WO2020054797A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element, and diamine and production method therefor, and polymer - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element, and diamine and production method therefor, and polymer Download PDF

Info

Publication number
WO2020054797A1
WO2020054797A1 PCT/JP2019/035868 JP2019035868W WO2020054797A1 WO 2020054797 A1 WO2020054797 A1 WO 2020054797A1 JP 2019035868 W JP2019035868 W JP 2019035868W WO 2020054797 A1 WO2020054797 A1 WO 2020054797A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
crystal alignment
diamine
Prior art date
Application number
PCT/JP2019/035868
Other languages
French (fr)
Japanese (ja)
Inventor
尚宏 野田
一世 三宅
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020217010840A priority Critical patent/KR20210057137A/en
Priority to CN201980059567.7A priority patent/CN112703447A/en
Priority to JP2020546070A priority patent/JP7381994B2/en
Publication of WO2020054797A1 publication Critical patent/WO2020054797A1/en
Priority to JP2023151776A priority patent/JP2023171809A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/14Preparation of carboxylic acid amides by formation of carboxamide groups together with reactions not involving the carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/77Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
    • C07C233/79Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C275/40Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/04Systems containing only non-condensed rings with a four-membered ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a novel liquid crystal aligning agent and a liquid crystal aligning film, a liquid crystal display device, a novel diamine, a method for producing the same, and a polymer.
  • liquid crystal display elements are widely used as display units for personal computers, mobile phones, television receivers, and the like.
  • the liquid crystal display element is, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode for applying an electric field to the liquid crystal layer, a liquid crystal alignment film for controlling the alignment of liquid crystal molecules in the liquid crystal layer, A thin film transistor (TFT) for switching an electric signal supplied to the pixel electrode is provided.
  • the liquid crystal alignment film is formed by applying a polyimide-based liquid crystal alignment agent comprising a solution of a polyamic acid (also referred to as “polyamic acid”) as a polyimide precursor or a polyimide as an imidized product to a substrate. It is made by filming.
  • Patent Literature 1 discloses a liquid crystal aligning agent containing a diamine having a novel structure and an aliphatic tetracarboxylic acid derivative. By using the liquid crystal aligning agent, a voltage holding ratio is excellent, and a charge A liquid crystal display element capable of reducing accumulation can be provided.
  • a rubbing method in which a polymer film such as polyimide is applied on a substrate such as glass and the surface thereof is rubbed in a predetermined direction with fibers such as nylon or polyester is used.
  • the rubbing method generates fine dust and electrostatic discharge due to friction between the fiber and the polymer film, and may cause a serious problem when manufacturing a liquid crystal panel.
  • a photo-alignment method in which the polymer film has no friction and anisotropy is induced by light irradiation for aligning the liquid crystal.
  • a photo-reaction such as a photo-decomposition reaction or a photo-dimerization reaction by irradiation with polarized ultraviolet light to fix the alignment direction of the liquid crystal.
  • Such a photo-alignment method employs an IPS method (In-Plane Switching g) or an FFS method (Fringe Field Switching), which is a lateral electric field driving method, while demands for higher definition and higher quality of a liquid crystal display element are increasing.
  • IPS method In-Plane Switching g
  • FFS method Ringe Field Switching
  • Application to liquid crystal display elements has been performed (for example, see Patent Document 2).
  • a method of combining the IPS method with the PSA method has been developed in order to further improve the alignment ability.
  • polyimide used in the photo-alignment method generally has poor solvent solubility, and it is difficult to apply polyimide directly in the process of forming an alignment film by applying the polyimide in a solution state. For this reason, a precursor such as polyamic acid or polyamic acid ester having excellent solubility is applied, a polyimide is formed through a heat treatment process, and then the film is oriented by irradiating light. A lot of energy is required to obtain alignment. Therefore, it is difficult to actually secure the productivity, and there is a restriction that a further heat treatment step is required to obtain the alignment stability after light irradiation.
  • the present invention provides a liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal display element, a diamine, a method for producing the same, and a polymer using a novel diamine for improving the characteristics of a liquid crystal display element.
  • the purpose is to do.
  • An embodiment of the present invention which solves the above-mentioned problem is a liquid crystal alignment containing a polyimide precursor containing a structural unit represented by the following formula [3-1] and at least one polymer selected from polyimide which is an imide compound thereof.
  • a polyimide precursor containing a structural unit represented by the following formula [3-1] and at least one polymer selected from polyimide which is an imide compound thereof.
  • V 0 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • W 1 is a divalent organic group represented by the following formula [2-1]
  • R 3 and R 4 are Each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • Y 1 is a tetravalent organic group having an alicyclic structure
  • X 1 and X 2 are divalent organic groups
  • Z 1 and Z 2 are each independently a single bond, —NH— or —O—
  • R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms
  • * represents a bonding site.
  • the present invention it is possible to provide a novel liquid crystal alignment agent, a liquid crystal alignment film and a liquid crystal display element, and a novel diamine, a method for producing the same, and a polymer for improving the characteristics of the liquid crystal display element.
  • the liquid crystal aligning agent of the present invention includes at least one polymer selected from a polyimide precursor containing a structural unit represented by the following formula [3-1] and a polyimide that is an imide compound thereof (hereinafter, also referred to as a specific polymer A). ). More specifically, the specific polymer A and the organic solvent are included.
  • V 0 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • W 1 is a divalent organic group represented by the following formula [2-1]
  • R 3 and R 4 are Each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • Y 1 is a tetravalent organic group having an alicyclic structure
  • X 1 and X 2 are divalent organic groups
  • Z 1 and Z 2 are each independently a single bond, —NH— or —O—
  • R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms
  • * represents a bonding site.
  • the structure of the formula [2-1] is a divalent group derived from a diamine represented by the following formula [1] (hereinafter also referred to as the diamine of the present invention).
  • Y 1 , X 1 , X 2 , Z 1 , Z 2 , R 1 and R 2 in the formula [2-1] are the specific examples described in the description of the formula [1].
  • W 1 may be a single type in the same polymer as long as it is a divalent organic group represented by the formula [2-1], two or more kinds are mixed May be.
  • the diamine of the present invention is represented by the following formula [1].
  • Y 1 is a tetravalent organic group having an alicyclic structure
  • X 1 and X 2 are divalent organic groups
  • Z 1 and Z 2 are each independently a single bond, —NH— or —O—
  • R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-alkyl group.
  • Examples include a pentyl group, an isopentyl group, an s-pentyl group, and a t-pentyl group.
  • Examples of the alkenyl group having 2 to 5 carbon atoms include a vinyl group, an allyl group, a 1-propenyl group, a 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group and the like.
  • Examples of the alkynyl group having 2 to 5 carbon atoms include ethynyl group. , 1-propynyl, 2-propynyl (propargyl), 3-butynyl, pentynyl and the like.
  • R 1 and R 2 are preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • X 1 and X 2 are divalent organic groups, and their structures are not particularly limited, but are preferably organic groups having 30 or less carbon atoms. Further, from the viewpoint of liquid crystal alignment, it is preferable to have a phenylene group.
  • a particularly preferred structure includes a divalent group represented by the following formula [2-2].
  • X 3 and X 5 each independently represent a phenylene group which may have a substituent;
  • X 4 represents a divalent group having 10 or less carbon atoms;
  • L 1 and L 2 independently represent N1, n2 independently represent 0 or 1, and * 1, * 2 represent a binding site.
  • * 1, * 2, one in Z 1 or Z 2, and the other is bonded to the nitrogen atom.
  • substituents which the phenylene group of X 3 and X 5 may have include, for example, an alkyl group and an alkoxy group having 1 to 5 carbon atoms, a fluoroalkyl group and a fluoroalkoxy group having 1 to 5 carbon atoms, A fluorine atom and the like can be mentioned.
  • Preferred specific examples of X 4 include divalent groups selected from the following (a) to (d).
  • the “hydrocarbon” of the above (a) may be a saturated hydrocarbon or an unsaturated hydrocarbon, may have a linear or branched chain structure, and may have a cyclic structure or a cyclic structure. It may be a structure including a structure.
  • the original carbon atom is limited to a structure in which a hydrogen atom is bonded, and in the structure after replacement with a nitrogen atom, Hydrogen atoms shall be deleted.
  • More preferred structures of X 1 and X 2 include the structures represented by (X-1) to (X-11).
  • the structure of the tetravalent organic group having an alicyclic structure is not particularly limited, but specific examples include the following formulas [Y 1 -1] to [Y 1 -20] Can be mentioned.
  • R 5 to R 25 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, An alkenyl group having 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom or a phenyl group, which may be the same or different.
  • R 5 to R 25 are preferably a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • the formula [Y 1 -1] is preferable, and specific structures of the formula [Y 1 -1] are represented by the following formulas [Y 1 -1-1] to [Y 1 -1-6]. Structure.
  • the structure represented by the following formula [Y 1 -1-1] is particularly preferable from the viewpoint of the liquid crystal alignment property of the liquid crystal aligning agent and the sensitivity of the photoreaction.
  • the method for synthesizing the diamine of the formula [1] is to use a dialkyl tetracarboxylate having an alicyclic structure represented by the following formula (11) as a starting material, and via an isocyanate compound of the formula (12) or an isocyanate compound. And a first step of obtaining an amine derivative of the formula (13).
  • a method for obtaining an isocyanate compound of the formula (12) from a tetraalkyl dialkyl ester having an alicyclic structure of the formula (11) is obtained by converting a carboxylic acid azide (—COON 3 ) from a carboxylic acid (—COOH) of the formula (11).
  • Isocyanate compound (—NCO) via a transfer reaction such as Curtius rearrangement or Schmidt rearrangement, or a hydroxyamide derivative (—CONOHH, —CONHOTs; Ts is a tosyl group (p -Toluenesulfonic acid group) to produce an isocyanate compound via a Lossen rearrangement.
  • the isocyanate compound thus formed can be converted to an amine derivative of the formula (13) by reacting with water, tert-butyl alcohol, or the like, and such a compound is directly formed from the compound of the formula (11). be able to.
  • R 31 and R 32 in the compound of the formula (13) are hydrogen atoms, that is, when water is reacted with the diisocyanate compound of the formula (12), for example, di-tert-butyl dicarbonate or 4-nitrobenzyl chloride
  • an amino-protecting reagent such as benzyl chloroformate or fluorenylmethyl chloroformate
  • Y 1 is a divalent organic group having an alicyclic structure
  • R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms.
  • R 31 and R 32 represent a hydrogen atom or an amino-protecting group.
  • the protecting groups for the amino group represented by R 31 and R 32 include a benzyl group, a nitrobenzyl group, a CBz group (benzyloxycarbonyl group), a Boc group (tert-butoxycarbonyl group), and an Fmoc group (9 -Fluorenylmethyloxycarbonyl group), but is not limited thereto.
  • the method for synthesizing a diamine compound according to the present invention is characterized in that the isocyanate compound of the formula (12) has HZ 2 —X 2 —N 0 (Z 2 represents —O— or —NH—, and X 2 represents a divalent organic group). And N 0 represents a group that can be converted to an amino group.
  • Specific examples and preferred structures of X 2 are the same as the specific examples and preferred structures described in the description of Formula [1].
  • a method in which an amine compound or an alcohol compound is reacted, or an amine compound of the formula (13) is converted into an active amine compound through a step such as deprotection if necessary, and Cl—C ( O) —X 2 —
  • a chloroformate derivative represented by a cyanate compound, Cl—C ( O) —OX 2 —N 0 (X 2 represents a divalent organic group, and N 0 represents a group that can be converted to an amino group)
  • a second step of obtaining a diamine compound precursor of the following formula (14) by reacting N 0 is a group that can be converted into an amino group, and examples thereof include a nitro group and a protected amino group.
  • the protected amino group is not particularly limited as long as it can be easily deprotected and converted to an amino group.
  • One hydrogen of the amino group may be replaced with a benzyl group, a nitrobenzyl group, a CBz group (a benzyloxycarbonyl group). ), A Boc group (tert-butoxycarbonyl group) and a group substituted with an Fmoc group (9-fluorenylmethyloxycarbonyl group).
  • N 0 represents a nitro group or a protected amino group.
  • the compound of the formula (14) include the following formulas (15) to (17).
  • the compound of the formula (15) is obtained by adding a compound having an amino group, a nitro group or a protected amino group to the isocyanate compound of the formula (12) (for example, represented by H 2 N—X 2 —N 0).
  • the compound of the formula (16) is obtained by adding a compound having a hydroxyl group, a nitro group or a protected amino group to the isocyanate compound of the formula (12) (for example, a compound represented by HO—X 2 —N 0 ). It is produced by the reaction.
  • the compound of the formula (17) is obtained by adding an acid chloride compound having a nitro group or a protected amino group to the diamide compound of the formula (13) or a carboxylic acid having a nitro group or a protected amino group in the presence of a suitable condensing agent. It is produced by the reaction.
  • the method for synthesizing a diamine compound of the present invention includes a third step of converting a nitro group or a protected amino group of the compound of the formula (14) into an amino group, thereby producing a diamine compound of the formula (1).
  • the first step and the second step can be performed, respectively, but the first step and the second step can be performed continuously or as one step.
  • the specific polymer A of the present invention is at least one polymer selected from a polyimide precursor containing a structural unit represented by the following formula [3-1] and a polyimide that is an imide compound thereof, And a tetracarboxylic acid derivative.
  • R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • alkyl group having 1 to 5 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, and s. -Pentyl group, t-pentyl group and the like.
  • alkenyl group having 2 to 5 carbon atoms examples include, for example, vinyl group, allyl group, 1-propenyl group, 1-butenyl group, 2-butenyl group, 3- Examples thereof include a butenyl group, a 1-pentenyl group, a 2-pentenyl group, a 3-pentenyl group, and a 4-pentenyl group.
  • alkynyl group having 2 to 5 carbon atoms include an ethynyl group, a 1-propynyl group, -Propynyl (propargyl) group, 3-butynyl group, pentynyl group and the like.
  • R 3 and R 4 are preferably a hydrogen atom, a methyl group or an ethyl group, and more preferably a hydrogen atom or a methyl group, from the viewpoint of facilitating the progress of the imidization reaction upon heating.
  • V 0 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. In addition, V 0 is determined by the degree of required properties such as solubility of a polymer in a solvent, applicability of a liquid crystal aligning agent, liquid crystal alignment when forming a liquid crystal alignment film, voltage holding ratio, and accumulated charge. One type may be selected as appropriate, and one type may be used in the same polymer, or two or more types may be mixed.
  • tetracarboxylic acid derivative examples include a tetracarboxylic dianhydride, a tetracarboxylic dihalide compound, a tetracarboxylic dialkyl ester compound, and a tetracarboxylic dialkyl ester dihalide compound.
  • the tetracarboxylic dianhydride from which V 0 in formula [3-1] is derived includes a compound represented by the following formula [5].
  • V 0 in the formulas [3-1] and [5] include a tetravalent organic group having an alicyclic structure shown as a specific example of Y 1 in the formula [1], and the following formula [ Examples thereof include tetravalent organic groups represented by V-1] to [V-16], but the invention is not limited thereto.
  • the specific polymer A of the present invention may contain a structural unit other than the structural unit represented by the formula [3-1].
  • a structural unit other than the formula [3-1] a structural unit represented by the following formula [3-2] can be given.
  • V 0 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • W 2 is a divalent organic group other than the structure represented by the formula [2-1]
  • R 3 , R 4 , A 1 and A 2 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • Specific examples and preferred structures of V 0 , R 3 , and R 4 are the same as those of formula [3-1].
  • the specific structure of V 0 , R 3 , and R 4 is not necessarily the same between the structural unit represented by the formula [3-1] and the structural unit represented by the formula [3-2]. It doesn't have to be the same.
  • Specific examples of the alkyl group having 1 to 5 carbon atoms for A 1 and A 2 include the specific examples shown for R 3 and R 4 .
  • a 1 and A 2 are preferably a hydrogen atom or a methyl group.
  • W 2 is a divalent organic group derived from a diamine other than the diamine represented by the formula [1] (hereinafter, also referred to as other diamine), and has a structure other than the structure represented by the formula [2-1].
  • the structure is not particularly limited as long as it is a divalent organic group.
  • Other diamines include compounds represented by the following formula [2-2].
  • W 2 , A 1 and A 2 each represent the same as in the formula [3-2].
  • the Boc group in the formula represents a tert-butoxycarbonyl group shown below.
  • the structural unit of the formula [3-1] is represented by the formula [3-1] It is preferably at least 10 mol%, more preferably at least 20 mol%, particularly preferably at least 30 mol%, based on the total of the structural units and the structural unit of the formula [3-2].
  • the molecular weight of the specific polymer A is determined, when a liquid crystal alignment film is obtained from a liquid crystal alignment agent containing the polymer, the strength of the coating film (liquid crystal alignment film), workability in forming the coating film, and the coating film.
  • the weight-average molecular weight measured by GPC is preferably 2,000 to 500,000, more preferably 5,000 to 300,000. More preferably, the molecular weight is from 000 to 100,000.
  • the specific polymer A is a polyamic acid
  • such a polymer is obtained by reacting a tetracarboxylic dianhydride, which is a tetracarboxylic acid derivative, with a diamine component.
  • a known synthesis method can be used.
  • the synthesis method is a method of reacting a tetracarboxylic dianhydride with a diamine component in an organic solvent. Such a method is advantageous in that it proceeds relatively easily in an organic solvent and does not generate by-products.
  • the organic solvent used in the above reaction is not particularly limited as long as the produced polyamic acid (polymer) is dissolved, and examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-2.
  • the solvent may be mixed with the above-mentioned organic solvent as long as the generated polyamic acid does not precipitate.
  • water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
  • a solution obtained by dispersing or dissolving the diamine component in the organic solvent is stirred, and the tetracarboxylic dianhydride as it is or in the organic solvent.
  • Dispersion or dissolution method of addition tetracarboxylic acid dianhydride dispersed or dissolved in organic solvent, diamine component added to solution, tetracarboxylic acid dianhydride and diamine component alternately added, etc. And any of these methods may be used.
  • the tetracarboxylic dianhydride or the diamine component When the tetracarboxylic dianhydride or the diamine component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be individually reacted low molecular weight compounds. May be mixed to give a high molecular weight product.
  • the temperature of the polycondensation at this time can be selected from any temperature in the range of -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the polycondensation reaction can be performed at any concentration, but if the concentration is too low, it is difficult to obtain a polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is performed. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction may be performed at a high concentration, and then an organic solvent may be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of diamine component is 0. It is preferably from 0.8 to 1.2.
  • the molecular weight of the generated polyamic acid increases as the molar ratio approaches 1.0.
  • the reaction between the tetracarboxylic diester dichloride and the diamine component or the reaction between the tetracarboxylic diester and the diamine component in the presence of a suitable condensing agent or a base can be obtained by Alternatively, it can also be obtained by synthesizing a polyamic acid in advance by the above method and esterifying the carboxylic acid in the amic acid using a polymer reaction.
  • a tetracarboxylic diester dichloride and a diamine are mixed with each other in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 minute.
  • a polyamic acid ester can be synthesized.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable since the reaction proceeds gently.
  • the amount of the base to be added is preferably 2 to 4 moles with respect to the tetracarboxylic diester dichloride, from the viewpoint of easy removal and easy production of a high molecular weight compound.
  • triphenyl phosphite dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride may be used as a base.
  • the reaction proceeds efficiently by adding a Lewis acid as an additive.
  • a Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the amount of the Lewis acid to be added is preferably 0.1 to 1.0 times the molar amount of the diamine or tetracarboxylic acid diester to be reacted.
  • the solvent used in the above reaction can be the same as the solvent used when synthesizing the polyamic acid described above, but N-methyl-2-pyrrolidone, ⁇ -Butyrolactone is preferred, and these may be used alone or in combination of two or more.
  • the concentration at the time of the synthesis from the viewpoint that the precipitation of the polymer is unlikely to occur and the high molecular weight is easily obtained, in the reaction solution of the diamine component with the tetracarboxylic acid derivative such as tetracarboxylic diester dichloride or tetracarboxylic diester.
  • the total concentration is preferably 1% by mass to 30% by mass, more preferably 5% by mass to 20% by mass.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent outside air from being mixed in a nitrogen atmosphere.
  • the specific polymer A is a polyimide
  • the specific polymer A is obtained by subjecting a polyamic acid or a polyamic acid ester as a polyimide precursor to ring-closing imidization.
  • the ring closure ratio (imidation ratio) does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyamic acid include thermal imidization in which a solution of the polyamic acid is directly heated and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and is preferably performed while removing water generated by the imidization reaction out of the system.
  • Catalytic imidation of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a solution of polyamic acid and stirring at ⁇ 20 ° C. to 250 ° C., preferably 0 ° C. to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times of the amic acid group. Preferably it is 3 to 30 mole times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like.
  • pyridine is preferable because it has an appropriate basicity for causing the reaction to proceed.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride.
  • acetic anhydride is preferable because purification after the reaction is easy.
  • the imidation rate by the catalytic imidization can be controlled by adjusting the amount of the catalyst, the reaction temperature, and the reaction time.
  • the polyimide can also be obtained by heating the polyamic acid ester at a high temperature to promote dealcoholation and to close the ring.
  • polyamic acid, a polyimide precursor such as polyamic acid ester, and a polyamic acid, a polyamic acid ester, and a polyimide that are generated from a polyimide reaction solution are collected, the reaction solution is poured into a poor solvent to precipitate.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like.
  • the polyimide precursor or the polyimide which has been put into the poor solvent and precipitated is recovered by filtration, it can be dried at normal temperature or reduced pressure at normal temperature or by heating. Further, by repeating the operation of re-dissolving the precipitated and recovered polyimide precursor or polyimide in an organic solvent and re-precipitating and recovering 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent include alcohols, ketones, and hydrocarbons. It is preferable to use three or more kinds of poor solvents selected from these, because the purification efficiency is further increased.
  • the polymer of the present invention thus obtained can be dissolved in a predetermined organic solvent and used as a liquid crystal aligning agent.
  • This liquid crystal alignment agent is used for a liquid crystal alignment film for controlling the alignment of liquid crystal molecules in a liquid crystal layer in a liquid crystal display device.
  • the liquid crystal aligning agent containing the polymer of the present invention will be described.
  • the liquid crystal aligning agent of the present invention contains at least one polymer selected from the specific polymer A.
  • all of the polymers contained in the liquid crystal aligning agent of the present invention may be the specific polymer A of the present invention, or the specific polymer A of the present invention contains two or more kinds of different structures. May be.
  • other polymers may be contained in addition to the specific polymer A of the present invention.
  • Other polymer types include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or its derivative, poly (styrene-phenylmaleimide) derivative, poly (meta- ) Acrylate and the like. Among them, polyamic acid is preferred.
  • Examples of the polyamic acid as another polymer include a polyamic acid having a structural unit in which both R 3 and R 4 are hydrogen atoms in the formula [3-2].
  • the liquid crystal aligning agent of the present invention is used. This is preferable from the viewpoint of improving the relaxation rate of the accumulated charge of the liquid crystal display element manufactured by the above method.
  • the ratio of the polymer of the present invention to all the polymer components is preferably 5% by mass or more, for example, 5 to 95% by mass.
  • the proportion of the polymer of the present invention can be appropriately selected according to the properties of the liquid crystal alignment agent and the liquid crystal alignment film.
  • the liquid crystal alignment agent of the present invention is used for producing a liquid crystal alignment film, and generally takes the form of a coating liquid from the viewpoint of forming a uniform thin film.
  • the liquid crystal aligning agent of the present invention is also preferably a coating liquid containing the polymer component described above and an organic solvent that dissolves the polymer component.
  • the concentration of the polymer in the liquid crystal alignment agent can be appropriately changed by setting the thickness of the coating film to be formed.
  • the amount is preferably 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film, and is preferably 10% by mass or less from the viewpoint of storage stability of the solution.
  • a particularly preferred concentration of the polymer is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the organic solvent dissolves the polymer.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolide
  • Examples thereof include nonone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and the like.
  • N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone
  • ⁇ -butyrolactone N-methyl-2-pyrrolidone
  • the organic solvents exemplified here may be used alone or as a mixture. Furthermore, even if the solvent does not dissolve the polymer, it may be mixed with an organic solvent and used as long as the produced polymer does not precipitate.
  • the organic solvent contained in the liquid crystal aligning agent uses a mixed solvent that is used in combination with a solvent that improves the applicability and the surface smoothness of the coating film when applying the liquid crystal aligning agent in addition to the above-described solvents.
  • a mixed solvent is suitably used in the liquid crystal aligning agent of the present invention. Specific examples of the organic solvent used in combination are shown below, but are not limited thereto.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol , 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-
  • solvents represented by the following formulas [S-1] to [S-3] can be used.
  • R 28 and R 29 each represent an alkyl group having 1 to 3 carbon atoms.
  • Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • R 30 represents an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • organic solvents used in combination 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene It is preferable to use glycol monobutyl ether or dipropylene glycol dimethyl ether.
  • the type and content of such a solvent are appropriately selected according to the application device, application conditions, application environment, and the like of the liquid crystal aligning agent.
  • these solvents account for 20% by mass to 99% by mass of the total solvent contained in the liquid crystal aligning agent. Among them, 20% by mass to 90% by mass is preferable. More preferably, it is 20% to 70% by mass.
  • the liquid crystal aligning agent of the present invention may additionally contain components other than the polymer component and the organic solvent.
  • additional components include an adhesion aid for improving the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealant, a crosslinking agent for increasing the strength of the liquid crystal alignment film, and a liquid crystal alignment.
  • examples include a dielectric and a conductive substance for adjusting the dielectric constant and electric resistance of the film.
  • Specific examples of these additional components are variously disclosed in publicly known documents relating to liquid crystal aligning agents. If one example is shown, paragraphs [0105] to [0116] of WO 2015/060357 are described. And the like.
  • the liquid crystal alignment film of the present invention is obtained from the above-mentioned liquid crystal alignment agent.
  • a liquid crystal alignment agent in the form of a coating liquid is applied to a substrate, dried, and baked. And a method of performing an orientation treatment.
  • the substrate on which the liquid crystal alignment agent of the present invention is applied is not particularly limited as long as it is a substrate having high transparency.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used.
  • a substrate on which an ITO electrode or the like for driving the liquid crystal is formed in terms of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used for the electrode.
  • the method of applying the liquid crystal aligning agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, an inkjet method, and the like are generally used.
  • Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method, a spray method and the like, and these may be used according to the purpose.
  • the baking after applying the liquid crystal aligning agent on the substrate is performed at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, a hot air circulating furnace, or an infrared furnace.
  • a heating means such as a hot plate, a hot air circulating furnace, or an infrared furnace.
  • Liquid crystal alignment film can be formed. If the thickness of the coating film formed after baking is too large, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be reduced. Preferably it is 10 nm to 100 nm. In the case where the liquid crystal is horizontally or obliquely aligned, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the solvent is evaporated and baked by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven.
  • a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven.
  • any temperature and time can be selected.
  • the conditions include firing at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then firing at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a liquid crystal display device of a lateral electric field type such as an IPS type or an FFS type, and is particularly useful as a liquid crystal alignment film of an FFS type liquid crystal display device.
  • the liquid crystal display element of the present invention includes the above-described liquid crystal alignment film.After obtaining a substrate with a liquid crystal alignment film obtained from the above liquid crystal alignment agent, a liquid crystal cell is manufactured by a known method. This is an element using a liquid crystal cell. For example, two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal provided between the substrate and the liquid crystal layer and formed by the liquid crystal alignment agent of the present invention. This is a liquid crystal display device including a liquid crystal cell having an alignment film.
  • the substrate used for the liquid crystal display device of the present invention is not particularly limited as long as it is a substrate having high transparency, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
  • a substrate similar to the substrate described for the liquid crystal alignment film described above can be used.
  • the liquid crystal alignment film is formed by applying the liquid crystal alignment agent of the present invention on the substrate and then baking the liquid crystal, and is as described above in detail.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display device of the present invention is not particularly limited, and includes a nematic liquid crystal and a smectic liquid crystal. Among them, a nematic liquid crystal is preferable, and any of a positive liquid crystal material and a negative liquid crystal material is used. May be used. Specifically, for example, MLC-2003, MLC-6608, MLC-6609, MLC-3019, MLC-2041, MLC-7026-100, etc. manufactured by Merck can be used.
  • a transparent glass substrate is prepared, and a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be, for example, ITO electrodes, and are patterned so that a desired image can be displayed.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrodes.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate under the above conditions.
  • an ultraviolet-curable sealant was disposed at a predetermined position on one of the two substrates on which the liquid crystal alignment film was formed, and liquid crystal was disposed at predetermined predetermined positions on the liquid crystal alignment film surface. Then, the other substrate is bonded and pressed so that the liquid crystal alignment film faces the liquid crystal to spread the liquid crystal on the front surface of the liquid crystal alignment film, and then the entire surface of the substrate is irradiated with ultraviolet rays to cure the sealant. Get the cell.
  • liquid crystal alignment film As a step after forming the liquid crystal alignment film on the substrate, when disposing a sealant at a predetermined place on one of the substrates, an opening capable of filling the liquid crystal from the outside is provided, and the liquid crystal is formed. After bonding the substrates without disposing them, a liquid crystal material is injected into the liquid crystal cell through an opening provided in the sealant, and then the opening is sealed with an adhesive to obtain a liquid crystal cell.
  • the liquid crystal material may be injected by a vacuum injection method or a method utilizing capillary action in the air.
  • a columnar projection is provided on one substrate, a spacer is sprayed on one substrate, or a sealing agent is used. It is preferable to take measures such as mixing a spacer into the mixture or combining them.
  • polarizing plate installs the polarizing plate. Specifically, it is preferable that a pair of polarizing plates be attached to surfaces of the two substrates opposite to the liquid crystal layer.
  • liquid crystal alignment film and the liquid crystal display element of the present invention are not limited to the above description as long as the liquid crystal alignment agent of the present invention is used, and may be formed by other known methods. Good.
  • the steps up to obtaining a liquid crystal display element from a liquid crystal aligning agent are disclosed in, for example, paragraphs [0074] to [0081] of Japanese Patent Application Laid-Open No. 2015-135393 and many other documents.
  • the liquid crystal display device manufactured using the liquid crystal alignment agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television and the like.
  • the viscosity of the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) using a sample volume of 1.1 mL, a cone rotor TE-1 (1 ° 34 ′, R24), and a temperature of 25. Measured in ° C.
  • the molecular weight was measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn and weight average molecular weight (Mw)) were calculated as polyethylene glycol and polyethylene oxide conversion values.
  • GPC apparatus manufactured by Shodex (GPC-101), column: manufactured by Shodex (series of KD803 and KD805), column temperature: 50 ° C., eluent: N, N-dimethylformamide (lithium bromide-water as an additive) 30 mmol / L of hydrate (LiBr.H 2 O), 30 mmol / L of phosphoric acid / anhydrous crystals (o-phosphoric acid), 10 ml / L of tetrahydrofuran (THF), flow rate: 1.0 ml / min.
  • Standard sample TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol manufactured by Polymer Laboratory (peak top molecular weight (Mp) ) About 12,000, 4,000, 1,000).
  • Mw weight average molecular weight
  • Mp peak top molecular weight
  • the imidation ratio is determined by using a proton derived from a structure that does not change before and after imidation as a reference proton, and a peak integrated value of this proton and a proton peak derived from an amide acid NH group appearing in the vicinity of 9.5 ppm to 11.0 ppm. It was determined by the following equation using the integrated value. However, the imidation ratio calculated by the following formula is a value excluding a proton peak derived from an NH group contained in a monomer that does not participate in the polymerization reaction.
  • x is the integrated value of the proton peak derived from the NH group of the amic acid
  • y is the integrated value of the peak of the reference proton
  • is one NH group proton of the amic acid in the case of polyamic acid (imidation ratio is 0%). Is the ratio of the number of reference protons to the number of reference protons.
  • a liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is manufactured.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an ITO electrode having a solid pattern is formed as a first layer on the substrate.
  • an SiN (silicon nitride) film formed by a CVD method is formed as a second layer.
  • the thickness of the second-layer SiN film is 500 nm, and functions as an interlayer insulating film.
  • a comb-shaped pixel electrode formed by patterning an ITO film as a third layer is arranged, and two pixels of a first pixel and a second pixel are formed. ing.
  • the size of each pixel is about 10 mm long and about 5 mm wide.
  • the first layer counter electrode and the third layer pixel electrode are electrically insulated by the action of the second layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape formed by arranging a plurality of square-shaped electrode elements whose central portion is bent.
  • the width in the lateral direction of each electrode element is 3 ⁇ m, and the interval between the electrode elements is 6 ⁇ m.
  • the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements at the center portion, the shape of each pixel is not rectangular but is similar to the electrode element at the center portion. Bends have a shape resembling a bold letter.
  • Each pixel is vertically divided by a center bent portion, and has a first region above the bent portion and a second region below the bent portion.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, with reference to the polarization direction of linearly polarized ultraviolet (LPUV) light of the liquid crystal alignment film described later, the electrode element of the pixel electrode is formed to have an angle of + 80 ° (clockwise) in the first region of the pixel. In the second region of the pixel, the electrode element of the pixel electrode is formed so as to form an angle of -80 ° (counterclockwise).
  • LPUV linearly polarized ultraviolet
  • the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the application of the voltage between the pixel electrode and the counter electrode in the substrate plane are mutually different. It is configured to be in the opposite direction.
  • the liquid crystal aligning agent was filtered through a 1.0 ⁇ m filter, and then spin-coated on the prepared substrate with electrodes and a glass substrate having a 4 ⁇ m high columnar spacer with an ITO film formed on the back surface. And applied.
  • the above two substrates are made into a set, a sealant is printed on the substrate, and another substrate is bonded so that the liquid crystal alignment film surfaces face each other so that the alignment direction becomes 0 °. It was cured to produce an empty cell.
  • Liquid crystal MLC-3019 manufactured by Merck was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell.
  • the polarizer was arranged so that the angle between the two polarizers was 90 °, and this state was referred to as crossed Nicols.
  • the above-mentioned liquid crystal cell for afterimage evaluation was arranged between these two polarizers, and the alignment state of the injected liquid crystal was observed.
  • a specific evaluation method was determined by observing whether or not the injected liquid crystal was uniformly aligned in the liquid crystal cell. When the liquid crystal in the liquid crystal cell is not uniformly aligned, a bright line is observed, and a clear bright / dark field cannot be observed due to the angle between the two polarizers and the alignment direction of the liquid crystal.
  • a display defect evaluation of the liquid crystal cell manufactured as described above was performed. The evaluation was performed by heating the liquid crystal cell prepared above in a heating oven at 60 ° C. for 2 weeks or more, and then observing the liquid crystal cell with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation). Specifically, the liquid crystal cell was placed in crossed Nicols with respect to the polarizer, observed with a polarizing microscope with a lens magnification of 5 times, and the number of confirmed bright spots was counted. "Good” and more than “poor”.
  • ECLIPSE E600WPOL polarizing microscope
  • reaction solution was returned to room temperature, and 1,4diaza-bicyclo [2.2.2] octane [DABCO] (2.15 g: 19.21 mmol), 4-nitroaniline (116.76 g: 845.31 mmol), and tetrahydrofuran (200. 0 g) was added, the temperature was raised again to 60 ° C., and the mixture was reacted under a nitrogen atmosphere for 24 hours. After confirming the disappearance of the raw materials by TLC, the reaction solution was transferred to a separating funnel. At this time, since the organic layer was separated into two layers, the lower layer was separated, poured into methanol, and stirred to precipitate a solid. This solid was collected by filtration.
  • reaction solution was cooled to room temperature, and 1,4diaza-bicyclo [2.2.2] octane [DABCO] (2.35: 20.9 mmol) and tert-butyl alcohol (155 g: 2.09 ⁇ 10 3 mmol) were added.
  • DABCO 1,4diaza-bicyclo [2.2.2] octane
  • tert-butyl alcohol 155 g: 2.09 ⁇ 10 3 mmol
  • the solid was recrystallized using ethyl acetate as a good solvent and hexane as a poor solvent, and dried under vacuum to obtain a target white solid (60.0 g: 145 mmol, yield: 35%).
  • the structure of the product was confirmed by nuclear magnetic resonance spectrum [ 1 H-NMR (400 MHz)] to confirm that it was the desired product. The measurement data is shown below.
  • ⁇ Second step> Synthesis of Dimethyl 2,4-bis (4-nitrobenzamido) cyclobutane-1,3-dicarboxylate Dimethyl 2,4-bis ((tert-butoxycarbyl) obtained by the above operation in a 2 L 4-necked flask equipped with a nitrogen inlet tube. Amino) Cyclobutane-1,3-dicarboxylate (60.0 g: 145 mmol) was weighed out, chloroform (60.0 g) was added, and trifluoroacetic acid [TFA] (164 g: 1.45 ⁇ 10 3 mmol) was added in an ice bath. Was added and the mixture was heated and stirred at 40 ° C. for 12 hours.
  • TFA trifluoroacetic acid
  • reaction solution was cooled to about 0 ° C., triethylamine (32.1 g: 318 mmol) was added, and the mixture was stirred at room temperature for 0.5 hour. Thereafter, 4-nitrobenzoic acid chloride (67.0 g: 602 mmol) dissolved in 670 g of chloroform was gently added dropwise, and the mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction solution was concentrated, washed three times with 200 ml of pure water, and washed once with 200 ml of saturated saline.
  • ⁇ Third step> Synthesis of Dimethyl 2,4-bis (4-aminobenzamido) cyclobutane-1,3-dicarboxylate (20.0 g: 112 mmol), 10% palladium-supported activated carbon (11.2 g), and sufficiently degassed N, N-dimethylformamide (500 g) were added, and the system was filled with hydrogen gas and replaced. The mixture was vigorously stirred at room temperature for 48 hours. After completion of the reaction, palladium carbon was removed, and N, N-dimethylformamide was concentrated under reduced pressure. The precipitated solid was dissolved in a minimum amount of DMF and recrystallized using hexane as a poor solvent.
  • the obtained solid was dispersed in methanol and heated and stirred at 80 ° C. for 6 hours. Then, the solid was recovered by filtration and dried under reduced pressure to obtain the target white solid (35.0 g: 79.5 mmol, yield: 71%). The structure was confirmed by a nuclear magnetic resonance spectrum [ 1 H-NMR (400 MHz)], and it was confirmed that it was a target. The measurement data is shown below.
  • the viscosity of this polyamic acid solution at a temperature of 25 ° C. was 300 mPa ⁇ s.
  • the obtained reaction solution was poured into 218 ml of methanol with stirring, and the deposited precipitate was collected, followed by washing with 218 ml of methanol three times.
  • the obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (PIP-1).
  • the imidation ratio of this polyimide resin powder was 95% or more.
  • Synthesis Example 8 Using a polyamic acid solution (PAA-2), chemical imidization was carried out in the same procedure as in Synthesis Example 7 with the amounts of acetic anhydride and pyridine introduced, respectively, and the reaction temperature. However, during heating and stirring, a gel-like solid was deposited, and chemical imidization could not be performed accurately.
  • PAA-2 polyamic acid solution
  • the obtained reaction solution was poured into 107 ml of methanol with stirring, and the deposited precipitate was collected and subsequently washed three times with 107 ml of methanol.
  • the obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (PIP-3).
  • the imidation ratio of this polyimide resin powder was 95% or more.
  • the obtained reaction solution was poured into 196 ml of methanol with stirring, and the deposited precipitate was collected, followed by washing with 196 ml of methanol three times.
  • the obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (PIP-5).
  • the imidation ratio of this polyimide resin powder was 95% or more.
  • the obtained reaction solution was poured into 433 ml of methanol with stirring, and the deposited precipitate was recovered, followed by washing with 433 ml of methanol three times.
  • the obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (PIP-6).
  • the imidation ratio of this polyimide resin powder was 62%.
  • the solubility in a solvent is specifically improved when a polyamic acid and a polyimide obtained by chemically closing the polyamic acid are used, as compared with the DA-2 analog.
  • the materials included in the present invention PIS-1, PIS-3, PIS-4, and PIS-5, exhibit practically usable characteristics as a liquid crystal alignment film, and further reduce the risk of display defects. It is shown below because it is possible.
  • Example 1 After the liquid crystal aligning agent (A-1) obtained in Synthesis Example 21 was filtered through a 1.0 ⁇ m filter, the liquid crystal aligning agent was spin-coated on a 30 mm ⁇ 40 mm ITO substrate, and was then placed on a hot plate at 80 ° C. After drying for 2 minutes, the coated surface is irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm having an extinction ratio of 26: 1 through a polarizing plate at various exposure amounts between 0.15 J / cm 2 and 0.40 J / cm 2. After that, baking was performed in a hot air circulating oven at 230 ° C. for 17 minutes to obtain a substrate with a liquid crystal alignment film.
  • a pair of the obtained two substrates was used as a set, a sealant was printed on the substrates, and another substrate was bonded so that the liquid crystal alignment films faced each other so that the alignment direction was 0 °.
  • the agent was cured to produce an empty cell.
  • Liquid crystal MLC-3019 manufactured by Merck
  • Table 5 below shows the evaluation results of the afterimages. The liquid crystal alignment was evaluated based on the evaluation criteria described above.
  • each liquid crystal aligning agent (A-2, A-3, A-4) was used, and the irradiation amount of ultraviolet rays and the sintering temperature were the same as in Example 1.
  • a liquid crystal cell for afterimage evaluation was prepared by the method. Table 5 below shows the evaluation results of the afterimages.
  • the liquid crystal aligning agents (A-1, A-2, A-3, A-4) comprising DA-1 and DC-1 according to the present invention have an exposure amount of 0.1 J / cm 2 to 0.40 J /. It exhibits very good afterimage properties between cm 2 . Also, copolymerized polyimides using DA-1 and other kinds of diamine components and DC-1 show good afterimage characteristics, and the combination of diamine components gives good and poor image retention characteristics and changes in exposure. As an example, in a liquid crystal aligning agent (A-2) obtained by copolymerizing DA-1 and DA-3, a wider exposure is performed when the exposure amount is between 0.1 J / cm 2 and 0.40 J / cm 2. A better afterimage characteristic is exhibited in the amount range.
  • a liquid crystal aligning agent (A-3) produced using a polyimide solution (PIS-3) in which the imidation ratio was controlled in the step of chemically imidizing a polyamide comprising DA-1 and DA-3 was 0.10 J / Cm 2 , which exhibits good afterimage characteristics, and is a material capable of obtaining good afterimage characteristics at a very low exposure dose.
  • the liquid crystal aligning agent (A-4) composed of DA-1 and DA-4 can also obtain very good afterimage characteristics at a very low exposure dose, similarly to the liquid crystal aligning agent (A-3) described above. It is possible.
  • the liquid crystal aligning agent (A-5) composed of DA-3 and DA-5 and DC-1 and DC-2 shown in Comparative Example 1 shows good afterimage characteristics, but is 0.20 J / cm 2 or more. Is required. From the viewpoint of the required exposure dose, the liquid crystal aligning agents (A-2, A-3, A-4) have a required exposure dose of about 0.1 J / cm 2 when exhibiting good afterimage characteristics. The superiority of DA-1 contained in the term is suggested. Further, since the required exposure amount can be adjusted by a combination of the polymer units, it is possible to realize a tact time desired by the user in consideration of an actual manufacturing site.
  • the liquid crystal aligning agent (A-6) obtained from DA-3, DA-5 and DC-1 is similar to the above liquid crystal aligning agents (A-1, A-2, A-3, A-4). Although having a mother skeleton, good afterimage characteristics cannot be obtained, suggesting the superiority of using DA-1 included in the present invention.
  • Example 5 After the liquid crystal cell for afterimage evaluation prepared using the liquid crystal aligning agent (A-1) in Example 1 was heated in a heating oven at 60 ° C. for 2 weeks or more, it was observed with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation). I went by. As described above, according to the number of bright spots confirmed by observation with a polarizing microscope, the criteria were "good” if the number of bright spots was less than 5, and “poor” if more than five. Table 6 shows the evaluation results of the luminescent spots of the liquid crystal cell after the long-term AC driving in each case.
  • ECLIPSE E600WPOL polarizing microscope
  • Example 6 instead of the liquid crystal aligning agent (A-1), each of the liquid crystal aligning agents (A-2, A-3, A-4) was used. A liquid crystal cell for display defect evaluation was produced by the method. Table 6 below shows the results of the display failure evaluation in each case.
  • the liquid crystal aligning agents (A-1, A-2, A-3, A-4) comprising DA-1 and DC-1 according to the present invention show very good results in poor evaluation.
  • soluble polyimide obtained by copolymerizing DA-3, DA-5, DC-1, and DC-2 shown in Comparative Example 1 and copolymerizing DA-3, DA-5, and DC-1
  • the liquid crystal aligning agent composed of the soluble polyimide obtained in (1) was defective.
  • the liquid crystal aligning agent comprising a soluble polyimide using DA-1 contained in the present invention is also effective in suppressing display defects.
  • the obtained reaction solution was poured into 500 ml of methanol with stirring, and the deposited precipitate was recovered, followed by washing three times with 300 ml of methanol.
  • the obtained resin powder was dried at 80 ° C. for 12 hours to obtain a polyimide resin powder (PIP-8, PIP-9, PIP-10, PIP-11, PIP-12, PIP-13).
  • PIP-14 could not be obtained as a polyimide because it gelled during chemical imidization.
  • Table 9 shows the molecular weight and the imidation ratio of this polyimide resin powder.
  • Examples 7 to 12 In a 50 ml eggplant flask, weigh 10.0 g of the polyamic acid solution (PAA-8 to PAA-14) obtained above, add 4.00 g of NMP and 6.0 g of BCS, and stir at room temperature for 24 hours. Alignment agents (A-8 to A-14) were obtained. A-14 was used as a comparative object.
  • Examples 13 to 18 2.0 g of the polyimide resin powder (PIP-8 to PIP-13) obtained above was weighed and placed in a 50 ml eggplant flask, 18.0 g of NMP was added, and the mixture was stirred at room temperature for 24 hours. .67 g was added and stirred for 1 hour to obtain liquid crystal aligning agents (A-15 to A-20).
  • a substrate with electrodes (a glass substrate having a size of 30 mm in width ⁇ 40 mm in length and 0.7 mm in thickness.
  • the electrode is a rectangle of 10 mm in width ⁇ 40 mm in length, (ITO electrode having a thickness of 35 nm) by spin coating.
  • a substrate fired at 120 ° C. for 20 minutes using an IR oven and a substrate fired at 230 ° C. were prepared.
  • the film thickness was set to 100 nm after firing.
  • This liquid crystal alignment film was rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Kako) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm), and then into pure water.
  • the substrate was cleaned by irradiating ultrasonic waves for 1 minute to remove water droplets by air blow, and then dried at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.
  • a substrate with electrodes (a glass substrate of 30 mm in width ⁇ 40 mm in length and 1.1 mm in thickness.
  • the electrode is a rectangle of 10 mm in width ⁇ 40 mm in length, (ITO electrode having a thickness of 35 nm) by spin coating.
  • a substrate fired at 120 ° C. for 20 minutes using an IR oven and a substrate fired at 230 ° C. were prepared.
  • the film thickness was set to 100 nm after firing.
  • the liquid crystal alignment film was rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Kako) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.5 mm), and then a confocal laser microscope was used to evaluate the rubbing resistance. When peeled, peeling, scraping and flaws were found to be bad, and when good, good.
  • the polyamic acid cannot be imidized under this condition, so that the physical strength becomes very weak, the film is scraped by the rubbing treatment, and the orientation of the liquid crystal tends to deteriorate.
  • the polyamic acid and the polyimide using the diamine of the present invention have extremely excellent rubbing resistance even at low-temperature baking, and have good liquid crystal alignment. Further, the pretilt angle is very small and the VHR is high.
  • the diamine of the present invention can have a very high solubility, and the unintroduced PAA-14 could not be chemically imidized.
  • the imidation ratio of PIP-13 introduced with 50 mol% as the diamine component was not improved. Can be adjusted without a problem even if it is 95% or more, and good alignment film characteristics are obtained.
  • very poorly soluble components such as DC-1 and DC-4 are incorporated, it is often difficult to chemically imidize them.
  • the polyimide can be adjusted. By using a soluble polyimide, the reliability can be further improved.
  • the rubbing resistance, the liquid crystal alignment, and the reliability are improved because the imidization of the material of the comparative example also proceeds, but the alignment agent of the present invention shows good characteristics and the pretilt angle tends to be slightly improved. However, there is a very small merit compared to the comparison object. Further, the reliability is very high.
  • a liquid crystal aligning agent corresponding to low-temperature firing to high-temperature firing can be produced, and an alignment film having a very low pretilt can be obtained.
  • Example 14 shows the results of the liquid crystal alignment in each case. The evaluation was performed based on the same evaluation criteria as in Example 1.
  • the polyamic acid and polyimide obtained from the diamine of the present invention have excellent solubility in a solvent, it is possible to produce a liquid crystal alignment agent and a film which could not be realized from the viewpoint of solubility. Further, it can be widely applied from a rubbing alignment film to a photo alignment film. In particular, it will be possible to cope with low-temperature sintering, low pretilt angle materials, simplification of the optical alignment process, etc., which will be the trends of the horizontal electric field method in the future.
  • a liquid crystal display device having a liquid crystal alignment film manufactured from the material of the present invention has excellent afterimage characteristics and long-term display stability, and has a large-screen high-definition liquid crystal television, a small and medium-sized car navigation system, and a smartphone. It can be suitably used for such purposes. Furthermore, since it can be manufactured more easily in the manufacturing process, improvement in yield and production efficiency can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

This liquid crystal alignment agent contains at least one polymer selected from polyimide precursors including a structural unit represented by formula [3-1], and polyimides that are imide compounds of the polyimide precursors. In the formula, V0 represents a tetravalent organic group derived from a tetracarboxylic acid derivative, W1 represents a divalent organic group represented by formula [2-1], and R3 and R4 each independently represent a hydrogen atom or an alkyl group having 1-5 carbon atoms. In the formula, Y1 represents a tetravalent organic group having an alicyclic structure, X1 and X2 each represent a divalent organic group, Z1 and Z2 each independently represent a single bond, -NH-, or -O-, R1 and R2 each independently represent an alkyl group having 1-5 carbon atoms, and * represents a bonding site.

Description

液晶配向剤、液晶配向膜及び液晶表示素子並びにジアミン及びその製造方法並びに重合体Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, diamine, method for producing the same, and polymer
 本発明は、新規の液晶配向剤及び液晶配向膜、並びに液晶表示素子並びに新規のジアミン及びその製造方法並びに重合体に関する。 The present invention relates to a novel liquid crystal aligning agent and a liquid crystal aligning film, a liquid crystal display device, a novel diamine, a method for producing the same, and a polymer.
 現在、液晶表示素子はパーソナルコンピュータや携帯電話、テレビジョン受像機等の表示部として幅広く用いられている。液晶表示素子は、例えば素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する液晶配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。これらのうち、液晶配向膜は、ポリイミド前駆体であるポリアミド酸(「ポリアミック酸」ともいう)や、そのイミド化物であるポリイミドの溶液からなるポリイミド系の液晶配向剤を、基板に塗布して成膜することで作製されている。 Currently, liquid crystal display elements are widely used as display units for personal computers, mobile phones, television receivers, and the like. The liquid crystal display element is, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode for applying an electric field to the liquid crystal layer, a liquid crystal alignment film for controlling the alignment of liquid crystal molecules in the liquid crystal layer, A thin film transistor (TFT) for switching an electric signal supplied to the pixel electrode is provided. Of these, the liquid crystal alignment film is formed by applying a polyimide-based liquid crystal alignment agent comprising a solution of a polyamic acid (also referred to as “polyamic acid”) as a polyimide precursor or a polyimide as an imidized product to a substrate. It is made by filming.
 近年、液晶表示素子の高性能化、大面積化、表示デバイスの省電力化等が進み、それに加えて、様々な環境下で使用されるようになり、液晶配向膜に求められる特性も厳しいものになっている。そこで、ポリアミック酸やポリイミドの構造の変更、特性の異なるポリアミック酸やポリイミドのブレンドや添加剤を加える等の種々の手法により、液晶配向性や電気特性等の改善の他、プレチルト角のコントロール等が行われている。 In recent years, the performance of liquid crystal display elements has been increased, the area has been increased, the power consumption of display devices has been reduced, and in addition, they have been used in various environments and the characteristics required for liquid crystal alignment films are severe. It has become. Therefore, various techniques such as changing the structure of polyamic acid or polyimide, adding a blend or additive of polyamic acid or polyimide having different characteristics, and improving the liquid crystal alignment and electrical characteristics, as well as controlling the pretilt angle, etc. Is being done.
 液晶配向膜の特性を向上させる手法の一例として、ポリアミック酸の原料である、新規構造を有するジアミンの適用が提案されている。例えば、特許文献1には、新規構造を有するジアミンと脂肪族テトラカルボン酸誘導体とを含有する液晶配向剤が開示されており、この液晶配向剤を用いることで、電圧保持率に優れ、且つ電荷蓄積を低減することが可能な液晶表示素子を提供することができる。 適用 As an example of a technique for improving the properties of the liquid crystal alignment film, application of a diamine having a novel structure, which is a raw material of a polyamic acid, has been proposed. For example, Patent Literature 1 discloses a liquid crystal aligning agent containing a diamine having a novel structure and an aliphatic tetracarboxylic acid derivative. By using the liquid crystal aligning agent, a voltage holding ratio is excellent, and a charge A liquid crystal display element capable of reducing accumulation can be provided.
 しかしながら、液晶表示素子の高性能化に伴い、液晶配向膜に要求される特性も厳しくなってきており、従来の技術のみでは全ての要求特性を満足することは難しい。 However, the characteristics required for the liquid crystal alignment film are becoming stricter with the high performance of the liquid crystal display element, and it is difficult to satisfy all the required characteristics only by the conventional technology.
 一方、液晶を配向させる一般的な方法としては、ガラス等の基板上にポリイミド等の高分子フィルムを塗布し、その表面をナイロンやポリエステル等の繊維で所定方向に擦るラビング法が使用されている。しかしながら、このラビング法は、繊維と高分子フィルムとの摩擦による微細な塵や静電気放電を発生させ、液晶パネル製造時に深刻な問題を引き起こす虞がある。 On the other hand, as a general method of aligning liquid crystals, a rubbing method in which a polymer film such as polyimide is applied on a substrate such as glass and the surface thereof is rubbed in a predetermined direction with fibers such as nylon or polyester is used. . However, the rubbing method generates fine dust and electrostatic discharge due to friction between the fiber and the polymer film, and may cause a serious problem when manufacturing a liquid crystal panel.
 そこで、ラビング法の問題点を解決するために、高分子膜に摩擦がなく、液晶を配向させるための光照射によって異方性が誘起される光配向法知られている。光配向法は、偏光された紫外線の照射により、液晶配向膜に含有される重合体に光分解反応や光二量化反応などの光反応を起こさせて液晶の配向方向を固定化する。このような光配向法は、液晶表示素子の高精細化、高品位化への要求が高まる中、横電界駆動方式であるIPS方式(In-Plane Switchin g)やFFS方式(Fringe Field Switching)の液晶表示素子への適用が行われている(例えば、特許文献2参照)。また、IPS方式については、近年、配向能をさらに向上させるため、PSA方式と組み合わせる手法が開発されている。 Therefore, in order to solve the problem of the rubbing method, there is known a photo-alignment method in which the polymer film has no friction and anisotropy is induced by light irradiation for aligning the liquid crystal. In the photo-alignment method, a polymer contained in a liquid crystal alignment film undergoes a photo-reaction such as a photo-decomposition reaction or a photo-dimerization reaction by irradiation with polarized ultraviolet light to fix the alignment direction of the liquid crystal. Such a photo-alignment method employs an IPS method (In-Plane Switching g) or an FFS method (Fringe Field Switching), which is a lateral electric field driving method, while demands for higher definition and higher quality of a liquid crystal display element are increasing. Application to liquid crystal display elements has been performed (for example, see Patent Document 2). In recent years, a method of combining the IPS method with the PSA method has been developed in order to further improve the alignment ability.
 しかしながら、光配向法に用いられるポリイミドは、一般に溶媒溶解性が悪いため、ポリイミドの溶液状態で塗布して配向膜を形成する過程でポリイミドを直接塗布することは困難である。このため、溶解性に優れたポリアミド酸やポリアミック酸エステルなどの前駆体を塗布し、熱処理工程を経てポリイミドを形成した後、光照射して配向させるが、ポリイミド膜を光照射して十分な液晶配向を得るためには多くのエネルギーが必要である。従って、実際に生産性を確保することが困難であり、光照射後の配向安定性を得るためには、さらに熱処理工程が必要であるという制約もある。 However, polyimide used in the photo-alignment method generally has poor solvent solubility, and it is difficult to apply polyimide directly in the process of forming an alignment film by applying the polyimide in a solution state. For this reason, a precursor such as polyamic acid or polyamic acid ester having excellent solubility is applied, a polyimide is formed through a heat treatment process, and then the film is oriented by irradiating light. A lot of energy is required to obtain alignment. Therefore, it is difficult to actually secure the productivity, and there is a restriction that a further heat treatment step is required to obtain the alignment stability after light irradiation.
国際公開第2010/053128号WO 2010/053128 特開2013-080193号公報JP 2013-080193 A
 本発明は、このような事情に鑑み、液晶表示素子の特性の向上を図るための新規のジアミンを用いた液晶配向剤、液晶配向膜及び液晶表示素子並びにジアミン及びその製造方法並びに重合体を提供することを目的とする。 In view of such circumstances, the present invention provides a liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal display element, a diamine, a method for producing the same, and a polymer using a novel diamine for improving the characteristics of a liquid crystal display element. The purpose is to do.
 前記課題を解決する本発明の態様は、下記式[3-1]で表される構造単位を含むポリイミド前駆体及びそのイミド化合物であるポリイミドから選択される少なくとも一種の重合体を含有する液晶配向剤にある。 An embodiment of the present invention which solves the above-mentioned problem is a liquid crystal alignment containing a polyimide precursor containing a structural unit represented by the following formula [3-1] and at least one polymer selected from polyimide which is an imide compound thereof. In the agent.
Figure JPOXMLDOC01-appb-C000007
 式中、Vは、テトラカルボン酸誘導体由来の四価の有機基であり、Wは、下記式[2-1]で表される二価の有機基であり、R及びRは、それぞれ独立して水素原子又は炭素原子数1~5のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000007
In the formula, V 0 is a tetravalent organic group derived from a tetracarboxylic acid derivative, W 1 is a divalent organic group represented by the following formula [2-1], and R 3 and R 4 are Each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000008
 式中、Yは、脂環式構造を有する四価の有機基であり、X、Xは、二価の有機基であり、Z、Zはそれぞれ独立して、単結合、-NH-、または-O-であり、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基を表し、*は、結合する部位を表す。
Figure JPOXMLDOC01-appb-C000008
In the formula, Y 1 is a tetravalent organic group having an alicyclic structure, X 1 and X 2 are divalent organic groups, and Z 1 and Z 2 are each independently a single bond, —NH— or —O—, R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms, and * represents a bonding site.
 本発明によれば、液晶表示素子の特性の向上を図るための新規の液晶配向剤、液晶配向膜及び液晶表示素子、並びに新規のジアミン及びその製造方法並びに重合体を提供することができる。 According to the present invention, it is possible to provide a novel liquid crystal alignment agent, a liquid crystal alignment film and a liquid crystal display element, and a novel diamine, a method for producing the same, and a polymer for improving the characteristics of the liquid crystal display element.
 以下、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明の液晶配向剤は、下記式[3-1]で表される構造単位を含むポリイミド前駆体及びそのイミド化合物であるポリイミドから選択される少なくとも一種の重合体(以下、特定重合体Aともいう)を含有する。さらに、具体的には、かかる特定重合体Aと、有機溶媒とを含むものである。 The liquid crystal aligning agent of the present invention includes at least one polymer selected from a polyimide precursor containing a structural unit represented by the following formula [3-1] and a polyimide that is an imide compound thereof (hereinafter, also referred to as a specific polymer A). ). More specifically, the specific polymer A and the organic solvent are included.
Figure JPOXMLDOC01-appb-C000009
 式中、Vは、テトラカルボン酸誘導体由来の四価の有機基であり、Wは、下記式[2-1]で表される二価の有機基であり、R及びRは、それぞれ独立して水素原子又は炭素原子数1~5のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000009
In the formula, V 0 is a tetravalent organic group derived from a tetracarboxylic acid derivative, W 1 is a divalent organic group represented by the following formula [2-1], and R 3 and R 4 are Each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000010
 式中、Yは、脂環式構造を有する四価の有機基であり、X、Xは、二価の有機基であり、Z、Zはそれぞれ独立して、単結合、-NH-、または-O-であり、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基を表し、*は、結合する部位を表す。
Figure JPOXMLDOC01-appb-C000010
In the formula, Y 1 is a tetravalent organic group having an alicyclic structure, X 1 and X 2 are divalent organic groups, and Z 1 and Z 2 are each independently a single bond, —NH— or —O—, R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms, and * represents a bonding site.
 上記で、式[2-1]の構造は下記式[1]で表されるジアミン(以下、本発明のジアミンともいう)に由来する二価の基であるので、まず、本発明のジアミンについて説明する。なお、式[2-1]中のY、X、X、Z、Z、R及びRにおける具体例や好ましい構造は、それぞれ式[1]の説明にて示す具体例や好ましい構造と同じである。また、式[3-1]中、Wは式[2-1]で表される二価の有機基である限り同一重合体中に1種類であってもよく、2種類以上が混在していてもよい。 In the above, the structure of the formula [2-1] is a divalent group derived from a diamine represented by the following formula [1] (hereinafter also referred to as the diamine of the present invention). explain. Specific examples and preferred structures of Y 1 , X 1 , X 2 , Z 1 , Z 2 , R 1 and R 2 in the formula [2-1] are the specific examples described in the description of the formula [1]. Or the preferred structure. In the formula [3-1], W 1 may be a single type in the same polymer as long as it is a divalent organic group represented by the formula [2-1], two or more kinds are mixed May be.
 <ジアミン>
 本発明のジアミンは、下記式[1]で表されるものである。
<Diamine>
The diamine of the present invention is represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000011
 式中、Yは、脂環式構造を有する四価の有機基であり、X、Xは、二価の有機基であり、Z、Zはそれぞれ独立して、単結合、-NH-、または-O-であり、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000011
In the formula, Y 1 is a tetravalent organic group having an alicyclic structure, X 1 and X 2 are divalent organic groups, and Z 1 and Z 2 are each independently a single bond, —NH— or —O—, and R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms.
 R及びRが表す炭素原子数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、s-ペンチル基、t-ペンチル基等が挙げられ、炭素原子数2~5のアルケニル基としては、例えば、ビニル基、アリル基、1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基等が挙げられ、炭素原子数2~5のアルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル(プロパルギル)基、3-ブチニル基、ペンチニル基等が挙げられる。これらの中で、液晶配向性の観点から、R及びRはメチル基又はエチル基が好ましく、メチル基がより好ましい。 Examples of the alkyl group having 1 to 5 carbon atoms represented by R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-alkyl group. Examples include a pentyl group, an isopentyl group, an s-pentyl group, and a t-pentyl group. Examples of the alkenyl group having 2 to 5 carbon atoms include a vinyl group, an allyl group, a 1-propenyl group, a 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group and the like. Examples of the alkynyl group having 2 to 5 carbon atoms include ethynyl group. , 1-propynyl, 2-propynyl (propargyl), 3-butynyl, pentynyl and the like. Among these, from the viewpoint of liquid crystal alignment, R 1 and R 2 are preferably a methyl group or an ethyl group, and more preferably a methyl group.
 X、Xは二価の有機基であり、その構造は特に限定されないが、炭素数が30以下の有機基が好ましい。
 また、液晶配向性の観点からはフェニレン基を有することが好ましい。
 特に好ましい構造としては下記式[2-2]で表される二価の基を挙げることができる。
X 1 and X 2 are divalent organic groups, and their structures are not particularly limited, but are preferably organic groups having 30 or less carbon atoms.
Further, from the viewpoint of liquid crystal alignment, it is preferable to have a phenylene group.
A particularly preferred structure includes a divalent group represented by the following formula [2-2].
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、X、Xは独立して置換基を有してもよいフェニレン基を表し;Xは炭素数10以下の二価の基を表し;L、Lは独立して単結合、-O-、又は-S-を表し;n1、n2は独立して0又は1を表し;*1、*2は、結合部位を表す。*1、*2は、一方がZ又はZに、もう一方が窒素原子に結合している。 In the formula, X 3 and X 5 each independently represent a phenylene group which may have a substituent; X 4 represents a divalent group having 10 or less carbon atoms; L 1 and L 2 independently represent N1, n2 independently represent 0 or 1, and * 1, * 2 represent a binding site. * 1, * 2, one in Z 1 or Z 2, and the other is bonded to the nitrogen atom.
 X、Xのフェニレン基が有してもよい置換基の具体例としては、例えば、炭素数1~5のアルキル基及びアルコキシ基、炭素数1~5のフルオロアルキル基及びフルオロアルコキシ基、フッ素原子等が挙げられる。 Specific examples of the substituent which the phenylene group of X 3 and X 5 may have include, for example, an alkyl group and an alkoxy group having 1 to 5 carbon atoms, a fluoroalkyl group and a fluoroalkoxy group having 1 to 5 carbon atoms, A fluorine atom and the like can be mentioned.
 Xの好ましい具体例としては、下記(a)~(d)から選ばれる二価の基が挙げられる。
(a):炭素数1~10の炭化水素から2個の水素原子を除いた基。
(b):前記(a)が有する一つ以上の炭素-炭素結合間に、-O-、-S-、-SO-から選ばれる連結基を挟む構造の基。
(c):前記(a)又は(b)が有する一つ以上の炭素原子をケイ素原子又は窒素原子で置き換えた構造の基。
(d):前記(a)~(c)が有する一つ以上のメチレン基(-CH-)をカルボニル基(-CO-)で置き換えた構造の基。
 前記(a)の「炭化水素」は、飽和炭化水素であっても不飽和炭化水素であってもよく、また、直鎖状又は分岐を有する鎖状構造であってもよく、環状構造又は環状構造を含む構造であってもよい。
 なお、前記(c)にて、炭素原子を窒素原子で置き換えた構造とする場合、元となる炭素原子は水素原子が結合しているものに限られ、窒素原子で置き換えた後の構造において該水素原子は削除するものとする。
Preferred specific examples of X 4 include divalent groups selected from the following (a) to (d).
(A): a group obtained by removing two hydrogen atoms from a hydrocarbon having 1 to 10 carbon atoms.
(B): a group having a structure in which a linking group selected from —O—, —S—, and —SO 2 — is sandwiched between one or more carbon-carbon bonds of (a).
(C): a group having a structure in which one or more carbon atoms of the above (a) or (b) are replaced with a silicon atom or a nitrogen atom.
(D): a group having a structure in which one or more methylene groups (—CH 2 —) of the above (a) to (c) are replaced with a carbonyl group (—CO—).
The “hydrocarbon” of the above (a) may be a saturated hydrocarbon or an unsaturated hydrocarbon, may have a linear or branched chain structure, and may have a cyclic structure or a cyclic structure. It may be a structure including a structure.
In the above (c), when a structure in which a carbon atom is replaced with a nitrogen atom is used, the original carbon atom is limited to a structure in which a hydrogen atom is bonded, and in the structure after replacement with a nitrogen atom, Hydrogen atoms shall be deleted.
 X、Xのさらに好ましい構造としては、(X-1)~(X-11)で表される構造を挙げることができる。 More preferred structures of X 1 and X 2 include the structures represented by (X-1) to (X-11).
Figure JPOXMLDOC01-appb-C000013
(nは1~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000013
(N represents an integer of 1 to 6.)
 上記式[1]において、脂環式構造を有する四価の有機基としては、その構造は特に限定されないが、具体例としては、下記式[Y-1]~式[Y-20]を挙げることができる。 In the above formula [1], the structure of the tetravalent organic group having an alicyclic structure is not particularly limited, but specific examples include the following formulas [Y 1 -1] to [Y 1 -20] Can be mentioned.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 式[Y-1]~式[Y-4]において、R~R25は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数2~6のアルキニル基、フッ素原子を含有する炭素原子数1~6の1価の有機基又はフェニル基であり、同一でも異なってもよい。液晶配向性の観点から、R~R25は、水素原子、ハロゲン原子、メチル基又はエチル基が好ましく、水素原子又はメチル基がより好ましい。
Figure JPOXMLDOC01-appb-C000016
In the formulas [Y 1 -1] to [Y 1 -4], R 5 to R 25 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, An alkenyl group having 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom or a phenyl group, which may be the same or different. From the viewpoint of liquid crystal alignment, R 5 to R 25 are preferably a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and more preferably a hydrogen atom or a methyl group.
 上記の中でも式[Y-1]は好ましく、式[Y-1]の具体的な構造としては、下記式[Y-1-1]~式[Y-1-6]で表される構造が挙げられる。液晶配向剤の液晶配向性及び光反応の感度の観点から、下記式[Y-1-1]で表される構造が特に好ましい。 Among them, the formula [Y 1 -1] is preferable, and specific structures of the formula [Y 1 -1] are represented by the following formulas [Y 1 -1-1] to [Y 1 -1-6]. Structure. The structure represented by the following formula [Y 1 -1-1] is particularly preferable from the viewpoint of the liquid crystal alignment property of the liquid crystal aligning agent and the sensitivity of the photoreaction.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 以下、ジアミンの合成方法を説明する。 Hereinafter, a method for synthesizing a diamine will be described.
 式[1]のジアミンの合成方法は、以下の式(11)で表される脂環式構造を有するテトラカルボン酸ジアルキルエステルを出発原料とし、式(12)のイソシアネート化合物又はイソシアネート化合物を経由して式(13)のアミン誘導体を得る第1工程を有する。 The method for synthesizing the diamine of the formula [1] is to use a dialkyl tetracarboxylate having an alicyclic structure represented by the following formula (11) as a starting material, and via an isocyanate compound of the formula (12) or an isocyanate compound. And a first step of obtaining an amine derivative of the formula (13).
 式(11)の脂環式構造を有するテトラカルボン酸ジアルキルエステルから式(12)のイソシアネート化合物を得る方法は、式(11)のカルボン酸(-COOH)からカルボン酸アジド(-COON)を生成し、クルチウス転位又はシュミット転位等の転移反応を経由してイソシアネート化合物(-NCO)とする方法、又はカルボン酸(-COOH)からヒドロキシアミド誘導体(-CONHOH、-CONHOTs;Tsはトシル基(p-トルエンスルホン酸基)である)を経由してイソシアネート化合物を生成するロッセン転位を利用する方法などを挙げることができる。なお、このように生成したイソシアネート化合物は、水やtert-ブチルアルコールなどを反応させることにより、式(13)のアミン誘導体とすることができ、かかる化合物は式(11)の化合物から直接生成することができる。尚、式(13)の化合物におけるR31及びR32が水素原子の場合、すなわち式(12)のジイソシアネート化合物に水を反応させた場合、例えば二炭酸ジ-tert-ブチルや4-ニトロベンジルクロリド、クロロギ酸ベンジル、クロロギ酸フルオレニルメチルなどのアミノ基保護試薬を反応させ、アミノ保護体とすることで精製がしやすくなり、結果として合成がしやすくなる場合がある。 A method for obtaining an isocyanate compound of the formula (12) from a tetraalkyl dialkyl ester having an alicyclic structure of the formula (11) is obtained by converting a carboxylic acid azide (—COON 3 ) from a carboxylic acid (—COOH) of the formula (11). Isocyanate compound (—NCO) via a transfer reaction such as Curtius rearrangement or Schmidt rearrangement, or a hydroxyamide derivative (—CONOHH, —CONHOTs; Ts is a tosyl group (p -Toluenesulfonic acid group) to produce an isocyanate compound via a Lossen rearrangement. The isocyanate compound thus formed can be converted to an amine derivative of the formula (13) by reacting with water, tert-butyl alcohol, or the like, and such a compound is directly formed from the compound of the formula (11). be able to. When R 31 and R 32 in the compound of the formula (13) are hydrogen atoms, that is, when water is reacted with the diisocyanate compound of the formula (12), for example, di-tert-butyl dicarbonate or 4-nitrobenzyl chloride By reacting with an amino-protecting reagent such as benzyl chloroformate or fluorenylmethyl chloroformate to form an amino-protected product, purification becomes easier, and as a result, synthesis may be easier.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(11)~(13)中、Yは、脂環式構造を有する二価の有機基であり、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基を表す。また、式(13)中、R31及びR32は水素原子またはアミノ基の保護基を表す。
 ここで、R31及びR32で表されるアミノ基の保護基としては、ベンジル基、ニトロベンジル基、CBz基(ベンジルオキシカルボニル基)、Boc基(tert-ブトキシカルボニル基)、Fmoc基(9-フルオレニルメチルオキシカルボニル基)を挙げることができるが、これに限定はされない。
In the formulas (11) to (13), Y 1 is a divalent organic group having an alicyclic structure, and R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms. . In Formula (13), R 31 and R 32 represent a hydrogen atom or an amino-protecting group.
Here, the protecting groups for the amino group represented by R 31 and R 32 include a benzyl group, a nitrobenzyl group, a CBz group (benzyloxycarbonyl group), a Boc group (tert-butoxycarbonyl group), and an Fmoc group (9 -Fluorenylmethyloxycarbonyl group), but is not limited thereto.
 本発明のジアミン化合物の合成方法は、式(12)のイソシアネート化合物にH-Z-X-N(Zは-O-又は-NH-を表し、Xは2価の有機基を表し、Nはアミノ基に変換できる基を表す。Xの具体例や好ましい構造は、それぞれ式[1]の説明にて示す具体例や好ましい構造と同じである。)で表されるアミン化合物やアルコール化合物を反応させる方法、又は式(13)のアミン化合物に、必要に応じて脱保護等の工程を経て活性なアミン化合物に変換し、Cl-C(=O)-X-N(Xは2価の有機基を表し、Nはアミノ基に変換できる基を表す。)で表される酸クロリド化合物やOCN-X-N(Xは2価の有機基を表し、Nはアミノ基に変換できる基を表す。)で表されるイソシアネート化合物、Cl-C(=O)-O-X-N(Xは2価の有機基を表し、Nはアミノ基に変換できる基を表す。)で表されるクロロギ酸誘導体などを反応させて下記式(14)のジアミン化合物前駆体を得る第2工程を具備する。Nはアミノ基に変換できる基であり、二トロ基又は保護アミノ基などを挙げることができる。また、保護アミノ基は、容易に脱保護してアミノ基に変換できる基であれば、特に限定されないが、アミノ基の1つの水素を、ベンジル基、ニトロベンジル基、CBz基(ベンジルオキシカルボニル基)、Boc基(tert-ブトキシカルボニル基)、Fmoc基(9-フルオレニルメチルオキシカルボニル基)で置換した基を挙げることができる。 The method for synthesizing a diamine compound according to the present invention is characterized in that the isocyanate compound of the formula (12) has HZ 2 —X 2 —N 0 (Z 2 represents —O— or —NH—, and X 2 represents a divalent organic group). And N 0 represents a group that can be converted to an amino group. Specific examples and preferred structures of X 2 are the same as the specific examples and preferred structures described in the description of Formula [1]. A method in which an amine compound or an alcohol compound is reacted, or an amine compound of the formula (13) is converted into an active amine compound through a step such as deprotection if necessary, and Cl—C (= O) —X 2 — An acid chloride compound represented by N 0 (X 2 represents a divalent organic group and N 0 represents a group convertible to an amino group) or OCN-X 2 -N 0 (X 2 represents a divalent organic group) And N 0 represents a group that can be converted to an amino group.) A chloroformate derivative represented by a cyanate compound, Cl—C (= O) —OX 2 —N 0 (X 2 represents a divalent organic group, and N 0 represents a group that can be converted to an amino group) A second step of obtaining a diamine compound precursor of the following formula (14) by reacting N 0 is a group that can be converted into an amino group, and examples thereof include a nitro group and a protected amino group. The protected amino group is not particularly limited as long as it can be easily deprotected and converted to an amino group. One hydrogen of the amino group may be replaced with a benzyl group, a nitrobenzyl group, a CBz group (a benzyloxycarbonyl group). ), A Boc group (tert-butoxycarbonyl group) and a group substituted with an Fmoc group (9-fluorenylmethyloxycarbonyl group).
Figure JPOXMLDOC01-appb-C000021
 Nはニトロ基又は保護アミノ基を表す。
Figure JPOXMLDOC01-appb-C000021
N 0 represents a nitro group or a protected amino group.
 式(14)の化合物の具体例として、以下の式(15)~式(17)を挙げることができる。ここで、式(15)の化合物は、式(12)のイソシアネート化合物に、アミノ基と、ニトロ基又は保護アミノ基とを具備する化合物(例えば、HN-X-Nで表される化合物)を反応させて生成したものである。また、式(16)の化合物は、式(12)のイソシアネート化合物に、水酸基と、ニトロ基又は保護アミノ基とを具備する化合物(例えば、HO-X-Nで表される化合物)を反応させて生成したものである。また、式(17)の化合物は、式(13)のジアミド化合物にニトロ基又は保護アミノ基を有する酸クロリド化合物、又は適当な縮合剤の存在下でニトロ基又は保護アミノ基を有するカルボン酸を反応させて生成したものである。 Specific examples of the compound of the formula (14) include the following formulas (15) to (17). Here, the compound of the formula (15) is obtained by adding a compound having an amino group, a nitro group or a protected amino group to the isocyanate compound of the formula (12) (for example, represented by H 2 N—X 2 —N 0). Compound). Further, the compound of the formula (16) is obtained by adding a compound having a hydroxyl group, a nitro group or a protected amino group to the isocyanate compound of the formula (12) (for example, a compound represented by HO—X 2 —N 0 ). It is produced by the reaction. Further, the compound of the formula (17) is obtained by adding an acid chloride compound having a nitro group or a protected amino group to the diamide compound of the formula (13) or a carboxylic acid having a nitro group or a protected amino group in the presence of a suitable condensing agent. It is produced by the reaction.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本発明のジアミン化合物の合成方法は、式(14)の化合物のニトロ基又は保護アミノ基をアミノ基に変換する第3工程を有し、これにより、式(1)のジアミン化合物を製造することができる。なお、本発明において、第1工程及び第2工程は、それぞれ行うこともできるが、第1工程及び第2工程を連続して又は一工程として行うことができる。 The method for synthesizing a diamine compound of the present invention includes a third step of converting a nitro group or a protected amino group of the compound of the formula (14) into an amino group, thereby producing a diamine compound of the formula (1). Can be. In the present invention, the first step and the second step can be performed, respectively, but the first step and the second step can be performed continuously or as one step.
<特定重合体A>
 本発明の特定重合体Aは、下記式[3-1]で表される構造単位を含むポリイミド前駆体及びそのイミド化合物であるポリイミドから選択される少なくとも一種の重合体であり、上記式[1]で表されるジアミンとテトラカルボン酸誘導体との反応によって得られる。
<Specific polymer A>
The specific polymer A of the present invention is at least one polymer selected from a polyimide precursor containing a structural unit represented by the following formula [3-1] and a polyimide that is an imide compound thereof, And a tetracarboxylic acid derivative.
Figure JPOXMLDOC01-appb-C000025
 式において、R及びRは、それぞれ独立して水素原子又は炭素原子数1~5のアルキル基を表す。炭素原子数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、s-ペンチル基、t-ペンチル基等が挙げられ、炭素原子数2~5のアルケニル基としては、例えば、ビニル基、アリル基、1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基等が挙げられ、炭素原子数2~5のアルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル(プロパルギル)基、3-ブチニル基、ペンチニル基等が挙げられる。これらの中で、加熱時のイミド化反応の進行のし易さの観点から、R及びRは水素原子、メチル基又はエチル基が好ましく、水素原子又はメチル基がより好ましい。
Figure JPOXMLDOC01-appb-C000025
In the formula, R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Examples of the alkyl group having 1 to 5 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, and s. -Pentyl group, t-pentyl group and the like. Examples of the alkenyl group having 2 to 5 carbon atoms include, for example, vinyl group, allyl group, 1-propenyl group, 1-butenyl group, 2-butenyl group, 3- Examples thereof include a butenyl group, a 1-pentenyl group, a 2-pentenyl group, a 3-pentenyl group, and a 4-pentenyl group. Examples of the alkynyl group having 2 to 5 carbon atoms include an ethynyl group, a 1-propynyl group, -Propynyl (propargyl) group, 3-butynyl group, pentynyl group and the like. Among them, R 3 and R 4 are preferably a hydrogen atom, a methyl group or an ethyl group, and more preferably a hydrogen atom or a methyl group, from the viewpoint of facilitating the progress of the imidization reaction upon heating.
 Vは、テトラカルボン酸誘導体由来の四価の有機基であり、その構造は特に限定されるものではない。また、Vは、重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷等、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していてもよい。 V 0 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. In addition, V 0 is determined by the degree of required properties such as solubility of a polymer in a solvent, applicability of a liquid crystal aligning agent, liquid crystal alignment when forming a liquid crystal alignment film, voltage holding ratio, and accumulated charge. One type may be selected as appropriate, and one type may be used in the same polymer, or two or more types may be mixed.
 テトラカルボン酸誘導体としては、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物を挙げることができる。例えば、式[3-1]におけるVの由来となるテトラカルボン酸二無水物としては、下記式[5]で表される化合物が挙げられる。 Examples of the tetracarboxylic acid derivative include a tetracarboxylic dianhydride, a tetracarboxylic dihalide compound, a tetracarboxylic dialkyl ester compound, and a tetracarboxylic dialkyl ester dihalide compound. For example, the tetracarboxylic dianhydride from which V 0 in formula [3-1] is derived includes a compound represented by the following formula [5].
Figure JPOXMLDOC01-appb-C000026
 式[3-1]及び式[5]におけるVの具体例としては、前記式[1]においてYの具体例として示した脂環式構造を有する四価の有機基、及び下記式[V-1]~[V-16]に示される四価の有機基などを挙げることができるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000026
Specific examples of V 0 in the formulas [3-1] and [5] include a tetravalent organic group having an alicyclic structure shown as a specific example of Y 1 in the formula [1], and the following formula [ Examples thereof include tetravalent organic groups represented by V-1] to [V-16], but the invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 本発明の特定重合体Aは、前記式[3-1]で表される構造単位以外の構造単位を含んでいてもよい。例えば、式[3-1]以外の構造単位としては下記式[3-2]で表される構造単位を挙げることができる。 特定 The specific polymer A of the present invention may contain a structural unit other than the structural unit represented by the formula [3-1]. For example, as a structural unit other than the formula [3-1], a structural unit represented by the following formula [3-2] can be given.
Figure JPOXMLDOC01-appb-C000029
 式中、Vは、テトラカルボン酸誘導体由来の四価の有機基であり、Wは、前記式[2-1]で表される構造以外の二価の有機基であり、R3、R、A及びAは、それぞれ独立して水素原子又は炭素原子数1~5のアルキル基を表す。
 V、R3、Rの具体例及び好ましい構造は、それぞれ式[3-1]と同じものを挙げることができる。ただし、本発明の実施形態において、式[3-1]で表される構造単位と式[3-2]で表される構造単位とでV、R3、Rの具体的構造が必ずしも同じである必要は無い。
 A及びAにおける炭素原子数1~5のアルキル基の具体例は、R及びRで示した具体例を挙げることができる。液晶配向性の観点から、A及びAは水素原子又はメチル基が好ましい。
Figure JPOXMLDOC01-appb-C000029
In the formula, V 0 is a tetravalent organic group derived from a tetracarboxylic acid derivative, W 2 is a divalent organic group other than the structure represented by the formula [2-1], and R 3 , R 4 , A 1 and A 2 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
Specific examples and preferred structures of V 0 , R 3 , and R 4 are the same as those of formula [3-1]. However, in the embodiment of the present invention, the specific structure of V 0 , R 3 , and R 4 is not necessarily the same between the structural unit represented by the formula [3-1] and the structural unit represented by the formula [3-2]. It doesn't have to be the same.
Specific examples of the alkyl group having 1 to 5 carbon atoms for A 1 and A 2 include the specific examples shown for R 3 and R 4 . From the viewpoint of liquid crystal alignment, A 1 and A 2 are preferably a hydrogen atom or a methyl group.
 Wは、前記式[1]で表されるジアミン以外のジアミン(以下、その他のジアミンともいう)に由来する二価の有機基であり、前記式[2-1]で表される構造以外の二価の有機基である限りその構造は特に限定されるものではない。その他のジアミンとしては下記式[2-2]で表される化合物が挙げられる。 W 2 is a divalent organic group derived from a diamine other than the diamine represented by the formula [1] (hereinafter, also referred to as other diamine), and has a structure other than the structure represented by the formula [2-1]. The structure is not particularly limited as long as it is a divalent organic group. Other diamines include compounds represented by the following formula [2-2].
Figure JPOXMLDOC01-appb-C000030
 W、A及びAは、それぞれ式[3-2]と同じことを表す。
Figure JPOXMLDOC01-appb-C000030
W 2 , A 1 and A 2 each represent the same as in the formula [3-2].
 以下に、Wの構造の具体例を挙げるが、本発明はこれらに限定されるものではない。 Hereinafter, specific examples of the structure of the W 2, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 なお、式中のBoc基は、下記で表されるtert-ブトキシカルボニル基を表している。 The Boc group in the formula represents a tert-butoxycarbonyl group shown below.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 特定重合体Aが、式[3-1]の構造単位の他、式[3-2]の構造単位を同時に含む場合、式[3-1]の構造単位は、式[3-1]の構造単位と式[3-2]の構造単位との合計に対して10モル%以上であることが好ましく、より好ましくは20モル%以上であり、特に好ましくは30モル%以上である。 When the specific polymer A includes a structural unit of the formula [3-1] and a structural unit of the formula [3-2] at the same time, the structural unit of the formula [3-1] is represented by the formula [3-1] It is preferably at least 10 mol%, more preferably at least 20 mol%, particularly preferably at least 30 mol%, based on the total of the structural units and the structural unit of the formula [3-2].
 特定重合体Aの分子量は、当該重合体を含有した液晶配向剤から液晶配向膜が得られた場合に、その塗膜(液晶配向膜)の強度、塗膜形成時の作業性、及び塗膜の均一性を考慮して、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が2,000~500,000であることが好ましく、5,000~300,000であることがより好ましく、10,000~100,000であることが更に好ましい。 The molecular weight of the specific polymer A is determined, when a liquid crystal alignment film is obtained from a liquid crystal alignment agent containing the polymer, the strength of the coating film (liquid crystal alignment film), workability in forming the coating film, and the coating film. In consideration of the homogeneity of the polymer, the weight-average molecular weight measured by GPC (Gel Permeation Chromatography) is preferably 2,000 to 500,000, more preferably 5,000 to 300,000. More preferably, the molecular weight is from 000 to 100,000.
 <重合体の製造方法>
 次に、本発明の液晶配向剤含まれる重合体の主な製造方法について説明する。なお、以下で説明した方法は製造例であり、これに限定されない。
<Method for producing polymer>
Next, a main method for producing a polymer containing a liquid crystal alignment agent of the present invention will be described. Note that the method described below is a manufacturing example and is not limited to this.
 例えば、特定重合体Aが、ポリアミック酸である場合において、かかる重合体は、テトラカルボン酸誘導体であるテトラカルボン酸二無水物とジアミン成分との反応により得られる。この反応により、ポリアミック酸を得るにあたっては、公知の合成方法を用いることができる。その合成方法は、テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法である。かかる方法は、有機溶媒中で比較的容易に進行し、且つ副生成物が発生しない点で有利である。 For example, when the specific polymer A is a polyamic acid, such a polymer is obtained by reacting a tetracarboxylic dianhydride, which is a tetracarboxylic acid derivative, with a diamine component. In order to obtain a polyamic acid by this reaction, a known synthesis method can be used. The synthesis method is a method of reacting a tetracarboxylic dianhydride with a diamine component in an organic solvent. Such a method is advantageous in that it proceeds relatively easily in an organic solvent and does not generate by-products.
 上記反応に用いる有機溶媒としては、生成したポリアミック酸(重合体)が溶解するものであれば特に限定されず、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。これらは、単独で使用しても混合して使用してもよい。また、ポリアミック酸(重合体)を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記有機溶媒に混合して使用してもよい。特に、有機溶媒中の水分は、重合反応を阻害し、更には生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。 The organic solvent used in the above reaction is not particularly limited as long as the produced polyamic acid (polymer) is dissolved, and examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-2. -Pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, Methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carb Tall, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol Monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether , Dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyi Rate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, acetic acid Methyl, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, 3-methoxy Methyl propionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy -4-Methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like. These may be used alone or in combination. Further, even if the solvent does not dissolve the polyamic acid (polymer), the solvent may be mixed with the above-mentioned organic solvent as long as the generated polyamic acid does not precipitate. In particular, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
 テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散又は溶解させた溶液を撹拌させ、テトラカルボン酸二無水物をそのまま、又は有機溶媒に分散若しくは溶解させて添加する方法、テトラカルボン酸二無水物を有機溶媒に分散又は溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法等が挙げられ、これらの何れかの方法を用いてもよい。また、テトラカルボン酸二無水物又はジアミン成分が複数種の化合物からなる場合は、予め混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。 When reacting a tetracarboxylic dianhydride and a diamine component in an organic solvent, a solution obtained by dispersing or dissolving the diamine component in the organic solvent is stirred, and the tetracarboxylic dianhydride as it is or in the organic solvent. Dispersion or dissolution method of addition, tetracarboxylic acid dianhydride dispersed or dissolved in organic solvent, diamine component added to solution, tetracarboxylic acid dianhydride and diamine component alternately added, etc. And any of these methods may be used. When the tetracarboxylic dianhydride or the diamine component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be individually reacted low molecular weight compounds. May be mixed to give a high molecular weight product.
 その際の重縮合の温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、重縮合反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、テトラカルボン酸二無水物とジアミン成分の反応溶液中での合計濃度は、好ましくは1~50質量%、より好ましくは5~30質量%とする。反応初期は高濃度で行い、その後、有機溶媒を追加してもよい。 重 The temperature of the polycondensation at this time can be selected from any temperature in the range of -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C. In addition, the polycondensation reaction can be performed at any concentration, but if the concentration is too low, it is difficult to obtain a polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is performed. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction may be performed at a high concentration, and then an organic solvent may be added.
 ポリアミック酸の重合反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比(テトラカルボン酸二無水物の合計モル数/ジアミン成分の合計モル数)は、0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。 In the polymerization reaction of the polyamic acid, the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of diamine component (total number of moles of tetracarboxylic dianhydride / total number of moles of diamine component) is 0. It is preferably from 0.8 to 1.2. As in the ordinary polycondensation reaction, the molecular weight of the generated polyamic acid increases as the molar ratio approaches 1.0.
 特定重合体Aが、ポリアミック酸エステルである場合においては、テトラカルボン酸ジエステルジクロリドとジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分を適当な縮合剤や塩基の存在下にて反応させることにより得ることができる。或いは、上記の方法で予めポリアミック酸を合成し、高分子反応を利用してアミック酸中のカルボン酸をエステル化することでも得ることができる。 When the specific polymer A is a polyamic acid ester, the reaction between the tetracarboxylic diester dichloride and the diamine component or the reaction between the tetracarboxylic diester and the diamine component in the presence of a suitable condensing agent or a base. Can be obtained by Alternatively, it can also be obtained by synthesizing a polyamic acid in advance by the above method and esterifying the carboxylic acid in the amic acid using a polymer reaction.
 具体的には、例えば、テトラカルボン酸ジエステルジクロリドとジアミンとを、塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって、ポリアミック酸エステルを合成することができる。 Specifically, for example, a tetracarboxylic diester dichloride and a diamine are mixed with each other in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 minute. By reacting for 4 to 4 hours, a polyamic acid ester can be synthesized.
 塩基としては、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等が使用できるが、反応が穏和に進行するためピリジンが好ましい。塩基の添加量は、除去が容易な量で、且つ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2倍モル~4倍モルであることが好ましい。 ピ リ ジ ン As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable since the reaction proceeds gently. The amount of the base to be added is preferably 2 to 4 moles with respect to the tetracarboxylic diester dichloride, from the viewpoint of easy removal and easy production of a high molecular weight compound.
 また、テトラカルボン酸ジエステルとジアミン成分を、縮合剤存在下にて重縮合する場合、塩基として、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)4-メトキシモルホリウムクロリドn-水和物等を使用することができる。 When polycondensation of a tetracarboxylic acid diester and a diamine component is carried out in the presence of a condensing agent, triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride may be used as a base. N, N'-carbonyldiimidazole, dimethoxy-1,3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium Tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxa Diphenyl zolyl) phosphonate, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl It can be used 4-methoxy mol ho potassium chloride n- hydrate.
 また、上記縮合剤を用いる方法において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の添加量は、反応させるジアミン又はテトラカルボン酸ジエステルに対して0.1倍モル量~1.0倍モル量であることが好ましい。 In addition, in the above method using a condensing agent, the reaction proceeds efficiently by adding a Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The amount of the Lewis acid to be added is preferably 0.1 to 1.0 times the molar amount of the diamine or tetracarboxylic acid diester to be reacted.
 上記の反応に用いる溶媒は、上記にて示したポリアミック酸を合成する際に用いられる溶媒と同様の溶媒で行なうことができるが、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、重合体の析出が起こりにくく、且つ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドやテトラカルボン酸ジエステル等のテトラカルボン酸誘導体とジアミン成分の反応溶液中での合計濃度が1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることがよく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used in the above reaction can be the same as the solvent used when synthesizing the polyamic acid described above, but N-methyl-2-pyrrolidone, γ -Butyrolactone is preferred, and these may be used alone or in combination of two or more. The concentration at the time of the synthesis, from the viewpoint that the precipitation of the polymer is unlikely to occur and the high molecular weight is easily obtained, in the reaction solution of the diamine component with the tetracarboxylic acid derivative such as tetracarboxylic diester dichloride or tetracarboxylic diester. The total concentration is preferably 1% by mass to 30% by mass, more preferably 5% by mass to 20% by mass. Further, in order to prevent hydrolysis of the tetracarboxylic diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent outside air from being mixed in a nitrogen atmosphere.
 特定重合体Aが、ポリイミドである場合においては、ポリイミド前駆体であるポリアミック酸やポリアミック酸エステルを閉環イミド化させることにより得られる。このポリイミドにおいて、閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。 In the case where the specific polymer A is a polyimide, the specific polymer A is obtained by subjecting a polyamic acid or a polyamic acid ester as a polyimide precursor to ring-closing imidization. In this polyimide, the ring closure ratio (imidation ratio) does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリアミック酸をイミド化させる方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化や、ポリアミック酸の溶液に触媒を添加する触媒イミド化等が挙げられる。 Examples of the method for imidizing the polyamic acid include thermal imidization in which a solution of the polyamic acid is directly heated and catalytic imidization in which a catalyst is added to the polyamic acid solution.
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。 温度 The temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and is preferably performed while removing water generated by the imidization reaction out of the system.
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5モル倍~30モル倍、好ましくは2モル倍~20モル倍であり、酸無水物の量はアミド酸基の1モル倍~50モル倍、好ましくは3モル倍~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 触媒 Catalytic imidation of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a solution of polyamic acid and stirring at −20 ° C. to 250 ° C., preferably 0 ° C. to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times of the amic acid group. Preferably it is 3 to 30 mole times. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like. Among them, pyridine is preferable because it has an appropriate basicity for causing the reaction to proceed. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferable because purification after the reaction is easy. The imidation rate by the catalytic imidization can be controlled by adjusting the amount of the catalyst, the reaction temperature, and the reaction time.
 また、上述のように、ポリアミック酸エステルを高温で加熱し、脱アルコールを促し閉環させることによっても、ポリイミドを得ることができる。 ポ リ イ ミ ド In addition, as described above, the polyimide can also be obtained by heating the polyamic acid ester at a high temperature to promote dealcoholation and to close the ring.
 なお、ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体や、ポリイミドの反応溶液から、生成したポリアミック酸、ポリアミック酸エステル、ポリイミドを回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水等を挙げることができる。貧溶媒に投入して沈殿させたポリイミド前駆体やポリイミドは濾過して回収した後、常圧或いは減圧下で、常温或いは加熱して乾燥することができる。また、沈殿回収したポリイミド前駆体やポリイミドを、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 In addition, polyamic acid, a polyimide precursor such as polyamic acid ester, and a polyamic acid, a polyamic acid ester, and a polyimide that are generated from a polyimide reaction solution are collected, the reaction solution is poured into a poor solvent to precipitate. I just need. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like. After the polyimide precursor or the polyimide which has been put into the poor solvent and precipitated is recovered by filtration, it can be dried at normal temperature or reduced pressure at normal temperature or by heating. Further, by repeating the operation of re-dissolving the precipitated and recovered polyimide precursor or polyimide in an organic solvent and re-precipitating and recovering 2 to 10 times, impurities in the polymer can be reduced. In this case, examples of the poor solvent include alcohols, ketones, and hydrocarbons. It is preferable to use three or more kinds of poor solvents selected from these, because the purification efficiency is further increased.
 このようにして得られた本発明の重合体は、所定の有機溶媒に溶解して液晶配向剤として用いることができる。この液晶配向剤は、液晶表示素子において、液晶層の液晶分子の配向性を制御する液晶配向膜に用いるものである。以下、本発明の重合体を含有する液晶配向剤について説明する。 The polymer of the present invention thus obtained can be dissolved in a predetermined organic solvent and used as a liquid crystal aligning agent. This liquid crystal alignment agent is used for a liquid crystal alignment film for controlling the alignment of liquid crystal molecules in a liquid crystal layer in a liquid crystal display device. Hereinafter, the liquid crystal aligning agent containing the polymer of the present invention will be described.
 <液晶配向剤>
 本発明の液晶配向剤は、上記特定重合体Aから選択される少なくとも一種の重合体を含有する。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of the present invention contains at least one polymer selected from the specific polymer A.
 ただし、本発明の液晶配向剤において含有する重合体は、全てが本発明の特定重合体Aであってもよく、また、本発明の特定重合体Aのうち、異なる構造の2種以上を含有してもよい。或いは、本発明の特定重合体Aに加えて、その他の重合体を含有してもよい。その他の重合体の種類としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレート等を挙げることができる。
 中でも、ポリアミック酸は好ましい。その他の重合体としてのポリアミック酸は、例えば前記式[3-2]においてR3、Rが共に水素原子である構造単位からなるポリアミック酸が挙げられる。特に式[3-2]のW中に含窒素芳香族複素環や芳香族基に結合する窒素原子を有するポリアミック酸を本発明の液晶配向剤に混合すると、本発明の液晶配向剤を用いて作製した液晶表示素子の蓄積電荷の緩和速度の向上という観点から好ましい。
However, all of the polymers contained in the liquid crystal aligning agent of the present invention may be the specific polymer A of the present invention, or the specific polymer A of the present invention contains two or more kinds of different structures. May be. Alternatively, other polymers may be contained in addition to the specific polymer A of the present invention. Other polymer types include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or its derivative, poly (styrene-phenylmaleimide) derivative, poly (meta- ) Acrylate and the like.
Among them, polyamic acid is preferred. Examples of the polyamic acid as another polymer include a polyamic acid having a structural unit in which both R 3 and R 4 are hydrogen atoms in the formula [3-2]. In particular, when a polyamic acid having a nitrogen-containing aromatic heterocycle or a nitrogen atom bonded to an aromatic group in W 2 of the formula [3-2] is mixed with the liquid crystal aligning agent of the present invention, the liquid crystal aligning agent of the present invention is used. This is preferable from the viewpoint of improving the relaxation rate of the accumulated charge of the liquid crystal display element manufactured by the above method.
 本発明の液晶配向剤がその他の重合体を含有する場合、全重合体成分に対する本発明の重合体の割合は、5質量%以上であることが好ましく、その一例として5~95質量%が挙げられる。本発明の重合体の割合は、液晶配向剤や液晶配向膜の特性に応じて、適宜選択することができる。 When the liquid crystal aligning agent of the present invention contains another polymer, the ratio of the polymer of the present invention to all the polymer components is preferably 5% by mass or more, for example, 5 to 95% by mass. Can be The proportion of the polymer of the present invention can be appropriately selected according to the properties of the liquid crystal alignment agent and the liquid crystal alignment film.
 本発明の液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、一般的には塗布液の形態をとる。本発明の液晶配向剤においても前記した重合体成分と、この重合体成分を溶解させる有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。 液晶 The liquid crystal alignment agent of the present invention is used for producing a liquid crystal alignment film, and generally takes the form of a coating liquid from the viewpoint of forming a uniform thin film. The liquid crystal aligning agent of the present invention is also preferably a coating liquid containing the polymer component described above and an organic solvent that dissolves the polymer component. At that time, the concentration of the polymer in the liquid crystal alignment agent can be appropriately changed by setting the thickness of the coating film to be formed. The amount is preferably 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film, and is preferably 10% by mass or less from the viewpoint of storage stability of the solution. A particularly preferred concentration of the polymer is 2 to 8% by mass.
 本発明の液晶配向剤に含有される有機溶媒は、重合体を溶解させる有機溶媒であれば特に限定されない。その具体例として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン等を挙げることができる。中でも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトンを用いることが好ましい。なお、ここで例示された有機溶媒は、単独で使用しても、混合して使用してもよい。更に、重合体を溶解させない溶媒であっても、生成した重合体が析出しない範囲で、有機溶媒に混合して使用してもよい。 有機 The organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the organic solvent dissolves the polymer. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolide Examples thereof include nonone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and the like. Among them, it is preferable to use N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and γ-butyrolactone. The organic solvents exemplified here may be used alone or as a mixture. Furthermore, even if the solvent does not dissolve the polymer, it may be mixed with an organic solvent and used as long as the produced polymer does not precipitate.
 また、液晶配向剤に含有される有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を併用した混合溶媒を使用することが一般的であり、本発明の液晶配向剤においてもこのような混合溶媒は好適に用いられる。併用する有機溶媒の具体例を下記に挙げるが、これら限定されるものではない。 In addition, the organic solvent contained in the liquid crystal aligning agent uses a mixed solvent that is used in combination with a solvent that improves the applicability and the surface smoothness of the coating film when applying the liquid crystal aligning agent in addition to the above-described solvents. In general, such a mixed solvent is suitably used in the liquid crystal aligning agent of the present invention. Specific examples of the organic solvent used in combination are shown below, but are not limited thereto.
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の溶媒を挙げることができる。 For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol , 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol , 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, , 2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2- Tanthanone, 3-pentanone, 2-hexanone, 2-heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate , Ethylene glycol diacetate, propylene carbonate, ethylene carbonate, 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, Diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1- (butoxyethoxy) propanol, propylene glycol monomethyl Ether ether, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono Butyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol Ethylene glycol monomethyl ether Triethylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, 3-ethoxypropion Methyl ethyl ester, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, n-propyl lactate And solvents such as n-butyl lactic acid ester and isoamyl lactic acid ester.
 また、上述の溶媒の他に、例えば、下記式[S-1]~式[S-3]で示される溶媒を用いることができる。 In addition to the above-mentioned solvents, for example, solvents represented by the following formulas [S-1] to [S-3] can be used.
Figure JPOXMLDOC01-appb-C000052
 式[S-1]及び式[S-2]において、R28及びR29は、炭素原子数1~3のアルキル基を示す。炭素原子数1~3のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられる。また、式[S-3]において、R30は、炭素原子数1~4のアルキル基を示す。炭素原子数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000052
In the formulas [S-1] and [S-2], R 28 and R 29 each represent an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. In the formula [S-3], R 30 represents an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
 併用する有機溶媒の中でも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルを用いることが好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境等に応じて適宜選択される。 Among the organic solvents used in combination, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene It is preferable to use glycol monobutyl ether or dipropylene glycol dimethyl ether. The type and content of such a solvent are appropriately selected according to the application device, application conditions, application environment, and the like of the liquid crystal aligning agent.
 また、これらの溶媒は、液晶配向剤に含まれる溶媒全体の20質量%~99質量%であることが好ましい。中でも、20質量%~90質量%が好ましい。より好ましいのは、20質量%~70質量%である。 It is preferable that these solvents account for 20% by mass to 99% by mass of the total solvent contained in the liquid crystal aligning agent. Among them, 20% by mass to 90% by mass is preferable. More preferably, it is 20% to 70% by mass.
 本発明の液晶配向剤は、重合体成分及び有機溶媒以外の成分を追加的に含有してもよい。このような追加成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール剤との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための架橋剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質等が挙げられる。これら追加成分の具体例としては、液晶配向剤に関する公知の文献に種々開示されているとおりであるが、あえてその一例を示すなら、国際公開第2015/060357号の段落[0105]~[0116]に開示されている成分等が挙げられる。 液晶 The liquid crystal aligning agent of the present invention may additionally contain components other than the polymer component and the organic solvent. Such additional components include an adhesion aid for improving the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealant, a crosslinking agent for increasing the strength of the liquid crystal alignment film, and a liquid crystal alignment. Examples include a dielectric and a conductive substance for adjusting the dielectric constant and electric resistance of the film. Specific examples of these additional components are variously disclosed in publicly known documents relating to liquid crystal aligning agents. If one example is shown, paragraphs [0105] to [0116] of WO 2015/060357 are described. And the like.
 <液晶配向膜>
 本発明の液晶配向膜は、上述した液晶配向剤から得られるものである。液晶配向剤から液晶配向膜を得る方法の一例を挙げるなら、塗布液形態の液晶配向剤を基板に塗布し、乾燥し、焼成して得られた膜に対してラビング処理法又は光配向処理法で配向処理を施す方法が挙げられる。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is obtained from the above-mentioned liquid crystal alignment agent. As an example of a method for obtaining a liquid crystal alignment film from a liquid crystal alignment agent, a liquid crystal alignment agent in the form of a coating liquid is applied to a substrate, dried, and baked. And a method of performing an orientation treatment.
 本発明の液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板と共に、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極等が形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用することができる。 The substrate on which the liquid crystal alignment agent of the present invention is applied is not particularly limited as long as it is a substrate having high transparency. Along with a glass substrate and a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed in terms of simplification of the process. In a reflection type liquid crystal display device, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used for the electrode.
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法等が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法等があり、目的に応じてこれらを用いてもよい。 (4) The method of applying the liquid crystal aligning agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, an inkjet method, and the like are generally used. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method, a spray method and the like, and these may be used according to the purpose.
 液晶配向剤を基板上に塗布した後の焼成は、ホットプレート、熱風循環炉、赤外線炉等の加熱手段により50~300℃、好ましくは80~250℃で行い、溶媒を蒸発させて、塗膜(液晶配向膜)を形成させることができる。焼成後に形成される塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm~300nm、より好ましくは10nm~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射等で処理する。 The baking after applying the liquid crystal aligning agent on the substrate is performed at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, a hot air circulating furnace, or an infrared furnace. (Liquid crystal alignment film) can be formed. If the thickness of the coating film formed after baking is too large, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be reduced. Preferably it is 10 nm to 100 nm. In the case where the liquid crystal is horizontally or obliquely aligned, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により、溶媒を蒸発させ、焼成する。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために、50℃~120℃で1分~10分焼成し、その後、150℃~300℃で、5分~120分焼成する条件が挙げられる。 (4) After the liquid crystal aligning agent is applied on the substrate, the solvent is evaporated and baked by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven. In the drying and baking steps after the application of the liquid crystal aligning agent, any temperature and time can be selected. Usually, in order to sufficiently remove the contained solvent, the conditions include firing at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then firing at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes.
 本発明の液晶配向膜は、IPS方式やFFS方式等の横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。 The liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a liquid crystal display device of a lateral electric field type such as an IPS type or an FFS type, and is particularly useful as a liquid crystal alignment film of an FFS type liquid crystal display device.
 <液晶表示素子>
 本発明の液晶表示素子は、上述した液晶配向膜を具備するものであり、上述の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。一例を挙げるならば、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向剤により形成された液晶配向膜とを有する液晶セルを具備する液晶表示素子である。
<Liquid crystal display device>
The liquid crystal display element of the present invention includes the above-described liquid crystal alignment film.After obtaining a substrate with a liquid crystal alignment film obtained from the above liquid crystal alignment agent, a liquid crystal cell is manufactured by a known method. This is an element using a liquid crystal cell. For example, two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal provided between the substrate and the liquid crystal layer and formed by the liquid crystal alignment agent of the present invention. This is a liquid crystal display device including a liquid crystal cell having an alignment film.
 本発明の液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上述の液晶配向膜で記載した基板と同様のものを挙げることができる。 The substrate used for the liquid crystal display device of the present invention is not particularly limited as long as it is a substrate having high transparency, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed. As a specific example, a substrate similar to the substrate described for the liquid crystal alignment film described above can be used.
 また、液晶配向膜は、この基板上に本発明の液晶配向剤を塗布した後焼成することにより形成されるものであり、詳しくは上述した通りである。 The liquid crystal alignment film is formed by applying the liquid crystal alignment agent of the present invention on the substrate and then baking the liquid crystal, and is as described above in detail.
 本発明の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、ポジ型液晶材料やネガ型液晶材料の何れを用いてもよい。具体的には、例えばメルク社製のMLC-2003、MLC-6608、MLC-6609、MLC-3019、MLC-2041、MLC-7026‐100等を用いることができる。 The liquid crystal material constituting the liquid crystal layer of the liquid crystal display device of the present invention is not particularly limited, and includes a nematic liquid crystal and a smectic liquid crystal. Among them, a nematic liquid crystal is preferable, and any of a positive liquid crystal material and a negative liquid crystal material is used. May be used. Specifically, for example, MLC-2003, MLC-6608, MLC-6609, MLC-3019, MLC-2041, MLC-7026-100, etc. manufactured by Merck can be used.
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。次に、前記のような条件で、各基板の上に液晶配向膜を形成する。 Specifically, a transparent glass substrate is prepared, and a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be, for example, ITO electrodes, and are patterned so that a desired image can be displayed. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrodes. The insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method. Next, a liquid crystal alignment film is formed on each substrate under the above conditions.
 次いで、液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外線硬化性のシール剤を配置し、更に液晶配向膜面上の所定の数カ所に液晶を配置した後、液晶配向膜が対向するように他方の基板を貼り合わせて圧着することにより液晶を液晶配向膜前面に押し広げた後、基板の全面に紫外線を照射してシール剤を硬化することで液晶セルを得る。 Next, for example, an ultraviolet-curable sealant was disposed at a predetermined position on one of the two substrates on which the liquid crystal alignment film was formed, and liquid crystal was disposed at predetermined predetermined positions on the liquid crystal alignment film surface. Then, the other substrate is bonded and pressed so that the liquid crystal alignment film faces the liquid crystal to spread the liquid crystal on the front surface of the liquid crystal alignment film, and then the entire surface of the substrate is irradiated with ultraviolet rays to cure the sealant. Get the cell.
 或いは、基板の上に液晶配向膜を形成した後の工程として、一方の基板上の所定の場所にシール剤を配置する際に、外部から液晶を充填可能な開口部を設けておき、液晶を配置しないで基板を貼り合わせた後、シール剤に設けた開口部を通じて液晶セル内に液晶材料を注入し、次いで、この開口部を接着剤で封止して液晶セルを得る。液晶材料の注入には、真空注入法でもよいし、大気中で毛細管現象を利用した方法でもよい。 Alternatively, as a step after forming the liquid crystal alignment film on the substrate, when disposing a sealant at a predetermined place on one of the substrates, an opening capable of filling the liquid crystal from the outside is provided, and the liquid crystal is formed. After bonding the substrates without disposing them, a liquid crystal material is injected into the liquid crystal cell through an opening provided in the sealant, and then the opening is sealed with an adhesive to obtain a liquid crystal cell. The liquid crystal material may be injected by a vacuum injection method or a method utilizing capillary action in the air.
 上記の何れの方法においても、液晶セル内に液晶材料が充填される空間を確保する為に、一方の基板上に柱状の突起を設けるか、一方の基板上にスペーサーを散布するか、シール剤にスペーサーを混入するか、又はこれらを組み合わせる等の手段を取ることが好ましい。 In any of the above methods, in order to secure a space for filling the liquid crystal material in the liquid crystal cell, a columnar projection is provided on one substrate, a spacer is sprayed on one substrate, or a sealing agent is used. It is preferable to take measures such as mixing a spacer into the mixture or combining them.
 次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。 Next, install the polarizing plate. Specifically, it is preferable that a pair of polarizing plates be attached to surfaces of the two substrates opposite to the liquid crystal layer.
 なお、本発明の液晶配向膜及び液晶表示素子は、本発明の液晶配向剤を用いている限り上記の記載に限定されるものでは無く、その他の公知の手法で作成されたものであってもよい。液晶配向剤から液晶表示素子を得るまでの工程は、例えば、特開2015-135393号公報の段落[0074]~段落[0081]等の他、数多くの文献でも開示されている。 Note that the liquid crystal alignment film and the liquid crystal display element of the present invention are not limited to the above description as long as the liquid crystal alignment agent of the present invention is used, and may be formed by other known methods. Good. The steps up to obtaining a liquid crystal display element from a liquid crystal aligning agent are disclosed in, for example, paragraphs [0074] to [0081] of Japanese Patent Application Laid-Open No. 2015-135393 and many other documents.
 以上のようにして、本発明の液晶配向剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビ等に好適に利用することができる。 液晶 As described above, the liquid crystal display device manufactured using the liquid crystal alignment agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television and the like.
 以下に実施例を挙げて、さらに、本発明を具体的に説明する。但し、本発明は、これらの実施例に限定して解釈されるものではない。 (4) The present invention will be described more specifically with reference to the following examples. However, the present invention is not construed as being limited to these examples.
 実施例で使用した各材料を溶解するために用いた汎用溶剤および実施例で使用した各材料の原料となる単量体の化学構造式は以下に示す通りである。
NMP:N-メチル-2-ピロリドン
GBL:ガンマブチロラクトン
BCS:ブチルセロソルブ
DC-1:1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物
DC-2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
DC-3:1,2,3,4-シクロブタンテトラカルボン酸二無水物
DC-4:ピロメリト酸無水物
DC-5:テトラヒドロ-1H-5,9-メタノピラノ[3,4-d]オクセピン-1,3,6,8(4H)-テトラノン
DA-1:ジメチル 2,4-ビス((4-アミノベンズアミド)シクロブタンー1,3-ジカルボキシレート
DA-2:ジメチル 2,4-ビス((4-アミノフェニル)カルバモイル)シクロブタンー1,3-ジカルボキシレート
DA-3:1,2-ビス(4-アミノフェノキシ)エタン
DA-4:1,2-ビス(4-アミノフェノキシ)ヘキサン
DA-5:1-tertブトキシカルボニルー1,3-ビス(4-アミノフェネチル)ウレア
DA-6:ジメチル 2,4-ビス((4-アミノフェニル)ウレイド)シクロブタンー1,3-ジカルボキシレート
The chemical structural formulas of the general-purpose solvent used for dissolving each material used in the examples and the monomer used as the raw material of each material used in the examples are as shown below.
NMP: N-methyl-2-pyrrolidone GBL: gamma-butyrolactone BCS: butyl cellosolve DC-1: 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride DC-2: bicyclo [3,3 , 0] Octane-2,4,6,8-tetracarboxylic dianhydride DC-3: 1,2,3,4-cyclobutanetetracarboxylic dianhydride DC-4: pyromellitic anhydride DC-5: Tetrahydro-1H-5,9-methanopyrano [3,4-d] oxepin-1,3,6,8 (4H) -tetranone DA-1: dimethyl 2,4-bis ((4-aminobenzamido) cyclobutane-1, 3-Dicarboxylate DA-2: dimethyl 2,4-bis ((4-aminophenyl) carbamoyl) cyclobutane-1,3-dicarboxylate DA-3: 1,2-bi (4-aminophenoxy) ethane DA-4: 1,2-bis (4-aminophenoxy) hexane DA-5: 1-tert-butoxycarbonyl-1,3-bis (4-aminophenethyl) urea DA-6: dimethyl 2,4-bis ((4-aminophenyl) ureido) cyclobutane-1,3-dicarboxylate
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 実施例で使用した各材料の合成方法、各特性の測定方法は、以下に示す通りである。 合成 The method of synthesizing each material and the method of measuring each property used in the examples are as shown below.
 [粘度]
 合成例において、ポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[viscosity]
In the synthesis example, the viscosity of the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) using a sample volume of 1.1 mL, a cone rotor TE-1 (1 ° 34 ′, R24), and a temperature of 25. Measured in ° C.
 [分子量]
 分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(Mnと重量平均分子量(Mw)を算出した。
[Molecular weight]
The molecular weight was measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn and weight average molecular weight (Mw)) were calculated as polyethylene glycol and polyethylene oxide conversion values.
 GPC装置:Shodex社製(GPC-101)、カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
GPC apparatus: manufactured by Shodex (GPC-101), column: manufactured by Shodex (series of KD803 and KD805), column temperature: 50 ° C., eluent: N, N-dimethylformamide (lithium bromide-water as an additive) 30 mmol / L of hydrate (LiBr.H 2 O), 30 mmol / L of phosphoric acid / anhydrous crystals (o-phosphoric acid), 10 ml / L of tetrahydrofuran (THF), flow rate: 1.0 ml / min. Standard sample: TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol manufactured by Polymer Laboratory (peak top molecular weight (Mp) ) About 12,000, 4,000, 1,000). For the measurement, in order to avoid overlapping peaks, a sample in which four types of 900,000, 100,000, 12,000, and 1,000 were mixed and three types of 150,000, 30,000, and 4,000 were used. Two samples of the mixed sample were measured separately.
 [イミド化率の測定]
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~11.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。ただし、下記式で算出するイミド化率は、重合反応に関与しない単量体中に含まれるNH基由来のプロトンピークを除外したときの数値とする。
[Measurement of imidation rate]
20 mg of the polyimide powder is placed in an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Science Co., Ltd.)), and deuterated dimethyl sulfoxide (DMSO-d6, a mixture of 0.05% TMS (tetramethylsilane)) (0.1%). 53 ml) and sonicated to dissolve completely. The solution was subjected to proton NMR measurement at 500 MHz using an NMR measuring device (JNW-ECA500) (manufactured by JEOL Datum). The imidation ratio is determined by using a proton derived from a structure that does not change before and after imidation as a reference proton, and a peak integrated value of this proton and a proton peak derived from an amide acid NH group appearing in the vicinity of 9.5 ppm to 11.0 ppm. It was determined by the following equation using the integrated value. However, the imidation ratio calculated by the following formula is a value excluding a proton peak derived from an NH group contained in a monomer that does not participate in the polymerization reaction.
 イミド化率(%)=(1-α・x/y)×100 Imidation ratio (%) = (1−α · x / y) × 100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。 In the above formula, x is the integrated value of the proton peak derived from the NH group of the amic acid, y is the integrated value of the peak of the reference proton, and α is one NH group proton of the amic acid in the case of polyamic acid (imidation ratio is 0%). Is the ratio of the number of reference protons to the number of reference protons.
 [FFSモード用液晶セルの作製]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製する。
[Fabrication of liquid crystal cell for FFS mode]
A liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is manufactured.
 始めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦約10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。 First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. As a first layer, an ITO electrode having a solid pattern is formed as a first layer on the substrate. On the counter electrode of the first layer, an SiN (silicon nitride) film formed by a CVD method is formed as a second layer. The thickness of the second-layer SiN film is 500 nm, and functions as an interlayer insulating film. On the second-layer SiN film, a comb-shaped pixel electrode formed by patterning an ITO film as a third layer is arranged, and two pixels of a first pixel and a second pixel are formed. ing. The size of each pixel is about 10 mm long and about 5 mm wide. At this time, the first layer counter electrode and the third layer pixel electrode are electrically insulated by the action of the second layer SiN film.
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 The pixel electrode of the third layer has a comb-like shape formed by arranging a plurality of square-shaped electrode elements whose central portion is bent. The width in the lateral direction of each electrode element is 3 μm, and the interval between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements at the center portion, the shape of each pixel is not rectangular but is similar to the electrode element at the center portion. Bends have a shape resembling a bold letter. Each pixel is vertically divided by a center bent portion, and has a first region above the bent portion and a second region below the bent portion.
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の直線偏光紫外(LPUV)光の偏光方向を基準とした場合、画素の第1領域では画素電極の電極要素が+80°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-80°の角度(反時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。 す る と Comparing the first region and the second region of each pixel, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, with reference to the polarization direction of linearly polarized ultraviolet (LPUV) light of the liquid crystal alignment film described later, the electrode element of the pixel electrode is formed to have an angle of + 80 ° (clockwise) in the first region of the pixel. In the second region of the pixel, the electrode element of the pixel electrode is formed so as to form an angle of -80 ° (counterclockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the application of the voltage between the pixel electrode and the counter electrode in the substrate plane are mutually different. It is configured to be in the opposite direction.
 次に、液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコートにて塗布した。80℃のホットプレート上で2分間乾燥させ、塗膜面に偏光板を介して消光比26:1以上の直線偏光した波長254nmの紫外線を照射した後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。 Next, the liquid crystal aligning agent was filtered through a 1.0 μm filter, and then spin-coated on the prepared substrate with electrodes and a glass substrate having a 4 μm high columnar spacer with an ITO film formed on the back surface. And applied. After drying on a hot plate at 80 ° C. for 2 minutes, and irradiating the coated film surface with a linearly polarized ultraviolet ray having a extinction ratio of 26: 1 or more at a wavelength of 254 nm through a polarizing plate, it is heated in a hot air circulation oven at 230 ° C. for 30 minutes. Baking was performed to form a coating film having a thickness of 100 nm. The above two substrates are made into a set, a sealant is printed on the substrate, and another substrate is bonded so that the liquid crystal alignment film surfaces face each other so that the alignment direction becomes 0 °. It was cured to produce an empty cell. Liquid crystal MLC-3019 (manufactured by Merck) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell.
 [残像評価]
 二枚の偏光子のなす角が90°となるように偏光子を配置し、この状態をクロスニコルとした。これら二枚の偏光子の間に、上記した残像評価用の液晶セルを配置し、注入した液晶の配向状態を観察した。具体的な評価法は、注入した液晶が液晶セル中で均一に配向しているかどうかを観察することで判断した。液晶セル中の液晶が均一に配向していない場合は輝線が見られ、二枚の偏光子と液晶の配向方向のなす角度により、明瞭な明/暗視野が観察できない。一方で液晶セル中の液晶が均一に配向している場合は輝線が見られず、二枚の偏光子と液晶の配向方向のなす角度により、明瞭な明/暗視野が観察できる。評価基準として、上記の輝線が全く見られず、明瞭な明/暗視野が観察できれば「良好」、明瞭な明/暗視野が観察できるものの、わずかに輝線がみられるものは「可」、明瞭な明/暗視野が観察できず、明瞭な輝線がみられるものは「不良」とした。
[Afterimage evaluation]
The polarizer was arranged so that the angle between the two polarizers was 90 °, and this state was referred to as crossed Nicols. The above-mentioned liquid crystal cell for afterimage evaluation was arranged between these two polarizers, and the alignment state of the injected liquid crystal was observed. A specific evaluation method was determined by observing whether or not the injected liquid crystal was uniformly aligned in the liquid crystal cell. When the liquid crystal in the liquid crystal cell is not uniformly aligned, a bright line is observed, and a clear bright / dark field cannot be observed due to the angle between the two polarizers and the alignment direction of the liquid crystal. On the other hand, when the liquid crystal in the liquid crystal cell is uniformly aligned, no bright line is observed, and a clear bright / dark field can be observed depending on the angle between the two polarizers and the alignment direction of the liquid crystal. As the evaluation criteria, the above-mentioned bright line was not observed at all, and "good" if a clear bright / dark field could be observed, and "clear" was observed if a clear bright / dark field could be observed, but a slight bright line was observed. A sample in which a clear bright / dark field could not be observed and a clear bright line was observed was regarded as “poor”.
 [表示不良評価]
 上記で作製した液晶セルの表示不良評価を行った。評価は、上記で作製した液晶セルを60℃の加熱オーブンで2週間以上加熱した後に、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察することで行った。具体的には、液晶セルを偏光子に対してクロスニコルで設置し、レンズ倍率を5倍にした偏光顕微鏡で観察し、確認した輝点の数を数え、輝点の数が5個未満を「良好」、それ以上を「不良」とした。
[Display defect evaluation]
A display defect evaluation of the liquid crystal cell manufactured as described above was performed. The evaluation was performed by heating the liquid crystal cell prepared above in a heating oven at 60 ° C. for 2 weeks or more, and then observing the liquid crystal cell with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation). Specifically, the liquid crystal cell was placed in crossed Nicols with respect to the polarizer, observed with a polarizing microscope with a lens magnification of 5 times, and the number of confirmed bright spots was counted. "Good" and more than "poor".
[液晶配向性評価]
 上記で作製した液晶セルの配向性評価を行った。評価法として、液晶セルを偏光板クロスニコル下で最も輝度が小さくなる状態に配置し、作成直後及び再配向処理(110℃で1時間加熱し、室温に戻す)を行った後の配向状態の比較を行った。液晶セル作成直後に流動配向やドメイン等が観察されなかった場合は〇、再配向処理で流動配向やドメイン等が消失した場合は△、再配向後も前記の配向欠陥が観察された場合は×とした。
[Evaluation of liquid crystal orientation]
The orientation evaluation of the liquid crystal cell produced above was performed. As an evaluation method, the liquid crystal cell was placed in a state where the luminance became the smallest under the polarizing plate crossed Nicols, and the alignment state immediately after the preparation and after the realignment treatment (heating at 110 ° C. for 1 hour and returning to room temperature) was performed. A comparison was made. When the flow alignment or the domain was not observed immediately after the liquid crystal cell was prepared, 〇 when the flow alignment or the domain was lost in the realignment treatment, 処理, and when the alignment defect was observed even after the realignment, ×. And
 「モノマー合成例」
 合成例1 Dimethyl 2,4-bis(3-(4-aminophenyl)ureido)cyclobutane-1,3-dicarboxylateの合成
"Example of monomer synthesis"
Synthesis Example 1 Synthesis of Dimethyl 2,4-bis (3- (4-aminophenyl) ureido) cyclobutane-1,3-dicarboxylate
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 <第1工程>
 Dimethyl 2,4-bis(3-(4-nitrophenyl)ureido)cyclobutane-1,3-dicarboxylateの合成
 窒素導入管をとりつけた1Lの4口フラスコに、bis(methoxycarbonyl)cyclobutane-1,3-dicarboxylic acid(100.0g:384.23mmol)をはかり取り、トルエン(500.0g)を加え、トリエチルアミン(97.2g:960.58mmol)、Diphenylphosphoryl Azide[DPPA](232.6g:845.31mmol)を加え、窒素雰囲気下室温で30分攪拌した後、60℃に昇温し、更に3時間反応させた。反応が進行するに従いガスが発生し、ガスの発生が止まるのを確認した。反応溶液を室温に戻し、1,4diaza-bicyclo[2.2.2]octane[DABCO](2.15g:19.21mmol)、4-Nitroaniline(116.76g:845.31mmol)、テトラヒドロフラン(200.0g)を加え、再び60℃に昇温し、窒素雰囲気下で24時間反応させた。TLCにて原料の消失を確認した後、反応溶液を分液ロートに移した。この時有機層は2層に分かれるため、下の層を分取し、メタノール中に投入し攪拌すると固体が析出した。この固体を濾過により回収した。一方の上層を100mlの純水にて3回洗浄し、有機層をロータリーエバポレータにより溶媒留去を行ったところ固体が析出してきた。この祖物を回収し、前記で得られた固体と混合し、メタノール(300.0g)にて加熱洗浄(還流:1時間)を2回行い、真空乾燥させることで薄黄色の固体(136.56g:収率67%)を得た。構造確認は核磁気共鳴スペクトル[H-NMR(400MHz)]にて行い目的物であることを確認した。以下に測定データを示す。
<First step>
Synthesis of Dimethyl 2,4-bis (3- (4-nitrophenyl) ureido) cyclobutane-1,3-dicarboxylate (100.0 g: 384.23 mmol) was weighed, toluene (500.0 g) was added, and triethylamine (97.2 g: 960.58 mmol) and Diphenylphosphoryl Azide [DPPA] (232.6 g: 845.31 mmol) were added. After stirring at room temperature for 30 minutes in a nitrogen atmosphere, the temperature was raised to 60 ° C., and the reaction was further performed for 3 hours. It was confirmed that gas was generated as the reaction progressed, and the generation of gas stopped. The reaction solution was returned to room temperature, and 1,4diaza-bicyclo [2.2.2] octane [DABCO] (2.15 g: 19.21 mmol), 4-nitroaniline (116.76 g: 845.31 mmol), and tetrahydrofuran (200. 0 g) was added, the temperature was raised again to 60 ° C., and the mixture was reacted under a nitrogen atmosphere for 24 hours. After confirming the disappearance of the raw materials by TLC, the reaction solution was transferred to a separating funnel. At this time, since the organic layer was separated into two layers, the lower layer was separated, poured into methanol, and stirred to precipitate a solid. This solid was collected by filtration. One upper layer was washed three times with 100 ml of pure water, and the solvent was distilled off from the organic layer using a rotary evaporator. As a result, a solid was deposited. This material was collected, mixed with the solid obtained above, washed twice with methanol (300.0 g) under heating (reflux: 1 hour), and dried in vacuo to give a pale yellow solid (136. 56 g: 67% yield). The structure was confirmed by a nuclear magnetic resonance spectrum [ 1 H-NMR (400 MHz)], and it was confirmed that it was a target. The measurement data is shown below.
 H-NMR(400MHz:D6-DMSO)δ:9.34(s:2H)、8.11(q:4H)、7.60(q:4H)、7.04(d:2H)、4.78(q:2H)、4.07(m:2H)、3.60(s:6H) 1 H-NMR (400 MHz: D6-DMSO) δ: 9.34 (s: 2H), 8.11 (q: 4H), 7.60 (q: 4H), 7.04 (d: 2H), 4 .78 (q: 2H), 4.07 (m: 2H), 3.60 (s: 6H)
 <第2工程>
  Dimethyl 2,4-bis(3-(4-amonophenyl)ureido)cyclobutane-1,3-dicarboxylateの合成
 1Lの4口フラスコに前記の操作にて得られたDimethyl 2,4-bis(3-(4-nitro-phenyl)ureido)-cyclobutane-1,3-dicarboxylate(100.0g:188.52mmol)、10%パラジウムカーボン(10.0g)、十分に脱気したN,N-ジメチルホルムアミド(500.0g)を加え、水素ガスを置換し、60℃で強めに攪拌しながら24時間反応させた。原料の消失を確認し、熱い状態で濾過によりパラジウムカーボンを除去し、更に活性炭(30g)を加え、60℃で3時間攪拌し、熱時濾過を行った。ろ液を1Lのメタノール中に投入し、10℃でしばらく攪拌すると固体が析出してきた。得られた固体を濾過により回収し、300.0gのメタノールにて加熱洗浄を2回行い、真空乾燥させることで、目的物の乳白色固体74.5gを得た。構造確認は核磁気共鳴スペクトル[H-NMR(400MHz)]にて行い目的物であることを確認した。以下に測定データを示す。
<Second step>
Synthesis of Dimethyl 2,4-bis (3- (4-aminophenyl) ureido) cyclobutane-1,3-dicarboxylate Dimethyl 2,4-bis (3- (4 -Nitro-phenyl) ureido) -cyclobutane-1,3-dicarboxylate (100.0 g: 188.52 mmol), 10% palladium carbon (10.0 g), fully degassed N, N-dimethylformamide (500.0 g) ) Was added, the hydrogen gas was replaced, and the reaction was carried out at 60 ° C. for 24 hours with strong stirring. After confirming the disappearance of the raw materials, palladium carbon was removed by filtration in a hot state, activated carbon (30 g) was further added, the mixture was stirred at 60 ° C. for 3 hours, and filtered while hot. The filtrate was poured into 1 L of methanol and stirred at 10 ° C. for a while, and a solid was deposited. The obtained solid was collected by filtration, washed twice with 300.0 g of methanol, and dried under vacuum to obtain 74.5 g of the target milky white solid. The structure was confirmed by a nuclear magnetic resonance spectrum [ 1 H-NMR (400 MHz)], and it was confirmed that it was a target. The measurement data is shown below.
 H-NMR(400MHz:D6-DMSO)δ:8.01(s:4H)、6.95(q:4H)、6.49(d:2H)、6.45(q:4H)、4.75(q:2H)、4.73(br:4H)、3.64(s:6H),3.35(m:2H) 1 H-NMR (400 MHz: D6-DMSO) δ: 8.01 (s: 4H), 6.95 (q: 4H), 6.49 (d: 2H), 6.45 (q: 4H), 4 .75 (q: 2H), 4.73 (br: 4H), 3.64 (s: 6H), 3.35 (m: 2H)
 合成例2
 Dimethyl 2,4-bis(4-aminobenzamido)cyclobutane-1,3-dicarboxylateの合成
Synthesis Example 2
Synthesis of Dimethyl 2,4-bis (4-aminobenzamido) cyclobutane-1,3-dicarboxylate
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 <第1工程>
 Dimethyl 2,4-bis((tert-butoxycarbonyl)amino)cyclobutane-1,3-dicarboxylateの合成
 窒素導入管をとりつけた2Lの4口フラスコに、bis(methoxycarbonyl)cyclobutane-1,3-dicarboxylic acid(100g:418mmol)をはかり取り、トルエン(1000g)を加え、トリエチルアミン(92.0g:916mmol)、Diphenylphosphoryl Azide[DPPA](252g:916mmol)を加え、窒素雰囲気下室温で30分攪拌した後、60℃に昇温し、更に3時間反応させた。反応が進行するに従いガスが発生し、ガスの発生が止まるのを確認した。反応溶液を室温まで冷却し、1,4diaza-bicyclo[2.2.2]octane[DABCO](2.35:20.9mmol)、tert-butyl alcohol(155g:2.09×10mmol)を加え、80℃に昇温し、窒素雰囲気下で24時間加熱撹拌した。反応終了後、反応溶液を-20℃で冷却し、生成物を再結晶した。その固体を良溶媒として酢酸エチル、貧溶媒としてヘキサンを用いて再結晶し、これを真空乾燥することで目的の白色固体(60.0g:145mmol、収率:35%)を得た。生成物の構造確認は核磁気共鳴スペクトル[H-NMR(400MHz)]にて行い目的物であることを確認した。以下に測定データを示す。
<First step>
Synthesis of Dimethyl 2,4-bis ((tert-butoxycarbonyl) amino) cyclobutane-1,3-dicarboxylate Bis (methoxycarbonylcyclobutadicarboxycarbonyl-cyclobutadicarbonate-cyclobutadicarbonate-1) : 418 mmol), toluene (1000 g) was added, triethylamine (92.0 g: 916 mmol) and Diphenylphosphoryl Azide [DPPA] (252 g: 916 mmol) were added, and the mixture was stirred at room temperature under a nitrogen atmosphere for 30 minutes, and then heated to 60 ° C. The temperature was raised and the reaction was continued for another 3 hours. It was confirmed that gas was generated as the reaction progressed, and the generation of gas stopped. The reaction solution was cooled to room temperature, and 1,4diaza-bicyclo [2.2.2] octane [DABCO] (2.35: 20.9 mmol) and tert-butyl alcohol (155 g: 2.09 × 10 3 mmol) were added. In addition, the temperature was raised to 80 ° C., and the mixture was heated and stirred under a nitrogen atmosphere for 24 hours. After the completion of the reaction, the reaction solution was cooled at −20 ° C., and the product was recrystallized. The solid was recrystallized using ethyl acetate as a good solvent and hexane as a poor solvent, and dried under vacuum to obtain a target white solid (60.0 g: 145 mmol, yield: 35%). The structure of the product was confirmed by nuclear magnetic resonance spectrum [ 1 H-NMR (400 MHz)] to confirm that it was the desired product. The measurement data is shown below.
 H-NMR(400MHz:D6-DMSO)δ:7.40-7.38(s-s:2H)、4.51-4.49(q:2H)、3.56(s:6H)、3.42-3.38(q:2H)、1.36(s:18H) 1 H-NMR (400 MHz: D6-DMSO) δ: 7.40 to 7.38 (ss: 2H), 4.51 to 4.49 (q: 2H), 3.56 (s: 6H), 3. 42-3.38 (q: 2H), 1.36 (s: 18H)
 <第2工程>
 Dimethyl 2,4-bis(4-nitrobenzamido)cyclobutane-1,3-dicarboxylateの合成
 窒素導入管をとりつけた2Lの4口フラスコに前記操作で得られたDimethyl 2,4-bis((tert-butoxycarbonyl)amino)cyclobutane-1,3-dicarboxylate(60.0g:145mmol)をはかり取り、クロロホルム(600.0g)を加え、氷浴中でトリフルオロ酢酸[TFA](164g:1.45×10mmol)を加え、40℃で12時間加熱撹拌した。その反応溶液を0℃程度に冷却し、トリエチルアミン(32.1g:318mmol)を加え、室温で0.5時間撹拌した。その後、クロロホルム670gに溶解した4-ニトロ安息香酸クロリド(67.0g:602mmol)を静かに滴下し、室温で6時間撹拌した。反応終了後、反応溶液を濃縮し、純水200mlで3回洗浄し、飽和食塩水200mlで1回洗浄した。その後、良溶媒としてクロロホルム、貧溶媒としてヘキサンを用いて再結晶し、得られた固体を真空乾燥することで目的の薄黄色固体56.0g(112mmol)を得た。生成物の構造確認は核磁気共鳴スペクトル[H-NMR(400MHz)]にて行い目的物であることを確認した。以下に測定データを示す。
<Second step>
Synthesis of Dimethyl 2,4-bis (4-nitrobenzamido) cyclobutane-1,3-dicarboxylate Dimethyl 2,4-bis ((tert-butoxycarbyl) obtained by the above operation in a 2 L 4-necked flask equipped with a nitrogen inlet tube. Amino) Cyclobutane-1,3-dicarboxylate (60.0 g: 145 mmol) was weighed out, chloroform (60.0 g) was added, and trifluoroacetic acid [TFA] (164 g: 1.45 × 10 3 mmol) was added in an ice bath. Was added and the mixture was heated and stirred at 40 ° C. for 12 hours. The reaction solution was cooled to about 0 ° C., triethylamine (32.1 g: 318 mmol) was added, and the mixture was stirred at room temperature for 0.5 hour. Thereafter, 4-nitrobenzoic acid chloride (67.0 g: 602 mmol) dissolved in 670 g of chloroform was gently added dropwise, and the mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction solution was concentrated, washed three times with 200 ml of pure water, and washed once with 200 ml of saturated saline. Thereafter, the solid was recrystallized using chloroform as a good solvent and hexane as a poor solvent, and the obtained solid was dried under vacuum to obtain 56.0 g (112 mmol) of a target pale yellow solid. The structure of the product was confirmed by nuclear magnetic resonance spectrum [ 1 H-NMR (400 MHz)] to confirm that it was the desired product. The measurement data is shown below.
 H-NMR(400MHz:D6-DMSO)δ:9.29-9.27(d:2H)、8.37(d-d:4H)、8.06(d-d:4H)、5.23-5.17(m:2H)、3.86-3.82(m:2H)、3.55(s:6H) 1 H-NMR (400 MHz: D6-DMSO) δ: 9.29-9.27 (d: 2H), 8.37 (dd: 4H), 8.06 (dd: 4H), 5. 23-5.17 (m: 2H), 3.86-3.82 (m: 2H), 3.55 (s: 6H)
 <第3工程>
 Dimethyl 2,4-bis(4-aminobenzamido)cyclobutane-1,3-dicarboxylateの合成
 1Lの4口フラスコに前記操作で得られたDimethyl 2,4-bis(4-nitrobenzamido)cyclobutane-1,3-dicarboxylate(20.0g:112mmol)、10%パラジウムを担持させた活性カーボン(11.2g)、十分に脱気したN,N-ジメチルホルムアミド(500g)を加え、系中に水素ガスを充填置換し、室温で48時間強攪拌した。反応終了後、パラジウムカーボンを除去し、N,N-ジメチルホルムアミドを減圧濃縮した。析出した固体を最少量のDMFに溶解し、貧溶媒としてヘキサンを用いることで再結晶した。得られた固体をメタノールに分散し、80℃で6時間加熱撹拌した。その後、濾過にて固体を回収し、減圧乾燥することで目的の白色固体(35.0g:79.5mmol、収率:71%)を得た。構造確認は核磁気共鳴スペクトル[H-NMR(400MHz)]にて行い目的物であることを確認した。以下に測定データを示す。
<Third step>
Synthesis of Dimethyl 2,4-bis (4-aminobenzamido) cyclobutane-1,3-dicarboxylate (20.0 g: 112 mmol), 10% palladium-supported activated carbon (11.2 g), and sufficiently degassed N, N-dimethylformamide (500 g) were added, and the system was filled with hydrogen gas and replaced. The mixture was vigorously stirred at room temperature for 48 hours. After completion of the reaction, palladium carbon was removed, and N, N-dimethylformamide was concentrated under reduced pressure. The precipitated solid was dissolved in a minimum amount of DMF and recrystallized using hexane as a poor solvent. The obtained solid was dispersed in methanol and heated and stirred at 80 ° C. for 6 hours. Then, the solid was recovered by filtration and dried under reduced pressure to obtain the target white solid (35.0 g: 79.5 mmol, yield: 71%). The structure was confirmed by a nuclear magnetic resonance spectrum [ 1 H-NMR (400 MHz)], and it was confirmed that it was a target. The measurement data is shown below.
 H-NMR(400MHz:D6-DMSO)δ:8.36-8.34(d-d:2H)、7.56-7.53(q:4H)、6.55-6.52(q:4H)、5.65(br:4H)、5.14-5.08(q:2H)、3.76-3.72(q:2H)、3.49(s:6H) 1 H-NMR (400 MHz: D6-DMSO) δ: 8.36 to 8.34 (dd: 2H), 7.56 to 7.53 (q: 4H), 6.55 to 6.52 (q : 4H), 5.65 (br: 4H), 5.14-5.08 (q: 2H), 3.76-3.72 (q: 2H), 3.49 (s: 6H).
 [合成例1]
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を5.06g(11.5mmol)取り、NMPを20.3g加えて、窒素を送りながら70℃で30分間加熱撹拌し、溶解した。このジアミン溶液を水冷により室温まで冷却した後、撹拌しながらDC-1を2.37g(11.3mmol)添加し、さらにNMPを9.50g加え、40℃で24時間加熱撹拌してポリアミック酸の溶液(PAA-1)を得た。このポリアミック酸の溶液の温度25℃における粘度は300mPa・sであった。また、このポリアミック酸の分子量および分子量分布はMn=1.27×10、Mw=3.07×10、Mw/Mn=2.41であった。
[Synthesis Example 1]
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 5.06 g (11.5 mmol) of DA-1 was added, 20.3 g of NMP was added, and the mixture was heated and stirred at 70 ° C. for 30 minutes while sending nitrogen. Dissolved. After the diamine solution was cooled to room temperature by water cooling, 2.37 g (11.3 mmol) of DC-1 was added with stirring, 9.50 g of NMP was further added, and the mixture was heated and stirred at 40 ° C. for 24 hours to form a polyamic acid. A solution (PAA-1) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 300 mPa · s. The molecular weight and molecular weight distribution of this polyamic acid were Mn = 1.27 × 10 4 , Mw = 3.07 × 10 4 , and Mw / Mn = 2.41.
 [合成例2、3、4、5、6]
 下記表1に示す、ジアミン成分、テトラカルボン酸成分、及びNMPを使用し、それぞれ、反応温度、固形分濃度、合成例1と同様に実施することにより、下記表1に示すポリアミック酸溶液PAA-2、PAA-3、PAA-4、PAA-5、PAA-6を得た。また、得られたポリアミック酸の粘度、及び分子量は、下記表2に示す。
[Synthesis Examples 2, 3, 4, 5, 6]
Using a diamine component, a tetracarboxylic acid component, and NMP shown in Table 1 below, the reaction temperature, the solid content concentration, and the same procedure as in Synthesis Example 1 were carried out to obtain a polyamic acid solution PAA- shown in Table 1 below. 2, PAA-3, PAA-4, PAA-5, PAA-6 were obtained. The viscosity and molecular weight of the obtained polyamic acid are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
 [合成例7]
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに得られたポリアミック酸溶液(PAA-1)を55.0g取り、NMPを18.3g加え、室温で30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を5.12g(50.7mmol)、ピリジンを1.59g(20.1mmol)加えて、55℃で6時間加熱撹拌し、化学イミド化を行った。得られた反応液を218mlのメタノールに撹拌しながら投入し、析出した沈殿物を回収し、続いて、218mlのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(PIP-1)を得た。このポリイミド樹脂粉末のイミド化率は95%以上であった。
[Synthesis Example 7]
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 55.0 g of the obtained polyamic acid solution (PAA-1) was taken, 18.3 g of NMP was added, and the mixture was stirred at room temperature for 30 minutes. To the obtained polyamic acid solution, 5.12 g (50.7 mmol) of acetic anhydride and 1.59 g (20.1 mmol) of pyridine were added, and the mixture was heated and stirred at 55 ° C. for 6 hours to perform chemical imidization. The obtained reaction solution was poured into 218 ml of methanol with stirring, and the deposited precipitate was collected, followed by washing with 218 ml of methanol three times. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (PIP-1). The imidation ratio of this polyimide resin powder was 95% or more.
 [合成例8]
 ポリアミック酸溶液(PAA-2)を使用し、それぞれ、無水酢酸およびピリジンの導入量また、反応温度は合成例7と同様の手順において化学イミド化を実施した。しかし、加熱撹拌中にゲル状の固形物が析出し、正確に化学イミド化できなかった。
[Synthesis Example 8]
Using a polyamic acid solution (PAA-2), chemical imidization was carried out in the same procedure as in Synthesis Example 7 with the amounts of acetic anhydride and pyridine introduced, respectively, and the reaction temperature. However, during heating and stirring, a gel-like solid was deposited, and chemical imidization could not be performed accurately.
 [合成例9]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに得られたポリアミック酸溶液(PAA-3)を24.0g取り、NMPを8.00g加え、室温で30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を2.56g(25.0mmol)、ピリジンを1.19g(15.1mmol)加えて、55℃で4時間加熱撹拌し、化学イミド化を行った。得られた反応液を107mlのメタノールに撹拌しながら投入し、析出した沈殿物を回収し、続いて、107mlのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(PIP-3)を得た。このポリイミド樹脂粉末のイミド化率は95%以上であった。
[Synthesis Example 9]
In a 50 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 24.0 g of the obtained polyamic acid solution (PAA-3) was added, 8.00 g of NMP was added, and the mixture was stirred at room temperature for 30 minutes. To the obtained polyamic acid solution, 2.56 g (25.0 mmol) of acetic anhydride and 1.19 g (15.1 mmol) of pyridine were added, and the mixture was heated and stirred at 55 ° C. for 4 hours to perform chemical imidization. The obtained reaction solution was poured into 107 ml of methanol with stirring, and the deposited precipitate was collected and subsequently washed three times with 107 ml of methanol. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (PIP-3). The imidation ratio of this polyimide resin powder was 95% or more.
 [合成例10]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに得られたポリアミック酸溶液(PAA-3)を18.0g取り、NMPを6.00g加え、室温で30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を0.77g(7.53mmol)、ピリジンを0.30g(3.80mmol)加えて、55℃で2時間加熱撹拌し、化学イミド化を行った。得られた反応液を75.2mlのメタノールに撹拌しながら投入し、析出した沈殿物を回収し、続いて、75.2mlのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(PIP-4)を得た。このポリイミド樹脂粉末のイミド化率は73%であった。
[Synthesis Example 10]
In a 50 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 18.0 g of the obtained polyamic acid solution (PAA-3) was added, 6.00 g of NMP was added, and the mixture was stirred at room temperature for 30 minutes. To the obtained polyamic acid solution, 0.77 g (7.53 mmol) of acetic anhydride and 0.30 g (3.80 mmol) of pyridine were added, and the mixture was heated and stirred at 55 ° C. for 2 hours to perform chemical imidization. The obtained reaction solution was poured into 75.2 ml of methanol with stirring, and the deposited precipitate was collected. Subsequently, the precipitate was washed three times with 75.2 ml of methanol. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (PIP-4). The imidation ratio of this polyimide resin powder was 73%.
 [合成例11]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに得られたポリアミック酸溶液(PAA-4)を44.0g取り、NMPを14.7g加え、室温で30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を4.50g(44.1mmol)、ピリジンを2.09g(26.5mmol)加えて、55℃で2時間加熱撹拌し、化学イミド化を行った。得られた反応液を196mlのメタノールに撹拌しながら投入し、析出した沈殿物を回収し、続いて、196mlのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(PIP-5)を得た。このポリイミド樹脂粉末のイミド化率は95%以上であった。
[Synthesis Example 11]
In a 50 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 44.0 g of the obtained polyamic acid solution (PAA-4) was added, 14.7 g of NMP was added, and the mixture was stirred at room temperature for 30 minutes. To the obtained polyamic acid solution, 4.50 g (44.1 mmol) of acetic anhydride and 2.09 g (26.5 mmol) of pyridine were added, and the mixture was heated and stirred at 55 ° C. for 2 hours to perform chemical imidization. The obtained reaction solution was poured into 196 ml of methanol with stirring, and the deposited precipitate was collected, followed by washing with 196 ml of methanol three times. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (PIP-5). The imidation ratio of this polyimide resin powder was 95% or more.
 [合成例12]
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに得られたポリアミック酸溶液(PAA-5)を96.5g取り、NMPを32.2g加え、室温で30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を7.03g(68.9mmol)、ピリジンを3.64g(46.0mmol)加えて、55℃で2時間加熱撹拌し、化学イミド化を行った。得られた反応液を433mlのメタノールに撹拌しながら投入し、析出した沈殿物を回収し、続いて、433mlのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(PIP-6)を得た。このポリイミド樹脂粉末のイミド化率は62%であった。
[Synthesis Example 12]
96.5 g of the obtained polyamic acid solution (PAA-5) was placed in a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 32.2 g of NMP was added, and the mixture was stirred at room temperature for 30 minutes. To the obtained polyamic acid solution, 7.03 g (68.9 mmol) of acetic anhydride and 3.64 g (46.0 mmol) of pyridine were added, and the mixture was heated and stirred at 55 ° C. for 2 hours to perform chemical imidization. The obtained reaction solution was poured into 433 ml of methanol with stirring, and the deposited precipitate was recovered, followed by washing with 433 ml of methanol three times. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (PIP-6). The imidation ratio of this polyimide resin powder was 62%.
 [合成例13]
 ポリアミック酸溶液(PAA-6)を使用し、それぞれ、無水酢酸およびピリジンの導入量また、反応温度は合成例12と同様の手順において化学イミド化を実施し、ポリイミド樹脂粉末(PIP-7)を得た。このポリイミド樹脂粉末のイミド化率は68%であった。
[Synthesis Example 13]
Using a polyamic acid solution (PAA-6), the amounts of acetic anhydride and pyridine to be introduced, respectively, and the reaction temperature, chemical imidization was carried out in the same procedure as in Synthesis Example 12 to obtain a polyimide resin powder (PIP-7). Obtained. The imidation ratio of this polyimide resin powder was 68%.
 合成例7、8、9、10、11、12、13で得られたポリイミド樹脂粉末のイミド化率を下記表3に示す。 イ ミ ド The imidation ratio of the polyimide resin powders obtained in Synthesis Examples 7, 8, 9, 10, 11, 12, and 13 is shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 [合成例14]
 ポリイミド樹脂粉末(PIP-1)5.56gを50mlナスフラスコに取り、固形分濃度が12%になるようにNMPを40.7g加え、70℃で24時間撹拌し、溶解させてポリイミド溶液(PIS-1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。このポリイミド溶液の分子量および分子量分布はMn=1.30×10、Mw=3.35×10、Mw/Mn=2.56であった。
[Synthesis Example 14]
5.56 g of the polyimide resin powder (PIP-1) was placed in a 50 ml eggplant flask, 40.7 g of NMP was added so that the solid content concentration became 12%, the mixture was stirred at 70 ° C. for 24 hours, dissolved, and dissolved in a polyimide solution (PIS-1). -1) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal aligning agent, and it was confirmed that the solution was a uniform solution. The molecular weight and molecular weight distribution of this polyimide solution were Mn = 1.30 × 10 4 , Mw = 3.35 × 10 4 , and Mw / Mn = 2.56.
 [合成例15]
 ポリイミド樹脂固体(PIP-2)を用いて合成例14と同様の方法でポリイミド溶液(PIS-2)を得た。しかし、不要物が生じており、均一なポリイミド溶液を得ることができなかった。
[Synthesis Example 15]
A polyimide solution (PIS-2) was obtained in the same manner as in Synthesis Example 14 using the polyimide resin solid (PIP-2). However, unnecessary substances were generated, and a uniform polyimide solution could not be obtained.
 [合成例16、17、18、19、20]
 ポリイミド樹脂粉末(PIP-3、PIP-4、PIP-5、PIP-6、PIP-7)を用いて合成例14と同様の方法でポリイミド溶液(PIS-3、PIS-4、PIS-5、PIS-6、PIS-7)を得た。また、得られたポリイミド溶液の分子量は、下記表4に示す。
[Synthesis examples 16, 17, 18, 19, 20]
Using a polyimide resin powder (PIP-3, PIP-4, PIP-5, PIP-6, PIP-7) and a polyimide solution (PIS-3, PIS-4, PIS-5, PIS-6, PIS-7) were obtained. The molecular weight of the obtained polyimide solution is shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
 DA-1またはDA-2とDC-1を逐次重合することによって得られるポリアミック酸溶液を化学イミド化した時に、DA-1からなるポリアミック酸は正常に化学閉環できたのに対し、DA-2からなるポリアミック酸は化学閉環中にゲル状の固形物が析出し、評価に至ることができなかった。 When a polyamic acid solution obtained by successively polymerizing DA-1 or DA-2 and DC-1 was chemically imidized, the polyamic acid composed of DA-1 could be normally chemically closed, whereas the DA-2 A gel-like solid material precipitated during the chemical ring closure of the polyamic acid consisting of and could not be evaluated.
 本請求項に含まれるDA-1類縁体を用いることで、DA-2類縁体に比べて、ポリアミック酸およびこれを化学閉環したポリイミドとしたときに溶剤に対する溶解性が特異的に良化する。また、本請求項に含まれる材料であるPIS-1、PIS-3、PIS-4、PIS-5は、液晶配向膜として実用に耐え得る特性を示し、さらに表示不良のリスクの低減を図ることが可能であるため、以下に示す。 DA By using the DA-1 analog included in the present invention, the solubility in a solvent is specifically improved when a polyamic acid and a polyimide obtained by chemically closing the polyamic acid are used, as compared with the DA-2 analog. Further, the materials included in the present invention, PIS-1, PIS-3, PIS-4, and PIS-5, exhibit practically usable characteristics as a liquid crystal alignment film, and further reduce the risk of display defects. It is shown below because it is possible.
 [合成例21]
 撹拌子の入った20mlサンプル管に、合成例1で得られたポリイミド溶液(PIS-1)を6.50g取り、NMPを1.00g、GBL溶液を3.53g、およびBCSを3.00g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-1)を得た。この液晶配向剤(A-1)を用いて下記に示すような手順で液晶配向性評価および輝点評価用液晶セルの作製を行った。
[Synthesis Example 21]
6.50 g of the polyimide solution (PIS-1) obtained in Synthesis Example 1 was placed in a 20 ml sample tube containing a stirrer, 1.00 g of NMP, 3.53 g of the GBL solution, and 3.00 g of BCS were added. The mixture was stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-1). Using this liquid crystal aligning agent (A-1), a liquid crystal cell for liquid crystal alignment evaluation and luminescent spot evaluation was produced in the following procedure.
 [合成例22]
 ポリイミド溶液(PIS-3、PIS-4、PIS-5、PIS-6、PIS-7)を用いて合成例21と同様の方法で液晶配向剤(A-2、A-3、A-4、A-5、A-6、A-7)を得た。
[Synthesis Example 22]
Using a polyimide solution (PIS-3, PIS-4, PIS-5, PIS-6, PIS-7), the liquid crystal aligning agents (A-2, A-3, A-4, A-5, A-6 and A-7) were obtained.
 この液晶配向剤(A-2、A-3、A-4、A-5、A-6、A-7)を用いて下記に示すような手順で液晶配向性評価および輝点評価用液晶セルの作製を行った。 Using this liquid crystal aligning agent (A-2, A-3, A-4, A-5, A-6, A-7), a liquid crystal cell for liquid crystal alignment evaluation and luminescent spot evaluation according to the following procedure. Was prepared.
 [実施例1]
 合成例21で得られた液晶配向剤(A-1)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、液晶配向剤をスピンコート塗布し、80℃のホットプレート上で2分間乾燥させ、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.15J/cmから0.40J/cmの間の種々の露光量で照射した後、230℃の熱風循環式オーブンで17分間焼成を行い、液晶配向膜付きの基板を得た。得られた上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、液晶配向性液晶セルを得た。それぞれにおける残像評価結果を下記表5に示す。なお、液晶配向性は前述の評価基準に基づいて、評価を行った。 
[Example 1]
After the liquid crystal aligning agent (A-1) obtained in Synthesis Example 21 was filtered through a 1.0 μm filter, the liquid crystal aligning agent was spin-coated on a 30 mm × 40 mm ITO substrate, and was then placed on a hot plate at 80 ° C. After drying for 2 minutes, the coated surface is irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm having an extinction ratio of 26: 1 through a polarizing plate at various exposure amounts between 0.15 J / cm 2 and 0.40 J / cm 2. After that, baking was performed in a hot air circulating oven at 230 ° C. for 17 minutes to obtain a substrate with a liquid crystal alignment film. A pair of the obtained two substrates was used as a set, a sealant was printed on the substrates, and another substrate was bonded so that the liquid crystal alignment films faced each other so that the alignment direction was 0 °. The agent was cured to produce an empty cell. Liquid crystal MLC-3019 (manufactured by Merck) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal alignment liquid crystal cell. Table 5 below shows the evaluation results of the afterimages. The liquid crystal alignment was evaluated based on the evaluation criteria described above.
 [実施例2、3、4]
 液晶配向剤(A-1)の代わりに、それぞれの液晶配向剤(A-2、A-3、A-4)を用い、また、紫外線の照射量、および焼成温度を実施例1と同様の方法で残像評価用液晶セルを作製した。それぞれにおける残像評価結果を下記表5に示す。
[Examples 2, 3, 4]
Instead of the liquid crystal aligning agent (A-1), each liquid crystal aligning agent (A-2, A-3, A-4) was used, and the irradiation amount of ultraviolet rays and the sintering temperature were the same as in Example 1. A liquid crystal cell for afterimage evaluation was prepared by the method. Table 5 below shows the evaluation results of the afterimages.
 [比較例1、2]
 液晶配向剤(A-1)の代わりに、それぞれの液晶配向剤(A-5、A-6)を用い、また、紫外線の照射量、および焼成温度を実施例1と同様の方法で残像評価用液晶セルを作製した。それぞれにおける残像評価結果を下記表5に示す。
[Comparative Examples 1 and 2]
Each of the liquid crystal aligning agents (A-5, A-6) was used in place of the liquid crystal aligning agent (A-1), and the amount of ultraviolet irradiation and the sintering temperature were evaluated in the same manner as in Example 1. A liquid crystal cell was prepared. Table 5 below shows the evaluation results of the afterimages.
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
 本請求項に記載のDA-1とDC-1からなる液晶配向剤(A-1、A-2、A-3、A-4)は露光量が0.10J/cmから0.40J/cmの間で非常に良好な残像特性を示す。また、DA-1かつ他種のジアミン成分とDC-1を用いた共重合型ポリイミドにおいても良好な残像特性を示し、組み合わせるジアミン成分によって残像特性の良し悪しや露光量が変動する。例として、DA-1とDA-3を共重合することで得られる液晶配向剤(A-2)において、露光量が0.10J/cmから0.40J/cmの間でより広露光量範囲でより良好な残像特性を示す。さらに、DA-1とDA-3からなるポリアミドを化学イミド化する工程でイミド化率を制御したポリイミド溶液(PIS-3)を用いて作製した液晶配向剤(A-3)は、0.10J/cm前後で良好な残像特性を示すため、非常に低露光量で良好な残像特性を得ることができる材料である。さらに、DA-1とDA-4からなる液晶配向剤(A-4)も前述の液晶配向剤(A-3)と同様に、非常に低露光量で非常に良好な残像特性を得ることが可能である。 The liquid crystal aligning agents (A-1, A-2, A-3, A-4) comprising DA-1 and DC-1 according to the present invention have an exposure amount of 0.1 J / cm 2 to 0.40 J /. It exhibits very good afterimage properties between cm 2 . Also, copolymerized polyimides using DA-1 and other kinds of diamine components and DC-1 show good afterimage characteristics, and the combination of diamine components gives good and poor image retention characteristics and changes in exposure. As an example, in a liquid crystal aligning agent (A-2) obtained by copolymerizing DA-1 and DA-3, a wider exposure is performed when the exposure amount is between 0.1 J / cm 2 and 0.40 J / cm 2. A better afterimage characteristic is exhibited in the amount range. Further, a liquid crystal aligning agent (A-3) produced using a polyimide solution (PIS-3) in which the imidation ratio was controlled in the step of chemically imidizing a polyamide comprising DA-1 and DA-3 was 0.10 J / Cm 2 , which exhibits good afterimage characteristics, and is a material capable of obtaining good afterimage characteristics at a very low exposure dose. Further, the liquid crystal aligning agent (A-4) composed of DA-1 and DA-4 can also obtain very good afterimage characteristics at a very low exposure dose, similarly to the liquid crystal aligning agent (A-3) described above. It is possible.
 一方で、比較例1で示すDA-3かつDA-5およびDC-1かつDC-2からなる液晶配向剤(A-5)は、良好な残像特性を示すが、0.20J/cm以上の露光量を必要とする。必要露光量の観点で、上記液晶配向剤(A-2、A-3、A-4)は良好な残像特性を示す時の必要露光量が0.10J/cm程度で良いため、本請求項に含まれるDA-1の優位性が示唆される。さらに、高分子ユニットの組み合わせにより必要露光量を調節できるため、実際の製造現場を考慮した際にユーザーの希望するタクトタイムを実現することも可能である。 On the other hand, the liquid crystal aligning agent (A-5) composed of DA-3 and DA-5 and DC-1 and DC-2 shown in Comparative Example 1 shows good afterimage characteristics, but is 0.20 J / cm 2 or more. Is required. From the viewpoint of the required exposure dose, the liquid crystal aligning agents (A-2, A-3, A-4) have a required exposure dose of about 0.1 J / cm 2 when exhibiting good afterimage characteristics. The superiority of DA-1 contained in the term is suggested. Further, since the required exposure amount can be adjusted by a combination of the polymer units, it is possible to realize a tact time desired by the user in consideration of an actual manufacturing site.
 また、DA-3かつDA-5とDC-1から得られる液晶配向剤(A-6)は、上記液晶配向剤(A-1、A-2、A-3、A-4)と類似の母骨格を有するものの良好な残像特性は得られないため、本請求項に含まれるDA-1を用いることの優位性が示唆される。 The liquid crystal aligning agent (A-6) obtained from DA-3, DA-5 and DC-1 is similar to the above liquid crystal aligning agents (A-1, A-2, A-3, A-4). Although having a mother skeleton, good afterimage characteristics cannot be obtained, suggesting the superiority of using DA-1 included in the present invention.
 [実施例5]
 実施例1で液晶配向剤(A-1)を用いて作製した残像評価用の液晶セルを60℃の加熱オーブンで2週間以上加熱した後に、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察することで行った。なお、判断基準は前述の通り、偏光顕微鏡観察で確認した輝点の数に応じ、輝点の数が5個未満を「良好」、それ以上を「不良」とした。それぞれにおける長期交流駆動後におけるこの液晶セルの輝点評価結果を表6に示す。
[Example 5]
After the liquid crystal cell for afterimage evaluation prepared using the liquid crystal aligning agent (A-1) in Example 1 was heated in a heating oven at 60 ° C. for 2 weeks or more, it was observed with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation). I went by. As described above, according to the number of bright spots confirmed by observation with a polarizing microscope, the criteria were "good" if the number of bright spots was less than 5, and "poor" if more than five. Table 6 shows the evaluation results of the luminescent spots of the liquid crystal cell after the long-term AC driving in each case.
 [実施例6、7、8]
 液晶配向剤(A-1)の代わりに、それぞれの液晶配向剤(A-2、A-3、A-4)を用い、また、紫外線の照射量、および焼成温度を実施例5と同様の方法で表示不良評価用液晶セルを作製した。それぞれにおける表示不良評価結果を下記表6に示す。
[Examples 6, 7, 8]
Instead of the liquid crystal aligning agent (A-1), each of the liquid crystal aligning agents (A-2, A-3, A-4) was used. A liquid crystal cell for display defect evaluation was produced by the method. Table 6 below shows the results of the display failure evaluation in each case.
 [比較例3、4]
 液晶配向剤(A-1)の代わりに、それぞれの液晶配向剤(A-5、A-6)を用い、また、紫外線の照射量、および焼成温度を実施例5と同様の方法で表示不良評価用液晶セルを作製した。それぞれにおける表示不良評価結果を下記表6に示す。
[Comparative Examples 3 and 4]
Each of the liquid crystal aligning agents (A-5, A-6) was used in place of the liquid crystal aligning agent (A-1). A liquid crystal cell for evaluation was produced. Table 6 below shows the results of the display failure evaluation in each case.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 本請求項に記載のDA-1とDC-1からなる液晶配向剤(A-1、A-2、A-3、A-4)は評価不良評価において非常に良好な結果を示す。一方で、比較例1に示すDA-3かつDA-5およびDC-1かつDC-2を共重合することで得られる可溶性ポリイミドやDA-3かつDA-5およびDC-1を共重合することで得られる可溶性ポリイミドからなる液晶配向剤は不良が見られた。本請求項に含まれるDA-1を用いた可溶性ポリイミドからなる液晶配向剤は、表示不良の抑制にも効果がある。 液晶 The liquid crystal aligning agents (A-1, A-2, A-3, A-4) comprising DA-1 and DC-1 according to the present invention show very good results in poor evaluation. On the other hand, soluble polyimide obtained by copolymerizing DA-3, DA-5, DC-1, and DC-2 shown in Comparative Example 1 and copolymerizing DA-3, DA-5, and DC-1 The liquid crystal aligning agent composed of the soluble polyimide obtained in (1) was defective. The liquid crystal aligning agent comprising a soluble polyimide using DA-1 contained in the present invention is also effective in suppressing display defects.
 [合成例23]
 DC-3/DA-6 ポリアミック酸の重合
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-6を4.00g(8.50mmol)取り、NMPを40.58g加えて、窒素を送りながら室温℃で10分間撹拌し、溶解させた。このジアミン溶液に撹拌しながらDC-3を1.54g(7.64mmol)添加し、室温℃で24時間加撹拌して濃度12質量%のポリアミック酸の溶液(PAA-8)を得た。このポリアミック酸の溶液の温度25℃における粘度は420mPa・sであった。また、このポリアミック酸の分子量および分子量分布はMn=9.82×10、Mw=2.16×10、Mw/Mn=2.20であった。
[Synthesis Example 23]
Polymerization of DC-3 / DA-6 polyamic acid In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 4.00 g (8.50 mmol) of DA-6, 40.58 g of NMP were added, and nitrogen was added. The mixture was stirred at room temperature for 10 minutes while being fed to dissolve. While stirring, 1.54 g (7.64 mmol) of DC-3 was added to the diamine solution, and the mixture was stirred at room temperature for 24 hours to obtain a polyamic acid solution (PAA-8) having a concentration of 12% by mass. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 420 mPa · s. The molecular weight and molecular weight distribution of this polyamic acid were Mn = 9.82 × 10 3 , Mw = 2.16 × 10 4 , and Mw / Mn = 2.20.
 [合成例24、25、26、27、28、29]
 下記表7に示す、ジアミン成分、テトラカルボン酸成分、及びNMPを使用し、それぞれ、反応温度、固形分濃度、合成例1と同様に実施することにより、下記表7に示すポリアミック酸溶液PAA-9、PAA-10、PAA-11、PAA-12、PAA―13、PAA-14を得た。また、得られたポリアミック酸の粘度、及び分子量は、下記表8に示す。
[Synthesis Examples 24, 25, 26, 27, 28, 29]
Using a diamine component, a tetracarboxylic acid component, and NMP shown in Table 7 below, the reaction temperature, solid content concentration, and the same procedure as in Synthesis Example 1 were carried out to obtain a polyamic acid solution PAA- shown in Table 7 below. 9, PAA-10, PAA-11, PAA-12, PAA-13 and PAA-14 were obtained. The viscosity and molecular weight of the obtained polyamic acid are shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 [合成例30]
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに得られたポリアミック酸溶液(PAA-8、PAA-9、PAA-10、PAA-11、PAA-12、PAA-13、PAA-14)をそれぞれ30.0g取り、NMPを30.0g加え、室温で30分撹拌した。得られたポリアミック酸溶液に、無水酢酸をポリアミック酸のカルボン酸に対し5mol倍量、およびピリジンを5mol倍量加えて、70℃で3時間加熱撹拌し、化学イミド化を行った。得られた反応液を500mlのメタノールに撹拌しながら投入し、析出した沈殿物を回収し、続いて、300mlのメタノールで3回洗浄した。得られた樹脂粉末を80℃で12時間乾燥することで、ポリイミド樹脂粉末(PIP-8、PIP-9、PIP-10、PIP-11、PIP-12、PIP-13)を得た。PIP-14に関しては化学イミド化中にゲル化したため、ポリイミドとして得ることができなかった。このポリイミド樹脂粉末の分子量及びイミド化率を以下の表9に示す。
[Synthesis Example 30]
Polyamic acid solution (PAA-8, PAA-9, PAA-10, PAA-11, PAA-12, PAA-13, PAA-14) obtained in a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube. And 30.0 g of NMP were added thereto, followed by stirring at room temperature for 30 minutes. Acetic anhydride was added to the obtained polyamic acid solution in an amount of 5 mol times the amount of the carboxylic acid of the polyamic acid and pyridine in an amount of 5 mol times, and the mixture was heated and stirred at 70 ° C. for 3 hours to perform chemical imidization. The obtained reaction solution was poured into 500 ml of methanol with stirring, and the deposited precipitate was recovered, followed by washing three times with 300 ml of methanol. The obtained resin powder was dried at 80 ° C. for 12 hours to obtain a polyimide resin powder (PIP-8, PIP-9, PIP-10, PIP-11, PIP-12, PIP-13). PIP-14 could not be obtained as a polyimide because it gelled during chemical imidization. Table 9 below shows the molecular weight and the imidation ratio of this polyimide resin powder.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
 [実施例7~12]
 50mlナスフラスコに、上記で得られたポリアミック酸溶液(PAA-8~PAA―14)を10.0gはかり取り、NMPを4.00g、BCSを6.0g加え、室温で24時間撹拌し、液晶配向剤(A-8~A-14)を得た。尚A-14は比較対象として用いた。
[Examples 7 to 12]
In a 50 ml eggplant flask, weigh 10.0 g of the polyamic acid solution (PAA-8 to PAA-14) obtained above, add 4.00 g of NMP and 6.0 g of BCS, and stir at room temperature for 24 hours. Alignment agents (A-8 to A-14) were obtained. A-14 was used as a comparative object.
 [実施例13~18]
 50mlナスフラスコに上記で得られたポリイミド樹脂粉末(PIP-8~PIP―13)を2.0gはかり取り、NMPを18.0g加え、室温で24時間撹拌し、更にNMP6.67g、BCSを6.67g加え、1時間攪拌し、液晶配向剤(A-15~A-20)を得た。
[Examples 13 to 18]
2.0 g of the polyimide resin powder (PIP-8 to PIP-13) obtained above was weighed and placed in a 50 ml eggplant flask, 18.0 g of NMP was added, and the mixture was stirred at room temperature for 24 hours. .67 g was added and stirred for 1 hour to obtain liquid crystal aligning agents (A-15 to A-20).
 [試験例1]
 実施例7~18で得られた配向剤A-8~A-20において、下記手法に基づき、液晶配向膜の評価を実施した。また比較対象として、A-14(比較例3)及び日産化学(株)製のSE-6414(比較例4)を用いた。
[Test Example 1]
With respect to the alignment agents A-8 to A-20 obtained in Examples 7 to 18, the liquid crystal alignment films were evaluated based on the following method. A-14 (Comparative Example 3) and SE-6414 (Comparative Example 4) manufactured by Nissan Chemical Industries, Ltd. were used as comparison targets.
 <液晶配向性および電圧保持率、プレチルト角の評価>
 液晶配向性および電圧保持率、プレチルト角は以下のようにして評価した。
<Evaluation of liquid crystal alignment, voltage holding ratio, and pretilt angle>
The liquid crystal alignment, voltage holding ratio, and pretilt angle were evaluated as follows.
 [液晶配向性観察および電圧保持率・プレチルト角測定用液晶セルの作製]
 液晶配向剤を1.0μmのフィルターで濾過した後、電極付き基板(横30mm×縦40mmの大きさで、厚さが0.7mmのガラス基板。電極は幅10mm×長さ40mmの矩形で、厚さ35nmのITO電極)に、スピンコート塗布にて塗布した。80℃のホットプレート上で1分間乾燥させた後、IR式オーブンを用いて120℃で20分間焼成を行った基板と、230℃で焼成を行った基板を準備した。膜厚は焼成後100nmになるようにした。この液晶配向膜をレーヨン布(吉川化工製YA-20R)でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で15分間乾燥して液晶配向膜付き基板を得た。
[Preparation of liquid crystal cell for observation of liquid crystal alignment and measurement of voltage holding ratio and pretilt angle]
After the liquid crystal aligning agent is filtered with a filter of 1.0 μm, a substrate with electrodes (a glass substrate having a size of 30 mm in width × 40 mm in length and 0.7 mm in thickness. The electrode is a rectangle of 10 mm in width × 40 mm in length, (ITO electrode having a thickness of 35 nm) by spin coating. After drying on a hot plate at 80 ° C. for 1 minute, a substrate fired at 120 ° C. for 20 minutes using an IR oven and a substrate fired at 230 ° C. were prepared. The film thickness was set to 100 nm after firing. This liquid crystal alignment film was rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Kako) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm), and then into pure water. The substrate was cleaned by irradiating ultrasonic waves for 1 minute to remove water droplets by air blow, and then dried at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.
 上記の液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、MLC-3019(メルク株式会社製)を注入し、注入口を封止して液晶セルを得た。その後、液晶の配向性を観察した後、液晶セルを110℃で1時間加熱し、23℃で一晩放置し、電圧保持率測定用液晶セルを得た。 After preparing two substrates with the above liquid crystal alignment film, spraying a 4 μm spacer on one of the liquid crystal alignment film surfaces, printing a sealant thereon, and rubbing the other substrate in the opposite direction. After laminating so that the directions and the film surfaces face each other, the sealing agent was cured to produce an empty cell. MLC-3019 (manufactured by Merck) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell. Then, after observing the orientation of the liquid crystal, the liquid crystal cell was heated at 110 ° C. for 1 hour and left at 23 ° C. overnight to obtain a liquid crystal cell for voltage holding ratio measurement.
 上記の手順で得られた電圧保持率測定用液晶セルを用いて、60℃の温度下で1Vの電圧を60μs間印加し、166.7ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。なお、電圧保持率の測定には東陽テクニカ社製のVHR-1電圧保持率測定装置を使用した。 Using the liquid crystal cell for voltage holding ratio measurement obtained by the above procedure, applying a voltage of 1 V for 60 μs at a temperature of 60 ° C. and measuring the voltage after 166.7 ms, and how much the voltage can be held Was calculated as the voltage holding ratio. The voltage holding ratio was measured using a VHR-1 voltage holding ratio measuring device manufactured by Toyo Corporation.
 [プレチルト角の評価]
 プレチルト角の測定にはオプトメトリクス社製 Axo Scan ミュラーマトリクスポーラリメーターを用いた。
[Evaluation of pretilt angle]
For measurement of the pretilt angle, an Axo Scan Muller matrix polarimeter manufactured by Optometrics was used.
 [ラビング耐性の評価]
 液晶配向剤を1.0μmのフィルターで濾過した後、電極付き基板(横30mm×縦40mmの大きさで、厚さが1.1mmのガラス基板。電極は幅10mm×長さ40mmの矩形で、厚さ35nmのITO電極)に、スピンコート塗布にて塗布した。80℃のホットプレート上で1分間乾燥させた後、IR式オーブンを用いて120℃で20分間焼成を行った基板と、230℃で焼成を行った基板を準備した。膜厚は焼成後100nmになるようにした。この液晶配向膜をレーヨン布(吉川化工製YA-20R)でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.5mm)した後、共焦点レーザー顕微鏡を用いてラビング耐性の評価を行った。剥離している場合は剥離、削れカスや傷が多く見られた場合は不良、良好な場合は良好とする。
[Evaluation of rubbing resistance]
After filtering the liquid crystal aligning agent with a filter of 1.0 μm, a substrate with electrodes (a glass substrate of 30 mm in width × 40 mm in length and 1.1 mm in thickness. The electrode is a rectangle of 10 mm in width × 40 mm in length, (ITO electrode having a thickness of 35 nm) by spin coating. After drying on a hot plate at 80 ° C. for 1 minute, a substrate fired at 120 ° C. for 20 minutes using an IR oven and a substrate fired at 230 ° C. were prepared. The film thickness was set to 100 nm after firing. The liquid crystal alignment film was rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Kako) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.5 mm), and then a confocal laser microscope Was used to evaluate the rubbing resistance. When peeled, peeling, scraping and flaws were found to be bad, and when good, good.
 [液晶配向性の評価]
 実施例1と同様の評価基準に基づいて液晶配向性の評価を行った。尚、前記評価基準の「〇」を「良好」とし、前記評価基準の「×」を「不良」とした。
 上記した各種評価の結果を表10~表13に示す。
[Evaluation of liquid crystal orientation]
The evaluation of liquid crystal alignment was performed based on the same evaluation criteria as in Example 1. It should be noted that “〇” in the evaluation criteria was “good”, and “×” in the evaluation criteria was “poor”.
Tables 10 to 13 show the results of the various evaluations described above.
 <配向剤印刷性、ラビング耐性、セル表示特性評価結果> <Evaluation results of alignment agent printability, rubbing resistance, cell display characteristics>
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 120℃焼成で成膜を行った場合、特にポリアミック酸はこの条件ではイミド化することができないため、物理的強度が非常に弱くなり、ラビング処理により膜が削れてしまい液晶の配向も悪化する傾向にあるが、本発明のジアミンを用いたポリアミック酸及びポリイミドは低温焼成でも非常にラビング耐性に優れ、液晶配向性も良好になる。更にプレチルト角も非常に小さく、VHRも高い特徴がある。 When the film is formed by baking at 120 ° C., in particular, the polyamic acid cannot be imidized under this condition, so that the physical strength becomes very weak, the film is scraped by the rubbing treatment, and the orientation of the liquid crystal tends to deteriorate. However, the polyamic acid and the polyimide using the diamine of the present invention have extremely excellent rubbing resistance even at low-temperature baking, and have good liquid crystal alignment. Further, the pretilt angle is very small and the VHR is high.
 更に、本発明のジアミンは溶解性を非常に高くすることが可能であり、未導入のPAA-14は化学イミド化できなかったが、ジアミン成分として50mol%導入したPIP-13に関してはイミド化率を95%以上にしても問題なく調整でき、良好な配向膜特性が得られている。一般的にDC-1やDC-4のような溶解性が非常に乏しい成分を組み込んだ場合、化学イミド化は困難な場合が多いが、本発明のジアミンを用いることで高イミド化率の可溶性ポリイミドが調整できるようになる。可溶性ポリイミドにすることで更に信頼性も向上させることができる。 Furthermore, the diamine of the present invention can have a very high solubility, and the unintroduced PAA-14 could not be chemically imidized. However, the imidation ratio of PIP-13 introduced with 50 mol% as the diamine component was not improved. Can be adjusted without a problem even if it is 95% or more, and good alignment film characteristics are obtained. In general, when very poorly soluble components such as DC-1 and DC-4 are incorporated, it is often difficult to chemically imidize them. The polyimide can be adjusted. By using a soluble polyimide, the reliability can be further improved.
 230℃焼成の場合、比較例の材料もイミド化が進行するためラビング耐性と液晶配向性、信頼性が向上するが、本発明の配向剤は良好な特性を示し、若干プレチルト角が向上する傾向にあるが、比較対象に比べて非常に小さいメリットがある。更に信頼性も非常に高くなる。 In the case of baking at 230 ° C., the rubbing resistance, the liquid crystal alignment, and the reliability are improved because the imidization of the material of the comparative example also proceeds, but the alignment agent of the present invention shows good characteristics and the pretilt angle tends to be slightly improved. However, there is a very small merit compared to the comparison object. Further, the reliability is very high.
 よって、本発明のジアミンを用いることで低温焼成から高温焼成に対応した液晶配向剤が作れ、更には非常にプレチルトの低い配向膜を得ることができる。 Therefore, by using the diamine of the present invention, a liquid crystal aligning agent corresponding to low-temperature firing to high-temperature firing can be produced, and an alignment film having a very low pretilt can be obtained.
 [試験例2]
 実施例14、実施例15、実施例18で得られた液晶配向剤(A-16,A-17、A-20)及び比較例の液晶配向剤A-5を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、液晶配向剤をスピンコート塗布し、80℃のホットプレート上で2分間乾燥させ、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.1~1.0J/cmの範囲でそれぞれ照射した後、150℃の熱風循環式オーブンで20分間焼成を行い、液晶配向膜付きの基板を得た。得られた上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、液晶配向性液晶セルを得た。それぞれにおける液晶配向性の結果を以下表14に示す。なお、実施例1と同様の評価基準に基づいて評価を行った。 
[Test Example 2]
The liquid crystal aligning agents (A-16, A-17, A-20) obtained in Examples 14, 15 and 18 and the liquid crystal aligning agent A-5 of Comparative Example were filtered with a 1.0 μm filter. Thereafter, a liquid crystal aligning agent is spin-coated on a 30 mm × 40 mm ITO substrate, dried on a hot plate at 80 ° C. for 2 minutes, and a linearly polarized light having an extinction ratio of 26: 1 is applied to the coating surface via a polarizing plate. After irradiating with ultraviolet light of 254 nm in the range of 0.1 to 1.0 J / cm 2 , the substrate was baked in a hot air circulating oven at 150 ° C. for 20 minutes to obtain a substrate with a liquid crystal alignment film. A pair of the obtained two substrates was used as a set, a sealant was printed on the substrates, and another substrate was bonded so that the liquid crystal alignment films faced each other so that the alignment direction was 0 °. The agent was cured to produce an empty cell. Liquid crystal MLC-3019 (manufactured by Merck) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal alignment liquid crystal cell. Table 14 shows the results of the liquid crystal alignment in each case. The evaluation was performed based on the same evaluation criteria as in Example 1.
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
 本発明のジアミンとDC-1を用いた可溶性ポリイミドにおいて、仮乾燥後UVを照射し150℃で焼成したもので配向性を示すことが分かった。比較例1の材料は高温時では配向性を示すが、低温ではUVの照射強度によらず配向性を示さない。よって本発明のジアミンを用いることで低温での光配向が可能になることが分かった。 可溶性 It was found that the soluble polyimide using the diamine and DC-1 according to the present invention showed orientation when preliminarily dried and then irradiated with UV and baked at 150 ° C. The material of Comparative Example 1 exhibits orientation at high temperatures, but does not exhibit orientation at low temperatures regardless of UV irradiation intensity. Therefore, it was found that the use of the diamine of the present invention enables photoalignment at a low temperature.
 本発明のジアミンから得られるポリアミック酸、ポリイミドは溶媒への溶解性に優れるため、これまで溶解性の観点で実現できなかった液晶配向剤及び膜の製造が可能となる。また、ラビング用配向膜から光配向膜に至るまで幅広く応用が可能である。特に今後横電界方式のトレンドとなる低温焼成や低プレチルト角材料、光配向の工程簡略化等に対応可能になると考えられる。 (4) Since the polyamic acid and polyimide obtained from the diamine of the present invention have excellent solubility in a solvent, it is possible to produce a liquid crystal alignment agent and a film which could not be realized from the viewpoint of solubility. Further, it can be widely applied from a rubbing alignment film to a photo alignment film. In particular, it will be possible to cope with low-temperature sintering, low pretilt angle materials, simplification of the optical alignment process, etc., which will be the trends of the horizontal electric field method in the future.
 本発明の材料から製造された液晶配向膜を具備する液晶表示素子は、残像特性や長期表示の安定化に優れたものとなり、大画面で高精細の液晶テレビや中小型のカーナビゲーションシステムやスマートフォンなどに好適に利用することができる。さらに、製造工程においてより簡便に作製することが可能となるため、歩留まりや生産効率の向上が期待できる。 A liquid crystal display device having a liquid crystal alignment film manufactured from the material of the present invention has excellent afterimage characteristics and long-term display stability, and has a large-screen high-definition liquid crystal television, a small and medium-sized car navigation system, and a smartphone. It can be suitably used for such purposes. Furthermore, since it can be manufactured more easily in the manufacturing process, improvement in yield and production efficiency can be expected.

Claims (6)

  1.  下記式[3-1]で表される構造単位を含むポリイミド前駆体及びそのイミド化合物であるポリイミドから選択される少なくとも一種の重合体を含有する液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     式中、Vは、テトラカルボン酸誘導体由来の四価の有機基であり、Wは、下記式[2-1]で表される二価の有機基であり、R及びRは、それぞれ独立して水素原子又は炭素原子数1~5のアルキル基を表す。
    Figure JPOXMLDOC01-appb-C000002
     式中、Yは、脂環式構造を有する四価の有機基であり、X、Xは、二価の有機基であり、Z、Zはそれぞれ独立して、単結合、-NH-、または-O-であり、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基を表し、*は、結合する部位を表す。
    A liquid crystal aligning agent containing at least one polymer selected from a polyimide precursor containing a structural unit represented by the following formula [3-1] and a polyimide which is an imide compound thereof.
    Figure JPOXMLDOC01-appb-C000001
    In the formula, V 0 is a tetravalent organic group derived from a tetracarboxylic acid derivative, W 1 is a divalent organic group represented by the following formula [2-1], and R 3 and R 4 are Each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
    Figure JPOXMLDOC01-appb-C000002
    In the formula, Y 1 is a tetravalent organic group having an alicyclic structure, X 1 and X 2 are divalent organic groups, and Z 1 and Z 2 are each independently a single bond, —NH— or —O—, R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms, and * represents a bonding site.
  2.  請求項1に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to claim 1.
  3.  請求項2に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 2.
  4.  下記式[1]で表されるジアミン。
    Figure JPOXMLDOC01-appb-C000003
     式[1]中、Yは、脂環式構造を有する四価の有機基であり、X、Xは、二価の有機基であり、Z、Zはそれぞれ独立して、単結合、-NH-、または-O-であり、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基を表す。
    A diamine represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000003
    In Formula [1], Y 1 is a tetravalent organic group having an alicyclic structure, X 1 and X 2 are divalent organic groups, and Z 1 and Z 2 are each independently A single bond, —NH— or —O—, and R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms.
  5.  請求項4に記載のジアミンを含むジアミン成分から得られる重合体。 A polymer obtained from the diamine component containing the diamine according to claim 4.
  6.  下記式(11)の化合物を出発原料とし、下記式(12)の化合物又は下記式(13)の化合物を経て、請求項4に記載のジアミンを生成するジアミン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
     式(11)~(13)中、Yは、脂環式構造を有する二価の有機基であり、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基を表す。また、式(13)中、R31及びR32は水素原子またはアミノ基の保護基を表す。
    5. A method for producing a diamine compound according to claim 4, wherein the compound of the following formula (11) is used as a starting material, and the compound of the following formula (12) or the compound of the following formula (13) is produced.
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    In the formulas (11) to (13), Y 1 is a divalent organic group having an alicyclic structure, and R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms. . In Formula (13), R 31 and R 32 represent a hydrogen atom or an amino-protecting group.
PCT/JP2019/035868 2018-09-14 2019-09-12 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element, and diamine and production method therefor, and polymer WO2020054797A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217010840A KR20210057137A (en) 2018-09-14 2019-09-12 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element, and diamine and its manufacturing method, and polymer
CN201980059567.7A CN112703447A (en) 2018-09-14 2019-09-12 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, method for producing diamine, and polymer
JP2020546070A JP7381994B2 (en) 2018-09-14 2019-09-12 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2023151776A JP2023171809A (en) 2018-09-14 2023-09-19 Diamine, method of producing the same, and polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018173034 2018-09-14
JP2018-173034 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054797A1 true WO2020054797A1 (en) 2020-03-19

Family

ID=69777902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035868 WO2020054797A1 (en) 2018-09-14 2019-09-12 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element, and diamine and production method therefor, and polymer

Country Status (5)

Country Link
JP (2) JP7381994B2 (en)
KR (1) KR20210057137A (en)
CN (1) CN112703447A (en)
TW (1) TWI828752B (en)
WO (1) WO2020054797A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7510317B2 (en) 2020-09-24 2024-07-03 株式会社カネカ Irregular particles containing an amic acid oligomer having an imide group and a method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444394B (en) * 2023-04-18 2024-06-14 宁波博雅聚力新材料科技有限公司 Diamine monomer for preparing polyimide film, preparation method thereof and polyimide film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029177A (en) * 2015-10-05 2016-03-03 宇部興産株式会社 Polyimide precursor and polyimide
JP2017202981A (en) * 2016-05-09 2017-11-16 三菱瓦斯化学株式会社 Polyimide and polyimide film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101671659B1 (en) 2008-11-06 2016-11-01 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent
JP5966329B2 (en) 2011-03-30 2016-08-10 Jsr株式会社 Manufacturing method of liquid crystal display element
CN107615145B (en) * 2015-03-24 2021-05-07 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2018117240A1 (en) * 2016-12-21 2018-06-28 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029177A (en) * 2015-10-05 2016-03-03 宇部興産株式会社 Polyimide precursor and polyimide
JP2017202981A (en) * 2016-05-09 2017-11-16 三菱瓦斯化学株式会社 Polyimide and polyimide film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, QING ET AL.: "Cyclobutane Derivatives As Novel Nonpeptidic Small Molecule Agonists of Glucagon-Like Peptide-1 Receptor", JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, no. 1, 2012, pages 250 - 267, XP055695023 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7510317B2 (en) 2020-09-24 2024-07-03 株式会社カネカ Irregular particles containing an amic acid oligomer having an imide group and a method for producing the same

Also Published As

Publication number Publication date
JP2023171809A (en) 2023-12-05
KR20210057137A (en) 2021-05-20
TWI828752B (en) 2024-01-11
TW202026406A (en) 2020-07-16
JPWO2020054797A1 (en) 2021-08-30
CN112703447A (en) 2021-04-23
JP7381994B2 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP6711443B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal alignment element
CN109952531B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2015060366A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TW201531497A (en) Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
JPWO2019082975A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TW202407083A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN110325902B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TWI811190B (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2023171809A (en) Diamine, method of producing the same, and polymer
TWI825031B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display elements using the same
CN113423763B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
WO2022153873A1 (en) Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for manufacturing liquid crystal display element, and liquid crystal display element
JP7032700B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TW201922853A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018066607A1 (en) Diamine, polymer, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN116234857B (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2019101196A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN116438220A (en) Liquid crystal aligning agent, method for producing polymer, liquid crystal alignment film, and liquid crystal display element
JPWO2019107518A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546070

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010840

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19860373

Country of ref document: EP

Kind code of ref document: A1