be applied to uRLLC (ultra high reliability and ultra low latency communication) services, and of course, it can also be applied to other services that require low latency communication, but it is not exhaustive in this embodiment.
  • the method provided in this embodiment can be applied to the processing manner of the DCI format 1-0. Of course, the method is not limited to this processing manner, and details are not described herein again.
  • the time domain position of the transmission feedback information can be determined according to the downlink control information and the time domain granularity, and the time domain granularity can be half a time slot or N symbols, that is not necessarily A complete time slot; in this way, the time domain granularity of sending feedback information is not limited to the entire time slot, but can be smaller than the entire time slot, thereby meeting the delay requirements of the service, especially the delay requirements of the low-latency service .
  • An embodiment of the present invention provides a method for determining information transmission time, which is applied to a terminal device. As shown in FIG. 3, the method includes:
  • Step 301 Receive downlink control information.
  • Step 302 Determine a time domain position for transmitting the feedback information based on the downlink control information and the feedback time set;
  • the feedback time set includes at least two feedback times; among the at least two feedback times, time domain granularity or time units corresponding to different feedback times are at least partially different;
  • the time domain granularity is one of the following: time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback time set is also obtained, specifically:
  • the feedback time set can be configured through the network side, and can also be the configuration content of the preset values saved on the terminal device side; when the feedback time set is configured by the network side, it can be passed through the high-level information on the network side.
  • the feedback time set can be configured through RRC signaling, and of course, it can also be configured through other information, which is not exhaustive here.
  • the foregoing downlink control information may specifically be DCI.
  • different feedback times correspond to different values of the feedback time indication information.
  • M feedback times correspond to the values of M feedback time indication information; among them, the value of the feedback time indication information can be represented by multiple bits, and The amount of feedback time is related. For example, when there are 8 feedback times in the feedback time set, it can be represented by 3 bits. As shown in the following table, each value corresponds to a feedback time. Each feedback time can be Multiples of time domain granularity.
  • Implicit method There is a certain order of the feedback time in the feedback time set.
  • the value of the feedback time indication information can be used to indicate the order of the feedback time in the feedback time set.
  • the value of the feedback time indication information is the corresponding feedback time.
  • the value of the feedback time indication information is 3, which corresponds to the third feedback time.
  • the determining a time domain position for transmitting feedback information based on downlink control information and a feedback time set includes:
  • the time domain position of the downlink information determines the time domain position of the transmission feedback information.
  • the time domain position of the downlink control information plus the first feedback time is the time domain position of the transmission feedback information.
  • the feedback time indication value is 3, then the feedback time A corresponding to the value 3 is selected from the feedback time set;
  • the time domain position of the downlink control information is time slot n, or the time domain position of the downlink information scheduled by the downlink control information is time slot n, and the result obtained by n + A is used as the time domain position of the transmission feedback information.
  • the downlink information scheduled by the downlink control information may be a PDSCH scheduled by the downlink control information, and of course, it may also be a PDCCH, which is not exhaustive here.
  • the value of the feedback information indication information can be 3, and the selected first feedback time can be 2.5 time slots; then 2.5 hours after the nth time slot
  • the gap serves as the time domain position of the feedback information.
  • This embodiment can be applied to uRLLC (ultra high reliability and ultra low latency communication) services, and of course, it can also be applied to other services that require low latency communication, but it is not exhaustive in this embodiment.
  • uRLLC ultra high reliability and ultra low latency communication
  • the method further includes:
  • a delay level of the downlink control information or a delay level of the downlink information scheduled by the downlink control information is determined.
  • determining the service type of the downlink control information based on the first feedback time or determining the service type of the downlink information scheduled by the downlink control information includes: based on the time domain granularity corresponding to the first feedback time. Or a time unit, determining a service type of downlink control information, or determining a service type of downlink information scheduled by the downlink control information.
  • the determining the delay level of the downlink control information or determining the delay level of the downlink information scheduled based on the first feedback time includes: based on a time domain particle corresponding to the first feedback time. Degree or time unit, to determine the delay level of the downlink control information, or to determine the delay level of the downlink information scheduled by the downlink control information.
  • DCI used to indicate the release of SPS resources
  • DCI used to indicate the release of SPS resources
  • the delay level of the downlink control information or the downlink information scheduled by the downlink control information is a low level, that is, it can correspond to a high-latency service;
  • the service type of the downlink control information or the downlink information scheduled by the downlink control information is enhanced mobile broadband (eMBB, Enhance Mobile Broadband).
  • the delay level of the downlink control information or the downlink information scheduled by the downlink control information is a low level, that is, it can be a service that corresponds to a high latency service.
  • the service type of downlink control information or downlink information scheduling of downlink control information is enhanced mobile broadband (eMBB, Enhance Mobile Broadband)
  • the delay level of the downlink control information or downlink information scheduling downlink information is advanced, that is, it may correspond to a low-latency service; or, the downlink may be determined
  • the control information or downlink control information scheduling downlink information service type is URLLC.
  • time domain granularity of the first feedback time is half a time slot or N symbols, then it can be determined that the delay level of the downlink control information or the downlink information scheduled by the downlink control information is high, that is, it can correspond to a low level.
  • Time-delay service or, it can be determined that the service type of downlink control information or downlink information scheduled by the downlink control information is URLLC.
  • the solution provided in this embodiment can also determine the downlink control information in addition to the feedback based on the first feedback time.
  • the time indicates how the information fields are parsed. details as follows:
  • the method further includes:
  • determining the parsing manner of other information fields except the feedback time indication information field in the downlink control information based on the first feedback time includes:
  • the information fields included in the first format and the second format are at least partially different, and / or the bit lengths included in at least part of the same information fields in the first format and the second format are different.
  • the first agreed value and the second agreed value may be set according to actual conditions, and the first agreed value may be one or more, the second agreed value may also be one or more, and the first agreed value and the The second agreed value is different.
  • the first agreed value may be an integer timeslot, and the second agreed value may be a non-integer timeslot, and no exhaustion is performed here.
  • the first feedback time is the first agreed value, or may be one of a plurality of first agreed values, it is determined that the other information fields are parsed in the first format; the first feedback time is the second agreed value, or multiple When one of the second agreed values is determined, the second format is used for parsing of other information fields.
  • determining the parsing manner of other information fields except the feedback time indication information field in the downlink control information based on the first feedback time includes:
  • time domain granularity corresponding to the first feedback time is a time slot, parsing the other information domain in a first format
  • the other information domain is analyzed by using the second format
  • the time domain granularity corresponding to the first feedback time is a time slot.
  • the first feedback time is an integer multiple of the time slot
  • the other format is used to analyze other information domains.
  • the domain granularity is half a time slot or N symbols, or it can be understood that when the first feedback time is not an integer multiple of the time slot, the second format is used to analyze other information domains.
  • the information fields included in the first format and the second format are at least partially different, and / or the bit lengths included in at least part of the same information fields in the first format and the second format are different.
  • the lengths of the first format and the second format may be the same, but the information fields contained therein are at least partially different, that is, the information fields contained in the first format and the second format may be partially different, that is, not completely the same;
  • the first format and the second format may contain the same information field, but the bit lengths included in the same information field in the first format and the second format are different;
  • the lengths of the first format and the second format may be the same, but the information fields contained therein are at least partially different, that is, the information fields contained in the first format and the second format may be different, that is, they are not exactly the same.
  • the first format and the second format may include the same information field, the bit lengths included in the same information field in the first format and the second format are different.
  • the first format and the second format may be one of a DCI format (Format) 1-1 and a new DCI format, respectively.
  • the DCI format 1-1 may be used to schedule a PDSCH for a single TB.
  • it may include information such as RB allocation and start position, MCS, retransmission times, and power control of the PUCCH; or DCI format 1 -1 can also be a format containing other information, which is not exhaustive here.
  • the new DCI format may be a newly defined format other than the formats 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 3, 3A and the like included in the existing technology.
  • the content contained in the DCI format in the prior art is at least partially different, and the bit length contained in the same information field may be different. In this embodiment, the content that can be contained in the new DCI format is not exhaustive.
  • DCI parses other information fields according to DCI format 1_1; when the time granularity is half-slot or X-symbol, it parses according to new DCI format (new DCI format for URLLC). Other information fields.
  • the first embodiment and the second embodiment can be executed on the same terminal device, and the terminal device can judge by itself to adopt the solution provided in the first embodiment or the second embodiment, for example, when processing the DCI 1-0 format
  • the solution of the first embodiment is adopted.
  • the terminal device may also determine which scheme to use for subsequent processing based on other methods, which is not described in this embodiment.
  • the time domain position of the transmission feedback information can be determined according to the downlink control information and the time domain granularity, and the time domain granularity can be half a time slot or N symbols, that is not necessarily A complete time slot; in this way, the time domain granularity of sending feedback information is not limited to the entire time slot, but can be smaller than the entire time slot, thereby meeting the delay requirements of the service, especially the delay requirements of the low-latency service .
  • An embodiment of the present invention provides a method for determining information transmission time, which is applied to a network device. As shown in FIG. 4, the method includes:
  • Step 401 Determine a time domain position that instructs the terminal device to transmit feedback information based on at least one time domain granularity included in the downlink control information and the configuration information;
  • Step 402 Send configuration information to the terminal device
  • Step 403 Send downlink control information to the terminal device.
  • the configuration information includes at least one time-domain granularity, and the time-domain granularity is one of the following: a complete time slot, an incomplete time slot, N symbols, and N is an integer greater than or equal to 1.
  • the configuration information in this embodiment includes a time domain granularity configured for the terminal device on the network side, that is, the first time domain granularity; the time domain granularity may be a complete time slot, or may be a half time slot Or, it can be N symbols; N can be valued according to the actual situation, for example, it can be 4, and of course, other values can be taken, but it is not exhaustive in this embodiment.
  • the sending of the configuration information in this embodiment may be sent through high-level signaling, for example, the configuration information may be sent for radio resource control (RRC, Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the configuration information can also be sent through other signaling, for example, it can be sent through DCI information, but since the configuration information does not need to be changed frequently, the use of DCI sending is only an exemplary description and is not necessarily the optimal choice. To define this solution.
  • sending the configuration information may not be performed every time, and the configuration information may be sent only when needed; downlink control information may be a step performed every time. If the two steps of issuing the configuration information and the control information are performed, the sequence may be the sequence of the foregoing steps.
  • the downlink control information may specifically be DCI.
  • the instructing, based on the downlink control information and at least one time domain granularity included in the configuration information, a time domain location where the terminal device transmits feedback information includes:
  • the value of the feedback time indication information in the downlink control information is set to k, where k is an integer greater than or equal to 1.
  • the time slot of the downlink control information is n, and n is an integer greater than or equal to 1.
  • the domain granularity is multiplied with the value k of the feedback time indication information to obtain a first result; the result obtained by adding the time slot n of the downlink control information to the first result is used as the time domain position of the feedback information.
  • the downlink control information in this example may also be downlink information scheduled by the downlink control information, for example, a PDSCH scheduled by the downlink control information.
  • the first result is 2.5 time slots; then the 2.5 time slots after the nth time slot are used as the time domain position of the feedback information.
  • the time domain granularity of HARQ timing indicated by the configuration information is, for example, slot slot, half-slot, and N-symbol.
  • the terminal device receives the downlink control signaling, and determines the time position for transmitting ACK / NACK according to the value of PDSCH-to-HARQ_feedback timing indicator in the downlink control signaling and the pre-configured time domain granularity.
  • This embodiment can be applied to uRLLC (ultra high reliability and ultra low latency communication) services, and of course, it can also be applied to other services that require low latency communication, but it is not exhaustive in this embodiment.
  • the method provided in this embodiment can be applied to the processing manner of the DCI format 1-0. Of course, the method is not limited to this processing manner, and details are not described herein again.
  • the time domain position of the transmission feedback information can be determined according to the downlink control information and the time domain granularity, and the time domain granularity can be half a time slot or N symbols, that is not necessarily A complete time slot; in this way, the time domain granularity of sending feedback information is not limited to the entire time slot, but can be smaller than the entire time slot, thereby meeting the delay requirements of the service, especially the delay requirements of the low-latency service .
  • An embodiment of the present invention provides a method for determining information transmission time, which is applied to a network device. As shown in FIG. 5, the method includes:
  • Step 501 Determine a time domain position that instructs the terminal device to transmit feedback information based on downlink control information and a feedback time set;
  • Step 502 Send downlink control information to the terminal device.
  • the feedback time set includes at least two feedback times; among the at least two feedback times, the time domain granularity or time unit corresponding to different feedback times is at least partially different; the time domain granularity is as follows One: time slot, half time slot, N symbols, N is an integer greater than or equal to 1.
  • the feedback time set can be configured to the terminal device through the network device; when the feedback time set is configured by the network side, it can be configured through high-level signaling on the network side, for example, it can be configured through RRC signaling Of course, it can also be configured through other information, which is not exhaustive here.
  • the foregoing downlink control information may specifically be DCI.
  • different feedback times correspond to different values of the feedback time indication information.
  • M feedback times correspond to the values of M feedback time indication information; among them, the value of the feedback time indication information can be represented by multiple bits, and The amount of feedback time is related. For example, when there are 8 feedback times in the feedback time set, it can be represented by 3 bits. As shown in the following table, each value corresponds to a feedback time. Each feedback time can be Multiples of time domain granularity.
  • Implicit method There is a certain order of the feedback time in the feedback time set.
  • the value of the feedback time indication information can be used to indicate the order of the feedback time in the feedback time set.
  • the value of the feedback time indication information is the corresponding feedback time.
  • the value of the feedback time indication information is 3, which corresponds to the third feedback time.
  • the indication of the time domain position where the terminal device transmits the feedback information based on the downlink control information and the feedback time set includes:
  • the time domain position of the downlink information indicates the time domain position where the terminal device transmits feedback information.
  • the time domain position of the downlink control information plus the first feedback time is the time domain position of the transmission feedback information.
  • the feedback time indication value is 3, then the feedback time A corresponding to the value 3 is selected from the feedback time set;
  • the time domain position of the downlink control information is time slot n, or the time domain position of the downlink information scheduled by the downlink control information is time slot n, and the result obtained by n + A is used as the time domain position of the transmission feedback information.
  • the downlink information scheduled by the downlink control information may be a PDSCH scheduled by the downlink control information, and of course, it may also be a PDCCH, which is not exhaustive here.
  • the value of the feedback information indication information can be 3, and the selected first feedback time can be 2.5 time slots; then 2.5 hours after the nth time slot
  • the gap serves as the time domain position of the feedback information.
  • This embodiment can be applied to uRLLC (ultra high reliability and ultra low latency communication) services, and of course, it can also be applied to other services that require low latency communication, but it is not exhaustive in this embodiment.
  • uRLLC ultra high reliability and ultra low latency communication
  • the method further includes:
  • indicating the service type of the downlink control information of the terminal device or indicating the service type of the downlink information scheduled by the terminal device's downlink control information includes: setting the first The time domain granularity or time unit corresponding to a feedback time indicates the service type of the downlink control information of the terminal device, or the service type of the downlink information scheduled by the terminal device's downlink control information.
  • And indicating, based on the first feedback time, a delay level of the downlink control information of the terminal device, or indicating a delay level of downlink information scheduled by the terminal device's downlink control information includes: The time domain granularity or time unit corresponding to the first feedback time indicates the delay level of the downlink control information of the terminal device or the delay level of the downlink information scheduled by the terminal device's downlink control information.
  • DCI used to indicate the release of SPS resources
  • DCI used to indicate the release of SPS resources
  • the delay level of the downlink control information or the downlink information scheduled by the downlink control information is a low level, that is, it can correspond to a high-latency service;
  • the service type of the downlink control information or the downlink information scheduled by the downlink control information is enhanced mobile broadband (eMBB, Enhance Mobile Broadband).
  • the delay level of the downlink control information or the downlink information scheduled by the downlink control information is a low level, that is, it can be a service that corresponds to high-latency services.
  • the service type of downlink control information or downlink information scheduling of downlink control information is enhanced mobile broadband (eMBB, Enhance Mobile Broadband)
  • the delay level of the downlink control information or downlink information scheduling downlink information is advanced, that is, it may correspond to a low-latency service; or, the downlink may be determined
  • the control information or downlink control information scheduling downlink information service type is URLLC.
  • time domain granularity of the first feedback time is half a time slot or N symbols, then it can be determined that the delay level of the downlink control information or the downlink information scheduled by the downlink control information is high, that is, it can correspond to a low level.
  • Time-delay service or, it can be determined that the service type of downlink control information or downlink information scheduled by the downlink control information is URLLC.
  • the solution provided in this embodiment can also determine the downlink control information in addition to the feedback based on the first feedback time.
  • the time indicates how the information fields are parsed. details as follows:
  • the method further includes:
  • instructing the terminal device to analyze information fields other than the feedback time indication information field in the downlink control information includes:
  • the information fields included in the first format and the second format are at least partially different, and / or the bit lengths included in at least part of the same information fields in the first format and the second format are different.
  • the first agreed value and the second agreed value may be set according to actual conditions, and the first agreed value may be one or more, the second agreed value may also be one or more, and the first agreed value and the The second agreed value is different.
  • the first agreed value may be an integer timeslot, and the second agreed value may be a non-integer timeslot, and no exhaustion is performed here.
  • the first feedback time is the first agreed value, or may be one of a plurality of first agreed values, it is determined that the other information fields are parsed in the first format; the first feedback time is the second agreed value, or multiple When one of the second agreed values is determined, the second format is used for parsing of other information fields.
  • determining the parsing manner of other information fields except the feedback time indication information field in the downlink control information based on the first feedback time includes:
  • the time domain granularity corresponding to the first feedback time is a time slot.
  • the first feedback time is an integer multiple of the time slot
  • the other format is used to analyze other information domains.
  • the domain granularity is half a time slot or N symbols, or it can be understood that when the first feedback time is not an integer multiple of the time slot, the second format is used to analyze other information domains.
  • the information fields included in the first format and the second format are at least partially different, and / or the bit lengths included in at least part of the same information fields in the first format and the second format are different.
  • the lengths of the first format and the second format may be the same, but the information fields contained therein are at least partially different, that is, the information fields contained in the first format and the second format may be partially different, that is, not completely the same;
  • the first format and the second format may contain the same information field, but the bit lengths included in the same information field in the first format and the second format are different;
  • the lengths of the first format and the second format may be the same, but the information fields contained therein are at least partially different, that is, the information fields contained in the first format and the second format may be different, that is, they are not exactly the same.
  • the first format and the second format may include the same information field, the bit lengths included in the same information field in the first format and the second format are different.
  • the first format and the second format may be one of a DCI format (Format) 1-1 and a new DCI format, respectively.
  • the DCI format 1-1 may be used to schedule a PDSCH for a single TB.
  • it may include information such as RB allocation and start position, MCS, retransmission times, and power control of the PUCCH; or DCI format 1 -1 can also be a format containing other information, which is not exhaustive here.
  • the new DCI format may be a newly defined format other than the formats 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 3, 3A and the like included in the existing technology.
  • the content contained in the DCI format in the prior art is at least partially different, and the bit length contained in the same information field may be different. In this embodiment, the content that can be contained in the new DCI format is not exhaustive.
  • DCI parses other information fields according to DCI format 1_1; when the time granularity is half-slot or X-symbol, it parses according to new DCI format (new DCI format for URLLC). Other information fields.
  • the time domain position of the transmission feedback information can be determined according to the downlink control information and the time domain granularity, and the time domain granularity can be half a time slot or N symbols, that is not necessarily A complete time slot; in this way, the time domain granularity of sending feedback information is not limited to the entire time slot, but can be smaller than the entire time slot, thereby meeting the delay requirements of the service, especially the delay requirements of the low-latency service .
  • An embodiment of the present invention provides a terminal device, as shown in FIG. 6, including:
  • the first communication unit 61 receives configuration information; receives downlink control information; wherein the configuration information includes at least one time-domain granularity, and the time-domain granularity is one of the following: time slot, half time slot , N symbols, N is an integer greater than or equal to 1;
  • the first processing unit 62 determines a time domain position for transmitting the feedback information based on the downlink control information and at least one time domain granularity included in the configuration information.
  • the configuration information in this embodiment includes a time domain granularity configured for the terminal device on the network side, that is, the first time domain granularity; the time domain granularity may be a complete time slot, or may be Half a time slot, or N symbols; N can be valued according to the actual situation, for example, it can be 4, of course, other values can also be taken, but it is not exhaustive in this embodiment.
  • the sending of the configuration information in this embodiment may be sent through high-level signaling, for example, the configuration information may be sent for radio resource control (RRC, Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the configuration information can also be sent through other signaling, for example, it can be sent through DCI information, but since the configuration information does not need to be changed frequently, the use of DCI sending is only an exemplary description and is not necessarily the optimal choice. To define this solution.
  • the downlink control information may specifically be DCI.
  • the first processing unit 62 determines, based on the first time domain granularity in the configuration information, and the value of the feedback time indication information in the downlink control information, to determine whether to transmit the downlink control information or the downlink control information.
  • the time domain position of the feedback information of the scheduled downlink information is determined, based on the first time domain granularity in the configuration information, and the value of the feedback time indication information in the downlink control information, to determine whether to transmit the downlink control information or the downlink control information.
  • the value of the feedback time indication information in the downlink control information is set to k, where k is an integer greater than or equal to 1.
  • the time slot of the downlink control information is n, and n is an integer greater than or equal to 1.
  • the domain granularity is multiplied with the value k of the feedback time indication information to obtain a first result; the result obtained by adding the time slot n of the downlink control information to the first result is used as the time domain position of the feedback information.
  • the downlink control information in this example may also be downlink information scheduled by the downlink control information, for example, a PDSCH scheduled by the downlink control information.
  • the first result is 2.5 time slots; then the 2.5 time slots after the nth time slot are used as the time domain position of the feedback information.
  • the time domain granularity of HARQ timing indicated by the configuration information is, for example, slot slot, half-slot, and N-symbol.
  • the terminal device receives the downlink control signaling, and determines the time position for transmitting ACK / NACK according to the value of PDSCH-to-HARQ_feedback timing indicator in the downlink control signaling and the pre-configured time domain granularity.
  • This embodiment can be applied to uRLLC (ultra high reliability and ultra low latency communication) services, and of course, it can also be applied to other services that require low latency communication, but it is not exhaustive in this embodiment.
  • the method provided in this embodiment can be applied to the processing manner of the DCI format 1-0. Of course, the method is not limited to this processing manner, and details are not described herein again.
  • the time domain position of the transmission feedback information can be determined according to the downlink control information and the time domain granularity, and the time domain granularity can be half a time slot or N symbols, that is not necessarily A complete time slot; in this way, the time domain granularity of sending feedback information is not limited to the entire time slot, but can be smaller than the entire time slot, thereby meeting the delay requirements of the service, especially the delay requirements of the low-latency service .
  • An embodiment of the present invention provides a terminal device, as shown in FIG. 7, including:
  • the second communication unit 71 receives downlink control information.
  • the second processing unit 72 determines a time domain position for transmitting the feedback information based on the downlink control information and the feedback time set;
  • the feedback time set includes at least two feedback times; among the at least two feedback times, time domain granularity or time units corresponding to different feedback times are at least partially different;
  • the time domain granularity is one of the following: time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback time set is also obtained, specifically:
  • the second processing unit 72 obtains a predefined set containing at least two feedback times; or obtains a set containing at least two feedback times according to the configuration on the network side.
  • the feedback time set can be configured through the network side, and can also be the configuration content of the preset values saved on the terminal device side; when the feedback time set is configured by the network side, it can be passed through the high-level information
  • it can be configured by RRC signaling, and of course, it can also be configured by other information, and it is not exhaustive here.
  • the foregoing downlink control information may specifically be DCI.
  • different feedback times correspond to different values of the feedback time indication information.
  • M feedback times correspond to the values of M feedback time indication information; among them, the value of the feedback time indication information can be represented by multiple bits, and The amount of feedback time is related. For example, when there are 8 feedback times in the feedback time set, it can be represented by 3 bits. As shown in the following table, each value corresponds to a feedback time. Each feedback time can be Multiples of time domain granularity.
  • Implicit method There is a certain order of the feedback time in the feedback time set.
  • the value of the feedback time indication information can be used to indicate the order of the feedback time in the feedback time set.
  • the value of the feedback time indication information is the corresponding feedback time.
  • the value of the feedback time indication information is 3, which corresponds to the third feedback time.
  • the second processing unit 72 determines a first feedback time from a set including at least two feedback times based on the value of the feedback time indication information in the downlink control information; based on the first feedback time and the downlink
  • the time domain position of the downlink information for the control information or downlink control information scheduling determines the time domain position for transmitting the feedback information.
  • the time domain position of the downlink control information plus the first feedback time is the time domain position of the transmission feedback information.
  • the feedback time indication value is 3, then the feedback time A corresponding to the value 3 is selected from the feedback time set;
  • the time domain position of the downlink control information is time slot n, or the time domain position of the downlink information scheduled by the downlink control information is time slot n, and the result obtained by n + A is used as the time domain position of the transmission feedback information.
  • the downlink information scheduled by the downlink control information may be a PDSCH scheduled by the downlink control information, and of course, it may also be a PDCCH, which is not exhaustive here.
  • the value of the feedback information indication information can be 3, and the selected first feedback time can be 2.5 time slots; then 2.5 hours after the nth time slot
  • the gap serves as the time domain position of the feedback information.
  • This embodiment can be applied to uRLLC (ultra high reliability and ultra low latency communication) services, and of course, it can also be applied to other services that require low latency communication, but it is not exhaustive in this embodiment.
  • uRLLC ultra high reliability and ultra low latency communication
  • the second processing unit 72 determines, based on the first feedback time, a service type of the downlink control information or a service of downlink information scheduled by the downlink control information. Types of;
  • a delay level of the downlink control information or a delay level of the downlink information scheduled by the downlink control information is determined.
  • the second processing unit 72 determines a service type of the downlink control information or a service type of the downlink information scheduled based on the time domain granularity or time unit corresponding to the first feedback time.
  • the determining the delay level of the downlink control information or determining the delay level of the downlink information scheduled based on the first feedback time includes: based on a time domain particle corresponding to the first feedback time. Degree or time unit, to determine the delay level of the downlink control information, or to determine the delay level of the downlink information scheduled by the downlink control information.
  • DCI used to indicate the release of SPS resources
  • DCI used to indicate the release of SPS resources
  • the delay level of the downlink control information or the downlink information scheduled by the downlink control information is a low level, that is, it can be a service with a high delay;
  • the service type of the downlink control information or the downlink information scheduled by the downlink control information is enhanced mobile broadband (eMBB, Enhance Mobile Broadband).
  • the delay level of the downlink control information or the downlink information scheduled by the downlink control information is a low level, that is, it can be a service that corresponds to high-latency services.
  • the service type of downlink control information or downlink information scheduling of downlink control information is enhanced mobile broadband (eMBB, Enhance Mobile Broadband)
  • the delay level of the downlink control information or downlink information scheduling downlink information is advanced, that is, it may correspond to a low-latency service; or, the downlink may be determined
  • the control information or downlink control information scheduling downlink information service type is URLLC.
  • time domain granularity of the first feedback time is half a time slot or N symbols, then it can be determined that the delay level of the downlink control information or the downlink information scheduled by the downlink control information is high, that is, it can correspond to a low level.
  • Time-delay service or, it can be determined that the service type of downlink control information or downlink information scheduled by the downlink control information is URLLC.
  • the solution provided in this embodiment can also determine the downlink control information in addition to the feedback based on the first feedback time.
  • the time indicates how the information fields are parsed. details as follows:
  • the second processing unit 72 determines, based on the first feedback time, a parsing manner of other information fields except the feedback time indication information field in the downlink control information;
  • determining the parsing manner of other information fields except the feedback time indication information field in the downlink control information based on the first feedback time includes:
  • the information fields included in the first format and the second format are at least partially different, and / or the bit lengths included in at least part of the same information fields in the first format and the second format are different.
  • the first agreed value and the second agreed value may be set according to actual conditions, and the first agreed value may be one or more, the second agreed value may also be one or more, and the first agreed value and the The second agreed value is different.
  • the first agreed value may be an integer timeslot, and the second agreed value may be a non-integer timeslot, and no exhaustion is performed here.
  • the first feedback time is the first agreed value, or may be one of a plurality of first agreed values, it is determined that the other information fields are parsed in the first format; the first feedback time is the second agreed value, or multiple When one of the second agreed values is determined, the second format is used for parsing of other information fields.
  • the second processing unit 72 uses the first format to parse the other information domains when the time domain granularity corresponding to the first feedback time is a time slot;
  • the other information domain is analyzed by using the second format
  • the time domain granularity corresponding to the first feedback time is a time slot.
  • the first feedback time is an integer multiple of the time slot
  • the other format is used to analyze other information domains.
  • the domain granularity is half a time slot or N symbols, or it can be understood that when the first feedback time is not an integer multiple of the time slot, the second format is used to analyze other information domains.
  • the information fields included in the first format and the second format are at least partially different, and / or the bit lengths included in at least part of the same information fields in the first format and the second format are different.
  • the lengths of the first format and the second format may be the same, but the information fields contained therein are at least partially different, that is, the information fields contained in the first format and the second format may be partially different, that is, not completely the same;
  • the first format and the second format may contain the same information field, but the bit lengths included in the same information field in the first format and the second format are different;
  • the lengths of the first format and the second format may be the same, but the information fields contained therein are at least partially different, that is, the information fields contained in the first format and the second format may be different, that is, they are not exactly the same.
  • the first format and the second format may include the same information field, the bit lengths included in the same information field in the first format and the second format are different.
  • the first format and the second format in this embodiment may be one of a DCI format (Format) 1-1 and a new DCI format, respectively.
  • the DCI format 1-1 may be used to schedule a PDSCH for a single TB.
  • it may include information such as RB allocation and start position, MCS, retransmission times, and power control of the PUCCH; or DCI format 1 -1 can also be a format containing other information, which is not exhaustive here.
  • the new DCI format may be a newly defined format other than the formats 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 3, 3A and the like included in the existing technology.
  • the content contained in the DCI format in the prior art is at least partially different, and the bit length contained in the same information field may be different. In this embodiment, the content that can be contained in the new DCI format is not exhaustive.
  • DCI parses other information fields according to DCI format 1_1; when the time granularity is half-slot or X-symbol, it parses according to new DCI format (new DCI format for URLLC). Other information fields.
  • the fifth embodiment and the sixth embodiment can be executed on the same terminal device, and the terminal device can determine which solution to adopt by itself.
  • the time domain position of the transmission feedback information can be determined according to the downlink control information and the time domain granularity, and the time domain granularity can be half a time slot or N symbols, that is not necessarily A complete time slot; in this way, the time domain granularity of sending feedback information is not limited to the entire time slot, but can be smaller than the entire time slot, thereby meeting the delay requirements of the service, especially the delay requirements of the low-latency service .
  • An embodiment of the present invention provides a network device, as shown in FIG. 8, including:
  • a third processing unit 81 based on the downlink control information and at least one time domain granularity included in the configuration information, determining a time domain location instructing the terminal device to transmit feedback information;
  • the third communication unit 82 sends configuration information to the terminal device; sends downlink control information to the terminal device; wherein the configuration information includes at least one time domain granularity, and the time domain granularity is one of: Slot, non-complete slot, N symbols, N is an integer greater than or equal to 1.
  • the configuration information in this embodiment includes a time domain granularity configured for the terminal device on the network side, that is, the first time domain granularity; the time domain granularity may be a complete time slot, or may be a half time slot Or, it can be N symbols; N can be valued according to the actual situation, for example, it can be 4, and of course, other values can be taken, but it is not exhaustive in this embodiment.
  • the sending of the configuration information in this embodiment may be sent through high-level signaling, for example, the configuration information may be sent for radio resource control (RRC, Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the configuration information can also be sent through other signaling, for example, it can be sent through DCI information, but since the configuration information does not need to be changed frequently, the use of DCI sending is only an exemplary description and is not necessarily the optimal choice. To define this solution.
  • the downlink control information may specifically be DCI.
  • the third processing unit 81 determines, according to the first time-domain granularity in the configuration information and the value of the feedback time indication information in the downlink control information, to instruct the terminal device to transmit the downlink control information or the downlink control information.
  • the time domain position of the feedback information of the downlink information scheduled by the control information is not limited to the first time-domain granularity in the configuration information and the value of the feedback time indication information in the downlink control information.
  • the value of the feedback time indication information in the downlink control information is set to k, where k is an integer greater than or equal to 1.
  • the time slot of the downlink control information is n, and n is an integer greater than or equal to 1.
  • the domain granularity is multiplied with the value k of the feedback time indication information to obtain a first result; the result obtained by adding the time slot n of the downlink control information to the first result is used as the time domain position of the feedback information.
  • the downlink control information in this example may also be downlink information scheduled by the downlink control information, for example, a PDSCH scheduled by the downlink control information.
  • the first result is 2.5 time slots; then the 2.5 time slots after the nth time slot are used as the time domain position of the feedback information.
  • the time domain granularity of HARQ timing indicated by the configuration information is, for example, slot slot, half-slot, and N-symbol.
  • the terminal device receives the downlink control signaling, and determines the time position for transmitting ACK / NACK according to the value of PDSCH-to-HARQ_feedback timing indicator in the downlink control signaling and the pre-configured time domain granularity.
  • This embodiment can be applied to uRLLC (ultra high reliability and ultra low latency communication) services, and of course, it can also be applied to other services that require low latency communication, but it is not exhaustive in this embodiment.
  • the method provided in this embodiment can be applied to the processing manner of the DCI format 1-0. Of course, the method is not limited to this processing manner, and details are not described herein again.
  • the time domain position of the transmission feedback information can be determined according to the downlink control information and the time domain granularity, and the time domain granularity can be half a time slot or N symbols, that is not necessarily One complete time slot; in this way, the time domain granularity of sending feedback information is not limited to the entire time slot, but can be smaller than the entire time slot, thereby meeting the delay requirements of the service, especially the delay requirements of the low-latency service .
  • An embodiment of the present invention provides a network device, as shown in FIG. 9, including:
  • a fourth communication unit 91 sending downlink control information to the terminal device
  • a fourth processing unit 92 based on the downlink control information and a feedback time set, determining a time domain location instructing the terminal device to transmit feedback information;
  • the feedback time set includes at least two feedback times; among the at least two feedback times, the time domain granularity or time unit corresponding to different feedback times is at least partially different; the time domain granularity is as follows One: time slot, half time slot, N symbols, N is an integer greater than or equal to 1.
  • the feedback time set can be configured to the terminal device through the network device; when the feedback time set is configured by the network side, it can be configured through high-level signaling on the network side, for example, it can be configured through RRC signaling Of course, it can also be configured through other information, which is not exhaustive here.
  • the foregoing downlink control information may specifically be DCI.
  • different feedback times correspond to different values of the feedback time indication information.
  • M feedback times correspond to the values of M feedback time indication information; among them, the value of the feedback time indication information can be represented by multiple bits, and The amount of feedback time is related. For example, when there are 8 feedback times in the feedback time set, it can be represented by 3 bits. As shown in the following table, each value corresponds to a feedback time. Each feedback time can be Multiples of time domain granularity.
  • Implicit method There is a certain order of the feedback time in the feedback time set.
  • the value of the feedback time indication information can be used to indicate the order of the feedback time in the feedback time set.
  • the value of the feedback time indication information is the corresponding feedback time.
  • the value of the feedback time indication information is 3, which corresponds to the third feedback time.
  • the fourth processing unit 92 determines a first feedback time from a set including at least two feedback times based on the value of the feedback time indication information in the downlink control information; based on the first feedback time and the downlink
  • the time domain position of the control information or the downlink information scheduled by the downlink control information is indicated by the fourth communication unit 81 in the time domain position where the terminal device transmits the feedback information.
  • a feedback time is determined from at least two feedback times, that is, the first feedback time; the time domain position of the downlink control information plus the first feedback time
  • the obtained result is the time domain location of the transmitted feedback information.
  • the feedback time indication value is 3, then the feedback time A corresponding to the value 3 is selected from the feedback time set;
  • the time domain position of the downlink control information is time slot n, or the time domain position of the downlink information scheduled by the downlink control information is time slot n, and the result obtained by n + A is used as the time domain position of the transmission feedback information.
  • the downlink information scheduled by the downlink control information may be a PDSCH scheduled by the downlink control information, and of course, it may also be a PDCCH, which is not exhaustive here.
  • the value of the feedback information indication information can be 3, and the selected first feedback time can be 2.5 time slots; then 2.5 hours after the nth time slot
  • the gap serves as the time domain position of the feedback information.
  • This embodiment can be applied to uRLLC (ultra high reliability and ultra low latency communication) services, and of course, it can also be applied to other services that require low latency communication, but it is not exhaustive in this embodiment.
  • uRLLC ultra high reliability and ultra low latency communication
  • the fourth processing unit 92 determines, based on the first feedback time, a service type that indicates the downlink control information of the terminal device, or instructs the terminal device to downlink The service type of the downlink information scheduled by the control information;
  • the fourth processing unit 92 determines, by setting a time domain granularity or a time unit corresponding to the first feedback time, a service type indicating the downlink control information of the terminal device, or an instruction indicating the downlink control information location of the terminal device. Service type of the scheduled downlink information.
  • the fourth processing unit 92 determines a delay level indicating the downlink control information of the terminal device by setting a time domain granularity or a time unit corresponding to the first feedback time, or instructs the terminal device to perform downlink control. Delay level of the downlink information scheduled by the information.
  • DCI used to indicate the release of SPS resources
  • DCI used to indicate the release of SPS resources
  • the delay level of the downlink control information or the downlink information scheduled by the downlink control information is a low level, that is, it can correspond to a high-latency service;
  • the service type of the downlink control information or the downlink information scheduled by the downlink control information is enhanced mobile broadband (eMBB, Enhance Mobile Broadband).
  • the delay level of the downlink control information or the downlink information scheduled by the downlink control information is a low level, that is, it can be a service that corresponds to high-latency services.
  • the service type of downlink control information or downlink information scheduling of downlink control information is enhanced mobile broadband (eMBB, Enhance Mobile Broadband)
  • the delay level of the downlink control information or downlink information scheduling downlink information is advanced, that is, it may correspond to a low-latency service; or, the downlink may be determined
  • the control information or downlink control information scheduling downlink information service type is URLLC.
  • time domain granularity of the first feedback time is half a time slot or N symbols, then it can be determined that the delay level of the downlink control information or the downlink information scheduled by the downlink control information is high, that is, it can correspond to a low level.
  • Time-delay service or, it can be determined that the service type of downlink control information or downlink information scheduled by the downlink control information is URLLC.
  • the solution provided in this embodiment can also determine the downlink control information in addition to the feedback based on the first feedback time.
  • the time indicates how the information fields are parsed. details as follows:
  • the fourth processing unit 92 determines, based on the first feedback time, a parsing manner indicating information fields other than the feedback time indication information field in the downlink control information of the terminal device. ;
  • the fourth processing unit 92 determines to instruct the terminal device to parse the other information domain by using the first format by setting the first feedback time to a first agreed value;
  • the information fields included in the first format and the second format are at least partially different, and / or the bit lengths included in at least part of the same information fields in the first format and the second format are different.
  • the first agreed value and the second agreed value may be set according to actual conditions, and the first agreed value may be one or more, the second agreed value may also be one or more, and the first agreed value and the The second agreed value is different.
  • the first agreed value may be an integer timeslot, and the second agreed value may be a non-integer timeslot, and no exhaustion is performed here.
  • the first feedback time is the first agreed value, or may be one of a plurality of first agreed values, it is determined that the other information fields are parsed in the first format; the first feedback time is the second agreed value, or multiple When one of the second agreed values is determined, the second format is used for parsing of other information fields.
  • the fourth processing unit 92 determines to instruct the terminal device to parse the other information domain in the first format by setting a time domain granularity corresponding to the first feedback time as a time slot;
  • the time domain granularity corresponding to the first feedback time is a time slot.
  • the first feedback time is an integer multiple of the time slot
  • the other format is used to analyze other information domains.
  • the domain granularity is half a time slot or N symbols, or it can be understood that when the first feedback time is not an integer multiple of the time slot, the second format is used to analyze other information domains.
  • the information fields included in the first format and the second format are at least partially different, and / or the bit lengths included in at least part of the same information fields in the first format and the second format are different.
  • the lengths of the first format and the second format may be the same, but the information fields contained therein are at least partially different, that is, the information fields contained in the first format and the second format may be partially different, that is, not completely the same;
  • the first format and the second format may contain the same information field, but the bit lengths included in the same information field in the first format and the second format are different;
  • the lengths of the first format and the second format may be the same, but the information fields contained therein are at least partially different, that is, the information fields contained in the first format and the second format may be different, that is, they are not exactly the same.
  • the first format and the second format may include the same information field, the bit lengths included in the same information field in the first format and the second format are different.
  • the first format and the second format may be one of a DCI format (Format) 1-1 and a new DCI format, respectively.
  • the DCI format 1-1 may be used to schedule a PDSCH for a single TB.
  • it may include information such as RB allocation and start position, MCS, retransmission times, and power control of the PUCCH; or DCI format 1 -1 can also be a format containing other information, which is not exhaustive here.
  • the new DCI format may be a newly defined format other than the formats 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 3, 3A and the like included in the existing technology.
  • the content contained in the DCI format in the prior art is at least partially different, and the bit length contained in the same information field may be different. In this embodiment, the content that can be contained in the new DCI format is not exhaustive.
  • DCI parses other information fields according to DCI format 1_1; when the time granularity is half-slot or X-symbol, it parses according to new DCI format (new DCI format for URLLC). Other information fields.
  • the time domain position of the transmission feedback information can be determined according to the downlink control information and the time domain granularity, and the time domain granularity can be half a time slot or N symbols, that is not necessarily A complete time slot; in this way, the time domain granularity of sending feedback information is not limited to the entire time slot, but can be smaller than the entire time slot, thereby meeting the delay requirements of the service, especially the delay requirements of the low-latency service .
  • FIG. 10 is a schematic structural diagram of a communication device 1000 according to an embodiment of the present application.
  • the communication device may be a terminal device or a network device described in this embodiment.
  • the communication device 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1000 may further include a memory 1020.
  • the processor 1010 may call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the communication device 1000 may further include a transceiver 1030, and the processor 1010 may control the transceiver 1030 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 1010 may control the transceiver 1030 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1000 may specifically be a network device according to an embodiment of the present application, and the communication device 1000 may implement a corresponding process implemented by a network device in each method of the embodiments of the present application. For brevity, details are not described herein again. .
  • the communication device 1000 may specifically be a terminal device or a network device in the embodiment of the present application, and the communication device 1000 may implement a corresponding process implemented by a mobile terminal / terminal device in each method in the embodiments of the present application. Concise, I won't repeat them here.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 1100 may further include a memory 1120.
  • the processor 1110 may call and run a computer program from the memory 1120 to implement the method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the chip 1100 may further include an input interface 1130.
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips. Specifically, the processor 1110 can obtain information or data sent by other devices or chips.
  • the chip 1100 may further include an output interface 1140.
  • the processor 1110 may control the output interface 1140 to communicate with other devices or chips. Specifically, the processor 1110 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the terminal device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 12 is a schematic block diagram of a communication system 1200 according to an embodiment of the present application. As shown in FIG. 12, the communication system 1200 includes a terminal device 1210 and a network device 1220.
  • the terminal device 1210 may be used to implement the corresponding function implemented by the terminal device in the foregoing method
  • the network device 1220 may be used to implement the corresponding function implemented by the network device in the foregoing method.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiment of the present application, for the sake of simplicity , Will not repeat them here.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application
  • the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application
  • I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer executes each method in the embodiment of the application by the mobile terminal / terminal device. The corresponding processes are not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信息传输时间的确定方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,其中,方法包括:接收到配置信息;其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数;接收下行控制信息,基于所述下行控制信息、以及所述配置信息中包含的至少一个时域颗粒度,确定传输反馈信息的时域位置。

Description

一种信息传输时间的确定方法、终端设备及网络设备 技术领域
本发明涉及信息处理技术领域,尤其涉及一种信息传输时间的方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
在新无线(NR,New Radio)Rel-15中,基站通过下行调度信令,比如下行控制信息(DCI,Downlink Control Information)中的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)-to-混合自动重传请求(HARQ,Hybrid Automatic Repeat reQuest,HARQ)反馈(feedback)定时(timing)指示(indicator)信息域指示传输该DCI或该DCI调度的PDSCH对应的反馈信息,比如确认(ACK)/不确认(NACK)的时隙。即DCI或DCI调度的PDSCH在slot n中传输,则对应的ACK/NACK在slot n+k内传输。PDSCH-to-HARQ_feedback timing indicator用于指示k的取值。但是,对于对传输时延敏感的业务,目前的反馈时间可能不能满足时延需求。
发明内容
为解决上述技术问题,本发明实施例提供了一种信息传输时间的方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,本发明实施例提供了一种信息传输时间的确定方法,应用于终端设备,包括:
接收到配置信息;其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数;
接收下行控制信息,基于所述下行控制信息、以及所述配置信息中包含的至少一个时域颗粒度,确定传输反馈信息的时域位置。
第二方面,本发明实施例提供了一种信息传输时间的确定方法,应用于终端设备,包括:
接收下行控制信息;
基于下行控制信息、以及反馈时间集合,确定传输反馈信息的时域位置;
其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;
所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
第三方面,本发明实施例提供了一种信息传输时间的确定方法,应用于网络设备,包括:
基于下行控制信息、以及配置信息中包含的至少一个时域颗粒度,确定指示终端设备传输反馈信息的时域位置;向终端设备发送配置信息;向终端设备发送下行控制信息;其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:完整时隙、非完整时隙、N个符号,N为大于等于1的整数。
第四方面,本发明实施例提供了一种信息传输时间的确定方法,应用于网络设备,包括:
基于下行控制信息、以及反馈时间集合,确定指示所述终端设备传输反馈信息的时域位置;
向终端设备发送下行控制信息;
其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;
所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
第五方面,本发明实施例提供了一种终端设备,包括:
第一通信单元,接收到配置信息;接收下行控制信息;其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数;
第一处理单元,基于所述下行控制信息、以及所述配置信息中包含的至少一个时域颗粒度,确定传输反馈信息的时域位置。
第六方面,本发明实施例提供了一种终端设备,包括:
第二通信单元,接收下行控制信息;
第二处理单元,基于下行控制信息、以及反馈时间集合,确定传输反馈信息的时域位置;
其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;
所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
第七方面,本发明实施例提供了一种网络设备,包括:
第三处理单元,基于下行控制信息、以及配置信息中包含的至少一个时域颗粒度,确定指示终端设备传输反馈信息的时域位置;
第三通信单元,向终端设备发送配置信息;向终端设备发送下行控制信息;其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:完整时隙、非完整时隙、N个符号,N为大于等于1的整数。
第八方面,本发明实施例提供了一种网络设备,包括:
第四通信单元,向终端设备发送下行控制信息;
第四处理单元,基于所述下行控制信息、以及反馈时间集合,确定指示所述终端设备传输反馈信息的时域位置;
其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;
所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
第九方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第十方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第十一方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十三方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十四方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
本发明实施例的技术方案,就能够根据下行控制信息、以及时域颗粒度来确定传输反馈信息的时域位置,并且,时域颗粒度可以为半个时隙或者N个符号,即不一定为一个完整的时隙;如此,就能够使得发送反馈信息的时域颗粒度不仅限于整个时隙,可以小于整个时隙,从而能够满足业务的时延需求,尤其满足低时延业务的时延需求。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图一;
图2是本申请实施例提供的一种信息传输时间的确定方法流程示意图一;
图3是本申请实施例提供的一种信息传输时间的确定方法流程示意图一;
图4是本申请实施例提供的一种信息传输时间的确定方法流程示意图一;
图5是本申请实施例提供的一种信息传输时间的确定方法流程示意图一;
图6为本发明实施例一种终端设备组成结构示意图一;
图7为本发明实施例一种终端设备组成结构示意图二;
图8为本发明实施例一种网络设备组成结构示意图一;
图9为本发明实施例一种网络设备组成结构示意图二;
图10为本发明实施例提供的一种通信设备组成结构示意图;
图11是本申请实施例提供的一种芯片的示意性框图;
图12是本申请实施例提供的一种通信系统架构的示意性图二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of  Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Freq终端设备ncy Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的网络设备(Base Transceiver Station,BTS),也可以是WCDMA系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,终端设备)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
实施例一、
本发明实施例提供了一种信息传输时间的确定方法,应用于终端设备,如图2所示,包括:
步骤201:接收到配置信息;其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数;
步骤202:接收下行控制信息,基于所述下行控制信息、以及所述配置信息中包含的至少一个时域颗粒度,确定传输反馈信息的时域位置。
其中,所述配置信息可以为网络侧为终端设备发送的信息;所述配置信息中包含有第一时域颗粒度。
也就是说,本实施例中配置信息中包含有网络侧为终端设备配置的一个时域颗粒度,即第一时域颗粒度;该时域颗粒度可以为一个完整的时隙、或者可以为半个时隙、或者还可以为N个符号;N可以根据实际情况进行取值,比如,可以为4,当然还可以取其他的值,只是本实施例中不进行穷举。
还需要指出的是,本实施例中配置信息的发送可以通过高层信令发送,比如,可以为无线资源控制(RRC,Radio Resource Control)信令发送该配置信息。
当然还可以通过其他信令发送配置信息,比如,可以通过DCI信息发送,但是由于配置信息并不需要经常性的更换,所以采用DCI发送仅为示例性说明并不一定为最优选择,并不用来限定本方案。
前述步骤202中,下行控制信息具体的可以为DCI。
所述基于所述下行控制信息、以及所述配置信息中包含的至少一个时域颗粒度,确定传输反馈信息的时域位置,包括:
根据所述配置信息中的第一时域颗粒度,以及所述下行控制信息中的反馈时间指示信息的取值,确定传输针对下行控制信息或者针对下行控制信息所调度的下行信息的反馈信息的时域位置。
比如,下行控制信息中的反馈时间指示信息的取值设置为k,k为大于等于1的整数;另外,下行控制信息的时隙为n,n为大于等于1的整数;则基于第一时域颗粒度与反馈时间指示信息的取值k相乘,得到第一结果;将下行控制信息的时隙n与第一结果相加所得的结果作为反馈信息的时域位置。当然,本示例中的下行控制信息还可以为下行控制信息所调度的下行信息,比如,下行控制信息所调度的PDSCH。
假设,第一时域颗粒度为半个时隙,k=5,那么第一结果为2.5个时隙;则第n个时隙之后的2.5个时隙作为反馈信息的时域位置。
本实施例中,所述配置信息指示的HARQ timing(HARQ定时)的时域颗粒度,例如,时隙slot,半个时隙half-slot,N-symbol。终端设备通过接收下行控制信令,根据下行控制信令中PDSCH-to-HARQ_feedback timing indicator的取值、及预配置的时域颗粒度确定传输ACK/NACK的时间位置。
本实施例可以应用于uRLLC(超高可靠超低时延通信)业务,当然还可以应用于其他要求低时延通信的业务,只是本实施例中不再进行穷举。另外,本实施例提供的方法可以应用于DCI格式1-0的处理方式,当然并不仅限于本处理方式,只是这里不再进行赘述。
可见,通过采用上述方案,就能够根据下行控制信息、以及时域颗粒度来确定传输反馈信息的时域位置,并且,时域颗粒度可以为半个时隙或者N个符号,即不一定为一个完整的时隙;如此,就能够使得发送反馈信息的时域颗粒度不仅限于整个时隙,可以小于整个时隙,从而能够满足业务的时延需求,尤其满足低时延业务的时延需求。
实施例二、
本发明实施例提供了一种信息传输时间的确定方法,应用于终端设备,如图3所示,包括:
步骤301:接收下行控制信息;
步骤302:基于下行控制信息、以及反馈时间集合,确定传输反馈信息的时域位置;
其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;
所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
所述基于下行控制信息、以及反馈时间集合,确定传输反馈信息的时域位置之前,还会获取反馈时间集合,具体的:
获取预定义的包含有至少两个反馈时间的集合;或者,根据网络侧的配置获取包含有至少两个反馈时间的集合。
也就是说,本实施例中反馈时间集合可以通过网络侧配置、还可以为终端设备侧保存的预设值 的配置内容;当反馈时间集合由网络侧配置的时候,可以通过网络侧的高层信令进行配置,比如,可以通过RRC信令配置,当然还可以通过其他信息配置,这里不进行穷举。
前述下行控制信息具体的可以为DCI。
所述至少两个反馈时间中,不同的反馈时间对应不同的反馈时间指示信息的取值。
其中,不同的反馈时间对应不同的反馈时间指示信息的取值的方式,可以有两种,一种显式方式、一种为隐式方式:
显式方式:可以通过表格的形式,比如,M个反馈时间分别与M个反馈时间指示信息的取值对应;其中,反馈时间指示信息的取值可以有多个bit来表示,bit位数与反馈时间的多少有关系,比如,反馈时间集合中有8个反馈时间的时候,可以采用3bit位来表示,如下表所示,对每一个取值均对应一个反馈时间,每一个反馈时间可以为时域颗粒度的倍数。
反馈时间指示信息的取值 反馈时间
000 1个4-symbol
001 2个4-symbol(8-symbol)
010 3个4-symbol(12-symbol)
011 1个half-slot
100 2个half-slot(1slot)
101 2slots
110 3slots
111 4slots
隐式方式:反馈时间集合中的反馈时间存在一定的顺序,反馈时间指示信息的取值可以用于表示反馈时间在反馈时间集合中的顺序;即当前反馈时间集合中有8个反馈时间,那么反馈时间指示信息的取值为几就对应的第几个反馈时间,比如,反馈时间指示信息的取值为3,则对应了第三种反馈时间。
所述基于下行控制信息、以及反馈时间集合,确定传输反馈信息的时域位置,包括:
基于下行控制信息中的反馈时间指示信息的取值,从包含有至少两个反馈时间的集合中,确定第一反馈时间;基于所述第一反馈时间、以及下行控制信息或下行控制信息调度的下行信息的时域位置,确定传输反馈信息的时域位置。
具体来说,基于下行控制信息中的反馈时间指示信息的取值,从至少两个反馈时间中确定一个反馈时间,即第一反馈时间;
下行控制信息的时域位置加所述第一反馈时间得到的结果即为传输反馈信息的时域位置。
比如,反馈时间指示信息的取值为3,那么从反馈时间集合中选取取值3所对应的反馈时间A;
下行控制信息的时域位置为时隙n,或者下行控制信息所调度的下行信息的时域位置为时隙n,将n+A所得的结果作为传输反馈信息的时域位置。
下行控制信息所调度的下行信息可以为下行控制信息所调度的PDSCH,当然还可以为PDCCH,这里不做穷举。
假设,第一时域颗粒度为半个时隙,反馈信息指示信息的取值可以为3,选取得到的第一反馈时间可以为2.5个时隙;则第n个时隙之后的2.5个时隙作为反馈信息的时域位置。
本实施例可以应用于uRLLC(超高可靠超低时延通信)业务,当然还可以应用于其他要求低时延通信的业务,只是本实施例中不再进行穷举。
进一步地,所述确定第一反馈时间之后,所述方法还包括:
基于所述第一反馈时间,确定所述下行控制信息的业务类型、或者确定下行控制信息所调度的下行信息的业务类型;
或者,
基于所述第一反馈时间,确定所述下行控制信息的时延等级、或者确定下行控制信息所调度的下行信息的时延等级。
具体的,基于所述第一反馈时间,确定所述下行控制信息的业务类型、或者确定下行控制信息所调度的下行信息的业务类型,包括:基于所述第一反馈时间对应的时域颗粒度或时间单元,确定下行控制信息的业务类型、或者确定下行控制信息所调度的下行信息的业务类型。
或者,
所述基于所述第一反馈时间,确定所述下行控制信息的时延等级、或者确定下行控制信息所调度的下行信息的时延等级,包括:基于所述第一反馈时间对应的时域颗粒度或时间单元,确定所述 下行控制信息的时延等级、或者确定下行控制信息所调度的下行信息的时延等级。
基于所述第一反馈时间,确定下行控制信息,比如DCI(用于指示SPS资源释放),或该DCI调度的PDSCH的业务类型或时延等级。
例如,若第一反馈时间为时隙的M倍,M为整数,那么可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为低级,也就是可以为对应了高时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为增强移动宽带(eMBB,Enhance Mobile Broadband)。
或者,还可以为若第一反馈时间的时域颗粒度为时隙,那么可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为低级,也就是可以为对应了高时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为增强移动宽带(eMBB,Enhance Mobile Broadband)
若第一反馈时间不为完整时隙的倍数时,可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为高级,也就是可以为对应了低时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为URLLC。
或者,若第一反馈时间的时域颗粒度为半个时隙或N个符号,那么可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为高级,也就是可以为对应了低时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为URLLC。
除了能够根据第一反馈时间确定下行控制信息或下行控制信息调度的下行信息的业务类型或者时延等级之外,本实施例提供的方案,还能够基于第一反馈时间确定下行控制信息中除了反馈时间指示信息域之外的其他信息域的解析方式。具体如下:
所述确定第一反馈时间之后,所述方法还包括:
基于所述第一反馈时间,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式;
或者,
基于所述第一反馈时间对应的时域颗粒度或时间单元,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式。
其中,所述基于所述第一反馈时间,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式,包括:
当所述第一反馈时间为第一约定值时,采用第一格式对所述其他信息域进行解析;
当所述第一反馈时间为第二约定值时,采用第二格式对所述其他信息域进行解析;
其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
所述第一约定值以及第二约定值可以根据实际情况进行设置,并且,第一约定值可以为一个或多个,第二约定值也可以为一个或多个,并且,第一约定值与第二约定值不同。其中,第一约定值可以为整数倍的时隙,第二约定值可以为非整数倍的时隙,这里不进行穷举。
第一反馈时间为第一约定值、或者可以为多个第一约定值中的一个时,确定采用第一格式对其他信息域进行解析;第一反馈时间为第二约定值,或者为多个第二约定值中的一个时,确定采用第二格式进行其他信息域的解析。
其中,所述基于所述第一反馈时间,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式,包括:
当所述第一反馈时间对应的时域颗粒度为时隙时,采用第一格式对所述其他信息域进行解析;
当所述第一反馈时间对应的时域颗粒度半个时隙或N个符号时,采用第二格式对所述其他信息域进行解析;
也就是说,第一反馈时间对应的时域颗粒度为时隙,比如,第一反馈时间为时隙的整数倍时,确定采用第一格式对其他信息域进行解析;第一反馈时间的时域颗粒度为半个时隙或N个符号时,或者,可以理解为第一反馈时间不为时隙的整数倍时,采用第二格式进行其他信息域的解析。
其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
具体的,第一格式与第二格式的长度可以相同,但是其中包含的信息域是至少部分不同的,即可以为第一格式与第二格式中包含的信息域部分不同,也就是并不完全相同;
或者,第一格式与第二格式中可以包含有相同的信息域,只是第一格式与第二格式中相同的信 息域中包含的比特(bit)长度不同;
或者,第一格式与第二格式的长度可以相同,但是其中包含的信息域是至少部分不同的,即可以为第一格式与第二格式中包含的信息域部分不同,也就是并不完全相同;并且,第一格式与第二格式中可以包含有相同的信息域时,第一格式与第二格式中相同的信息域中包含的比特(bit)长度不同。
本实施例中第一格式与第二格式,可以分别为DCI格式(Format)1-1以及新的DCI格式中的一种。
具体的,DCI format 1-1可以为用于对单个TB的PDSCH的调度,比如,可以包含有RB分配及起始位置、MCS、重传次数、对PUCCH的功控等信息;或者DCI format 1-1还可以为包含其他信息的格式,这里不进行穷举。新的DCI格式可以为除现有技术中包含的0、1、1A、1B、1C、1D、2、2A、2B、3、3A等格式之外的新定义的格式,其包含的内容与现有技术中的DCI格式中包含的内容至少部分不同,并且相同信息域中包含的bit长度可以不同,本实施例中不对新的DCI格式内可以包含的内容进行穷举。
例如,时间颗粒度为slot,则DCI按照DCI format 1_1的方式解析其他信息域;时间颗粒度为half-slot或X-symbol时,按照new DCI format(针对URLLC定义的新的DCI format)方式解析其他信息域。
最后需要指出的是,实施例一和实施例二可以在相同的终端设备执行,可以由终端设备自行判断采用实施例一或实施例二提供的方案,比如,当进行DCI1-0格式的处理时,采用实施例一的方案处理,当针对DCI 1-1格式进行处理、或者针对新的DCI格式进行处理时,采用实施例二的方案。当然,还可以基于其他的方式来使得终端设备确定采用哪种方案进行后续处理,本实施例不再进行赘述。
可见,通过采用上述方案,就能够根据下行控制信息、以及时域颗粒度来确定传输反馈信息的时域位置,并且,时域颗粒度可以为半个时隙或者N个符号,即不一定为一个完整的时隙;如此,就能够使得发送反馈信息的时域颗粒度不仅限于整个时隙,可以小于整个时隙,从而能够满足业务的时延需求,尤其满足低时延业务的时延需求。
实施例三、
本发明实施例提供了一种信息传输时间的确定方法,应用于网络设备,如图4所示,包括:
步骤401:基于下行控制信息、以及配置信息中包含的至少一个时域颗粒度,确定指示终端设备传输反馈信息的时域位置;
步骤402:向终端设备发送配置信息;
步骤403:向终端设备发送下行控制信息;
其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:完整时隙、非完整时隙、N个符号,N为大于等于1的整数。
本实施例中配置信息中包含有网络侧为终端设备配置的一个时域颗粒度,即第一时域颗粒度;该时域颗粒度可以为一个完整的时隙、或者可以为半个时隙、或者还可以为N个符号;N可以根据实际情况进行取值,比如,可以为4,当然还可以取其他的值,只是本实施例中不进行穷举。
还需要指出的是,本实施例中配置信息的发送可以通过高层信令发送,比如,可以为无线资源控制(RRC,Radio Resource Control)信令发送该配置信息。
当然还可以通过其他信令发送配置信息,比如,可以通过DCI信息发送,但是由于配置信息并不需要经常性的更换,所以采用DCI发送仅为示例性说明并不一定为最优选择,并不用来限定本方案。
另外,上述发送配置信息以及发送下行控制信息的处理中,发送配置信息可以并不是每次都执行,可以仅在需要的时候下发配置信息;下行控制信息则可能是每次都执行的步骤。如果执行下发配置信息以及下发控制信息的两个步骤,则先后顺序可以为前述步骤的顺序。
下行控制信息具体的可以为DCI。
所述基于所述下行控制信息、以及所述配置信息中包含的至少一个时域颗粒度,指示终端设备传输反馈信息的时域位置,包括:
根据所述配置信息中的第一时域颗粒度,以及所述下行控制信息中的反馈时间指示信息的取值,指示终端设备传输针对下行控制信息或者针对下行控制信息所调度的下行信息的反馈信息的时域位置。
比如,下行控制信息中的反馈时间指示信息的取值设置为k,k为大于等于1的整数;另外,下 行控制信息的时隙为n,n为大于等于1的整数;则基于第一时域颗粒度与反馈时间指示信息的取值k相乘,得到第一结果;将下行控制信息的时隙n与第一结果相加所得的结果作为反馈信息的时域位置。当然,本示例中的下行控制信息还可以为下行控制信息所调度的下行信息,比如,下行控制信息所调度的PDSCH。
假设,第一时域颗粒度为半个时隙,k=5,那么第一结果为2.5个时隙;则第n个时隙之后的2.5个时隙作为反馈信息的时域位置。
本实施例中,所述配置信息指示的HARQ timing(HARQ定时)的时域颗粒度,例如,时隙slot,半个时隙half-slot,N-symbol。终端设备通过接收下行控制信令,根据下行控制信令中PDSCH-to-HARQ_feedback timing indicator的取值、及预配置的时域颗粒度确定传输ACK/NACK的时间位置。
本实施例可以应用于uRLLC(超高可靠超低时延通信)业务,当然还可以应用于其他要求低时延通信的业务,只是本实施例中不再进行穷举。另外,本实施例提供的方法可以应用于DCI格式1-0的处理方式,当然并不仅限于本处理方式,只是这里不再进行赘述。
可见,通过采用上述方案,就能够根据下行控制信息、以及时域颗粒度来确定传输反馈信息的时域位置,并且,时域颗粒度可以为半个时隙或者N个符号,即不一定为一个完整的时隙;如此,就能够使得发送反馈信息的时域颗粒度不仅限于整个时隙,可以小于整个时隙,从而能够满足业务的时延需求,尤其满足低时延业务的时延需求。
实施例四、
本发明实施例提供了一种信息传输时间的确定方法,应用于网络设备,如图5所示,包括:
步骤501:基于下行控制信息、以及反馈时间集合,确定指示所述终端设备传输反馈信息的时域位置;
步骤502:向终端设备发送下行控制信息;
其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
也就是说,本实施例中反馈时间集合可以通过网络设备配置给终端设备;当反馈时间集合由网络侧配置的时候,可以通过网络侧的高层信令进行配置,比如,可以通过RRC信令配置,当然还可以通过其他信息配置,这里不进行穷举。
前述下行控制信息具体的可以为DCI。
所述至少两个反馈时间中,不同的反馈时间对应不同的反馈时间指示信息的取值。
其中,不同的反馈时间对应不同的反馈时间指示信息的取值的方式,可以有两种,一种显式方式、一种为隐式方式:
显式方式:可以通过表格的形式,比如,M个反馈时间分别与M个反馈时间指示信息的取值对应;其中,反馈时间指示信息的取值可以有多个bit来表示,bit位数与反馈时间的多少有关系,比如,反馈时间集合中有8个反馈时间的时候,可以采用3bit位来表示,如下表所示,对每一个取值均对应一个反馈时间,每一个反馈时间可以为时域颗粒度的倍数。
反馈时间指示信息的取值 反馈时间
000 1个4-symbol
001 2个4-symbol(8-symbol)
010 3个4-symbol(12-symbol)
011 1个half-slot
100 2个half-slot(1slot)
101 2slots
110 3slots
111 4slots
隐式方式:反馈时间集合中的反馈时间存在一定的顺序,反馈时间指示信息的取值可以用于表示反馈时间在反馈时间集合中的顺序;即当前反馈时间集合中有8个反馈时间,那么反馈时间指示信息的取值为几就对应的第几个反馈时间,比如,反馈时间指示信息的取值为3,则对应了第三种反馈时间。
所述基于下行控制信息、以及反馈时间集合,指示所述终端设备传输反馈信息的时域位置,包括:
基于下行控制信息中的反馈时间指示信息的取值,从包含有至少两个反馈时间的集合中,确定第一反馈时间;基于所述第一反馈时间、以及下行控制信息或下行控制信息调度的下行信息的时域位置,指示所述终端设备传输反馈信息的时域位置。
具体来说,基于下行控制信息中的反馈时间指示信息的取值,从至少两个反馈时间中确定一个反馈时间,即第一反馈时间;
下行控制信息的时域位置加所述第一反馈时间得到的结果即为传输反馈信息的时域位置。
比如,反馈时间指示信息的取值为3,那么从反馈时间集合中选取取值3所对应的反馈时间A;
下行控制信息的时域位置为时隙n,或者下行控制信息所调度的下行信息的时域位置为时隙n,将n+A所得的结果作为传输反馈信息的时域位置。
下行控制信息所调度的下行信息可以为下行控制信息所调度的PDSCH,当然还可以为PDCCH,这里不做穷举。
假设,第一时域颗粒度为半个时隙,反馈信息指示信息的取值可以为3,选取得到的第一反馈时间可以为2.5个时隙;则第n个时隙之后的2.5个时隙作为反馈信息的时域位置。
本实施例可以应用于uRLLC(超高可靠超低时延通信)业务,当然还可以应用于其他要求低时延通信的业务,只是本实施例中不再进行穷举。
进一步地,所述确定第一反馈时间之后,所述方法还包括:
基于所述第一反馈时间,指示所述终端设备所述下行控制信息的业务类型、或者指示所述终端设备下行控制信息所调度的下行信息的业务类型;
或者,
基于所述第一反馈时间,指示所述终端设备所述下行控制信息的时延等级、或者指示所述终端设备下行控制信息所调度的下行信息的时延等级。
具体的,基于所述第一反馈时间,指示所述终端设备所述下行控制信息的业务类型、或者指示所述终端设备下行控制信息所调度的下行信息的业务类型,包括:通过设置所述第一反馈时间对应的时域颗粒度或时间单元,指示所述终端设备下行控制信息的业务类型、或者指示所述终端设备下行控制信息所调度的下行信息的业务类型。
或者,
所述基于所述第一反馈时间,指示所述终端设备所述下行控制信息的时延等级、或者指示所述终端设备下行控制信息所调度的下行信息的时延等级,包括:通过设置所述第一反馈时间对应的时域颗粒度或时间单元,指示所述终端设备所述下行控制信息的时延等级、或者指示所述终端设备下行控制信息所调度的下行信息的时延等级。
基于所述第一反馈时间,确定下行控制信息,比如DCI(用于指示SPS资源释放),或该DCI调度的PDSCH的业务类型或时延等级。
例如,若第一反馈时间为时隙的M倍,M为整数,那么可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为低级,也就是可以为对应了高时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为增强移动宽带(eMBB,Enhance Mobile Broadband)。
或者,还可以为若第一反馈时间的时域颗粒度为时隙,那么可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为低级,也就是可以为对应了高时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为增强移动宽带(eMBB,Enhance Mobile Broadband)
若第一反馈时间不为完整时隙的倍数时,可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为高级,也就是可以为对应了低时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为URLLC。
或者,若第一反馈时间的时域颗粒度为半个时隙或N个符号,那么可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为高级,也就是可以为对应了低时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为URLLC。
除了能够根据第一反馈时间确定下行控制信息或下行控制信息调度的下行信息的业务类型或者时延等级之外,本实施例提供的方案,还能够基于第一反馈时间确定下行控制信息中除了反馈时间指示信息域之外的其他信息域的解析方式。具体如下:
所述确定第一反馈时间之后,所述方法还包括:
基于所述第一反馈时间,指示所述终端设备下行控制信息中除反馈时间指示信息域之外的其他 信息域的解析方式;
或者,
基于所述第一反馈时间对应的时域颗粒度或时间单元,指示所述终端设备下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式。
其中,所述基于所述第一反馈时间,指示所述终端设备下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式,包括:
通过设置所述第一反馈时间为第一约定值,指示所述终端设备采用第一格式对所述其他信息域进行解析;
通过设置所述第一反馈时间为第二约定值,指示所述终端设备采用第二格式对所述其他信息域进行解析;
其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
所述第一约定值以及第二约定值可以根据实际情况进行设置,并且,第一约定值可以为一个或多个,第二约定值也可以为一个或多个,并且,第一约定值与第二约定值不同。其中,第一约定值可以为整数倍的时隙,第二约定值可以为非整数倍的时隙,这里不进行穷举。
第一反馈时间为第一约定值、或者可以为多个第一约定值中的一个时,确定采用第一格式对其他信息域进行解析;第一反馈时间为第二约定值,或者为多个第二约定值中的一个时,确定采用第二格式进行其他信息域的解析。
其中,所述基于所述第一反馈时间,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式,包括:
通过设置所述第一反馈时间对应的时域颗粒度为时隙,指示所述终端设备采用第一格式对所述其他信息域进行解析;
通过设置所述第一反馈时间对应的时域颗粒度为半个时隙或N个符号,指示所述终端设备采用第二格式对所述其他信息域进行解析;
也就是说,第一反馈时间对应的时域颗粒度为时隙,比如,第一反馈时间为时隙的整数倍时,确定采用第一格式对其他信息域进行解析;第一反馈时间的时域颗粒度为半个时隙或N个符号时,或者,可以理解为第一反馈时间不为时隙的整数倍时,采用第二格式进行其他信息域的解析。
其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
具体的,第一格式与第二格式的长度可以相同,但是其中包含的信息域是至少部分不同的,即可以为第一格式与第二格式中包含的信息域部分不同,也就是并不完全相同;
或者,第一格式与第二格式中可以包含有相同的信息域,只是第一格式与第二格式中相同的信息域中包含的比特(bit)长度不同;
或者,第一格式与第二格式的长度可以相同,但是其中包含的信息域是至少部分不同的,即可以为第一格式与第二格式中包含的信息域部分不同,也就是并不完全相同;并且,第一格式与第二格式中可以包含有相同的信息域时,第一格式与第二格式中相同的信息域中包含的比特(bit)长度不同。
本实施例中第一格式与第二格式,可以分别为DCI格式(Format)1-1以及新的DCI格式中的一种。
具体的,DCI format 1-1可以为用于对单个TB的PDSCH的调度,比如,可以包含有RB分配及起始位置、MCS、重传次数、对PUCCH的功控等信息;或者DCI format 1-1还可以为包含其他信息的格式,这里不进行穷举。新的DCI格式可以为除现有技术中包含的0、1、1A、1B、1C、1D、2、2A、2B、3、3A等格式之外的新定义的格式,其包含的内容与现有技术中的DCI格式中包含的内容至少部分不同,并且相同信息域中包含的bit长度可以不同,本实施例中不对新的DCI格式内可以包含的内容进行穷举。
例如,时间颗粒度为slot,则DCI按照DCI format 1_1的方式解析其他信息域;时间颗粒度为half-slot或X-symbol时,按照new DCI format(针对URLLC定义的新的DCI format)方式解析其他信息域。
可见,通过采用上述方案,就能够根据下行控制信息、以及时域颗粒度来确定传输反馈信息的时域位置,并且,时域颗粒度可以为半个时隙或者N个符号,即不一定为一个完整的时隙;如此,就能够使得发送反馈信息的时域颗粒度不仅限于整个时隙,可以小于整个时隙,从而能够满足业务 的时延需求,尤其满足低时延业务的时延需求。
实施例五、
本发明实施例提供了一种终端设备,如图6所示,包括:
第一通信单元61,接收到配置信息;接收下行控制信息;其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数;
第一处理单元62,基于所述下行控制信息、以及所述配置信息中包含的至少一个时域颗粒度,确定传输反馈信息的时域位置。
也就是说,本实施例中配置信息中包含有网络侧为终端设备配置的一个时域颗粒度,即第一时域颗粒度;该时域颗粒度可以为一个完整的时隙、或者可以为半个时隙、或者还可以为N个符号;N可以根据实际情况进行取值,比如,可以为4,当然还可以取其他的值,只是本实施例中不进行穷举。
还需要指出的是,本实施例中配置信息的发送可以通过高层信令发送,比如,可以为无线资源控制(RRC,Radio Resource Control)信令发送该配置信息。
当然还可以通过其他信令发送配置信息,比如,可以通过DCI信息发送,但是由于配置信息并不需要经常性的更换,所以采用DCI发送仅为示例性说明并不一定为最优选择,并不用来限定本方案。
下行控制信息具体的可以为DCI。
所述第一处理单元62,根据所述配置信息中的第一时域颗粒度,以及所述下行控制信息中的反馈时间指示信息的取值,确定传输针对下行控制信息或者针对下行控制信息所调度的下行信息的反馈信息的时域位置。
比如,下行控制信息中的反馈时间指示信息的取值设置为k,k为大于等于1的整数;另外,下行控制信息的时隙为n,n为大于等于1的整数;则基于第一时域颗粒度与反馈时间指示信息的取值k相乘,得到第一结果;将下行控制信息的时隙n与第一结果相加所得的结果作为反馈信息的时域位置。当然,本示例中的下行控制信息还可以为下行控制信息所调度的下行信息,比如,下行控制信息所调度的PDSCH。
假设,第一时域颗粒度为半个时隙,k=5,那么第一结果为2.5个时隙;则第n个时隙之后的2.5个时隙作为反馈信息的时域位置。
本实施例中,所述配置信息指示的HARQ timing(HARQ定时)的时域颗粒度,例如,时隙slot,半个时隙half-slot,N-symbol。终端设备通过接收下行控制信令,根据下行控制信令中PDSCH-to-HARQ_feedback timing indicator的取值、及预配置的时域颗粒度确定传输ACK/NACK的时间位置。
本实施例可以应用于uRLLC(超高可靠超低时延通信)业务,当然还可以应用于其他要求低时延通信的业务,只是本实施例中不再进行穷举。另外,本实施例提供的方法可以应用于DCI格式1-0的处理方式,当然并不仅限于本处理方式,只是这里不再进行赘述。
可见,通过采用上述方案,就能够根据下行控制信息、以及时域颗粒度来确定传输反馈信息的时域位置,并且,时域颗粒度可以为半个时隙或者N个符号,即不一定为一个完整的时隙;如此,就能够使得发送反馈信息的时域颗粒度不仅限于整个时隙,可以小于整个时隙,从而能够满足业务的时延需求,尤其满足低时延业务的时延需求。
实施例六、
本发明实施例提供了一种终端设备,如图7所示,包括:
第二通信单元71,接收下行控制信息;
第二处理单元72,基于下行控制信息、以及反馈时间集合,确定传输反馈信息的时域位置;
其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;
所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
所述基于下行控制信息、以及反馈时间集合,确定传输反馈信息的时域位置之前,还会获取反馈时间集合,具体的:
第二处理单元72,获取预定义的包含有至少两个反馈时间的集合;或者,根据网络侧的配置获取包含有至少两个反馈时间的集合。
也就是说,本实施例中反馈时间集合可以通过网络侧配置、还可以为终端设备侧保存的预设值的配置内容;当反馈时间集合由网络侧配置的时候,可以通过网络侧的高层信令进行配置,比如, 可以通过RRC信令配置,当然还可以通过其他信息配置,这里不进行穷举。
前述下行控制信息具体的可以为DCI。
所述至少两个反馈时间中,不同的反馈时间对应不同的反馈时间指示信息的取值。
其中,不同的反馈时间对应不同的反馈时间指示信息的取值的方式,可以有两种,一种显式方式、一种为隐式方式:
显式方式:可以通过表格的形式,比如,M个反馈时间分别与M个反馈时间指示信息的取值对应;其中,反馈时间指示信息的取值可以有多个bit来表示,bit位数与反馈时间的多少有关系,比如,反馈时间集合中有8个反馈时间的时候,可以采用3bit位来表示,如下表所示,对每一个取值均对应一个反馈时间,每一个反馈时间可以为时域颗粒度的倍数。
反馈时间指示信息的取值 反馈时间
000 1个4-symbol
001 2个4-symbol(8-symbol)
010 3个4-symbol(12-symbol)
011 1个half-slot
100 2个half-slot(1slot)
101 2slots
110 3slots
111 4slots
隐式方式:反馈时间集合中的反馈时间存在一定的顺序,反馈时间指示信息的取值可以用于表示反馈时间在反馈时间集合中的顺序;即当前反馈时间集合中有8个反馈时间,那么反馈时间指示信息的取值为几就对应的第几个反馈时间,比如,反馈时间指示信息的取值为3,则对应了第三种反馈时间。
所述第二处理单元72,基于下行控制信息中的反馈时间指示信息的取值,从包含有至少两个反馈时间的集合中,确定第一反馈时间;基于所述第一反馈时间、以及下行控制信息或下行控制信息调度的下行信息的时域位置,确定传输反馈信息的时域位置。
具体来说,基于下行控制信息中的反馈时间指示信息的取值,从至少两个反馈时间中确定一个反馈时间,即第一反馈时间;
下行控制信息的时域位置加所述第一反馈时间得到的结果即为传输反馈信息的时域位置。
比如,反馈时间指示信息的取值为3,那么从反馈时间集合中选取取值3所对应的反馈时间A;
下行控制信息的时域位置为时隙n,或者下行控制信息所调度的下行信息的时域位置为时隙n,将n+A所得的结果作为传输反馈信息的时域位置。
下行控制信息所调度的下行信息可以为下行控制信息所调度的PDSCH,当然还可以为PDCCH,这里不做穷举。
假设,第一时域颗粒度为半个时隙,反馈信息指示信息的取值可以为3,选取得到的第一反馈时间可以为2.5个时隙;则第n个时隙之后的2.5个时隙作为反馈信息的时域位置。
本实施例可以应用于uRLLC(超高可靠超低时延通信)业务,当然还可以应用于其他要求低时延通信的业务,只是本实施例中不再进行穷举。
进一步地,所述确定第一反馈时间之后,所述第二处理单元72,基于所述第一反馈时间,确定所述下行控制信息的业务类型、或者确定下行控制信息所调度的下行信息的业务类型;
或者,
基于所述第一反馈时间,确定所述下行控制信息的时延等级、或者确定下行控制信息所调度的下行信息的时延等级。
具体的,第二处理单元72,基于所述第一反馈时间对应的时域颗粒度或时间单元,确定下行控制信息的业务类型、或者确定下行控制信息所调度的下行信息的业务类型。
或者,
所述基于所述第一反馈时间,确定所述下行控制信息的时延等级、或者确定下行控制信息所调度的下行信息的时延等级,包括:基于所述第一反馈时间对应的时域颗粒度或时间单元,确定所述下行控制信息的时延等级、或者确定下行控制信息所调度的下行信息的时延等级。
基于所述第一反馈时间,确定下行控制信息,比如DCI(用于指示SPS资源释放),或该DCI调度的PDSCH的业务类型或时延等级。
例如,若第一反馈时间为时隙的M倍,M为整数,那么可以确定下行控制信息或者下行控制信 息调度的下行信息的时延等级为低级,也就是可以为对应了高时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为增强移动宽带(eMBB,Enhance Mobile Broadband)。
或者,还可以为若第一反馈时间的时域颗粒度为时隙,那么可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为低级,也就是可以为对应了高时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为增强移动宽带(eMBB,Enhance Mobile Broadband)
若第一反馈时间不为完整时隙的倍数时,可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为高级,也就是可以为对应了低时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为URLLC。
或者,若第一反馈时间的时域颗粒度为半个时隙或N个符号,那么可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为高级,也就是可以为对应了低时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为URLLC。
除了能够根据第一反馈时间确定下行控制信息或下行控制信息调度的下行信息的业务类型或者时延等级之外,本实施例提供的方案,还能够基于第一反馈时间确定下行控制信息中除了反馈时间指示信息域之外的其他信息域的解析方式。具体如下:
所述确定第一反馈时间之后,所述第二处理单元72,基于所述第一反馈时间,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式;
或者,
基于所述第一反馈时间对应的时域颗粒度或时间单元,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式。
其中,所述基于所述第一反馈时间,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式,包括:
当所述第一反馈时间为第一约定值时,采用第一格式对所述其他信息域进行解析;
当所述第一反馈时间为第二约定值时,采用第二格式对所述其他信息域进行解析;
其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
所述第一约定值以及第二约定值可以根据实际情况进行设置,并且,第一约定值可以为一个或多个,第二约定值也可以为一个或多个,并且,第一约定值与第二约定值不同。其中,第一约定值可以为整数倍的时隙,第二约定值可以为非整数倍的时隙,这里不进行穷举。
第一反馈时间为第一约定值、或者可以为多个第一约定值中的一个时,确定采用第一格式对其他信息域进行解析;第一反馈时间为第二约定值,或者为多个第二约定值中的一个时,确定采用第二格式进行其他信息域的解析。
其中,所述第二处理单元72,当所述第一反馈时间对应的时域颗粒度为时隙时,采用第一格式对所述其他信息域进行解析;
当所述第一反馈时间对应的时域颗粒度半个时隙或N个符号时,采用第二格式对所述其他信息域进行解析;
也就是说,第一反馈时间对应的时域颗粒度为时隙,比如,第一反馈时间为时隙的整数倍时,确定采用第一格式对其他信息域进行解析;第一反馈时间的时域颗粒度为半个时隙或N个符号时,或者,可以理解为第一反馈时间不为时隙的整数倍时,采用第二格式进行其他信息域的解析。
其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
具体的,第一格式与第二格式的长度可以相同,但是其中包含的信息域是至少部分不同的,即可以为第一格式与第二格式中包含的信息域部分不同,也就是并不完全相同;
或者,第一格式与第二格式中可以包含有相同的信息域,只是第一格式与第二格式中相同的信息域中包含的比特(bit)长度不同;
或者,第一格式与第二格式的长度可以相同,但是其中包含的信息域是至少部分不同的,即可以为第一格式与第二格式中包含的信息域部分不同,也就是并不完全相同;并且,第一格式与第二格式中可以包含有相同的信息域时,第一格式与第二格式中相同的信息域中包含的比特(bit)长度不同。
本实施例中第一格式与第二格式,可以分别为DCI格式(Format)1-1以及新的DCI格式中的 一种。
具体的,DCI format 1-1可以为用于对单个TB的PDSCH的调度,比如,可以包含有RB分配及起始位置、MCS、重传次数、对PUCCH的功控等信息;或者DCI format 1-1还可以为包含其他信息的格式,这里不进行穷举。新的DCI格式可以为除现有技术中包含的0、1、1A、1B、1C、1D、2、2A、2B、3、3A等格式之外的新定义的格式,其包含的内容与现有技术中的DCI格式中包含的内容至少部分不同,并且相同信息域中包含的bit长度可以不同,本实施例中不对新的DCI格式内可以包含的内容进行穷举。
例如,时间颗粒度为slot,则DCI按照DCI format 1_1的方式解析其他信息域;时间颗粒度为half-slot或X-symbol时,按照new DCI format(针对URLLC定义的新的DCI format)方式解析其他信息域。
最后需要指出的是,实施例五和实施例六可以在相同的终端设备执行,可以由终端设备自行判断采用哪种方案。
可见,通过采用上述方案,就能够根据下行控制信息、以及时域颗粒度来确定传输反馈信息的时域位置,并且,时域颗粒度可以为半个时隙或者N个符号,即不一定为一个完整的时隙;如此,就能够使得发送反馈信息的时域颗粒度不仅限于整个时隙,可以小于整个时隙,从而能够满足业务的时延需求,尤其满足低时延业务的时延需求。
实施例七、
本发明实施例提供了一种网络设备,如图8所示,包括:
第三处理单元81,基于下行控制信息、以及配置信息中包含的至少一个时域颗粒度,确定指示终端设备传输反馈信息的时域位置;
第三通信单元82,向终端设备发送配置信息;向终端设备发送下行控制信息;其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:完整时隙、非完整时隙、N个符号,N为大于等于1的整数。
本实施例中配置信息中包含有网络侧为终端设备配置的一个时域颗粒度,即第一时域颗粒度;该时域颗粒度可以为一个完整的时隙、或者可以为半个时隙、或者还可以为N个符号;N可以根据实际情况进行取值,比如,可以为4,当然还可以取其他的值,只是本实施例中不进行穷举。
还需要指出的是,本实施例中配置信息的发送可以通过高层信令发送,比如,可以为无线资源控制(RRC,Radio Resource Control)信令发送该配置信息。
当然还可以通过其他信令发送配置信息,比如,可以通过DCI信息发送,但是由于配置信息并不需要经常性的更换,所以采用DCI发送仅为示例性说明并不一定为最优选择,并不用来限定本方案。
下行控制信息具体的可以为DCI。
所述第三处理单元81,根据所述配置信息中的第一时域颗粒度,以及所述下行控制信息中的反馈时间指示信息的取值,确定指示终端设备传输针对下行控制信息或者针对下行控制信息所调度的下行信息的反馈信息的时域位置。
比如,下行控制信息中的反馈时间指示信息的取值设置为k,k为大于等于1的整数;另外,下行控制信息的时隙为n,n为大于等于1的整数;则基于第一时域颗粒度与反馈时间指示信息的取值k相乘,得到第一结果;将下行控制信息的时隙n与第一结果相加所得的结果作为反馈信息的时域位置。当然,本示例中的下行控制信息还可以为下行控制信息所调度的下行信息,比如,下行控制信息所调度的PDSCH。
假设,第一时域颗粒度为半个时隙,k=5,那么第一结果为2.5个时隙;则第n个时隙之后的2.5个时隙作为反馈信息的时域位置。
本实施例中,所述配置信息指示的HARQ timing(HARQ定时)的时域颗粒度,例如,时隙slot,半个时隙half-slot,N-symbol。终端设备通过接收下行控制信令,根据下行控制信令中PDSCH-to-HARQ_feedback timing indicator的取值、及预配置的时域颗粒度确定传输ACK/NACK的时间位置。
本实施例可以应用于uRLLC(超高可靠超低时延通信)业务,当然还可以应用于其他要求低时延通信的业务,只是本实施例中不再进行穷举。另外,本实施例提供的方法可以应用于DCI格式1-0的处理方式,当然并不仅限于本处理方式,只是这里不再进行赘述。
可见,通过采用上述方案,就能够根据下行控制信息、以及时域颗粒度来确定传输反馈信息的时域位置,并且,时域颗粒度可以为半个时隙或者N个符号,即不一定为一个完整的时隙;如此, 就能够使得发送反馈信息的时域颗粒度不仅限于整个时隙,可以小于整个时隙,从而能够满足业务的时延需求,尤其满足低时延业务的时延需求。
实施例八、
本发明实施例提供了一种网络设备,如图9所示,包括:
第四通信单元91,向终端设备发送下行控制信息;
第四处理单元92,基于所述下行控制信息、以及反馈时间集合,确定指示所述终端设备传输反馈信息的时域位置;
其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
也就是说,本实施例中反馈时间集合可以通过网络设备配置给终端设备;当反馈时间集合由网络侧配置的时候,可以通过网络侧的高层信令进行配置,比如,可以通过RRC信令配置,当然还可以通过其他信息配置,这里不进行穷举。
前述下行控制信息具体的可以为DCI。
所述至少两个反馈时间中,不同的反馈时间对应不同的反馈时间指示信息的取值。
其中,不同的反馈时间对应不同的反馈时间指示信息的取值的方式,可以有两种,一种显式方式、一种为隐式方式:
显式方式:可以通过表格的形式,比如,M个反馈时间分别与M个反馈时间指示信息的取值对应;其中,反馈时间指示信息的取值可以有多个bit来表示,bit位数与反馈时间的多少有关系,比如,反馈时间集合中有8个反馈时间的时候,可以采用3bit位来表示,如下表所示,对每一个取值均对应一个反馈时间,每一个反馈时间可以为时域颗粒度的倍数。
反馈时间指示信息的取值 反馈时间
000 1个4-symbol
001 2个4-symbol(8-symbol)
010 3个4-symbol(12-symbol)
011 1个half-slot
100 2个half-slot(1slot)
101 2slots
110 3slots
111 4slots
隐式方式:反馈时间集合中的反馈时间存在一定的顺序,反馈时间指示信息的取值可以用于表示反馈时间在反馈时间集合中的顺序;即当前反馈时间集合中有8个反馈时间,那么反馈时间指示信息的取值为几就对应的第几个反馈时间,比如,反馈时间指示信息的取值为3,则对应了第三种反馈时间。
所述第四处理单元92,基于下行控制信息中的反馈时间指示信息的取值,从包含有至少两个反馈时间的集合中,确定第一反馈时间;基于所述第一反馈时间、以及下行控制信息或下行控制信息调度的下行信息的时域位置,通过第四通信单元81指示终端设备传输反馈信息的时域位置。
具体来说,基于下行控制信息中的反馈时间指示信息的取值,从至少两个反馈时间中确定一个反馈时间,即第一反馈时间;下行控制信息的时域位置加所述第一反馈时间得到的结果即为传输反馈信息的时域位置。
比如,反馈时间指示信息的取值为3,那么从反馈时间集合中选取取值3所对应的反馈时间A;
下行控制信息的时域位置为时隙n,或者下行控制信息所调度的下行信息的时域位置为时隙n,将n+A所得的结果作为传输反馈信息的时域位置。
下行控制信息所调度的下行信息可以为下行控制信息所调度的PDSCH,当然还可以为PDCCH,这里不做穷举。
假设,第一时域颗粒度为半个时隙,反馈信息指示信息的取值可以为3,选取得到的第一反馈时间可以为2.5个时隙;则第n个时隙之后的2.5个时隙作为反馈信息的时域位置。
本实施例可以应用于uRLLC(超高可靠超低时延通信)业务,当然还可以应用于其他要求低时延通信的业务,只是本实施例中不再进行穷举。
进一步地,所述确定第一反馈时间之后,所述第四处理单元92,基于所述第一反馈时间,确定指示所述终端设备所述下行控制信息的业务类型、或者指示所述终端设备下行控制信息所调度的下 行信息的业务类型;
或者,
基于所述第一反馈时间,确定指示所述终端设备所述下行控制信息的时延等级、或者指示所述终端设备下行控制信息所调度的下行信息的时延等级。
具体的,第四处理单元92,通过设置所述第一反馈时间对应的时域颗粒度或时间单元,确定指示所述终端设备下行控制信息的业务类型、或者指示所述终端设备下行控制信息所调度的下行信息的业务类型。
或者,
所述第四处理单元92,通过设置所述第一反馈时间对应的时域颗粒度或时间单元,确定指示所述终端设备所述下行控制信息的时延等级、或者指示所述终端设备下行控制信息所调度的下行信息的时延等级。
基于所述第一反馈时间,确定下行控制信息,比如DCI(用于指示SPS资源释放),或该DCI调度的PDSCH的业务类型或时延等级。
例如,若第一反馈时间为时隙的M倍,M为整数,那么可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为低级,也就是可以为对应了高时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为增强移动宽带(eMBB,Enhance Mobile Broadband)。
或者,还可以为若第一反馈时间的时域颗粒度为时隙,那么可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为低级,也就是可以为对应了高时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为增强移动宽带(eMBB,Enhance Mobile Broadband)
若第一反馈时间不为完整时隙的倍数时,可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为高级,也就是可以为对应了低时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为URLLC。
或者,若第一反馈时间的时域颗粒度为半个时隙或N个符号,那么可以确定下行控制信息或者下行控制信息调度的下行信息的时延等级为高级,也就是可以为对应了低时延业务;或者,可以确定下行控制信息或者下行控制信息调度的下行信息的业务类型为URLLC。
除了能够根据第一反馈时间确定下行控制信息或下行控制信息调度的下行信息的业务类型或者时延等级之外,本实施例提供的方案,还能够基于第一反馈时间确定下行控制信息中除了反馈时间指示信息域之外的其他信息域的解析方式。具体如下:
所述确定第一反馈时间之后,所述第四处理单元92,基于所述第一反馈时间,确定指示所述终端设备下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式;
或者,
基于所述第一反馈时间对应的时域颗粒度或时间单元,确定指示所述终端设备下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式。
其中,所述第四处理单元92,通过设置所述第一反馈时间为第一约定值,确定指示所述终端设备采用第一格式对所述其他信息域进行解析;
通过设置所述第一反馈时间为第二约定值,确定指示所述终端设备采用第二格式对所述其他信息域进行解析;
其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
所述第一约定值以及第二约定值可以根据实际情况进行设置,并且,第一约定值可以为一个或多个,第二约定值也可以为一个或多个,并且,第一约定值与第二约定值不同。其中,第一约定值可以为整数倍的时隙,第二约定值可以为非整数倍的时隙,这里不进行穷举。
第一反馈时间为第一约定值、或者可以为多个第一约定值中的一个时,确定采用第一格式对其他信息域进行解析;第一反馈时间为第二约定值,或者为多个第二约定值中的一个时,确定采用第二格式进行其他信息域的解析。
其中,所述第四处理单元92,通过设置所述第一反馈时间对应的时域颗粒度为时隙,确定指示所述终端设备采用第一格式对所述其他信息域进行解析;
通过设置所述第一反馈时间对应的时域颗粒度为半个时隙或N个符号,确定指示所述终端设备采用第二格式对所述其他信息域进行解析;
也就是说,第一反馈时间对应的时域颗粒度为时隙,比如,第一反馈时间为时隙的整数倍时,确定采用第一格式对其他信息域进行解析;第一反馈时间的时域颗粒度为半个时隙或N个符号时,或者,可以理解为第一反馈时间不为时隙的整数倍时,采用第二格式进行其他信息域的解析。
其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
具体的,第一格式与第二格式的长度可以相同,但是其中包含的信息域是至少部分不同的,即可以为第一格式与第二格式中包含的信息域部分不同,也就是并不完全相同;
或者,第一格式与第二格式中可以包含有相同的信息域,只是第一格式与第二格式中相同的信息域中包含的比特(bit)长度不同;
或者,第一格式与第二格式的长度可以相同,但是其中包含的信息域是至少部分不同的,即可以为第一格式与第二格式中包含的信息域部分不同,也就是并不完全相同;并且,第一格式与第二格式中可以包含有相同的信息域时,第一格式与第二格式中相同的信息域中包含的比特(bit)长度不同。
本实施例中第一格式与第二格式,可以分别为DCI格式(Format)1-1以及新的DCI格式中的一种。
具体的,DCI format 1-1可以为用于对单个TB的PDSCH的调度,比如,可以包含有RB分配及起始位置、MCS、重传次数、对PUCCH的功控等信息;或者DCI format 1-1还可以为包含其他信息的格式,这里不进行穷举。新的DCI格式可以为除现有技术中包含的0、1、1A、1B、1C、1D、2、2A、2B、3、3A等格式之外的新定义的格式,其包含的内容与现有技术中的DCI格式中包含的内容至少部分不同,并且相同信息域中包含的bit长度可以不同,本实施例中不对新的DCI格式内可以包含的内容进行穷举。
例如,时间颗粒度为slot,则DCI按照DCI format 1_1的方式解析其他信息域;时间颗粒度为half-slot或X-symbol时,按照new DCI format(针对URLLC定义的新的DCI format)方式解析其他信息域。
可见,通过采用上述方案,就能够根据下行控制信息、以及时域颗粒度来确定传输反馈信息的时域位置,并且,时域颗粒度可以为半个时隙或者N个符号,即不一定为一个完整的时隙;如此,就能够使得发送反馈信息的时域颗粒度不仅限于整个时隙,可以小于整个时隙,从而能够满足业务的时延需求,尤其满足低时延业务的时延需求。
图10是本申请实施例提供的一种通信设备1000示意性结构图,通信设备可以为本实施例前述的终端设备或者网络设备。图10所示的通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图10所示,通信设备1000还可以包括收发器1030,处理器1010可以控制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1000具体可为本申请实施例的网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1000具体可为本申请实施例的终端设备、或者网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130 与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统1200的示意性框图。如图12所示,该通信系统1200包括终端设备1210和网络设备1220。
其中,该终端设备1210可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1220可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序 指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (53)

  1. 一种信息传输时间的确定方法,应用于终端设备,包括:
    接收到配置信息;其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数;
    接收下行控制信息,基于所述下行控制信息、以及所述配置信息中包含的至少一个时域颗粒度,确定传输反馈信息的时域位置。
  2. 根据权利要求1所述的方法,其中,所述配置信息中包含有第一时域颗粒度。
  3. 根据权利要求2所述的方法,其中,所述基于所述下行控制信息、以及所述配置信息中包含的至少一个时域颗粒度,确定传输反馈信息的时域位置,包括:
    根据所述配置信息中的第一时域颗粒度,以及所述下行控制信息中的反馈时间指示信息的取值,确定传输针对下行控制信息或者针对下行控制信息所调度的下行信息的反馈信息的时域位置。
  4. 一种信息传输时间的确定方法,应用于终端设备,包括:
    接收下行控制信息;
    基于下行控制信息、以及反馈时间集合,确定传输反馈信息的时域位置;
    其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;
    所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
  5. 根据权利要求4所述的方法,其中,所述至少两个反馈时间中,不同的反馈时间对应不同的反馈时间指示信息的取值。
  6. 根据权利要求5所述的方法,其中,所述基于下行控制信息、以及反馈时间集合,确定传输反馈信息的时域位置,包括:
    基于下行控制信息中的反馈时间指示信息的取值,从包含有至少两个反馈时间的集合中,确定第一反馈时间;
    基于所述第一反馈时间、以及下行控制信息或下行控制信息调度的下行信息的时域位置,确定传输反馈信息的时域位置。
  7. 根据权利要求6所述的方法,其中,所述确定第一反馈时间之后,所述方法还包括:
    基于所述第一反馈时间,确定所述下行控制信息的业务类型、或者确定下行控制信息所调度的下行信息的业务类型;
    或者,
    基于所述第一反馈时间,确定所述下行控制信息的时延等级、或者确定下行控制信息所调度的下行信息的时延等级。
  8. 根据权利要求7所述的方法,其中,
    所述基于所述第一反馈时间,确定所述下行控制信息的业务类型、或者确定下行控制信息所调度的下行信息的业务类型,包括:基于所述第一反馈时间对应的时域颗粒度或时间单元,确定下行控制信息的业务类型、或者确定下行控制信息所调度的下行信息的业务类型;
    或者,
    所述基于所述第一反馈时间,确定所述下行控制信息的时延等级、或者确定下行控制信息所调度的下行信息的时延等级,包括:基于所述第一反馈时间对应的时域颗粒度或时间单元,确定所述下行控制信息的时延等级、或者确定下行控制信息所调度的下行信息的时延等级。
  9. 根据权利要求6所述的方法,其中,所述确定第一反馈时间之后,所述方法还包括:
    基于所述第一反馈时间,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式;
    或者,
    基于所述第一反馈时间对应的时域颗粒度或时间单元,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式。
  10. 根据权利要求9所述的方法,其中,所述基于所述第一反馈时间,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式,包括:
    当所述第一反馈时间为第一约定值时,采用第一格式对所述其他信息域进行解析;
    当所述第一反馈时间为第二约定值时,采用第二格式对所述其他信息域进行解析;
    其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
  11. 根据权利要求9所述的方法,其中,所述基于所述第一反馈时间对应的时域颗粒度或时间单元,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式,包括:
    当所述第一反馈时间对应的时域颗粒度为时隙时,采用第一格式对所述其他信息域进行解析;
    当所述第一反馈时间对应的时域颗粒度半个时隙或N个符号时,采用第二格式对所述其他信息域进行解析;
    其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
  12. 根据权利要求4-11任一项所述的方法,其中,所述基于下行控制信息、以及反馈时间集合,确定传输反馈信息的时域位置之前,所述方法还包括:
    获取预定义的包含有至少两个反馈时间的集合;
    或者,
    根据网络侧的配置获取包含有至少两个反馈时间的集合。
  13. 一种信息传输时间的确定方法,应用于网络设备,包括:
    基于下行控制信息、以及配置信息中包含的至少一个时域颗粒度,确定指示终端设备传输反馈信息的时域位置;
    向终端设备发送配置信息;
    向终端设备发送下行控制信息;
    其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:完整时隙、非完整时隙、N个符号,N为大于等于1的整数;。
  14. 根据权利要求13所述的方法,其中,所述配置信息中包含有第一时域颗粒度。
  15. 根据权利要求14所述的方法,其中,所述基于下行控制信息、以及配置信息中包含的至少一个时域颗粒度,指示终端设备传输反馈信息的时域位置,包括:
    根据所述配置信息中的第一时域颗粒度,以及所述下行控制信息中的反馈时间指示信息的取值,指示终端设备传输针对下行控制信息或者针对下行控制信息所调度的下行信息的反馈信息的时域位置。
  16. 一种信息传输时间的确定方法,应用于网络设备,包括:
    基于下行控制信息、以及反馈时间集合,确定指示所述终端设备传输反馈信息的时域位置;
    向终端设备发送下行控制信息;
    其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;
    所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
  17. 根据权利要求16所述的方法,其中,所述至少两个反馈时间中,不同的反馈时间对应不同的反馈时间指示信息的取值。
  18. 根据权利要求17所述的方法,其中,所述基于下行控制信息、以及反馈时间集合,确定指示所述终端设备传输反馈信息的时域位置,包括:
    基于下行控制信息中的反馈时间指示信息的取值,从包含有至少两个反馈时间的集合中,确定第一反馈时间;基于所述第一反馈时间、以及下行控制信息或下行控制信息调度的下行信息的时域位置,确定指示终端设备传输反馈信息的时域位置。
  19. 根据权利要求18所述的方法,其中,所述确定第一反馈时间之后,所述方法还包括:
    基于所述第一反馈时间,确定指示下行控制信息的业务类型、或者指示下行控制信息所调度的下行信息的业务类型;
    或者,
    基于所述第一反馈时间,确定指示下行控制信息的时延等级、或者指示下行控制信息所调度的下行信息的时延等级。
  20. 根据权利要求19所述的方法,其中,
    所述基于所述第一反馈时间,确定指示下行控制信息的业务类型、或者指示下行控制信息所调度的下行信息的业务类型,包括:通过设置所述第一反馈时间对应的时域颗粒度或时间单元,确定指示下行控制信息的业务类型、或者指示下行控制信息所调度的下行信息的业务类型;
    或者,
    所述基于所述第一反馈时间,确定指示所述下行控制信息的时延等级、或者指示下行控制信息所调度的下行信息的时延等级,包括:通过设置所述第一反馈时间对应的时域颗粒度或时间单元,确定指示所述下行控制信息的时延等级、或者指示下行控制信息所调度的下行信息的时延等级。
  21. 根据权利要求18所述的方法,其中,所述确定第一反馈时间之后,所述方法还包括:
    基于所述第一反馈时间,向终端设备指示下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式;
    或者,
    基于所述第一反馈时间对应的时域颗粒度,向终端设备指示下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式。
  22. 根据权利要求21所述的方法,其中,所述基于所述第一反馈时间,向终端设备指示下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式,包括:
    通过设置所述第一反馈时间为第一约定值,确定指示所述终端设备采用第一格式对所述其他信息域进行解析;
    通过设置所述第一反馈时间为第二约定值,确定指示所述终端设备采用第二格式对所述其他信息域进行解析;
    其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
  23. 根据权利要求21所述的方法,其中,所述基于所述第一反馈时间对应的时域颗粒度或时间单元,向终端设备指示下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式,包括:
    通过设置所述第一反馈时间对应的时域颗粒度为时隙,确定向终端设备指示采用第一格式对所述其他信息域进行解析;
    通过设置所述第一反馈时间对应的时域颗粒度为半个时隙或N个符号,确定向终端设备指示采用第二格式对所述其他信息域进行解析;
    其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
  24. 一种终端设备,包括:
    第一通信单元,接收到配置信息;接收下行控制信息;其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数;
    第一处理单元,基于所述下行控制信息、以及所述配置信息中包含的至少一个时域颗粒度,确定传输反馈信息的时域位置。
  25. 根据权利要求24所述的终端设备,其中,所述配置信息中包含有第一时域颗粒度。
  26. 根据权利要求25所述的终端设备,其中,所述第一处理单元,根据所述配置信息中的第一时域颗粒度,以及所述下行控制信息中的反馈时间指示信息的取值,确定传输针对下行控制信息或者针对下行控制信息所调度的下行信息的反馈信息的时域位置。
  27. 一种终端设备,包括:
    第二通信单元,接收下行控制信息;
    第二处理单元,基于下行控制信息、以及反馈时间集合,确定传输反馈信息的时域位置;
    其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;
    所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
  28. 根据权利要求27所述的终端设备,其中,所述至少两个反馈时间中,不同的反馈时间对应不同的反馈时间指示信息的取值。
  29. 根据权利要求27所述的终端设备,其中,所述第二处理单元,基于下行控制信息中的反馈时间指示信息的取值,从包含有至少两个反馈时间的集合中,确定第一反馈时间;基于所述第一反馈时间、以及下行控制信息或下行控制信息调度的下行信息的时域位置,确定传输反馈信息的时域位置。
  30. 根据权利要求29所述的终端设备,其中,所述第二处理单元,基于所述第一反馈时间,确定所述下行控制信息的业务类型、或者确定下行控制信息所调度的下行信息的业务类型;
    或者,
    基于所述第一反馈时间,确定所述下行控制信息的时延等级、或者确定下行控制信息所调度的 下行信息的时延等级。
  31. 根据权利要求30所述的终端设备,其中,
    所述第二处理单元,基于所述第一反馈时间对应的时域颗粒度或时间单元,确定下行控制信息的业务类型、或者确定下行控制信息所调度的下行信息的业务类型;
    或者,
    所述第二处理单元,基于所述第一反馈时间对应的时域颗粒度或时间单元,确定所述下行控制信息的时延等级、或者确定下行控制信息所调度的下行信息的时延等级。
  32. 根据权利要求29所述的终端设备,其中,所述第二处理单元,基于所述第一反馈时间,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式;
    或者,
    基于所述第一反馈时间对应的时域颗粒度或时间单元,确定下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式。
  33. 根据权利要求32所述的终端设备,其中,所述第二处理单元,当所述第一反馈时间为第一约定值时,采用第一格式对所述其他信息域进行解析;
    当所述第一反馈时间为第二约定值时,采用第二格式对所述其他信息域进行解析;
    其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
  34. 根据权利要求32所述的终端设备,其中,所述第二处理单元,当所述第一反馈时间对应的时域颗粒度为时隙时,采用第一格式对所述其他信息域进行解析;
    当所述第一反馈时间对应的时域颗粒度半个时隙或N个符号时,采用第二格式对所述其他信息域进行解析;
    其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
  35. 根据权利要求27-34任一项所述的终端设备,其中,所述第二处理单元,获取预定义的包含有至少两个反馈时间的集合;
    或者,
    根据网络侧的配置获取包含有至少两个反馈时间的集合。
  36. 一种网络设备,包括:
    第三处理单元,基于下行控制信息、以及配置信息中包含的至少一个时域颗粒度,确定指示终端设备传输反馈信息的时域位置;
    第三通信单元,向终端设备发送配置信息;向终端设备发送下行控制信息;其中,所述配置信息中包含有至少一个时域颗粒度,所述时域颗粒度为以下之一:完整时隙、非完整时隙、N个符号,N为大于等于1的整数。
  37. 根据权利要求36所述的网络设备,其中,所述配置信息中包含有第一时域颗粒度。
  38. 根据权利要求37所述的网络设备,其中,所述第三处理单元,根据所述配置信息中的第一时域颗粒度,以及所述下行控制信息中的反馈时间指示信息的取值,确定指示终端设备传输针对下行控制信息或者针对下行控制信息所调度的下行信息的反馈信息的时域位置。
  39. 一种网络设备,包括:
    第四通信单元,向终端设备发送下行控制信息;
    第四处理单元,基于所述下行控制信息、以及反馈时间集合,确定指示所述终端设备传输反馈信息的时域位置;
    其中,所述反馈时间集合中包含有至少两个反馈时间;所述至少两个反馈时间中,不同的反馈时间对应的时域颗粒度或时间单元至少部分不同;
    所述时域颗粒度为以下之一:时隙、半个时隙、N个符号,N为大于等于1的整数。
  40. 根据权利要求39所述的网络设备,其中,所述至少两个反馈时间中,不同的反馈时间对应不同的反馈时间指示信息的取值。
  41. 根据权利要求40所述的网络设备,其中,所述第四处理单元,基于下行控制信息中的反馈时间指示信息的取值,从包含有至少两个反馈时间的集合中,确定第一反馈时间;基于所述第一反馈时间、以及下行控制信息或下行控制信息调度的下行信息的时域位置,确定通过第四通信单元指示终端设备传输反馈信息的时域位置。
  42. 根据权利要求41所述的网络设备,其中,所述第四处理单元,基于所述第一反馈时间,指 示下行控制信息的业务类型、或者指示下行控制信息所调度的下行信息的业务类型;
    或者,
    基于所述第一反馈时间,指示下行控制信息的时延等级、或者指示下行控制信息所调度的下行信息的时延等级。
  43. 根据权利要求42所述的网络设备,其中,所述第四处理单元,通过设置所述第一反馈时间对应的时域颗粒度或时间单元,确定指示下行控制信息的业务类型、或者指示下行控制信息所调度的下行信息的业务类型;
    或者,
    通过设置所述第一反馈时间对应的时域颗粒度或时间单元,确定指示所述下行控制信息的时延等级、或者指示下行控制信息所调度的下行信息的时延等级。
  44. 根据权利要求41所述的网络设备,其中,所述第四处理单元,基于所述第一反馈时间,确定向终端设备指示下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式;
    或者,
    基于所述第一反馈时间对应的时域颗粒度,确定向终端设备指示下行控制信息中除反馈时间指示信息域之外的其他信息域的解析方式。
  45. 根据权利要求44所述的网络设备,其中,所述第四处理单元,通过设置所述第一反馈时间为第一约定值,确定向终端设备指示采用第一格式对所述其他信息域进行解析;设置所述第一反馈时间为第二约定值,确定向终端设备指示采用第二格式对所述其他信息域进行解析;
    其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
  46. 根据权利要求44所述的网络设备,其中,所述第四处理单元,通过设置所述第一反馈时间对应的时域颗粒度为时隙,确定向终端设备指示采用第一格式对所述其他信息域进行解析;通过设置所述第一反馈时间对应的时域颗粒度为半个时隙或N个符号,确定向终端设备指示采用第二格式对所述其他信息域进行解析;
    其中,所述第一格式与第二格式包括的信息域至少部分不同,和/或,所述第一格式与第二格式中的至少部分相同的信息域中包含的比特长度不同。
  47. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-12任一项所述方法的步骤。
  48. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求13-23任一项所述方法的步骤。
  49. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-12中任一项所述的方法。
  50. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求13-23中任一项所述的方法。
  51. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-23任一项所述方法的步骤。
  52. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-23中任一项所述的方法。
  53. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-23中任一项所述的方法。
PCT/CN2018/106925 2018-09-21 2018-09-21 一种信息传输时间的确定方法、终端设备及网络设备 WO2020056719A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/106925 WO2020056719A1 (zh) 2018-09-21 2018-09-21 一种信息传输时间的确定方法、终端设备及网络设备
CN201880091053.5A CN111837349B (zh) 2018-09-21 2018-09-21 一种信息传输时间的确定方法、终端设备及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106925 WO2020056719A1 (zh) 2018-09-21 2018-09-21 一种信息传输时间的确定方法、终端设备及网络设备

Publications (2)

Publication Number Publication Date
WO2020056719A1 true WO2020056719A1 (zh) 2020-03-26
WO2020056719A9 WO2020056719A9 (zh) 2020-08-06

Family

ID=69888190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106925 WO2020056719A1 (zh) 2018-09-21 2018-09-21 一种信息传输时间的确定方法、终端设备及网络设备

Country Status (2)

Country Link
CN (1) CN111837349B (zh)
WO (1) WO2020056719A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827371A (zh) * 2015-01-27 2016-08-03 中兴通讯股份有限公司 一种实现上行控制信息的传输方法及装置
CN106255215A (zh) * 2016-08-05 2016-12-21 宇龙计算机通信科技(深圳)有限公司 通信方法及通信装置
WO2018124178A1 (ja) * 2016-12-27 2018-07-05 シャープ株式会社 端末装置、基地局装置、および、通信方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102408035B1 (ko) * 2016-08-12 2022-06-14 삼성전자 주식회사 무선 통신 시스템에서 복수의 전송시간구간 운용 방법 및 장치
US11038657B2 (en) * 2016-11-11 2021-06-15 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for transmitting and obtaining uplink HARQ feedback

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827371A (zh) * 2015-01-27 2016-08-03 中兴通讯股份有限公司 一种实现上行控制信息的传输方法及装置
CN106255215A (zh) * 2016-08-05 2016-12-21 宇龙计算机通信科技(深圳)有限公司 通信方法及通信装置
WO2018124178A1 (ja) * 2016-12-27 2018-07-05 シャープ株式会社 端末装置、基地局装置、および、通信方法

Also Published As

Publication number Publication date
CN111837349A (zh) 2020-10-27
CN111837349B (zh) 2022-10-14
WO2020056719A9 (zh) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2020140289A1 (zh) 资源分配的方法、终端设备和网络设备
WO2020143050A1 (zh) 跨载波调度的dci的确定方法、终端设备及网络设备
WO2020191636A1 (zh) 通信方法、终端设备和网络设备
WO2020029256A1 (zh) 一种数据传输方法、终端设备及网络设备
WO2020001579A1 (zh) 控制信息传输方法、网络设备、终端和计算机存储介质
US11991729B2 (en) Resource configuration method and apparatus, and communication device
WO2020056632A1 (zh) 一种信息传输方法及装置、终端
US11825479B2 (en) Method for determining uplink control information and communications device
US20210211175A1 (en) Method for feeding back and receiving information, and device
CN111641483B (zh) 一种反馈信息传输方法及装置、通信设备
WO2020061948A1 (zh) 检测信道、发送信息的方法和设备
WO2020143052A1 (zh) 用于传输反馈信息的方法、终端设备和网络设备
WO2020087424A1 (zh) 一种数据传输方法、终端设备及存储介质
WO2021068264A1 (zh) 无线通信方法、装置和通信设备
WO2020061776A1 (zh) 一种反馈资源的复用方法、终端设备及网络设备
WO2020061773A9 (zh) 一种反馈资源分配方法、终端设备及网络设备
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2021203230A1 (zh) 上行控制信息传输方法及装置、终端设备
WO2020056556A1 (zh) 用于非授权频谱的通信方法、终端设备和网络设备
WO2020042036A1 (zh) 无线通信方法和通信设备
WO2020133457A1 (zh) 无线通信方法、网络设备和终端设备
WO2020056719A1 (zh) 一种信息传输时间的确定方法、终端设备及网络设备
WO2021142636A1 (zh) 上行传输的方法和终端设备
WO2021179133A1 (zh) 信道的处理方法、装置、存储介质、处理器及电子装置
WO2020132992A1 (zh) 下行控制信号传输方法、终端设备、网络设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934471

Country of ref document: EP

Kind code of ref document: A1