WO2020056606A1 - 确定上行控制信息传输资源个数的方法、装置及程序 - Google Patents

确定上行控制信息传输资源个数的方法、装置及程序 Download PDF

Info

Publication number
WO2020056606A1
WO2020056606A1 PCT/CN2018/106326 CN2018106326W WO2020056606A1 WO 2020056606 A1 WO2020056606 A1 WO 2020056606A1 CN 2018106326 W CN2018106326 W CN 2018106326W WO 2020056606 A1 WO2020056606 A1 WO 2020056606A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel access
target
channel
resources
uplink control
Prior art date
Application number
PCT/CN2018/106326
Other languages
English (en)
French (fr)
Inventor
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/106326 priority Critical patent/WO2020056606A1/zh
Priority to CN201880097207.1A priority patent/CN112655162A/zh
Priority to KR1020217010000A priority patent/KR20210057755A/ko
Priority to EP18933976.5A priority patent/EP3855649A4/en
Priority to AU2018441654A priority patent/AU2018441654A1/en
Priority to TW108133683A priority patent/TW202037126A/zh
Publication of WO2020056606A1 publication Critical patent/WO2020056606A1/zh
Priority to US17/200,472 priority patent/US11800546B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0875Non-scheduled access, e.g. ALOHA using a dedicated channel for access with assigned priorities based access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the wireless network technology of this application particularly relates to a method, a device, and a program for determining the number of uplink control information transmission resources.
  • Unlicensed spectrum is the spectrum that can be used for radio equipment communication divided by countries and regions. This spectrum is generally considered as shared spectrum, that is, communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. Using this spectrum does not require applying for a proprietary spectrum license from the government.
  • LBT Listen Before Talk
  • LTE Long Term Evolution
  • NR New Radio
  • a communication device Before a communication device, such as a terminal device, sends a physical uplink control channel (PUCCH, Physical Uplink Control Channel), it needs to perform channel detection. When the channel is idle, it can send the PUCCH, otherwise it cannot be sent.
  • the uplink control information UCI (Uplink, Control, Information), such as Hybrid Automatic Repeat Request (HARQ-ACK, Hybrid, Automatic, Repeat-Request-ACK)
  • HARQ-ACK Hybrid Automatic Repeat Request
  • HARQ-ACK Hybrid Automatic Repeat-Request-ACK
  • embodiments of the present application provide a method, a device, and a program for determining the number of uplink control information transmission resources, which can improve system performance.
  • a method for determining the number of uplink control information transmission resources including:
  • the terminal device determines target uplink control information
  • the terminal device determines the number of resources for transmitting the target uplink control information according to a preset rule or instruction information sent by a network device.
  • a method for determining the number of uplink control information transmission resources including:
  • the network device sends instruction information to the terminal device, where the instruction information is used by the terminal device to determine the number of resources for transmitting target uplink control information.
  • an apparatus for determining the number of uplink control information transmission resources is provided, and is configured to execute the method in the first aspect or the implementation manners thereof.
  • the apparatus for determining the number of uplink control information transmission resources includes a functional module for executing the method in the first aspect or the implementation manners thereof.
  • an apparatus for determining the number of uplink control information transmission resources is provided, which is configured to execute the method in the second aspect or the implementation manners thereof.
  • the apparatus for determining the number of uplink control information transmission resources includes a functional module for executing the method in the second aspect or the implementation manners thereof.
  • a communication device including a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, and execute the first aspect to the second aspect.
  • a chip is provided for implementing any one of the foregoing first to second aspects or a method in each implementation manner thereof.
  • the chip includes a processor for invoking and running a computer program from a memory, so that a device installed with the chip executes any one of the first aspect to the second aspect described above or implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, which causes a computer to execute the method in any one of the first to second aspects described above or in its implementations.
  • a computer program product including computer program instructions that cause a computer to execute any one of the foregoing first to second aspects or a method in an implementation manner thereof.
  • a computer program that, when run on a computer, causes the computer to execute any one of the first to second aspects described above or a method in each implementation thereof.
  • the terminal device can determine the number of resources for transmitting the target uplink control information according to a preset rule or instruction information sent by the network device. Therefore, the number of resources used to transmit the target uplink control information can be different in different situations, and further, fewer resources can be used to ensure the transmission probability of the target uplink control information, and system performance is improved.
  • FIG. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for determining the number of uplink control information transmission resources according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of determining the number of resources according to a time interval between a first downlink time unit and a first uplink time unit provided in an embodiment of the present application.
  • FIG. 4 is a first schematic structural diagram of an apparatus for determining the number of uplink control information transmission resources according to an embodiment of the present application.
  • FIG. 5 is a second schematic structural diagram of an apparatus for determining the number of uplink control information transmission resources according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication system 800 according to an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NR Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (BTS, Base Transceiver Station) in a GSM system or a CDMA system, or a base station (NB, NodeB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NB NodeB
  • eNB or eNodeB, Evolutional Node, B or a wireless controller in a Cloud Radio Access Network (CRAN, Cloud Radio Access Network)
  • the network device may be a mobile switching center, relay station, access point, vehicle equipment, Wearable devices, hubs, switches, bridges, routers, network-side devices in NR networks, or network devices in public land mobile networks (PLMN, Public Land Mobile Network) that will evolve in the future.
  • PLMN Public Land Mobile Network
  • the communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as public switched telephone networks (PSTN, Public Switched Telephone Networks), digital subscriber lines (DSL, Digital Subscriber Line), digital cables, direct cable connections ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN, Wireless Local Area Network), digital television networks such as DVB-H networks, satellite networks, AM- An FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or an Internet of Things (IoT) device.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area network
  • Digital television networks such as DVB-H networks, satellite networks, AM- An FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communication system (PCS, Personal Communications Systems) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / Internet PDA with network access, Web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal device can refer to an access terminal, user equipment (UE, User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • terminal device 120 may perform terminal direct connection (D2D, Device to Device) communication.
  • D2D Terminal Direct connection
  • the technical solutions of the embodiments of the present application can be applied to unlicensed spectrum, and can also be applied to licensed spectrum, which is not limited in the embodiments of the present application.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and are not described herein again.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • the channel detection may also be considered as clear channel assessment (CCA, Clear Channel Assessment) detection.
  • CCA Clear Channel Assessment
  • Channel access methods can have different priorities based on the priority of different signals or service transmissions.
  • the channel access method may include no channel detection, single channel detection, and channel detection based on a contention window.
  • No channel detection means that the communication device can perform signal transmission without performing channel detection.
  • the second transmission may be transmitted without channel detection.
  • COT shared channel occupation time
  • a preset value such as 16us
  • Single channel detection refers to a communication device performing a channel detection of length T (such as 25us) on an unlicensed carrier. If the channel is idle, the channel detection is considered successful. If the channel is occupied, the channel detection is considered failed.
  • Single-channel detection can also be called single-slot channel detection. For example, channel detection can be used to collect the signal energy on a channel in a time slot. If the energy value is greater than or equal to a preset threshold, the channel is considered to be occupied. If the energy value is less than the preset threshold, the channel is considered idle.
  • Channel detection based on the contention window means that a communication device generates a random number according to the contention window, and according to a preset rule, the channel is detected to be idle within the time length corresponding to the generated random number before data transmission can be performed.
  • the channel detection based on the contention window may include the following steps.
  • the communication device performs CCA detection on the channel with a length of T sl (for example, the length of T sl is 9us, that is, the length of the CCA slot is 9us). If the channel detection result is that the channel is idle, step S4 is performed; otherwise, step is performed. S5;
  • step S4 If N is equal to zero, end the channel access process; otherwise, perform step S2;
  • T d 16 + m p * 9 (us)
  • step S6 If the channel detection result is that all CCA time slots within the time period T d are idle, step S4 is performed; otherwise, step S5 is performed.
  • CW p and m p can be determined according to the channel access priority p, that is, the channel detection based on the contention window can have different priorities.
  • Table 1 gives examples of values of channel access parameters under different channel access priorities.
  • Table 1 Values of channel access parameters under different channel access priorities
  • CW min, p is the minimum value of the CW channel access priority value p corresponding to p
  • CW max, p is the maximum value of the channel access priority corresponding to the CW p value of p
  • T mcot, p is a channel Maximum occupied length of the channel corresponding to the access priority p. The smaller the value of p, the higher the priority.
  • channel access parameters shown in Table 1 are merely examples and are not limiting.
  • the values corresponding to the channel access parameters may be adjusted according to actual conditions, or may only include some of the parameters. This embodiment of the present application does not make any reference to this. limited.
  • N is equal to zero
  • the channel access process is ended, the channel detection is successful, and the communication device obtains the right to use the channel.
  • the communication device can perform signal transmission on the channel.
  • the priorities of different channel access modes may be distinguished according to the success probability of preempting the channel. For example, if channel detection is not allowed, the success probability of preempting the channel can be considered to be 100%, so the priority of not performing channel detection is higher than the priority of single channel detection.
  • multiple transmission resources can be configured for the uplink control information to increase the transmission probability of the uplink control information, thereby reducing the impact of the failure of the channel detection to cause the uplink control information to fail to be transmitted.
  • the channel access methods corresponding to the uplink control information transmission may be different in different situations, the priority of different channel access methods is different, that is, the success probability of preempting channels is different under different channel access methods, so corresponding to different channels In the access mode, the number of resources used to transmit uplink control information may be different.
  • FIG. 2 is a schematic flowchart of a method for determining the number of uplink control information transmission resources according to an embodiment of the present application. As shown in FIG. 2, the following specific implementation manners are included.
  • the terminal device determines target uplink control information.
  • the terminal device determines the number of resources for transmitting the target uplink control information according to a preset rule or instruction information sent by the network device.
  • the terminal device determining the target uplink control information includes the terminal device determining the information content or information bit corresponding to the target uplink control information.
  • the target uplink control information may include at least one of HARQ-ACK information, channel state information (CSI, Channel State Information), and scheduling request (SR, Scheduling Request) information.
  • the channel state information includes at least one of a rank indication (RI, Rank Indication), a precoding matrix indication (PMI), and a channel quality indication (CQI, Channel Quality Indicator).
  • the terminal device may determine the number of resources used to transmit the target uplink control information according to a preset rule or instruction information sent by the network device, where the resources used to transmit the target uplink control information may include PUCCH resources and physical uplinks. At least one of a shared channel (PUSCH, Physical Uplink, Shared Channel) resource.
  • PUSCH Physical Uplink, Shared Channel
  • the manner in which the terminal device determines the number of resources used to transmit the target uplink control information may be determined according to actual needs, including but not limited to the following.
  • the number of resources used to transmit the target uplink control information is determined according to the target channel access mode.
  • the target channel access method is a channel access method corresponding to a resource for transmitting target uplink control information.
  • the target channel access mode may be a channel access mode corresponding to a first resource used to transmit target uplink control information.
  • the preset rule or the instruction information sent by the network device may be used to determine the target uplink transmission Controls the number of resources of the information. Further optionally, when the preset rule or the indication information sent by the network device determines the number of resources used to transmit the target uplink control information, a channel access method corresponding to the resources used to transmit the target uplink control information is considered.
  • the terminal device when the terminal device determines the number of resources used to transmit the target uplink control information according to the preset rule or the instruction information sent by the network device, the preset rule or the instruction information sent by the network device may be used to determine the target uplink transmission Controls the number of resources of the information. Further optionally, the terminal device may determine a channel access method corresponding to the resource for transmitting the target uplink control information according to the determined number of resources for transmitting the target uplink control information.
  • the number of resources corresponding to the first channel access method is N
  • the number of resources corresponding to the second channel access method is M
  • the priority of the first channel access method is The priority is higher than the second channel access mode.
  • M and N are positive integers, and the value of M is greater than or equal to N. For example, when the target channel access method is the first channel access method, the number of resources is N, and when the target channel access method is the second channel access method, the number of resources is M.
  • the value of M is preset or determined according to the instruction information sent by the network device, and / or the value of N is preset or determined according to the instruction information sent by the network device.
  • the terminal device may determine the value of M and / or N according to the preset correspondence between the channel access mode and the number of resources, and may also determine M and / or N according to the instruction information sent by the network device. Or the value of N.
  • the foregoing method of determining the values of M and N is merely an example, and is not used to limit the technical solution of the present application.
  • the value of M may be preset or determined according to the instruction information sent by the network device, and the value of N may be determined according to M, or the value of N may be preset or determined according to the network device.
  • the indication information is determined, and the value of M is determined according to N.
  • the terminal device may include: the terminal device determines the resource according to the preset rule or the instruction information sent by the network device.
  • the target channel access method, and the number of resources used to transmit the target uplink control information are determined according to the target channel access method.
  • the target channel access method is a channel access method corresponding to the resource used to transmit the target uplink control information.
  • the terminal device may first determine a target channel access method according to a preset rule or instruction information sent by a network device, and then may according to a preset channel access method and resource resources. The corresponding relationship between the numbers is further determined based on the determined target channel access mode, and the number of resources used to transmit the target uplink control information is further determined.
  • the target channel access method is the first channel access method
  • the number of resources is N.
  • the target channel access method is the second channel access method
  • the number of resources is M
  • the first channel access method has priority.
  • the priority is higher than the priority of the second channel access mode.
  • M and N are positive integers, and the value of M is greater than or equal to N.
  • the target channel access mode may further correspond to a target parameter set, and the number of resources may be determined according to the target parameter set.
  • the target parameter set is the first parameter set
  • the target parameter set is the second parameter set
  • the priority of the first channel access mode is higher than the priority of the second channel access mode
  • the maximum value in the first parameter set is smaller than the maximum value in the second parameter set.
  • the first parameter set may be preset or determined according to the instruction information sent by the network device, and / or the second parameter set may be preset or determined according to the instruction information sent by the network device.
  • a network device may configure a target parameter set for a terminal device through radio resource control (RRC, Radio Resource Control) signaling, where different target parameter sets correspond to different channel access modes.
  • RRC Radio Resource Control
  • the terminal device can determine the number of resources from the target parameter set. Specifically, the terminal device may determine the number of resources from the target parameter set according to the instruction information sent by the network device. For example, the network device may determine the number of resources from the target parameter set, and indicate the number of resources to the terminal device through dynamic signaling. Specifically, the dynamic signaling may be an explicit indication or an implicit indication.
  • the priority of the first channel access method is higher than the priority of the second channel access method may include: the first channel access method is no channel detection, and the second channel access method is a single channel detection ; Or, the first channel access method is no channel detection, and the second channel access method is channel detection based on the contention window; or, the first channel access method is single channel detection, and the second channel access method is Channel detection based on the contention window; or, the first channel access method is the channel access method with higher priority in the channel detection based on the contention window, and the second channel access method is the channel priority detection in the channel detection based on the contention window.
  • the channel access methods corresponding to the resources used to transmit the target uplink control information include a channel access method without channel detection and a channel access method with a single channel detection.
  • the number of resources used to transmit the target uplink control information is 1; when the resource used to transmit the target uplink control information is used, a single In the channel access mode of the secondary channel detection, the number of resources used to transmit the target uplink control information is two.
  • the number of resources may be preset or indicated by the network device to the terminal device through the instruction information.
  • the channel access method corresponding to the resource used to transmit the target uplink control information includes a channel access method without channel detection and a channel access method with a single channel detection.
  • the number of resources used to transmit the target uplink control information is 1, the resource used to transmit the target uplink control information can use the channel access method without channel detection; when the number of resources used to transmit the target uplink control information is At 2 o'clock, the resource used to transmit the target uplink control information can use the channel access method of single channel detection.
  • the number of resources may be preset or indicated by the network device to the terminal device through the instruction information.
  • the channel access method corresponding to the resource used to transmit the target uplink control information includes a channel access method of a single channel detection and a channel access method of a channel detection based on a contention window, where the channel access of a single channel detection
  • the first parameter set corresponding to the input method is ⁇ 1,2 ⁇
  • the second parameter set corresponding to the channel access method based on the channel detection of the contention window is ⁇ 2,4 ⁇
  • the first parameter set and the second parameter set are networks
  • the device is configured through RRC signaling.
  • the network device uses 1-bit dynamic signaling to indicate that the number of resources used to transmit the target uplink control information is in the ⁇ 1,2 ⁇ set
  • the network device uses 1-bit dynamic signaling to indicate the number of resources used to transmit the target uplink control information as Which of the ⁇ 2,4 ⁇ sets.
  • each indication information involved in the above description is not limited.
  • it can be one signaling or multiple signaling, high-level signaling, or physical layer signaling.
  • the indication information sent by the network device may be physical layer signaling, and / or the indication information sent by the network device may be high-level signaling.
  • the indication information may be downlink control information (DCI, Downlink Control Information) signaling, and / or, RRC signaling, and / or, media access control (MAC, Media Access Control) signaling.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the number of resources is determined according to a time domain position and / or a frequency domain position of a resource used for transmitting target uplink control information.
  • the number of resources may be determined according to a time domain position and / or a frequency domain position of a first resource among resources for transmitting target uplink control information.
  • the time domain start position of the first resource among the resources used to transmit the target uplink control information and the time of the downlink time unit sent by the network device When the time interval between the end positions of the domain is less than or equal to the first preset value, the number of resources for transmitting the target uplink control information is P; and / or, the first of the resources for transmitting the target uplink control information When the time interval between the time domain start position of each resource and the time domain end position of the downlink time unit sent by the network device is greater than the first preset value and less than or equal to the second preset value, it is used to transmit the target uplink control information
  • the number of resources is Q; and
  • the value of P is less than or equal to Q, and the first preset value is less than the second preset value.
  • the first preset value is 16 microseconds
  • the second preset value is 25 microseconds
  • the value of P is 1
  • the value of Q is 2.
  • the number of resources is determined according to a time interval between the first downlink time unit and the first uplink time unit.
  • the first downlink time unit is the last downlink time unit corresponding to the target uplink control information
  • the first uplink time unit is the first time unit available for the terminal device to perform uplink transmission after the first downlink time unit.
  • FIG. 3 is a schematic diagram of determining the number of resources according to a time interval between a first downlink time unit and a first uplink time unit provided in an embodiment of the present application.
  • the uplink control information # 1 includes HARQ-ACK information corresponding to the PDSCH scheduled by the terminal device in the time unit included in the downlink transmission opportunity # 1. Therefore, the first downlink corresponding to the uplink control information # 1
  • the time unit is the last downlink time unit in the downlink transmission opportunity # 1, that is, the downlink time unit # 1 in the figure.
  • the first time unit that can be used for uplink transmission by the terminal device is the uplink time unit # 1 shown in the figure.
  • the time interval # 1 between the downlink time unit # 1 and the uplink time unit # 1 is greater than The value is set. Therefore, the resource for transmitting the uplink control information # 1 includes 2 resources. Optionally, the two resources are located on the uplink time unit # 1 and the latter time unit of the uplink time unit # 1.
  • the uplink control information # 2 includes HARQ-ACK information corresponding to the PDSCH scheduled by the terminal device on the time unit included in the downlink transmission opportunity # 2. Therefore, the first downlink time unit corresponding to the uplink control information # 2 is a downlink transmission opportunity.
  • the last downlink time unit in # 2 is the downlink time unit # 2 in the figure.
  • the first time unit available to the terminal device for uplink transmission is the uplink time unit # 2 shown in the figure.
  • the time interval # 2 between the downlink time unit # 2 and the uplink time unit # 2 is less than The value is set. Therefore, the resource for transmitting the uplink control information # 2 includes 1 resource.
  • the 1 resource is located on the uplink time unit # 2.
  • a time unit may refer to one or more subframes, or one or more time slots, or one or more micro time slots, or one or more symbols. This embodiment of the present application is not limited to this.
  • instruction information may be sent to the terminal device, where the instruction information is used by the terminal device to determine the number of resources used to transmit the target uplink control information.
  • the target uplink control information may include at least one of HARQ-ACK information, CSI information, and SR information.
  • the CSI information may include at least one of RI information, PMI information, and CQI information.
  • the resource for transmitting the target uplink control information may include at least one of a PUCCH resource, a PUSCH resource, and the like.
  • the number of resources may be determined according to a target channel access method, and the target channel access method is a channel access method corresponding to a resource for transmitting target uplink control information.
  • the target channel access mode may be a channel access mode corresponding to a first resource used to transmit target uplink control information.
  • the network device may indicate, according to the target channel access mode of the terminal device, the number of resources used to transmit the target uplink control information through the instruction information.
  • the number of resources corresponding to the first channel access method is N
  • the number of resources corresponding to the second channel access method is M
  • the priority of the first channel access method is The priority is higher than the second channel access mode.
  • M and N are positive integers, and the value of M is greater than or equal to N. For example, when the target channel access method is the first channel access method, the number of resources is N, and when the target channel access method is the second channel access method, the number of resources is M.
  • the network device may send instruction information to the terminal device, where the instruction information is used by the terminal device to determine the value of M; and / or, the network device sends the instruction information to the terminal device, and the instruction information is used by the terminal device to determine The value of N. That is, the value of M is determined according to the instruction information sent by the network device, and / or the value of N is determined according to the instruction information sent by the network device.
  • the network device may also indicate the target channel access mode to the terminal device, and then the terminal device determines the number of resources for transmitting the target uplink control information based on the target channel access mode.
  • the target channel access method is the first channel access method
  • the number of resources is N
  • the target channel access method is the second channel access method
  • the number of resources is M
  • the priority of the access method is higher than the priority of the second channel access method.
  • M and N are positive integers, and the value of M is greater than or equal to N.
  • the target channel access mode may also correspond to a target parameter set, and the number of resources may be determined according to the target parameter set.
  • the target parameter set is the first parameter set
  • the target parameter set is the second parameter set
  • the priority of the first channel access mode is higher than the priority of the second channel access mode
  • the maximum value in the first parameter set is smaller than the maximum value in the second parameter set.
  • the network device may send instruction information to the terminal device, where the instruction information is used by the terminal device to determine the first parameter set; and / or, the network device sends instruction information to the terminal device, and the instruction information is used by the terminal device to determine the second parameter set .
  • a network device may configure a target parameter set for a terminal device through RRC signaling, where different target parameter sets correspond to different channel access modes.
  • the network device may also send instruction information to the terminal device, instructing the terminal device to determine the number of resources from the target parameter set.
  • the network device may determine the number of resources from the target parameter set, and indicate the number of resources to the terminal device through dynamic signaling.
  • the dynamic signaling may be an explicit indication or an implicit indication.
  • the priority of the first channel access method is higher than the priority of the second channel access method may include: the first channel access method is no channel detection, and the second channel access method is a single channel detection ; Or, the first channel access method is no channel detection, and the second channel access method is channel detection based on the contention window; or, the first channel access method is single channel detection, and the second channel access method is Channel detection based on the contention window; or, the first channel access method is the channel access method with higher priority in the channel detection based on the contention window, and the second channel access method is the channel priority detection in the channel detection based on the contention window.
  • each indication information involved in the above description is not limited.
  • it can be one signaling or multiple signaling, high-level signaling, or physical layer signaling.
  • the indication information sent by the network device may be physical layer signaling, and / or the indication information sent by the network device may be high-level signaling.
  • the indication information may be DCI signaling, and / or, RRC signaling, and / or, MAC signaling.
  • the number of resources may also be determined according to a time domain position and / or a frequency domain position of a resource for transmitting target uplink control information.
  • the number of resources may be determined according to a time domain position and / or a frequency domain position of a first resource among resources for transmitting target uplink control information.
  • the time domain start position of the first resource among the resources used to transmit the target uplink control information and the time of the downlink time unit sent by the network device When the time interval between the end positions of the domain is less than or equal to the first preset value, the number of resources for transmitting the target uplink control information is P; and / or, the first of the resources for transmitting the target uplink control information When the time interval between the time domain start position of each resource and the time domain end position of the downlink time unit sent by the network device is greater than the first preset value and less than or equal to the second preset value, it is used to transmit the target uplink control information
  • the number of resources is Q; and
  • the value of P is less than or equal to Q, and the first preset value is less than the second preset value.
  • the first preset value is 16 microseconds
  • the second preset value is 25 microseconds
  • the value of P is 1
  • the value of Q is 2.
  • the number of resources may also be determined according to a time interval between the first downlink time unit and the first uplink time unit, where the first downlink time unit is the last downlink time unit corresponding to the target uplink control information, and the first uplink The time unit is the first time unit available to the terminal device for uplink transmission after the first downlink time unit.
  • the uplink control information # 1 includes HARQ-ACK information corresponding to the PDSCH scheduled by the terminal device in the time unit included in the downlink transmission opportunity # 1. Therefore, the first downlink corresponding to the uplink control information # 1
  • the time unit is the last downlink time unit in the downlink transmission opportunity # 1, that is, the downlink time unit # 1 in the figure.
  • the first time unit that can be used for uplink transmission by the terminal device is the uplink time unit # 1 shown in the figure.
  • the time interval # 1 between the downlink time unit # 1 and the uplink time unit # 1 is greater than The value is set. Therefore, the resource for transmitting the uplink control information # 1 includes 2 resources. Optionally, the two resources are located on the uplink time unit # 1 and the latter time unit of the uplink time unit # 1.
  • the uplink control information # 2 includes HARQ-ACK information corresponding to the PDSCH scheduled by the terminal device on the time unit included in the downlink transmission opportunity # 2. Therefore, the first downlink time unit corresponding to the uplink control information # 2 is a downlink transmission opportunity.
  • the last downlink time unit in # 2 is the downlink time unit # 2 in the figure.
  • the first time unit available to the terminal device for uplink transmission is the uplink time unit # 2 shown in the figure.
  • the time interval # 2 between the downlink time unit # 2 and the uplink time unit # 2 is less than The value is set. Therefore, the resource for transmitting the uplink control information # 2 includes 1 resource.
  • the 1 resource is located on the uplink time unit # 2.
  • a time unit may refer to one or more subframes, or one or more time slots, or one or more micro time slots, or one or more symbols. This embodiment of the present application is not limited to this.
  • the terminal device when the solution described in the embodiment of the present application is used, when a high-priority channel access method is used, the terminal device can be configured with fewer resources for transmitting target uplink control information.
  • the terminal device when using a low-priority channel access method, the terminal device can be configured with a larger number of resources for transmitting the target uplink control information, so that the transmission opportunity of the target uplink control information can be ensured while reducing the waste of resources.
  • the transmission success rate of the target uplink control information is improved, and the system performance is improved.
  • resource allocation method described in the embodiments of the present application can also be applied to other uplink information transmission, such as Physical Random Access Channel (PRACH, Physical Random Access Channel), Physical Uplink Shared Channel (PUSCH, Physical Uplink, Shared Channel), etc. Wide applicability.
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • Shared Channel Physical Uplink, Shared Channel
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 4 is a first schematic structural diagram of an apparatus for determining the number of uplink control information transmission resources according to an embodiment of the present application. As shown in FIG. 4, the method includes a determining unit 401.
  • the determining unit 401 is configured to determine target uplink control information
  • the determining unit 401 is further configured to determine the number of resources for transmitting target uplink control information according to a preset rule or instruction information sent by a network device.
  • the number of resources may be determined according to a target channel access method, which is a channel access method corresponding to a resource for transmitting target uplink control information.
  • the target channel access mode may be a channel access mode corresponding to a first resource used to transmit target uplink control information.
  • the target channel access method is the first channel access method
  • the number of resources is N
  • the target channel access method is the second channel access method
  • the number of resources is M
  • the priority of is higher than the priority of the second channel access mode.
  • M and N are positive integers, and the value of M is greater than or equal to N.
  • the value of M is preset or determined according to the instruction information sent by the network device, and / or, the value of N is preset or determined according to the instruction information sent by the network device.
  • the target channel access method may also correspond to the target parameter set, and the number of resources is determined according to the target parameter set.
  • the target channel access method is the first channel access method
  • the target parameter set is the first parameter set and the target channel
  • the target parameter set is the second parameter set.
  • the priority of the first channel access method is higher than the priority of the second channel access method.
  • the maximum value is less than the maximum value in the second parameter set.
  • the first parameter set is preset or determined according to the instruction information sent by the network device, and / or the second parameter set is preset or determined according to the instruction information sent by the network device.
  • the determining unit 401 may determine the number of resources from the target parameter set according to the instruction information sent by the network device.
  • the priority of the first channel access method is higher than the priority of the second channel access method may include: the first channel access method is no channel detection, and the second channel access method is a single channel detection; or One channel access method is no channel detection, and the second channel access method is channel detection based on the contention window; or, the first channel access method is single channel detection and the second channel access method is based on the contention window.
  • the number of resources may also be determined according to a time domain position and / or a frequency domain position of a resource used for transmitting target uplink control information.
  • the number of resources may be determined according to a time domain position and / or a frequency domain position of a first resource among resources for transmitting target uplink control information.
  • the number of resources may also be determined according to a time interval between the first downlink time unit and the first uplink time unit, where the first downlink time unit is the last downlink time unit corresponding to the target uplink control information, and the first The uplink time unit is the first time unit available to the terminal device for uplink transmission after the first downlink time unit.
  • the resources used to transmit the target uplink control information may include at least one of a PUCCH resource and a PUSCH resource.
  • the target uplink control information may include at least one of HARQ-ACK information, CSI information, and scheduling request SR information.
  • FIG. 5 is a second schematic structural diagram of an apparatus for determining the number of uplink control information transmission resources according to an embodiment of the present application. As shown in FIG. 5, it includes: a sending unit 501.
  • the sending unit 501 is configured to send instruction information to the terminal device, where the instruction information is used by the terminal device to determine the number of resources used to transmit the target uplink control information.
  • the number of resources may be determined according to a target channel access method, which is a channel access method corresponding to a resource for transmitting target uplink control information.
  • the target channel access mode may be a channel access mode corresponding to a first resource used to transmit target uplink control information.
  • the target channel access method is the first channel access method
  • the number of resources is N
  • the target channel access method is the second channel access method
  • the number of resources is M
  • the priority of is higher than the priority of the second channel access mode.
  • M and N are positive integers, and the value of M is greater than or equal to N.
  • the sending unit 501 may send instruction information to the terminal device, where the instruction information is used by the terminal device to determine the value of M, and / or, the sending unit 501 may send instruction information to the terminal device, and the instruction information is used by the terminal device to determine the value of N. value.
  • the target channel access method may also correspond to the target parameter set, and the number of resources is determined according to the target parameter set.
  • the target channel access method is the first channel access method
  • the target parameter set is the first parameter set and the target channel.
  • the access method is the second channel access method
  • the target parameter set is the second parameter set.
  • the priority of the first channel access method is higher than the priority of the second channel access method.
  • the maximum value in the first parameter set Less than the maximum value in the second parameter set.
  • the sending unit 501 may send instruction information to the terminal device, where the instruction information is used by the terminal device to determine the first parameter set, and / or, the sending unit 501 may send instruction information to the terminal device, and the instruction information is used by the terminal device to determine Two parameter set.
  • the sending unit 501 may also send instruction information to the terminal device, where the instruction information is used by the terminal device to determine the number of resources from the target parameter set.
  • the priority of the first channel access method is higher than the priority of the second channel access method may include: the first channel access method is no channel detection, and the second channel access method is a single channel detection; or One channel access method is no channel detection, and the second channel access method is channel detection based on the contention window; or, the first channel access method is single channel detection and the second channel access method is based on the contention window.
  • the number of resources may also be determined according to a time domain position and / or a frequency domain position of a resource used for transmitting target uplink control information.
  • the number of resources may be determined according to a time domain position and / or a frequency domain position of a first resource among resources for transmitting target uplink control information.
  • the number of resources may also be determined according to a time interval between the first downlink time unit and the first uplink time unit, where the first downlink time unit is the last downlink time unit corresponding to the target uplink control information, and the first The uplink time unit is the first time unit available to the terminal device for uplink transmission after the first downlink time unit.
  • the resources used to transmit the target uplink control information may include at least one of a PUCCH resource and a PUSCH resource.
  • the target uplink control information may include at least one of HARQ-ACK information, CSI information, and SR information.
  • FIG. 6 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device according to the embodiment of the present application, and the communication device 600 may implement a corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not described herein again. .
  • the communication device 600 may specifically be a mobile terminal / terminal device according to the embodiment of the present application, and the communication device 600 may implement a corresponding process implemented by the mobile terminal / terminal device in each method of the embodiment of the present application, for simplicity , Will not repeat them here.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by the other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal / terminal device in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiments of the present application. For simplicity, here No longer.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 8 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 8, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method
  • the network device 820 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), an application specific integrated circuit (ASIC, Application Specific Integrated Circuit), an off-the-shelf programmable gate array (FPGA, Field Programmable Gate Array), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM, Read-Only Memory), a programmable read-only memory (PROM, Programmable ROM), an erasable programmable read-only memory (EPROM, Erasable PROM), or Erase programmable read-only memory (EEPROM, Electrically EPROM) or flash memory.
  • the volatile memory may be random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium may be applied to the mobile terminal / terminal device in the embodiment of the present application, and the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, For brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer executes each method in the embodiment of the application by the mobile terminal / terminal device. The corresponding processes are not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了确定上行控制信息传输资源个数的方法、装置及程序等,其中方法可包括:终端设备确定目标上行控制信息;终端设备根据预设规则或网络设备发送的指示信息,确定用于传输目标上行控制信息的资源个数。应用本申请所述方案,能够提升系统性能等。

Description

确定上行控制信息传输资源个数的方法、装置及程序 技术领域
本申请无线网络技术,特别涉及确定上行控制信息传输资源个数的方法、装置及程序。
背景技术
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
为了让使用非授权频谱进行无线通信的各个通信系统能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,在一些地区,通信设备需要遵循先听后说(LBT,Listen Before Talk)的原则,即通信设备在非授权频谱的信道上进行信号发送之前,需要先进行信道检测,只有当信道检测结果为信道空闲时,才能进行信号发送,如果信道检测结果为信道忙,则不能进行信号发送。
随着无线通信技术的发展,长期演进(LTE,Long Term Evolution)系统和新无线(NR,New Radio)系统都会考虑在非授权频谱上布网,以利用非授权频谱进行数据业务的传输。
由于通信设备如终端设备在发送物理上行控制信道(PUCCH,Physical Uplink Control Channel)之前,需要先进行信道检测,当信道空闲时才能发送PUCCH,否则不能发送,那么当PUCCH中传输上行控制信息(UCI,Uplink Control Information)例如混合自动重传请求应答(HARQ-ACK,Hybrid Automatic Repeat Request-ACK)时,如果因为信道检测失败导致PUCCH中的HARQ-ACK信息不能发送,会对整个链路的时延和性能产生很大的影响,而针对这一问题,目前还没有一种有效的解决方式。
发明内容
有鉴于此,本申请实施例提供了确定上行控制信息传输资源个数的方法、装置及程序等,能够提升系统性能。
第一方面,提供了一种确定上行控制信息传输资源个数的方法,包括:
终端设备确定目标上行控制信息;
所述终端设备根据预设规则或网络设备发送的指示信息,确定用于传输所述目标上行控制信息的资源个数。
第二方面,提供了一种确定上行控制信息传输资源个数的方法,包括:
网络设备向终端设备发送指示信息,所述指示信息用于所述终端设备确定用于传输目标上行控制信息的资源个数。
第三方面,提供了一种确定上行控制信息传输资源个数的装置,用于执行上述第一方面或其各实现方式中的方法。
具体地,该确定上行控制信息传输资源个数的装置包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种确定上行控制信息传输资源个数的装置,用于执行上述第二方面或其各实现方式中的方法。
具体地,该确定上行控制信息传输资源个数的装置包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种通信设备,包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第六方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于上述介绍可以看出,采用本申请所述方案,终端设备确定目标上行控制信息后,可根据预设规则或网络设备发送的指示信息,确定出用于传输目标上行控制信息的资源个数,从而可以使得不同情况下用于传输目标上行控制信息的资源个数不同,进而尽量使用较少的资源保证目标上行控制信息的传输概率,提升了系统性能等。
附图说明
图1为本申请实施例提供的一种通信系统架构的示意性图。
图2为本申请实施例提供的确定上行控制信息传输资源个数的方法的示意性流程图。
图3为本申请实施例提供的根据第一下行时间单元和第一上行时间单元之间的时间间隔确定资源个数的一个示意图。
图4为本申请实施例提供的确定上行控制信息传输资源个数的装置的第一示意性结构图。
图5为本申请实施例提供的确定上行控制信息传输资源个数的装置的第二示意性结构图。
图6为本申请实施例提供的通信设备600的示意性结构图。
图7为本申请实施例提供的芯片的示意性结构图。
图8为本申请实施例提供的通信系统800的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area  Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
示例性的,图1为本申请实施例提供的一种通信系统架构的示意性图。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(BTS,Base Transceiver Station),也可以是WCDMA系统中的基站(NB,NodeB),还可以是LTE系统中的演进型基站(eNB或eNodeB,Evolutional Node B),或者是云无线接入网络(CRAN,Cloud Radio Access Network)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、NR网络中的网络侧设备或者未来演进的公共陆地移动网络(PLMN,Public Land Mobile Network)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(PSTN,Public Switched Telephone Networks)、数字用户线路(DSL,Digital Subscriber Line)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(WLAN,Wireless Local Area Network)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(IoT,Internet of Things)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(PCS,Personal Communications System)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(GPS,Global Positioning System)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(UE,User Equipment)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(SIP,Session Initiation Protocol)电话、无线本地环路(WLL,Wireless Local Loop)站、个人数字处理(PDA,Personal Digital Assistant)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、NR网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(D2D,Device to Device)通信。
本申请实施例的技术方案可以应用于非授权频谱,也可以应用于授权频谱,本申请实施例对此并不限定。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常可被互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在非授权频段上,在进行信号传输前需要根据信道接入方式确定是否获得信道的使用权,例如对信道进行信道检测。可选地,信道检测也可以认为是空闲信道评估(CCA,Clear Channel Assessment)检测。
信道接入方式根据不同信号或业务传输的优先级可以有不同的优先级。作为示例,信道接入方式可包括不做信道检测、单次信道检测以及基于竞争窗口的信道检测等。
不做信道检测,是指通信设备不需要进行信道检测即可进行信号传输。例如,在共享信道占用时间(COT,Channel Occupancy Time)且两次传输之间的间隔小于预设值(如16us)的情况下,第二次传输可以不做信道检测直接传输。
单次信道检测,是指通信设备对非授权载波进行一次长度为T(如25us)的信道检测,如果信道空闲,则认为信道检测成功,如果信道被占用,则认为信道检测失败。单次信道检测也可以称为单时隙信道检测,例如,信道检测可以为收集一个时隙内信道上的信号能量,如果该能量值大于或等于预设门限,则认为信道被占用,如果该能量值小于预设门限,则认为信道空闲。
基于竞争窗口的信道检测,是指通信设备根据竞争窗口生成随机数,根据预设规则在生成的随机数对应的时间长度内信道检测空闲,才能进行数据传输。可选地,基于竞争窗口的信道检测可以包括如下步骤。
S1,设置计数器的计数值N=N init,其中,N init是0到CW p之间均匀分布的随机数,然后执行步骤S4;
S2,如果N大于零,则将计数器的计数值减1,即N=N-1;
S3,通信设备对信道做时间长度为T sl(例如,T sl长度为9us,即CCA时隙长度为9us)的CCA检测,如果信道检测结果为信道空闲,则执行步骤S4;否则,执行步骤S5;
S4,如果N等于零,则结束信道接入过程;否则,执行步骤S2;
S5,通信设备对信道做时间长度为T d(例如,T d=16+m p*9(us))的CCA检测,CCA检测的结果为至少一个CCA时隙被占用,或者为所有CCA时隙均空闲;
S6,如果信道检测结果是T d时间内所有的CCA时隙均空闲,则执行步骤S4;否则,执行步骤S5。
其中,CW p和m p可以根据信道接入优先级p来确定,即基于竞争窗口的信道检测可以有不同的优先级。作为示例,表1给出了一种不同信道接入优先级下的信道接入参数的取值示例。
Figure PCTCN2018106326-appb-000001
表1不同信道接入优先级下的信道接入参数的取值
其中,CW min,p为信道接入优先级p对应的CW p取值的最小值,CW max,p为信道接入 优先级p对应的CW p取值的最大值,T mcot,p为信道接入优先级p对应的信道的最大占用长度。p取值越小,优先级越高。
应理解,表1所示的信道接入参数仅为示例而非限定,信道接入参数对应的值可以根据实际情况进行调整,或者也可以只包括其中的部分参数,本申请实施例对此不作限定。
应理解,当N等于零时,可以认为信道接入过程结束,信道检测成功,通信设备获得信道的使用权,例如通信设备可以在信道上进行信号传输。
可选地,在上述信道接入方式中,可以根据抢占信道的成功概率来区分不同信道接入方式的优先级。例如,在允许不做信道检测的情况下,可以认为抢占信道的成功概率是100%,因此不做信道检测的优先级高于单次信道检测的优先级。
对于非授权载波上的上行控制信息传输,可以为上行控制信息配置多个传输资源来提高上行控制信息的传输概率,从而减小信道检测失败导致上行控制信息不能传输的影响。由于在不同的情况下上行控制信息传输对应的信道接入方式可以不同,不同信道接入方式的优先级不同,即不同信道接入方式下抢占信道的成功概率不同,因此,对应于不同的信道接入方式,用于传输上行控制信息的资源个数可以不同。
图2为本申请实施例提供的确定上行控制信息传输资源个数的方法的示意性流程图。如图2所示,包括以下具体实现方式。
在20l中,终端设备确定目标上行控制信息。
在202中,终端设备根据预设规则或网络设备发送的指示信息,确定用于传输目标上行控制信息的资源个数。
可选地,终端设备确定目标上行控制信息,包括终端设备确定目标上行控制信息对应的信息内容或信息比特。
可选地,目标上行控制信息可包括HARQ-ACK信恩、信道状态信息(CSI,Channel State Information)以及调度请求(SR,Scheduling Request)信息等之中的至少一种。其中,信道状态信息包括秩指示(RI,Rank Indication)、预编码矩阵指示(PMI,Precoding Matrix Indicator)以及信道质量指示(CQI,Channel Quality Indicator)等之中的至少一种。
可选地,终端设备可根据预设规则或网络设备发送的指示信息,确定用于传输目标上行控制信息的资源个数,其中,用于传输目标上行控制信息的资源可包括PUCCH资源和物理上行共享信道(PUSCH,Physical Uplink Shared Channel)资源等之中的至少一种。
终端设备确定用于传输目标上行控制信息的资源个数的方式可以根据实际需要而定,包括但不限于以下几种。
1)方式一
根据目标信道接入方式确定用于传输目标上行控制信息的资源个数。目标信道接入方式是用于传输目标上行控制信息的资源对应的信道接入方式。可选地,目标信道接入方式可以是用于传输目标上行控制信息的第一个资源对应的信道接入方式。
可选地,终端设备在根据预设规则或网络设备发送的指示信息确定用于传输目标上行控制信息的资源个数时,预设规则或网络设备发送的指示信息可用于确定用于传输目标上行控制信息的资源个数。进一步可选地,预设规则或网络设备发送的指示信息在确定用于传输目标上行控制信息的资源个数时,考虑了用于传输目标上行控制信息的资源对应的信道接入方式。
可选地,终端设备在根据预设规则或网络设备发送的指示信息确定用于传输目标上行控制信息的资源个数时,预设规则或网络设备发送的指示信息可用于确定用于传输目标上行控制信息的资源个数。进一步可选地,终端设备根据确定的用于传输目标上行控制信息的资源个数,可以确定用于传输目标上行控制信息的资源对应的信道接入方式。
可选地,在本申请的一些实施例中,第一信道接入方式对应的资源个数为N,第二信道接入方式对应的资源个数为M,第一信道接入方式的优先级高于第二信道接入方式的优先级,M和N均为正整数,M的取值大于或等于N。例如,当目标信道接入方式为第一信道接入方式时,资源个数为N,当目标信道接入方式为第二信道接入方式时,资源个数为M。
其中,M的取值是预设的或根据网络设备发送的指示信息确定的,和/或,N的取值是预设的或根据网络设备发送的指示信息确定的。例如,终端设备可以根 据预先设定的信道接入方式与资源个数之间的对应关系,确定出M和/或N的取值,也可以根据网络设备发送的指示信息,确定出M和/或N的取值。
上述确定M和N的取值的方式仅为举例说明,并不用于限制本申请的技术方案。例如,M的取值可以是预设的或根据网络设备发送的指示信息确定的,而N的取值是根据M确定的,或者,N的取值可以是预设的或根据网络设备发送的指示信息确定的,而M的取值是根据N确定的。
可选地,终端设备在根据预设规则或网络设备发送的指示信息确定用于传输目标上行控制信息的资源个数时,可以包括:终端设备根据预设规则或网络设备发送的指示信息确定出目标信道接入方式,并根据目标信道接入方式确定出用于传输目标上行控制信息的资源个数,目标信道接入方式是用于传输目标上行控制信息的资源对应的信道接入方式。
可选地,在本申请的一些实施例中,终端设备可首先根据预设规则或网络设备发送的指示信息确定出目标信道接入方式,之后可根据预先设定的信道接入方式与资源个数之间的对应关系,基于确定出的目标信道接入方式,进一步确定出用于传输目标上行控制信息的资源个数。
当目标信道接入方式为第一信道接入方式时,资源个数为N,当目标信道接入方式为第二信道接入方式时,资源个数为M,第一信道接入方式的优先级高于第二信道接入方式的优先级,M和N均为正整数,M的取值大于或等于N。
可选地,在本申请的一些实施例中,目标信道接入方式还可以对应目标参数集合,资源个数可根据目标参数集合确定。
例如,当目标信道接入方式为第一信道接入方式时,目标参数集合为第一参数集合,当目标信道接入方式为第二信道接入方式时,目标参数集合为第二参数集合,第一信道接入方式的优先级高于第二信道接入方式的优先级,第一参数集合中的最大值小于第二参数集合中的最大值。
其中,第一参数集合可以是预设的或根据网络设备发送的指示信息确定的,和/或,第二参数集合可以是预设的或根据网络设备发送的指示信息确定的。例如,网络设备可通过无线资源控制(RRC,Radio Resource Control)信令为终端设备配置目标参数集合,其中,不同的目标参数集合对应不同的信道接入方式。
终端设备可从目标参数集合中确定资源个数。具体地,终端设备可根据网络设备发送的指示信息,从目标参数集合中确定资源个数。例如,网络设备可从目标参数集合中确定资源个数,并通过动态信令将该资源个数指示给终端设备,具体地,该动态信令可以是显式指示,也可以是隐式指示。
可选地,第一信道接入方式的优先级高于第二信道接入方式的优先级可以包括:第一信道接入方式为不做信道检测,第二信道接入方式为单次信道检测;或,第一信道接入方式为不做信道检测,第二信道接入方式为基于竞争窗口的信道检测;或,第一信道接入方式为单次信道检测,第二信道接入方式为基于竞争窗口的信道检测;或,第一信道接入方式为基于竞争窗口的信道检测中优先级较高的信道接入方式,第二信道接入方式为基于竞争窗口的信道检测中优先级较低的信道接入方式,例如,第一信道接入方式对应的优先级为p=1,第二信道接入方式对应的优先级为p=2。
例如,用于传输目标上行控制信息的资源对应的信道接入方式包括不做信道检测的信道接入方式和单次信道检测的信道接入方式。当用于传输目标上行控制信息的资源可以使用不做信道检测的信道接入方式时,用于传输目标上行控制信息的资源个数为1;当用于传输目标上行控制信息的资源可以使用单次信道检测的信道接入方式时,用于传输目标上行控制信息的资源个数为2。其中,资源个数可以是预设的或网络设备通过指示信息指示给终端设备的。
又例如,用于传输目标上行控制信息的资源对应的信道接入方式包括不做信道检测的信道接入方式和单次信道检测的信道接入方式。当用于传输目标上行控制信息的资源个数为1时,用于传输目标上行控制信息的资源可以使用不做信道检测的信道接入方式;当用于传输目标上行控制信息的资源个数为2时,用于传输目标上行控制信息的资源可以使用单次信道检测的信道接入方式。其中,该资源个数可以是预设的或网络设备通过指示信息指示给终端设备的。
又例如,用于传输目标上行控制信息的资源对应的信道接入方式包括单次信道检测的信道接入方式和基于竞争窗口的信道检测的信道接入方式,其中,单次信道检测的信道接入方式对应的第一参数集合为{1,2},基于竞争窗口的信道检测的信道接入方式对应的第二参数集合为{2,4},第一参数集合和第二参数集合是网络设备通过RRC信令配置的。当用于传输目标上行控制信息的资源使用单次信道检测的信道接入方式时,网络设备使用1比特动态信令指示用于传输目标上行控制信息的资源个数为{1,2}集合中的哪一个;当用于传输目标上行控制信息的资源可以使用基于竞争窗口的信道检测的信道接入方式时,网络设备使用1比特动态信令指示用于传输目标上行控制信息的资源个数为{2,4}集合中的哪一个。
上述介绍中涉及到的各指示信息的具体形式不做限制,例如,可以是一条信令也可以是多条信令,可以是高层信令也可以是物理层信令等。
可选地,在本申请的一些实施例中,网络设备发送的指示信息可以为物理层信令,和/或,网络设备发送的指示信息可以为高层信令。例如,指示信息可以是下行控制信息(DCI,Downlink Control Information)信令,和/或,RRC信令,和/或,媒体接入控制(MAC,Media Access Control)信令。
2)方式二
根据用于传输目标上行控制信息的资源的时域位置和/或频域位置确定资源个数。可选地,可根据用于传输目标上行控制信息的资源中的第一个资源的时域位置和/或频域位置确定资源个数。
例如,当用于传输目标上行控制信息的资源位于共享COT(例如网络设备获得信道使用权的信道资源中的部分资源用于终端设备的上行控制信息传输,或终端设备在进行自发传输时获得信道使用权的信道资源中的部分资源用于上行控制信息传输)中时,用于传输目标上行控制信息的资源中的第一个资源的时域起始位置与网络设备发送的下行时间单元的时域结束位置之间的时间间隔小于或等于第一预设值时,用于传输目标上行控制信息的资源个数为P个;和/或,用于传输目标上行控制信息的资源中的第一个资源的时域起始位置与网络设备发送的下行时间单元的时域结束位置之间的时间间隔大于第一预设值且小于或等于第二预设值时,用于传输目标上行控制信息的资源个数为Q个;和/或,用于传输目标上行控制信息的资源中的第一个资源的时域起始位置与网络设备发送的下行时间单元的时域结束位置之间的时间间隔大于第二预设值时,用于传输目标上行控制信息的资源个数为Q个。其中,P的取值小于或等于Q,第一预设值小于第二预设值。作为示例而非限定,第一预设值为16微秒,第二预设值为25微秒,P取值为1,Q取值为2。
3)方式三
根据第一下行时间单元和第一上行时间单元之间的时间间隔确定资源个数。其中,第一下行时间单元是目标上行控制信息对应的最后一个下行时间单元,第一上行时间单元是第一下行时间单元后第一个可用于终端设备进行上行传输的时间单元。
图3为本申请实施例提供的根据第一下行时间单元和第一上行时间单元之间的时间间隔确定资源个数的一个示意图。如图3所示,上行控制信息#1中包括终 端设备在下行传输机会#1包括的时间单元上被调度的PDSCH对应的HARQ-ACK信息,因此,上行控制信息#1对应的第一下行时间单元是下行传输机会#1中的最后一个下行时间单元,即图示中的下行时间单元#1。下行时间单元#1之后第一个可用于终端设备进行上行传输的时间单元为图示中的上行时间单元#1,下行时间单元#1与上行时间单元#1之间的时间间隔#1大于预设值,因此,用于传输上行控制信息#1的资源包括2个资源。可选地,该2个资源位于上行时间单元#1以及上行时间单元#1的后一个时间单元上。
上行控制信息#2中包括终端设备在下行传输机会#2包括的时间单元上被调度的PDSCH对应的HARQ-ACK信息,因此,上行控制信息#2对应的第一下行时间单元是下行传输机会#2中的最后一个下行时间单元,即图示中的下行时间单元#2。下行时间单元#2之后第一个可用于终端设备进行上行传输的时间单元为图示中的上行时间单元#2,下行时间单元#2与上行时间单元#2之间的时间间隔#2小于预设值,因此,用于传输上行控制信息#2的资源包括1个资源。可选地,该1个资源位于上行时间单元#2上。
应理解,在本申请实施例中,一个时间单元可以指一个或多个子帧,或者一个或多个时隙,或者一个或多个微时隙,或者一个或多个符号等。本申请实施例对此并不限定。
以上主要是从终端设备一侧对本申请所述方案进行说明,以下从网络设备一侧对本申请所述方案进行进一步说明。
对于网络设备来说,可向终端设备发送指示信息,所述指示信息用于终端设备确定用于传输目标上行控制信息的资源个数。
可选地,目标上行控制信息可包括HARQ-ACK信息、CSI信息以及SR信息等之中的至少一种。其中,CSI信息可包括RI信息、PMI信息以及CQI信息等之中的至少一种。用于传输目标上行控制信息的资源可包括PUCCH资源和PUSCH资源等之中的至少一种。
可选地,资源个数可根据目标信道接入方式确定,目标信道接入方式是用于传输目标上行控制信息的资源对应的信道接入方式。可选地,目标信道接入方式可以是用于传输目标上行控制信息的第一个资源对应的信道接入方式。
网络设备可根据终端设备的目标信道接入方式,通过指示信息指示用于传输目标上行控制信息的资源个数。
可选地,在本申请的一些实施例中,第一信道接入方式对应的资源个数为N,第二信道接入方式对应的资源个数为M,第一信道接入方式的优先级高于第二信道接入方式的优先级,M和N均为正整数,M的取值大于或等于N。例如,当目标信道接入方式为第一信道接入方式时,资源个数为N,当目标信道接入方式为第二信道接入方式时,资源个数为M。
可选地,网络设备可向终端设备发送指示信息,所述指示信息用于终端设备确定M的取值;和/或,网络设备向终端设备发送指示信息,所述指示信息用于终端设备确定N的取值。也就是说,M的取值是根据网络设备发送的指示信息确定的,和/或,N的取值是根据网络设备发送的指示信息确定的。
网络设备也可向终端设备指示目标信道接入方式,进而由终端设备基于目标信道接入方式,确定出用于传输目标上行控制信息的资源个数。
可选地,当目标信道接入方式为第一信道接入方式时,资源个数为N,当目标信道接入方式为第二信道接入方式时,资源个数为M,第一信道接入方式的优先级高于第二信道接入方式的优先级,M和N均为正整数,M的取值大于或等于N。
可选地,在本申请的一些实施例中,目标信道接入方式还可以对应目标参数 集合,资源个数可根据目标参数集合确定。
例如,当目标信道接入方式为第一信道接入方式时,目标参数集合为第一参数集合,当目标信道接入方式为第二信道接入方式时,目标参数集合为第二参数集合,第一信道接入方式的优先级高于第二信道接入方式的优先级,第一参数集合中的最大值小于第二参数集合中的最大值。
网络设备可以向终端设备发送指示信息,所述指示信息用于终端设备确定第一参数集合;和/或,网络设备向终端设备发送指示信息,所述指示信息用于终端设备确定第二参数集合。例如,网络设备可通过RRC信令为终端设备配置目标参数集合,其中,不同的目标参数集合对应不同的信道接入方式。
网络设备还可向终端设备发送指示信息,指示终端设备从目标参数集合中确定资源个数。例如,网络设备可从目标参数集合中确定资源个数,并通过动态信令将该资源个数指示给终端设备,具体地,该动态信令可以是显式指示,也可以是隐式指示。
可选地,第一信道接入方式的优先级高于第二信道接入方式的优先级可以包括:第一信道接入方式为不做信道检测,第二信道接入方式为单次信道检测;或,第一信道接入方式为不做信道检测,第二信道接入方式为基于竞争窗口的信道检测;或,第一信道接入方式为单次信道检测,第二信道接入方式为基于竞争窗口的信道检测;或,第一信道接入方式为基于竞争窗口的信道检测中优先级较高的信道接入方式,第二信道接入方式为基于竞争窗口的信道检测中优先级较低的信道接入方式,例如,第一信道接入方式对应的优先级为p=1,第二信道接入方式对应的优先级为p=2。
上述介绍中涉及到的各指示信息的具体形式不做限制,例如,可以是一条信令也可以是多条信令,可以是高层信令也可以是物理层信令等。
可选地,在本申请的一些实施例中,网络设备发送的指示信息可以为物理层信令,和/或,网络设备发送的指示信息可以为高层信令。例如,指示信息可以是DCI信令,和/或,RRC信令,和/或,MAC信令。
资源个数还可以根据用于传输目标上行控制信息的资源的时域位置和/或频域位置确定的。可选地,可根据用于传输目标上行控制信息的资源中的第一个资源的时域位置和/或频域位置确定资源个数。
例如,当用于传输目标上行控制信息的资源位于共享COT(例如网络设备获得信道使用权的信道资源中的部分资源用于终端设备的上行控制信息传输,或终端设备在进行自发传输时获得信道使用权的信道资源中的部分资源用于上行控制信息传输)中时,用于传输目标上行控制信息的资源中的第一个资源的时域起始位置与网络设备发送的下行时间单元的时域结束位置之间的时间间隔小于或等于第一预设值时,用于传输目标上行控制信息的资源个数为P个;和/或,用于传输目标上行控制信息的资源中的第一个资源的时域起始位置与网络设备发送的下行时间单元的时域结束位置之间的时间间隔大于第一预设值且小于或等于第二预设值时,用于传输目标上行控制信息的资源个数为Q个;和/或,用于传输目标上行控制信息的资源中的第一个资源的时域起始位置与网络设备发送的下行时间单元的时域结束位置之间的时间间隔大于第二预设值时,用于传输目标上行控制信息的资源个数为Q个。其中,P的取值小于或等于Q,第一预设值小于第二预设值。作为示例而非限定,第一预设值为16微秒,第二预设值为25微秒,P取值为1,Q取值为2。
资源个数还可以根据第一下行时间单元和第一上行时间单元之间的时间间隔确定的,其中,第一下行时间单元是目标上行控制信息对应的最后一个下行时间单元,第一上行时间单元是第一下行时间单元后第一个可用于终端设备进行上行 传输的时间单元。
如图3所示,上行控制信息#1中包括终端设备在下行传输机会#1包括的时间单元上被调度的PDSCH对应的HARQ-ACK信息,因此,上行控制信息#1对应的第一下行时间单元是下行传输机会#1中的最后一个下行时间单元,即图示中的下行时间单元#1。下行时间单元#1之后第一个可用于终端设备进行上行传输的时间单元为图示中的上行时间单元#1,下行时间单元#1与上行时间单元#1之间的时间间隔#1大于预设值,因此,用于传输上行控制信息#1的资源包括2个资源。可选地,该2个资源位于上行时间单元#1以及上行时间单元#1的后一个时间单元上。
上行控制信息#2中包括终端设备在下行传输机会#2包括的时间单元上被调度的PDSCH对应的HARQ-ACK信息,因此,上行控制信息#2对应的第一下行时间单元是下行传输机会#2中的最后一个下行时间单元,即图示中的下行时间单元#2。下行时间单元#2之后第一个可用于终端设备进行上行传输的时间单元为图示中的上行时间单元#2,下行时间单元#2与上行时间单元#2之间的时间间隔#2小于预设值,因此,用于传输上行控制信息#2的资源包括1个资源。可选地,该1个资源位于上行时间单元#2上。
应理解,在本申请实施例中,一个时间单元可以指一个或多个子帧,或者一个或多个时隙,或者一个或多个微时隙,或者一个或多个符号等。本申请实施例对此并不限定。
上述各实施例中,对各实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其它实施例中的相关说明。
基于上述介绍可以看出,采用本申请实施例所述方案,在使用高优先级的信道接入方式时,可为终端设备配置较少的用于传输目标上行控制信息的资源个数,而在使用低优先级的信道接入方式时,可为终端设备配置较多的用于传输目标上行控制信息的资源个数,从而可以在减少资源浪费的情况下保证目标上行控制信息的传输机会,即提升了目标上行控制信息的传输成功率,进而提升了系统性能等。
另外,本申请实施例所述资源配置方式也可适用于其它上行信息传输,如物理随机接入信道(PRACH,Physical Random Access Channel)、物理上行共享信道(PUSCH,Physical Uplink Shared Channel)等,具有广泛适用性。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上是关于方法实施例的介绍,以下通过装置实施例,对本申请所述方案进行进一步说明。
图4为本申请实施例提供的确定上行控制信息传输资源个数的装置的第一示意性结构图。如图4所示,包括:确定单元401。
确定单元401用于确定目标上行控制信息;
确定单元401还用于根据预设规则或网络设备发送的指示信息,确定用于传输目标上行控制信息的资源个数。
资源个数可以是根据目标信道接入方式确定的,目标信道接入方式是用于传输目标上行控制信息的资源对应的信道接入方式。可选地,目标信道接入方式可以是用于传输目标上行控制信息的第一个资源对应的信道接入方式。
当目标信道接入方式为第一信道接入方式时,资源个数为N,当目标信道接 入方式为第二信道接入方式时,资源个数为M,其中,第一信道接入方式的优先级高于第二信道接入方式的优先级,M和N均为正整数,M的取值大于或等于N。
M的取值是预设的或根据网络设备发送的指示信息确定的,和/或,N的取值是预设的或根据网络设备发送的指示信息确定的。
目标信道接入方式还可以对应目标参数集合,资源个数是根据目标参数集合确定的,其中,目标信道接入方式为第一信道接入方式时,目标参数集合为第一参数集合,目标信道接入方式为第二信道接入方式时,目标参数集合为第二参数集合,第一信道接入方式的优先级高于所述第二信道接入方式的优先级,第一参数集合中的最大值小于第二参数集合中的最大值。
第一参数集合是预设的或根据网络设备发送的指示信息确定的,和/或,第二参数集合是预设的或根据网络设备发送的指示信息确定的。
确定单元401可根据网络设备发送的指示信息,从目标参数集合中确定资源个数。
第一信道接入方式的优先级高于第二信道接入方式的优先级可以包括:第一信道接入方式为不做信道检测,第二信道接入方式为单次信道检测;或,第一信道接入方式为不做信道检测,第二信道接入方式为基于竞争窗口的信道检测;或,第一信道接入方式为单次信道检测,第二信道接入方式为基于竞争窗口的信道检测;或,第一信道接入方式为基于竞争窗口的信道检测中优先级较高的信道接入方式,第二信道接入方式为基于竞争窗口的信道检测中优先级较低的信道接入方式。
资源个数还可以是根据用于传输目标上行控制信息的资源的时域位置和/或频域位置确定的。可选地,资源个数可以是根据用于传输目标上行控制信息的资源中的第一个资源的时域位置和/或频域位置确定的。
资源个数还可以是根据第一下行时间单元和第一上行时间单元之间的时间间隔确定的,其中,第一下行时间单元是目标上行控制信息对应的最后一个下行时间单元,第一上行时间单元是第一下行时间单元后第一个可用于终端设备进行上行传输的时间单元。
本实施例中,用于传输目标上行控制信息的资源可包括PUCCH资源和PUSCH资源中的至少一种。目标上行控制信息可包括HARQ-ACK信息、CSI信息和调度请求SR信息中的至少一种。
图5为本申请实施例提供的确定上行控制信息传输资源个数的装置的第二示意性结构图。如图5所示,包括:发送单元501。
发送单元501,用于向终端设备发送指示信息,指示信息用于终端设备确定用于传输目标上行控制信息的资源个数。
资源个数可以是根据目标信道接入方式确定的,目标信道接入方式是用于传输目标上行控制信息的资源对应的信道接入方式。可选地,目标信道接入方式可以是用于传输目标上行控制信息的第一个资源对应的信道接入方式。
当目标信道接入方式为第一信道接入方式时,资源个数为N,当目标信道接入方式为第二信道接入方式时,资源个数为M,其中,第一信道接入方式的优先级高于第二信道接入方式的优先级,M和N均为正整数,M的取值大于或等于N。
发送单元501可向终端设备发送指示信息,所述指示信息用于终端设备确定M的取值,和/或,发送单元501可向终端设备发送指示信息,指示信息用于终端设备确定N的取值。
目标信道接入方式还可以对应目标参数集合,资源个数是根据目标参数集合 确定的,其中,目标信道接入方式为第一信道接入方式时,目标参数集合为第一参数集合,目标信道接入方式为第二信道接入方式时,目标参数集合为第二参数集合,第一信道接入方式的优先级高于第二信道接入方式的优先级,第一参数集合中的最大值小于第二参数集合中的最大值。
发送单元501可向终端设备发送指示信息,所述指示信息用于终端设备确定第一参数集合,和/或,发送单元501可向终端设备发送指示信息,所述指示信息用于终端设备确定第二参数集合。
发送单元501还可向终端设备发送指示信息,所述指示信息用于终端设备从目标参数集合中确定资源个数。
第一信道接入方式的优先级高于第二信道接入方式的优先级可以包括:第一信道接入方式为不做信道检测,第二信道接入方式为单次信道检测;或,第一信道接入方式为不做信道检测,第二信道接入方式为基于竞争窗口的信道检测;或,第一信道接入方式为单次信道检测,第二信道接入方式为基于竞争窗口的信道检测;或,第一信道接入方式为基于竞争窗口的信道检测中优先级较高的信道接入方式,第二信道接入方式为基于竞争窗口的信道检测中优先级较低的信道接入方式。
资源个数还可以是根据用于传输目标上行控制信息的资源的时域位置和/或频域位置确定的。可选地,资源个数可以是根据用于传输目标上行控制信息的资源中的第一个资源的时域位置和/或频域位置确定的。
资源个数还可以是根据第一下行时间单元和第一上行时间单元之间的时间间隔确定的,其中,第一下行时间单元是目标上行控制信息对应的最后一个下行时间单元,第一上行时间单元是第一下行时间单元后第一个可用于终端设备进行上行传输的时间单元。
本实施例中,用于传输目标上行控制信息的资源可包括PUCCH资源和PUSCH资源中的至少一种。目标上行控制信息可包括HARQ-ACK信息、CSI信息和SR信息中的至少一种。
图4和图5所示装置实施例的具体工作流程请参照前述方法实施例中的相关说明,不再赘述。
图6为本申请实施例提供的通信设备600的示意性结构图。图6所示的通信设备600包括处理器610,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7为本申请实施例提供的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图8为本申请实施例提供的通信系统800的示意性框图。如图8所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、现成可编程门阵列(FPGA,Field Programmable Gate Array)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read-Only Memory)、可编程只读存储器(PROM,Programmable ROM)、可擦除可编程只读存储器(EPROM,Erasable PROM)、电可擦除可编程只读存储器(EEPROM,Electrically EPROM)或闪存。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static RAM)、 动态随机存取存储器(DRAM,Dynamic RAM)、同步动态随机存取存储器(SDRAM,Synchronous DRAM)、双倍数据速率同步动态随机存取存储器(DDR SDRAM,Double Data Rate SDRAM)、增强型同步动态随机存取存储器(ESDRAM,Enhanced SDRAM)、同步连接动态随机存取存储器(SLDRAM,Synchlink DRAM)和直接内存总线随机存取存储器(DR RAM,Direct Rambus RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (65)

  1. 一种确定上行控制信息传输资源个数的方法,其特征在于,包括:
    终端设备确定目标上行控制信息;
    所述终端设备根据预设规则或网络设备发送的指示信息,确定用于传输所述目标上行控制信息的资源个数。
  2. 根据权利要求1所述的方法,其特征在于,所述资源个数是根据目标信道接入方式确定的,所述目标信道接入方式是用于传输所述目标上行控制信息的资源对应的信道接入方式。
  3. 根据权利要求2所述的方法,其特征在于,所述目标信道接入方式是用于传输所述目标上行控制信息的第一个资源对应的信道接入方式。
  4. 根据权利要求2或3所述的方法,其特征在于,所述目标信道接入方式为第一信道接入方式时,所述资源个数为N,所述目标信道接入方式为第二信道接入方式时,所述资源个数为M,其中,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,M和N均为正整数,M的取值大于或等于N。
  5. 根据权利要求4所述的方法,其特征在于,所述M的取值是预设的或根据所述网络设备发送的指示信息确定的;和/或,
    所述N的取值是预设的或根据所述网络设备发送的指示信息确定的。
  6. 根据权利要求2或3所述的方法,其特征在于,所述目标信道接入方式对应目标参数集合,所述资源个数是根据所述目标参数集合确定的,其中,
    所述目标信道接入方式为第一信道接入方式时,所述目标参数集合为第一参数集合,所述目标信道接入方式为第二信道接入方式时,所述目标参数集合为第二参数集合,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,所述第一参数集合中的最大值小于所述第二参数集合中的最大值。
  7. 根据权利要求6所述的方法,其特征在于,所述第一参数集合是预设的或根据所述网络设备发送的指示信息确定的;和/或,
    所述第二参数集合是预设的或根据所述网络设备发送的指示信息确定的。
  8. 根据权利要求6或7所述的方法,其特征在于,所述终端设备根据所述网络设备发送的指示信息,从所述目标参数集合中确定所述资源个数。
  9. 根据权利要求4至8中任一项所述的方法,其特征在于,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,包括:
    所述第一信道接入方式为不做信道检测,所述第二信道接入方式为单次信道检测;或,
    所述第一信道接入方式为不做信道检测,所述第二信道接入方式为基于竞争窗口的信道检测;或,
    所述第一信道接入方式为单次信道检测,所述第二信道接入方式为基于竞争窗口的信道检测;或,
    所述第一信道接入方式为基于竞争窗口的信道检测中优先级较高的信道接入方式,所述第二信道接入方式为基于竞争窗口的信道检测中优先级较低的信道接入方式。
  10. 根据权利要求1所述的方法,其特征在于,所述资源个数是根据用于传输所述目标上行控制信息的资源的时域位置和/或频域位置确定的。
  11. 根据权利要求10所述的方法,其特征在于,所述资源个数是根据用于传输所述目标上行控制信息的资源中的第一个资源的时域位置和/或频域位置确定的。
  12. 根据权利要求1所述的方法,其特征在于,所述资源个数是根据第一下行时间单元和第一上行时间单元之间的时间间隔确定的,其中,所述第一下行时 间单元是所述目标上行控制信息对应的最后一个下行时间单元,所述第一上行时间单元是所述第一下行时间单元后第一个可用于所述终端设备进行上行传输的时间单元。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,用于传输所述目标上行控制信息的资源包括物理上行控制信道PUCCH资源和物理上行共享信道PUSCH资源中的至少一种。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述目标上行控制信息包括混合自动请求重传应答HARQ-ACK信息、信道状态信息CSI和调度请求SR信息中的至少一种。
  15. 一种确定上行控制信息传输资源个数的方法,其特征在于,包括:
    网络设备向终端设备发送指示信息,所述指示信息用于所述终端设备确定用于传输目标上行控制信息的资源个数。
  16. 根据权利要求15所述的方法,其特征在于,所述资源个数是根据目标信道接入方式确定的,所述目标信道接入方式是用于传输所述目标上行控制信息的资源对应的信道接入方式。
  17. 根据权利要求16所述的方法,其特征在于,所述目标信道接入方式是用于传输所述目标上行控制信息的第一个资源对应的信道接入方式。
  18. 根据权利要求16或17所述的方法,其特征在于,所述目标信道接入方式为第一信道接入方式时,所述资源个数为N,所述目标信道接入方式为第二信道接入方式时,所述资源个数为M,其中,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,M和N均为正整数,M的取值大于或等于N。
  19. 根据权利要求18所述的方法,其特征在于,所述网络设备向所述终端设备发送指示信息,所述指示信息用于所述终端设备确定M的取值;和/或,
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于所述终端设备确定N的取值。
  20. 根据权利要求16或17所述的方法,其特征在于,所述目标信道接入方式对应目标参数集合,所述资源个数是根据所述目标参数集合确定的,其中,
    所述目标信道接入方式为第一信道接入方式时,所述目标参数集合为第一参数集合,所述目标信道接入方式为第二信道接入方式时,所述目标参数集合为第二参数集合,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,所述第一参数集合中的最大值小于所述第二参数集合中的最大值。
  21. 根据权利要求20所述的方法,其特征在于,所述网络设备向所述终端设备发送指示信息,所述指示信息用于所述终端设备确定所述第一参数集合;和/或,
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于所述终端设备确定所述第二参数集合。
  22. 根据权利要求20或21所述的方法,其特征在于,所述网络设备向所述终端设备发送指示信息,所述指示信息用于所述终端设备从所述目标参数集合中确定所述资源个数。
  23. 根据权利要求18至22中任一项所述的方法,其特征在于,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,包括:
    所述第一信道接入方式为不做信道检测,所述第二信道接入方式为单次信道检测;或,
    所述第一信道接入方式为不做信道检测,所述第二信道接入方式为基于竞争窗口的信道检测;或,
    所述第一信道接入方式为单次信道检测,所述第二信道接入方式为基于竞争 窗口的信道检测;或,
    所述第一信道接入方式为基于竞争窗口的信道检测中优先级较高的信道接入方式,所述第二信道接入方式为基于竞争窗口的信道检测中优先级较低的信道接入方式。
  24. 根据权利要求15所述的方法,其特征在于,所述资源个数是根据用于传输所述目标上行控制信息的资源的时域位置和/或频域位置确定的。
  25. 根据权利要求24所述的方法,其特征在于,所述资源个数是根据用于传输所述目标上行控制信息的资源中的第一个资源的时域位置和/或频域位置确定的。
  26. 根据权利要求15所述的方法,其特征在于,所述资源个数是根据第一下行时间单元和第一上行时间单元之间的时间间隔确定的,其中,所述第一下行时间单元是所述目标上行控制信息对应的最后一个下行时间单元,所述第一上行时间单元是所述第一下行时间单元后第一个可用于所述终端设备进行上行传输的时间单元。
  27. 根据权利要求15至26中任一项所述的方法,其特征在于,用于传输所述目标上行控制信息的资源包括物理上行控制信道PUCCH资源和物理上行共享信道PUSCH资源中的至少一种。
  28. 根据权利要求15至27中任一项所述的方法,其特征在于,所述目标上行控制信息包括混合自动请求重传应答HARQ-ACK信息、信道状态信息CSI和调度请求SR信息中的至少一种。
  29. 一种确定上行控制信息传输资源个数的装置,其特征在于,包括:确定单元;
    所述确定单元用于确定目标上行控制信息;
    所述确定单元还用于根据预设规则或网络设备发送的指示信息,确定用于传输所述目标上行控制信息的资源个数。
  30. 根据权利要求29所述的装置,其特征在于,所述资源个数是根据目标信道接入方式确定的,所述目标信道接入方式是用于传输所述目标上行控制信息的资源对应的信道接入方式。
  31. 根据权利要求30所述的装置,其特征在于,所述目标信道接入方式是用于传输所述目标上行控制信息的第一个资源对应的信道接入方式。
  32. 根据权利要求30或31所述的装置,其特征在于,所述目标信道接入方式为第一信道接入方式时,所述资源个数为N,所述目标信道接入方式为第二信道接入方式时,所述资源个数为M,其中,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,M和N均为正整数,M的取值大于或等于N。
  33. 根据权利要求32所述的装置,其特征在于,所述M的取值是预设的或根据所述网络设备发送的指示信息确定的;和/或,
    所述N的取值是预设的或根据所述网络设备发送的指示信息确定的。
  34. 根据权利要求30或31所述的装置,其特征在于,所述目标信道接入方式对应目标参数集合,所述资源个数是根据所述目标参数集合确定的,其中,
    所述目标信道接入方式为第一信道接入方式时,所述目标参数集合为第一参数集合,所述目标信道接入方式为第二信道接入方式时,所述目标参数集合为第二参数集合,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,所述第一参数集合中的最大值小于所述第二参数集合中的最大值。
  35. 根据权利要求34所述的装置,其特征在于,所述第一参数集合是预设的或根据所述网络设备发送的指示信息确定的;和/或,
    所述第二参数集合是预设的或根据所述网络设备发送的指示信息确定的。
  36. 根据权利要求34或35所述的装置,其特征在于,所述确定单元根据所述网络设备发送的指示信息,从所述目标参数集合中确定所述资源个数。
  37. 根据权利要求32至36中任一项所述的装置,其特征在于,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,包括:
    所述第一信道接入方式为不做信道检测,所述第二信道接入方式为单次信道检测;或,
    所述第一信道接入方式为不做信道检测,所述第二信道接入方式为基于竞争窗口的信道检测;或,
    所述第一信道接入方式为单次信道检测,所述第二信道接入方式为基于竞争窗口的信道检测;或,
    所述第一信道接入方式为基于竞争窗口的信道检测中优先级较高的信道接入方式,所述第二信道接入方式为基于竞争窗口的信道检测中优先级较低的信道接入方式。
  38. 根据权利要求29所述的装置,其特征在于,所述资源个数是根据用于传输所述目标上行控制信息的资源的时域位置和/或频域位置确定的。
  39. 根据权利要求38所述的装置,其特征在于,所述资源个数是根据用于传输所述目标上行控制信息的资源中的第一个资源的时域位置和/或频域位置确定的。
  40. 根据权利要求29所述的装置,其特征在于,所述资源个数是根据第一下行时间单元和第一上行时间单元之间的时间间隔确定的,其中,所述第一下行时间单元是所述目标上行控制信息对应的最后一个下行时间单元,所述第一上行时间单元是所述第一下行时间单元后第一个可用于终端设备进行上行传输的时间单元。
  41. 根据权利要求29至40中任一项所述的装置,其特征在于,用于传输所述目标上行控制信息的资源包括物理上行控制信道PUCCH资源和物理上行共享信道PUSCH资源中的至少一种。
  42. 根据权利要求29至41中任一项所述的装置,其特征在于,所述目标上行控制信息包括混合自动请求重传应答HARQ-ACK信息、信道状态信息CSI和调度请求SR信息中的至少一种。
  43. 一种确定上行控制信息传输资源个数的装置,其特征在于,包括:发送单元;
    所述发送单元用于向终端设备发送指示信息,所述指示信息用于所述终端设备确定用于传输目标上行控制信息的资源个数。
  44. 根据权利要求43所述的装置,其特征在于,所述资源个数是根据目标信道接入方式确定的,所述目标信道接入方式是用于传输所述目标上行控制信息的资源对应的信道接入方式。
  45. 根据权利要求44所述的装置,其特征在于,所述目标信道接入方式是用于传输所述目标上行控制信息的第一个资源对应的信道接入方式。
  46. 根据权利要求44或45所述的装置,其特征在于,所述目标信道接入方式为第一信道接入方式时,所述资源个数为N,所述目标信道接入方式为第二信道接入方式时,所述资源个数为M,其中,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,M和N均为正整数,M的取值大于或等于N。
  47. 根据权利要求46所述的装置,其特征在于,所述发送单元向所述终端设备发送指示信息,所述指示信息用于所述终端设备确定M的取值;和/或,
    所述发送单元向所述终端设备发送指示信息,所述指示信息用于所述终端设备确定N的取值。
  48. 根据权利要求44或45所述的装置,其特征在于,所述目标信道接入方式对应目标参数集合,所述资源个数是根据所述目标参数集合确定的,其中,
    所述目标信道接入方式为第一信道接入方式时,所述目标参数集合为第一参数集合,所述目标信道接入方式为第二信道接入方式时,所述目标参数集合为第二参数集合,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,所述第一参数集合中的最大值小于所述第二参数集合中的最大值。
  49. 根据权利要求48所述的装置,其特征在于,所述发送单元向所述终端设备发送指示信息,所述指示信息用于所述终端设备确定所述第一参数集合;和/或,
    所述发送单元向所述终端设备发送指示信息,所述指示信息用于所述终端设备确定所述第二参数集合。
  50. 根据权利要求48或49所述的装置,其特征在于,所述发送单元向所述终端设备发送指示信息,所述指示信息用于所述终端设备从所述目标参数集合中确定所述资源个数。
  51. 根据权利要求46至50中任一项所述的装置,其特征在于,所述第一信道接入方式的优先级高于所述第二信道接入方式的优先级,包括:
    所述第一信道接入方式为不做信道检测,所述第二信道接入方式为单次信道检测;或,
    所述第一信道接入方式为不做信道检测,所述第二信道接入方式为基于竞争窗口的信道检测;或,
    所述第一信道接入方式为单次信道检测,所述第二信道接入方式为基于竞争窗口的信道检测;或,
    所述第一信道接入方式为基于竞争窗口的信道检测中优先级较高的信道接入方式,所述第二信道接入方式为基于竞争窗口的信道检测中优先级较低的信道接入方式。
  52. 根据权利要求43所述的装置,其特征在于,所述资源个数是根据用于传输所述目标上行控制信息的资源的时域位置和/或频域位置确定的。
  53. 根据权利要求52所述的装置,其特征在于,所述资源个数是根据用于传输所述目标上行控制信息的资源中的第一个资源的时域位置和/或频域位置确定的。
  54. 根据权利要求43所述的装置,其特征在于,所述资源个数是根据第一下行时间单元和第一上行时间单元之间的时间间隔确定的,其中,所述第一下行时间单元是所述目标上行控制信息对应的最后一个下行时间单元,所述第一上行时间单元是所述第一下行时间单元后第一个可用于所述终端设备进行上行传输的时间单元。
  55. 根据权利要求43至54中任一项所述的装置,其特征在于,用于传输所述目标上行控制信息的资源包括物理上行控制信道PUCCH资源和物理上行共享信道PUSCH资源中的至少一种。
  56. 根据权利要求43至55中任一项所述的装置,其特征在于,所述目标上行控制信息包括混合自动请求重传应答HARQ-ACK信息、信道状态信息CSI和调度请求SR信息中的至少一种。
  57. 一种通信设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至28中任一项所述的方法。
  58. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至14中任一项所述的方 法。
  59. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求15至28中任一项所述的方法。
  60. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  61. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求15至28中任一项所述的方法。
  62. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至14中任一项所述的方法。
  63. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求15至28中任一项所述的方法。
  64. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  65. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求15至28中任一项所述的方法。
PCT/CN2018/106326 2018-09-18 2018-09-18 确定上行控制信息传输资源个数的方法、装置及程序 WO2020056606A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2018/106326 WO2020056606A1 (zh) 2018-09-18 2018-09-18 确定上行控制信息传输资源个数的方法、装置及程序
CN201880097207.1A CN112655162A (zh) 2018-09-18 2018-09-18 确定上行控制信息传输资源个数的方法、装置及程序
KR1020217010000A KR20210057755A (ko) 2018-09-18 2018-09-18 상향 제어 정보 전송 자원의 수를 결정하는 방법, 장치 및 프로그램
EP18933976.5A EP3855649A4 (en) 2018-09-18 2018-09-18 METHOD AND APPARATUS FOR DETERMINING A NUMBER OF UPRIGHT LINK CONTROL INFORMATION TRANSMISSION RESOURCES, AND PROGRAM
AU2018441654A AU2018441654A1 (en) 2018-09-18 2018-09-18 Method and apparatus for determining number of uplink control information transmission resources, and program
TW108133683A TW202037126A (zh) 2018-09-18 2019-09-18 確定上行控制訊息傳輸資源個數的方法、裝置及程式
US17/200,472 US11800546B2 (en) 2018-09-18 2021-03-12 Method and apparatus for determining number of uplink control information transmission resources, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106326 WO2020056606A1 (zh) 2018-09-18 2018-09-18 确定上行控制信息传输资源个数的方法、装置及程序

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/200,472 Continuation US11800546B2 (en) 2018-09-18 2021-03-12 Method and apparatus for determining number of uplink control information transmission resources, and program

Publications (1)

Publication Number Publication Date
WO2020056606A1 true WO2020056606A1 (zh) 2020-03-26

Family

ID=69888029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106326 WO2020056606A1 (zh) 2018-09-18 2018-09-18 确定上行控制信息传输资源个数的方法、装置及程序

Country Status (7)

Country Link
US (1) US11800546B2 (zh)
EP (1) EP3855649A4 (zh)
KR (1) KR20210057755A (zh)
CN (1) CN112655162A (zh)
AU (1) AU2018441654A1 (zh)
TW (1) TW202037126A (zh)
WO (1) WO2020056606A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11800546B2 (en) 2018-09-18 2023-10-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining number of uplink control information transmission resources, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104467A (zh) * 2011-01-07 2011-06-22 大唐移动通信设备有限公司 一种确定uci传输资源的方法及装置
CN105338652A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 基于竞争窗口的信道检测方法及装置
CN107210854A (zh) * 2015-01-30 2017-09-26 瑞典爱立信有限公司 多载波通信系统中传输上行链路控制信息的方法与装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10015778B2 (en) * 2015-03-17 2018-07-03 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for uplink control information signaling design
CN107332646B (zh) * 2016-04-29 2021-05-11 中兴通讯股份有限公司 Harq-ack的发送方法及装置
US10813123B2 (en) * 2016-05-02 2020-10-20 Lg Electronics Inc. Method and apparatus for changing SPS operation in wireless communication system
KR20180018247A (ko) * 2016-08-12 2018-02-21 남정길 면허 대역 및 비면허 대역 상에서의 상향링크 전송을 지원하는 상향링크 전송 전력 제어 방법 및 장치
WO2018044219A1 (en) * 2016-09-01 2018-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Wireless nodes and methods for enabling coexistence of wireless communication systems using licensed and unlicensed frequency bands
WO2018231553A2 (en) * 2017-06-16 2018-12-20 Intel IP Corporation Power ramping and control in new radio (nr) devices
US10716120B2 (en) * 2017-08-25 2020-07-14 Qualcomm Incorporated Channel access mechanisms for multi-band operation
KR20200018138A (ko) * 2018-08-10 2020-02-19 삼성전자주식회사 무선 통신 시스템에서 비직교 다중접속을 위한 비승인 전송 방법 및 장치
CN112655162A (zh) 2018-09-18 2021-04-13 Oppo广东移动通信有限公司 确定上行控制信息传输资源个数的方法、装置及程序

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104467A (zh) * 2011-01-07 2011-06-22 大唐移动通信设备有限公司 一种确定uci传输资源的方法及装置
CN107210854A (zh) * 2015-01-30 2017-09-26 瑞典爱立信有限公司 多载波通信系统中传输上行链路控制信息的方法与装置
CN105338652A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 基于竞争窗口的信道检测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "UCI Transmission in NR Operations in Unlicensed", 3GPP TSG RAN WG1 MEETING #92BIS R1-1803682, 20 April 2018 (2018-04-20), XP051425979 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11800546B2 (en) 2018-09-18 2023-10-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining number of uplink control information transmission resources, and program

Also Published As

Publication number Publication date
US20210204296A1 (en) 2021-07-01
EP3855649A1 (en) 2021-07-28
KR20210057755A (ko) 2021-05-21
US11800546B2 (en) 2023-10-24
EP3855649A4 (en) 2021-09-08
TW202037126A (zh) 2020-10-01
CN112655162A (zh) 2021-04-13
AU2018441654A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
WO2021016973A1 (zh) 一种信息传输方法、电子设备及存储介质
WO2020143057A1 (zh) 信道接入方案的确定方法及装置、终端设备、网络设备
US11963173B2 (en) Data transmission method and terminal device
WO2020140289A1 (zh) 资源分配的方法、终端设备和网络设备
WO2020113869A1 (zh) 一种处理调度请求的方法及装置、终端
WO2020029256A1 (zh) 一种数据传输方法、终端设备及网络设备
WO2020037626A1 (zh) 一种反馈信息传输方法及装置、通信设备
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
EP3820209B1 (en) Methods and apparatuses for determining and allocating resources
WO2020087424A1 (zh) 一种数据传输方法、终端设备及存储介质
WO2020061776A1 (zh) 一种反馈资源的复用方法、终端设备及网络设备
WO2020037655A1 (zh) 一种反馈信息长度的确定方法及装置、通信设备
WO2020034167A1 (zh) 传输信息的方法、终端设备和网络设备
US11800546B2 (en) Method and apparatus for determining number of uplink control information transmission resources, and program
WO2021026841A1 (zh) 调度请求传输的方法和设备
WO2020061773A1 (zh) 一种反馈资源分配方法、终端设备及网络设备
TW202015470A (zh) 無線通訊方法和通信設備
WO2019242378A1 (zh) 确定信道接入类型的方法、终端设备及网络设备
WO2021031011A1 (zh) 一种harq码本确定方法及装置、终端设备、网络设备
WO2020056556A1 (zh) 用于非授权频谱的通信方法、终端设备和网络设备
WO2020107489A1 (zh) 一种无线通信方法和通信设备
WO2020056554A1 (zh) 一种反馈时序的确定方法、终端设备及网络设备
WO2020093403A1 (zh) 一种随机接入方法及装置、终端、基站
WO2023133902A1 (zh) 一种无线通信方法及装置、终端设备、网络设备
US20240224280A1 (en) Data transmission method and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010000

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018933976

Country of ref document: EP

Effective date: 20210419

ENP Entry into the national phase

Ref document number: 2018441654

Country of ref document: AU

Date of ref document: 20180918

Kind code of ref document: A