WO2020054500A1 - 潜水機システム及び作業方法 - Google Patents

潜水機システム及び作業方法 Download PDF

Info

Publication number
WO2020054500A1
WO2020054500A1 PCT/JP2019/034535 JP2019034535W WO2020054500A1 WO 2020054500 A1 WO2020054500 A1 WO 2020054500A1 JP 2019034535 W JP2019034535 W JP 2019034535W WO 2020054500 A1 WO2020054500 A1 WO 2020054500A1
Authority
WO
WIPO (PCT)
Prior art keywords
submersible
work
submarine
traveling direction
transponder
Prior art date
Application number
PCT/JP2019/034535
Other languages
English (en)
French (fr)
Inventor
峰彦 向田
裕志 阪上
紀幸 岡矢
厚市 福井
裕樹 加賀
史貴 立浪
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2020545934A priority Critical patent/JP7064604B2/ja
Priority to US17/276,356 priority patent/US20220073175A1/en
Priority to EP22207788.5A priority patent/EP4159612A1/en
Priority to EP19860357.3A priority patent/EP3851367B1/en
Priority to AU2019339852A priority patent/AU2019339852B2/en
Publication of WO2020054500A1 publication Critical patent/WO2020054500A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/39Arrangements of sonic watch equipment, e.g. low-frequency, sonar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2211/00Applications
    • B63B2211/02Oceanography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/26Repairing or joining pipes on or under water
    • F16L1/265Underwater vehicles moving on the bottom

Definitions

  • the present invention relates to a diving vehicle system and a working method.
  • the work will be interrupted while the submersible is returning to the surface ship, etc., so the total work time including the interruption time may be longer.
  • the size of the submersible is increased, which may adversely affect the operability of the submersible.
  • the present invention has been made in view of the above circumstances, can reduce the working time and suppress the enlargement of a diving machine, and does not require the installation of a transmitter as a mark at the interruption point. It is an object of the present invention to provide a submersible system and a working method.
  • a diving vehicle system includes a first diving device that performs work in water while moving in a predetermined traveling direction, and a second diving device that performs work in water in place of the first diving device.
  • the second submersible is configured to approach the first submersible based on a signal transmitted from the first submersible when replacing the first submersible.
  • the second submersible performs the work instead of the first submersible, so that the interruption time of the work due to charging or the like is reduced, and the work time can be shortened. Furthermore, since long-time work is possible without mounting a large-capacity battery in each submersible, it is possible to suppress an increase in the size of each submersible due to mounting a large-capacity battery. Also, when the second submersible is replaced with the first submersible, it is not necessary to install a transmitter that serves as a mark at the point of interruption because it is close to the first submersible based on the signal transmitted from the first submersible. It is.
  • the second submersible when the second submersible is replaced with the first submersible, it moves toward a target point located in a direction opposite to the traveling direction as viewed from the first submersible. It may be configured as follows.
  • the second submersible can be replaced with the first submersible near the target point located on the side opposite to the traveling direction as viewed from the first submersible.
  • the change is performed at the point where the work has already been completed by the first submersible, so that the work omission at the time of the change can be prevented.
  • the second submersible when the second submersible is replaced with the first submersible, the second submersible is configured to move toward a target point located on the traveling direction side as viewed from the first submersible. You may.
  • the second submersible can be replaced with the first submersible near the target point located on the traveling direction side as viewed from the first submersible. Therefore, in the case where the second submersible 30 performs a separate work on the return path after the first diving apparatus 10 performs the work on the outward path, it is possible to prevent the leakage of the work at the time of the change.
  • the target point may be a point separated from the first submersible by a predetermined distance.
  • the second submersible is an acoustic positioning device that measures a relative position of the first submersible with respect to the second submersible, and an acoustic positioning device that detects a work object and performs the second submersible with respect to the second submersible.
  • An object detection device for acquiring the position of the work object, wherein the second submersible is in proximity to the first submersible using the acoustic positioning device when replacing the first submersible. Thereafter, the object detection device may be configured to be close to the work object.
  • the second submersible device since the second submersible device approaches the work object using the object detection device that detects the position of the work object, it can quickly move to the vicinity of the work object, which is the work start point. Thus, the work can be started promptly.
  • the submersible system is a first submersible that works in water while moving in a predetermined traveling direction, and is replaced with the first submersible.
  • a second submersible working underwater wherein the first submersible has a transponder that sends sound waves to the second submersible, and a propulsion device that moves the first submersible,
  • An acoustic positioning device that measures a position of the second submersible with respect to the first submersible based on sound waves transmitted from a transponder of the first submersible;
  • the second submersible is moved closer to the first submersible based on the position of the second submersible relative to the first submersible measured by the acoustic positioning device.
  • the working method includes the step of: bringing the second submersible closer to the first submersible based on a signal transmitted from the first submersible to the second submersible; Subsequent to the work performed by the aircraft, the second submersible is operated.
  • the second submersible works instead of the first submersible, work interruption time due to charging or the like is reduced, and work time can be shortened. Furthermore, since long-time work is possible without mounting a large-capacity battery in each submersible, it is possible to suppress an increase in the size of each submersible due to mounting a large-capacity battery. Also, when the second submersible is replaced with the first submersible, it is not necessary to install a transmitter that serves as a mark at the point of interruption because it is close to the first submersible based on the signal transmitted from the first submersible. It is.
  • FIG. 1 is a block diagram of the submersible system.
  • FIG. 2 is a flowchart of the replacement control program.
  • FIG. 3 is a diagram illustrating the operation of each submersible at the time of a change.
  • FIG. 4 is a diagram illustrating the operation of each submersible at the time of a change.
  • FIG. 5 is a diagram illustrating the operation of each submersible at the time of a change.
  • FIG. 6 is a diagram illustrating the operation of each submersible at the time of a change.
  • FIG. 7 is a diagram illustrating the operation of each submersible at the time of a change.
  • FIG. 8 is a diagram illustrating the operation of each submersible at the time of a change.
  • FIG. 1 is a block diagram of a submersible vehicle system 100 according to the present embodiment.
  • the diving system 100 includes a first diving device 10, a second diving device 30, and a surface ship 50.
  • the first submersible 10 and the second submersible 30 alternately work while returning to the surface ship 50.
  • the first submersible 10 is an autonomous unmanned submersible that can navigate independently of the surface craft 50, and can work underwater.
  • the first submersible 10 has a body (not shown).
  • the body of the first submersible 10 is provided with a propulsion device 11, an object detection device 12, an inspection device 14, a power receiving device 15, a battery 16, an acoustic positioning device 17, an acoustic communication device 18, and a transponder 19.
  • the propulsion device 11 generates a thrust for moving the body of the first submersible 10 underwater.
  • the propulsion device 11 includes, for example, a main propulsion thruster for moving the body of the first submersible 10 forward, a vertical thruster for moving the body of the first submersible 10 in the vertical direction, and a body of the first submersible 10 And a rudder for changing the course of the first submersible 10 such as a horizontal thruster for moving the vehicle in the left-right direction.
  • the propulsion device 11 is not limited to this, and may include, for example, a swing-type thruster capable of changing the direction in which thrust is generated.
  • the target object detection device 12 detects the pipe 101 that is a work target, and acquires work target information indicating a positional relationship between the pipe 101 and the body of the first submersible 10 located near the pipe 101. .
  • the control device 13 controls the first submersible 10 so that the body of the first submersible 10 sails along the piping 101 while maintaining the body within a certain range with respect to the piping 101.
  • the propulsion device 11 is controlled based on the work object information acquired by the object detection device 12.
  • the object detection device 12 is, for example, a multi-beam sonar.
  • the target object detection device 12 is provided, for example, at the front lower portion of the body of the first submersible 10, and performs information on the degree of bending of the pipe 101 in the middle distance ahead of the first submersible 10 and the presence or absence of foreign matter on the pipe 101. Obtain as object information.
  • the object detection device 12 may not be a multi-beam sonar, and may be any device that can acquire information that enables the first submersible 10 to travel while following the pipe 101.
  • the object detection device 12 may be a shape grasping laser, or may include both a multi-beam sonar and a shape grasping laser. Further, the position and the number of the target object detection devices 12 are not particularly limited.
  • the inspection device 14 is a device for inspecting the pipe 101 which is a work object.
  • the inspection device 14 is an imaging camera (for example, a television camera) that images the upper surface or the side surface of the pipe 101.
  • Video data captured by the imaging camera as the inspection device 14 is used as inspection data (work data) for a visual inspection by an operator.
  • the inspection device 14 is not limited to an imaging camera.
  • the inspection device 14 is used instead of, or in addition to, the imaging camera, for example, an anticorrosion inspection device that inspects the degree of deterioration of the anticorrosion treatment (for example, anticorrosion coating) over the entire length of the pipe 101, and the degree of corrosion. It may include one or both of a thickness checker for checking the thickness of the pipe 101 to check for damage.
  • an anticorrosion inspection device that inspects the degree of deterioration of the anticorrosion treatment (for example, anticorrosion coating) over the entire length of the pipe 101, and the degree of corrosion. It may include one or both of a thickness checker for checking the thickness of the pipe 101 to check for damage.
  • the power receiving device 15 receives electric power supplied from a power supply device 55 of the surface ship 50 described below.
  • the battery 16 is charged based on the power received by the power receiving device 15.
  • the electric power stored by the battery 16 is used to operate the above-described elements included in the first submersible 10 such as the propulsion device 11.
  • the acoustic positioning device 17 determines the relative position of the first submersible 10 with respect to the transponder 39 of the second submersible 30 or the transponder 56 of the surface craft 50 described later, together with the transponder 56 of the second submersible 30. Construct an acoustic positioning system for measurement.
  • the acoustic communication device 18 communicates with the acoustic communication devices 38 and 54 of the surface craft 50 and the second submersible 30 using sound.
  • the information (for example, the position of the first submersible 10, the heading of the first submersible 10, the remaining amount of the battery 16, and the like) acquired by the various devices included in the first submersible 10 by the acoustic communication device 18 is transmitted to the first
  • the data can be transmitted from the submersible 10 to the surface ship 50.
  • the acoustic positioning device 17 and the acoustic communication device 18 may be integrally configured or may be separate bodies.
  • the transponder 19 is used by the acoustic positioning device 37 of the second submersible 30 to measure the position of the second submersible 30 relative to the first submersible 10 so that the second submersible 30 approaches the first submersible 10. Things.
  • the acoustic positioning device 37 of the second submersible 30 sends a sound wave to the transponder 19,
  • the transponder 19 that has detected the sound wave sends a response wave (response signal) to the acoustic positioning device 37 of the second submersible 30.
  • the acoustic positioning device 37 of the second submersible 30 measures the position of the second submersible 30 with respect to the transponder 19 based on the response wave from the transponder 19.
  • the control device 33 of the second submersible 30 controls the propulsion device 31 so that the second submersible 30 approaches the transponder 19 of the first submersible 10.
  • the first submersible 10 includes an inertial navigation system (INS) 20 that measures the orientation, position, and speed of the first submersible 10 in an absolute coordinate system using an acceleration sensor and a gyro sensor, A depth gauge 21 for measuring the depth of the submersible 10, and a relative speedometer for measuring the relative movement direction and relative speed of the first submersible 10 based on a fixed object such as the water bottom and the pipe 101 using the Doppler effect. 22.
  • INS inertial navigation system
  • the control device 13 described above has a processor, a volatile memory, a nonvolatile memory, an SSD, an I / O interface, and the like.
  • the SSD of the control device 13 stores various control programs and various data including a later-described replacement control program.
  • the processor performs volatile control based on the various control programs.
  • the arithmetic processing is performed using the memory.
  • the control device 13 is electrically connected to each device of the first submersible 10 described above, acquires various information based on measurement signals transmitted from each device, and based on these information. , And sends a control signal to each device.
  • the second submersible 30 is an autonomous unmanned submersible that can navigate independently of the surface craft 50 and can perform a predetermined operation underwater.
  • the second submersible 30 is configured similarly to the first submersible 10.
  • the second submersible 30 includes a propulsion device 31, an object detection device 32, a control device 33, an inspection device 34, a power receiving device 35, a battery 36, an acoustic positioning device 37, an acoustic communication device 38, a transponder 39, It has an inertial navigation device 40, a depth gauge 41, and a relative speed meter 42.
  • These devices are a propulsion device 11, an object detection device 12, a control device 13, an inspection device 14, a power receiving device of the first submersible 10. They correspond to the device 15, the battery 16, the acoustic positioning device 17, the acoustic communication device 18, the transponder 19, the inertial navigation device 20, the depth meter 21, and the relative speed meter 22, respectively.
  • the second submersible 30 has basically the same configuration as the first submersible 10 described above. Therefore, a detailed description of the second submersible 30 will be omitted here.
  • the second submersible 30 of the present embodiment is configured to perform the same operation as the first submersible 10, the second submersible 30 may perform different operations from the first submersible 10. Good. For example, the first submersible 10 may perform an inspection and the second submersible 30 may perform repairs.
  • the surface ship 50 is a marine support ship that navigates above the first submersible 10 or the second submersible 30 above the water and appropriately supports the first submersible 10 and the second submersible 30. Specifically, the surface craft 50 supplies power to the first submersible 10 and the second submersible 30 and stores data acquired by the respective submersibles 10 and 30.
  • a surface craft 50 navigating above the first submersible 10 or the second submersible 30 above the water does not need to be located directly above these submersibles 10, 30 and can support each submersible 10, 30. It is sufficient to sail along the pipe 101 within the range. Normally, the speed of the surface ship 50 is higher than that of the submersibles 10 and 30. For this reason, the surface ship 50 does not need to be constantly traveling while the submersibles 10 and 30 are traveling. For example, even when the submersibles 10 and 30 are traveling, the surface craft 50 can perform navigation as long as the distance to the submersibles 10 and 30 is within the range capable of supporting the submersibles 10 and 30. Stopping may be repeated.
  • the surface ship 50 includes a propulsion device 51, a GPS (Global Positioning System) device 52, an acoustic positioning device 53, an acoustic communication device 54, a power supply device 55, a transponder 56, and a control device 57.
  • the propulsion device 51 is a device that generates thrust for navigating on water.
  • the GPS device 52 is a device that acquires position information of the surface ship 50 on the water.
  • the acoustic positioning device 53 determines the relative position of the transponder 19 of the first submersible 10 or the transponder 39 of the second submersible 30 with respect to the surface ship 50 together with the transponder 19 of the first submersible 10 or the transponder 39 of the second submersible 30. Construct an acoustic positioning system for measurement.
  • the acoustic communication device 54 communicates with the acoustic communication device 18 of the first submersible 10 or with the acoustic communication device 38 of the second submersible 30 using sound.
  • the information for example, the position of the submersibles 10 and 30, the heading of the submersibles 10 and 30, the azimuths of the submersibles 10 and 30 obtained by the respective devices of the first submersible 10 and the second 30 batteries 16, 36, etc.
  • the acoustic positioning device 53 and the acoustic communication device 54 may be integrally configured or may be separate bodies.
  • the power supply device 55 supplies power to the power receiving device 15 of the first submersible 10 and the power receiving device 35 of the second submersible 30.
  • the submersibles 10 and 30 approach the surface craft 50 and supply electric power from the power supply device 55 of the surface craft 50 to the power receiving devices 15 and 35 of the dives 10 and 30.
  • the power supply device 55 may be a non-contact type power supply device that supplies power to the power receiving devices 15 and 35 in a non-contact manner, and supplies power through a connector or the like that connects the surface craft 50 and each of the submersibles 10 and 30. It may be a contact type power supply device for supplying.
  • the transponder 56 measures the position of the surface craft 50 when the diving equipment 10, 30 has to suspend the work for charging or the like and return to the surface craft 50 from near the pipe 101. It is for.
  • the acoustic positioning devices 17 and 37 of the submersibles 10 and 30 near the pipe 101 send sound waves to the transponder 56 of the surface ship 50. Then, the transponder 56 that has detected the sound wave sends a response wave to the acoustic positioning devices 17 and 37.
  • the acoustic positioning devices 17 and 37 measure the positions of the submersibles 10 and 30 with respect to the transponder 56 based on the response wave from the transponder 56.
  • the acoustic positioning system is a USBL (Ultra Short Base Line) positioning system. That is, the acoustic positioning devices 17 and 37 have a transmitter and a receiving array, transmit a sound wave from the transmitter, and receive a response wave transmitted from the transponder 56 that has detected the sound wave in the receiving array. The acoustic positioning devices 17 and 37 calculate the distance from the transponder 56 to the transponder 56 based on the round-trip time of the sound wave between the transponder 56 and the transponder 56 based on the phase difference of the response wave that has reached each element in the receiving array. Specify the direction of. The acoustic positioning device 53 included in the surface ship 50 also employs the USBL method similarly to the acoustic positioning devices 17 and 37.
  • USBL Universal Short Base Line
  • the acoustic positioning system according to the present embodiment is not limited to the USBL type positioning system.
  • the acoustic positioning devices 17 and 37 are provided with three or more receivers on the body of each of the submersibles 10 and 30 so as to be separated from each other, and based on the arrival time difference of the response waves received by the submersibles 10 and 30, , 30 to specify the direction of the transponder 56 with respect to the SBL (Short Base Line) method.
  • SBL Short Base Line
  • the control device 57 controls the entire surface ship 50, and has a processor, a volatile memory, a nonvolatile memory, an SSD, an I / O interface, and the like.
  • the SSD stores various control programs and various data including a later-described replacement control program.
  • the processor stores the volatile memory based on the various control programs.
  • the control device 57 is electrically connected to each device of the surface ship 50 described above, acquires various information based on measurement signals transmitted from each device, and calculates based on these information. And transmits a control signal to each device.
  • each of the submersibles 10 and 30 is charged by the surface ship 50.
  • a floating body is provided on the water, or a charging station is provided on the seabed, and the above-described charging of the surface ship 50 is performed.
  • the submersibles 10 and 30 may be charged by a floating body or a charging station with a function or the like.
  • FIG. 2 is a flowchart of the replacement control program.
  • the alternation control program shown in FIG. 2 is continuously executed while the control device 13 of the first diving device 10, the control device 33 of the second diving device 30, and the control device 57 of the surface craft 50 communicate with each other.
  • the first submersible 10 performs the operation while moving along the pipe 101, and stops the operation when the charged amount becomes equal to or less than a predetermined value, and stops moving.
  • the replacement control program is also executed when the work is interrupted due to a replacement instruction from the surface ship 50, a trouble in the first submersible 10, a lack of data storage capacity of the first submersible 10, and the like.
  • the second submersible 30 is on standby while charging near the surface boat 50 while the first submersible 10 is working.
  • the first submersible 10 stops moving, it transmits a stop signal to the surface ship 50 as shown in FIG.
  • the surface ship 50 Upon receiving the stop signal, the surface ship 50 transmits a replacement signal to the second submersible 30.
  • the transmission and reception of each signal is performed using the acoustic communication devices 18, 38, and 54.
  • the alternation control program is executed.
  • the control device 33 of the second submersible 30 acquires the first relative position of the target point (Step S1).
  • the “target point” is a point that is a target when the second submersible 30 heads for a changeover point where the first submersible 10 is changed.
  • the “first relative position of the target point” is a relative position of the target point with respect to the first submersible 10.
  • the target point is set on a side opposite to the traveling direction as viewed from the stopped first submersible 10 and at a position away from the first submersible 10. That is, the target point is set on the pipe 101 and a point slightly behind the first submersible 10. Therefore, as the “first relative position of the target point”, information indicating a position at a predetermined distance from the first submersible 10 in a direction at an angle of 180 degrees horizontally with respect to the traveling direction of the first submersible 10. To get. In step S ⁇ b> 1, such information of the “first relative position of the target point” is acquired, and the traveling direction of the first submersible 10 and the position of the first submersible 10 relative to the second submersible 30 are obtained. Unless is known, the position of the target point with respect to the second submersible 30 is not known.
  • the control device 33 of the second submersible 30 acquires the traveling direction of the first submersible 10 (Step S2).
  • the traveling direction of the first submersible 10 is the traveling direction immediately before the first submersible 10 stops. If the traveling direction of the first submersible 10 is known, the direction of the target point as viewed from the first submersible 10 (the direction at an angle of 180 degrees in the horizontal direction with respect to the traveling direction of the first submersible 10) can be grasped. Can be.
  • the traveling direction of the first submersible 10 can be calculated based on data measured by the inertial navigation device 20, but the process of calculating the traveling direction requires time.
  • the inertial navigation device 20 measures the direction of the first submersible 10 (the direction of the bow)
  • the direction of the first submersible 10 can also be estimated as the traveling direction.
  • the direction of the first submersible 10 does not always coincide with the traveling direction (the laying direction of the pipe 101). Therefore, in the present embodiment, the travel of the first submersible 10 is determined based on the relative movement direction of the first submersible 10 measured by the relative speedometer 22 and the orientation of the first submersible 10 measured by the inertial navigation device 20. Direction is calculated. According to this method, the traveling direction of the first submersible 10 can be quickly and accurately acquired.
  • the traveling direction of the first submersible 10 is calculated by the first submersible 10. Therefore, as shown in FIG. 4, the control device 33 of the second submersible 30 acquires the traveling direction of the first submersible 10 from the first submersible 10 via the surface ship 50. However, the second submersible 30 may directly acquire the traveling direction of the first submersible 10 from the first submersible 10. In addition, the traveling direction of the first submersible 10 may be calculated by the surface craft 50 by acquiring necessary data from the first submersible 10 by the surface craft 50.
  • the control device 33 of the second submersible 30 acquires the relative position of the first submersible 10 with respect to the second submersible 30 (Step S3).
  • the second submersible 30 uses the acoustic positioning device 37 to generate a second submersible based on a response wave (response signal) transmitted from the transponder 19 of the first submersible 10. The relative position of the first submersible 10 with respect to the two submersibles 30 is acquired.
  • the control device 33 of the second submersible 30 calculates a second relative position of the target point (Step S4).
  • the “second relative position of the target point” is a relative position of the target point with respect to the second submersible 30. That is, in step S4, the position of the target point (first relative position) in the coordinate system based on the first submersible 10 is changed to the position (second relative position) in the coordinate system based on the second submersible 30. Convert.
  • the second relative position of the target point is based on the first relative position acquired in step S1, the traveling direction of the first submersible 10 acquired in step S2, and the second submersible 30 acquired in step S3. It can be calculated based on the relative position of one submersible 10.
  • control device 33 of the second submersible 30 moves the second submersible 30 toward the target point based on the second relative position of the target point calculated in step S4 (step S5).
  • the second submersible 30 approaches the first submersible 10.
  • the second submersible 30 is moved along the route having the shortest distance to the target point, but may pass through another route.
  • Step S6 the control device 33 of the second submersible 30 determines whether or not the second submersible 30 has reached the target point.
  • the process returns to step S3 and steps until the second submersible 30 reaches the target point. Steps S3 to S6 are repeated.
  • the second relative position of the target point changes.
  • Step S7 the control device 33 of the second submersible 30 acquires the accurate position of the pipe 101 based on the measurement signal transmitted from the target object detection device 32, and obtains the correct position just above the pipe 101 that is a replacement point. The position is adjusted so that the second submersible 30 is located. That is, the second submersible 30 approaches the pipe 101 that is the work target by using the target detection device 32. At that time, the control device 33 of the second submersible 30 also adjusts the attitude of the second submersible 30 so as to be parallel to the pipe 101.
  • the control device 33 of the second submersible 30 sends the completion signal to the surface craft 50 by the second submersible 30 (step S8). Then, upon receiving the completion signal, the control device 57 of the surface ship 50 transmits a feedback signal to the first submersible 10 (step S9). As a result, as shown in FIG. 8, the first submersible 10 moves toward the surface ship 50, and is charged after returning to the surface ship 50. At the same time, the second submersible 30 starts working while moving along the pipe 101. Through the above steps S1 to S9, the replacement control program ends. The control device 33 of the second submersible 30 may transmit the completion signal directly to the first submersible 10 instead of the surface ship 50.
  • one of the submersibles 10 and 30 serves as a mark to replace the other one. Since the vehicle can be guided to the vicinity of the point, it is not necessary to install a transmitter serving as a mark at the interruption point when each of the submersibles 10 and 30 returns.
  • the submersibles 10, 30 heading for the target point set on the basis of the submersibles 10, 30 are positioned relative to the submersibles 10, 30. And move toward the destination. According to this configuration, it is possible to set a point apart from the submersibles 10 and 30 as a target point, not a point where the submersibles 10 and 30 are located. Therefore, it is possible to prevent the two submersibles 10 and 30 from coming into contact with each other at the time of change.
  • the target point is set on the side opposite to the traveling direction when viewed from the first submersible 10, the point at which the first submersible 10 has already completed the work Can be replaced. As a result, it is possible to prevent the leakage of the work at the time of the change.
  • the target point is set on the side opposite to the traveling direction when viewed from the first submersible 10, but the target point is not limited to this.
  • the target point when the first submersible 10 performs work on the outward route and the second submersible 30 performs reciprocating work, the target point (first relative position of the target point) may be in front of the first submersible 10 or It may be set horizontally.
  • the second diving apparatus 30 inspects the ultrasonic inspection apparatus for the part where the anticorrosion processing is significantly degraded on the return path. It is conceivable to carry out a detailed inspection using the above. In this case, by setting the target point in front of the first submersible 10, that is, on the traveling direction side as viewed from the first submersible 10, it is possible to prevent the work from being leaked at the time of the change.
  • the diving system 100 includes the two diving devices 10 and 30, the diving system may include three or more diving devices and perform these operations alternately. Further, in the present embodiment, the two submersibles 10, 30 perform the work while alternately changing, but the alternation may be performed only once. In this case, there is no need to charge each submersible.
  • the depth gauges 21 and 41 are not used when the submersibles 10 and 30 change, but the depth gauges 21 and 41 may be used.
  • the second submersible 30 may be lowered to the same depth as the first submersible 10, and then steps S1 to S9 shown in FIG. 2 described above may be executed. According to this method, since the measurement accuracy of the depth gauges 21 and 41 is high, the submersibles 10 and 30 can be replaced accurately and quickly.
  • Reference Signs List 10 first submersible 11 propulsion device 19 transponder 30 second submersible 31 propulsion device 32 object detection device 37 acoustic positioning device 50 surface ship 100 diving system

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Ocean & Marine Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本発明の一態様に係る潜水機システム(100)は、所定の進行方向に移動しながら水中で作業を行う第1潜水機(10)と、第1潜水機(10)と交代して水中で作業を行う第2潜水機(30)と、を備え、第2潜水機(30)は、第1潜水機(10)と交代する際、第1潜水機(10)から発信される信号に基づいて第1潜水機(10)に近接するように構成されている。

Description

潜水機システム及び作業方法
 本発明は、潜水機システム及び作業方法に関する。
 水中に敷設された配管等の検査及び補修、並びに、水底地図作製のための撮影等の作業を行う場合、水上船から独立して航行する自律型無人潜水機(autonomous underwater vehicle;AUV)を用いるのが有効である。このような潜水機を用いれば作業の自由度が飛躍的に向上する。ただし、長時間の作業を行う場合は、潜水機を定期的に水上船や水中のステーションに帰還させ、充電等を行ってから再度中断地点に戻す必要がある(例えば、特許文献1参照)。
特開2017-71265号公報
 上記のような潜水機を用いると、潜水機が水上船等に帰還している間は作業が中断されることから、中断時間を含めた全体の作業時間が長くなるおそれがある。作業時間を短縮するには、充電せずに作業を終えることができるよう潜水機に大容量のバッテリを搭載することが考えられる。しかしながら、潜水機に大容量のバッテリを搭載すると、潜水機の大型化を招き、潜水機の操作性に悪影響を及ぼすおそれがある。
 また、水中では絶対座標系(地球座標系)の測位は精度が低いため、潜水機が作業を中断して帰還する際には、中断地点に戻ることができるように、中断地点に目印となる発信機(トランスポンダ)を設置する必要がある。
 本発明は、以上のような事情に鑑みてなされたものであり、作業時間の短縮及び潜水機の大型化の抑制が可能であって、かつ、中断地点に目印となる発信機の設置が不要な潜水機システム及び作業方法を提供することを目的とする。
 本発明の一態様に係る潜水機システムは、所定の進行方向に移動しながら水中で作業を行う第1潜水機と、前記第1潜水機と交代して水中で作業を行う第2潜水機と、を備え、前記第2潜水機は、前記第1潜水機と交代する際、前記第1潜水機から発信される信号に基づいて前記第1潜水機に近接するように構成されている。
 上記の潜水機システムでは、第1潜水機と交代して第2潜水機が作業を行うため、充電等による作業の中断時間が減り、作業時間の短縮が可能となる。さらに、各潜水機に大容量のバッテリを搭載することなく長時間の作業が可能であるため、大容量のバッテリを搭載することによる各潜水機の大型化を抑制することができる。また、第2潜水機は、第1潜水機と交代する際、第1潜水機から発信される信号に基づいて第1潜水機に近接するため、中断地点に目印となる発信機の設置は不要である。
 上記の潜水機システムにおいて、前記第2潜水機は、前記第1潜水機と交代する際、前記第1潜水機からみて前記進行方向とは反対の方向側に位置する目標地点に向かって移動するように構成されていてもよい。
 この構成によれば、第1潜水機からみて進行方向とは反対の方向側に位置する目標地点付近で第2潜水機は第1潜水機との交代が可能となる。つまり、第1潜水機によって既に作業が終えた地点で交代が行われるため、交代時における作業漏れを防ぐことができる。
 上記の潜水機システムにおいて、前記第2潜水機は、前記第1潜水機と交代する際、前記第1潜水機からみて前記進行方向側に位置する目標地点に向かって移動するように構成されていてもよい。
 この構成によれば、第1潜水機からみて進行方向側に位置する目標地点付近で第2潜水機は第1潜水機との交代が可能となる。そのため、第1潜水機10が往路で作業を行った後に、第2潜水機30が復路で別途作業を行うような場合には、交代時における作業の漏れを防ぐことができる。
 上記の潜水機システムにおいて、前記目標地点は、前記第1潜水機から所定の距離離れた地点であってもよい。
 この構成によれば、第2潜水機が第1潜水機に接触するのを防ぐことができる。
 上記の潜水機システムにおいて、前記第2潜水機は、前記第2潜水機に対する前記第1潜水機の相対位置を測定する音響測位装置と、作業対象物を検出して前記第2潜水機に対する前記作業対象物の位置を取得する対象物検出装置と、を有し、前記第2潜水機は、前記第1潜水機と交代する際、前記音響測位装置を用いて前記第1潜水機に近接した後、前記対象物検出装置を用いて前記作業対象物に近接するように構成されていてもよい。
 この構成によれば、第2潜水機は作業対象物の位置を検出する対象物検出装置を用いて作業対象物に近接するため、作業開始地点である作業対象物の近傍に速やかに移動することができ、ひいては作業を速やかに開始することができる。
 なお、より具体的に説明すると、上述した本発明の一態様に係る潜水機システムは、所定の進行方向に移動しながら水中で作業を行う第1潜水機と、前記第1潜水機と交代して水中で作業を行う第2潜水機と、を備え、前記第1潜水機は、前記第2潜水機に音波を送るトランスポンダと、前記第1潜水機を移動させる推進装置と、を有し、前記第2潜水機は、前記第1潜水機のトランスポンダから送られた音波に基づいて前記第1潜水機に対する前記第2潜水機の位置を測定する音響測位装置と、前記第1潜水機が前記第2潜水機と交代する際に、前記音響測位装置が測定した前記第1潜水機に対する前記第2潜水機の位置に基づいて、前記第2潜水機を前記第1潜水機に近接するように移動させる推進装置と、を有する。
 また、本発明の一態様に係る作業方法は、前記第1潜水機から第2潜水機に発信される信号に基づいて前記第2潜水機を前記第1潜水機に近接させ、前記第1潜水機が行った作業に引き続いて前記第2潜水機に作業を行わせる。
 この作業方法によれば、第1潜水機と交代して第2潜水機が作業を行うため、充電等による作業の中断時間が減り、作業時間の短縮が可能となる。さらに、各潜水機に大容量のバッテリを搭載することなく長時間の作業が可能であるため、大容量のバッテリを搭載することによる各潜水機の大型化を抑制することができる。また、第2潜水機は、第1潜水機と交代する際、第1潜水機から発信される信号に基づいて第1潜水機に近接するため、中断地点に目印となる発信機の設置は不要である。
 上記の潜水機システム及び作業方法によれば、作業時間の短縮及び潜水機の大型化の抑制が可能であって、かつ、中断地点に目印となる発信機の設置が不要となる。
図1は、潜水機システムのブロック図である。 図2は、交代制御プログラムのフローチャートである。 図3は、交代時における各潜水機の動作を説明する図である。 図4は、交代時における各潜水機の動作を説明する図である。 図5は、交代時における各潜水機の動作を説明する図である。 図6は、交代時における各潜水機の動作を説明する図である。 図7は、交代時における各潜水機の動作を説明する図である。 図8は、交代時における各潜水機の動作を説明する図である。
 (潜水機システムの全体構成)
 はじめに、本実施形態に係る潜水機システム100の全体構成について説明する。ここでは、潜水機システム100が水底に敷設された直線状に延びる配管101(図3等参照)の点検及び補修を行う場合について説明する。ただし、潜水機システム100は、配管の点検及び補修のみならず、配線の点検及び補修、並びに、水底地図を作製するための撮影等の作業も行うことができる。
 図1は、本実施形態に係る潜水機システム100のブロック図である。図1に示すように、潜水機システム100は、第1潜水機10と、第2潜水機30と、水上船50と、を備えている。第1潜水機10と第2潜水機30は、水上船50に帰還しながら交代で作業を行う。
 <第1潜水機>
 第1潜水機10は、水上船50から独立して航行が可能な自律型無人潜水機であり、水中で作業を行うことができる。第1潜水機10は、図略のボディを有する。第1潜水機10のボディには、推進装置11、対象物検出装置12、検査装置14、受電装置15、バッテリ16、音響測位装置17、音響通信装置18、及びトランスポンダ19が設けられている。
 推進装置11は、第1潜水機10のボディを水中で移動させる推力を発生させる。推進装置11は、例えば第1潜水機10のボディを前方へ移動させるための主推進用スラスタ、第1潜水機10のボディを上下方向に移動させるための垂直スラスタ、第1潜水機10のボディを左右方向に移動させるための水平スラスタなど、複数の推進器および第1潜水機10の進路を変更する舵装置を含む。ただし、推進装置11は、これに限定されず、例えば推力を発生させる方向を変更可能な首振り式のスラスタを有していてもよい。
 対象物検出装置12は、作業対象物である配管101を検出して、当該配管101の近傍に位置する第1潜水機10のボディと配管101との位置関係を示す作業対象物情報を取得する。そして、制御装置13は、第1潜水機10のボディが配管101に対して一定の範囲内にある状態を維持しながら第1潜水機10が当該配管101に沿って航走するように、対象物検出装置12により取得した作業対象物情報に基づいて、推進装置11を制御する。
 対象物検出装置12は、例えばマルチビームソーナである。対象物検出装置12は、例えば第1潜水機10のボディの前側下部に設けられ、第1潜水機10の中距離前方の配管101の曲がり具合や配管101上の異物の有無に関する情報を、作業対象物情報として取得する。ただし、対象物検出装置12は、マルチビームソーナでなくてもよく、第1潜水機10が配管101を辿りながら航走することを可能にする情報を取得できるものであればよい。例えば対象物検出装置12は、形状把握用レーザでもよいし、マルチビームソーナと形状把握用レーザの双方を含んでもよい。また、対象物検出装置12が設けられる位置や個数も特に限定されない。
 検査装置14は、作業対象物である配管101を検査するための装置である。本実施形態では、検査装置14は、配管101の上面又は側面を撮像する撮像用カメラ(例えばテレビカメラ)である。検査装置14である撮像用カメラで撮像した映像データは、作業者が目視検査するための検査データ(作業データ)として利用される。
 なお、検査装置14は、撮像用カメラに限定されない。検査装置14は、撮像用カメラの代わりに又は撮像用カメラに加えて、例えば配管101の全長に亘って防食処置(例えば防食塗装)の劣化の程度を検査する防食検査器、および腐食の程度や損傷の有無を検査するために配管101の肉厚を検査する肉厚検査器の一方又は双方を含んでもよい。
 受電装置15は、水上船50が有する後述の給電装置55から供給される電力を受電する。受電装置15が受電した電力に基づき、バッテリ16が充電される。バッテリ16が蓄積する電力は、推進装置11など第1潜水機10が備える上述の要素の作動に使用される。
 音響測位装置17は、後述する第2潜水機30のトランスポンダ39又は水上船50のトランスポンダ56とともに、第2潜水機30のトランスポンダ39又は水上船50のトランスポンダ56に対する第1潜水機10の相対位置を測定する音響測位システムを構成する。
 音響通信装置18は、水上船50及び第2潜水機30がそれぞれ備える後述の音響通信装置38、54との間で、音響を用いて通信を行う。音響通信装置18により、第1潜水機10が有する各種装置が取得した情報(例えば、第1潜水機10の位置、第1潜水機10の機首方位、バッテリ16の残量など)を第1潜水機10から水上船50に送信できる。なお、音響測位装置17と音響通信装置18とは、一体的に構成されていてもよいし、別体であってもよい。
 トランスポンダ19は、第2潜水機30が第1潜水機10にアプローチするために、第2潜水機30の音響測位装置37が第1潜水機10に対する第2潜水機30の位置を測定するためのものである。第2潜水機30が第1潜水機10と交代するために水上船50から第1潜水機10に接近する場合、第2潜水機30の音響測位装置37は、トランスポンダ19に音波を送り、その音波を検出したトランスポンダ19は、第2潜水機30の音響測位装置37に応答波(応答信号)を送る。第2潜水機30の音響測位装置37は、トランスポンダ19からの応答波に基づき、トランスポンダ19に対する第2潜水機30の位置を測定する。第2潜水機30の制御装置33は、第1潜水機10のトランスポンダ19に第2潜水機30が近づくよう推進装置31を制御する。
 さらに、第1潜水機10は、加速度センサとジャイロセンサを用いて絶対座標系における第1潜水機10の向き、位置、及び速度を測定する慣性航法装置(Inertial Navigation System;INS)20と、第1潜水機10の深度を計測する深度計21と、ドップラー効果を利用して水底及び配管101などの固定物を基準とする第1潜水機10の相対移動方向及び相対速度を計測する相対速度計22と、を有している。
 また、上述した、制御装置13は、プロセッサ、揮発性メモリ、不揮発性メモリ、SSD、及び、I/Oインターフェース等を有している。制御装置13のSSDには後述する交代制御プログラムを含む各種制御プログラム及び種々のデータが保存されており、不揮発性メモリがSSDから各種制御プログラムをダウンロードした後、プロセッサが各種制御プログラムに基づき揮発性メモリを用いて演算処理を行う。また、制御装置13は、上述した第1潜水機10の各機器と電気的に接続されており、各機器から送信される測定信号に基づいて種々の情報を取得するとともに、これらの情報に基づいて演算を行い、各機器に制御信号を送信する。
 <第2潜水機>
 第2潜水機30は、水上船50から独立して航行が可能な自律型無人潜水機であり、水中で所定の作業を行うことができる。第2潜水機30は、第1潜水機10と同様に構成されている。具体的には、第2潜水機30は、推進装置31、対象物検出装置32、制御装置33、検査装置34、受電装置35、バッテリ36、音響測位装置37、音響通信装置38、トランスポンダ39、慣性航法装置40、深度計41、及び相対速度計42を有しており、これらの機器は、第1潜水機10の推進装置11、対象物検出装置12、制御装置13、検査装置14、受電装置15、バッテリ16、音響測位装置17、音響通信装置18、トランスポンダ19、慣性航法装置20、深度計21、及び相対速度計22にそれぞれ相当する。
 第2潜水機30は、上述した第1潜水機10と基本的に同じ構成を備えている。そのため、ここでは第2潜水機30の詳細な説明は省略する。なお、本実施形態の第2潜水機30は、第1潜水機10と同様の作業を行うように構成されているが、第2潜水機30は第1潜水機10と異なる作業を行ってもよい。例えば、第1潜水機10が点検を行い、第2潜水機30が補修を行ってもよい。
 <水上船>
 水上船50は、水上における第1潜水機10又は第2潜水機30の上方を航行して、適宜第1潜水機10及び第2潜水機30を支援する海上支援船である。具体的には、水上船50は、第1潜水機10及び第2潜水機30への電力供給や各潜水機10、30が取得したデータの保存等を行っている。
 水上における第1潜水機10又は第2潜水機30の上方を航行する水上船50は、これらの潜水機10、30の真上に位置する必要はなく、各潜水機10、30を支援可能な範囲で配管101に沿って航行すればよい。通常、潜水機10、30に対して水上船50の速度は大きい。このため、水上船50は、潜水機10、30が航走中に常に航行している必要はない。例えば、水上船50は、潜水機10、30が航走中であっても、当該潜水機10、30までの距離が当該潜水機10、30を支援可能な範囲に収まりさえすれば、航行と停留とを繰り返してもよい。
 水上船50は、推進装置51、GPS(Global Positioning System)装置52、音響測位装置53、音響通信装置54、給電装置55、トランスポンダ56、及び制御装置57を備える。推進装置51は、水上を航行するための推力を発生させる装置である。GPS装置52は、水上における水上船50の位置情報を取得する装置である。
 音響測位装置53は、第1潜水機10のトランスポンダ19又は第2潜水機30のトランスポンダ39とともに、水上船50に対する第1潜水機10のトランスポンダ19又は第2潜水機30のトランスポンダ39の相対位置を測定する音響測位システムを構成する。
 音響通信装置54は、第1潜水機10が有する音響通信装置18との間、又は、第2潜水機30が有する音響通信装置38との間で、音響を用いて通信を行う。音響通信装置54により、第1潜水機10及び第2潜水機30が有する各機器が取得した情報(例えば、潜水機10、30の位置、潜水機10、30の機首方位、潜水機10、30のバッテリ16、36の残量など)を各潜水機10、30から受信できる。なお、音響測位装置53と音響通信装置54とは、一体的に構成されていてもよいし、別体であってもよい。
 給電装置55は、第1潜水機10の受電装置15及び第2潜水機30の受電装置35に電力を供給する。本実施形態では、潜水機10、30が水上船50にアプローチし、水上船50の給電装置55から潜水機10、30の受電装置15、35に電力を供給する。給電装置55は、受電装置15、35に非接触に電力を供給する非接触式の給電装置であってもよく、水上船50と各潜水機10、30とをつなぐコネクタ等を介して電力を供給する接触式の給電装置であってもよい。
 トランスポンダ56は、潜水機10、30が充電等のために作業を中断して配管101近傍から水上船50に帰還しなければならない場合に、潜水機10、30が水上船50の位置を測位するためのものである。
 水上船50のトランスポンダ56に対して、配管101付近の潜水機10、30の音響測位装置17、37は音波を送る。そして、その音波を検出したトランスポンダ56は、音響測位装置17、37に応答波を送る。音響測位装置17、37は、トランスポンダ56からの応答波に基づき、トランスポンダ56に対する潜水機10、30の位置を測定する。
 なお、本実施形態における音響測位システムは、USBL(Ultra Short Base Line)方式の測位システムである。すなわち、音響測位装置17、37は、送波器と受波アレイとを有し、送波器から音波を送り、それを検出したトランスポンダ56から送られる応答波を受波アレイで受ける。音響測位装置17、37は、トランスポンダ56との間の音波の往復時間からトランスポンダ56までの距離を計算するとともに、受波アレイ内の各素子へ到達した応答波の位相差をもとにトランスポンダ56の方位を特定する。また、水上船50が備える音響測位装置53も、音響測位装置17、37と同様にUSBL方式を採用している。
 なお、本実施形態の音響測位システムは、USBL方式の測位システムに限定されない。例えば、音響測位装置17、37は、各潜水機10、30のボディに3つ以上の受波器を互いに離間するように設けて、これらが受ける応答波の到達時間差をもとに潜水機10、30に対するトランスポンダ56の方位を特定するSBL(Short Base Line)方式などでもよい。
 制御装置57は、水上船50の全体を制御し、プロセッサ、揮発性メモリ、不揮発性メモリ、SSD、及び、I/Oインターフェース等を有している。そして、SSDには後述する交代制御プログラムを含む各種制御プログラム及び種々のデータが保存されており、不揮発性メモリがSSDから各種制御プログラムをダウンロードした後、プロセッサが各種制御プログラムに基づき揮発性メモリを用いて演算処理を行う。また、制御装置57は、上述した水上船50の各機器と電気的に接続されており、各機器から送信される測定信号に基づいて種々の情報を取得するとともに、これらの情報に基づいて演算を行い、各機器に制御信号を送信する。
 なお、本実施形態では、水上船50で各潜水機10、30の充電を行っているが、水上に浮き体を設け、又は、海底に充電ステーションを設け、これらに上述した水上船50の充電機能等を持たせて、各潜水機10、30の充電を浮き体又は充電ステーションで行うようにしてもよい。
 <交代時における動作>
 続いて、第2潜水機30が第1潜水機10と交代する際に実行される交代制御プログラムに沿って、交代時における各潜水機10、30の動作について説明する。図2は、交代制御プログラムのフローチャートである。図2で示す交代制御プログラムは、第1潜水機10の制御装置13、第2潜水機30の制御装置33、及び、水上船50の制御装置57が互いに通信しながら連続的に実行される。
 なお、第1潜水機10は、配管101に沿って移動しながら作業を行い、充電量が所定値以下になったときに作業を中断して移動を停止するものとする。ただし、水上船50からの交代指示、第1潜水機10のトラブル、第1潜水機10のデータ保存容量不足等によって作業を中断した場合も交代制御プログラムが実行される。また、第2潜水機30は、第1潜水機10が作業を行っている間は、水上船50の付近で充電を行いながら待機しているものとする。第1潜水機10は移動を停止すると、図3に示すように、水上船50に停止信号を送信する。水上船50は、停止信号を受信すると、第2潜水機30に交代信号を送信する。なお、各信号の送受信は音響通信装置18、38、54を用いて行うものとする。
 第2潜水機30が交代信号を受信すると、交代制御プログラムが実行される。図2に示すように、交代制御プログラムが開始されると、第2潜水機30の制御装置33は、目標地点の第1相対位置を取得する(ステップS1)。ここで、「目標地点」とは、第2潜水機30が第1潜水機10と交代する交代地点に向かうにあたり目標となる地点である。また、「目標地点の第1相対位置」とは、第1潜水機10を基準とする目標地点の相対位置である。
 本実施形態では、停止した第1潜水機10からみて進行方向とは反対の方向側であって、かつ、第1潜水機10から離れた位置に目標地点が設定されている。つまり、目標地点は、配管101上であって第1潜水機10の少し後ろの地点に設定されている。よって、「目標地点の第1相対位置」として、第1潜水機10の進行方向に対して水平方向に180度の角度をなす方向に第1潜水機10から所定の距離をおいた位置という情報を取得する。ステップS1では、このような「目標地点の第1相対位置」の情報を取得するが、第1潜水機10の進行方向、及び、第2潜水機30を基準とする第1潜水機10の位置が明らかにならない限り、第2潜水機30に対する目標地点の位置も明らかにならない。
 続いて、第2潜水機30の制御装置33は、第1潜水機10の進行方向を取得する(ステップS2)。ここでいう第1潜水機10の進行方向は、第1潜水機10が停止する直前の進行方向である。第1潜水機10の進行方向がわかれば、第1潜水機10からみた目標地点の方向(第1潜水機10の進行方向に対して水平方向に180度の角度をなす方向)を把握することができる。
 第1潜水機10の進行方向は、慣性航法装置20が測定したデータに基づいて算出することができるが、進行方向を算出する処理は時間を要する。また、慣性航法装置20では、第1潜水機10の向き(船首の向き)を測定しているため、第1潜水機10の向きを進行方向であると推定することもできる。しかしながら、第1潜水機10の向きが進行方向(配管101の敷設方向)とは必ずしも一致しない。そこで、本実施形態では、相対速度計22で測定した第1潜水機10の相対移動方向と慣性航法装置20で測定した第1潜水機10の向きとに基づいて、第1潜水機10の進行方向を算出している。この方法によれば、速やかにかつ正確に第1潜水機10の進行方向を取得することができる。
 なお、本実施形態では、第1潜水機10の進行方向は第1潜水機10で算出している。そのため、図4に示すように、第2潜水機30の制御装置33は、水上船50を介して、第1潜水機10から第1潜水機10の進行方向を取得する。ただし、第2潜水機30は第1潜水機10から第1潜水機10の進行方向を直接取得してもよい。また、第1潜水機10の進行方向は、水上船50が第1潜水機10から必要なデータを取得し、水上船50で算出してもよい。
 続いて、第2潜水機30の制御装置33は、第2潜水機30を基準とする第1潜水機10の相対位置を取得する(ステップS3)。本実施形態では、図5に示すように、第2潜水機30は、音響測位装置37を用いて、第1潜水機10のトランスポンダ19から発信された応答波(応答信号)に基づいて、第2潜水機30を基準とする第1潜水機10の相対位置を取得する。
 続いて、第2潜水機30の制御装置33は、目標地点の第2相対位置を算出する(ステップS4)。ここで「目標地点の第2相対位置」とは、第2潜水機30を基準とする目標地点の相対位置である。つまり、ステップS4では、第1潜水機10を基準とする座標系における目標地点の位置(第1相対位置)を、第2潜水機30を基準とする座標系における位置(第2相対位置)に変換する。目標地点の第2相対位置は、ステップS1で取得した第1相対位置、ステップS2で取得した第1潜水機10の進行方向、及び、ステップS3で取得した第2潜水機30を基準とする第1潜水機10の相対位置に基づいて算出することができる。
 続いて、第2潜水機30の制御装置33は、ステップS4で算出した目標地点の第2相対位置に基づいて目標地点に向かって第2潜水機30を移動させる(ステップS5)。これにより、第2潜水機30は第1潜水機10に近接する。本実施形態では、目標地点までの距離が最短となるルートに沿って第2潜水機30を移動させるが、他のルートを通ってもよい。
 続いて、第2潜水機30の制御装置33は、第2潜水機30が目標地点に達したか否かを判定する(ステップS6)。第2潜水機30が目標地点に達していないと第2潜水機30の制御装置33が判定した場合(ステップS6でNO)、ステップS3に戻って第2潜水機30が目標地点に達するまでステップS3からS6を繰り返す。なお、図5及び図6を対比してもわかるように、作業第1相対位置及び第1潜水機10の進行方向が同じであっても、第2潜水機30と第1潜水機10の相対位置が変われば、目標地点の第2相対位置(第2潜水機30と目標地点の相対位置)は変化する。
 一方、第2潜水機30の制御装置33がステップS6において、第2潜水機30が目標地点に達したと判定した場合(ステップS6でYES)、第2潜水機30を交代地点に移動させる(ステップS7)。具体的には、第2潜水機30の制御装置33は、対象物検出装置32から送信された測定信号に基づいて配管101の正確な位置を取得し、交代地点である配管101の真上に第2潜水機30が位置するよう位置調整する。つまり、第2潜水機30は、対象物検出装置32を用いて作業対象物である配管101に近接する。また、その際には、第2潜水機30の制御装置33は、配管101に対して平行になるよう第2潜水機30の姿勢も併せて調整する。
 続いて、第2潜水機30の制御装置33は、第2潜水機30が完了信号を水上船50に発信する(ステップS8)。そして、水上船50の制御装置57は、完了信号を受信すると、第1潜水機10に帰還信号を発信する(ステップS9)。これにより、図8に示すように、第1潜水機10は水上船50に向かって移動し、水上船50に帰還した後に充電が行われる。また、これと同時に、第2潜水機30は、配管101に沿って移動しながら作業を開始する。以上のステップS1乃至S9を経ることにより、交代制御プログラムは終了する。なお、第2潜水機30の制御装置33は、完了信号を水上船50ではなく第1潜水機10に直接送信してもよい。
 以上では、第2潜水機30が第1潜水機10と交代する際の動作について説明したが、第1潜水機10が第2潜水機30と交代する際の動作も同様にして行われる。このように、本実施形態では、第1潜水機10と第2潜水機30が交互に充電を行いながら交代で作業が行われるため、各潜水機10、30に大容量のバッテリを搭載することなく長時間の作業が可能である。そのため、大容量のバッテリを搭載することによる各潜水機10、30の大型化を抑制することができる。
 また、本実施形態に係る潜水機システム100では、第2潜水機30と第1潜水機10が交代する際、一方の潜水機10、30が目印となって他方の潜水機10、30を交代地点付近まで導くことができるため、各潜水機10、30が帰還する際に中断地点に目印となる発信機の設置が不要となる。
 さらに、本実施形態に係る潜水機システム100では、潜水機10、30を基準として設定された目標地点を、目標地点に向かう潜水機10、30が当該潜水機10、30を基準とする相対位置に変換して目標地点に向かって移動する。この構成によれば、潜水機10、30が位置する地点ではなく、潜水機10、30から離れた地点を目標地点に設定することができる。そのため、交代時において両潜水機10、30が接触するのを防ぐことができる。
 また、本実施形態に係る潜水機システム100では、第1潜水機10からみて進行方向とは反対の方向側に目標地点が設定されているため、第1潜水機10が既に作業を終了した地点で交代を行うことができる。これにより、交代時における作業の漏れを防ぐことができる。
 なお、本実施形態では、第1潜水機10からみて進行方向とは反対の方向側に目標地点が設定されているが、目標地点はこれに限定されない。例えば、第1潜水機10が往路で作業を行い、第2潜水機30が往復して作業を行う場合には、目標地点(目標地点の第1相対位置)は第1潜水機10の前や横に設定されていてもよい。
 一例として、第1潜水機10が往路で防食検査器を用いて防食処理の劣化の程度を検査した後、第2潜水機30が復路で防食処理の劣化が著しい箇所に対して超音波検査器を用いて精密検査を行うことが考えられる。この場合、第1潜水機10の前、すなわち第1潜水機10からみて進行方向側に目標地点を設定することにより、交代時における作業の漏れを防ぐことができる。
 また、上述した実施形態に係る潜水機システム100は2台の潜水機10、30を備えていたが、3台以上の潜水機を備え、これらが交代で作業を行うようにしてもよい。さらに、本実施形態では、2台の潜水機10、30が交互に交代しながら作業を行うが、交代は1回のみであってもよい。この場合は、各潜水機への充電は不要である。
 また、上述した実施形態では、潜水機10、30が交代する際に深度計21、41を用いていないが、深度計21、41を用いてもよい。例えば、第1潜水機10と同じ深度にまで第2潜水機30を降下させ、その後に、上述した図2に示すステップS1乃至S9を実行しても良い。この方法によれば、深度計21、41の測定精度が高いため、潜水機10、30の交代を正確にかつ速やかに行うことができる。
10 第1潜水機
11 推進装置
19 トランスポンダ
30 第2潜水機
31 推進装置
32 対象物検出装置
37 音響測位装置
50 水上船
100 潜水機システム

Claims (7)

  1.  所定の進行方向に移動しながら水中で作業を行う第1潜水機と、
     前記第1潜水機と交代して水中で作業を行う第2潜水機と、を備え、
     前記第2潜水機は、前記第1潜水機と交代する際、前記第1潜水機から発信される信号に基づいて前記第1潜水機に近接するように構成されている、潜水機システム。
  2.  前記第2潜水機は、前記第1潜水機と交代する際、前記第1潜水機からみて前記進行方向とは反対の方向側に位置する目標地点に向かって移動するように構成されている、請求項1に記載の潜水機システム。
  3.  前記第2潜水機は、前記第1潜水機と交代する際、前記第1潜水機からみて前記進行方向側に位置する目標地点に向かって移動するように構成されている、請求項1に記載の潜水機システム。
  4.  前記目標地点は、前記第1潜水機から所定の距離離れた地点である、請求項2又は3に記載の潜水機システム。
  5.  前記第2潜水機は、前記第2潜水機に対する前記第1潜水機の相対位置を測定する音響測位装置と、作業対象物を検出して前記第2潜水機に対する前記作業対象物の位置を取得する対象物検出装置と、を有し、
     前記第2潜水機は、前記第1潜水機と交代する際、前記音響測位装置を用いて前記第1潜水機に近接した後、前記対象物検出装置を用いて前記作業対象物に近接するように構成されている、請求項1乃至4のうちいずれか一の項に記載の潜水機システム。
  6.  所定の進行方向に移動しながら水中で作業を行う第1潜水機と、
     前記第1潜水機と交代して水中で作業を行う第2潜水機と、を備え、
     前記第1潜水機は、
     前記第2潜水機に音波を送るトランスポンダと、
     前記第1潜水機を移動させる推進装置と、を有し、
     前記第2潜水機は、
     前記第1潜水機のトランスポンダから送られた音波に基づいて前記第1潜水機に対する前記第2潜水機の位置を測定する音響測位装置と、
     前記第1潜水機が前記第2潜水機と交代する際に、前記音響測位装置が測定した前記第1潜水機に対する前記第2潜水機の位置に基づいて、前記第2潜水機を前記第1潜水機に近接するように移動させる推進装置と、を有する、潜水機システム。
  7.  前記第1潜水機から第2潜水機に発信される信号に基づいて前記第2潜水機を前記第1潜水機に近接させ、前記第1潜水機が行った作業に引き続いて前記第2潜水機に作業を行わせる、作業方法。
PCT/JP2019/034535 2018-09-14 2019-09-03 潜水機システム及び作業方法 WO2020054500A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020545934A JP7064604B2 (ja) 2018-09-14 2019-09-03 潜水機システム及び作業方法
US17/276,356 US20220073175A1 (en) 2018-09-14 2019-09-03 Underwater vehicle system and working method
EP22207788.5A EP4159612A1 (en) 2018-09-14 2019-09-03 Underwater vehicle system and working method
EP19860357.3A EP3851367B1 (en) 2019-09-03 Underwater vehicle system and working method
AU2019339852A AU2019339852B2 (en) 2018-09-14 2019-09-03 Underwater vehicle system and working method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-172768 2018-09-14
JP2018172768 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054500A1 true WO2020054500A1 (ja) 2020-03-19

Family

ID=69777605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034535 WO2020054500A1 (ja) 2018-09-14 2019-09-03 潜水機システム及び作業方法

Country Status (5)

Country Link
US (1) US20220073175A1 (ja)
EP (1) EP4159612A1 (ja)
JP (1) JP7064604B2 (ja)
AU (1) AU2019339852B2 (ja)
WO (1) WO2020054500A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7148266B2 (ja) * 2018-04-26 2022-10-05 川崎重工業株式会社 自律型無人潜水機を用いた作業方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127760A (ja) * 2010-12-14 2012-07-05 Nec Corp 水中航走体誘導システム、個別航走体水中走行制御方法、及びその制御プログラム
US20160236760A1 (en) * 2013-09-23 2016-08-18 Saab Seaeye Limited A system for monitoring a remote underwater location
JP2017071265A (ja) 2015-10-06 2017-04-13 川崎重工業株式会社 自律型無人潜水機の充電システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2659290B1 (fr) * 1990-03-06 1992-05-15 Thomson Csf Systeme d'exploration de l'espace sous-marin avec des vehicules autonomes.
US7495999B2 (en) * 2005-08-03 2009-02-24 Nekton Research Llc Underwater guidance systems, unmanned underwater vehicles and methods
KR100906362B1 (ko) * 2007-03-20 2009-07-06 한국해양연구원 2개의 기준점에 대한 거리정보와 저정밀도 관성센서를 이용한 무인잠수정 선단의 의사 lbl 수중항법시스템
KR101036285B1 (ko) * 2008-10-21 2011-05-23 엘아이지넥스원 주식회사 수중 운동체 유도 방법 및 장치
KR101469226B1 (ko) * 2012-07-20 2014-12-04 삼성중공업(주) 수중 차량 시스템
FR3000225B1 (fr) * 2012-12-20 2015-01-09 Cggveritas Services Sa Acoustic modem-based guiding method for autonomous underwater vehicle for marine seismic surveys
US9193402B2 (en) * 2013-11-26 2015-11-24 Elwha Llc Structural assessment, maintenance, and repair apparatuses and methods
US9182237B2 (en) * 2013-12-06 2015-11-10 Novatel Inc. Navigation system with rapid GNSS and inertial initialization
US9812018B2 (en) * 2014-04-08 2017-11-07 University Of New Hampshire Optical based pose detection for multiple unmanned underwater vehicles
US9821455B1 (en) * 2015-08-08 2017-11-21 X Development Llc Replacing a first robot with a second robot during performance of a task by the first robot
US9692498B2 (en) * 2015-10-16 2017-06-27 At&T Intellectual Property I, L.P. Extending wireless signal coverage with drones
EP3226095A1 (de) * 2016-03-31 2017-10-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System und verfahren zur navigation eines autonom navigierenden tauchkörpers beim einfahren in eine fangstation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127760A (ja) * 2010-12-14 2012-07-05 Nec Corp 水中航走体誘導システム、個別航走体水中走行制御方法、及びその制御プログラム
US20160236760A1 (en) * 2013-09-23 2016-08-18 Saab Seaeye Limited A system for monitoring a remote underwater location
JP2017071265A (ja) 2015-10-06 2017-04-13 川崎重工業株式会社 自律型無人潜水機の充電システム

Also Published As

Publication number Publication date
EP3851367A4 (en) 2022-06-22
US20220073175A1 (en) 2022-03-10
AU2019339852A1 (en) 2021-04-22
JPWO2020054500A1 (ja) 2021-08-30
EP3851367A1 (en) 2021-07-21
EP4159612A1 (en) 2023-04-05
JP7064604B2 (ja) 2022-05-10
AU2019339852B2 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
US9223002B2 (en) System and method for determining the position of an underwater vehicle
US20140165898A1 (en) Unmanned Underwater Vehicle and Method for Localizing and Examining An Object Arranged At The Bottom Of A Body Of Water and System Having the Unmanned Underwater Vehicle
JP2007210402A (ja) 自律型無人潜水機およびその水中航行方法
JP7148266B2 (ja) 自律型無人潜水機を用いた作業方法
KR101304579B1 (ko) 수중 이동체 위치측정장치 및 그 방법
CN109085597B (zh) 用于水下地形测量的无人艇
US9885794B2 (en) System and method for accurate positioning of control devices for instrumented cables
KR101177839B1 (ko) 수중로봇 위치 측정 시스템 및 그 방법 및 시스템
WO2020054500A1 (ja) 潜水機システム及び作業方法
EP3851367B1 (en) Underwater vehicle system and working method
JP7362343B2 (ja) 水中作業システム
JP2021116019A (ja) 水中航走体の自己位置推定誤差補正方法及び水中航走体の自己位置推定誤差補正システム
CN221054816U (zh) 一种海底掩埋管道自主巡线系统
AU2012200886A1 (en) System and method for determining the position of an underwater vehicle
JP7333565B1 (ja) 飛行体および飛行体の制御方法
KR20170075930A (ko) 케이블로 연결된 복수개의 수중로봇의 위치 추정 방법 및 그 시스템
JP2020157970A (ja) 測位システム及び測位方法
JPS6230975A (ja) 音響測位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019860357

Country of ref document: EP

Effective date: 20210414

ENP Entry into the national phase

Ref document number: 2019339852

Country of ref document: AU

Date of ref document: 20190903

Kind code of ref document: A