WO2020055004A1 - 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩 - Google Patents

냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩 Download PDF

Info

Publication number
WO2020055004A1
WO2020055004A1 PCT/KR2019/010868 KR2019010868W WO2020055004A1 WO 2020055004 A1 WO2020055004 A1 WO 2020055004A1 KR 2019010868 W KR2019010868 W KR 2019010868W WO 2020055004 A1 WO2020055004 A1 WO 2020055004A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
battery module
pcm
capsule
Prior art date
Application number
PCT/KR2019/010868
Other languages
English (en)
French (fr)
Inventor
유재욱
권민호
강달모
문정오
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980014540.6A priority Critical patent/CN111742443A/zh
Priority to EP19859738.7A priority patent/EP3780255B1/en
Priority to JP2020545093A priority patent/JP7055890B2/ja
Priority to US16/979,402 priority patent/US11509009B2/en
Publication of WO2020055004A1 publication Critical patent/WO2020055004A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery module having improved cooling efficiency and a battery pack including the same, and more specifically, a battery module configured to improve cooling efficiency using a phase change material (PCM) capsule provided in a cell cartridge. And a battery pack including the same.
  • PCM phase change material
  • lithium secondary batteries are free of charge and discharge because they have little memory effect compared to nickel-based secondary batteries, The self-discharge rate is very low, and it is spotlighted for its high energy density.
  • the lithium secondary battery mainly uses a lithium-based oxide and a carbon material as a positive electrode active material and a negative electrode active material, respectively.
  • the lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate coated with the positive electrode active material and the negative electrode active material are disposed with a separator therebetween, and an exterior material for sealingly storing the electrode assembly together with an electrolyte, that is, a battery case.
  • a lithium secondary battery may be classified into a can-type secondary battery in which the electrode assembly is embedded in a metal can and a pouch-type secondary battery in which the electrode assembly is embedded in a pouch made of aluminum laminate sheet, depending on the shape of the exterior material.
  • secondary batteries are widely used not only in small devices such as portable electronic devices, but also in medium and large devices such as automobiles and power storage devices.
  • medium-to-large-sized devices a large number of secondary cells are electrically connected to increase capacity and output.
  • pouch-type cells are frequently used in such medium- and large-sized devices due to the advantages of easy stacking.
  • the pouch type cell is generally packaged in a battery case made of a laminate sheet having a structure in which aluminum and resin are laminated, so that mechanical rigidity is not large. Therefore, when constructing a battery module including a plurality of pouch type cells, a frame is often used to protect a secondary battery from external shocks, prevent its flow, and facilitate lamination.
  • the frame may be replaced by various other terms such as a cartridge, and is usually configured in a square plate shape in which the central portion is empty, and at this time, four side portions are configured to surround the outer periphery of the pouch type cell.
  • a frame is used in a form in which a plurality of layers are stacked to form a battery module, and the pouch type cell may be located in an empty space inside when the frame is stacked.
  • FIG. 1 a conventional battery module structure is shown.
  • a conventional battery module structure when a plurality of pouch type cells 1 are stacked using a plurality of frames 2, a plate form is formed on each outer surface of each pair of pouch type cells 1 Cooling efficiency is improved by applying the cooling fins (3).
  • the secondary battery may be used in a high temperature environment such as summer, and heat may also be generated in the secondary battery itself.
  • the temperature of the secondary battery may be higher. If the temperature is higher than an appropriate temperature, the performance of the secondary battery may deteriorate, and in severe cases, there is a risk of explosion or ignition. Therefore, when constructing the battery module, the cooling fins 3 are applied to contact the surface of the pouch type cell 1, and the cooling fins 3 are brought into contact with the cooling plate 4 located below the battery module. Many structures are used to prevent the overall temperature rise.
  • the cooling fins 3 are interposed between the facing pouch type cells 1, the volume of the battery module inevitably increases due to the thickness of the cooling fins 3, which may cause damage in terms of energy density. There is only.
  • the present invention was devised in consideration of the above-described problems, and the cooling effect is improved by omitting the application of a cooling member that increases the volume of the battery module, such as a cooling fin, and applying a PCM capsule that can improve the cooling effect in the cell cartridge. It aims to prevent loss from occurring in terms of energy density while improving.
  • a battery module according to an embodiment of the present invention for solving the above-described problem includes a plurality of battery cells stacked facing each other; A plurality of cell cartridges stacked around the plurality of battery cells; And a plurality of PCM capsules disposed inside the cell cartridge and containing PCM therein. It includes.
  • the battery cell includes: an electrode assembly; A cell case including an accommodating portion accommodating the electrode assembly and a sealing portion extending outward from the periphery of the accommodating portion; And an electrode lead connected to the electrode assembly and drawn out through the sealing portion of the cell case. It may include.
  • the cell cartridge includes a main frame in the form of a rectangular rim; And a sub-frame formed extending from the inner surface of the main frame and having a rectangular rim shape smaller than that of the main frame. It may include.
  • the main frame may have a size and shape corresponding to the battery cell to accommodate the battery cell.
  • the sub-frame may have a size and shape corresponding to the receiving portion to accommodate the receiving portion.
  • the upper surface of the sealing portion is seated on the lower surface of the subframe provided in the cell cartridge coupled from the top of the battery cell, and the lower surface of the sealing portion is seated on the upper surface of the subframe provided on the cell cartridge coupled from the bottom of the battery cell. Can be.
  • the PCM capsule may be inserted through the outer and inner surfaces of the cell cartridge.
  • the PCM capsule one end of which is in contact with the battery cell, the other end may be exposed to the outside of the battery module.
  • the PCM capsule may be insert-injected with the resin constituting the cell cartridge to be located in the cell cartridge.
  • the capsule shell may have a higher melting point compared to the resin constituting the cell cartridge.
  • the battery pack according to an embodiment of the present invention for solving the above-described problem includes a plurality of battery modules according to an embodiment of the present invention described above.
  • the energy density It is possible to prevent the loss from the side.
  • FIG. 1 is a view showing a conventional battery module structure with a cooling fin applied.
  • FIG. 2 is a perspective view showing a battery module according to an embodiment of the present invention.
  • FIG 3 is a perspective view showing a battery cell applied to a battery module according to an embodiment of the present invention.
  • FIGS. 4 and 5 are perspective views showing a cell cartridge applied to a battery module according to an embodiment of the present invention.
  • FIG. 6 is a view showing a cross-section taken along line A-A 'in FIG. 2.
  • FIG. 7 is a view showing a PCM capsule applied to a battery module according to an embodiment of the present invention.
  • FIG. 8 is a perspective view showing a battery module according to another embodiment of the present invention.
  • FIG. 9 is a view showing a cross-section taken along line B-B 'of FIG. 8.
  • FIG. 10 is a view showing a PCM capsule applied to a battery module according to another embodiment of the present invention.
  • FIG. 2 is a perspective view showing a battery module according to an embodiment of the present invention.
  • a battery module includes a plurality of battery cells 10, a plurality of cell cartridges 20, and a plurality of PCM capsules 30.
  • a pouch type battery cell may be applied as the battery cell 10.
  • Each battery cell 10 is fixed by a pair of cell cartridges 20 disposed on the upper and lower portions, respectively.
  • the cell cartridge 20 has a shape of a substantially rectangular rim, and accommodates the battery cell 10 in a space formed inside the rim.
  • the cell cartridge 20 is fixed in the upper and lower portions of the battery cells 10 by being paired in pairs and disposed on the upper and lower portions of one battery cell 10, respectively.
  • the PCM capsule 30 is disposed inside the cell cartridge 20 and through the through hole formed in the cell cartridge 20, one end thereof may contact the battery cell 10, and the other side The end may be exposed outside of the battery module.
  • PCM phase change material
  • FIG 3 is a perspective view showing a battery cell applied to a battery module according to an embodiment of the present invention.
  • the battery cell 10 includes an electrode assembly (not shown), a cell case 11 and an electrode lead 14.
  • the case where the battery cell 10 is a pouch type battery cell will be described as an example.
  • the electrode assembly has a form of a laminate formed by stacking one or more of the anode, the cathode, and a separator interposed therebetween sequentially, or a form in which the laminate is wound.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer coated on at least one side of the positive electrode current collector.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer coated on at least one surface of the negative electrode current collector.
  • the separator may be made of a material having porosity so that cations and anions can pass between the separator and move between the anode and the cathode.
  • the cell case 11 is made of a pouch film in which a resin layer / metal layer / resin layer is sequentially stacked, and a seal extending outward from the periphery of the accommodating portion 12 and the accommodating portion 12 accommodating the electrode assembly. Part 13 is included. Before the sealing portion 13 is formed by heat fusion or the like, an electrolyte is injected into the cell case 11 together with an electrode assembly.
  • the electrode lead 14 is connected to an electrode tab (not shown) formed in the electrode assembly, and is drawn out of the cell case 11 through the sealing portion 13.
  • the electrode lead 14 is provided with a pair, one of which is a positive lead connected to the positive electrode tab, and the other corresponds to a negative electrode lead connected to the negative electrode tab.
  • FIG. 4 and 5 are perspective views showing a cell cartridge applied to a battery module according to an embodiment of the present invention.
  • 6 is a cross-sectional view taken along line A-A 'in FIG. 2.
  • the cell cartridge 20 the main frame 21 having a substantially rectangular rim (rectangular rim) form and the rim from the inner surface of the main frame 21 (rim) It includes a sub-frame 22 formed toward the inside of the.
  • the main frame 21 has a size and shape corresponding to the battery cell 10 to accommodate the battery cell 10.
  • the main frame 21 includes a lead extraction groove 21a that allows the electrode lead 14 provided in the battery cell 10 accommodated inside the rim to be drawn out of the main frame 21.
  • lead-out grooves 21a are formed on the upper and lower surfaces of the main frame 21, respectively. Accordingly, when a pair of cell cartridges 20 are stacked in a mating form, lead lead-out grooves 21a formed in the lower surface of the cell cartridges 20 located at the top and cell cartridges 20 located at the bottom are formed. Lead lead-out grooves 21a formed on the upper surface of the occlusal form an slit through which the electrode lead 14 can be drawn.
  • the sub-frame 22 has a size and shape corresponding to the accommodating portion 13 to accommodate the accommodating portion 13 of the battery cell 10. That is, the sub-frame 22 has a smaller rectangular rim shape compared to the main frame 21 described above.
  • the sealing portion 13 of the battery cell 10 is seated on the upper surface 22a and the lower surface 22b of the sub-frame 22. That is, the sealing portion 13 of the battery cell 10 disposed on the upper portion of the cell cartridge 20 is seated on the upper surface 22a of the sub-frame 22, the battery disposed on the lower portion of the cell cartridge 20 The sealing portion 13 of the cell 10 is seated on the lower surface 22b of the sub frame 22.
  • the sealing portion 13 of the battery cell 10 accommodated therebetween is a cell cartridge located above the battery cell 10 ( It is fixed between the lower surface 22b of the sub-frame 22 provided in 20) and the upper surface 22a of the sub-frame 22 provided in the cell cartridge 20 located under the battery cell 10.
  • the cell cartridge 20 may be formed of a material such as plastic, silicone, urethane, etc.
  • FIG. 7 is a view showing a PCM capsule applied to a battery module according to an embodiment of the present invention.
  • the PCM capsule 30 may have an approximately elongated cylindrical shape, and is inserted through between the outer and inner surfaces of the cell cartridge 20.
  • the PCM capsule 30 includes a PCM31 and a capsule shell 32 corresponding to the shell that accommodates the PCM 31.
  • the PCM capsule 30 penetrates the cell cartridge 20, one end thereof may directly contact the battery cell 10 accommodated in the cell cartridge 20. Therefore, the PCM capsule 30 may rapidly react to the heat generated by the battery cell 10 and cause a phase change, and the battery cell 10 is quickly taken away from the heat generated in the battery cell 10 through the phase change. The temperature of can be dropped to an appropriate level.
  • the PCM capsule 30 may cause a phase change from a liquid state to a solid state or from a gaseous state to a liquid state.
  • the heat is absorbed to change from a solid state to a liquid state, or from a liquid state to a gaseous state.
  • a material that changes from a liquid state to a solid state or a gas state to a liquid state may be applied while releasing the absorbed heat to the outside.
  • PCM 31 for example, any one selected from the group consisting of inorganic substances in the form of hydrates, paraffinic hydrocarbons, and organic acids, or a mixture of two or more of them may be used.
  • Examples of the hydrate-type inorganic material include NaNH 4 SO 4 ⁇ 2H 2 O, Na 2 SO 4 ⁇ 10H 2 O, Na 2 SiO 3 ⁇ 5H 2 O, Na 3 PO 4 ⁇ 12H 2 O, Na ( CH 3 COO) ⁇ 3H 2 O, NaHPO 4 ⁇ 12H 2 O, K 2 HPO 4 ⁇ 3H 2 O, Fe (NO 3 ) 3 ⁇ 9H 2 O, FeCl 3 ⁇ 2H 2 O, Fe 2 O 3 ⁇ 4SO 4 9H 2 O, Ca (NO 3 ) 2 ⁇ 3H 2 O, CaCl 2 ⁇ 6H 2 O, K 2 HPO 4 ⁇ 3H 2 O and K 3 PO 4 ⁇ 7H 2 O, or any one selected from the group consisting of Mixtures of two or more of them can be used.
  • paraffinic hydrocarbon examples include n-octacoic acid, n-heptacoic acid, n-pentacoic acid, n-tetracoic acid, n-tricoic acid, n-docoic acid, n-henecoic acid, n-eic acid, n -Nonadecane, n-octadecane, n-heptadecane, n-hexadecane, n-pentadecane, n-tetradecane and n-tridecane, or a mixture of two or more of them. Can be.
  • any one selected from the group consisting of n-octanoic acid, tartaric acid, oxalic acid, acetic acid, lactic acid and chloroacetic acid, or a mixture of two or more of them may be used.
  • the capsule shell 32 is a container for receiving the PCM 31, and its thickness is between the outside and the inside of the capsule shell 32 so that the PCM 31 inside can smoothly cause a phase change due to temperature change. If the thickness of the heat transfer can be made smoothly can be selected without limitation.
  • various kinds of resin can be applied, for example, polyethylene, polypropylene, polystyrene, nylon, polycaprolactone, polyethylene terephthalate, polyurethane, gelatin, chitosan, cellulose, poly Any one selected from the group consisting of methyl methacrylate and derivatives thereof or a mixture of two or more of them may be used.
  • the heat generated by the battery cell 10 is absorbed by the PCM 31 in the PCM capsule 30, thereby improving cooling performance through temperature management.
  • a cooling member such as a conventional cooling fin, which can be implemented as a so-called "no cooling structure" battery module.
  • FIG. 8 is a perspective view showing a battery module according to another embodiment of the present invention
  • Figure 9 is a view showing a cross-section taken along the line BB 'of Figure 8
  • Figure 10 is a battery module according to another embodiment of the present invention It is a view showing a PCM capsule applied to.
  • the battery module according to another embodiment of the present invention there is only a difference in the application form of the PCM capsule 40 compared to the battery module according to an embodiment of the present invention described above , And other components are substantially the same. Therefore, in describing a battery module according to another embodiment of the present invention, a description will be given of a part that is different from the battery module according to an embodiment of the present invention described above, and there is no other substantial difference. Duplicate description of the components will be omitted.
  • the PCM capsule 40 is present in a form embedded in the cell cartridge 20 by a method such as insert injection. That is, when the PCM capsule 40 is injected into a mold of a cell cartridge 20 of the present invention by inserting a resin melt such as plastic into a mold, the PCM capsule 40 may be mixed into the resin melt to be inserted and injected.
  • the capsules 40 may have a shape evenly embedded in the cell cartridge 20.
  • the melting point of the capsule shell 42 constituting the PCM capsule 40 is the cell cartridge 20 It is preferable that it is higher compared to the melting point of the resin constituting. This is to prevent the capsule shell 42 from being melted together when the resin melt is made to perform injection using the resin, so that the PCM 41 inside flows out of the capsule shell 42.
  • PCM capsules 40 may be prepared to prevent deformation or performance abnormality even when mixing during silicone and urethane processing, so that they can be applied to products of various shapes. have.
  • the PCM capsule 40 may be formed in a substantially spherical shape having a circular cross section.
  • the shape of the PCM capsule 40 is not limited thereby. That is, the external shape of the PCM capsule 40 is not particularly limited as long as it can be filled with a high density in the cell cartridge 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시예에 따른 배터리 모듈은, 서로 대면하여 적층된 복수의 배터리 셀; 상기 복수의 배터리 셀들을 둘러싸며 적층된 복수의 셀 카트리지; 및 상기 셀 카트리지의 내부에 배치되며 내부에 PCM이 함유된 복수의 PCM 캡슐; 을 포함한다.

Description

냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩
본 발명은, 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩에 관한 것으로서, 좀 더 구체적으로는 셀 카트리지에 구비된 PCM(phase change material) 캡슐을 이용하여 냉각 효율을 향상시킬 수 있도록 구성된 배터리 모듈 및 이를 포함하는 배터리 팩에 관한 것이다. 본 출원은 2018년 9월 11일자로 출원된 대한민국 특허출원 번호 제10-2018-0108559호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 분리막을 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트로 된 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 자동차나 전력저장장치와 같은 중대형 장치에도 이차 전지가 널리 이용되고 있다. 이러한 중대형 장치에 이용되는 경우, 용량 및 출력을 높이기 위해 많은 수의 이차 전지가 전기적으로 연결된다. 특히, 이러한 중대형 장치에는 적층이 용이하다는 장점으로 인해 파우치 타입 셀이 많이 이용된다.
하지만, 파우치 타입 셀은, 일반적으로 알루미늄과 수지가 적층된 구조를 갖는 라미네이트 시트로 된 전지 케이스로 포장되어 있으므로 기계적 강성이 크지 않다. 따라서, 다수의 파우치 타입 셀을 포함하여 배터리 모듈을 구성할 때, 이차 전지를 외부의 충격 등으로부터 보호하고, 그 유동을 방지하며, 적층이 용이하도록 하기 위해, 프레임을 이용하는 경우가 많다.
프레임은 카트리지 등 다른 다양한 용어로 대체될 수 있는데, 보통 중앙 부분이 비어 있는 사각 플레이트 형태로 구성되는 경우가 많으며, 이때 4개의 변 부분이 파우치 타입 셀의 외주부를 감싸도록 구성된다. 그리고, 이러한 프레임은 배터리 모듈을 구성하기 위해 다수가 적층된 형태로 이용되며, 파우치 타입 셀은 프레임이 적층되었을 때 생기는 내부의 빈 공간에 위치할 수 있다.
한편, 도 1을 참조하면, 종래의 배터리 모듈 구조가 나타나 있다. 이와 같은 종래의 배터리 모듈 구조는, 다수의 프레임(2)을 이용하여 다수의 파우치 타입 셀(1)이 적층되도록 하는 경우, 한 쌍의 파우치 타입 셀(1) 각각의 외측면 상에 플레이트 형태의 냉각핀(3)을 적용함으로써 냉각 효율을 높인다.
이차 전지는 여름과 같이 고온 환경에서 사용되는 경우가 있을 수 있으며, 또한 이차 전지 자체적으로도 열이 발생할 수 있다. 이때, 다수의 이차 전지가 서로 적층되어 있는 경우, 이차 전지의 온도는 더욱 높아질 수 있는데, 이 온도가 적정 온도보다 높아지면 이차 전지의 성능이 저하될 수 있고, 심한 경우 폭발이나 발화의 위험도 있다. 따라서, 배터리 모듈을 구성할 때 파우치 타입 셀(1)의 면과 접촉하도록 냉각핀(3)을 적용하고 이러한 냉각핀(3)이 그 하부에 위치한 냉각 플레이트(4)와 접촉하도록 함으로써 배터리 모듈의 전체적인 온도 상승이 방지되도록 하는 구조가 많이 이용된다.
그러나, 통상적으로 금속 재질로 구성되는 이러한 냉각핀(3)을 대면하는 파우치 타입 셀(1) 사이마다 개재시켜 배터리 모듈을 구성하는 경우, 파우치 타입 셀(1)들과 냉각핀(3)을 적층/고정시키는 공정에 시간이 많이 소요되어 생산성이 저하되고, 또한 냉각핀(3)만으로는 충분한 냉각 효과를 얻기 어렵다는 문제점이 있다.
또한, 대면하는 파우치 타입 셀(1) 사이마다 냉각핀(3)을 개재시키는 경우, 냉각핀(3)의 두께로 인해 필연적으로 배터리 모듈의 부피가 증가하게 되어 에너지 밀도의 측면에서 손해가 발생할 수 밖에 없다.
따라서, 이러한 공정 상의 문제를 해소하고, 또한 우수한 냉각 효과를 가지면서도 에너지 밀도의 측면에서 손실이 발생하지 않는 배터리 모듈 구조에 대한 개발이 절실히 요구되는 실정이다.
본 발명은, 상술한 문제점을 고려하여 창안된 것으로서, 냉각핀과 같이 배터리 모듈의 부피를 증가시키는 냉각 부재의 적용을 생략하고 셀 카트리지 내에 냉각 효과를 향상시킬 수 있는 PCM 캡슐을 적용함으로써 냉각효과를 향상시키면서도, 에너지 밀도의 측면에서 손실이 발생하는 것을 방지하는 것을 일 목적으로 한다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 배터리 모듈은, 서로 대면하여 적층된 복수의 배터리 셀; 상기 복수의 배터리 셀들을 둘러싸며 적층된 복수의 셀 카트리지; 및 상기 셀 카트리지의 내부에 배치되며 내부에 PCM이 함유된 복수의 PCM 캡슐; 을 포함한다.
상기 배터리 셀은, 전극 조립체; 상기 전극 조립체를 수용하는 수용부 및 상기 수용부 둘레로부터 외측으로 연장되는 실링부를 포함하는 셀 케이스; 및 상기 전극 조립체와 연결되며, 상기 셀 케이스의 실링부를 통해 외부로 인출되는 전극 리드; 를 포함할 수 있다.
상기 셀 카트리지는, 사각 림(rectangular rim) 형태의 메인 프레임; 및 상기 메인 프레임의 내측면으로부터 연장되어 형성되며, 상기 메인 프레임보다 작은 사각 림 형태를 갖는 서브 프레임; 을 포함할 수 있다.
상기 메인 프레임은, 상기 배터리 셀을 수용할 수 있도록 상기 배터리 셀과 대응되는 크기 및 형상을 가질 수 있다.
상기 서브 프레임은, 상기 수용부를 수용할 수 있도록 상기 수용부와 대응되는 크기 및 형상을 가질 수 있다.
상기 실링부의 상면은 상기 배터리 셀의 상부로부터 결합되는 셀 카트리지에 구비된 서브 프레임의 하면에 안착되고, 상기 실링부의 하면은 상기 배터리 셀의 하부로부터 결합되는 셀 카트리지에 구비된 서브 프레임의 상면에 안착될 수 있다.
상기 PCM 캡슐은, 상기 셀 카트리지의 외측면과 내측면 사이를 관통하여 삽입될 수 있다.
상기 PCM 캡슐은, 그 일측 단부가 상기 배터리 셀과 접촉하며, 그 타측 단부는 상기 배터리 모듈의 외측으로 노출될 수 있다.
상기 PCM 캡슐은, PCM; 및 상기 PCM을 수용하는 캡슐 외피; 를 포함할 수 있다.
상기 PCM 캡슐은, 상기 셀 카트리지를 이루는 수지와 함께 인서트 사출되어 상기 셀 카트리지 내에 위치할 수 있다.
상기 캡슐 외피는, 상기 셀 카트리지를 이루는 수지와 비교하여 더 높은 용융점을 가질 수 있다.
한편, 상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 배터리 팩은, 상술한 본 발명의 일 실시예에 따른 배터리 모듈을 복수개 포함한다.
본 발명의 일 측면에 따르면, 냉각핀과 같이 배터리 모듈의 부피를 증가시키는 냉각 부재의 적용을 생략하고 셀 카트리지 내에 냉각 효과를 향상시킬 수 있는 PCM 캡슐을 적용함으로써 냉각효과를 향상시키면서도, 에너지 밀도의 측면에서 손실이 발생하는 것을 방지할 수 있게 된다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 냉각핀이 적용된 종래의 배터리 모듈 구조를 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 배터리 모듈을 나타내는 사시도이다.
도 3은 본 발명의 일 실시예에 따른 배터리 모듈에 적용되는 배터리 셀을 나타내는 사시도이다.
도 4 및 도 5는 본 발명의 일 실시예에 따른 배터리 모듈에 적용되는 셀 카트리지를 나타내는 사시도들이다.
도 6은 도 2의 A-A' 선을 따라 절단한 단면을 나타내는 도면이다.
도 7은 본 발명의 일 실시예에 따른 배터리 모듈에 적용되는 PCM 캡슐을 나타내는 도면이다.
도 8은 본 발명의 다른 실시예에 따른 배터리 모듈을 나타내는 사시도이다.
도 9는 도 8의 B-B' 선을 따라 절단한 단면을 나타내는 도면이다.
도 10은 본 발명의 다른 실시예에 따른 배터리 모듈에 적용되는 PCM 캡슐을 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
먼저, 도 2를 참조하여 본 발명의 일 실시예에 따른 배터리 모듈의 개략적인 구조에 대해서 설명하기로 한다.
도 2는 본 발명의 일 실시예에 따른 배터리 모듈을 나타내는 사시도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 배터리 모듈은 복수의 배터리 셀(10), 복수의 셀 카트리지(20) 및 복수의 PCM 캡슐(30)을 포함한다.
상기 배터리 셀(10)로는, 예를 들어 파우치 타입 배터리 셀이 적용될 수 있다. 각각의 배터리 셀(10)은, 그 상부와 하부에 각각 배치되는 한 쌍의 셀 카트리지(20)에 의해 고정된다.
상기 셀 카트리지(20)는, 대략 사각 림(rectangular rim) 형태를 가지며, 림 내부에 형성되는 공간에 배터리 셀(10)을 수용한다. 상기 셀 카트리지(20)는, 한 쌍이 한 조가 되어 하나의 배터리 셀(10)의 상부 및 하부에 각각 배치됨으로써 배터리 셀(10)을 그 상부 및 하부에서 고정시킨다.
상기 PCM 캡슐(30)은, 셀 카트리지(20)를 관통하여 그 내부에 배치되며, 셀 카트리지(20)에 형성된 관통 홀을 통해 그 일측 단부는 배터리 셀(10)과 접촉할 수 있으며, 그 타측 단부는 배터리 모듈의 외측으로 노출될 수 있다. 이러한 PCM 캡슐(30)은, 후술할 바와 같이, 내부에 PCM(phase change material)을 함유하는 것으로서, PCM의 상변화를 통해 배터리 셀(10)로부터 발생된 열을 빼앗아 외부로 방출시킨다.
다음은, 도 3을 참조하여, 본 발명에 적용되는 배터리 셀(10)에 대해서 구체적으로 설명하기로 한다.
도 3은 본 발명의 일 실시예에 따른 배터리 모듈에 적용되는 배터리 셀을 나타내는 사시도이다.
도 3을 참조하면, 상기 배터리 셀(10)은 전극 조립체(미도시), 셀 케이스(11) 및 전극 리드(14)를 포함한다. 본 명세서에서는 상기 배터리 셀(10)이 파우치 타입 배터리 셀인 경우를 예로 들어 설명하기로 한다.
도면에 도시되지는 않았으나, 상기 전극 조립체는, 양극, 음극 그리고 이들 사이에 개재되는 분리막이 순차적으로 1회 이상 적층되어 형성된 적층체 형태 또는 이러한 적층체가 권취된 형태를 갖는다.
상기 양극은 양극 집전체 및 양극 집전체의 적어도 일 면 상에 코팅된 양극 활물질 층을 포함한다. 상기 음극은, 음극 집전체 및 음극 집전체의 적어도 일 면 상에 코팅된 음극 활물질 층을 포함한다. 상기 분리막은, 양이온 및 음이온이 분리막을 통과하여 양극과 음극 사이를 이동할 수 있도록 다공성을 갖는 재질로 이루어질 수 있다.
상기 셀 케이스(11)는, 수지층/금속층/수지층이 순차적으로 적층된 파우치 필름으로 이루어지며, 전극 조립체를 수용하는 수용부(12) 및 수용부(12)의 둘레로부터 외측으로 연장되는 실링부(13)를 포함한다. 열융착 등에 의해 상기 실링부(13)가 형성되기에 앞서 셀 케이스(11) 내부에는 전극 조립체와 함께 전해질이 주입된다.
상기 전극 리드(14)는, 전극 조립체에 형성된 전극탭(미도시)에 연결되며, 실링부(13)를 통해 셀 케이스(11)의 외부로 인출된다. 상기 전극 리드(14)는 한 쌍이 구비되며, 하나는 양극탭과 연결되는 양극 리드, 나머지 하나는 음극탭과 연결되는 음극 리드에 해당한다.
본 발명의 도면에서는 한 쌍의 전극 리드(14)가 서로 반대 방향으로 인출된 경우만을 도시하고 있으나, 이는 배터리 셀(10)의 예시적인 형태이며, 이와는 달리 한 쌍의 전극 리드(14)가 동일한 방향으로 인출될 수도 있는 것이다.
다음은, 도 2와 함께 도 4 내지 도 6을 참조하여, 본 발명에 적용되는 셀 카트리지(20)에 대해서 상세히 설명하기로 한다.
도 4 및 도 5는 본 발명의 일 실시예에 따른 배터리 모듈에 적용되는 셀 카트리지를 나타내는 사시도들이다. 또한, 도 6은 도 2의 A-A' 선을 따라 절단한 단면을 나타내는 도면이다.
도 2와 함께 도 4 내지 도 6을 참조하면, 상기 셀 카트리지(20)는, 대략 사각 림(rectangular rim)형태를 갖는 메인 프레임(21)과 메인 프레임(21)의 내측면으로부터 림(rim)의 내측을 향해 연장 형성된 서브 프레임(22)을 포함한다.
상기 메인 프레임(21)은, 배터리 셀(10)을 수용할 수 있도록 배터리 셀(10)과 대응되는 크기 및 형상을 갖는다. 상기 메인 프레임(21)은, 림의 내부에 수용된 배터리 셀(10)에 구비된 전극 리드(14)가 메인 프레임(21)의 외측으로 인출될 수 있도록 하는 리드 인출 홈(21a)을 구비한다.
이러한 리드 인출 홈(21a)은 메인 프레임(21)의 상면과 하면에 각각 형성된다. 이에 따라 한 쌍의 셀 카트리지(20)가 서로 정합된 형태로 적층되었을 때, 상부에 위치하는 셀 카트리지(20)의 하면에 형성되는 리드 인출 홈(21a)과 하부에 위치하는 셀 카트리지(20)의 상면에 형성되는 리드 인출 홈(21a)이 교합되어 전극 리드(14)가 인출될 수 있는 하나의 슬릿을 형성한다.
상기 서브 프레임(22)은, 배터리 셀(10)의 수용부(13)를 수용할 수 있도록 수용부(13)와 대응되는 크기 및 형상을 갖는다. 즉, 상기 서브 프레임(22)은 앞서 설명한 메인 프레임(21)과 비교하여 좀 더 작은 직사각 림 형태를 갖는다.
상기 서브 프레임(22)의 상면(22a) 및 하면(22b)에는 배터리 셀(10)의 실링부(13)가 안착된다. 즉, 상기 셀 카트리지(20)의 상부에 배치되는 배터리 셀(10)의 실링부(13)는 서브 프레임(22)의 상면(22a)에 안착되고, 셀 카트리지(20)의 하부에 배치되는 배터리 셀(10)의 실링부(13)는 서브 프레임(22)의 하면(22b)에 안착된다.
또한, 한 쌍의 셀 카트리지(20)가 정합된 형태로 적층된 경우, 그 사이에 수용되는 배터리 셀(10)의 실링부(13)는, 배터리 셀(10)의 상부에 위치하는 셀 카트리지(20)에 구비된 서브 프레임(22)의 하면(22b)과 배터리 셀(10)의 하부에 위치하는 셀 카트리지(20)에 구비된 서브 프레임(22)의 상면(22a) 사이에 고정된다.
셀 카트리지(20)는 플라스틱, 실리콘, 우레탄 등의 재료로 형성할 수 있다.다음은, 도 2 및 도 6과 함께 도 7을 참조하여, 본 발명에 적용되는 PCM 캡슐(30)에 대해서 상세히 설명하기로 한다.
도 7은 본 발명의 일 실시예에 따른 배터리 모듈에 적용되는 PCM 캡슐을 나타내는 도면이다.
도 2 및 도 6과 함께 도 7을 참조하면, 상기 PCM 캡슐(30)은, 대략 길다란 원통형의 외형을 가질 수 있으며, 셀 카트리지(20)의 외측면과 내측면 사이를 관통하여 삽입된다. 상기 PCM 캡슐(30)은, PCM31) 및 PCM(31)을 수용하는 외피에 해당하는 캡슐 외피(32)를 포함한다.
상기 PCM 캡슐(30)은, 셀 카트리지(20)를 관통하므로 그 일측 단부가 셀 카트리지(20) 내에 수용된 배터리 셀(10)과 직접 접촉할 수 있다. 따라서, 상기 PCM 캡슐(30)은, 배터리 셀(10)의 발열에 빠르게 반응하여 상변화를 일으킬 수 있고, 이러한 상변화를 통해 배터리 셀(10)에서 발생된 열을 신속히 빼앗아 배터리 셀(10)의 온도를 적정 수준으로 떨어뜨릴 수 있다.
또한, 상기 PCM 캡슐(30)의 타측 단부는 셀 카트리지(20)에 형성된 관통 홀을 통해 외측으로 노출되어 있으므로 배터리 셀(10)로부터 빼앗은 열을 외부로 신속히 방출할 수 있으며, 이러한 열 방출 과정에서 PCM 캡슐(30)은, 액체 상태에서 고체 상태로 또는 기체 상태에서 액체 상태로 상변화를 일으킬 수 있다.
상기 PCM(31)으로는, 예를 들어, 배터리 셀(10)의 발열로 인해 주변의 온도가 일정 수준 이상이 되면 열을 흡수함으로써 고체 상태에서 액체 상태로 변하거나 또는 액체 상태에서 기체 상태로 변하고, 또한 흡수된 열을 외부로 방출하면서 다시 액체 상태에서 고체 상태로 변하거나 또는 기체 상태에서 액체 상태로 변하는 물질이 적용될 수 있다.
이러한 PCM(31)으로는, 예를 들어, 수화물 형태의 무기물, 파라핀계 탄화수소 및 유기산으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 이용될 수 있다.
상기 수화물 형태의 무기물로는, 예를 들어, NaNH 4SO 4·2H 2O, Na 2SO 4·10H 2O, Na 2SiO 3·5H 2O, Na 3PO 4·12H 2O, Na(CH 3COO)·3H 2O, NaHPO 4·12H 2O, K 2HPO 4·3H 2O, Fe(NO 3) 3·9H 2O, FeCl 3·2H 2O, Fe 2O 3·4SO 4·9H 2O, Ca(NO 3) 2·3H 2O, CaCl 2·6H 2O, K 2HPO 4·3H 2O 및 K 3PO 4·7H 2O로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 이용될 수 있다.
상기 파라핀계 탄화수소로는, n-옥타코산, n-헵타코산, n-펜타코산, n-테트라코산, n-트리코산, n-도코산, n-헤네이코산, n-에이코산, n-노나데칸, n-옥타데칸, n-헵타데칸, n-헥사데칸, n-펜타데칸, n-테트라데칸 및 n-트리데칸으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 이용될 수 있다.
또한, 상기 유기산으로는, n-옥타노익산, 타르타르산, 옥살산, 아세트산, 유산 및 클로로아세트산으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 이용될 수 있다.
상기 캡슐 외피(32)는, PCM(31)을 수용하는 용기로서, 그 두께는 내부의 PCM(31)이 온도 변화에 따른 상변화를 원활히 일으킬 수 있도록 캡슐 외피(32)의 외부와 내부 사이에서의 열전달이 원활하게 이루어질 수 있는 두께라면 제한 없이 선택 가능하다.
한편, 상기 캡슐 외피(32)로는, 다양한 종류의 수지가 적용될 수 있으며, 예를 들어, 폴리에틸렌, 폴리프로필렌, 폴리스타이렌, 나일론, 폴리카프로락톤, 폴리에틸렌테레프탈레이트, 폴리우레탄, 젤라틴, 키토산, 셀룰로오스, 폴리메틸메타크릴레이트 및 이들의 유도체로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 이용될 수 있다.
이와 같이, 본 발명에 따르면 배터리 셀(10)에서 발생되는 열을 PCM 캡슐(30) 안의 PCM(31)이 흡수하여, 온도 관리를 통한 냉각 성능 향상이 가능하다. 또한, PCM 캡슐(30)의 적용량 조절에 따라서는 종래의 냉각핀과 같은 냉각 부재의 적용을 생략할 수 있어, 이른바 "무냉각 구조"의 배터리 모듈로 구현할 수 있다.
다음은, 도 8 내지 도 10을 참조하여, 본 발명의 다른 실시예에 따른 배터리 모듈에 대해서 설명하기로 한다.
도 8은 본 발명의 다른 실시예에 따른 배터리 모듈을 나타내는 사시도이고, 도 9는 도 8의 B-B' 선을 따라 절단한 단면을 나타내는 도면이며, 도 10은 본 발명의 다른 실시예에 따른 배터리 모듈에 적용되는 PCM 캡슐을 나타내는 도면이다.
도 8 내지 도 10을 참조하면, 본 발명의 다른 실시예에 따른 배터리 모듈은, 앞서 설명한 본 발명의 일 실시예에 따른 배터리 모듈과 비교하여 PCM 캡슐(40)의 적용 형태에 있어서 차이가 있을 뿐, 그 밖의 다른 구성요소들은 실질적으로 동일하다. 따라서, 본 발명의 다른 실시예에 따른 배터리 모듈을 설명함에 있어서는, 앞서 설명한 본 발명의 일 실시예에 따른 배터리 모듈과 차이가 있는 부분에 대해서 중점적으로 설명하기로 하며, 그 밖에 실질적인 차이가 없는 나머지 구성요소들에 대해서는 중복되는 설명을 생략하기로 한다.
본 발명의 다른 실시예에 따른 배터리 모듈의 경우, PCM 캡슐(40)이, 예를 들어 인서트 사출 등의 방식에 의해 셀 카트리지(20) 내에 박혀 있는 형태로 존재한다. 즉, 상기 PCM 캡슐(40)은, 플라스틱과 같은 수지 용융물을 몰드(mold)에 넣어 본 발명의 셀 카트리지(20) 형태로 사출할 때, 수지 용융물 안에 섞여 인서트 사출될 수 있으며, 이로써 복수의 PCM 캡슐(40)들은 셀 카트리지(20) 내에 고루 박혀 있는 형태를 가질 수 있다.
이와 같이 PCM 캡슐(40)이 셀 카트리지(20) 내에 위치하는 경우, 셀 카트리지(20) 전체 영역에서 고르게 열의 흡수 및 방출이 신속히 이루어질 수 있게 된다.
한편, 이와 같이, 인서트 사출에 의해 셀 카트리지(20) 내에 PCM 캡슐(40)이 박혀 있는 형태를 만들어 내기 위해서는, PCM 캡슐(40)을 구성하는 캡슐 외피(42)의 용융점이 셀 카트리지(20)를 이루는 수지의 용융점과 비교하여 더 높은 것이 바람직하다. 이는, 수지를 이용한 사출을 수행하기 위해 수지 용융물을 만들 때, 캡슐 외피(42)도 함께 용융되어 내부의 PCM(41)이 캡슐 외피(42)의 외부로 흘러 나오는 것을 방지하기 위함이다.
또한, 셀 카트리지(20)가 실리콘이나 우레탄으로 형성되는 경우에도 PCM 캡슐(40)들은 실리콘 및 우레탄 가공시 혼합해도 변형 또는 성능 이상이 발생하지 않도록 준비해서 다양한 형상의 제품에 적용이 가능하게끔 할 수 있다.
한편, 상기 PCM 캡슐(40)은, 앞선 실시예에서 적용된 PCM 캡슐(30)과는 달리 그 단면이 원형인 대략 구 형태로 형성될 수 있다. 다만, 이로써 상기 PCM 캡슐(40)의 형상이 제한되는 것은 아니다. 즉, 상기 PCM 캡슐(40)의 외형은, 셀 카트리지(20) 내에 높은 밀도로 채워질 수 있는 형상이라면 특별히 그 형태가 제한되는 것은 아니다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (15)

  1. 서로 대면하여 적층된 복수의 배터리 셀;
    상기 복수의 배터리 셀들을 둘러싸며 적층된 복수의 셀 카트리지; 및
    상기 셀 카트리지의 내부에 배치되며 내부에 PCM(phase change material)이 함유된 복수의 PCM 캡슐;
    을 포함하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 배터리 셀은,
    전극 조립체;
    상기 전극 조립체를 수용하는 수용부 및 상기 수용부 둘레로부터 외측으로 연장되는 실링부를 포함하는 셀 케이스; 및
    상기 전극 조립체와 연결되며, 상기 셀 케이스의 실링부를 통해 외부로 인출되는 전극 리드;
    를 포함하는 것을 특징으로 하는 배터리 모듈.
  3. 제2항에 있어서,
    상기 셀 카트리지는,
    사각 림 형태의 메인 프레임; 및
    상기 메인 프레임의 내측면으로부터 연장되어 형성되며, 상기 메인 프레임보다 작은 사각 림 형태를 갖는 서브 프레임;
    을 포함하는 것을 특징으로 하는 배터리 모듈.
  4. 제3항에 있어서,
    상기 메인 프레임은,
    상기 배터리 셀을 수용할 수 있도록 상기 배터리 셀과 대응되는 크기 및 형상을 갖는 것을 특징으로 하는 배터리 모듈.
  5. 제4항에 있어서,
    상기 서브 프레임은,
    상기 수용부를 수용할 수 있도록 상기 수용부와 대응되는 크기 및 형상을 갖는 것을 특징으로 하는 배터리 모듈.
  6. 제5항에 있어서,
    상기 배터리 셀 각각은 그 상부와 하부에 각각 배치되는 한 쌍의 상기 셀 카트리지에 의해 고정되는 것을 특징으로 하는 배터리 모듈.
  7. 제5항에 있어서,
    상기 실링부의 상면은, 상기 배터리 셀의 상부로부터 결합되는 셀 카트리지에 구비된 서브 프레임의 하면에 안착되고,
    상기 실링부의 하면은, 상기 배터리 셀의 하부로부터 결합되는 셀 카트리지에 구비된 서브 프레임의 상면에 안착되는 것을 특징으로 하는 배터리 모듈.
  8. 제1항에 있어서,
    상기 PCM 캡슐은,
    상기 셀 카트리지의 외측면과 내측면 사이를 관통하여 삽입되는 것을 특징으로 하는 배터리 모듈.
  9. 제8항에 있어서,
    상기 PCM 캡슐은,
    그 일측 단부가 상기 배터리 셀과 접촉하며, 그 타측 단부는 상기 배터리 모듈의 외측으로 노출되는 것을 특징으로 하는 배터리 모듈.
  10. 제8항에 있어서,
    상기 PCM 캡슐은 원통형 외형을 가지는 것을 특징으로 하는 배터리 모듈.
  11. 제1항에 있어서,
    상기 PCM 캡슐은,
    PCM; 및
    상기 PCM을 수용하는 캡슐 외피;
    를 포함하는 것을 특징으로 하는 배터리 모듈.
  12. 제1항에 있어서,
    상기 PCM 캡슐은,
    상기 셀 카트리지를 이루는 수지와 함께 인서트 사출되어 상기 셀 카트리지 내에 위치하는 것을 특징으로 하는 배터리 모듈.
  13. 제12항에 있어서,
    상기 캡슐 외피는,
    상기 셀 카트리지를 이루는 수지와 비교하여 더 높은 용융점을 갖는 것을 특징으로 하는 배터리 모듈.
  14. 제12항에 있어서,
    상기 PCM 캡슐은 구 형태로 형성된 것을 특징으로 하는 배터리 모듈.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 배터리 모듈을 복수개 포함하는 배터리 팩.
PCT/KR2019/010868 2018-09-11 2019-08-26 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩 WO2020055004A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980014540.6A CN111742443A (zh) 2018-09-11 2019-08-26 具有提高的冷却效率的电池模块及包括电池模块的电池组
EP19859738.7A EP3780255B1 (en) 2018-09-11 2019-08-26 Battery module with enhanced cooling efficiency, and battery pack comprising same
JP2020545093A JP7055890B2 (ja) 2018-09-11 2019-08-26 冷却効率が向上したバッテリーモジュール及びそれを含むバッテリーパック
US16/979,402 US11509009B2 (en) 2018-09-11 2019-08-26 Battery module with enhanced cooling efficiency, and battery pack comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180108559A KR102329343B1 (ko) 2018-09-11 2018-09-11 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩
KR10-2018-0108559 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020055004A1 true WO2020055004A1 (ko) 2020-03-19

Family

ID=69778594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010868 WO2020055004A1 (ko) 2018-09-11 2019-08-26 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩

Country Status (6)

Country Link
US (1) US11509009B2 (ko)
EP (1) EP3780255B1 (ko)
JP (1) JP7055890B2 (ko)
KR (1) KR102329343B1 (ko)
CN (1) CN111742443A (ko)
WO (1) WO2020055004A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540677A (zh) * 2020-04-13 2021-10-22 三星Sdi株式会社 电池模块
US20210384567A1 (en) * 2020-06-03 2021-12-09 Wisk Aero Llc Battery with selective phase change features

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11599166B2 (en) * 2020-07-16 2023-03-07 Lenovo (Singapore) Pte. Ltd. Shape-memory heat absorbers
EP4309228A2 (en) 2021-09-27 2024-01-24 QuantumScape Battery, Inc. Electrochemical stack and method of assembly thereof
CN114243164B (zh) * 2021-11-19 2024-04-26 中国民用航空飞行学院 电池安全防护组件、系统和方法
WO2024040136A1 (en) * 2022-08-16 2024-02-22 Guy Leath Gettle Coating for enhancing convective heat transfer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070025417A (ko) * 2005-09-02 2007-03-08 주식회사 엘지화학 자가 온도제어 기능을 가진 전지팩
KR20140004830A (ko) * 2012-07-02 2014-01-14 주식회사 엘지화학 전지셀 냉각 부재
KR20140024600A (ko) * 2012-08-20 2014-03-03 주식회사 엘지화학 상변화 물질을 포함하는 리튬이온 이차전지 셀 및 모듈
KR20140086067A (ko) * 2012-12-28 2014-07-08 주식회사 엘지화학 배터리 모듈 및 이에 적용되는 배터리 셀
KR20160108987A (ko) * 2015-03-09 2016-09-21 주식회사 엘지화학 상변화 물질을 적용한 배터리 팩
KR20180108559A (ko) 2016-01-21 2018-10-04 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905392B1 (ko) 2006-04-03 2009-06-30 주식회사 엘지화학 이중 온도조절 시스템의 전지팩
JP5448116B2 (ja) 2009-04-01 2014-03-19 エルジー・ケム・リミテッド 向上させた安全性を有するバッテリーモジュール
EP2273162B1 (de) 2009-07-06 2019-01-09 Carl Freudenberg KG Dichtungsrahmen zur Verwendung in einer Batterie
KR101058102B1 (ko) 2009-12-18 2011-08-24 에스비리모티브 주식회사 배터리 팩
US8927131B2 (en) * 2011-04-07 2015-01-06 GM Global Technology Operations LLC Battery thermal interfaces with microencapsulated phase change materials for enhanced heat exchange properties
KR101261925B1 (ko) 2011-09-29 2013-05-08 현대자동차주식회사 상전이 물질을 충진한 배터리 패키지 및 이를 이용한 배터리
KR101437842B1 (ko) * 2012-07-10 2014-09-04 한국철도기술연구원 가변형 시스템 거푸집을 이용한 저심도 터널 구조물 시공방법
CN104227913A (zh) * 2013-06-17 2014-12-24 英业达科技有限公司 电子装置壳体的形成方法及所制成的电子装置壳体结构
DE102014204245A1 (de) * 2014-03-07 2015-09-10 Robert Bosch Gmbh Energiespeichereinheit mit einer Mehrzahl von galvanischen Zellen, Batteriezelle für eine solche Energiespeichereinheit und Verfahren zur Herstellung der Batteriezelle
CN104617352B (zh) * 2015-01-28 2017-04-19 中国科学院工程热物理研究所 一种内置式电动汽车车用电池包散热方法及装置
US10003053B2 (en) * 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
KR102047484B1 (ko) 2015-06-09 2019-11-21 주식회사 엘지화학 냉각 효율이 향상된 매니폴드 및 이를 포함하는 배터리팩
CN105655666B (zh) * 2016-03-25 2018-02-27 浙江大学 一种用于智慧能源网的储能式新能源电池保护系统及其方法
CN205621820U (zh) * 2016-05-18 2016-10-05 宁波大学 一种基于相变材料的动力电池散热系统
KR101966183B1 (ko) 2016-05-30 2019-04-08 주식회사 아모그린텍 방열 카트리지 및 이를 이용한 전기자동차용 전지팩
KR102184169B1 (ko) 2016-08-26 2020-11-27 주식회사 엘지화학 배터리 모듈
CN106602171B (zh) * 2016-12-22 2019-04-26 中国矿业大学 一种相变材料/空气耦合的阶级式电池热管理系统
KR102208720B1 (ko) 2017-01-05 2021-01-28 주식회사 엘지화학 상변화물질(pcm) 캡슐을 적용한 배터리 냉각용 히트 싱크

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070025417A (ko) * 2005-09-02 2007-03-08 주식회사 엘지화학 자가 온도제어 기능을 가진 전지팩
KR20140004830A (ko) * 2012-07-02 2014-01-14 주식회사 엘지화학 전지셀 냉각 부재
KR20140024600A (ko) * 2012-08-20 2014-03-03 주식회사 엘지화학 상변화 물질을 포함하는 리튬이온 이차전지 셀 및 모듈
KR20140086067A (ko) * 2012-12-28 2014-07-08 주식회사 엘지화학 배터리 모듈 및 이에 적용되는 배터리 셀
KR20160108987A (ko) * 2015-03-09 2016-09-21 주식회사 엘지화학 상변화 물질을 적용한 배터리 팩
KR20180108559A (ko) 2016-01-21 2018-10-04 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780255A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540677A (zh) * 2020-04-13 2021-10-22 三星Sdi株式会社 电池模块
US20210384567A1 (en) * 2020-06-03 2021-12-09 Wisk Aero Llc Battery with selective phase change features
WO2021247778A1 (en) * 2020-06-03 2021-12-09 Wisk Aero Llc Battery with selective phase change features
US12021213B2 (en) 2020-06-03 2024-06-25 Wisk Aero Llc Battery with selective phase change features

Also Published As

Publication number Publication date
KR20200029940A (ko) 2020-03-19
US20210083342A1 (en) 2021-03-18
EP3780255B1 (en) 2024-05-22
JP7055890B2 (ja) 2022-04-18
US11509009B2 (en) 2022-11-22
KR102329343B1 (ko) 2021-11-18
CN111742443A (zh) 2020-10-02
EP3780255A4 (en) 2021-06-02
JP2021515961A (ja) 2021-06-24
EP3780255A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2020055004A1 (ko) 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩
CN216872114U (zh) 电池和用电设备
WO2015122667A1 (ko) 실링부에 홈을 포함하고 있는 파우치형 이차전지
WO2014148858A1 (ko) 에너지 밀도가 향상된 이차전지
WO2014137112A1 (ko) 단차 구조를 포함하는 전지셀
WO2015186912A1 (ko) 이차 전지용 프레임 및 이를 포함하는 배터리 모듈
WO2014038891A1 (ko) 이차전지
WO2020022643A1 (ko) 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩
WO2019235724A1 (ko) 개선된 냉각 구조를 갖는 배터리 모듈
WO2017039181A1 (ko) 이차 전지용 카트리지
WO2019078449A1 (ko) 가스 배출이 가능한 이차전지용 파우치형 케이스
WO2022005042A1 (ko) 연쇄발화를 방지하는 전지 모듈 제조방법
WO2018048133A1 (ko) 이차전지용 파우치 외장재, 이를 이용한 파우치형 이차전지 및 그 제조 방법
WO2019132290A1 (ko) 개선된 냉각 구조를 갖는 배터리 모듈
US20230411761A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2020251171A1 (ko) 전지 모듈, 그 제조 방법 및 전지 모듈을 포함하는 전지 팩
KR20190069872A (ko) 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩
WO2015065043A1 (ko) 이차 전지용 프레임 및 이를 포함하는 배터리 모듈
WO2020054955A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2023004779A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2022149923A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2023004726A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
WO2023004750A1 (zh) 电池、用电设备、制备电池的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545093

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019859738

Country of ref document: EP

Effective date: 20201030

NENP Non-entry into the national phase

Ref country code: DE