WO2020055036A2 - Highly efficient heat engine without waste heat - Google Patents

Highly efficient heat engine without waste heat Download PDF

Info

Publication number
WO2020055036A2
WO2020055036A2 PCT/KR2019/011421 KR2019011421W WO2020055036A2 WO 2020055036 A2 WO2020055036 A2 WO 2020055036A2 KR 2019011421 W KR2019011421 W KR 2019011421W WO 2020055036 A2 WO2020055036 A2 WO 2020055036A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
cylinder
pressure
cylinders
engine
Prior art date
Application number
PCT/KR2019/011421
Other languages
French (fr)
Korean (ko)
Other versions
WO2020055036A3 (en
Inventor
전봉한
Original Assignee
전봉한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190099284A external-priority patent/KR102309750B1/en
Application filed by 전봉한 filed Critical 전봉한
Publication of WO2020055036A2 publication Critical patent/WO2020055036A2/en
Publication of WO2020055036A3 publication Critical patent/WO2020055036A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines

Definitions

  • the present invention is a structure of a "high-efficiency heat engine without waste heat", which solves the shortcomings of the existing heat engine to efficiently and endlessly power with unlimited natural heat energy (heat at normal temperature, solar heat, geothermal heat, heat of surface water in the tropical sea, and various waste heat, etc.) Now, if you list the disadvantages of the existing heat engine and suggest the solution,
  • the same two cylinders Y and Y ' are configured symmetrically as shown in FIG. 1.
  • the upper parts of the cylinders Y and Y' are formed as bottlenecks.
  • a heat exchanger E capable of exchanging heat between cylinders Y and Y is installed.
  • a rod (R) with a piston (P, P ') is installed at the bottleneck of the cylinder (Y, Y'), and a rack (C, C ') is formed at the center of the upper surface of the piston (P, P').
  • R ') are attached respectively.
  • a rotating shaft (S) On the outside of the upper end of the cylinders (Y, Y '), a rotating shaft (S) is constructed, a generator (G) is mounted on the central portion of the rotating shaft (S), and ratchet gears (B, B') are mounted on both ends.
  • the transmission shafts (A, A ') equipped with a pressure sensor and an automatic transmission are respectively installed on the rotational shaft immediately next to the ratchet gear, and the rack and ratchet gear are engaged to be configured to convert linear motion to rotational motion.
  • boundary membranes D and D' that can move up and down are respectively installed, and racks U and U 'are respectively attached to the center of the bottom of the boundary membrane, and the bottom of the cylinder.
  • Electric motors (M, M ') are installed on the tail part configured outside the center, pinions (V, V') are mounted on the rotating shafts of the motors, and pinions and racks are engaged to convert rotary motions into linear motions.
  • the rotational direction of the electric motor is configured to be selected in the clockwise or opposite direction.
  • Heat supply units (H, H ') are installed at the top of the pipeline of the heat exchanger (E), and cold heat supply units (L, L') are installed at the bottom.
  • the cylinder (Y, Y ') is filled (100%) with a working substance cooled to a low heat source under atmospheric pressure.
  • the cylinder is filled (100%), and when heated with a high heat source (natural heat energy), high expansion power can be obtained.
  • a high heat source natural heat energy
  • the working material must always be in a liquid state so that heat exchange can occur between the high-temperature waste heat of the working material in one cylinder and the low-temperature heat of the working material in the other cylinder. Therefore, a material having a boiling point higher than that of a high heat source should be selected. In other words, if the temperature of the high heat source is t °C and the boiling point of the working material is b °C, the inequality of t ⁇ b must be satisfied.
  • the two motors (M and M ') are operated at the same time to move the two boundary films (D and D') in opposite directions (the boundary film D is up and the boundary film D 'is down).
  • the heat exchanger E exchanges the high-temperature waste heat of the liquid in the cylinder Y with the low-temperature heat of the liquid in the cylinder Y '.
  • L cold heat supply
  • the piston P' produces power.
  • the heat engine can continuously produce power by repeating the process of “powering waste heat”.
  • This heat engine has less heat loss by reusing it without releasing waste heat.
  • This heat engine can efficiently power heat, solar heat, geothermal heat, surface water of tropical seas, and other waste heat that can be easily obtained in the surroundings.
  • This heat engine is free from fossil fuels and nuclear fuels, and is free from environmental problems such as climate change and radioactive material contamination.
  • Figure 1 is a cross-sectional view of the entire heat engine assembly
  • Figure 2 is a graph of the change in thermal expansion force acting on a cylinder
  • FIG. 3 is a cross-sectional view of a heat engine during a boot process
  • FIG. 4 is a cross-sectional view of a heat engine in the process of powering waste heat.
  • the heat engine is operated by making a temperature difference using a heat pump. At this time, the larger the temperature difference and COP, the better. However, if the temperature difference is increased, the value of COP decreases. On the contrary, if the temperature difference decreases, the value of COP increases, so be careful.
  • the heat pump When the heat pump is driven with 100 power (electrical) energy, it absorbs heat from the low heat source A and transfers 586 heat energy to the high heat source B. When this heat energy is supplied to the heat engine and converted to work, the amount of work of 293 ) Is produced.
  • volume (V) is completely different as a function of pressure (P) and temperature (T),
  • Equation (4) can be integrated from the first state to the second state
  • this heat engine is operated in a section with a high heat source of 20 °C and a low heat source of -30 °C, and the maximum expansion force is obtained when ethanol (boiling point: 78 °C) is used as the working material,
  • the pressure of P 2 is about 453 at.

Abstract

The present invention relates to a highly efficient heat engine without waste heat which has two identical cylinders (Y and Y') forming a bilaterally symmetrical pair as shown in figure 1 and allows high-temperature waste heat in the cylinder on one side and low-temperature heat in the cylinder on the other side to be exchanged by means of a heat exchanger (E) provided between the pair of cylinders and thereby reuses waste heat without dissipating same.

Description

폐열 없는 고효율 열기관     High efficiency heat engine without waste heat
열기관의 구조     Heat engine structure
카르노기관, 열기관의 구조     Carno organs, heat engine structure
본 발명은 "폐열 없는 고효율 열기관”의 구조로서, 기존 열기관의 단점을 해소하여 무한정한 자연 열에너지(상온의 열, 태양열, 지열, 열대해상의 표층수의 열 그리고 각종 폐열 등)로 동력을 효율적으로 끝없이 생하는 것이다.이제 기존 열기관의 단점을 열거하고 그 해법을 제시하면,     The present invention is a structure of a "high-efficiency heat engine without waste heat", which solves the shortcomings of the existing heat engine to efficiently and endlessly power with unlimited natural heat energy (heat at normal temperature, solar heat, geothermal heat, heat of surface water in the tropical sea, and various waste heat, etc.) Now, if you list the disadvantages of the existing heat engine and suggest the solution,
첫째, 기존의 카르노기관, 내연기관은 고 열원에서 공급받은 열의 일부만을 일로 변환시키고 남은 열(폐열)은 저 열원으로 방출하는 구조적 단점 때문에 열의 손실이 많다. 따라서 본 열기관은 폐열을 회수하여 재사용함으로써 기존 열기관의 단점을 해소한다.     First, existing carno engines and internal combustion engines have a lot of heat loss due to the structural disadvantages of converting a part of the heat supplied from a high heat source to work and dissipating the remaining heat (waste heat) to a low heat source. Therefore, this heat engine solves the disadvantages of the existing heat engine by recovering and reusing the waste heat.
둘째, 기존의 열기관은 고온 고압을 발생하여 열효율을 높이기 위해 화석연료, 핵연료를 사용함으로써 기후변화, 방사능 물질 오염 등의 자연환경을 훼손한다. 따라서 본 열기관은 작업물질(Working substance)로서 열팽창률과 열팽창력이 높은 에테르, 에탄올, 휘발유 같은 액체를 사용함으로써 기존 열기관의 단점을 해소한다.     Second, existing heat engines damage the natural environment such as climate change and radioactive material contamination by using fossil fuel and nuclear fuel to increase thermal efficiency by generating high temperature and high pressure. Therefore, this heat engine solves the disadvantages of existing heat engines by using liquids such as ether, ethanol, and gasoline, which have high thermal expansion and thermal expansion capacity as working substances.
셋째, 기존의 열기관으로는 무한정한 자연 열에너지를 효율적으로 사용할 수 없다. 따라서 본 열기관은 히트펌프와 결합하여 자연 열에너지로 동력을 효율적으로 끝없이 생산한다.     Third, infinite natural heat energy cannot be efficiently used with existing heat engines. Therefore, this heat engine combines with a heat pump to efficiently and efficiently produce power with natural heat energy.
1) 열기관의 구조     1) Structure of heat engine
본 열기관의 구조는 도 1.과 같이 동일한 두 개의 실린더(Y와 Y')가 좌우 대칭적으로 구성되고, 실린더(Y, Y')의 윗부분은 병목현상으로 형성된다. 두 실린더(Y와 Y')사이에는 실린더Y와 실린더Y' 간에 열 교환을 할 수 있는 열교환기(E)가 설치된다. 실린더(Y, Y')의 병목현상 부분에는 피스톤(P, P')이 각각 설치되고, 피스톤(P, P')의 윗면 중앙에는 래크(rack C, C')가 형성된 로드(rod R, R')가 각각 부착된다.     In the structure of the heat engine, the same two cylinders Y and Y 'are configured symmetrically as shown in FIG. 1. The upper parts of the cylinders Y and Y' are formed as bottlenecks. Between the two cylinders Y and Y ', a heat exchanger E capable of exchanging heat between cylinders Y and Y is installed. A rod (R) with a piston (P, P ') is installed at the bottleneck of the cylinder (Y, Y'), and a rack (C, C ') is formed at the center of the upper surface of the piston (P, P'). R ') are attached respectively.
실린더(Y, Y') 상단 외부에는 회전축(S)이 구성되고, 그 회전축(S) 중심부분에는 발전기(G)가 장착되고, 양 끝단에는 래칫기어(ratchet gear B, B')가 각각 장착되고, 래칫기어 바로 옆 회전축에는 압력센스와 자동변속기가 구비된 트랜스미션(A, A')이 각각 설치되고, 래크와 래칫기어는 맞물려 직선운동이 회전운동으로 변환되도록 구성된다.     On the outside of the upper end of the cylinders (Y, Y '), a rotating shaft (S) is constructed, a generator (G) is mounted on the central portion of the rotating shaft (S), and ratchet gears (B, B') are mounted on both ends. The transmission shafts (A, A ') equipped with a pressure sensor and an automatic transmission are respectively installed on the rotational shaft immediately next to the ratchet gear, and the rack and ratchet gear are engaged to be configured to convert linear motion to rotational motion.
실린더(Y와 Y')의 몸통부분 내부에는 상하로 이동할 수 있는 경계 막(D, D')이 각각 설치되고, 경계 막 밑바닥 중앙에는 래크(rack U, U')가 각각 부착되고, 실린더 밑바닥 중앙 외부에 구성된 꼬리부분에는 전동기(M, M')가 각각 설치되고, 전동기의 회전축에는 피니언(pinion V, V')이 각각 장착되고, 피니언과 래크는 맞물려 회전운동을 직선운동으로 변환되도록 구성되고, 전동기의 회전방향은 시계방향 또는 반대방향으로 선택되도록 구성된다.     Inside the body parts of the cylinders Y and Y ', boundary membranes D and D' that can move up and down are respectively installed, and racks U and U 'are respectively attached to the center of the bottom of the boundary membrane, and the bottom of the cylinder. Electric motors (M, M ') are installed on the tail part configured outside the center, pinions (V, V') are mounted on the rotating shafts of the motors, and pinions and racks are engaged to convert rotary motions into linear motions. And, the rotational direction of the electric motor is configured to be selected in the clockwise or opposite direction.
실린더 밑 부분 옆에는 작업물질 주입구(N, N')가 각각 설치되고, 실린더 윗부분 옆에는 공기 또는 작업물질 배출구(O, O)가 각각 설치된다.     Next to the lower part of the cylinder, the work material inlets N and N 'are respectively installed, and the upper part of the cylinder is provided with air or work material outlets O and O, respectively.
열교환기(E)의 파이프라인 상단에는 열공급기(H, H')가 각각 설치되고, 하단에는 냉열공급기(L, L')가 각각 설치된다.     Heat supply units (H, H ') are installed at the top of the pipeline of the heat exchanger (E), and cold heat supply units (L, L') are installed at the bottom.
실린더(Y, Y') 내부에는 대기압 상태에서 저 열원으로 냉각된 작업물질(working substance)이 가득(100%) 차있다.     The cylinder (Y, Y ') is filled (100%) with a working substance cooled to a low heat source under atmospheric pressure.
2) 열기관의 원리     2) Principle of heat engine
열팽창률이 높은 에테르, 에탄올, 휘발유 같은 액체 중 하나를 선택하여 대기압 상태에서 저 열원으로 냉각시켜 실린더에 가득(100%) 채우고, 고 열원(자연 열에너지)으로 가열하면 높은 팽창력을 얻을 수 있다. 이 팽창력으로 피스톤을 가동하면 동력이 생산된다.     By selecting one of the liquids such as ether, ethanol, and gasoline having a high thermal expansion rate, and cooling to a low heat source under atmospheric pressure, the cylinder is filled (100%), and when heated with a high heat source (natural heat energy), high expansion power can be obtained. When the piston is operated with this expansion force, power is produced.
3) 열기관의 사용방법     3) How to use the heat engine
a)작업물질의 선택     a) Selection of work materials
한쪽 실린더 속 작업물질의 고온의 폐열과 다른 쪽 실린더 속 작업물질의 저온의 열 간에 열 교환이 이루어질 수 있도록 작업물질은 항상 액체 상태가 유지되어야한다. 따라서 작업물질의 비등점이 고 열원의 온도 보다 높은 물질이 선택되어야한다. 다시 말하면, 고 열원의 온도를 t℃, 작업물질의 비등점이 b℃라고하면 t<b의 부등식이 만족되어야한다.     The working material must always be in a liquid state so that heat exchange can occur between the high-temperature waste heat of the working material in one cylinder and the low-temperature heat of the working material in the other cylinder. Therefore, a material having a boiling point higher than that of a high heat source should be selected. In other words, if the temperature of the high heat source is t ℃ and the boiling point of the working material is b ℃, the inequality of t <b must be satisfied.
(참고 1)     (Note 1)
에테르의 비등점(34℃), 에탄올의 비등점(78℃), 휘발유의 비등점(200℃)     Ether boiling point (34 ℃), ethanol boiling point (78 ℃), gasoline boiling point (200 ℃)
b) 열기관의 가동방법     b) How to operate the heat engine
대기압 하에서 저 열원으로 냉각된 작업물질(working substance)이 도 1.과 같은 실린더(Y, Y') 속에 가득(100%) 채워져 있는 상태에서 설명하면,     If the working material cooled to a low heat source under atmospheric pressure is filled (100%) in a cylinder (Y, Y ') as shown in FIG.
부팅과정:     Boot process:
먼저 실린더Y 쪽의 열공급기H를 열고 전동기M을 작동하여 경계 막D를 밑으로 내리면 경계 막(D) 하부에 있는 액체는 열교환기(E)의 파이프라인을 따라 실린더Y 상부로 이동한다. 이때 저온의 액체가 열공급기(H)에서 열을 공급받아 고온 고압의 액체가 되어 실린더Y 속에 점점 쌓이면 실린더(Y)가 받는 액체의 팽창력도 증가된다. 이때 실린더(Y)가 팽창력에 견딜 수 있는 압력의 한계점(도 2.의 그래프에서 a 지점)에 도달되면 트랜스미션(A)내의 압력센스에 감지되어 피스톤(P)은 일정한 압력(도 2.의 그래프에서 a~b 구간)을 받아 동력을 생산한다. 그리고 경계 막(D)이 실린더(Y)의 밑바닥에 도달되면 트랜스미션(A)내의 압력센스에 감지되어 열공급기(H)와 전동기(M)의 작동은 멈춘다. 그러나 피스톤(P)은 b~c 곡선을 따라 감소하는 압력을 받아 계속 동력을 생산한다.     First, when the heat supply H on the cylinder Y side is opened and the motor M is operated to lower the boundary membrane D, the liquid under the boundary membrane D moves to the upper portion of the cylinder Y along the pipeline of the heat exchanger E. At this time, when the low-temperature liquid is supplied with heat from the heat supply (H) and becomes a high-temperature and high-pressure liquid and gradually accumulates in the cylinder Y, the expansion force of the liquid received by the cylinder (Y) also increases. At this time, when the cylinder (Y) reaches the limit of the pressure (point a in the graph of Fig. 2) that can withstand the expansion force, it is sensed by the pressure sense in the transmission (A) and the piston (P) has a constant pressure (Fig. (A to b section) to produce power. And when the boundary membrane (D) reaches the bottom of the cylinder (Y) is sensed by the pressure sense in the transmission (A), the operation of the heat supply (H) and the motor (M) is stopped. However, the piston P continues to produce power under reduced pressure along the curves b to c.
이 과정에서 고무되는 점은 경계 막의 윗면과 밑면에 작용하는 압력의 크기는 같다는 것이다. 따라서 경계 막을 움직이는데 소요되는 에너지는 극히 소량이 된다.     What is encouraging in this process is that the pressures acting on the top and bottom of the boundary membrane are the same. Therefore, the energy required to move the boundary film is extremely small.
폐열의 동력화 과정:     The process of powering waste heat:
이와 같이 부팅과정이 끝난 상태에서, 두 전동기(M과 M')를 동시에 작동시켜 두 경계 막(D와 D')을 서로 반대방향(경계 막D는 위로 경계 막D'는 아래로)으로 움직여 열교환기(E)를 통해 실린더Y 내의 액체가 가지고 있는 고온의 폐열과 실린더Y' 내의 액체가 가지고 있는 저온의 열을 교환시킨다. 이때 냉열공급기(L)를 작동시켜 열 교환과정에서 손실되는 냉열을 보충한다. 또한 열공급기H'를 작동시켜 열 교환과정에서 손실되는 열과 전 단계에서 동력 생산에 사용된 열을 보충 하면 피스톤(P')는 동력을 생산한다.     In this state, at the end of the booting process, the two motors (M and M ') are operated at the same time to move the two boundary films (D and D') in opposite directions (the boundary film D is up and the boundary film D 'is down). The heat exchanger E exchanges the high-temperature waste heat of the liquid in the cylinder Y with the low-temperature heat of the liquid in the cylinder Y '. At this time, by operating the cold heat supply (L) to compensate for the cold heat lost in the heat exchange process. In addition, when the heat supply H 'is operated to compensate for the heat lost in the heat exchange process and the heat used for power generation in the previous stage, the piston P' produces power.
이와 같이 본 열기관은“폐열의 동력화”과정을 반복함으로써 동력을 지속적으로 생산할 수 있다.     In this way, the heat engine can continuously produce power by repeating the process of “powering waste heat”.
본 발명에 따르면,     According to the invention,
1) 본 열기관은 폐열을 방출하지 않고 재사용함으로써 열의 손실이 적다.     1) This heat engine has less heat loss by reusing it without releasing waste heat.
2) 본 열기관은 주변에서 쉽게 얻을 수 있는 상온의 열, 태양열, 지열, 열대해상의 표층수의 열, 기타 폐열 등을 효율적으로 동력화할 수 있다.     2) This heat engine can efficiently power heat, solar heat, geothermal heat, surface water of tropical seas, and other waste heat that can be easily obtained in the surroundings.
3) 본 열기관은 화석연료, 핵연료를 사용하지 않음으로써 기후변화, 방사능 물질 오염 등의 환경문제로부터 해방된다.     3) This heat engine is free from fossil fuels and nuclear fuels, and is free from environmental problems such as climate change and radioactive material contamination.
[도 1] 제1도는 열기관 전체를 조립한 단면도     [Figure 1] Figure 1 is a cross-sectional view of the entire heat engine assembly
[도 2] 제2도는 실린더에 작용하는 열팽창력의 변화곡선 그래프     [Figure 2] Figure 2 is a graph of the change in thermal expansion force acting on a cylinder
[도 3] 제3도는 부팅 과정의 열기관의 단면도     3 is a cross-sectional view of a heat engine during a boot process
[도 4] 제4도는 폐열의 동력화 과정의 열기관의 단면도     4 is a cross-sectional view of a heat engine in the process of powering waste heat.
<부호의 설명><Description of code>
A, A' : 트랜스미션 B, B': 래칫 기어(ratchet gear)     A, A ': Transmission B, B': Ratchet gear
C, C' : 래크(rack} D, D' : 경계 막     C, C ': Rack D, D': Boundary membrane
E : 열교환기 G : 발전기     E: Heat exchanger G: Generator
H, H' : 열공급기 L, L' : 냉열공급기     H, H ': Heat supply L, L': Cold heat supply
M, M' : 전동기 N, N' : 작업물질 주입구     M, M ': Electric motor N, N': Work material inlet
O, O' : 공기 또는 작업물질 배출구 P, P' : 피스톤     O, O ': Air or work material outlet P, P': Piston
R, R' : 로드(rod) S : 회전축     R, R ': rod S: rotating shaft
U, U' : 경계 막용(用) 래크 V, V' : 피니언(pinion)     U, U ': Boundary membrane rack V, V': Pinion
Y, Y' : 실린더     Y, Y ': Cylinder
“해양온도차발전”과 같이 히트펌프를 이용하여 온도차를 만들어 본 열기관을 가동한다. 이때 온도차와 COP가 클수록 좋다. 그런데 온도차를 크게 하면 COP의 값이 줄고 반대로 온도차를 적게 하면 COP의 값이 커지므로 주의를 요한다.      As in "Marine temperature difference power generation", the heat engine is operated by making a temperature difference using a heat pump. At this time, the larger the temperature difference and COP, the better. However, if the temperature difference is increased, the value of COP decreases. On the contrary, if the temperature difference decreases, the value of COP increases, so be careful.
히트펌프로 퍼 올린 열의 동력화 방법:     How to power the heat pumped:
냉동고와 같이 밀폐 용기(A)속의 열을 히트펌프로 퍼서 다른 밀폐 용기(B)속으로 옮겨 두 용기(A, B)간의 온도차를 만들어 동력을 생산하는 것이다. 이제 용기B의 온도를 20℃, 용기A의 온도를 -30℃라 할 때 생산되는 동력을 생각해보면,     It is to produce power by making the temperature difference between the two containers (A, B) by transferring heat from the closed container (A) with a heat pump to another sealed container (B) like a freezer. Considering the power produced when the temperature of container B is 20 ℃ and the temperature of container A is -30 ℃,
먼저 히트펌프의 성적계수(COP)를 구해보면 COP=T1/(T1-T2)의 식에First, if the COP of the heat pump is calculated, COP = T 1 / (T 1 -T 2 )
T1=273+20=293, T2=273-30=243의 값을 대입하면Substituting the values of T 1 = 273 + 20 = 293, T 2 = 273-30 = 243
COP=293/(293-243)=5.86      COP = 293 / (293-243) = 5.86
"폐열 없는 고효율 열기관"은 열의 손실이 극소이므로 열효율이 매우 높다. 따라서 열효율을 50%로 가정하고 본 열기관으로 생산하는 동력을 생각해보면,     "High-efficiency heat engine without waste heat" has very high heat efficiency since heat loss is minimal. Therefore, assuming the thermal efficiency is 50%, and considering the power produced by this heat engine,
100의 동력(전기)에너지로 히트펌프를 구동하면 저 열원A로부터 열을 흡수하여 고 열원B로 586의 열에너지를 전달하는데, 이 열에너지를 본 열기관에 공급하여 일로 변환시키면 293의 일의 량(量)이 생산된다.     When the heat pump is driven with 100 power (electrical) energy, it absorbs heat from the low heat source A and transfers 586 heat energy to the high heat source B. When this heat energy is supplied to the heat engine and converted to work, the amount of work of 293 ) Is produced.
결과적으로 히트펌프와 본 열기관을 결합하여 하나의 열기관으로 본다면, 100의 일의 량(量)으로 293의 일을 할 수 있는 놀라운 현상이 일어난다. 이 현상은 어째서 가능할까? 그 답은 본 열기관의 열효율이 카르노기관의 열효율보다 높기 때문이다.     As a result, if the heat pump and this heat engine are combined and viewed as one heat engine, a surprising phenomenon occurs in which 293 work can be performed with a work volume of 100. Why is this possible? The answer is that the thermal efficiency of this heat engine is higher than that of the Carnot engine.
(참고 2)     (Reference 2)
작업물질의 온도에 따른 팽창력 계산:     Calculation of the expansion force according to the temperature of the work material:
피스톤(Y, Y')에 작용하는 작업물질의 열팽창력을 계산해보면,     Calculating the thermal expansion force of the work material acting on the pistons (Y, Y '),
부피(V)는 압력(P)과 온도(T)의 함수로서 완전미분하면,If the volume (V) is completely different as a function of pressure (P) and temperature (T),
Figure PCTKR2019011421-appb-I000001
Figure PCTKR2019011421-appb-I000001
의 관계식이 성립하고,The relational expression of
부피의 열팽창률(
Figure PCTKR2019011421-appb-I000002
)과 등온압축률(
Figure PCTKR2019011421-appb-I000003
)은
The coefficient of thermal expansion of the volume (
Figure PCTKR2019011421-appb-I000002
) And isothermal compression ratio (
Figure PCTKR2019011421-appb-I000003
)silver
Figure PCTKR2019011421-appb-I000004
Figure PCTKR2019011421-appb-I000004
Figure PCTKR2019011421-appb-I000005
Figure PCTKR2019011421-appb-I000005
으로 나타낼 수 있으므로,Can be represented by
식 (1)에 식 (2), (3)를 대입하고 양변을 V로 나누면,      Substituting equations (2) and (3) into equation (1) and dividing both sides by V,
Figure PCTKR2019011421-appb-I000006
Figure PCTKR2019011421-appb-I000006
이 된다. 식 (4)을 처음상태 1에서 나중상태 2로 각각 적분하면It becomes. Equation (4) can be integrated from the first state to the second state
Figure PCTKR2019011421-appb-I000007
Figure PCTKR2019011421-appb-I000007
ln
Figure PCTKR2019011421-appb-I000008
ln
Figure PCTKR2019011421-appb-I000008
이 된다. 여기서 고압 실린더의 부피가 저온의 온도 변화로는 변하지 않는다고 무시하면(V1=V2),It becomes. If you ignore that the volume of the high pressure cylinder does not change with the change in temperature at low temperature (V 1 = V 2 ),
ln
Figure PCTKR2019011421-appb-I000009
임으로 식 (5)은
ln
Figure PCTKR2019011421-appb-I000009
Im equation (5)
Figure PCTKR2019011421-appb-I000010
와 같이 정리된다.
Figure PCTKR2019011421-appb-I000010
It is arranged as follows.
따라서 피스톤에 작용하는 최대압력(P2)은Therefore, the maximum pressure acting on the piston (P 2 ) is
Figure PCTKR2019011421-appb-I000011
Figure PCTKR2019011421-appb-I000011
의 식에서 구할 수 있다.Can be obtained from the ceremony.
따라서 식(6)에서
Figure PCTKR2019011421-appb-I000012
,
Figure PCTKR2019011421-appb-I000013
,T1, T2,의 값을 대입하면 P2의 값을 구할 수 있다.
Therefore, in equation (6)
Figure PCTKR2019011421-appb-I000012
,
Figure PCTKR2019011421-appb-I000013
Substituting the values of, T 1 and T 2 , gives the value of P 2 .
이때 P1의 값은 (대기 압력)“1”로 본다.At this time, the value of P 1 (atmospheric pressure) is regarded as “1”.
(보기)     (Example)
본 열기관이 고 열원 20℃, 저 열원 -30℃인 구간에서 작동되고, 작업물질로 에탄올(비등점 : 78℃)을 사용했을 때 최대 팽창력을 구해보면,     If this heat engine is operated in a section with a high heat source of 20 ℃ and a low heat source of -30 ℃, and the maximum expansion force is obtained when ethanol (boiling point: 78 ℃) is used as the working material,
에탄올의 열팽창률=1.01×10-3/℃, Thermal expansion rate of ethanol = 1.01 × 10 -3 / ℃,
20℃에서 압축률=114×10-11m2/N,Compression rate at 20 ° C = 114 × 10 -11 m 2 / N,
처음 상태의 작업물질의 온도 : T1=(273-30)℃,Temperature of the working material in the initial state: T 1 = (273-30) ℃,
나중 상태의 작업물질의 온도 : T2=(273+20)℃,Temperature of the working material in the later state: T 2 = (273 + 20) ℃,
의 값을 식(6)에 대입하면 P2의 압력은 약 453at 이다.Substituting the value of into (6), the pressure of P 2 is about 453 at.
여기서 고무되는 것은 20℃의 낮은 온도로도 기존 내연기관의 폭발력의 10배 이상의 압력을 생산할 수 있다는 것이다.      What is encouraging here is that even at a low temperature of 20 ° C, it is possible to produce a pressure of more than 10 times the explosive power of an existing internal combustion engine.
첫째, 과학기술 문명사회에서 에너지는 무한히 요구된다.     First, energy is infinitely required in the science and technology civilized society.
둘째, 화석연료, 핵연료 사용은 기후변화, 방사능 물질 오염 등의 자연환경을 훼손하므로 본 폐열 없는 고효율 열기관의 출현은 인류의 구세주가 될 것이다.     Second, the use of fossil fuels and nuclear fuels damages the natural environment, such as climate change and radioactive material contamination, so the emergence of high-efficiency heat engines without waste heat will become the savior of mankind.

Claims (3)

  1. [구조] 폐열 없는 고효율 열기관 구조의 특징은, 동일한 두 개의 실린더(Y와 Y')가 좌우 대칭적으로 구성되고, 실린더(Y, Y')의 윗부분은 병목현상으로 형성되고, 두 실린더(Y와 Y')사이에는 실린더Y와 실린더Y' 간에 열 교환을 할 수 있는 열교환기(E)가 구성되고, 실린더(Y, Y')의 병목현상 부분에는 피스톤(P, P')이 각각 설치되고, 피스톤(P, P')의 윗면 중앙에는 래크(rack C, C')가 형성된 로드(rod R, R')가 각각 부착되고, 실린더(Y, Y') 상단 외부에는 회전축(S)이 구성되고, 그 회전축(S) 중심부분에는 발전기(G)가 장착되고, 양 끝단에는 래칫기어(ratchet gear B, B')가 각각 장착되고, 래칫기어 바로 옆 회전축에는 압력센스와 자동변속기가 구비된 트랜스미션(A, A')이 각각 설치되고, 래크와 래칫기어는 맞물려 직선운동이 회전운동으로 변환되도록 구성되고, 실린더(Y와 Y')의 몸통부분 내부에는 상하로 이동할 수 있는 경계 막(D, D')이 각각 설치되고, 경계 막 밑바닥 중앙에는 래크(rack U, U')가 각각 부착되고, 실린더 밑바닥 중앙 외부에 구성된 꼬리부분에는 전동기(M, M')가 각각 설치되고, 전동기의 회전축에는 피니언(pinion V, V')이 각각 장착되고, 피니언과 래크는 맞물려 회전운동을 직선운동으로 변환되도록 구성되고, 전동기의 회전방향은 시계방향 또는 반대방향으로 선택되도록 구성되고, 실린더 밑 부분 옆에는 작업물질 주입구(N, N')가 각각 설치되고, 실린더 윗부분 옆에는 공기 또는 작업물질 배출구(O, O)가 각각 설치되고, 열교환기(E)의 파이프라인 상단에는 열공급기(H, H')가 각각 설치되고, 하단에는 냉열공급기(L, L')가 각각 설치되고, 실린더(Y, Y') 내부에는 대기압 상태에서 저 열원으로 냉각된 작업물질(working substance)이 가득(100%) 채워져 있는 것을 특징으로 하는 폐열 없는 고효율 열기관.     [Structure] The characteristic of the structure of a high-efficiency heat engine without waste heat is that the same two cylinders (Y and Y ') are symmetrically configured, and the upper part of the cylinders (Y, Y') is formed as a bottleneck, and the two cylinders (Y And Y '), a heat exchanger (E) capable of exchanging heat between cylinder Y and cylinder Y' is constructed, and pistons (P, P ') are installed on the bottlenecks of cylinders (Y, Y'), respectively. In the center of the upper surface of the pistons (P, P '), racks (R, R') with racks (C, C ') are attached, respectively, and the rotating shaft (S) outside the top of the cylinders (Y, Y') This configuration, the central portion of the rotating shaft (S) is equipped with a generator (G), ratchet gears (ratchet gear B, B ') are mounted at both ends, respectively, the pressure sensor and the automatic transmission on the rotating shaft right next to the ratchet gear The provided transmissions A and A 'are respectively installed, and the rack and the ratchet gear are engaged so that the linear motion is converted into a rotational motion, and the cylinders Y and Y' are formed. Inside the body part of the boundary membranes (D, D ') that can move up and down are installed, racks (rack U, U') are respectively attached to the center of the bottom of the boundary membrane, and the tail portion configured outside the center of the bottom of the cylinder is installed. Each of the motors (M, M ') is installed, a pinion (V, V') is mounted on the rotation axis of the motor, and the pinion and the rack are engaged to be configured to convert the rotational motion into a linear motion. It is configured to be selected in the clockwise or counterclockwise direction, and the work material inlet (N, N ') is installed next to the bottom of the cylinder, and the air or work material outlet (O, O) is installed next to the upper part of the cylinder, and heat exchange The heat supply (H, H ') is installed at the top of the pipeline of the group (E), the cold heat supply (L, L') is installed at the bottom, and the cylinder (Y, Y ') has a low pressure at atmospheric pressure. Work Substrate Cooled by Heat Source ance) is a high efficiency heat engine without waste heat, characterized by being filled (100%).
  2. 제1 항에 있어서 사용방법,     The method of claim 1,
    먼저 부팅을 하기위해, 실린더Y 쪽의 열공급기H를 열고 전동기M을 작동하여 경계 막D를 밑으로 내리면 경계 막(D) 하부에 있는 액체는 열교환기(E)의 파이프라인을 따라 실린더Y 상부로 이동하고, 이때 저온의 액체가 열공급기(H)에서 열을 공급받아 고온 고압의 액체가 되어 실린더Y 속에 점점 쌓이면 실린더(Y)가 받는 액체의 팽창력도 증가되고, 이때 실린더(Y)가 팽창력에 견딜 수 있는 압력의 한계점(도 2.의 그래프에서 a 지점)에 도달되면, 트랜스미션(A)내의 압력센스에 감지되어 피스톤(P)은 일정한 압력(도 2.의 그래프에서 a~b 구간)을 받아 동력을 생산하고, 경계 막(D)이 실린더(Y)의 밑바닥에 도달되면 트랜스미션(A)내의 압력센스에 감지되어 열공급기(H)와 전동기(M)의 작동은 멈추고, 피스톤(P)은 b~c 곡선을 따라 감소하는 압력을 받아 계속 동력을 생산한다.      To boot up first, open the heat supply H on the cylinder Y side, and operate the motor M to lower the boundary membrane D. The liquid under the boundary membrane (D) flows along the pipeline of the heat exchanger (E) to the upper cylinder Y. When the low-temperature liquid is supplied with heat from the heat supply (H) and becomes a high-temperature and high-pressure liquid and gradually accumulates in the cylinder Y, the expansion force of the liquid received by the cylinder (Y) also increases, and at this time, the cylinder (Y) expands When the limit of the pressure to withstand (point a in the graph in Fig. 2) is reached, the pressure sense in the transmission (A) is sensed and the piston (P) is a constant pressure (section a to b in the graph in Fig. 2) To generate power, and when the boundary membrane (D) reaches the bottom of the cylinder (Y), it is sensed by the pressure sense in the transmission (A) and the operation of the heat supply (H) and motor (M) stops, and the piston (P ) Continues to produce power under decreasing pressure along the b ~ c curve. do.
    이와 같이 부팅과정이 끝난 후, 두 전동기(M과 M')를 동시에 작동시켜 두 경계 막(D와 D')을 서로 반대방향(경계 막D는 위로 경계 막D'는 아래로)으로 움직이면 열교환기(E)를 통해 실린더Y 내의 액체가 가지고 있는 고온의 폐열과 실린더Y' 내의 액체가 가지고 있는 저온의 열이 교환되고, 이때 냉열공급기(L)를 작동시켜 열 교환과정에서 손실되는 냉열을 보충하고. 또한 열공급기H'를 작동시켜 열 교환과정에서 손실되는 열과 전 단계에서 동력 생산에 사용된 열을 보충 하면 피스톤(P')은 동력을 생산한다.     After the booting process is finished, the two motors (M and M ') are operated at the same time to move the two boundary films (D and D') in opposite directions (boundary film D is up and boundary film D 'is down). Through the group (E), the high-temperature waste heat of the liquid in the cylinder Y and the low-temperature heat of the liquid in the cylinder Y 'are exchanged, and at this time, the cold heat supply (L) is operated to compensate for the cold heat lost in the heat exchange process. and. In addition, when the heat supply H 'is operated to compensate for the heat lost in the heat exchange process and the heat used for power generation in the previous stage, the piston P' produces power.
    이와 같이 본 열기관은“폐열의 동력화”과정을 반복함으로써 동력을 지속적으로 생산할 수 있는 폐열 없는 고효율 열기관.     Thus, this heat engine is a high-efficiency heat engine without waste heat that can continuously produce power by repeating the process of “powering waste heat”.
  3. 히트펌프로 퍼 올린 열의 동력화 방법으로, 냉동고와 같이 밀폐 용기(A)속의 열을 히트펌프로 퍼서 다른 밀폐 용기(B)속으로 옮겨 두 용기(A, B)간의 온도차를 만들어 본 열기관으로 동력을 생산하는 것을 특징으로 하는 폐열 없는 고효율 열기관.    As a method of powering the heat pumped up by a heat pump, heat from the closed container (A), like a freezer, is transferred to another closed container (B) by heat pumping to create a temperature difference between the two containers (A, B). High-efficiency heat engine without waste heat, characterized by producing.
PCT/KR2019/011421 2018-09-11 2019-09-04 Highly efficient heat engine without waste heat WO2020055036A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0108066 2018-09-11
KR20180108066 2018-09-11
KR10-2019-0099284 2019-08-14
KR1020190099284A KR102309750B1 (en) 2018-09-11 2019-08-14 High efficiency heat engine without waste heat

Publications (2)

Publication Number Publication Date
WO2020055036A2 true WO2020055036A2 (en) 2020-03-19
WO2020055036A3 WO2020055036A3 (en) 2020-06-11

Family

ID=69777993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011421 WO2020055036A2 (en) 2018-09-11 2019-09-04 Highly efficient heat engine without waste heat

Country Status (1)

Country Link
WO (1) WO2020055036A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9225103D0 (en) * 1992-12-01 1993-01-20 Nat Power Plc A heat engine and heat pump
JPH11287526A (en) * 1998-04-03 1999-10-19 Zexel:Kk Stirling refrigerator
KR19990083940A (en) * 1999-09-01 1999-12-06 김영생 Motive power generating device of an interal combustion engine
KR100812558B1 (en) * 2006-08-29 2008-03-13 김창선 Engine applying equal pressure on pistons of different cross section
KR101018379B1 (en) * 2009-06-19 2011-03-03 주식회사 영원신소재 External combustion engine and output method thereof

Also Published As

Publication number Publication date
WO2020055036A3 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
EP0920572B1 (en) Thermal hydraulic engine
RU2434159C1 (en) Conversion method of heat to hydraulic energy and device for its implementation
KR100342338B1 (en) Heat engine
US5916140A (en) Hydraulic engine powered by introduction and removal of heat from a working fluid
CA2558990A1 (en) Thermal conversion device and process
CN112542255B (en) Direct discharging system for thermoelectric conversion waste heat of heat pipe nuclear reactor and working method
EP2535583A1 (en) Temperature differential engine device
BG110419A (en) Method and layout of a heat hydro engine for the transformation of thermal energy into mechanic
CN102427320B (en) Thermoelectric generator using superconducting fluid for heat transfer
WO2020055036A2 (en) Highly efficient heat engine without waste heat
CN103883425A (en) Double-action type hydraulic transmission Stirling engine taking heat storage device as heat source
WO2011087198A2 (en) Stirling engine assembly
KR102640548B1 (en) Efficient heat recovery engine
CN101459396A (en) A differential temperature electricity generating heat pipe and a differential temperature electricity generating device
WO2010062049A2 (en) Power generating apparatus using shape memory alloy
KR102309750B1 (en) High efficiency heat engine without waste heat
CN113482889A (en) Underwater isobaric compressed air hybrid energy storage system and method
CN201349188Y (en) Heat pipe thermoelectric module and generating device thereof
US4815291A (en) Method and arrangement in heat engines
WO2012093786A2 (en) Stirling cycle-based heat engine system
SE467837B (en) ENERGY CONVERTERS WORKING ON STIRLING- ERICSSON OR SIMILAR THERMODYNAMIC CYCLES
CN107013326B (en) Compact flexible intersects inclined disc type power transmission mechanism
LT5488B (en) The device and method for converting of thermal energy
CN103670977B (en) A kind of double acting heat and acoustic power generating system utilizing liquid oxygen to burn
CN1055798A (en) energy machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860580

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860580

Country of ref document: EP

Kind code of ref document: A2