WO2020054849A1 - Lithium-ion secondary battery electrode, lithium-ion secondary battery, and production method for lithium-ion secondary battery electrode - Google Patents

Lithium-ion secondary battery electrode, lithium-ion secondary battery, and production method for lithium-ion secondary battery electrode Download PDF

Info

Publication number
WO2020054849A1
WO2020054849A1 PCT/JP2019/036115 JP2019036115W WO2020054849A1 WO 2020054849 A1 WO2020054849 A1 WO 2020054849A1 JP 2019036115 W JP2019036115 W JP 2019036115W WO 2020054849 A1 WO2020054849 A1 WO 2020054849A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
ion secondary
electrode
insulating layer
layer
Prior art date
Application number
PCT/JP2019/036115
Other languages
French (fr)
Japanese (ja)
Inventor
寛大 奥田
和徳 小関
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020545745A priority Critical patent/JP6876879B2/en
Publication of WO2020054849A1 publication Critical patent/WO2020054849A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a lithium ion secondary battery including an insulating layer, a lithium ion secondary battery including the electrode for a lithium ion secondary battery, and a method for manufacturing an electrode for a lithium ion secondary battery.
  • Lithium ion secondary batteries are used as power sources for large stationary power storage devices, power sources for electric vehicles, and the like. In recent years, research into miniaturization and thinning of batteries has been progressing.
  • a lithium ion secondary battery generally includes two electrodes each having an electrode active material layer formed on a surface of a metal foil, and a separator disposed between the two electrodes. The separator plays a role in preventing a short circuit between the two electrodes and holding the electrolytic solution.
  • lithium ion secondary batteries for example, even when the separator shrinks, for example, in order to have a good short-circuit suppression function, it has been studied that a porous insulating layer is provided on the surface of the electrode active material layer. I have.
  • the insulating layer is known to be formed by applying an insulating layer slurry containing insulating fine particles, a binder and a solvent on the electrode active material layer and drying the slurry. Have been.
  • an object of the present invention is to provide an electrode for a lithium ion secondary battery which can improve the safety against short circuit by the insulating layer and improve the output characteristics of the lithium ion secondary battery.
  • the present inventors have made intensive studies and found that by forming a sparse region and a dense region in the insulating layer, the safety against short circuit of the insulating layer is improved and the output characteristics of the lithium ion secondary battery are improved.
  • the present invention described below has been completed.
  • the gist of the present invention is the following [1] to [13].
  • the electrode active material layer is a negative electrode active material layer.
  • a lithium ion secondary battery comprising the electrode for a lithium ion secondary battery according to any one of the above [1] to [8].
  • a method for producing an electrode for a lithium ion secondary battery in which the second composition for an insulating layer is applied As described above, a method for producing an electrode for a lithium ion secondary battery in which the second composition for an insulating layer is applied.
  • Production method [13] The method for producing an electrode for a lithium ion secondary battery according to the above [11] or [12], wherein the viscosity at the time of application of the second composition for an insulating layer is 2000 to 4000 mPa ⁇ s.
  • an electrode for a lithium ion secondary battery capable of improving safety against a short circuit by an insulating layer and improving output characteristics of the lithium ion secondary battery.
  • FIG. 1 is a schematic sectional view showing a preferred embodiment of the electrode for a lithium ion secondary battery of the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining a step of forming a first composition layer in the method for producing an electrode for a lithium ion secondary battery of the present invention.
  • FIG. 3 is a schematic cross-sectional view for explaining a step of forming a second composition layer in the method for producing an electrode for a lithium ion secondary battery of the present invention.
  • FIG. 4 is a schematic cross-sectional view for explaining an electrode for a lithium ion secondary battery in which a third composition layer is formed on a second composition layer.
  • FIG. 5 is a diagram for explaining a method of measuring the porosity of the sparse region and the dense region.
  • FIG. 6 is a diagram for explaining a method of determining a sparse region and a dense region from the space ratio obtained by measurement.
  • the electrode 1 for a lithium ion secondary battery includes an electrode active material layer 10 and an insulating layer 20 provided on a surface of the electrode active material layer 10.
  • the electrode active material layer 10 is usually laminated on the electrode current collector 30.
  • the electrode active material layers 10 may be laminated on both surfaces of the electrode current collector 30, and in that case, the insulating layer 20 may be provided on the surface of each electrode active material layer 10.
  • the insulating layer 20 is provided on both surfaces of the electrode 1 for a lithium ion secondary battery, a short circuit between each positive electrode and each negative electrode can be effectively prevented even when a plurality of negative electrodes and positive electrodes are laminated to form a multilayer structure. it can.
  • the electrode 1 for a lithium ion secondary battery may be either a negative electrode or a positive electrode, but is preferably a negative electrode.
  • the configuration in the case where the electrode 1 for a lithium ion secondary battery is a negative electrode will be described in detail.
  • FIG. 1 shows a preferred embodiment of the insulating layer 20.
  • the insulating layer 20 according to the embodiment shown in FIG. 1 has three layered dense regions 21, 23, 25. Thereby, safety against short circuit of the insulating layer 20 can be improved.
  • the insulating layer 20 has two layered sparse regions 22, 24 sandwiched between two adjacent dense regions 21, 23, 25 and having a higher porosity than the adjacent two dense regions 21, 23, 25. .
  • the electrolyte can sufficiently penetrate into the electrode active material layer 10 through the sparse regions 22 and 24, so that the output characteristics of the lithium ion secondary battery can be improved. Therefore, since the insulating layer 20 has the dense regions 21, 23, 25 and the sparse regions 22, 24, the safety against short circuit can be improved and the output characteristics of the lithium ion secondary battery can be improved.
  • the electrode 1 for a lithium ion secondary battery shown in FIG. 1 is an example, and from the viewpoint that the safety against a short circuit can be improved and the output characteristics of the lithium ion secondary battery can be improved, It is only necessary to have at least one sparse region sandwiched between two adjacent dense regions.
  • the insulating layer preferably has two or more sparse regions, more preferably two or three sparse regions. As in the lithium ion secondary battery electrode 1 shown in FIG. More preferably, it has two sparse regions. In these cases, the sparse regions and the dense regions may be alternately arranged.
  • the number of sparse regions included in the insulating layer is preferably 4 or less, and more preferably 3 or less.
  • the porosity of each sparse region is preferably 30% by volume or more. Further, from the viewpoint that the safety against short circuit can be improved, the porosity of each sparse region is more preferably 30 to 60% by volume, still more preferably 30 to 42% by volume, and more preferably 30 to 37% by volume. % Is particularly preferred. In addition, from the viewpoint that safety against short circuits can be improved, the porosity of each dense region is preferably less than 30 vol%, more preferably 29 vol% or less, and 28 vol% or less. Is more preferred. Note that the porosity of the sparse region and the dense region in the insulating layer can be measured by, for example, a method described in Examples described later.
  • any difference between the porosity of each sparse region and each of two dense regions adjacent to the sparse region is preferably 2% by volume or more, more preferably 3% by volume or more, and further preferably 5% by volume or more.
  • the difference in the porosity between each sparse region and the adjacent dense region is 2% by volume or more, the safety against short circuit can be further improved and the output characteristics of the lithium ion secondary battery can be further improved.
  • the region closest to the electrode active material layer in the insulating layer is preferably a dense region (that is, the dense region 21 in FIG. 1). Further, from a similar viewpoint, it is preferable that the region farthest from the electrode active material layer in the insulating layer is also a dense region (that is, the dense region 25 in FIG. 1).
  • the dense area closest to the electrode active material layer has the highest porosity among the plurality of dense areas included in the insulating layer. It is considered that such a configuration accelerates the diffusion of the electrolytic solution into the active material, and improves the output characteristics. Further, it is preferable that the porosity of the plurality of dense regions included in the insulating layer decreases as the position of the dense region is away from the electrode active material layer. It is considered that such a configuration improves output characteristics. Further, among a plurality of dense regions included in the insulating layer, the porosity of the dense region farthest from the electrode active material layer is preferably the lowest. It is considered that such a configuration improves output characteristics.
  • the thickness of the insulating layer is preferably 7 to 30 ⁇ m, more preferably 7 to 20 ⁇ m, and further preferably 10 to 20 ⁇ m.
  • the thickness of the insulating layer is preferably 7 to 30 ⁇ m, more preferably 7 to 20 ⁇ m, and further preferably 10 to 20 ⁇ m.
  • the insulating layer preferably contains insulating fine particles and a binder for the insulating layer. Thereby, an insulating layer having a porous structure can be easily formed.
  • the insulating fine particles are not particularly limited as long as they are insulating, and may be organic particles or inorganic particles.
  • Specific organic particles include, for example, cross-linked polymethyl methacrylate, cross-linked styrene-acrylic acid copolymer, cross-linked acrylonitrile resin, polyamide resin, polyimide resin, poly (lithium 2-acrylamido-2-methylpropanesulfonate), Examples include particles composed of an organic compound such as a polyacetal resin, an epoxy resin, a polyester resin, a phenol resin, and a melamine resin.
  • the inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, and fluoride.
  • examples include particles composed of inorganic compounds such as lithium chloride, clay, zeolite, and calcium carbonate.
  • the inorganic particles may be particles composed of a known composite oxide such as a niobium-tantalum composite oxide or a magnesium-tantalum composite oxide.
  • the insulating fine particles may be particles in which each of the above-mentioned materials is used alone or in combination of two or more.
  • the insulating fine particles may be fine particles containing both an inorganic compound and an organic compound.
  • inorganic-organic composite particles in which an inorganic oxide is coated on the surface of particles made of an organic compound may be used.
  • inorganic particles are preferable, and alumina particles and boehmite particles are particularly preferable.
  • the average particle diameter of the insulating fine particles is usually smaller than the average particle diameter of the electrode active material, for example, 0.001 to 2 ⁇ m, preferably 0.05 to 1.5 ⁇ m, more preferably 0.1 to 1. 0 ⁇ m.
  • the average particle size means the particle size (D50) at a volume integration of 50% in the particle size distribution of the insulating fine particles obtained by the laser diffraction / scattering method.
  • the insulating fine particles one kind having an average particle diameter within the above range may be used alone, or two kinds of insulating fine particles having different average particle diameters may be used as a mixture.
  • the content of the insulating fine particles contained in the insulating layer is preferably 15 to 95% by mass, more preferably 40 to 90% by mass, and still more preferably 60 to 85% by mass, based on the total amount of the insulating layer. When the content of the insulating fine particles is within the above range, appropriate insulating properties are imparted to the insulating layer.
  • Insulating layer binders include fluorine-containing resins such as polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), polytetrafluoroethylene (PTFE), polymethyl acrylate (PMA), and polymethyl acrylate (PMA).
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • PTFE polytetrafluoroethylene
  • PMA polymethyl acrylate
  • PMA polymethyl acrylate
  • Acrylic resin such as methyl methacrylate (PMMA), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP), polyacrylonitrile (PAN), acrylonitrile-butadiene rubber, styrene-butadiene rubber, poly (meth) acrylic acid, carboxymethylcellulose, hydroxyethylcellulose, polyvinyl alcohol and the like.
  • binders may be used alone or in combination of two or more.
  • carboxymethyl cellulose and the like may be used in the form of a salt such as a sodium salt.
  • the binder for the insulating layer is preferably polyvinylidene fluoride.
  • the content of the binder for the insulating layer contained in the insulating layer is preferably 5 to 50% by mass, more preferably 10 to 45% by mass, and still more preferably 15 to 40% by mass, based on the total amount of the insulating layer.
  • the insulating layer may contain other optional components other than the insulating fine particles and the binder for the insulating layer as long as the effects of the present invention are not impaired.
  • the total content of the insulating fine particles and the binder for the insulating layer is preferably 85% by mass or more, and more preferably 90% by mass or more.
  • the weight average molecular weight (Mw) of the binder for the insulating layer contained in the insulating layer is preferably from 10,000 to 10,000,000, and more preferably from 100,000 to 1,000,000.
  • Mw of the binder for the insulating layer is a value measured by a known gel filtration chromatography method (GPC method) using a polystyrene standard substance.
  • the electrode active material layer typically contains an electrode active material and a binder for an electrode.
  • the electrode active material becomes a negative electrode active material
  • the electrode active material layer becomes a negative electrode active material layer.
  • the negative electrode active material used in the negative electrode active material layer include graphite, a carbon material such as hard carbon, a composite of a tin compound and silicon and carbon, and lithium. Among these, a carbon material is preferable, and graphite is preferable. More preferred.
  • One kind of the negative electrode active material may be used alone, or two or more kinds may be used in combination.
  • the average particle diameter of the electrode active material is not particularly limited, but is usually larger than the insulating fine particles, preferably 0.5 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, and more preferably 6 to 25 ⁇ m. Is more preferable.
  • the content of the electrode active material in the electrode active material layer is preferably 50 to 98.5% by mass, more preferably 60 to 98% by mass, based on the total amount of the electrode active material layer.
  • the electrode active material layer may contain a conductive assistant.
  • a conductive additive a material having higher conductivity than the above-mentioned electrode active material is used, and specific examples thereof include carbon materials such as Ketjen black, acetylene black, carbon nanotube, and rod-like carbon.
  • the conductive auxiliary may be used alone or in combination of two or more.
  • the content of the conductive additive is preferably 1 to 30% by mass, and more preferably 2 to 25% by mass, based on the total amount of the electrode active material layer. Is more preferred.
  • the electrode active material layer is formed by binding an electrode active material or an electrode active material and a conductive auxiliary with an electrode binder.
  • the electrode binder include the compounds exemplified as the compounds usable in the insulating layer binder.
  • the electrode binder is preferably carboxymethyl cellulose, styrene butadiene rubber, acrylic rubber and nitrile butadiene rubber, more preferably carboxymethyl cellulose and styrene butadiene rubber.
  • the binder used for the electrode active material layer may be used alone or in combination of two or more.
  • the content of the electrode binder in the electrode active material layer is preferably from 1.5 to 40% by mass, more preferably from 2.0 to 25% by mass, based on the total amount of the electrode active material layer.
  • the thickness of the electrode active material layer is not particularly limited, but is preferably from 10 to 100 ⁇ m, more preferably from 20 to 80 ⁇ m, per one surface of the electrode current collector.
  • the electrode active material layer may contain other optional components other than the electrode active material, the conductive additive, and the electrode binder as long as the effects of the present invention are not impaired.
  • the total mass of the electrode active material layer the total content of the electrode active material, the conductive additive, and the electrode binder is preferably 90% by mass or more, and more preferably 95% by mass or more. .
  • Electrode current collector When the electrode is a negative electrode, the electrode current collector becomes a negative electrode current collector.
  • Examples of a material constituting the negative electrode current collector include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, aluminum or copper is preferable, Copper is more preferred.
  • the electrode current collector is generally made of a metal foil, and its thickness is not particularly limited, but is preferably 1 to 50 ⁇ m.
  • a method for producing an electrode for a lithium ion secondary battery of the present invention a step of applying a composition for a first insulating layer on a surface of an electrode active material layer to form a first composition layer; Forming a second composition layer by applying a composition for a second insulating layer on the surface of the composition layer.
  • the porosity is high in the second composition layer, and the porosity is higher than the area of the first composition layer in the vicinity of the second composition layer.
  • the second insulating layer composition is applied such that a region having a high N is formed in a region of the second composition layer near the first composition layer.
  • Step of Forming First Composition Layer In the step of forming the first composition layer, for example, as shown in FIG. 2, a first insulating layer composition is applied on the surface of the electrode active material layer 10 to form a first composition layer 41. To form
  • the first insulating layer composition used for forming the first composition layer 41 preferably contains insulating fine particles, an insulating layer binder, and a solvent. Further, the first insulating layer composition may contain other optional components that are blended as necessary. Details of the insulating fine particles, the binder for the insulating layer, and the like are as described above. The first insulating layer composition becomes a slurry.
  • the solid content of the first insulating layer composition is preferably 5 to 75% by mass, more preferably 15 to 50% by mass. By setting the solid content viscosity within the above range, it becomes easy to form the first composition layer 41 having high safety against short circuit.
  • the viscosity at the time of application of the first insulating layer composition is preferably from 1,000 to 5,000 mPa ⁇ s, and more preferably from 2,000 to 4,000 mPa ⁇ s. By setting the viscosity within the above range, it becomes easy to form the first composition layer 41 having high safety against short circuit.
  • the viscosity at the time of application is a viscosity measured by a B-type viscometer at 60 rpm and 25 ° C.
  • the shear rate at the time of applying the first insulating layer composition is preferably 5,000 to 7,000,000 (1 / s), and more preferably 10,000 to 5,000,000 ( 1 / s). By setting the shear rate within the above range, the first composition layer 41 having high safety against short circuit can be easily formed.
  • the method for applying the first insulating layer composition to the surface of the electrode active material layer 10 is not particularly limited, and examples thereof include a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a bar coating method, and a gravure coating method. Method, screen printing method and the like. Among these, a bar coating method or a gravure coating method is preferable from the viewpoint of applying the first insulating layer composition uniformly to make the first composition layer 41 thin.
  • the drying temperature is not particularly limited as long as the solvent can be removed, and is, for example, 40 to 120 ° C, preferably 50 to 90 ° C.
  • the drying time is not particularly limited, but is, for example, 30 seconds to 10 minutes.
  • Step of forming second composition layer In the step of forming the second composition layer, for example, as shown in FIG. 3, the second composition for an insulating layer is applied on the surface of the first composition layer 41 to form the second composition layer. A layer 42 is formed. Then, in the step of forming the second composition layer, the porosity is high in the second composition layer 42, and the step of forming the second composition layer is more difficult than the region 411 of the first composition layer 41 near the second composition layer.
  • the second insulating layer composition is applied so that the region 421 having a high porosity is formed in a region of the second composition layer 42 near the first composition layer. Thereby, the above-described sparse region and dense region can be formed in the second composition layer 42.
  • the second insulating layer composition used for forming the second composition layer 42 preferably contains insulating fine particles, an insulating layer binder, and a solvent.
  • the composition for the second insulating layer may include other optional components blended as necessary. Details of the insulating fine particles, the binder for the insulating layer, and the like are as described above.
  • the second insulating layer composition becomes a slurry.
  • the solid content of the second insulating layer composition is preferably 20 to 80% by mass, more preferably 25 to 60% by mass.
  • the viscosity of the second insulating layer composition at the time of application is preferably 2000 to 4000 mPa ⁇ s, more preferably 2500 to 3500 mPa ⁇ s.
  • the viscosity at the time of application is a viscosity measured by a B-type viscometer at 60 rpm and 25 ° C.
  • the shear rate at the time of application of the second insulating layer composition is preferably 10,000 to 5,000,000 (1 / s), and more preferably 15,000 to 100,000 (1 / s). It is. By setting the shear rate within the above range, a sparse region is easily formed in the second composition layer 42.
  • the shear rate can be adjusted by the transport speed of the substrate and the liquid level distance between the substrate and the liquid contact portion.
  • the method for applying the composition for the second insulating layer to the surface of the first composition layer 41 is not particularly limited.
  • a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a bar coating method, A gravure coating method, a screen printing method and the like can be mentioned.
  • a bar coating method or a gravure coating method is preferred from the viewpoint of applying the second insulating layer composition to a uniform thickness to make the second composition layer 42 thin.
  • the drying temperature is not particularly limited as long as the solvent can be removed, and is, for example, 40 to 120 ° C, preferably 50 to 90 ° C.
  • the drying time is not particularly limited, but is, for example, 30 seconds to 10 minutes.
  • the surface of the electrode active material layer 10 usually has irregularities due to the electrode active material, although not shown in the drawing.
  • the average particle diameter of the insulating fine particles in the first insulating layer composition is smaller than the unevenness of the surface of the electrode active material layer 10. Therefore, the surface of the first composition layer 41 becomes smoother than the surface of the electrode active material layer 10.
  • the influence of the irregularities on the surface of the electrode active material layer 10 remains, so that gentle irregularities remain on the surface of the first composition layer 41.
  • the second insulating layer composition may have the above-mentioned gentle unevenness. Is not affected, and it is considered that a sparse region is hardly formed in the second composition layer 42.
  • the electrode 1 for a lithium ion secondary battery shown in FIG. 1 can be manufactured. Further, one or two or more composition layers may be formed on the third composition layer 43 in a similar manner. Note that as the distance from the electrode active material layer 10 increases, the influence of the unevenness of the surface of the electrode active material layer on the surface of the composition layer decreases. For this reason, it is considered that the porosity of the region corresponding to the dense region decreases as the distance from the electrode active material layer increases.
  • the electrode active material layer 10 is formed on the surface of the electrode current collector 30, and the electrode active material layer 10 is formed on the surface of the electrode active material layer 10 as described above. It is preferable to form an insulating layer.
  • an electrode active material layer composition including an electrode active material (negative electrode active material), an electrode binder, and a solvent is prepared. Further, the composition for an electrode active material layer may include other components such as a conductive auxiliary compounded as necessary.
  • the negative electrode active material, the binder for the electrode, the conductive assistant, and the like are as described above.
  • the composition for an electrode active material layer becomes a slurry.
  • the solvent in the composition for an electrode active material layer water is preferably used.
  • water By using water, the above-mentioned second binder can be easily dissolved in the composition for an electrode active material layer.
  • other binders may be mixed with water in the form of an emulsion.
  • the solid concentration of the composition for an electrode active material layer is preferably 5 to 75% by mass, and more preferably 20 to 65% by mass.
  • the electrode active material layer may be formed by a known method using the composition for an electrode active material layer.
  • the composition for an electrode active material layer is applied on an electrode current collector and dried. Can be formed.
  • the electrode active material layer may be formed by applying the composition for an electrode active material layer on a substrate other than the electrode current collector and drying the composition.
  • a substrate other than the electrode current collector a known release sheet may be used.
  • the electrode active material layer formed on the base material is preferably formed by forming an insulating layer, and then peeling the electrode active material layer from the base material and transferring it to the electrode current collector.
  • the electrode active material layer formed on the electrode current collector or the substrate is preferably pressed under pressure. Pressing can increase the electrode density.
  • the pressure press may be performed by a roll press or the like.
  • the electrode for a lithium ion secondary battery of the present invention is a negative electrode
  • the electrode for a lithium ion secondary battery may be a positive electrode.
  • the electrode active material layer becomes a positive electrode active material layer
  • the electrode active material becomes a positive electrode active material.
  • the positive electrode active material include a lithium metal oxide compound.
  • the lithium metal oxide compound include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like.
  • olivine-type lithium iron phosphate (LiFePO 4 ) may be used.
  • a plurality of metals other than lithium may be used, and a ternary NCM (nickel-cobalt-manganese) -based oxide, an NCA (nickel-cobalt-aluminum-based) oxide, or the like may be used.
  • the electrode current collector becomes a positive electrode current collector.
  • the material for the positive electrode current collector is the same as the compound used for the negative electrode current collector, but preferably aluminum or copper, and more preferably aluminum.
  • Other configurations when the electrode for the lithium ion secondary battery is the positive electrode are the same as those in the case where the electrode is the negative electrode, and the description of the other configurations is omitted.
  • a lithium ion secondary battery of the present invention includes a lithium ion secondary battery electrode having the above-described insulating layer.
  • the lithium ion secondary battery of the present invention includes a positive electrode and a negative electrode arranged so as to face each other, and at least one of the negative electrode and the positive electrode has the above-described lithium ion secondary battery having the insulating layer. It becomes a battery electrode.
  • an insulating layer may be provided on a surface facing the other electrode (positive electrode or negative electrode). It is preferable that the lithium ion secondary battery of the present invention includes a lithium ion secondary battery electrode having the above-described insulating layer as a negative electrode.
  • the lithium ion secondary battery of the present invention may further include a separator disposed between the positive electrode and the negative electrode.
  • a separator By providing the separator, a short circuit between the positive electrode and the negative electrode is more effectively prevented. Further, the separator may hold an electrolyte described later.
  • the insulating layer provided on the positive electrode or the negative electrode may or may not be in contact with the separator, but is preferably in contact with the separator.
  • the separator include a porous polymer film, a nonwoven fabric, and a glass fiber. Among these, a porous polymer film is preferable. As the porous polymer film, an olefin-based porous film is exemplified.
  • the separator may be heated by heat generated when the lithium ion secondary battery is driven, and may be thermally contracted. Even during such thermal contraction, the short circuit can be easily suppressed by providing the insulating layer. Further, in the lithium ion secondary battery of the present invention, the separator may be omitted. Even if the separator is omitted, insulation between the negative electrode and the positive electrode is ensured by the insulating layer provided on at least one of the negative electrode and the positive electrode.
  • the lithium ion secondary battery may have a multilayer structure in which a plurality of negative electrodes and a plurality of positive electrodes are stacked.
  • the negative electrode and the positive electrode may be provided alternately along the laminating direction.
  • the separator may be disposed between each negative electrode and each positive electrode.
  • the negative electrode and the positive electrode, or the negative electrode, the positive electrode, and the separator are housed in a battery cell.
  • the battery cell may be any of a square type, a cylindrical type, a laminated type, and the like.
  • Lithium ion secondary batteries include an electrolyte.
  • the electrolyte is not particularly limited, and a known electrolyte used in a lithium ion secondary battery may be used.
  • an electrolyte is used as the electrolyte.
  • the electrolyte include an electrolyte containing an organic solvent and an electrolyte salt.
  • the organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ⁇ -butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, and 1,2.
  • Polar solvents such as -diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, and methyl acetate; or a mixture of two or more of these solvents.
  • electrolyte salt LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 and salts containing lithium such as LiN (COCF 2 CF 3 ) 2 and lithium bisoxalate borate (LiB (C 2 O 4 ) 2 .
  • the electrolyte may be a gel electrolyte further containing a polymer compound in the above-mentioned electrolytic solution.
  • the polymer compound include a fluorine-based polymer such as polyvinylidene fluoride and a polyacryl-based polymer such as poly (methyl meth) acrylate.
  • the gel electrolyte may be used as a separator.
  • the electrolyte may be disposed between the negative electrode and the positive electrode.
  • the electrolyte is filled in the battery cell in which the negative electrode and the positive electrode, or the negative electrode, the positive electrode, and the separator are housed. Further, the electrolyte may be, for example, applied on the negative electrode or the positive electrode and disposed between the negative electrode and the positive electrode.
  • the obtained electrode for a lithium ion secondary battery was evaluated by the following evaluation method.
  • (Output characteristics) The cells produced in the examples and comparative examples were charged at a constant current of 1 C, and when the voltage reached 4.2 V, the current was reduced to 0.05 C, and constant voltage charging was performed until the charging was completed. Then, a constant current discharge of 1 C was performed, and the discharge was completed at the time when the discharge was performed to 2.5 V, and the discharge capacity of the constant current discharge of 1 C was calculated. Next, after performing the same charge, the battery was discharged at a constant current of 10 C. When the battery was discharged to 2.5 V, the discharge was completed, and the discharge capacity of the constant current discharge at 10 C was calculated.
  • the cells prepared in the Examples and Comparative Examples were charged at a constant current of 1.0 C, and the current was decreased as soon as the voltage reached 4.2 V. When the voltage reached 0.05 C, the constant voltage charging was performed until the charging was completed. went. After that, it was placed in a thermostatic bath capable of controlling the temperature and set at 130 ° C. After reaching 130 ° C., it was left for 1 hour. During this period, the maximum temperature of the surface temperature of the cell was measured and classified as follows. The lower the maximum surface temperature, the higher the short-circuit safety. A: The maximum surface temperature was less than 135 ° C. B: The maximum surface temperature was 135 ° C or higher, but was lower than 140 ° C. C: The maximum surface temperature was 140 ° C. or higher, but lower than 200 ° C. D: The maximum surface temperature was 200 ° C. or higher.
  • the physical properties of the obtained electrode for a lithium ion secondary battery were measured by the following measurement methods.
  • (Space ratio) A section of the electrode for a lithium ion secondary battery on which an insulating layer was formed was exposed by an ion milling method. Next, the exposed cross section of the electrode for a lithium ion secondary battery is observed using a FE-SEM (field emission scanning electron microscope) at a magnification that allows the entire insulating layer to be observed, and an image of the insulating layer is obtained.
  • the magnification was 5000 to 25000 times.
  • the obtained image was binarized so that the real part of the insulating layer was displayed in black and the void part of the insulating layer was displayed in white (FIG. 5). Then, the insulating layer is divided into ten in the thickness direction, and the ratio of the area of the white part in each of the ten divided regions (for example, reference numeral 50 in FIG. 5) is measured using image analysis software “Image J”. did.
  • the ratio of the area of the white portion is the porosity (volume%) of the divided region.
  • a divided area having a porosity higher by 2% by volume or more than the porosity of two adjacent divided areas is defined as a sparse divided area.
  • a region where the porosity is higher than 2% by volume is defined as a sparsely divided region.
  • the two divided regions at both ends there is only one adjacent divided region. Therefore, when the porosity is higher than the porosity of one adjacent divided region by 2% by volume or more, the divided region is regarded as a sparse divided region. did.
  • the continuous divided region is regarded as one continuous region, and the space ratio of the continuous region (that is, the average value of the space ratio of a plurality of divided regions)
  • the volume was higher than the two regions adjacent to the continuous region by 2% by volume or more
  • each of the divided regions constituting the continuous region was regarded as a sparsely divided region.
  • the “continuous region in which two or more divided regions having a high space ratio are continuous” means that the space ratio of each of the divided regions constituting the continuous region is equal to the space ratio of two divided regions adjacent to the continuous region. It means the area higher than either.
  • the sparsely divided area is specified, and the divided area not specified as the sparsely divided area is defined as the densely divided area.
  • the dense and sparsely divided areas are combined into one dense area and one sparsely divided area.
  • one densely divided region and one sparsely divided region are regarded as one densely divided region and one sparsely divided region, respectively.
  • the average spatial ratio of the continuous densely divided region and the sparsely divided region is defined as the spatial ratio of the dense region and the sparsely divided region.
  • the thickness of the insulating layer was measured from the above-mentioned SEM image.
  • the physical properties of the obtained composition (slurry) for an insulating layer were measured by the following measurement methods.
  • viscosity The viscosity of the insulating layer composition (slurry) was measured with a B-type viscometer at 60 rpm and 25 ° C.
  • Example 1 (Preparation of positive electrode) 100 parts by mass of an NCA-based oxide (average particle diameter: 10 ⁇ m) as a positive electrode active material, 4 parts by mass of acetylene black as a conductive additive, 4 parts by mass of polyvinylidene fluoride as an electrode binder, and N as a solvent -Methylpyrrolidone (NMP) was mixed to obtain a slurry for a positive electrode active material layer adjusted to a solid concentration of 60% by mass. This slurry for a positive electrode active material layer was applied to both sides of a 15- ⁇ m-thick aluminum foil as a positive electrode current collector, preliminarily dried, and then vacuum dried at 120 ° C.
  • NMP solvent -Methylpyrrolidone
  • the positive electrode current collector coated with the slurry for the positive electrode active material layer on both sides is pressed with a roller at a linear pressure of 400 kN / m using a roller, and further punched into a 100 mm ⁇ 200 mm square of the electrode dimensions, thereby forming a positive electrode active material on both sides.
  • a positive electrode having a layer was obtained.
  • the area where the positive electrode active material was applied was 100 mm ⁇ 180 mm.
  • the thickness of the positive electrode active material layers formed on both surfaces was 50 ⁇ m per one surface.
  • the negative electrode current collector coated with the slurry for the negative electrode active material layer on both sides is pressed with a roller at a linear pressure of 500 kN / m using a roller, and further punched into a 110 mm ⁇ 210 mm square of the electrode dimensions to form a negative electrode active material on both sides.
  • a negative electrode having a layer was obtained.
  • the area where the negative electrode active material was applied was 110 mm ⁇ 190 mm.
  • the thickness of the negative electrode active material layers formed on both sides was 50 ⁇ m per one side.
  • the density of the negative electrode active material layer was 1.55 g / cc.
  • LiPF 6 as an electrolyte salt was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 (EC: DEC) so as to have a concentration of 1 mol / liter, and an electrolytic solution was prepared.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Alumina particles manufactured by Nippon Light Metal Co., Ltd., product name: AHP200, average particle size
  • a polyvinylidene fluoride solution manufactured by Kureha Corporation, product name: L # 1710, 10% by mass solution, solvent: NMP
  • insulating fine particles 0.4 ⁇ m in diameter was mixed and dispersed while applying moderate shearing force to obtain a slurry.
  • the blending amount of the alumina particles and the polyvinylidene fluoride solution is such that the blending amount of the alumina particles in the slurry is 100 parts by mass on a solid basis, and the content of the polyvinylidene fluoride solution is 15 parts by mass on a solids basis. It was a proper blending amount. NMP was further added to this slurry so that the solid content concentration became 35% by mass, and the mixture was gently stirred with a stirrer for 30 minutes to obtain a slurry for an insulating layer. The viscosity of the slurry for the insulating layer was 2800 mPa ⁇ s.
  • the slurry for the insulating layer is applied to the surface of each negative electrode active material layer of the negative electrode by a gravure coater, and the coating film is dried at 90 ° C. for 1 minute to form the first composition on the surface of each negative electrode active material layer. A layer was formed. Next, the opposite side was similarly coated to form a first composition layer on both surfaces of the negative electrode active material layer.
  • the slurry for an insulating layer is applied to the surface of the first composition layer of the negative electrode by a gravure coater, and the coating film is dried at 90 ° C. for 1 minute to form a surface of each first composition layer. Then, a second composition layer was formed. Next, the opposite side was similarly coated to form a second composition layer on both sides of the negative electrode active material layer.
  • the slurry for an insulating layer is applied to the surface of the second composition layer of the negative electrode by a gravure coater, and the coating film is dried at 90 ° C. for 1 minute, so that the surface of each second composition layer is formed. Then, a third composition layer was formed. Next, the opposite side was similarly coated to form a third composition layer on both sides of the negative electrode active material layer.
  • the shear rate at the time of applying each insulating layer slurry with a gravure coater was set to 20,000 (1 / s).
  • a laminate was obtained by laminating 10 negative electrodes, 9 positive electrodes, and 18 separators each having the insulating layer obtained above.
  • the negative electrode and the positive electrode were alternately arranged, and a separator was arranged between each negative electrode and the positive electrode.
  • a polyethylene porous film was used as a separator.
  • the ends of the exposed portions of the positive electrode current collector of each positive electrode were joined together by ultrasonic fusion, and a terminal tab projecting to the outside was joined.
  • the ends of the exposed portions of the negative electrode current collectors of the respective negative electrodes were joined together by ultrasonic fusion, and terminal tabs projecting to the outside were joined.
  • the laminated body was sandwiched between aluminum laminated films, the terminal tabs were projected outside, and three sides were sealed by laminating. From one side left without sealing, the electrolyte solution obtained above was injected, and vacuum sealing was performed to produce a laminate type cell.
  • Example 2 The slurry for an insulating layer is applied to the surface of the third composition layer of the negative electrode by a gravure coater, and the coating film is dried at 60 ° C. for 10 minutes to form the fourth composition layer on the surface of the third composition layer. A composition layer was formed. Next, the opposite side was similarly coated to form a fourth composition layer on both sides of the negative electrode active material layer. Other than that, it carried out similarly to Example 1.
  • Example 3 The operation was performed in the same manner as in Example 1 except that the third composition layer was not formed on both sides of the negative electrode active material layer.
  • Example 4 The slurry for an insulating layer is applied to the surface of the fourth composition layer of the negative electrode by a gravure coater, and the coating film is dried at 60 ° C. for 10 minutes, so that the fifth composition layer is applied to the surface of the fourth composition layer. A composition layer was formed. Next, the opposite side was similarly coated to form a fifth composition layer on both sides of the negative electrode active material layer. Other than that, it carried out similarly to Example 2.
  • Example 5 The same procedure as in Example 1 was carried out except that the slurry for the insulating layer was prepared so that the solid content concentration was changed from 35% by mass to 40% by mass so that the viscosity of the slurry for the insulating layer was 3300 mPa ⁇ s.
  • Example 6 Same as Example 1 except that the first to third composition layers were formed on both sides of the positive electrode active material layer instead of forming the first to third composition layers on both sides of the negative electrode active material layer It was carried out.
  • Example 2 Except that the second and third composition layers were not formed on both sides of the negative electrode active material layer, and the thickness of the first composition layer was changed to 15 ⁇ m using a comma coater instead of a gravure coater. Performed in a similar manner to 1.
  • Example 2 The slurry for the insulating layer was prepared so that the viscosity of the slurry for the insulating layer was 90 mPa ⁇ s, and the slurry for the insulating layer was applied using a gravure coater. Further, the second and third composition layers were not formed on both sides of the negative electrode active material layer. Other than that, it carried out similarly to Example 1.
  • the insulating layer is sandwiched between at least two or more layered dense regions and between two adjacent dense regions and has a higher space ratio than the two adjacent dense regions. , The safety against short-circuit and the output characteristics were excellent. On the other hand, in Comparative Examples 1 and 2, the output characteristics were poor because the insulating layer had no sparse region.
  • Reference Signs List 1 electrode for lithium ion secondary battery 10 electrode active material layer 20 insulating layer 21, 23, 25 dense region 22, 24 sparse region 30 electrode current collector 41 first composition layer 42 second composition layer 43 third Composition layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

This lithium-ion secondary battery electrode (1) is provided with an electrode active material layer (10) and an insulating layer (20) disposed on a surface of the electrode active material layer (10). The insulating layer (20) has: two or more laminar dense regions (21), (23), (25); and laminar sparse regions (22), (24) each sandwiched between two adjoining dense regions (21), (23), (25) and having a higher porosity than those of the two adjoining dense regions (21), (23), (25). According to the present invention, a lithium-ion secondary battery electrode which features improved safety against short-circuiting by means of an insulating layer and exhibits good lithium-ion secondary battery output characteristics can be provided.

Description

リチウムイオン二次電池用電極、リチウムイオン二次電池及びリチウムイオン二次電池用電極の製造方法Electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing electrode for lithium ion secondary battery
 本発明は、絶縁層を備えるリチウムイオン二次電池用電極、そのリチウムイオン二次電池用電極を備えるリチウムイオン二次電池及びリチウムイオン二次電池用電極の製造方法に関する。 The present invention relates to an electrode for a lithium ion secondary battery including an insulating layer, a lithium ion secondary battery including the electrode for a lithium ion secondary battery, and a method for manufacturing an electrode for a lithium ion secondary battery.
 リチウムイオン二次電池は、電力貯蔵用の大型定置用電源、電気自動車用等の電源として利用されており、近年では電池の小型化及び薄型化の研究が進展している。リチウムイオン二次電池は、金属箔の表面に電極活物質層を形成した両電極と、両電極の間に配置されるセパレータを備えるものが一般的である。セパレータは、両電極間の短絡防止や電解液を保持する役割を果たす。
 従来、リチウムイオン二次電池は、例えば、セパレータが収縮したとき等でも、良好な短絡抑制機能を持たせるために、電極活物質層の表面に多孔質の絶縁層が設けられることが検討されている。絶縁層は、例えば、特許文献1に開示されるように、絶縁性微粒子、バインダー及び溶媒を含む絶縁層用スラリーを、電極活物質層の上に塗布し、乾燥することで形成することが知られている。
Lithium ion secondary batteries are used as power sources for large stationary power storage devices, power sources for electric vehicles, and the like. In recent years, research into miniaturization and thinning of batteries has been progressing. A lithium ion secondary battery generally includes two electrodes each having an electrode active material layer formed on a surface of a metal foil, and a separator disposed between the two electrodes. The separator plays a role in preventing a short circuit between the two electrodes and holding the electrolytic solution.
Conventionally, lithium ion secondary batteries, for example, even when the separator shrinks, for example, in order to have a good short-circuit suppression function, it has been studied that a porous insulating layer is provided on the surface of the electrode active material layer. I have. For example, as disclosed in Patent Document 1, the insulating layer is known to be formed by applying an insulating layer slurry containing insulating fine particles, a binder and a solvent on the electrode active material layer and drying the slurry. Have been.
国際公開2016/104782号WO 2016/104782
 しかしながら、従来の絶縁層は、短絡に対する安全性が不十分であることがあり、短絡に対する安全性を更に向上させる必要がある。また、従来の絶縁層を備えたリチウムイオン二次電池の出力特性が不十分であることがあり、出力特性を更に向上させる必要がある。
 そこで、本発明は、絶縁層によって短絡に対する安全性が向上するとともにリチウムイオン二次電池の出力特性を良好にできるリチウムイオン二次電池用電極を提供することを課題とする。
However, the conventional insulating layer may have insufficient safety against short-circuits, and needs to further improve safety against short-circuits. Further, the output characteristics of a conventional lithium ion secondary battery having an insulating layer may be insufficient, and it is necessary to further improve the output characteristics.
Therefore, an object of the present invention is to provide an electrode for a lithium ion secondary battery which can improve the safety against short circuit by the insulating layer and improve the output characteristics of the lithium ion secondary battery.
 本発明者らは、鋭意検討の結果、絶縁層に疎領域及び密領域を形成することにより、絶縁層の短絡に対する安全性が高められると共にリチウムイオン二次電池の出力特性が向上することを見出し、以下の本発明を完成させた。本発明の要旨は、以下の[1]~[13]である。
[1]電極活物質層と、前記電極活物質層の表面上に設けられる絶縁層とを備え、前記絶縁層が、少なくとも2つ以上の層状の密領域、及び隣接する2つの密領域に挟まれ該隣接する2つの密領域よりも空間率の高い層状の疎領域を有するリチウムイオン二次電池用電極。
[2]前記絶縁層は2つ以上の前記疎領域及び2つ以上の前記密領域を有し、前記疎領域と前記密領域とが交互に並ぶ上記[1]に記載のリチウムイオン二次電池用電極。
[3]前記絶縁層が、前記密領域と交互に並ぶ2つ又は3つの前記疎領域を有する上記[2]に記載のリチウムイオン二次電池用電極。
[4]前記絶縁層が、前記密領域と交互に並ぶ2つの前記疎領域を有する上記[3]に記載のリチウムイオン二次電池用電極。
[5]前記疎領域の空間率が30体積%以上である上記[1]~[4]のいずれか1つに記載のリチウムイオン二次電池用電極。
[6]前記絶縁層の厚みが7~30μmである上記[1]~[5]のいずれか1つに記載のリチウムイオン二次電池用電極。
[7]絶縁層が、絶縁性微粒子と、絶縁層用バインダーとを含む上記[1]~[6]のいずれか1つに記載のリチウムイオン二次電池用電極。
[8]前記電極活物質層が負極活物質層である上記[1]~[7]のいずれか1つに記載のリチウムイオン二次電池用電極。
[9]上記[1]~[8]のいずれか1つに記載のリチウムイオン二次電池用電極を備えるリチウムイオン二次電池。
[10]負極と、正極とを備え、前記負極が、前記リチウムイオン二次電池用電極である上記[9]に記載のリチウムイオン二次電池。
[11]電極活物質層の表面上に、第1の絶縁層用組成物を塗布して第1の組成物層を形成する工程、及び前記第1の組成物層の表面上に、第2の絶縁層用組成物を塗布して第2の組成物層を形成する工程を含み、前記第2の組成物層を形成する工程は、前記第2の組成物層の中で空間率が高く、さらに前記第1の組成物層の前記第2の組成物層近傍の領域に比べて空間率が高い領域が前記第2の組成物層の前記第1の組成物層近傍の領域に形成されるように、前記第2の絶縁層用組成物を塗布するリチウムイオン二次電池用電極の製造方法。
[12]前記第2の絶縁層用組成物の塗布時のせん断速度が10,000~5,000,000(1/s)である上記[11]に記載のリチウムイオン二次電池用電極の製造方法。
[13]前記第2の絶縁層用組成物の塗布時の粘度が2000~4000mPa・sである上記[11]又は[12]に記載のリチウムイオン二次電池用電極の製造方法。
The present inventors have made intensive studies and found that by forming a sparse region and a dense region in the insulating layer, the safety against short circuit of the insulating layer is improved and the output characteristics of the lithium ion secondary battery are improved. The present invention described below has been completed. The gist of the present invention is the following [1] to [13].
[1] An electrode active material layer and an insulating layer provided on a surface of the electrode active material layer, wherein the insulating layer is sandwiched between at least two or more layered dense regions and two adjacent dense regions. An electrode for a lithium ion secondary battery having a layered sparse region having a higher porosity than the two adjacent dense regions.
[2] The lithium ion secondary battery according to [1], wherein the insulating layer has two or more sparse regions and two or more dense regions, and the sparse regions and the dense regions are alternately arranged. Electrodes.
[3] The electrode for a lithium ion secondary battery according to [2], wherein the insulating layer has two or three sparse regions alternately arranged with the dense regions.
[4] The electrode for a lithium ion secondary battery according to [3], wherein the insulating layer has two of the sparse regions alternately arranged with the dense regions.
[5] The electrode for a lithium ion secondary battery according to any one of [1] to [4], wherein the porosity of the sparse region is 30% by volume or more.
[6] The electrode for a lithium ion secondary battery according to any one of [1] to [5], wherein the thickness of the insulating layer is 7 to 30 μm.
[7] The electrode for a lithium ion secondary battery according to any one of the above [1] to [6], wherein the insulating layer contains insulating fine particles and a binder for the insulating layer.
[8] The electrode for a lithium ion secondary battery according to any one of the above [1] to [7], wherein the electrode active material layer is a negative electrode active material layer.
[9] A lithium ion secondary battery comprising the electrode for a lithium ion secondary battery according to any one of the above [1] to [8].
[10] The lithium ion secondary battery according to the above [9], comprising a negative electrode and a positive electrode, wherein the negative electrode is the electrode for the lithium ion secondary battery.
[11] a step of applying a composition for a first insulating layer on the surface of the electrode active material layer to form a first composition layer, and forming a second composition on the surface of the first composition layer. Forming a second composition layer by applying the composition for an insulating layer of (a), wherein the step of forming the second composition layer has a high porosity in the second composition layer. Further, a region having a higher porosity than a region of the first composition layer near the second composition layer is formed in a region of the second composition layer near the first composition layer. As described above, a method for producing an electrode for a lithium ion secondary battery in which the second composition for an insulating layer is applied.
[12] The electrode for a lithium ion secondary battery according to the above [11], wherein the second insulating layer composition has a shear rate of 10,000 to 5,000,000 (1 / s) when applied. Production method.
[13] The method for producing an electrode for a lithium ion secondary battery according to the above [11] or [12], wherein the viscosity at the time of application of the second composition for an insulating layer is 2000 to 4000 mPa · s.
 本発明によれば、絶縁層によって短絡に対する安全性を向上させるとともにリチウムイオン二次電池の出力特性を良好にできるリチウムイオン二次電池用電極を提供することができる。 According to the present invention, it is possible to provide an electrode for a lithium ion secondary battery capable of improving safety against a short circuit by an insulating layer and improving output characteristics of the lithium ion secondary battery.
図1は、本発明のリチウムイオン二次電池用電極の好ましい一実施形態を示す概略断面図である。FIG. 1 is a schematic sectional view showing a preferred embodiment of the electrode for a lithium ion secondary battery of the present invention. 図2は、本発明のリチウムイオン二次電池用電極の製造方法の第1の組成物層を形成する工程を説明するための概略断面図である。FIG. 2 is a schematic cross-sectional view for explaining a step of forming a first composition layer in the method for producing an electrode for a lithium ion secondary battery of the present invention. 図3は、本発明のリチウムイオン二次電池用電極の製造方法の第2の組成物層を形成する工程を説明するための概略断面図である。FIG. 3 is a schematic cross-sectional view for explaining a step of forming a second composition layer in the method for producing an electrode for a lithium ion secondary battery of the present invention. 図4は、第2の組成物層の上に第3の組成物層を形成したリチウムイオン二次電池用電極を説明するための概略断面図である。FIG. 4 is a schematic cross-sectional view for explaining an electrode for a lithium ion secondary battery in which a third composition layer is formed on a second composition layer. 図5は疎領域及び密領域の空間率の測定方法を説明するための図である。FIG. 5 is a diagram for explaining a method of measuring the porosity of the sparse region and the dense region. 図6は測定によって得られた空間率から疎領域及び密領域を決定する方法を説明するための図である。FIG. 6 is a diagram for explaining a method of determining a sparse region and a dense region from the space ratio obtained by measurement.
<リチウムイオン二次電池用電極>
 以下、本発明のリチウムイオン二次電池用電極について詳細に説明する。
 図1に示すように、リチウムイオン二次電池用電極1は、電極活物質層10と、電極活物質層10の表面上に設けられる絶縁層20とを備える。また、リチウムイオン二次電池用電極1において、電極活物質層10は、通常、電極集電体30の上に積層される。
 電極活物質層10は、電極集電体30の両表面に積層されてもよく、その場合、絶縁層20は各電極活物質層10の表面上に設けられるとよい。このように、絶縁層20をリチウムイオン二次電池用電極1の両面に設けると、負極及び正極を複数積層して多層構造とした場合でも、各正極と各負極の間の短絡を有効に防止できる。
<Electrode for lithium ion secondary battery>
Hereinafter, the electrode for a lithium ion secondary battery of the present invention will be described in detail.
As shown in FIG. 1, the electrode 1 for a lithium ion secondary battery includes an electrode active material layer 10 and an insulating layer 20 provided on a surface of the electrode active material layer 10. In the electrode 1 for a lithium ion secondary battery, the electrode active material layer 10 is usually laminated on the electrode current collector 30.
The electrode active material layers 10 may be laminated on both surfaces of the electrode current collector 30, and in that case, the insulating layer 20 may be provided on the surface of each electrode active material layer 10. As described above, when the insulating layer 20 is provided on both surfaces of the electrode 1 for a lithium ion secondary battery, a short circuit between each positive electrode and each negative electrode can be effectively prevented even when a plurality of negative electrodes and positive electrodes are laminated to form a multilayer structure. it can.
 本発明において、リチウムイオン二次電池用電極1は、負極又は正極のいずれでもよいが、負極であることが好ましい。以下、リチウムイオン二次電池用電極1が負極である場合の構成を詳細に説明する。 In the present invention, the electrode 1 for a lithium ion secondary battery may be either a negative electrode or a positive electrode, but is preferably a negative electrode. Hereinafter, the configuration in the case where the electrode 1 for a lithium ion secondary battery is a negative electrode will be described in detail.
[絶縁層]
 図1は、絶縁層20の好ましい一実施形態を示す。図1に示す一実施形態に係る絶縁層20は、3つの層状の密領域21,23,25を有する。これにより、絶縁層20の短絡に対する安全性を高めることができる。また、絶縁層20は、隣接する2つの密領域21,23,25に挟まれ該隣接する2つの密領域21,23,25よりも空間率の高い層状の2つの疎領域22,24を有する。これにより、電解液は、疎領域22,24を通して電極活物質層10に十分に浸透できるので、リチウムイオン二次電池の出力特性を良好にすることができる。したがって、絶縁層20は、密領域21,23,25及び疎領域22,24を有することにより、短絡に対する安全性を向上させることができると共にリチウムイオン二次電池の出力特性を良好にできる。
[Insulating layer]
FIG. 1 shows a preferred embodiment of the insulating layer 20. The insulating layer 20 according to the embodiment shown in FIG. 1 has three layered dense regions 21, 23, 25. Thereby, safety against short circuit of the insulating layer 20 can be improved. The insulating layer 20 has two layered sparse regions 22, 24 sandwiched between two adjacent dense regions 21, 23, 25 and having a higher porosity than the adjacent two dense regions 21, 23, 25. . As a result, the electrolyte can sufficiently penetrate into the electrode active material layer 10 through the sparse regions 22 and 24, so that the output characteristics of the lithium ion secondary battery can be improved. Therefore, since the insulating layer 20 has the dense regions 21, 23, 25 and the sparse regions 22, 24, the safety against short circuit can be improved and the output characteristics of the lithium ion secondary battery can be improved.
 ただし、図1に示すリチウムイオン二次電池用電極1は一例であって、短絡に対する安全性を向上させることができると共にリチウムイオン二次電池の出力特性を良好にできるという観点から、絶縁層は、隣接する2つの密領域に挟まれる少なくとも1つの疎領域を有していればよい。同様の観点から、絶縁層は2つ以上の疎領域を有することが好ましく、2つ又は3つの疎領域を有することがより好ましく、図1に示すリチウムイオン二次電池用電極1のように、2つの疎領域を有することが更に好ましい。これらの場合、疎領域と密領域とは交互に並ぶとよい。なお、短絡に対する安全性の観点から、絶縁層が有する疎領域の数は、4以下であることが好ましく、3以下であることがより好ましい。 However, the electrode 1 for a lithium ion secondary battery shown in FIG. 1 is an example, and from the viewpoint that the safety against a short circuit can be improved and the output characteristics of the lithium ion secondary battery can be improved, It is only necessary to have at least one sparse region sandwiched between two adjacent dense regions. From the same viewpoint, the insulating layer preferably has two or more sparse regions, more preferably two or three sparse regions. As in the lithium ion secondary battery electrode 1 shown in FIG. More preferably, it has two sparse regions. In these cases, the sparse regions and the dense regions may be alternately arranged. In addition, from the viewpoint of safety against a short circuit, the number of sparse regions included in the insulating layer is preferably 4 or less, and more preferably 3 or less.
 リチウムイオン二次電池の出力特性を良好にできるという観点から、各疎領域の空間率は30体積%以上であることが好ましい。さらに、短絡に対する安全性を向上させることができるという観点から各疎領域の空間率は30~60体積%であることがより好ましく、30~42体積%であることが更に好ましく、30~37体積%であることが特に好ましい。
 また、短絡に対する安全性を向上させることができるという観点から、各密領域の空間率は30体積%未満であることが好ましく、29体積%以下であることがより好ましく、28体積%以下であることが更に好ましい。
 なお、絶縁層における疎領域及び密領域の空間率は、例えば、後述の実施例に記載の方法により測定することができる。
From the viewpoint that the output characteristics of the lithium ion secondary battery can be improved, the porosity of each sparse region is preferably 30% by volume or more. Further, from the viewpoint that the safety against short circuit can be improved, the porosity of each sparse region is more preferably 30 to 60% by volume, still more preferably 30 to 42% by volume, and more preferably 30 to 37% by volume. % Is particularly preferred.
In addition, from the viewpoint that safety against short circuits can be improved, the porosity of each dense region is preferably less than 30 vol%, more preferably 29 vol% or less, and 28 vol% or less. Is more preferred.
Note that the porosity of the sparse region and the dense region in the insulating layer can be measured by, for example, a method described in Examples described later.
 各疎領域と、該疎領域に隣接する2つの密領域それぞれとの空間率との差はいずれもが、好ましくは2体積%以上であり、より好ましくは3体積%以上であり、さらに好ましくは5体積%以上である。各疎領域と、隣接する密領域の空間率の差が2体積%以上であると、短絡に対する安全性をより向上させることができると共にリチウムイオン二次電池の出力特性をより良好にできる。 Any difference between the porosity of each sparse region and each of two dense regions adjacent to the sparse region is preferably 2% by volume or more, more preferably 3% by volume or more, and further preferably 5% by volume or more. When the difference in the porosity between each sparse region and the adjacent dense region is 2% by volume or more, the safety against short circuit can be further improved and the output characteristics of the lithium ion secondary battery can be further improved.
 短絡に対する安全性を向上させることができるという観点から、絶縁層の中で、電極活物質層に最も近い領域は、密領域(すなわち、図1では密領域21)であることが好ましい。また、同様の観点から、絶縁層の中で、電極活物質層に最も遠い領域も、密領域(すなわち、図1では密領域25)であることが好ましい。 From the viewpoint that the safety against short circuit can be improved, the region closest to the electrode active material layer in the insulating layer is preferably a dense region (that is, the dense region 21 in FIG. 1). Further, from a similar viewpoint, it is preferable that the region farthest from the electrode active material layer in the insulating layer is also a dense region (that is, the dense region 25 in FIG. 1).
 絶縁層が有する複数の密領域の中で、電極活物質層に最も近い密領域の空間率が最も高くなるとよい。このような構成により活物質への電解液の拡散が早くなると考えられ、出力特性が向上すると考えられる。また、絶縁層が有する複数の密領域の空間率は、密領域の位置が電極活物質層から離れるにしたがって低くなるとよい。このような構成により出力特性が向上すると考えられる。さらに、絶縁層が有する複数の密領域の中で、電極活物質層に最も遠い密領域の空間率が最も低くなるとよい。このような構成により出力特性が向上すると考えられる。 中 で It is preferable that the dense area closest to the electrode active material layer has the highest porosity among the plurality of dense areas included in the insulating layer. It is considered that such a configuration accelerates the diffusion of the electrolytic solution into the active material, and improves the output characteristics. Further, it is preferable that the porosity of the plurality of dense regions included in the insulating layer decreases as the position of the dense region is away from the electrode active material layer. It is considered that such a configuration improves output characteristics. Further, among a plurality of dense regions included in the insulating layer, the porosity of the dense region farthest from the electrode active material layer is preferably the lowest. It is considered that such a configuration improves output characteristics.
 絶縁層の厚みは、好ましくは7~30μmであり、より好ましくは7~20μmであり、更に好ましくは10~20μmである。絶縁層の厚みを30μm以下とすることで、絶縁層による抵抗上昇を抑制してリチウムイオン二次電池の出力特性が向上する。また、7μm以上とすることで、電極活物質層に対する絶縁層による被覆率が上昇して、短絡に対する安全性が向上する。 厚 み The thickness of the insulating layer is preferably 7 to 30 μm, more preferably 7 to 20 μm, and further preferably 10 to 20 μm. By setting the thickness of the insulating layer to 30 μm or less, an increase in resistance due to the insulating layer is suppressed, and the output characteristics of the lithium ion secondary battery are improved. Further, when the thickness is 7 μm or more, the coverage of the electrode active material layer by the insulating layer is increased, and the safety against short circuit is improved.
 絶縁層は、絶縁性微粒子と、絶縁層用バインダーとを含むことが好ましい。これにより、多孔質構造を有する絶縁層を容易に形成することができる。 The insulating layer preferably contains insulating fine particles and a binder for the insulating layer. Thereby, an insulating layer having a porous structure can be easily formed.
(絶縁性微粒子)
 絶縁性微粒子は、絶縁性であれば特に限定されず、有機粒子、無機粒子の何れであってもよい。具体的な有機粒子としては、例えば、架橋ポリメタクリル酸メチル、架橋スチレン-アクリル酸共重合体、架橋アクリロニトリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸リチウム)、ポリアセタール樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂等の有機化合物から構成される粒子が挙げられる。無機粒子としては二酸化ケイ素、窒化ケイ素、アルミナ、ベーマイト、チタニア、ジルコニア、窒化ホウ素、酸化亜鉛、二酸化スズ、酸化ニオブ(Nb)、酸化タンタル(Ta)、フッ化カリウム、フッ化リチウム、クレイ、ゼオライト、炭酸カルシウム等の無機化合物から構成される粒子が挙げられる。また、無機粒子は、ニオブ-タンタル複合酸化物、マグネシウム-タンタル複合酸化物等の公知の複合酸化物から構成される粒子であってもよい。
 絶縁性微粒子は、上記した各材料が1種単独で使用される粒子であってもよいし、2種以上が併用される粒子であってもよい。また、絶縁性微粒子は、無機化合物と有機化合物の両方を含む微粒子であってもよい。例えば、有機化合物からなる粒子の表面に無機酸化物をコーティングした無機有機複合粒子であってもよい。
 これらの中では、無機粒子が好ましく、中でもアルミナ粒子、ベーマイト粒子が好ましい。
(Insulating fine particles)
The insulating fine particles are not particularly limited as long as they are insulating, and may be organic particles or inorganic particles. Specific organic particles include, for example, cross-linked polymethyl methacrylate, cross-linked styrene-acrylic acid copolymer, cross-linked acrylonitrile resin, polyamide resin, polyimide resin, poly (lithium 2-acrylamido-2-methylpropanesulfonate), Examples include particles composed of an organic compound such as a polyacetal resin, an epoxy resin, a polyester resin, a phenol resin, and a melamine resin. Examples of the inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, and fluoride. Examples include particles composed of inorganic compounds such as lithium chloride, clay, zeolite, and calcium carbonate. Further, the inorganic particles may be particles composed of a known composite oxide such as a niobium-tantalum composite oxide or a magnesium-tantalum composite oxide.
The insulating fine particles may be particles in which each of the above-mentioned materials is used alone or in combination of two or more. Further, the insulating fine particles may be fine particles containing both an inorganic compound and an organic compound. For example, inorganic-organic composite particles in which an inorganic oxide is coated on the surface of particles made of an organic compound may be used.
Among these, inorganic particles are preferable, and alumina particles and boehmite particles are particularly preferable.
 絶縁性微粒子の平均粒子径は、通常、電極活物質の平均粒径より小さいものであり、例えば0.001~2μm、好ましくは0.05~1.5μm、より好ましくは0.1~1.0μmである。絶縁層の平均粒子径をこれら範囲内することで、空隙率を上記範囲内に調整しやすくなる。また、これら上限値以下とすると、後述する各組成物層の表面がなだらかな凹凸となって、疎領域が形成されやすくなる。
 なお、平均粒子径は、レーザー回折・散乱法によって求めた絶縁性微粒子の粒度分布において、体積積算が50%での粒径(D50)を意味する。
 また、絶縁性微粒子は、平均粒子径が上記範囲内の1種が単独で使用されてもよいし、平均粒子径の異なる2種の絶縁性微粒子が混合されて使用されてもよい。
The average particle diameter of the insulating fine particles is usually smaller than the average particle diameter of the electrode active material, for example, 0.001 to 2 μm, preferably 0.05 to 1.5 μm, more preferably 0.1 to 1. 0 μm. By setting the average particle diameter of the insulating layer within these ranges, the porosity can be easily adjusted within the above range. Further, when the content is not more than these upper limits, the surface of each composition layer to be described later becomes gently uneven, and a sparse region is easily formed.
The average particle size means the particle size (D50) at a volume integration of 50% in the particle size distribution of the insulating fine particles obtained by the laser diffraction / scattering method.
As the insulating fine particles, one kind having an average particle diameter within the above range may be used alone, or two kinds of insulating fine particles having different average particle diameters may be used as a mixture.
 絶縁層に含有される絶縁性微粒子の含有量は、絶縁層全量基準で、好ましくは15~95質量%、より好ましくは40~90質量%、更に好ましくは60~85質量%である。絶縁性微粒子の含有量が上記範囲内であると、絶縁層に適切な絶縁性が付与される。 含有 The content of the insulating fine particles contained in the insulating layer is preferably 15 to 95% by mass, more preferably 40 to 90% by mass, and still more preferably 60 to 85% by mass, based on the total amount of the insulating layer. When the content of the insulating fine particles is within the above range, appropriate insulating properties are imparted to the insulating layer.
(絶縁層用バインダー)
 絶縁層用バインダーは、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、アクリロニトリル・ブタジエンゴム、スチレンブタジエンゴム、ポリ(メタ)アクリル酸、カルボキシメチルセルロース、ヒドロキシエチルセルロース、及びポリビニルアルコール等が挙げられる。これらバインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロース等は、ナトリウム塩等の塩の態様にて使用されていてもよい。
 絶縁層用バインダーとしては、好ましくはポリフッ化ビニリデンである。
(Binder for insulating layer)
Insulating layer binders include fluorine-containing resins such as polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), polytetrafluoroethylene (PTFE), polymethyl acrylate (PMA), and polymethyl acrylate (PMA). Acrylic resin such as methyl methacrylate (PMMA), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP), polyacrylonitrile (PAN), acrylonitrile-butadiene rubber, styrene-butadiene rubber, poly (meth) acrylic acid, carboxymethylcellulose, hydroxyethylcellulose, polyvinyl alcohol and the like. These binders may be used alone or in combination of two or more. Further, carboxymethyl cellulose and the like may be used in the form of a salt such as a sodium salt.
The binder for the insulating layer is preferably polyvinylidene fluoride.
 絶縁層に含有される絶縁層用バインダーの含有量は、絶縁層全量基準で、5~50質量%が好ましく、より好ましくは10~45質量%、更に好ましくは15~40質量%である。上記範囲内であると、絶縁層に適切な絶縁性を付与できる。
 絶縁層は、本発明の効果を損なわない範囲内において、絶縁性微粒子及び絶縁層用バインダー以外の他の任意成分を含んでもよい。ただし、絶縁層の総質量のうち、絶縁性微粒子及び絶縁層用バインダーの総含有量は、85質量%以上であることが好ましく、90質量%以上であることがより好ましい。
The content of the binder for the insulating layer contained in the insulating layer is preferably 5 to 50% by mass, more preferably 10 to 45% by mass, and still more preferably 15 to 40% by mass, based on the total amount of the insulating layer. When the content is within the above range, appropriate insulating properties can be imparted to the insulating layer.
The insulating layer may contain other optional components other than the insulating fine particles and the binder for the insulating layer as long as the effects of the present invention are not impaired. However, of the total mass of the insulating layer, the total content of the insulating fine particles and the binder for the insulating layer is preferably 85% by mass or more, and more preferably 90% by mass or more.
 絶縁層に含有される絶縁層用バインダーの重量平均分子量(Mw)は、好ましくは10,000~10,000,000であり、より好ましくは100,000~1,000,000である。絶縁層用バインダーのMwが上記範囲内であると、絶縁層に疎領域を形成しやすくなる。
 なお、絶縁層用バインダーのMwは、ポリスチレン標準物質を使用した公知のゲル濾過クロマトグラフ法(GPC法)によって測定された値である。
The weight average molecular weight (Mw) of the binder for the insulating layer contained in the insulating layer is preferably from 10,000 to 10,000,000, and more preferably from 100,000 to 1,000,000. When the Mw of the insulating layer binder is within the above range, a sparse region is easily formed in the insulating layer.
In addition, Mw of the binder for the insulating layer is a value measured by a known gel filtration chromatography method (GPC method) using a polystyrene standard substance.
(電極活物質層)
 電極活物質層は、典型的には、電極活物質と、電極用バインダーとを含む。電極が負極である場合、電極活物質が負極活物質となり、電極活物質層が負極活物質層となる。
 負極活物質層に使用される負極活物質としては、グラファイト、ハードカーボン等の炭素材料、スズ化合物とシリコンと炭素の複合体、リチウム等が挙げられるが、これら中では炭素材料が好ましく、グラファイトがより好ましい。負極活物質は1種単独で使用してもよいし、2種以上を併用してもよい。
 電極活物質は、特に限定されないが、その平均粒子径は、通常、絶縁性微粒子よりも大きくなり、0.5~50μmであることが好ましく、1~30μmであることがより好ましく、6~25μmであることが更に好ましい。
 電極活物質層における電極活物質の含有量は、電極活物質層全量基準で、50~98.5質量%が好ましく、60~98質量%がより好ましい。
(Electrode active material layer)
The electrode active material layer typically contains an electrode active material and a binder for an electrode. When the electrode is a negative electrode, the electrode active material becomes a negative electrode active material, and the electrode active material layer becomes a negative electrode active material layer.
Examples of the negative electrode active material used in the negative electrode active material layer include graphite, a carbon material such as hard carbon, a composite of a tin compound and silicon and carbon, and lithium. Among these, a carbon material is preferable, and graphite is preferable. More preferred. One kind of the negative electrode active material may be used alone, or two or more kinds may be used in combination.
The average particle diameter of the electrode active material is not particularly limited, but is usually larger than the insulating fine particles, preferably 0.5 to 50 μm, more preferably 1 to 30 μm, and more preferably 6 to 25 μm. Is more preferable.
The content of the electrode active material in the electrode active material layer is preferably 50 to 98.5% by mass, more preferably 60 to 98% by mass, based on the total amount of the electrode active material layer.
 電極活物質層は、導電助剤を含有してもよい。導電助剤は、上記電極活物質よりも導電性が高い材料が使用され、具体的には、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、棒状カーボン等の炭素材料等が挙げられる。導電助剤は1種単独で使用してもよいし、2種以上を併用してもよい。
 電極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、電極活物質層全量基準で、1~30質量%であることが好ましく、2~25質量%であることがより好ましい。
The electrode active material layer may contain a conductive assistant. As the conductive additive, a material having higher conductivity than the above-mentioned electrode active material is used, and specific examples thereof include carbon materials such as Ketjen black, acetylene black, carbon nanotube, and rod-like carbon. The conductive auxiliary may be used alone or in combination of two or more.
When a conductive additive is contained in the electrode active material layer, the content of the conductive additive is preferably 1 to 30% by mass, and more preferably 2 to 25% by mass, based on the total amount of the electrode active material layer. Is more preferred.
 電極活物質層は、電極活物質、又は電極活物質及び導電助剤が電極用バインダーによって結着されて構成される。電極用バインダーの具体例としては、絶縁層用バインダーで使用可能な化合物として例示された化合物が挙げられる。電極用バインダーとしては、好ましくはカルボキシメチルセルロース、スチレンブタジエンゴム、アクリルゴム及びニトリルブタジエンゴムであり、より好ましくはカルボキシメチルセルロース及びスチレンブタジエンゴムである。
 電極活物質層に使用されるバインダーは、1種単独で使用してもよいし、2種以上を併用してもよい。電極活物質層における電極用バインダーの含有量は、電極活物質層全量基準で、1.5~40質量%であることが好ましく、2.0~25質量%がより好ましい。
The electrode active material layer is formed by binding an electrode active material or an electrode active material and a conductive auxiliary with an electrode binder. Specific examples of the electrode binder include the compounds exemplified as the compounds usable in the insulating layer binder. The electrode binder is preferably carboxymethyl cellulose, styrene butadiene rubber, acrylic rubber and nitrile butadiene rubber, more preferably carboxymethyl cellulose and styrene butadiene rubber.
The binder used for the electrode active material layer may be used alone or in combination of two or more. The content of the electrode binder in the electrode active material layer is preferably from 1.5 to 40% by mass, more preferably from 2.0 to 25% by mass, based on the total amount of the electrode active material layer.
 電極活物質層の厚さは、特に限定されないが、電極集電体の片面当たり10~100μmが好ましく、20~80μmがより好ましい。
 電極活物質層は、本発明の効果を損なわない範囲内において、電極活物質、導電助剤、及び電極用バインダー以外の他の任意成分を含んでもよい。ただし、電極活物質層の総質量のうち、電極活物質、導電助剤、及び電極用バインダーの総含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。
The thickness of the electrode active material layer is not particularly limited, but is preferably from 10 to 100 μm, more preferably from 20 to 80 μm, per one surface of the electrode current collector.
The electrode active material layer may contain other optional components other than the electrode active material, the conductive additive, and the electrode binder as long as the effects of the present invention are not impaired. However, of the total mass of the electrode active material layer, the total content of the electrode active material, the conductive additive, and the electrode binder is preferably 90% by mass or more, and more preferably 95% by mass or more. .
(電極集電体)
 電極が負極である場合、電極集電体は負極集電体となる。負極集電体(電極集電体)を構成する材料としては、例えば、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられ、これらの中ではアルミニウム又は銅が好ましく、銅がより好ましい。電極集電体は、一般的に金属箔からなり、その厚さは、特に限定されないが、1~50μmが好ましい。
(Electrode current collector)
When the electrode is a negative electrode, the electrode current collector becomes a negative electrode current collector. Examples of a material constituting the negative electrode current collector (electrode current collector) include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, aluminum or copper is preferable, Copper is more preferred. The electrode current collector is generally made of a metal foil, and its thickness is not particularly limited, but is preferably 1 to 50 μm.
<リチウムイオン二次電池用電極の製造方法>
 次に、本発明のリチウムイオン二次電池用電極の製造方法について詳細に説明する。本発明のリチウムイオン二次電池用電極の製造方法は、電極活物質層の表面上に、第1の絶縁層用組成物を塗布して第1の組成物層を形成する工程、及び第1の組成物層の表面上に、第2の絶縁層用組成物を塗布して第2の組成物層を形成する工程を含む。そして、第2の組成物層を形成する工程は、第2の組成物層の中で空間率が高く、さらに第1の組成物層の第2の組成物層近傍の領域に比べて空間率が高い領域が第2の組成物層の第1の組成物層近傍の領域に形成されるように、第2の絶縁層用組成物を塗布する。これにより、本発明のリチウムイオン二次電池用電極を製造することができる。
<Method for producing electrode for lithium ion secondary battery>
Next, a method for producing an electrode for a lithium ion secondary battery of the present invention will be described in detail. In the method for producing an electrode for a lithium ion secondary battery of the present invention, a step of applying a composition for a first insulating layer on a surface of an electrode active material layer to form a first composition layer; Forming a second composition layer by applying a composition for a second insulating layer on the surface of the composition layer. In the step of forming the second composition layer, the porosity is high in the second composition layer, and the porosity is higher than the area of the first composition layer in the vicinity of the second composition layer. The second insulating layer composition is applied such that a region having a high N is formed in a region of the second composition layer near the first composition layer. Thereby, the electrode for a lithium ion secondary battery of the present invention can be manufactured.
(第1の組成物層を形成する工程)
 第1の組成物層を形成する工程では、例えば、図2に示すように、電極活物質層10の表面上に、第1の絶縁層用組成物を塗布して第1の組成物層41を形成する。
(Step of Forming First Composition Layer)
In the step of forming the first composition layer, for example, as shown in FIG. 2, a first insulating layer composition is applied on the surface of the electrode active material layer 10 to form a first composition layer 41. To form
 第1の組成物層41の形成に使用する第1の絶縁層用組成物は、絶縁性微粒子と、絶縁層用バインダーと、溶媒とを含むことが好ましい。また、第1の絶縁層用組成物は、必要に応じて配合されるその他の任意成分を含んでいてもよい。絶縁性微粒子、絶縁層用バインダー等の詳細は上記で説明したとおりである。第1の絶縁層用組成物はスラリーとなる。 The first insulating layer composition used for forming the first composition layer 41 preferably contains insulating fine particles, an insulating layer binder, and a solvent. Further, the first insulating layer composition may contain other optional components that are blended as necessary. Details of the insulating fine particles, the binder for the insulating layer, and the like are as described above. The first insulating layer composition becomes a slurry.
 第1の絶縁層用組成物の固形分濃度は、好ましくは5~75質量%、より好ましくは15~50質量%である。固形分粘度を上記範囲内とすることで、短絡に対する安全性が高い第1の組成物層41を形成しやすくなる。第1の絶縁層用組成物の塗布時の粘度は、好ましくは1000~5000mPa・s、より好ましくは2000~4000mPa・sである。粘度を上記範囲内とすることで、短絡に対する安全性が高い第1の組成物層41を形成しやすくなる。なお、塗布時の粘度とは、B型粘度計で60rpm、25℃の条件で測定した粘度である。また、第1の絶縁層用組成物の塗布時のせん断速度は、好ましくは5,000~7,000,000(1/s)であり、より好ましくは10,000~5,000,000(1/s)である。せん断速度を上記範囲内とすることで、短絡に対する安全性が高い第1の組成物層41を形成しやすくなる。 固 形 The solid content of the first insulating layer composition is preferably 5 to 75% by mass, more preferably 15 to 50% by mass. By setting the solid content viscosity within the above range, it becomes easy to form the first composition layer 41 having high safety against short circuit. The viscosity at the time of application of the first insulating layer composition is preferably from 1,000 to 5,000 mPa · s, and more preferably from 2,000 to 4,000 mPa · s. By setting the viscosity within the above range, it becomes easy to form the first composition layer 41 having high safety against short circuit. The viscosity at the time of application is a viscosity measured by a B-type viscometer at 60 rpm and 25 ° C. The shear rate at the time of applying the first insulating layer composition is preferably 5,000 to 7,000,000 (1 / s), and more preferably 10,000 to 5,000,000 ( 1 / s). By setting the shear rate within the above range, the first composition layer 41 having high safety against short circuit can be easily formed.
 第1の絶縁層用組成物を電極活物質層10の表面に塗布する方法は特に限定されず、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、バーコート法、グラビアコート法、スクリーン印刷法等が挙げられる。これらの中では、第1の絶縁層用組成物を均一に塗布して、第1の組成物層41を薄くする観点から、バーコート法又はグラビアコート法が好ましい。 The method for applying the first insulating layer composition to the surface of the electrode active material layer 10 is not particularly limited, and examples thereof include a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a bar coating method, and a gravure coating method. Method, screen printing method and the like. Among these, a bar coating method or a gravure coating method is preferable from the viewpoint of applying the first insulating layer composition uniformly to make the first composition layer 41 thin.
 第1の組成物層41の表面上に第2の絶縁層用組成物を塗布する前に、第1の組成物層41を乾燥することが好ましい。乾燥温度は、上記溶媒を除去できれば特に限定されないが、例えば40~120℃、好ましくは50~90℃である。また、乾燥時間は、特に限定されないが、例えば、30秒~10分間である。 前 Before applying the second insulating layer composition on the surface of the first composition layer 41, it is preferable to dry the first composition layer 41. The drying temperature is not particularly limited as long as the solvent can be removed, and is, for example, 40 to 120 ° C, preferably 50 to 90 ° C. The drying time is not particularly limited, but is, for example, 30 seconds to 10 minutes.
(第2の組成物層を形成する工程)
 第2の組成物層を形成する工程では、例えば、図3に示すように、第1の組成物層41の表面上に、第2の絶縁層用組成物を塗布して第2の組成物層42を形成する。そして、第2の組成物層を形成する工程は、第2の組成物層42の中で空間率が高く、さらに第1の組成物層41の第2の組成物層近傍の領域411に比べて空間率が高い領域421が第2の組成物層42の第1の組成物層近傍の領域に形成されるように、第2の絶縁層用組成物を塗布する。これにより、第2の組成物層42に上述の疎領域及び密領域を形成することができる。
(Step of forming second composition layer)
In the step of forming the second composition layer, for example, as shown in FIG. 3, the second composition for an insulating layer is applied on the surface of the first composition layer 41 to form the second composition layer. A layer 42 is formed. Then, in the step of forming the second composition layer, the porosity is high in the second composition layer 42, and the step of forming the second composition layer is more difficult than the region 411 of the first composition layer 41 near the second composition layer. The second insulating layer composition is applied so that the region 421 having a high porosity is formed in a region of the second composition layer 42 near the first composition layer. Thereby, the above-described sparse region and dense region can be formed in the second composition layer 42.
 第2の組成物層42の形成に使用する第2の絶縁層用組成物は、絶縁性微粒子と、絶縁層用バインダーと、溶媒とを含むことが好ましい。第2の絶縁層用組成物は、必要に応じて配合されるその他の任意成分を含んでいてもよい。絶縁性微粒子、絶縁層用バインダー等の詳細は上記で説明したとおりである。第2の絶縁層用組成物はスラリーとなる。 The second insulating layer composition used for forming the second composition layer 42 preferably contains insulating fine particles, an insulating layer binder, and a solvent. The composition for the second insulating layer may include other optional components blended as necessary. Details of the insulating fine particles, the binder for the insulating layer, and the like are as described above. The second insulating layer composition becomes a slurry.
 第2の絶縁層用組成物の固形分濃度は、好ましくは20~80質量%、より好ましくは25~60質量%である。固形分粘度を上記範囲内とすることで、第2の絶縁層用組成物の塗布時の粘度を後述の範囲内となるようにしやすくなる。 固 形 The solid content of the second insulating layer composition is preferably 20 to 80% by mass, more preferably 25 to 60% by mass. By setting the solid content viscosity within the above range, the viscosity at the time of application of the second insulating layer composition can be easily set within the range described below.
 第2の絶縁層用組成物の塗布時の粘度は、好ましくは2000~4000mPa・s、より好ましくは2500~3500mPa・sである。第2の絶縁層用組成物の塗布時の粘度を上記範囲内とすることで、第2の組成物層42に疎領域を形成しやすくなる。なお、塗布時の粘度とは、B型粘度計で60rpm、25℃の条件で測定した粘度である。 粘度 The viscosity of the second insulating layer composition at the time of application is preferably 2000 to 4000 mPa · s, more preferably 2500 to 3500 mPa · s. By setting the viscosity at the time of application of the second insulating layer composition within the above range, it becomes easy to form a sparse region in the second composition layer 42. The viscosity at the time of application is a viscosity measured by a B-type viscometer at 60 rpm and 25 ° C.
 第2の絶縁層用組成物の塗布時のせん断速度は、好ましくは10,000~5,000,000(1/s)であり、より好ましくは15,000~100,000(1/s)である。せん断速度を上記範囲内とすることで、第2の組成物層42に疎領域を形成しやすくなる。なお、せん断速度は、基材の搬送速度、接液部の基材との液面距離により調整することができる。また、塗布時のせん断速度は、例えば下記式により算定可能である。
(せん断速度(1/s))=(搬送速度m/sec)÷(液面距離m)
The shear rate at the time of application of the second insulating layer composition is preferably 10,000 to 5,000,000 (1 / s), and more preferably 15,000 to 100,000 (1 / s). It is. By setting the shear rate within the above range, a sparse region is easily formed in the second composition layer 42. The shear rate can be adjusted by the transport speed of the substrate and the liquid level distance between the substrate and the liquid contact portion. The shear rate at the time of application can be calculated, for example, by the following equation.
(Shear speed (1 / s)) = (transport speed m / sec) ÷ (liquid level distance m)
 第2の絶縁層用組成物を第1の組成物層41の表面に塗布する方法は特に限定されず、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、バーコート法、グラビアコート法、スクリーン印刷法等が挙げられる。これらの中では、第2の絶縁層用組成物を均一な厚みに塗布して、第2の組成物層42を薄くする観点から、バーコート法又はグラビアコート法が好ましい。 The method for applying the composition for the second insulating layer to the surface of the first composition layer 41 is not particularly limited. For example, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a bar coating method, A gravure coating method, a screen printing method and the like can be mentioned. Among these, a bar coating method or a gravure coating method is preferred from the viewpoint of applying the second insulating layer composition to a uniform thickness to make the second composition layer 42 thin.
 第2の絶縁層用組成物を第1の組成物層41の表面に塗布した後に、第2の組成物層42を乾燥することが好ましい。乾燥温度は、上記溶媒を除去できれば特に限定されないが、例えば40~120℃、好ましくは50~90℃である。また、乾燥時間は、特に限定されないが、例えば、30秒~10分間である。 後 に After applying the composition for the second insulating layer to the surface of the first composition layer 41, it is preferable to dry the second composition layer. The drying temperature is not particularly limited as long as the solvent can be removed, and is, for example, 40 to 120 ° C, preferably 50 to 90 ° C. The drying time is not particularly limited, but is, for example, 30 seconds to 10 minutes.
 なお、以下の原理は本発明を限定しないが、第2の組成物層42の疎領域が形成されるのは、以下の理由であると考えられる。電極活物質層10の表面には、通常、図中に示さないが電極活物質に起因する凹凸が存在する。電極活物質層10の表面上に第1の組成物層41を形成すると、第1の絶縁層用組成物における絶縁性微粒子の平均粒子径は電極活物質層10の表面の凹凸に比べて小さいので、第1の組成物層41の表面は電極活物質層10の表面に比べて平滑になる。しかしながら、電極活物質層10の表面の凹凸の影響は残るので、第1の組成物層41の表面には、なだらかな凹凸が残る。第1の組成物層41の表面のこのなだらかな凹凸が第2の絶縁層用組成物のパッキングを阻害するので、第2の組成物層42に疎領域が形成されると考えられる。特に、第2の絶縁層用組成物の塗布時の粘度、せん断速度及びこれらの両方が上記範囲内であると、第2の絶縁層用組成物のパッキングが阻害されやすくなり、第2の組成物層42に疎領域が形成されやすくなると考えられる。第2の組成物層42の上に、さらに他の組成物層を形成する場合も、同様のことが起こり、その組成物層にも疎領域が形成されると考えられる。なお、第2の絶縁層用組成物の塗布時の粘度が上記範囲よりも小さすぎたり、せん断速度が上記範囲よりも小さすぎたりする場合、第2の絶縁層用組成物は上記なだらかな凹凸の影響は受けず、第2の組成物層42に疎領域が形成されにくくなると考えられる。 The following principle does not limit the present invention, but the reason why the sparse region of the second composition layer 42 is formed is considered as follows. The surface of the electrode active material layer 10 usually has irregularities due to the electrode active material, although not shown in the drawing. When the first composition layer 41 is formed on the surface of the electrode active material layer 10, the average particle diameter of the insulating fine particles in the first insulating layer composition is smaller than the unevenness of the surface of the electrode active material layer 10. Therefore, the surface of the first composition layer 41 becomes smoother than the surface of the electrode active material layer 10. However, the influence of the irregularities on the surface of the electrode active material layer 10 remains, so that gentle irregularities remain on the surface of the first composition layer 41. Since the gentle irregularities on the surface of the first composition layer 41 hinder the packing of the composition for the second insulating layer, it is considered that a sparse region is formed in the second composition layer 42. In particular, when the viscosity and the shear rate at the time of application of the second insulating layer composition and both of them are within the above ranges, the packing of the second insulating layer composition tends to be hindered, and the second composition It is considered that a sparse region is likely to be formed in the material layer 42. The same occurs when another composition layer is further formed on the second composition layer 42, and it is considered that a sparse region is also formed in the composition layer. When the viscosity at the time of application of the second insulating layer composition is too low or the shear rate is too low, the second insulating layer composition may have the above-mentioned gentle unevenness. Is not affected, and it is considered that a sparse region is hardly formed in the second composition layer 42.
 図4に示すように、第2の組成物層42の表面上に、第2の絶縁層用組成物を塗布して第3の組成物層43をさらに形成してもよい。この場合も第3の組成物層の中で空間率が高く、さらに第2の組成物層の第3の組成物層近傍の領域422に比べて空間率が高い領域431が第3の組成物層43の第2の組成物層近傍の領域に形成されるように、第2の絶縁層用組成物を塗布することが好ましい。第3の組成物層43においても、第2の組成物層と同様に、粘度、塗布時のせん断速度を上記範囲内ように調整することで、空間率を所定の範囲に調整された領域431が第2の組成物層近傍に形成されることになる。このように第3の組成物層を形成することで、図1に示すリチウムイオン二次電池用電極1を製造することができる。また、同様な方法で、第3の組成物層43の上に、1つ又は2つ以上の組成物層を形成してもよい。
 なお、電極活物質層10から離れるにしたがって、組成物層の表面に対する電極活物質層の表面の凹凸の影響は小さくなる。このため、電極活物質層から離れるにしたがって、密領域に相当する領域の空間率が低くなると考えられる。
As shown in FIG. 4, a second composition for an insulating layer may be applied on the surface of the second composition layer 42 to further form a third composition layer 43. Also in this case, the third composition layer has a high porosity, and a region 431 having a higher porosity than the region 422 of the second composition layer near the third composition layer is the third composition. It is preferable to apply the second insulating layer composition so as to be formed in a region of the layer 43 near the second composition layer. In the third composition layer 43, similarly to the second composition layer, by adjusting the viscosity and the shear rate at the time of application so as to be within the above ranges, the area 431 in which the porosity is adjusted to a predetermined range. Is formed in the vicinity of the second composition layer. By forming the third composition layer in this way, the electrode 1 for a lithium ion secondary battery shown in FIG. 1 can be manufactured. Further, one or two or more composition layers may be formed on the third composition layer 43 in a similar manner.
Note that as the distance from the electrode active material layer 10 increases, the influence of the unevenness of the surface of the electrode active material layer on the surface of the composition layer decreases. For this reason, it is considered that the porosity of the region corresponding to the dense region decreases as the distance from the electrode active material layer increases.
(電極活物質層の形成)
 本発明のリチウムイオン二次電池用電極の製造方法では、まず、電極集電体30の表面上に電極活物質層10を形成し、その電極活物質層10の表面上に、上記したように絶縁層を形成するとよい。
 電極活物質層10の形成においては、まず、電極活物質(負極活物質)と、電極用バインダーと、溶媒とを含む電極活物質層用組成物を用意する。また、電極活物質層用組成物は、必要に応じて配合される導電助剤等のその他成分を含んでもよい。負極活物質、電極用バインダー、導電助剤等は上記で説明したとおりである。電極活物質層用組成物は、スラリーとなる。
(Formation of electrode active material layer)
In the method for manufacturing an electrode for a lithium ion secondary battery of the present invention, first, the electrode active material layer 10 is formed on the surface of the electrode current collector 30, and the electrode active material layer 10 is formed on the surface of the electrode active material layer 10 as described above. It is preferable to form an insulating layer.
In forming the electrode active material layer 10, first, an electrode active material layer composition including an electrode active material (negative electrode active material), an electrode binder, and a solvent is prepared. Further, the composition for an electrode active material layer may include other components such as a conductive auxiliary compounded as necessary. The negative electrode active material, the binder for the electrode, the conductive assistant, and the like are as described above. The composition for an electrode active material layer becomes a slurry.
 電極活物質層用組成物における溶媒は、好ましくは水を使用する。水を使用することで、上記した第2のバインダーを電極活物質層用組成物中に容易に溶解できる。また、その他のバインダーは、水にエマルションの形態で配合させるとよい。
 電極活物質層用組成物の固形分濃度は、好ましくは5~75質量%、より好ましくは20~65質量%である。
As the solvent in the composition for an electrode active material layer, water is preferably used. By using water, the above-mentioned second binder can be easily dissolved in the composition for an electrode active material layer. Further, other binders may be mixed with water in the form of an emulsion.
The solid concentration of the composition for an electrode active material layer is preferably 5 to 75% by mass, and more preferably 20 to 65% by mass.
 電極活物質層は、上記電極活物質層用組成物を使用して公知の方法で形成すればよく、例えば、上記電極活物質層用組成物を電極集電体の上に塗布し、乾燥することによって形成することができる。
 また、電極活物質層は、電極活物質層用組成物を、電極集電体以外の基材上に塗布し、乾燥することにより形成してもよい。電極集電体以外の基材としては、公知の剥離シートが挙げられる。基材の上に形成した電極活物質層は、好ましくは絶縁層を形成した後、基材から電極活物質層を剥がして電極集電体の上に転写すればよい。
 電極集電体又は基材の上に形成した電極活物質層は、好ましくは加圧プレスする。加圧プレスすることで、電極密度を高めることが可能になる。加圧プレスは、ロールプレス等により行えばよい。
The electrode active material layer may be formed by a known method using the composition for an electrode active material layer. For example, the composition for an electrode active material layer is applied on an electrode current collector and dried. Can be formed.
In addition, the electrode active material layer may be formed by applying the composition for an electrode active material layer on a substrate other than the electrode current collector and drying the composition. As a substrate other than the electrode current collector, a known release sheet may be used. The electrode active material layer formed on the base material is preferably formed by forming an insulating layer, and then peeling the electrode active material layer from the base material and transferring it to the electrode current collector.
The electrode active material layer formed on the electrode current collector or the substrate is preferably pressed under pressure. Pressing can increase the electrode density. The pressure press may be performed by a roll press or the like.
 以上の説明では、本発明のリチウムイオン二次電池用電極が負極である場合の例を説明したが、リチウムイオン二次電池用電極は正極であってもよい。正極である場合、電極活物質層は、正極活物質層となり、電極活物質が正極活物質となる。
 正極活物質としては、金属酸リチウム化合物が挙げられる。金属酸リチウム化合物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等が例示できる。また、オリビン型リン酸鉄リチウム(LiFePO)等であってもよい。さらに、リチウム以外の金属を複数使用したものでもよく、三元系と呼ばれるNCM(ニッケルコバルトマンガン)系酸化物、NCA(ニッケルコバルトアルミニウム系)系酸化物等を使用してもよい。
 また、電極集電体は正極集電体となる。正極集電体となる材料は、上記負極集電体に使用される化合物と同様であるが、好ましくはアルミニウム又は銅、より好ましくはアルミニウムが使用される。
 リチウムイオン二次電池用電極が正極である場合のその他の構成は、負極である場合と同様であるのでその他の構成の説明は省略する。
In the above description, the case where the electrode for a lithium ion secondary battery of the present invention is a negative electrode has been described, but the electrode for a lithium ion secondary battery may be a positive electrode. In the case of a positive electrode, the electrode active material layer becomes a positive electrode active material layer, and the electrode active material becomes a positive electrode active material.
Examples of the positive electrode active material include a lithium metal oxide compound. Examples of the lithium metal oxide compound include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like. Further, olivine-type lithium iron phosphate (LiFePO 4 ) may be used. Further, a plurality of metals other than lithium may be used, and a ternary NCM (nickel-cobalt-manganese) -based oxide, an NCA (nickel-cobalt-aluminum-based) oxide, or the like may be used.
The electrode current collector becomes a positive electrode current collector. The material for the positive electrode current collector is the same as the compound used for the negative electrode current collector, but preferably aluminum or copper, and more preferably aluminum.
Other configurations when the electrode for the lithium ion secondary battery is the positive electrode are the same as those in the case where the electrode is the negative electrode, and the description of the other configurations is omitted.
<リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、上記した絶縁層を有するリチウムイオン二次電池用電極を備える。具体的には、本発明のリチウムイオン二次電池は、互いに対向するように配置された正極、及び負極を備え、負極及び正極の少なくとも一方の電極が、上記した絶縁層を有するリチウムイオン二次電池用電極となる。このリチウムイオン二次電池用電極(負極又は正極)においては、他方の電極(正極又は負極)に対向する面に絶縁層が設けられるとよい。本発明のリチウムイオン二次電池は、上記した絶縁層を有するリチウムイオン二次電池用電極を負極として備えることが好ましい。
<Lithium ion secondary battery>
A lithium ion secondary battery of the present invention includes a lithium ion secondary battery electrode having the above-described insulating layer. Specifically, the lithium ion secondary battery of the present invention includes a positive electrode and a negative electrode arranged so as to face each other, and at least one of the negative electrode and the positive electrode has the above-described lithium ion secondary battery having the insulating layer. It becomes a battery electrode. In this lithium ion secondary battery electrode (negative electrode or positive electrode), an insulating layer may be provided on a surface facing the other electrode (positive electrode or negative electrode). It is preferable that the lithium ion secondary battery of the present invention includes a lithium ion secondary battery electrode having the above-described insulating layer as a negative electrode.
 本発明のリチウムイオン二次電池は、正極及び負極の間に配置されるセパレータをさらに備えてもよい。セパレータが設けられることで、正極及び負極の間の短絡がより一層効果的に防止される。また、セパレータは、後述する電解質を保持してもよい。正極又は負極に設けられる絶縁層は、セパレータに接触していてもよいし、接触していなくてもよいが、接触することが好ましい。
 セパレータとしては、多孔性の高分子膜、不織布、ガラスファイバー等が挙げられ、これらの中では多孔性の高分子膜が好ましい。多孔性の高分子膜としては、オレフィン系多孔質フィルムが例示される。セパレータは、リチウムイオン二次電池駆動時の発熱により加熱されて熱収縮等することがあるが、そのような熱収縮時でも、上記絶縁層が設けられることで短絡が抑制しやすくなる。
 また、本発明のリチウムイオン二次電池では、セパレータが省略されてもよい。セパレータが省略されても、負極又は正極の少なくともいずれか一方に設けられた絶縁層により、負極と正極の間の絶縁性が確保される。
The lithium ion secondary battery of the present invention may further include a separator disposed between the positive electrode and the negative electrode. By providing the separator, a short circuit between the positive electrode and the negative electrode is more effectively prevented. Further, the separator may hold an electrolyte described later. The insulating layer provided on the positive electrode or the negative electrode may or may not be in contact with the separator, but is preferably in contact with the separator.
Examples of the separator include a porous polymer film, a nonwoven fabric, and a glass fiber. Among these, a porous polymer film is preferable. As the porous polymer film, an olefin-based porous film is exemplified. The separator may be heated by heat generated when the lithium ion secondary battery is driven, and may be thermally contracted. Even during such thermal contraction, the short circuit can be easily suppressed by providing the insulating layer.
Further, in the lithium ion secondary battery of the present invention, the separator may be omitted. Even if the separator is omitted, insulation between the negative electrode and the positive electrode is ensured by the insulating layer provided on at least one of the negative electrode and the positive electrode.
 リチウムイオン二次電池は、負極、正極がそれぞれ複数積層された多層構造であってもよい。この場合、負極及び正極は、積層方向に沿って交互に設けられればよい。また、セパレータが使用される場合、セパレータは各負極と各正極の間に配置されればよい。
 リチウムイオン二次電池において、上記した負極及び正極、又は負極、正極、及びセパレータは、バッテリーセル内に収納される。バッテリーセルは、角型、円筒型、ラミネート型等のいずれでもよい。
The lithium ion secondary battery may have a multilayer structure in which a plurality of negative electrodes and a plurality of positive electrodes are stacked. In this case, the negative electrode and the positive electrode may be provided alternately along the laminating direction. When a separator is used, the separator may be disposed between each negative electrode and each positive electrode.
In the lithium ion secondary battery, the negative electrode and the positive electrode, or the negative electrode, the positive electrode, and the separator are housed in a battery cell. The battery cell may be any of a square type, a cylindrical type, a laminated type, and the like.
 リチウムイオン二次電池は、電解質を備える。電解質は特に限定されず、リチウムイオン二次電池で使用される公知の電解質を使用すればよい。電解質としては例えば電解液を使用する。
 電解液としては、有機溶媒と、電解質塩を含む電解液が例示できる。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、メチルアセテート等の極性溶媒、又はこれら溶媒の2種類以上の混合物が挙げられる。電解質塩としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFCO、LiPFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF及びLiN(COCFCF、リチウムビスオキサレートボラート(LiB(C等のリチウムを含む塩が挙げられる。また、有機酸リチウム塩-三フッ化ホウ素錯体、LiBH等の錯体水素化物等の錯体が挙げられる。これらの塩又は錯体は、1種単独で使用してもよいが、2種以上の混合物であってもよい。
 また、電解質は、上記電解液に更に高分子化合物を含むゲル状電解質であってもよい。高分子化合物としては、例えば、ポリフッ化ビニリデン等のフッ素系ポリマー、ポリ(メタ)アクリル酸メチル等のポリアクリル系ポリマーが挙げられる。なお、ゲル状電解質は、セパレータとして使用されてもよい。
 電解質は、負極及び正極間に配置されればよく、例えば、電解質は、上記した負極及び正極、又は負極、正極、及びセパレータが内部に収納されたバッテリーセル内に充填される。また、電解質は、例えば、負極又は正極上に塗布されて負極及び正極間に配置されてもよい。
Lithium ion secondary batteries include an electrolyte. The electrolyte is not particularly limited, and a known electrolyte used in a lithium ion secondary battery may be used. For example, an electrolyte is used as the electrolyte.
Examples of the electrolyte include an electrolyte containing an organic solvent and an electrolyte salt. Examples of the organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, and 1,2. Polar solvents such as -diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, and methyl acetate; or a mixture of two or more of these solvents. As the electrolyte salt, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 and salts containing lithium such as LiN (COCF 2 CF 3 ) 2 and lithium bisoxalate borate (LiB (C 2 O 4 ) 2 . Examples include complexes such as boron hydride complexes and complex hydrides such as LiBH 4. These salts or complexes may be used alone or in a mixture of two or more.
Further, the electrolyte may be a gel electrolyte further containing a polymer compound in the above-mentioned electrolytic solution. Examples of the polymer compound include a fluorine-based polymer such as polyvinylidene fluoride and a polyacryl-based polymer such as poly (methyl meth) acrylate. Note that the gel electrolyte may be used as a separator.
The electrolyte may be disposed between the negative electrode and the positive electrode. For example, the electrolyte is filled in the battery cell in which the negative electrode and the positive electrode, or the negative electrode, the positive electrode, and the separator are housed. Further, the electrolyte may be, for example, applied on the negative electrode or the positive electrode and disposed between the negative electrode and the positive electrode.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
 得られたリチウムイオン二次電池用電極は、以下の評価方法により評価した。
(出力特性)
 実施例、比較例で作製したセルに対して、1Cの定電流充電を行い、4.2V到達次第、電流を0.05Cまで減少させ、充電が完了するまで定電圧充電を行った。そして、1Cの定電流放電を行い、2.5Vまで放電させた時点で放電を完了し、1Cの定電流放電の放電容量を計算した。次に同様の充電を行った後、10Cの定電流放電を行い、2.5Vまで放電させた時点で放電を完了し、10Cの定電流放電の放電容量を計算した。そして、次式(1)より1Cに対する10Cの放電容量の割合を算出し、以下のように評価した。なお、1Cに対する10Cの放電容量の割合が大きければ大きいほど、出力特性は良好となる。
(1Cに対する10Cの放電容量の割合)=(10Cの定電流放電の放電容量/1Cの定電流放電の放電容量)×100・・・・・(1)
  A:1Cに対する10Cの放電容量の割合≧20%
  B:20%>1Cに対する10Cの放電容量の割合≧10%
  C:10%>1Cに対する10Cの放電容量の割合≧5%
  D:5%>1Cに対する10Cの放電容量の割合
The obtained electrode for a lithium ion secondary battery was evaluated by the following evaluation method.
(Output characteristics)
The cells produced in the examples and comparative examples were charged at a constant current of 1 C, and when the voltage reached 4.2 V, the current was reduced to 0.05 C, and constant voltage charging was performed until the charging was completed. Then, a constant current discharge of 1 C was performed, and the discharge was completed at the time when the discharge was performed to 2.5 V, and the discharge capacity of the constant current discharge of 1 C was calculated. Next, after performing the same charge, the battery was discharged at a constant current of 10 C. When the battery was discharged to 2.5 V, the discharge was completed, and the discharge capacity of the constant current discharge at 10 C was calculated. Then, the ratio of the discharge capacity of 10 C to 1 C was calculated from the following equation (1), and evaluated as follows. Note that the larger the ratio of the discharge capacity of 10C to 1C, the better the output characteristics.
(Ratio of discharge capacity of 10C to 1C) = (Discharge capacity of constant current discharge of 10C / discharge capacity of constant current discharge of 1C) × 100 (1)
A: Ratio of discharge capacity of 10C to 1C ≧ 20%
B: ratio of 10C discharge capacity to 20%> 1C ≧ 10%
C: ratio of 10C discharge capacity to 10%> 1C ≧ 5%
D: ratio of 10C discharge capacity to 5%> 1C
(短絡安全性)
 実施例、比較例で作製したセルに対して1.0Cの定電流充電を行い、4.2V到達次第、電流を減少させ、0.05Cとなった時点で充電が完了するまで定電圧充電を行った。その後温度制御可能な恒温槽に入れ、130℃に設定した。130℃に到達後は1時間放置した。この間のセルの表面温度の最高温度を測定し、以下に分類して評価した。なお、表面温度の最高温度が低ければ低いほど、短絡安全性は高くなる。
  A:表面温度の最高温度が135℃未満であった。
  B:表面温度の最高温度は135℃以上であったが、140℃未満であった。
  C:表面温度の最高温度は140℃以上であったが、200℃未満であった。
  D:表面温度の最高温度は200℃以上であった。
(Short circuit safety)
The cells prepared in the Examples and Comparative Examples were charged at a constant current of 1.0 C, and the current was decreased as soon as the voltage reached 4.2 V. When the voltage reached 0.05 C, the constant voltage charging was performed until the charging was completed. went. After that, it was placed in a thermostatic bath capable of controlling the temperature and set at 130 ° C. After reaching 130 ° C., it was left for 1 hour. During this period, the maximum temperature of the surface temperature of the cell was measured and classified as follows. The lower the maximum surface temperature, the higher the short-circuit safety.
A: The maximum surface temperature was less than 135 ° C.
B: The maximum surface temperature was 135 ° C or higher, but was lower than 140 ° C.
C: The maximum surface temperature was 140 ° C. or higher, but lower than 200 ° C.
D: The maximum surface temperature was 200 ° C. or higher.
 得られたリチウムイオン二次電池用電極の物性は、以下の測定方法により測定した。
(空間率)
 イオンミリング方式で、絶縁層が形成されたリチウムイオン二次電池用電極の断面を露出させた。次に、露出させたリチウムイオン二次電池用電極の断面を、FE-SEM(電界放出型走査型電子顕微鏡)を用いて、絶縁層全体が観察できる倍率で観察し、絶縁層の画像を得た。なお、倍率は5000~25000倍であった。次に、画像解析ソフト「Image J」を使用して、絶縁層の実部分が黒く表示され、絶縁層の空隙部分が白く表示されるように、得られた画像を2値化処理した(図5参照)。そして、絶縁層を厚さ方向に10分割し、画像解析ソフト「Image J」を使用して、10分割したそれぞれの分割領域(例えば、図5の符号50)における白部分の面積の割合を測定した。この白部分の面積の割合が分割領域の空間率(体積%)となる。
 そして、図6に示すように、隣接する2つの分割領域の空間率に比べて、空間率が2体積%以上高くなっている分割領域を疎分割領域とした。なお、空間率の測定誤差を考慮して、空間率が2体積%以上高くなっている領域を疎分割領域とした。両端の2つの分割領域については、隣接する分割領域が1つしかないので、隣接する1つの分割領域の空間率に比べて、空間率が2体積%以上高くなっている場合、疎分割領域とした。
 さらに、空間率が高い分割領域が2つ以上連続する場合には、その連続する分割領域を1つの連続領域として、その連続領域の空間率(すなわち、複数の分割領域の空間率の平均値)が、その連続領域に隣接する2つの領域よりも2体積%以上高い場合には、その連続領域を構成する各分割領域を疎分割領域とした。なお、「空間率が高い分割領域が2つ以上連続する連続領域」とは、その連続領域を構成する各分割領域の空間率がいずれも、連続領域に隣接する2つの分割領域の空間率のいずれよりも高い領域を意味する。
 以上のようにして、疎分割領域を特定して、疎分割領域と特定されなかった分割領域を密分割領域とした。
 なお、密分割領域及び疎分割領域がそれぞれ連続する場合、連続する密分割領域及び疎分割領域を合わせて、それぞれ1つの密領域及び疎領域とした。さらに、密分割領域及び疎分割領域が連続していない場合は、1つの密分割領域及び疎分割領域をそれぞれ1つの密領域及び疎領域とした。連続する密分割領域及び疎分割領域を合わせて、それぞれ1つの密領域及び疎領域とした場合、連続する密分割領域及び疎分割領域の平均の空間率をそれぞれ密領域及び疎領域の空間率とした。
The physical properties of the obtained electrode for a lithium ion secondary battery were measured by the following measurement methods.
(Space ratio)
A section of the electrode for a lithium ion secondary battery on which an insulating layer was formed was exposed by an ion milling method. Next, the exposed cross section of the electrode for a lithium ion secondary battery is observed using a FE-SEM (field emission scanning electron microscope) at a magnification that allows the entire insulating layer to be observed, and an image of the insulating layer is obtained. Was. The magnification was 5000 to 25000 times. Next, using an image analysis software “Image J”, the obtained image was binarized so that the real part of the insulating layer was displayed in black and the void part of the insulating layer was displayed in white (FIG. 5). Then, the insulating layer is divided into ten in the thickness direction, and the ratio of the area of the white part in each of the ten divided regions (for example, reference numeral 50 in FIG. 5) is measured using image analysis software “Image J”. did. The ratio of the area of the white portion is the porosity (volume%) of the divided region.
Then, as shown in FIG. 6, a divided area having a porosity higher by 2% by volume or more than the porosity of two adjacent divided areas is defined as a sparse divided area. In addition, in consideration of the measurement error of the porosity, a region where the porosity is higher than 2% by volume is defined as a sparsely divided region. As for the two divided regions at both ends, there is only one adjacent divided region. Therefore, when the porosity is higher than the porosity of one adjacent divided region by 2% by volume or more, the divided region is regarded as a sparse divided region. did.
Further, when two or more divided regions having a high space ratio are continuous, the continuous divided region is regarded as one continuous region, and the space ratio of the continuous region (that is, the average value of the space ratio of a plurality of divided regions) However, if the volume was higher than the two regions adjacent to the continuous region by 2% by volume or more, each of the divided regions constituting the continuous region was regarded as a sparsely divided region. The “continuous region in which two or more divided regions having a high space ratio are continuous” means that the space ratio of each of the divided regions constituting the continuous region is equal to the space ratio of two divided regions adjacent to the continuous region. It means the area higher than either.
As described above, the sparsely divided area is specified, and the divided area not specified as the sparsely divided area is defined as the densely divided area.
When the densely divided area and the sparsely divided area are respectively continuous, the dense and sparsely divided areas are combined into one dense area and one sparsely divided area. Further, when the densely divided region and the sparsely divided region are not continuous, one densely divided region and one sparsely divided region are regarded as one densely divided region and one sparsely divided region, respectively. When the continuous densely divided region and the sparsely divided region are combined into one dense region and a sparse region, respectively, the average spatial ratio of the continuous densely divided region and the sparsely divided region is defined as the spatial ratio of the dense region and the sparsely divided region. did.
(絶縁層の厚み)
 絶縁層の厚みは、上述のSEMの画像から測定した。
(Thickness of insulating layer)
The thickness of the insulating layer was measured from the above-mentioned SEM image.
 得られた絶縁層用組成物(スラリー)の物性は、以下の測定方法により測定した。
(粘度)
 絶縁層用組成物(スラリー)の粘度は、B型粘度計で60rpm、25℃の条件で測定した。
The physical properties of the obtained composition (slurry) for an insulating layer were measured by the following measurement methods.
(viscosity)
The viscosity of the insulating layer composition (slurry) was measured with a B-type viscometer at 60 rpm and 25 ° C.
[実施例1]
(正極の作製)
 正極活物質としてNCA系酸化物(平均粒子径10μm)を100質量部と、導電助剤としてのアセチレンブラックを4質量部と、電極用バインダーとしてのポリフッ化ビニリデン4質量部と、溶媒としてのN-メチルピロリドン(NMP)とを混合し、固形分濃度60質量%に調整した正極活物質層用スラリーを得た。この正極活物質層用スラリーを、正極集電体としての厚さ15μmのアルミニウム箔の両面に塗布し、予備乾燥後、120℃で真空乾燥した。その後、両面に正極活物質層用スラリーを塗布した正極集電体を、400kN/mの線圧でローラにより加圧プレスし、更に電極寸法の100mm×200mm角に打ち抜いて、両面に正極活物質層を有する正極とした。該寸法のうち、正極活物質が塗布された面積は100mm×180mmであった。なお、両面に形成された正極活物質層の厚さは、片面あたり50μmであった。
[Example 1]
(Preparation of positive electrode)
100 parts by mass of an NCA-based oxide (average particle diameter: 10 μm) as a positive electrode active material, 4 parts by mass of acetylene black as a conductive additive, 4 parts by mass of polyvinylidene fluoride as an electrode binder, and N as a solvent -Methylpyrrolidone (NMP) was mixed to obtain a slurry for a positive electrode active material layer adjusted to a solid concentration of 60% by mass. This slurry for a positive electrode active material layer was applied to both sides of a 15-μm-thick aluminum foil as a positive electrode current collector, preliminarily dried, and then vacuum dried at 120 ° C. Then, the positive electrode current collector coated with the slurry for the positive electrode active material layer on both sides is pressed with a roller at a linear pressure of 400 kN / m using a roller, and further punched into a 100 mm × 200 mm square of the electrode dimensions, thereby forming a positive electrode active material on both sides. A positive electrode having a layer was obtained. Of the dimensions, the area where the positive electrode active material was applied was 100 mm × 180 mm. In addition, the thickness of the positive electrode active material layers formed on both surfaces was 50 μm per one surface.
(負極の作製)
 負極活物質としてグラファイト(平均粒子径10μm)100質量部と、電極用バインダーとしてのカルボキシメチルセルロース(CMC)のナトリウム塩を1.5質量部及びスチレンブタジエンゴム(SBR)1.5質量部と、溶媒としての水とを混合し、固形分50質量%に調整した負極活物質層用スラリーを得た。この負極活物質層用スラリーを、負極集電体としての厚さ12μmの銅箔の両面に塗布して100℃で真空乾燥した。その後、両面に負極活物質層用スラリーを塗布した負極集電体を、500kN/mの線圧でローラにより加圧プレスし、更に電極寸法の110mm×210mm角に打ち抜いて、両面に負極活物質層を有する負極とした。該寸法のうち、負極活物質が塗布された面積は110mm×190mmであった。なお、両面に形成された負極活物質層の厚さは、片面あたり50μmであった。また、負極活物質層の密度は1.55g/ccであった。
(Preparation of negative electrode)
100 parts by mass of graphite (average particle diameter: 10 μm) as a negative electrode active material, 1.5 parts by mass of sodium salt of carboxymethyl cellulose (CMC) as a binder for an electrode, 1.5 parts by mass of styrene butadiene rubber (SBR), and a solvent Was mixed with water to obtain a slurry for a negative electrode active material layer adjusted to a solid content of 50% by mass. This slurry for a negative electrode active material layer was applied to both surfaces of a copper foil having a thickness of 12 μm as a negative electrode current collector, and dried at 100 ° C. under vacuum. Thereafter, the negative electrode current collector coated with the slurry for the negative electrode active material layer on both sides is pressed with a roller at a linear pressure of 500 kN / m using a roller, and further punched into a 110 mm × 210 mm square of the electrode dimensions to form a negative electrode active material on both sides. A negative electrode having a layer was obtained. Of the dimensions, the area where the negative electrode active material was applied was 110 mm × 190 mm. The thickness of the negative electrode active material layers formed on both sides was 50 μm per one side. The density of the negative electrode active material layer was 1.55 g / cc.
(電解液の調製)
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比(EC:DEC)で混合した溶媒に、電解質塩としてLiPFを1モル/リットルとなるように溶解して、電解液を調製した。
(Preparation of electrolyte solution)
LiPF 6 as an electrolyte salt was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 (EC: DEC) so as to have a concentration of 1 mol / liter, and an electrolytic solution was prepared. Was prepared.
(絶縁層の形成)
 ポリフッ化ビニリデン溶液((株)クレハ製、製品名:L#1710、10質量%溶液、溶媒:NMP)に、絶縁性微粒子としてアルミナ粒子(日本軽金属(株)製、製品名:AHP200、平均粒子径0.4μm)を、中程度の剪断力を加えながら混合して分散させてスラリーを得た。なお、アルミナ粒子及びポリフッ化ビニリデン溶液の配合量は、スラリー中のアルミナ粒子の配合量が固形分基準で100質量部となり、ポリフッ化ビニリデン溶液の含有量が固形分基準で15質量部となるような配合量であった。
 このスラリーにNMPを、固形分濃度が35質量%となるようにさらに加え、撹拌機で30分間穏やかに撹拌し、絶縁層用スラリーを得た。絶縁層用スラリーの粘度は2800mPa・sであった。
 絶縁層用スラリーを、グラビアコーターで、負極の各負極活物質層の表面に塗布し、その塗膜を90℃で1分間乾燥することによって、各負極活物質層の表面に第1の組成物層を形成した。次いで反対側を同様に塗工し、負極活物質層の表面両面に第1の組成物層を形成した。
(Formation of insulating layer)
Alumina particles (manufactured by Nippon Light Metal Co., Ltd., product name: AHP200, average particle size) in a polyvinylidene fluoride solution (manufactured by Kureha Corporation, product name: L # 1710, 10% by mass solution, solvent: NMP) as insulating fine particles 0.4 μm in diameter) was mixed and dispersed while applying moderate shearing force to obtain a slurry. The blending amount of the alumina particles and the polyvinylidene fluoride solution is such that the blending amount of the alumina particles in the slurry is 100 parts by mass on a solid basis, and the content of the polyvinylidene fluoride solution is 15 parts by mass on a solids basis. It was a proper blending amount.
NMP was further added to this slurry so that the solid content concentration became 35% by mass, and the mixture was gently stirred with a stirrer for 30 minutes to obtain a slurry for an insulating layer. The viscosity of the slurry for the insulating layer was 2800 mPa · s.
The slurry for the insulating layer is applied to the surface of each negative electrode active material layer of the negative electrode by a gravure coater, and the coating film is dried at 90 ° C. for 1 minute to form the first composition on the surface of each negative electrode active material layer. A layer was formed. Next, the opposite side was similarly coated to form a first composition layer on both surfaces of the negative electrode active material layer.
 次に、絶縁層用スラリーを、グラビアコーターで、負極の第1の組成物層の表面に塗布し、その塗膜を90℃で1分間乾燥することによって、各第1の組成物層の表面に第2の組成物層を形成した。次いで反対側を同様に塗工し、負極活物質層の両面側に第2の組成物層を形成した。 Next, the slurry for an insulating layer is applied to the surface of the first composition layer of the negative electrode by a gravure coater, and the coating film is dried at 90 ° C. for 1 minute to form a surface of each first composition layer. Then, a second composition layer was formed. Next, the opposite side was similarly coated to form a second composition layer on both sides of the negative electrode active material layer.
 次に、絶縁層用スラリーを、グラビアコーターで、負極の第2の組成物層の表面に塗布し、その塗膜を90℃で1分間乾燥することによって、各第2の組成物層の表面に第3の組成物層を形成した。次いで反対側を同様に塗工し、負極活物質層の両面側に第3の組成物層を形成した。
 なお、実施例1において、グラビアコーターで各絶縁層用スラリーを塗布するときのせん断速度を20,000(1/s)とした。
Next, the slurry for an insulating layer is applied to the surface of the second composition layer of the negative electrode by a gravure coater, and the coating film is dried at 90 ° C. for 1 minute, so that the surface of each second composition layer is formed. Then, a third composition layer was formed. Next, the opposite side was similarly coated to form a third composition layer on both sides of the negative electrode active material layer.
In addition, in Example 1, the shear rate at the time of applying each insulating layer slurry with a gravure coater was set to 20,000 (1 / s).
(電池の製造)
 上記で得た絶縁層を有する負極10枚と、正極9枚と、セパレータ18枚を積層して積層体を得た。ここで、負極と正極は交互に配置して、各負極と正極の間にセパレータを配置した。また、セパレータとしては、ポリエチレン製多孔質フィルムを用いた。
 各正極の正極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。同様に、各負極の負極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。
 次いで、アルミラミネートフィルムで上記積層体を挟み、端子用タブを外部に突出させ、三辺をラミネート加工によって封止した。封止せずに残した一辺から、上記で得た電解液を注入し、真空封止することによってラミネート型のセルを製造した。
(Manufacture of batteries)
A laminate was obtained by laminating 10 negative electrodes, 9 positive electrodes, and 18 separators each having the insulating layer obtained above. Here, the negative electrode and the positive electrode were alternately arranged, and a separator was arranged between each negative electrode and the positive electrode. In addition, a polyethylene porous film was used as a separator.
The ends of the exposed portions of the positive electrode current collector of each positive electrode were joined together by ultrasonic fusion, and a terminal tab projecting to the outside was joined. Similarly, the ends of the exposed portions of the negative electrode current collectors of the respective negative electrodes were joined together by ultrasonic fusion, and terminal tabs projecting to the outside were joined.
Next, the laminated body was sandwiched between aluminum laminated films, the terminal tabs were projected outside, and three sides were sealed by laminating. From one side left without sealing, the electrolyte solution obtained above was injected, and vacuum sealing was performed to produce a laminate type cell.
[実施例2]
 絶縁層用スラリーを、グラビアコーターで、負極の第3の組成物層の表面に塗布し、その塗膜を60℃で10分間乾燥することによって、第3の組成物層の表面に第4の組成物層を形成した。次いで反対側を同様に塗工し、負極活物質層の両面側に第4の組成物層を形成した。それ以外は、実施例1と同様に実施した。
[Example 2]
The slurry for an insulating layer is applied to the surface of the third composition layer of the negative electrode by a gravure coater, and the coating film is dried at 60 ° C. for 10 minutes to form the fourth composition layer on the surface of the third composition layer. A composition layer was formed. Next, the opposite side was similarly coated to form a fourth composition layer on both sides of the negative electrode active material layer. Other than that, it carried out similarly to Example 1.
[実施例3]
 負極活物質層の両面側に第3の組成物層を形成しなかった以外は、実施例1と同様に実施した。
[Example 3]
The operation was performed in the same manner as in Example 1 except that the third composition layer was not formed on both sides of the negative electrode active material layer.
[実施例4]
 絶縁層用スラリーを、グラビアコーターで、負極の第4の組成物層の表面に塗布し、その塗膜を60℃で10分間乾燥することによって、第4の組成物層の表面に第5の組成物層を形成した。次いで反対側を同様に塗工し、負極活物質層の両面側に第5の組成物層を形成した。それ以外は、実施例2と同様に実施した。
[Example 4]
The slurry for an insulating layer is applied to the surface of the fourth composition layer of the negative electrode by a gravure coater, and the coating film is dried at 60 ° C. for 10 minutes, so that the fifth composition layer is applied to the surface of the fourth composition layer. A composition layer was formed. Next, the opposite side was similarly coated to form a fifth composition layer on both sides of the negative electrode active material layer. Other than that, it carried out similarly to Example 2.
[実施例5]
 絶縁層用スラリーの粘度が3300mPa・sとなるように固形分濃度を35質量%から40質量%へ変更するよう絶縁層用スラリーを調製した以外は、実施例1と同様に実施した。
[Example 5]
The same procedure as in Example 1 was carried out except that the slurry for the insulating layer was prepared so that the solid content concentration was changed from 35% by mass to 40% by mass so that the viscosity of the slurry for the insulating layer was 3300 mPa · s.
[実施例6]
 負極活物質層の両面側に第1~第3の組成物層を形成する代わりに正極活物質層の両面側に第1~第3の組成物層を形成した以外は、実施例1と同様に実施した。
[Example 6]
Same as Example 1 except that the first to third composition layers were formed on both sides of the positive electrode active material layer instead of forming the first to third composition layers on both sides of the negative electrode active material layer It was carried out.
[比較例1]
 負極活物質層の両面側に第2及び第3の組成物層を形成せず、グラビアコーターの代わりにコンマコーターを使用して第1の組成物層の厚みを15μmとした以外は、実施例1と同様に実施した。
[Comparative Example 1]
Example 2 Except that the second and third composition layers were not formed on both sides of the negative electrode active material layer, and the thickness of the first composition layer was changed to 15 μm using a comma coater instead of a gravure coater. Performed in a similar manner to 1.
[比較例2]
 絶縁層用スラリーの粘度が90mPa・sとなるように絶縁層用スラリーを調製し、グラビアコーターで各絶縁層用スラリーを塗布した。さらに、負極活物質層の両面側に第2及び第3の組成物層を形成しなかった。それ以外は実施例1と同様に実施した。
[Comparative Example 2]
The slurry for the insulating layer was prepared so that the viscosity of the slurry for the insulating layer was 90 mPa · s, and the slurry for the insulating layer was applied using a gravure coater. Further, the second and third composition layers were not formed on both sides of the negative electrode active material layer. Other than that, it carried out similarly to Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の実施例1~6に示すように、絶縁層が、少なくとも2つ以上の層状の密領域、及び隣接する2つの密領域に挟まれ該隣接する2つの密領域よりも空間率の高い層状の疎領域を有するので、短絡に対する安全性及び出力特性が優れていた。それに対して、比較例1及び2では、絶縁層が疎領域を有しないので、出力特性が悪かった。 As shown in the above Examples 1 to 6, the insulating layer is sandwiched between at least two or more layered dense regions and between two adjacent dense regions and has a higher space ratio than the two adjacent dense regions. , The safety against short-circuit and the output characteristics were excellent. On the other hand, in Comparative Examples 1 and 2, the output characteristics were poor because the insulating layer had no sparse region.
 1 リチウムイオン二次電池用電極
 10 電極活物質層
 20 絶縁層
 21,23,25 密領域
 22,24 疎領域
 30 電極集電体
 41 第1の組成物層
 42 第2の組成物層
 43 第3の組成物層
 

 
Reference Signs List 1 electrode for lithium ion secondary battery 10 electrode active material layer 20 insulating layer 21, 23, 25 dense region 22, 24 sparse region 30 electrode current collector 41 first composition layer 42 second composition layer 43 third Composition layer

Claims (13)

  1.  電極活物質層と、前記電極活物質層の表面上に設けられる絶縁層とを備え、
     前記絶縁層が、少なくとも2つ以上の層状の密領域、及び隣接する2つの密領域に挟まれ該隣接する2つの密領域よりも空間率の高い層状の疎領域を有するリチウムイオン二次電池用電極。
    An electrode active material layer, comprising an insulating layer provided on the surface of the electrode active material layer,
    For a lithium ion secondary battery, the insulating layer has at least two or more layered dense regions and a layered sparse region sandwiched between two adjacent dense regions and having a higher porosity than the two adjacent dense regions. electrode.
  2.  前記絶縁層は2つ以上の前記疎領域及び2つ以上の前記密領域を有し、
     前記疎領域と前記密領域とが交互に並ぶ請求項1に記載のリチウムイオン二次電池用電極。
    The insulating layer has two or more of the sparse regions and two or more of the dense regions,
    The electrode for a lithium ion secondary battery according to claim 1, wherein the sparse regions and the dense regions are alternately arranged.
  3.  前記絶縁層が、前記密領域と交互に並ぶ2つ又は3つの前記疎領域を有する請求項2に記載のリチウムイオン二次電池用電極。 3. The electrode for a lithium ion secondary battery according to claim 2, wherein the insulating layer has two or three of the sparse regions alternately arranged with the dense regions.
  4.  前記絶縁層が、前記密領域と交互に並ぶ2つの前記疎領域を有する請求項3に記載のリチウムイオン二次電池用電極。 4. The electrode for a lithium ion secondary battery according to claim 3, wherein the insulating layer has two of the sparse regions alternately arranged with the dense regions.
  5.  前記疎領域の空間率が30体積%以上である請求項1~4のいずれか1項に記載のリチウムイオン二次電池用電極。 (5) The electrode for a lithium ion secondary battery according to any one of (1) to (4), wherein the porosity of the sparse region is 30% by volume or more.
  6.  前記絶縁層の厚みが7~30μmである請求項1~5のいずれか1項に記載のリチウムイオン二次電池用電極。 (6) The electrode for a lithium ion secondary battery according to any one of (1) to (5), wherein the thickness of the insulating layer is 7 to 30 μm.
  7.  前記絶縁層が、絶縁性微粒子と、絶縁層用バインダーとを含む請求項1~6のいずれか1項に記載のリチウムイオン二次電池用電極。 (7) The electrode for a lithium ion secondary battery according to any one of (1) to (6), wherein the insulating layer contains insulating fine particles and a binder for the insulating layer.
  8.  前記電極活物質層が負極活物質層である請求項1~7のいずれか1項に記載のリチウムイオン二次電池用電極。 (8) The electrode for a lithium ion secondary battery according to any one of (1) to (7), wherein the electrode active material layer is a negative electrode active material layer.
  9.  請求項1~8のいずれか1項に記載のリチウムイオン二次電池用電極を備えるリチウムイオン二次電池。 A lithium ion secondary battery comprising the electrode for a lithium ion secondary battery according to any one of claims 1 to 8.
  10.  負極と、正極とを備え、
     前記負極が、前記リチウムイオン二次電池用電極である請求項9に記載のリチウムイオン二次電池。
    Comprising a negative electrode and a positive electrode,
    The lithium ion secondary battery according to claim 9, wherein the negative electrode is the electrode for the lithium ion secondary battery.
  11.  電極活物質層の表面上に、第1の絶縁層用組成物を塗布して第1の組成物層を形成する工程、及び
     前記第1の組成物層の表面上に、第2の絶縁層用組成物を塗布して第2の組成物層を形成する工程を含み、
     前記第2の組成物層を形成する工程は、前記第2の組成物層の中で空間率が高く、さらに前記第1の組成物層の前記第2の組成物層近傍の領域に比べて空間率が高い領域が前記第2の組成物層の前記第1の組成物層近傍の領域に形成されるように、前記第2の絶縁層用組成物を塗布するリチウムイオン二次電池用電極の製造方法。
    A step of applying a first insulating layer composition on the surface of the electrode active material layer to form a first composition layer; and a second insulating layer on the surface of the first composition layer. Applying a composition for forming a second composition layer,
    In the step of forming the second composition layer, the porosity is high in the second composition layer, and the first composition layer has a higher porosity than a region near the second composition layer of the first composition layer. An electrode for a lithium ion secondary battery, in which the second insulating layer composition is applied so that a region having a high porosity is formed in a region of the second composition layer near the first composition layer. Manufacturing method.
  12.  前記第2の絶縁層用組成物の塗布時のせん断速度が10,000~5,000,000(1/s)である請求項11に記載のリチウムイオン二次電池用電極の製造方法。 The method for producing an electrode for a lithium ion secondary battery according to claim 11, wherein the shear rate at the time of applying the second composition for an insulating layer is 10,000 to 5,000,000 (1 / s).
  13.  前記第2の絶縁層用組成物の塗布時の粘度が2000~4000mPa・sである請求項11又は12に記載のリチウムイオン二次電池用電極の製造方法。

     
    13. The method for producing an electrode for a lithium ion secondary battery according to claim 11, wherein the viscosity of the second insulating layer composition at the time of application is 2,000 to 4,000 mPa · s.

PCT/JP2019/036115 2018-09-14 2019-09-13 Lithium-ion secondary battery electrode, lithium-ion secondary battery, and production method for lithium-ion secondary battery electrode WO2020054849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020545745A JP6876879B2 (en) 2018-09-14 2019-09-13 Method for manufacturing electrodes for lithium ion secondary batteries, lithium ion secondary batteries and electrodes for lithium ion secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-172318 2018-09-14
JP2018172318 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054849A1 true WO2020054849A1 (en) 2020-03-19

Family

ID=69777657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036115 WO2020054849A1 (en) 2018-09-14 2019-09-13 Lithium-ion secondary battery electrode, lithium-ion secondary battery, and production method for lithium-ion secondary battery electrode

Country Status (2)

Country Link
JP (1) JP6876879B2 (en)
WO (1) WO2020054849A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276503A (en) * 2004-03-23 2005-10-06 Mitsubishi Electric Corp Separator for battery and battery using the same
JP2010267475A (en) * 2009-05-14 2010-11-25 Panasonic Corp Lithium ion secondary battery
WO2015053177A1 (en) * 2013-10-11 2015-04-16 株式会社村田製作所 Non-aqueous electrolyte battery and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276503A (en) * 2004-03-23 2005-10-06 Mitsubishi Electric Corp Separator for battery and battery using the same
JP2010267475A (en) * 2009-05-14 2010-11-25 Panasonic Corp Lithium ion secondary battery
WO2015053177A1 (en) * 2013-10-11 2015-04-16 株式会社村田製作所 Non-aqueous electrolyte battery and method for producing same

Also Published As

Publication number Publication date
JPWO2020054849A1 (en) 2020-12-17
JP6876879B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
JP7031249B2 (en) Method of manufacturing electrodes for secondary batteries and method of manufacturing secondary batteries
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
CN110495024B (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
WO2019168035A1 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JP6995738B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
WO2020184502A1 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP7150448B2 (en) ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND LITHIUM-ION SECONDARY BATTERY
JP6849863B2 (en) Lithium-ion secondary battery, its manufacturing method, and positive electrode for lithium-ion secondary battery
TW201939803A (en) Lithium ion secondary battery, lithium ion secondary battery negative electrode structure, and production method for lithium ion secondary battery
CN111386616B (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
WO2020050285A1 (en) Lithium ion secondary battery, method for producing same, and electrode for lithium ion secondary batteries
JP2020140896A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2020126733A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP7160573B2 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2006338993A (en) Nonaqueous electrolyte secondary battery
JP6876879B2 (en) Method for manufacturing electrodes for lithium ion secondary batteries, lithium ion secondary batteries and electrodes for lithium ion secondary batteries
JP2020140895A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
WO2019244933A1 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JP2020155378A (en) Electrolyte for lithium ion secondary battery, and lithium ion secondary battery
JP2019220356A (en) Positive electrode material for lithium ion secondary battery, method for manufacturing the same and positive electrode active substance layer containing the same, and lithium ion secondary battery arranged by use thereof
WO2020158306A1 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP6826240B2 (en) Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
JP7245100B2 (en) lithium ion secondary battery
WO2021065904A1 (en) Electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2020067528A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858943

Country of ref document: EP

Kind code of ref document: A1